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Abstract. This paper presents a family of uniform random number generators designed for efficient

implementation in Lookup table (LUT) based FPGA architectures. A generator with a period of 2k
j1 can be

implemented using k flip-flops and k LUTs, and provides k random output bits each cycle. Each generator is based

on a binary linear recurrence, with a state-transition matrix designed to make best use of all available LUT inputs

in a given FPGA architecture, and to ensure that the critical path between all registers is a single LUT. This class

of generator provides a higher sample rate per area than LFSR and Combined Tausworthe generators, and operates

at similar or higher clock-rates. The statistical quality of the generators increases with k, and can be used to pass all

common empirical tests such as Diehard, Crush and the NIST cryptographic test suite. Theoretical properties such

as global equidistribution can also be calculated, and best and average case statistics shown. Due to the large

number of random bits generated per cycle these generators can be used as a basis for generators with even higher

statistical quality, and an example involving combination through addition is demonstrated.
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1. Introduction

Many applications are reliant on random numbers,

such as financial calculations, simulated equipment

testbeds, and simulation of communications channels.

Such applications require large amounts of processing

power, while providing many opportunities to exploit

fine-grain and coarse-grain parallelism, and so are

often ideally suited to implementation in FPGAs [5,

20, 30]. In order to function correctly, these

applications require many parallel streams of high

quality, large period, uncorrelated uniform random

number generators. These are most commonly used

as input to transformation functions which will

provide the non-uniform distributions, and typically

require many uniform input bits for each non-

uniform output sample [4, 15].

In this paper we introduce a class of random

number generators where every bit of the generator

state can be used as a random output bit, allowing

large numbers of parallel number streams to be

produced from one large period generator. The key

contributions are:

– A technique for creating linear recurrence based

random number generators, using state-transition

matrices optimised for LUT based architectures; it

is particularly suited for applications where many

random bits are needed per-cycle

– Hardware implementation and benchmarking of

the generators in the Virtex-II architecture

– An example of an additively combined generator

which passes all empirical tests, with low area

requirements and high generation speed



– Empirical evaluation of generator quality using the

Diehard, Crush and NIST test batteries, and

theoretical evaluation using the equidistribution test

– A comparison of the generators with other types of

linear recurrence, such as LFSR and Combined

Tausworth based generators

2. Background

Random number streams can be generated using

either a True Random Number Generator (TRNG),

or a Pseudo-Random Number Generator (PRNG).

TRNGs rely on physical processes such as thermal

noise or jitter, and so produce data that are

fundamentally unpredictable. FPGA based imple-

mentations of TRNGs are available, such as [7] and

[26], which are both variants on the same technique

of sampling a high frequency clock with a low

frequency unstable clock. While excellent for cryp-

tographic purposes, these generators are generally

not useful for simulations, as the bit generation rate

is too low, typically only tens or hundreds of kilo-

bits per second. TRNGs also make it impossible to

repeat a random sequence unless the entire sequence

is stored, meaning that it is impossible to repeat a

specific simulation run in order to verify results.

Pseudo-Random Number Generators produce ran-

dom numbers by using a deterministic state-transi-

tion function f ðxÞ to transform the current state xi

into a new state xiþ1. The sequence of states x1; x2; :::
is then used as a sequence of random numbers.

Because there are a finite number of states that can

be produced, and the transition function is determin-

istic, the maximum sequence length that any PRNG

with k-bit state can produce is limited to 2k. Selection

of the state-transition function is obviously critical:

xiþ1 ¼ ðxi þ 1Þmod 2k will produce a full length se-

quence, but is obviously not random. A good over-

view of common random number generators is

provided by Knuth [11], but concentrates mainly on

software generators. Here a brief survey of techniques

appropriate for hardware implementation is presented.

The two most common types of hardware random

number generators are Linear Feedback Shift Regis-

ters (LFSRs) and their variants, and Cellular Autom-

ata (CA) generators. Other algorithms are also used

for more specialised situations, such as the Blum

Blum Shub algorithm [26] for cryptographic random

numbers, but are not appropriate for situations

requiring high sample rates such as simulations.

LFSRs are the best known of a family of gen-

erators based on binary linear recurrences [25], that

includes other generators used in hardware such as

Tausworthe, Combined Tausworthe, as well as the

new family of generators introduced in this paper.

Some software generators such as the Mersenne

Twister [19] and WELL [22] also belong to this

family, but are less commonly implemented in

hardware.

Binary linear recurrence based generators form

each new bit in the next state from a linear

combination of the bits in the current state. The

advantage of this type of generator is that the state-

transition function is easily and efficiently imple-

mented in LUTs: state xiþn can be determined from

state xi in Oðlog2ðnÞÞ steps, and that the period length

is only one less than the theoretical maximum.

However, current generators from this family suffer

from poor statistical quality. This type of generator is

discussed in more detail in Section 3.

Cellular Automata generators form a large class of

algorithms, including linear recurrences, but are usual-

ly taken to mean binary non-linear recurrences [27].

For example the well-known Rule-30 generator forms

each new bit from a combination of the three nearest

bits in the previous state according to the formula:

xiþ1;b ¼ xi;b�1 � ðxi;b _ xi;bþ1Þ. An example of a 6-bit

CA is shown in Fig. 1, where each register bit is

updated using a combinatorial function of its current

state plus that of its two neighbours. The array of bits

is typically organised as a ring, so the first and last bits

are considered to be neighbours. This type of

generator gives a chaotic sequence, i.e. the only way

to find state xiþn from xn is to step through all the

Figure 1. Six bit one-dimensional Cellular Automata (CA)

circuit.
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intermediate states. The period of a given generator is

also difficult to determine, as there are likely to be

multiple state-cycles of different lengths, with the

initial state selecting which cycle is used.

One dimensional, nearest-neighbour CA generators

have been used instead of LFSRs in VLSI for random

bit generation [10], but the quality of simple one-

dimensional sequences is often poor. In [23] more

complex configurations are considered, such as four

input functions to take advantage of 4-LUTs, and

different connection topologies. This gives higher

statistical quality, but because all four LUT inputs

are used there is no easy way to load or store the

generator_s state without partial reconfiguration or

extra LUTs. The generators also still have unsolved

problems related to sequence period and quality, due

to the lack of formal methods for analysing CAs.

The quality of random number generators is usually

determined through the use of empirical tests for

sequence randomness. These operate on the sequence

of numbers produced by a generator, rather than the

generator algorithm itself. Each test looks for specific

patterns within the sequence, then calculates the

likelihood of that type of pattern occurring; for

example, in the infinite limit a truly random bit

sequence should consist of half zeroes, and half ones.

Unfortunately it is only possible to test a finite number

of samples, so the number of zeros is expected to follow

a binomial distribution. By counting the number of

zeroes found in a sample of numbers, then plugging

this observed value into the inverse CDF (Cumula-

tive Distribution Function) of the expected distribu-

tion, in this case a binomial CDF, a value between 0

and 1 is produced, often called a p value. If a

generator produces random numbers that pass the

test, i.e. they fit that test_s particular view of what is

important in a random sequence, then the set of p
values from multiple runs of the test should be

uniformly distributed. If the p values are clustered

around 0 or 1 then the generator does not meet that

test_s expectations about randomness. It is impor-

tant to note that empirical testing is inherently

probabilistic: a perfect random number generator

will occasionally produce p values that appear to

indicate a failure.

Each empirical test only looks at one aspect of

randomness, so it is common to group together lots

of different tests into a test battery. The best known

of these is Diehard [16], which comprises 16

different tests, and has been the standard test battery

in recent years. Unfortunately Diehard is not para-

metrisable, and consumes just 2.5 M 32-bit integers

across all the tests; a hardware simulation running at

133 MHz will consume over 50 times the Diehard

sample size each second. TestU01 [13] is a newer

test suite designed for modern applications that

consume many more numbers. The standard test

battery of the suite, Crush, consumes approximately

235 numbers, while Big-Crush, designed to test ran-

dom numbers for long running applications, con-

sumes 238 . Another common test is the NIST test

battery, which is designed to test random numbers for

cryptographic purposes (although the test does not

confer any guarantee of algorithmic cryptographic

strength), and so has an emphasis on the ability to

predict the next number from the previously gener-

ated ones.

3. Linear Recurrence Generators

In this section some of the theory behind binary

linear recurrences for random number generation

will be introduced, along with the way that existing

generators fit into this model.

A large family of software and hardware uniform

random number generators, such as LFSRs and

Combined Tausworthe generators, are based on

linear recurrences using GF(2) (i.e. modulo 2 or

binary) arithmetic. In their most general form these

generators consist of a k � k matrix A , used to

provide a sequence x1:::xinf from an initial state x1

using the recurrences:

xiþ1 ¼ Axi; yi ¼ Bxi ð1Þ

The k bit wide sequence is reduced down to a w bit

wide output sequence using a w� k matrix B. The

sequence y1; y2; ::: can then be interpreted as a

sequence of random numbers, most commonly by

transforming to real numbers in the range ½0; 1Þ, or

by interpreting as integers in the range ½0; 2w � 1�.
The parameter k is the number of state bits used by

the generator, and ultimately determines the maxi-

mum period that can be provided. For a given matrix

A there may be multiple distinct sequences that can

be entered, depending on the initial value x1 . The

maximum period achievable is p ¼ 2k � 1, starting

from x1 6¼ 0. It is impossible to achieve a sequence

of length 2k, as there is no way to create a matrix A
that will transform a vector of all zero to anything
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other than zeros under GF(2): the best that can be

achieved is one cycle of length 1 when x1 ¼ 0, and

another of length 2k � 1 when x1 6¼ 0.

The condition for maximum period is that the

recurrence matrix must have a characteristic polyno-

mial which is primitive modulo 2 [25]. The charac-

teristic polynomial is defined as PðzÞ ¼ detðA� IzÞ,
so for a k � k matrix this will be a polynomial of

degree less than or equal to k . The sequence

generated by A has maximum period if and only if

PðzÞ is primitive modulo 2 [17].

Parameter w determines the number of output bits

provided by the generator, and the matrix B is used to

determine how the output bits are created from the

state bits. If B ¼ I then the state bits will be used

directly, but if B 6¼ I then the output bits will

comprise some linear combination of the state bits.

This process is often called tempering [18], and can

be used to improve the statistical properties of the

output sequence, for example by using two state bits

to provide each output bit when k � 2w.

The two matrices A and B are chosen to provide an

output sequence that is of high statistical quality,

while also being easy to implement. Ease of

implementation breaks down into two further cate-

gories, of software and hardware: in software it is

necessary that the matrix multiplications can be

implemented efficiently using full-length word oper-

ations, while in hardware it is desirable to minimise

the amount of logic and registers used. Satisfying

any two of these three conditions often means that

the third one is not met; for example generators that

can be easily implemented in software and have

good statistical quality often require too much state

to be area-efficient in hardware.

The classic hardware linear recurrence based

generator is the single bit LFSR. This generator is

based on very simple maximum period linear

recurrences, by selecting a primitive polynomial

of the appropriate degree, then setting up a recur-

rence that implements the polynomial directly. This

is usually generated as a bit sequence, biþ1 ¼
w1bi þ w2bi�1:::wkbi�kþ1 , where w1:::wk are the

coefficients of the polynomial. The generator obvi-

ously still has a k bit state, formed from the last k
bits, xi ¼< bi; bi�1; :::; bi�kþ1 >, but because most of

the state is just a shifted version of the previous

state only 1 bit can be used as an output. Figure 2

gives an example of the structure of a 6-bit LFSR,

based on the feedback polynomial b6 þ b5 þ b0.

LFSRs have very efficient implementations in

certain architectures [1], particularly in the Virtex-

II and later families from Xilinx, where the shift

register portions can be implemented using SRL16s

[9]. However, because each instance only produces 1

bit per cycle, w parallel instances are needed to

produced a w bit number sequence. So to produce a

2k � 1 bit sequence, kw bits of state are needed,

rather than just k . LFSRs also become less area-

efficient as the number of taps or the period length is

increased, so are not appropriate for high quality

random word (as opposed to bit) generators.

The Tausworthe generator [12] is a type of linear

recurrence generator that avoids the main drawback

of LFSRs, as more than one bit from the state can

be used as an output each cycle. A Tausworthe

sequence is created by taking w bit blocks from a

maximum period k bit recurrence (w � k ) every s
bits, i.e. xi ¼< bisþ1; bisþ2; :::; bisþw >. If 2k � 1 and s
are relatively prime then the overall period of the

sequence x will remain 2k � 1. It may appear that

each state transition will require s steps, but it is

possible to calculate each transition in parallel; for

example the QuickTaus algorithm [12] can be used

in both software and hardware to implement Taus-

worthe generators for primitive trinomials. Because

Tausworthe generators are usually implemented

using trinomials, the quality of the generators is

poor, particularly when s < w. The main use of the

Tausworthe generator is to create Combined Taus-

worthe generators [12], whereby two or more w bit

wide generators are combined using exclusive-or to

provide a new sequence. If the constituent poly-

nomials are chosen such that all their periods are

relatively prime, then the period of the combined

Figure 2. A 6 bit Linear Feedback Shift Register (LFSR).
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generator is equal to the product of the polynomial

periods. Although implemented as a combination

of three separate generators, the overall combina-

tion forms another linear recurrence matrix, though

with a non-maximum period sequence. Combined

Tausworthe Generators are area efficient (compared

to parallel LFSRs), and produce good quality

generators [14, 29].

4. LUT Optimised Linear Recurrences

The Tausworthe generator is primarily designed for

software use, with a low instruction count imple-

mentation as the main design priority. The left side

of Fig. 3 shows the recurrence matrix for a 31-bit

Tausworthe generator, which takes six instructions to

execute in software. In hardware this will take 31

FFs and 22 4-LUTs, and only two inputs of each

LUT entry will be used. This is a waste of logic as

only half the LUT_s inputs will be used.

If the requirements of software implementations

are ignored, then designing the generator recurrence

matrix becomes much simpler. The restrictions

imposed on the matrix to allow efficient calculation

using word-based bit-wise instructions can be ig-

nored, allowing the matrix to be designed for

efficient LUT based implementation. The rules for

selecting an efficient matrix are then as follows:

– A minimal criterion for maximum period is that

all bits must depend on at least one other bit,

and must in turn be used by at least one other

bit.

– If a bit is to appear minimally random, rather

than just a shifted copy of another bit from a

previous state, then it must depend on at least

two bits.

– A 2 input function requires one l -LUT, but the

extra l� 2 inputs may as well be used as it costs

nothing.

– Ideally all bits should only be sampled by l other

bits to avoid over-dependence on specific bits with-

in the state.

– The matrix must have maximum-period, i.e. the

characteristic polynomial of the matrix must be

primitive (modulo 2).

These rules mean that a k � k matrix must be found,

where all rows of the matrix contain l ones, all

columns of the matrix contain l ones, and the

characteristic polynomial is primitive (as explained

later, the row and column constraints have to be

relaxed slightly in practise).

To find such matrices a stochastic search approach

is used, which generates random candidate matrices

that satisfy the constraints on tap placement until a

matrix is found which has a primitive characteristic

polynomial. Both calculating the characteristic poly-

nomial and testing a polynomial for primitivity are

time-consuming processes, so some quick rejection

steps are used. First, if the determinant of a binary

matrix is zero then the characteristic polynomial

cannot be primitive. Second, a necessary (but not

sufficient) condition for polynomial primitivity is

that the polynomial is irreducible. This leads to the

following algorithm for finding generator matrices:

1. Generate a random k � k matrix A with approxi-

mately l ones in each row and l ones in each

column.

2. If detðAÞ ¼ 0 then go to step 1.

3. Calculate PðzÞ, the characteristic polynomial of A.

4. If PðzÞ is reducible then go to step 1. This step is

performed using a fast probabilistic algorithm that

will occasionally not reject a reducible matrix.

5. Perform full primitivity test on PðzÞ . If PðzÞ is

primitive then accept matrix A as a full-period

generator. The primitivity test rejects the small

number of reducible matrices that were misclas-

sified in step 4 by the probabilistic test.

This search process is implemented using the NTL

Number Theory Library [24] to implement the

calculations in steps 2, 3 and 4. The final primitivity

test is performed by a version of PPSearch [6],

modified to accept NTL format binary polynomials.

This system can be used to find full period matrices

up to a size of about 1,500, but beyond this point a

more efficient algorithm, or hardware accelerated

implementation, will be needed.

Figure 3. Feedback matrices for, from left to right: 31-bit

Tausworthe generator, 4-tap matrix, 3-tap loadable matrix, 4-tap

ring matrix.
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Table 1 shows statistics from the search process

while searching for matrices with l ¼ 4 for increas-

ing matrix size. For each size the search process is

run until four different full-period matrices are

found, and the table shows the overall statistics.

The Tested Candidates figure is the total number of

candidate matrices tested, while the Rejections
columns show how many matrices are rejected by

each stage. A very small proportion of non-

primitive matrices make it through to the primitivity

test, with most being rejected by the Determinant

test. The Total time column is the total CPU time

used to find the four generators, measured on an

Athlon 1.2 GHz machine with 1 GB of RAM. Also

included is a breakdown of where the time is spent,

and it is clear that by far the biggest bottleneck is

the characteristic polynomial calculation, which

increasingly dominates execution time as the matrix

size increases.

After implementing the search process, it was

discovered that the requirements outlined above,

specifically that each row and column must have

exactly l ones, results in matrices that are never full-

period generators. The solution that is adopted is to

select one or two bits in the state and either use an

lþ 1 input feedback or an l� 1 input feedback for

those bits. Only one modified bit seems to be

necessary in order to find a solution, but scaling the

number up with the matrix size speeds up the search

process. The first solution requires an extra LUT for

the selected bits, while the second solution possibly

sacrifices a little quality. In this paper the second

solution is used, but where possible the l� 1 input

bit(s) are not directly used to form random numbers,

hopefully hiding this minor flaw.

Equation (2) shows an example of a six bit full-

period generator, with l ¼ 3. Note that the bottom

row only contains two ones in order to allow the

full-period criteria to be met. The equivalent gener-

ator circuit is also shown in Fig. 4.

xiþ1 ¼

0 0 0 1 1 1

1 1 0 0 0 1

1 0 0 0 1 1

0 1 1 1 0 0

1 1 0 0 1 0

0 0 1 1 0 0

2
6666664

3
7777775

xi ð2Þ

The right hand side of Fig. 3 shows a larger 31 bit

recurrence matrix generated for a 4-LUT architec-

ture. The difference from the Tausworthe generator

to the left is visually clear, and in Section 7 the

Table 1. Search process statistics for finding primitive 4-LUT generators with increasing matrix size.

Matrix

size

Tested

candidates

Rejections

Total time

(s)

Percentage of total time

Det Irred Prim

Generate in

%

Det in

%

CharPoly in

%

Irred in

%

Prim in

%

32 591 417 169 1 0.46 15.4 12.3 56.1 9.7 6.4

64 1619 1151 461 3 6.09 6.8 7.1 77.9 7.1 1.0

128 5570 3964 1601 1 145.07 2.6 3.4 89.0 4.9 0.1

192 3898 2812 1076 6 332.10 1.6 2.2 92.1 4.0 0.1

Figure 4. Six-bit 3-tap LUT optimised linear Recurrence.

82 Thomas and Luk



statistical quality will also be evaluated, but first

some alternate matrix constraints will be considered

that organise the feedback in different ways.

The first modification is to allow the generator_s
state to be read and stored, which is necessary in

order to be able to start the sequence from a specific

state. This is particularly important in parallel

simulations, as each simulation node needs to

operate within a different sub-sequence of the

generators entire sequence. This can be achieved by

assigning starting states at known offsets within the

sequence to each simulation node, using the property

of linear recurrences that xiþt ¼ Atxi. For example, if

each of N simulation nodes will consume t random

outputs, each node 1 � n � N can be given a starting

state sn ¼ Atsn�1 , where s0 is some arbitrary base

state. However, this requires some way of loading

arbitrary states into each generator.

Loading state into a generator is a problem if all l
inputs of each LUT are already used, as two extra

inputs are needed for each bit in the state: one to

control whether the bit will be formed from a

recurrence or loaded from an external source, and

another to supply the bit from an external source.

Implementing this function will require two LUTs,

one to implement the original recurrence, and

another to select between the recurrence input and

the external input on the basis of a control input. One

option is to increase the number of feedback

taps from l to 2l� 3 by using two LUTs, increasing

the complexity of the recurrence as well as support-

ing loading. For example in a 4-LUT device this

would increase the width of each exclusive-or to five

inputs.

If doubling the number of LUTs is unacceptable,

then state loading can be implemented with just one

input: the control signal. This is achieved by loading

the state serially in k cycles, rather than in parallel in

a single cycle. A k bit cycle through the state bits is

chosen from the set of connections already used to

form a matrix with l� 1 inputs per bit. This cycle of

bits forms a shift register, which is used to load new

state bits in serial. The control bit uses up the final

input in each LUT, and selects between just using the

single connection shift register connection to load a

new state, or all of the connections to calculate the

next state.

In a 4-LUT architecture, such as the Virtex [28]

family, this arrangement will reduce each bit_s state

transition to a linear combination of three other bits.

This lack of feedback complexity can be compen-

sated for by organising the feedback matrix such that

the w bits used to form an output stream only depend

on the other k � w . This avoids the simplest

correlations between bits within the output stream,

and can be extended for multiple streams taken from

the same generator.

In other architectures this arrangement can be

implemented with no overhead. For example,

the Stratix-II device [3] adopts a flexible LUT

architecture, and one of the modes allows two 5-

LUTs per cell, as long as two of the inputs are

common to both LUTs. This configuration can be

used to implement a 4-input per bit recurrence

generator with serial state loading, as one of the

shared inputs will be used by the control signal,

while the other can be found simply by grouping

together pairs of bits that already depend on a

common input. Alternately the SLOAD feature can

be used to implement the serial loading, but this

may require device specific HDL.

The major factor that limits performance in this

architecture is routing congestion: even in the simple

six bit example shown in Fig. 2 the routing is already

very complex. An attempt to reduce routing conges-

tion was made, by restricting the matrix to only

connect together bits within t bits of each other (when

the state is considered as a ring of bits). Figure 3

shows a 31 bit matrix where such a constraint with

t ¼ 5 has been used, showing that all feedback taps are

clustered along the main diagonal. When implemented

in hardware this, form of matrix would be expected to

form a ring of registers with only local connections,

and so be able to achieve higher speeds than a more

general matrix. Finding matrices with low values of t
takes a long time, with t ¼ k=8 being a reasonable

lower point for the current search process. In practise

it was found that such matrices were consistently

slower than matrices without such constraints, rather

than faster. The reason for this is unclear, and whether

this behaviour is due to the place-and-route tools,

architecture, or both is unknown.

5. Implementation

In this section the hardware performance of the

generators is tested using VHDL implementations in

the Stratix-II, Spartan-3 and Virtex-4 architectures.

Given a binary recurrence matrix, it is straightfor-

ward to create a hardware description that imple-
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ments it. For example, the following Handel-C code

segment:

macro expr k=6:

macro expr matrix ={{0,0,0,1,1,1},

{1,1,0,0,0,1},

{1,0,0,0,1,1},

{0,1,1,1,0,0},

{1,1,0,0,1,0},

{0,0,1,1,0,0}};

macro expr fb(i,row)= select (i==k,0,

(state[i]&row[i])^fb(ij1,row)

bool state[k];

par(i=0;i<k;i++){

state[i]=fb(0, matrix[i]);

}

can be used to implement the six bit generator

example shown previously, or any other generator if

the matrix and k constants are changed.

Figures 5, 6, and 7 give feedback matrices of a

practical size in a more compact form. Each tuple

within the data-set identifies the feedback taps for

bit-0 through bit-k , with each tuple containing the

zero-based offsets of the tap locations. A negative

one in a tuple indicates that less than the full number

of taps are used for that bit. Listing 1 gives example

Handel-C code for using data-sets in this form.

macro proc RNG(k,numTaps,taps,oState)

{

// make sure initial state is not zero

static unsigned 1 state[k]={1};

// xor of up to numTaps bits from state

macro expr fb(i,t) =

select (t==numTaps, 0,

select (taps[i][t]==j1, 0

state[taps[i][t]]^fb(i,t+1)));

// calculate next value of bit in state

par(i=0;i<k;i++){

state[i]=fb(i,0);

oState[i]=state[i];

}

}

Listing 1 Example handled-C code for imple-

menting a random number generator using the

given data-sets.

For evaluation purposes two types of hardware can be

generated: one that implements just the generator core

for area and speed measurements, and another that also

contains interfacing code to software for statistical

testing. The area and speed measurements are imple-

mented using one clock input pin, one reset input pin,

and with all generator state bits routed to output pins.

The clock rates quoted here represent flip-flop to flip-

flop delay, and do not include flip-flop to pin paths.

Where not enough pins are available in a package,

multiple pins are multiplexed together with exclusive-

ors before being routed to output pins, with the extra

area excluded from the overall total. The designs are

implemented using VHDL, and compiled using ISE 8.1

for Spartan-3 and Virtex-4 devices, and Quartus II 4.0

for Stratix-II devices. The built-in synthesis was used in

both tool-chains, all effort levels were set to Bhigh,^ and

all settings for area/speed optimisation settings were set

to favour area.

In all cases where the number of inputs per bit is

less than or equal to the number of LUT inputs, the

reported area is exactly as predicted: for 3- or 4-tap

matrices each generator requires exactly k flip-flips

and k LUTs. In these cases the critical path contains

just one LUT, plus a routing delay that increases

with matrix size, due to congestion. Figure 8 shows

the changes in speed for increasing values of k in the

three different architectures. The log-trend curve

fitted through each set of points shows that the

Figure 5. Feedback taps for a 32-bit 3-tap generator.

Figure 6. Feedback taps for a 64-bit 4-tap generator.
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decrease in speed is approximately logarithmic in the

number of state bits. No statistically significant

difference in timing is detected between 3-tap

generators that supported sequential loading and

unloading of state compared with those that do.

Figure 9 shows the change in area and speed as the

number of taps is increased in a 64-bit generator.

Once the number of inputs per exclusive-or calcula-

tion exceeds that of a single LUT, the synthesis and

place-and-route tools have to start making more

complex decisions about how to compute partial

products. This is most striking in the 4-LUT based

Virtex-4 and Spartan-3 architectures, where a 5-tap

generator requires twice the LUTs of a 4-tap

generator. However, the ALUTs of the Stratix-II

can support more inputs per LUT, and allow more

flexibility when partitioning the ALUTs to create

partial products, so the number of LUTs for a given

tap count is lower.

As well as requiring more area, increasing the tap

counts also increases the critical path, due both to the

increase in logic depth needed to implement the wider

exclusive-or functions, and because the fan-out per-

bit increases with the tap count. Given the increase in

LUTs and decrease in clock rate, there are very few

occasions where it is worth using more taps than can

be supported by a single LUT. Each extra LUT that is

used to support a wider exclusive-or could equally be

used as a LUT plus register to increase the matrix size

(rather than allowing more taps), and the subsequent

increase in period is likely to provide better quality

than increasing the number of taps. For example,

compare the quality of the 3-tap, k=128 and 5-tap,

k=64 generators in Table 3 in Section 7.

6. Further Optimisations

As shown in Section 7, the statistical quality of the

generators shown so far is good, but suffers from the

same problem as any generator based on a linear

recurrence: the next state of a linear recurrence based

generator can always be predicted if more than k
previous states are known. This is why none of the

given generators pass the linear complexity statisti-

cal tests. Here we outline one modification that can

be used to pass these tests, while still retaining all the

good properties of recurrence generators, such as low

area, high speed, and the ability to skip the sequence

ahead.

Figure 8. Clock rates (according to critical path) for 4-tap

generators of increasing matrix size, with fitted log-trend for each

family.

Figure 9. Changing LUT count and clock rate for 64-bit

generators with an increasing number of taps.

Figure 7. Feedback taps for a 128-bit 3-tap generator.
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Increasing the value of k until each test passes

treats the symptoms, but not the underlying problem.

A better solution is to combine two samples using

addition or multiplication. The underlying linear

recurrence is then masked due to the mixing of bits.

Multiplication does the best job of mixing, but

requires high-cost resources in hardware, so here

addition is chosen. One problem with combining

through addition is that the lowest bit is simply the

exclusive-or of the least significant bits of the inputs.

To make sure that even the low output bit is of good

quality, the lowest d bits produced by the addition will

be discarded, so to produce a w bit output a wþ d bit

adder is used. If w is large, e.g. 32 bits, then this adder

is likely to limit clock speed, so instead the addition is

split up into s separate additions of w=sþ d . To

supply this addition a total of wþ sd random bits are

needed to produce each output sample.

This additive combination scheme is implemented

using w ¼ 32 , s ¼ 4 , and d ¼ 2 . The two input

samples are supplied by two separate 3-tap matrix

generators, one of size 80, the other 81, both

generated with support for serial loading. Because

the periods of the two generators are coprime the full

period is ð280 � 1Þð281 � 1Þ giving a period of

approximately 2160 . Two separate generators are

used rather than one single generator, as it should

improve speed in congested designs. This generator

can produce a single stream, or by using two additive

combination stages, two streams. Higher period

generators that support more streams can easily be

created by using larger matrices, and different width

streams can also be generated from a single

generator if necessary.

As well as passing the Diehard and Crush tests, this

generator also passes the harder Big-Crush test. The

NIST test for cryptographic numbers is also passed,

using a 1 Gb sample treated as 1,000 independent

streams. When two streams are generated, both pass

all the tests, and so far no empirical test batteries have

been found that it does not pass.

7. Empirical Statistical Quality

Testing randomness with a test battery, such as

Diehard, does not provide a definite answer to the

question of whether a given sequence is random or

not. All the tests provide is a set of p values which

must then be interpreted. One approach to this is to

run the tests, and consider any values outside the

½0:01; 0:09� range as a fail, but in a set of 100 p
values at least one value in this range should Bfail.^

The approach taken here is to run each test battery

three times, and then for each test within the battery

the triple of corresponding p values is considered.

Tests are considered a fail if one of three conditions

hold: at least one p value outside the range

½0:0001; 0:9999� ; at least two p values outside the

range ½0:01; 0:99� ; or all three p values outside the

range ½0:05; 0:95� . This means that there is very

roughly a 1 in 10,000 chance that the wrong decision

is made. The tests are performed by executing the

matrix generators in hardware using an RC2000

(Alpha-Data ADMX-RC2) system [2] (containing an

XC2V6000 FPGA), with a software wrapper to

return the generated samples back to the test suites.

The generators are initialised to a random state

before each test, and strictly consecutive samples are

returned to the test suite, i.e. no samples are dropped

or skipped.

Results for the Diehard and Crush batteries are

shown in Table 2, indicating the number of tests

failed, and an abbreviation of each of the failed test

types. The abbreviations are expanded underneath

the table; for a full explanation of each test, see the

Diehard [16] and Crush [13] documentation.

The 4-tap generators represent the case where the

generator state does not need to be loaded (e.g. a free

running generator or test vector generator), while the

3-tap generators are for use where the state needs to

be loaded (e.g. for a simulation application). The

third group contains results for two Combined

Tausworthe generators [12], and two parallel LFSRs

generated using Xilinx CoreGen.

A feature of the matrix generators is that all k bits

are usable, so another test of the quality of all k=w
streams of the selected generators was also per-

formed. It was found that the streams are all of

roughly the same quality, and in only one excep-

tional case (where k ¼ 256) was the quality of one

stream significantly worse than another from the

same generator. In that case the stream is supplied

from a set of bits with very low connectivity to the

rest of the matrix, forming an almost independent

stream. However, this was the only example of

this type found, and a notable feature of this

matrix was that it had very poor equidistribution

(see Section 8).

Table 3 provides a summary of the area, speed and

empirical quality of multiple generators. The first
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group of results shows a selection of 4-tap gener-

ators, while the second group shows 3-tap generators

that support serial state loading. The third group

shows the additive combination generator from

Section 6, first where just one 32 bit stream is

produced, then where two streams are produced. The

fourth group contains other hardware generators for

comparison purposes, while the last group contains

results from software generators running on a 3.2

GHz P4, including the widely used Mersenne

Twister (mt19937) [19]. The LUT and Flip-Flop

counts only apply to the Virtex-4 implementation,

although for the first two groups (4-tap and 3-tap

generators) the size of the generators was identical

across all three devices.

In many cases the critical path of a generator is

extremely fast, and speeds of up to 1 GHz are seen in

Fig. 8. However, in practise the working speed will

be limited to that of the clock distribution lines, so

Table 3 limits the reported generator frequency to

the minimum of the critical path and the global clock

net. Where clock distribution is the limiting factor

the corresponding entry is italicised. Where the

manufacturers do not list a maximum global clock

net frequency, the maximum output frequency from

the DCMs/DLLs is used.

The Diehard results reveal the slight loss in

randomness in the 3-tap generators, as the 4-tap

generators pass with k ¼ 96 , while the 3-tap

generators only pass at k ¼ 128. The Crush results

show this as well, with the 4-tap generators passing

more tests for the same k value. The parallel LFSR-

160 generator gives similar quality to the 3- and 4-

tap generators with k ¼ 64, but requires 7 times as

Table 2. Failed tests for the diehard and crush test batteries for different random number generators.

Generator k

Failed tests

Diehard Crush

4-taps 32 3 (BR,DNA,OPSO) 14 (6�MR,2�LC,2�RW,CP,2�BS,MO)

64 2 (BR,DNA) 12 (6�MR,2�LC,2�RW,CP,BS)

96 0 10 (6�MR,2�LC,RW)

128 0 7 (5�MR,2�LC)

256 0 6 (4�MR,2�LC)

512 0 4 (2�MR,2�LC)

1024 0 4 (2�MR,2�LC)

1248 0 2 (2�LC)

3-taps 32 5 (BR,DNA,OPSO,BS,OPERM5) 17 (6�MR,2�LC,3�RW,CP,3�BS,MO,MBO)

64 2 (BS,OPERM5) 13 (6�MR,2�LC,2�RW,CP,2�BS)

96 1 (OPSO) 11 (6�MR,2�LC,2�RW,BS)

128 0 8 (5�MR,2�LC,RW)

256 0 6 (4�MR,2�LC)

512 0 4 (2�MR,2�LC)

1024 0 4 (2�MR,2�LC)

1248 0 2 (2�LC)

Lfsr 64 3 (BS,OPSO,DNA) 15 (6�MR,2�LC,3�RW,HI,CP,COL,LHR)

Lfsr 128 2 (BS,OPSO) 14 (6�MR,2�LC,COL,MB,CP,LHR,HI,AC)

Taus 88 1 (OPSO) 9 (6�MR,2�LC,CP)

Taus 113 0 6 (4�MR,2�LC)

AC Auto-correlation, BR binary-rank, BS birthday-spacings, CP close-pair

HI Hamming-independence, LC linear-complexity, LHR longest-head-run

MBO Multinomial-bits-over, MO multinomial-over, MR matrix-rank, RW random-walk
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many LUTs, even with the SRL16 optimisations

performed by CoreGen.

The Tausworthe generators provide much better

quality than the LFSRs, and are actually better than

the matrix generators for a similar period length; this

is not unexpected, as the generators in [12] are

selected to have Maximal Equidistribution (i.e. a

sum of dimension gaps of zero), but also have the

further property of being Collision Free, so have

slightly better equidistribution than the matrices used

in the table. For larger periods the matrix generators

achieve equal or better quality, while requiring less

logic per sample generated: the 4-tap, k ¼ 256

generator is of about the same quality as Taus113,

but has over eight times the pure sample rate, and

achieves 5 times the sample rate per LUT used.

Table 3. Summary of the quality, area and speed of a selection of hardware generators.

Generator Period (log2)

Test failures

FFs LUTs

Sprtnj3 Strtx-II
Virtex-4

Diehard Crush MHz MHz MHz Gb/s Gb/s/LUT

4-tap, k=32 32 3 14 32 32 261 422 500 16 0.50

4-tap, k=64 64 2 12 64 64 306 422 500 32 0.50

4-tap, k=96 96 0 10 96 96 283 422 500 48 0.50

4-tap, k=128 128 0 7 128 128 287 422 500 64 0.50

4-tap, k=256 256 0 6 256 256 191 422 500 128 0.50

4-tap, k=512 512 0 4 512 512 222 391 500 256 0.50

4-tap, k=1248 1,248 0 2 1,248 1,248 176 340 410 511 0.41

3-tap, k=32 32 5 17 32 32 334 422 500 16 0.50

3-tap, k=64 64 2 13 64 64 334 422 500 32 0.50

3-tap, k=96 96 1 11 96 96 314 442 500 48 0.50

3-tap, k=128 128 0 8 128 128 334 422 500 64 0.50

3-tap, k=256 256 0 6 256 256 303 422 500 128 0.50

3-tap, k=512 512 0 4 512 512 262 398 500 256 0.50

3-tap, k=1248 1,248 0 2 1,248 1,248 247 342 432 539 0.43

5-tap, k=64 64 2 12 64 123 297 422 500 32 0.26

6-tap, k=64 64 1 12 64 128 297 422 500 32 0.25

7-tap, k=64 64 1 12 64 128 298 422 500 32 0.25

8-tap, k=64 64 1 11 64 128 272 422 500 32 0.25

12-tap, k=64 64 1 11 64 234 239 403 500 32 0.14

16-tap, k=64 64 1 10 64 303 238 405 500 32 0.11

Combo,1-strm 160 0 0 307 202 181 315 380 12 0.06

Combo,2-strm 160 0 0 387 242 176 311 360 23 0.10

Taus88 88 1 9 132 129 257 413 470 15 0.11

Taus113 113 0 6 164 161 258 415 482 15 0.10

LFSR-64 64 3 15 291 321 212 422 355 11 0.04

LFSR-160 160 2 14 451 481 209 422 320 10 0.02

Generator Period Diehard Crush Pentium-4 3.2 GHz

Taus88(SW) 88 1 9 106.6 3.4

Taus113(SW) 113 0 6 81.1 2.6

Mt19937(SW) 19937 0 0 63.7 2.0

The top three sections give results for linear recurrence generators of varying sizes and tap counts, the next section for the combined

generators suggested in Section 6, and the final two sections give results for existing random number generation methods in hardware and

software.

88 Thomas and Luk



When high quality random number generation is

considered, the LFSR based generators cannot

compete due to large area and poor quality. For

instance, the combo, 2-strm generator produces over

three times the sample rate per LUT compared to

LFSR-160, and has much better quality. The

Taus113 generator requires a relatively low amount

of area, but still does not pass all the tests, while the

dual combination generator has roughly the same

sample generation rate per LUT, and is of much

higher quality.

Two of the Crush tests are not passed by any

of the basic matrix generators, or by the LFSR

and Tausworthe generators. These are two tests

for linear complexity, and so easily detect the

linear structure of the relatively low period

generators shown here. Another two tests are only

passed by the two matrix generators with k ¼
1248, which are both tests for matrix rank. These

tests can detect linear recurrences below a certain

degree, in the case of Crush the maximum degree

is 1,200. For evaluation purposes a period just

over 1,200 is chosen, just to check that it could

be passed. A better solution is the modifications

suggested in Section 6, using in the combo

generators.

8. Theoretical Statistical Quality

The equidistribution test provides a theoretical

quality metric that applies to a generator_s entire

output sequence, as opposed to empirical tests

that can usually only test a very small sub-sequence.

The test determines how evenly successive t-tuples

of random outputs fill a t-dimensional hyper-cube,

by partitioning the hypercube into multiple buckets

and counting the number of times each bucket is

hit [21]. By using properties of linear recurrences

it is possible to calculate the equidistribution of a

generator over it_s entire sequence, without having

to manually generate and classify each output.

Specific measures of quality are made by splitting

the t -dimensional hyper-cube into 2l equal sized

segments, where l � k (k is the number of binary bits

in the generator state). This means that the 2k

possible t-tuples are assigned to a total of 2tl buckets

in the t-dimensional hyper-cube. A generator is said

to be ðt; l )-equidistributed if each bucket in the

hypercube contains 2k�tl points. For a given

resolution of l, let tl be largest dimension t for which

a generator is ðt; lÞ -equidistributed, with an upper

bound on tl of t*l ¼ bk=lc. The quality of a generator

can then be measured by using the dimension gap

�l ¼ t*l � tl. For a given resolution l a low value of �l

indicates a good equidistribution, with �l ¼ 0 indi-

cating the best possible equidistribution.

Each resolution l measures the quality of the l most

significant bits of a generated sequence, so �2 ¼ 0

would indicate that the two most significant bits of

the sequence have the optimum distribution. A

measure of quality across all bits in the output

sequence is provided by the worst-case dimension

gap D1 and the sum of dimension gaps D1:

D1 ¼ max
1�l�w

�lD1 ¼
Xl¼w

l¼1

�l ð3Þ

Together these two measures characterise the

optimality of a generator across all output bits,

with D1 ¼ 0 indicating a maximally equidistributed

generator.

Calculating �l over the entire output sequence is

not possible for all types of generator (such as Cellular

Automata), and in those cases only an empirical

measure of local sub-sequence equidistribution can be

calculated. In the case of binary linear recurrences, it is

possible to calculate �l using properties of the state-

transition matrix. From a given state si, it is possible

to directly calculate siþj , or any individual bit within

it, using the matrix Aj. This allows the tl bits that form

each t -tuple with resolution l to be expressed as a

tl� k matrix Et;l. It can be shown that a necessary and

sufficient condition for ðt; lÞ -equidistribution is that

Et;l have full rank [8, 12]. In this way it is possible to

directly calculate D1 and D1 for binary linear

recurrences.

In the case of the hardware binary linear recur-

rences discussed in this paper w is typically less than

k, but the distribution of the entire k-bit state is still

of interest. Table 4 summarises the equidistribution

of the best matrices found for different values of k.

D1 and D1 are shown both for a likely output width

of w ¼ 32 , and for w ¼ k . Also included are the

weights of the characteristic polynomials. In all cases

the weight is close to k=2 , an indicator of good

statistical quality.

Because the search process used to find matrices

is stochastic, there is no guarantee that just

because no maximally equi-distributed generators

are quoted in Table 4 that they do not exist. Figure
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10 shows the cumulative distribution of D1 for a 32

bit output sequence. It is clearly much easier to find a

well equidistributed matrix with large k than it is for

small k. Figure 11 shows the cumulative distribution

of D1 for 64-bit generators using different numbers

of taps. As the number of taps is increased it

becomes much more likely that a generator with

good equidistribution is found. However, a generator

with more taps requires a recurrence matrix with a

larger number of ones, increasing the time taken to

generate each matrix. This results in a sweet-spot of

around 5 or 6 taps, where the probability of finding a

maximally equidistributed generator balances the

time taken to find each full-period generator,

explaining why these are the only two such gener-

ators in Table 4.

9. Conclusion

In this paper a novel technique for designing and

implementing linear recurrence based generators in

LUT based architectures has been demonstrated. By

designing the recurrence matrix to make maximum

Figure 11. Cumulative probability distribution of D1 for

generators with differing numbers of taps and k ¼ w ¼ 64.

Table 5. Comparison of two 4-tap generators, the additive

combination generator, a combined Tausworthe generator, and the

software Mersenne Twister.

Generator Period Quality Gb/s FF/LUT

4-tap,k=128 128 Medium 64 128/128

4-tap,k=512 512 Good 256 512/512

Combined 160 Excellent 23 387/242

Taus113 113 Good 15 164/161

Mt19937 19,937 Excellent 2 N/A
Figure 10. Cumulative probability distribution of D1 for

k={32,64,128} and w=32.

Table 4. Equidistribution of best 3- and 4-tap generators found

through random search.

Generator w ¼ 32 w ¼ k
Weight of P(z)

k Taps D1 D1 D1 D1

32 3 1 1 1 1 16

32 4 1 1 1 1 14

64 3 1 6 1 6 30

64 4 1 2 1 2 34

96 3 1 4 1 15 44

96 4 1 3 1 12 42

128 3 1 2 1 18 62

128 4 1 4 1 7 68

256 3 2 7 2 27 124

256 4 2 6 2 22 122

64 3 1 6 1 6 30

64 4 1 2 1 2 34

64 5 0 0 0 0 28

64 6 0 0 0 0 28

64 7 1 1 1 1 36

64 8 1 1 1 1 32

64 12 1 1 1 1 28

64 16 1 1 1 1 26
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use of LUT inputs, it is possible to make high quality

random number generators with relatively few

resources. A generator with period 2k � 1 can be

implemented using just k Flip-flops and k LUTs. All

k bits of the state are random, allowing multiple

streams of numbers to be sourced from a single

generator, rather than requiring one generator per

random number stream. The theoretical properties

of these matrices, as measured through equidistrib-

ution, are very good, and maximally equidistributed

generators within this family of generators can be

found.

Table 5 summarises the statistics for some of the

suggested generators, as well as the Taus113 and the

software Mersenne Twister. The LUT optimised

generators can offer high period and very high speed

sample generation for a modest area cost, particular-

ly when multiple streams are taken from one

generator.

By combining two of these generators, it is

possible to create an FPGA 32-bit random number

generator with a period of 2160 that passes all

common empirical tests, including Crush, Big-Crush

and the NIST suite, for a cost of just 307 Flip-flops

and 202 LUTS, running at a speed of 360 MHz in the

Virtex-4 architecture (combo, 1-stream design in

Table 2). This type of generator is ideal for parallel

simulations, as the generator state can be read and

written at runtime, and the generator state at

arbitrary points in the future can be efficiently

calculated.

There are several avenues for further work.

Improving the efficiency of the search process

should increase the speed at which full-period

matrices can be found, making it possible to find

more maximally equidistributed and collision free

generators. This could be achieved by using

canonical labels for matrices in order to detect

matrices that have already been tried, and to

allow for exhaustive searches for state-transition

matrices.

Different FPGA families offer opportunities for

increasing quality or reducing area using architec-

ture specific components. For instance, the Virtex

SRL16 could be used to provide high periods

when not all bits of the state will be consumed,

while the Stratix-II flexible LUT architecture

offers the possibility of prioritising the quality of

some bits, by using higher input count LUTs for

those bits.
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Generator Embedded in Reconfigurable Hardware,^ in

CHES _02: Revised Papers from the 4th International

Workshop on Cryptographic Hardware and Embedded Sys-

tems, Springer, Berlin Heidelberg New York, 2003, pp. 415–

430.

8. M. Fushimi and S. Tezuka, BThe K-distribution of

Generalized Feedback Shift Register Pseudorandom

Numbers,^ Communications of the ACM, vol. 26, no. 7,

1983, pp. 516–523.

9. M. George and P. Alfke, Linear Feedback Shift Registers in

Virtex Devices, Technical Report, Xilinx, Inc., 2001.

10. P. D. Hortensius, R. D. McLeod, and H. C. Card, BParallel

Random Number Generation for VLSI Systems Using Cellular

Automata,^ IEEE Transactions on Computers, vol. 38, no. 10,

1989, 1466–1473.

11. D. E. Knuth, Semi-numerical Algorithms, Volume 2 of the Art
of Computer Programming, 2nd edition, Addison-Wesley,

Reading, MA, 1981.

12. P. L_Ecuyer, BMaximally Equidistributed Combined Taus-

worthe Generators,^ Mathematics and Computation, vol. 65,

no. 213, 1996, pp. 203–213.

13. P. L_Ecuyer and R. Simard, TestU01 Random Number Test

Suite, http://www.iro.umontreal.ca/~simardr/indexe.html.

14. D. Lee, J. Villasenor, W. Luk, and P. Leong, BA Hardware

Gaussian Noise Generator Using the Box-muller Method and

Its Error Analysis,^ To Appear in IEEE Transactions on

Computers, 2006.

15. D.-U. Lee, W. Luk, J. D. Villasenor, and P. Y. Cheung, BA

Gaussian Noise Generator for Hardware-based Simulations,^
IEEE Transactions on Computers, vol. 53, no. 12, 2004, pp.

1523–1534.(December)

16. G. Marsaglia, The Diehard Random Number Test Suite, http://

stat.fsu.edu/pub/diehard/, 1997.

17. G. A. Marsaglia and L. Tsay, BMatrices and the Structure of

Random Number Sequences,^ Linear Algebra and its Appli-

cations, vol. 67, 1985, pp. 147–156.

18. M. Matsumoto and Y. Kurita, BTwisted GFSR Generators II,^
ACM Transactions on Modeling and Computer Simulation,

vol. 4, no. 3, 1994, pp. 254–266.

High Quality Uniform Random Number Generation 91

http://users2.ev1.net/~sduplichan/primitivepolynomials/
http://users2.ev1.net/~sduplichan/primitivepolynomials/
http://www.iro.umontreal.ca/~simardr/indexe.html
http://stat.fsu.edu/pub/diehard/
http://stat.fsu.edu/pub/diehard/


19. M. Matsumoto and T. Nishimura, BMersenne Twister: A 623-

dimensionally Equidistributed Uniform Pseudo-random Num-

ber Generator,^ ACM Transactions on Modeling and Com-
puter Simulation, vol. 8, no. 1, 1998, pp. 3–30.(January)

20. A. Negoi and J. Zimmermann, BMonte Carlo Hardware

Simulator for Electron Dynamics in Semiconductors,^ in

International Annual Semiconductor Conference, Sinaia,

Romania, 1996, pp. 557–560.

21. F. Panneton and P. L_Ecuyer, BOn the Xorshift Random

Number Generators,^ To appear in ACM Transactions on

Modeling and Simulation, 2005.

22. F. Panneton, P. L_Ecuyer, and M. Matsumoto, BImproved

Long-period Generators Based on Linear Recurrences Modulo

2,^ To appear in ACM Transactions on Mathematical
Software, 2005.

23. B. Shackleford, M. Tanaka, R. J. Carter, and G. Snider,

BFPGA Implementation of Neighborhood-of-four Cellular

Automata Random Number Generators,^ in ACM/SIGDA
International Symposium on Field-Programmable Gate

Arrays, ACM, New York, 2002, pp. 106–112.

24. V. Shoup, Ntl: A Library for Doing Number Theory, http://

www.shoup.net/ntl/.

25. R. C. Tausworthe, BRandom Numbers Generated by Linear

Recurrence Modulo Two,^ Mathematics and Computation,

vol. 19, no. 90, 1965, pp. 201–209.

26. K. H. Tsoi, K. H. Leung, and P. H. W. Leong, BCompact

FPGA-based True and Pseudo Random Number Generators,^
in IEEE Symposium on FPGAs for Custom Computing

Machines, IEEE Computer Society, Washington, DC, 2003,

p. 51.

27. S. Wolfram, BRandom Sequence Generation by Cellular

Automata,^ Advances in Applied Mathematics, vol. 7, no. 2,

1986, pp. 123–169.

28. Xilinx, Inc., Virtex-II Platform FPGAs: Complete Data Sheet,

2000.

29. G. L. Zhang, P. H. Leong, D.-U. Lee, J. D. Villasenor, R. C.

Cheung, and W. Luk, BZiggurat-based Hardware Gaussian

Random Number Generator,^ in International Conference on

Field Programmable Logic and Applications, IEEE Computer

Society , 2005, pp. 275–280.

30. G. L. Zhang, P. H. W. Leong, C. H. Ho, K. H. Tsoi, D.-U.

Lee, R. C. C. Cheung, and W. Luk, BReconfigurable

Acceleration for Monte Carlo Based Financial Simulation,^
in International Conference on Field-Programmable Technol-
ogy, IEEE Computer Society , 2005, pp. 215–224.

David B. Thomas received the MEng and Ph.D. degrees in

computer science from Imperial College, in 2001 and 2006,

respectively. He likes Imperial so much that he stayed on, and

is now a post-doctoral researcher in the Custom Computing

group. Research interests include FPGA-based Monte-Carlo

simulations, algorithms and architectures for uniform and non-

uniform random number generation, and financial computing.

Wayne Luk received the MA, MSc, and DPhil degrees in

engineering and computer science from the University of Oxford,

Oxford, United Kingdom. He is a professor of computer

engineering, Department of Computing, Imperial College Lon-

don and leads the Custom Computing Group there. His research

interests include theory and practice of customizing hardware and

software for specific application domains, such as graphics and

image processing, multimedia, and communications. Much of his

current work involves high-level compilation techniques and

tools for parallel computers and embedded systems, particularly

those containing reconfigurable devices such as field-program-

mable gate arrays. He is a member of the IEEE.

92 Thomas and Luk

http://www.shoup.net/ntl/
http://www.shoup.net/ntl/

	High Quality Uniform Random Number Generation Using LUT Optimised State-transition Matrices
	Abstract
	Introduction
	Background
	Linear Recurrence Generators
	LUT Optimised Linear Recurrences
	Implementation
	Further Optimisations
	Empirical Statistical Quality
	Theoretical Statistical Quality
	Conclusion
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


