
Journal of VLSI Signal Processing 47, 33–45, 2007

* 2007 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s11265-006-0016-7

Designing a Posture Analysis System with Hardware Implementation

J. G. F. COUTINHO, M. P. T. JUVONEN, J. L. WANG, B. L. LO, W. LUK, O. MENCER AND G. Z. YANG

Department of Computing, Imperial College London, 180 Queen_s Gate, London SW7 2EZ, UK

Received: 6 February 2006; Revised: 28 June 2006; Accepted: 13 November 2006

Abstract. Posture analysis is an active research area in computer vision for applications such as home care and

security monitoring. This paper describes the design of a system for posture analysis with hardware acceleration,

addressing the following four aspects: (a) a design workflow for posture analysis based on radial shape and

projection histogram representations; (b) the implementation of different architectures based on a high-level

hardware design approach with support for automating transformations to improve parallelism and resource

optimisation; (c) accuracy evaluation of the proposed posture analysis system, and (d) performance evaluation for

the derived designs. One of the designs, which targets a Xilinx XC2V6000 FPGA at 90.2 MHz, is able to perform

posture analysis at a rate of 1,164 frames per second with a frame size of 320 by 240 pixels. It represents 3.5 times

speedup over optimised software running on a 2.4 GHz AMD Athlon 64 3700+ computer. The frame rate is well

above that of real-time video, which enables the sharing of the FPGA among multiple video sources.

Keywords: posture analysis, gait analysis, hardware compilation, FPGA, ubiquitous sensor networks

1. Introduction

Computer vision and video processing often involve

computationally intensive tasks that need to be

applied to data streams in real time, with applications

ranging from image-guided surgery, security and

surveillance to home-care monitoring.

General-purpose computers can support a wide-

variety of tasks, but are often too slow or too power

hungry for vision applications. FPGAs (Field-pro-

grammable Gate Arrays) provide an attractive alter-

native: they combine the flexibility of software with

a speed approaching that of custom hardware

technology. It has been shown that, for selected

applications, an FPGA at tens of MHz can run up to

1,000 times faster than a microprocessor with a GHz

clock [5, 16], while moving critical software loops

into hardware can result in average energy savings of

35 to 70% with an average speedup of 3–7 times,

depending on the particular device used [19].

In this paper, we focus on the design and imple-

mentation of an FPGA-based architecture for simple

posture analysis, which determines if the target is

standing up, sitting down or lying on the floor. The

goal is to build a smart and independent video-camera

system that can monitor the daily activities of home

care patients. Instead of using body sensors, we rely

on images captured by the video camera to identify

multiple visual cues to determine posture. A number

of clinical studies have shown that changes in posture

and gait can indicate the onset or progress of various

diseases, such as early signs of neurological abnor-

malities linked to dementia [21].

Our method [12] is based on previous work on ubiq-

uitous sensing for managed homecare of the elderly

[14] and includes the following four contributions:

1. A design workflow for a posture analysis system,

summarising the main processing components

(Section 3);

2. System architectures and their implementation

targeting a Xilinx XC2V6000 FPGA using a

high-level hardware design approach (Section 4);

3. Evaluation of the accuracy of our hardware

implementations for three posture estimation

algorithms (Section 5.1).

4. Performance evaluation and comparison to soft-

ware for our hardware implementations (Section

5.2).

The rest of the paper is structured as follows.

Section 2 covers the background material and pro-

vides an overview of our work. Section 3 describes

the posture analysis design workflow, while Section 4

discusses its implementation. Section 5 evaluates the

performance and accuracy of our approach, and

Section 6 summarises the paper.

2. Background

Analysis of human motion has in recent years

become one of the most active areas of research in

the field of computer vision. It provides the oppor-

tunity of using an unobtrusive domestic health

monitoring system for home-care patients by detect-

ing changes in posture and gait to determine the

onset of an adverse event or worsening of an existing

condition.

2.1. Technique Overview

In this paper we consider a posture analysis system

based on a frame-by-frame technique [14] which

comprises three stages: blob detection, blob metric

generation and posture classification.

Blob detection. A blob describes the shape of an

object against a blank background. A common

method to extract blobs is to employ image
differencing and thresholding as shown in Fig. 1c

and d respectively. The former compares an image

with a reference (background) frame to see which

parts of the image have changed. This is a simple

process of taking the difference between the image

frame and the reference frame for each pixel in turn.

To take into account variations in the background,

such as changes in lighting conditions, the reference

image can be adapted progressively. On the other

hand, the thresholding process generates a 1-bit

(binary) image where pixels with values above the

chosen threshold are defined as part of the blob

representation, and those below as the background.

Binary images are ideal representation for blobs

since they are fast to process and store. Noise and

distortion can be removed using Gaussian filters as

shown in Fig. 1b.

Blob metrics. Once a blob is extracted, we can

represent it in a number of ways (Fig. 2). Different

representations of the blob shape may reveal differ-

ent features of the shape of the blob. Examples of

blob representations include:

– Projection histogram representation. Projection

histograms are one-dimensional representations

that describe the distribution of pixels of an object

along the horizontal and vertical axes. Projection

histograms can be generated by projecting the

binary image on each of the axes. Fig. 2c and d

show the horizontal and vertical projections of the

blob in Fig. 2a.

– Radial shape representation. Radial shape repre-

sentation describes the outline of the blob by

measuring the distance of the outline from the

shape centroid at various angles. The radial shape

bears resemblance to the blob contour but since we

represent the shape as function of the angle instead

of along the contour, it will not be the same. Fig. 2b

shows an example of the radial shape of the blob

of Fig. 2a, plotted in polar coordinates to show the

resemblance of the shape and the object.

Posture classification. Finally, posture classifica-

tion determines the posture type (standing, sitting

and lying down) for a particular blob target. One

common technique to estimate posture is to match a

particular blob metric (T) against a set of reference

patterns (Ti) and find an instance in the database that

minimises the similarity distance between the blob

metric and the reference pattern, that is:

c ¼ argi min dðT; TiÞ

where d is the similarity measure for a particular

blob representation, i is the instance number of the

reference pattern in the posture matching database,

and c is the resulting posture type.

34 Coutinho et al.

2.2. Previous Work

The recognition and analysis of human motion and

activity are active research topics in the field of

computer vision [7, 23]. For example, W4 [10] uses a

combination of shape analysis that can be used to

track more than one person and recognise various

activities. In this case, posture recognition uses

projection histograms as well as silhouette shapes.

Pfinder [24] is a sophisticated system that is in use

with many applications. It employs a multiclass

statistical model of colour and shape to perform

tracking of the human body. Pfinder is limited to a

single camera and single person setup, although there

is a version which uses a stereo camera to obtain

three-dimensional models [2]. This single-person

tracking assumption is also made by a number of

existing tracking systems [14, 17, 18]. Systems to

Figure 1. An example of blob extraction. An initial Gaussian blur filter is applied on the original image (a) to reduce noise and detail in

image (b). The effect of the image differencing filter is shown in (c). Figure (d) shows the effects of the thresholding filter, which creates a

binary image by dividing the image into two intensities according to the threshold value.

Figure 2. Different representations for the blob shown in image (a), including a radial shape mapped in a polar coordinate space (b), and

horizontal (c) and vertical (d) projection histograms.

Designing a Posture Analysis System with Hardware Implementation 35

track multiple people exist, both for isolated people

[3, 13] or people in groups [10].

Some of the more sophisticated systems do not

aim for real-time detection. A system containing an

automatic calibration scheme and a distributed set of

sensors has been proposed which learns common

patterns of activity, and can detect patterns that are

out of the ordinary [9].

Various hardware implementations based on

FPGAs have been proposed. These include systems

for applications such as collaborative and reconfig-

urable object tracking [8], augmented reality [15],

and automatic target tracking [22]. However, to the

best of our knowledge, the designs proposed in this

paper are the first reported FPGA-based implemen-

tations for posture analysis.

3. Design Workflow

The main workflow is shown in Fig. 3. First, a frame

is acquired from a video source. Next a blur filter

(BlurBlock) is applied to the frame to reduce noise,

as explained in the previous section. A difference

filter (DiffBlock) finds the difference between the

blurred frame and a blurred reference image. Second,

a threshold filter (ThreshBlock) is applied to create a

binary image. Third, this image is passed through

the HistBlock to generate a histogram. Finally, the

RadialBlock receives the binary image and the

histogram to output the blob metrics (both histogram

and radial descriptions). Both descriptions are sub-

sequently matched against reference patterns stored

in a database (PostMatchBlock) to estimate the

posture type described in that particular video frame.

Our approach uses three algorithms for estimating

posture: vertical projection, horizontal projection, and

radial shape. We describe them in Sections 3.3 and

3.4, and their accuracy is evaluated in Section 5.1.

Note that this system assumes a single occupancy

environment. However, it can be scaled to deal with

multiple occupants by employing an object tracking

module, and then process each object individually

using our system.

3.1. Noise Reduction

The purpose of noise reduction in the posture

analysis system (BlurFilter) shown in Fig. 3 is to

ensure that the binary image representing the blob is

as clear as possible (Fig. 1b). In practice an initial

low-pass filtering of the image seems to give the best

results. Blur filtering usually reduces detail in the

image; sophisticated structure-adaptive filters are

sometimes used to achieve best results with minimal

loss of detail. In the case of the posture analysis

workflow, the loss of detail is not a great concern

because after thresholding the filtering has minimal

effect on the shape of the blob.

3.2. Reference Image Updating

Because the image processing system should per-

form well under a variety of conditions, it should be

able to adapt to changing conditions. The actual

update rate should be slow enough to adjust to the

changing environmental conditions while ensuring

that interesting objects that move slowly do not

blend into the background. In Fig. 3, the RefBlock
filter is responsible for updating the reference image.

There are two parameters that can be combined to

provide finer-grain control on how the reference

image is updated. The first parameter is the update

frequency which can be adjusted so that the

reference image need not be updated with each

frame. The second parameter is the weight used to

compute the reference image, which is the weighted

Figure 3. The posture analysis system and its image processing blocks.

36 Coutinho et al.

average between the previous reference image and

the latest frame, that is,

Rði; jÞnþ1 ¼ wFði; jÞn þ ð1� wÞRði; jÞn

for reference image R, frame F and weight w.

3.3. Projection Histogram

A projection histogram describes the distribution of

pixels across the image. The n th element of the

horizontal projection histogram is a count of the

number of white pixels in the n th column of

the binary (blob) image; similarly, the mth element

of the vertical projection histogram is a count of the

number of white pixels in the mth row in the image.

In other words, if T is the binary image, then:

histogramH½n� ¼
Xwidth�1

i¼0

Tði; nÞ

histogramV ½m� ¼
Xheight�1

j¼0

Tðm; jÞ

3.4. Radial Shape

The radial shape describes the outline of the blob as

an array of distances from the centre of the blob over

a full rotation around the blob (Fig. 2b).

The first step in calculating the radial distribution

is to find the blob centroid coordinates ðcx; cyÞ. This

is done by counting all white (blob) pixels in the

image and storing the value in sum. Then, we find cx

and cy so that:

Xcx

i¼0

histogramH½i� < sum=2 �
Xcxþ1

j¼0

histogramH½j�

Xcy

i¼0

histogramV ½i� < sum=2 �
Xcyþ1

j¼0

histogramV ½j�

where cx and cy mark the point in the histogram

where half of the binary image pixels are on either

side, and therefore correspond to the coordinates of

the centre of the blob along their respective axis.

Once the centroid ðcx; cyÞ is computed, we

calculate the radial distribution as follows, where T
is the binary image:

1. Build sine and cosine lookup table

2. For each angle � in [0..359]:

3. lookup sinð�Þ and cosð�Þ
4. pixel ¼ Tðcx þ rcosð�Þ; cy þ rsinð�ÞÞ
5. if foreground pixel: increase radius r, goto 4

6. else: found shape boundary, repeat for next angle

4. Hardware Implementation

In this section we describe the Haydn approach [6]

(Section 4.1) and how it is used to derive different

design architectures for the posture analysis system

(Section 4.2). We also provide details of our

development and execution tools (Section 4.3).

4.1. Haydn Approach

Hardware synthesis tools tend to fall into two distinct

approaches: cycle-accurate approach and behavioural
approach. Each has its own benefits and drawbacks.

The behavioural approach usually employs a

software-based language, such as C, to describe

hardware functionality, and provides an annotation

facility to guide the scheduling process. The behav-

ioural approach provides several advantages, namely:

(1) ease of use for software developers, (2) high-

productivity for design implementation, and (3)

maintainable designs. However, the behavioural

approach has a major drawback: hardware synthesis

is performed with little human guidance. High-level

synthesis often suffers from lack of user control and

transparency over the implementation process.

On the other hand, cycle-accurate description

languages (such as those based on RTL) give

developers more control over low-level implemen-

tation details. At this level of abstraction, devel-

opers are able to make decisions that would be left

to the compiler in a behavioural approach. This

allows developers to fine-tune their hardware imple-

mentations to achieve an optimal solution. How-

ever, cycle-accurate design methodology can have

two major disadvantages over high-level synthesis,

namely low productivity and poor maintainability,

Designing a Posture Analysis System with Hardware Implementation 37

which make it highly ineffective for implementing

large designs.

The Haydn approach is unique in that it combines

both cycle-accurate and behavioural design method-

ologies. Developers can opt to use the behavioural

approach to rapidly derive a hardware implementa-

tion from a high-level design description and

constraint annotations. Alternatively, manual inter-

vention can be exerted either at the beginning or at

the end of the design cycle to fine-tune a design. We

believe that combining both models, manual devel-

opment and computerised optimisations can be

interleaved to achieve the best effect.

We have developed the Haydn-C language [6]

to support this methodology. Haydn-C is based on

the Handel-C [4] language, but contains significant

differences, which we enumerate next. First, Haydn-C

is a component-based language like VHDL. This

makes it easy for importing and exporting library

blocks (such as IP cores) and working with other

HDL tools. Second, Haydn-C also provides a meta-

language to support source-to-source transforma-

tions, additional data structures such as pipelined

FIFOs, hardware timers to count the number of cycles

for parts of the design, and extended macro capabil-

ities, such as replicators. Most ANSI-C constructs are

supported, such as loops, control and assignment

statements.

Our hardware design flow is shown in Fig. 4,

which performs source-level transformations, cycle-

accurate simulation and hardware synthesis for

Haydn-C designs. The source-to-source transforma-

tion process is guided by annotations in the program

that describe design constraints. In particular, the

transformation process scans for blocks of code that

are enclosed by curly braces and that are annotated

with requests for a particular action, such as

scheduling. In this case, the block is removed from

the rest of the code, analysed and the transformed

code is put back in place of the original code.

Developers can immediately synthesise the new

implementation, simulate or perform another trans-

formation, either by manually revising the code or

requesting another computerised optimisation.

The source-level transformation process (Fig. 4) is

able to transform both sequential and parallel

descriptions by deriving a data-flow graph (DFG)

with the unscheduling process. A DFG describes the

dependencies between operations. The scheduling
process, on the other hand, places operations in a

Figure 4. This figure illustrates our hardware compilation approach, which performs source-level transformations, hardware synthesis and

simulation of Haydn-C designs. Optimisations can be applied to any block of code (enclosed by curly braces) that contains annotations

requesting a particular transformation. An example of an user-annotation is shown in Listing 1, line 21. In this case a new block with

transformed code is placed over the original code after running the source-level transformation process.

38 Coutinho et al.

particular time-order without violating program

dependencies and user-provided constraints.

4.2. Architecture Design

Figure 5 shows the hardware architecture for the

proposed posture analysis system. The hardware

design is pipelined and contains two coarse-grained

stages to maximise throughput. The first stage gen-

erates the blob and histogram descriptions, while the

second stage computes the radial distribution. Both

pipeline stages can work concurrently by storing and

accessing two different memory locations alternately.

Hence, the design latency is given by the number of

pixels in one frame, and subsequently the design is

able to output results at a rate of one pixel per cycle.

Listing 1 Non-optimised (sequential) Haydn-C

description of the posture analysis system. Lines 5

and 21 instruct the source-level transformation

process to replace each block of code with a

pipelined description (Fig. 4) that can generate a

result every cycle, that is, with an initiation interval

(II) of one.

The initial Haydn-C code for the posture analysis

design is shown in Listing 1. The code specifies two

tasks (lines 3 and 19 respectively) corresponding to

each pipeline stage, and the top-level module (line

30). The top-level module instantiates both tasks in

lines 34–35. The memindex register value indicates

which memory to use in the dual-buffer scheme

shown in Fig. 5. At each frame, Stage1 and Stage2
need to read and write to different buffers. Hence,

the memindex register value and its negation are

passed as input arguments to both tasks respectively.

The par block in line 33 specifies that tasks Stage1
and Stage2 are executed simultaneously. Note that

Listing 1 only shows part of the design, and hides

details such as variable declarations, definition of the

filter blocks, and communication between host and

hardware.

To derive different architectures (shown in Table 2)

we parameterise the design for different pixel depths

by setting the appropriate value in line 1 of Listing 1,

and selecting the appropriate multipliers (block or

LUT) in the resource table.

The source-level transformation process is guided

by user-defined annotations which manage and

control the compiler_s backend objects, such as the

resource table and the scheduler process. Annota-

tions start with an B@^ symbol. For instance, the

scheduler annotations (lines 5 and 21 of Listing 1)

identify parts of the design that need to be optimised.

In this case, we specify that we wish to fully pipeline

the two blocks of code. Other design configurations

can be derived, such as generating a result every n
cycles to facilitate resource sharing and multiple

video sources. For instance, if the initiation interval

is 2, then one can process frames from two sources,

where each frame is processed in alternate cycles.

This reduces the frame rate by half (assuming one

can achieve the same cycle time).

The source level transformation process supports

design exploration at three levels: throughput (by

setting the initiation interval), controlling resources

used by the scheduler and sharing level, and

selecting the bitwidth for operation and expressions.

4.3. System Development and Execution

We use the Haydn design flow [6] for generating

designs that can run in both hardware and software

platforms (Fig. 6). The software module that imple-

ments the host is built in C++. The hardware, on the

Designing a Posture Analysis System with Hardware Implementation 39

other hand, is described in Haydn-C. A parser

converts Haydn-C into Handel-C (HyHC), and we

use DK4 capabilities for hardware synthesis and

generating a simulation model that runs on a

software platform. Simulation involves linking both

hardware and host descriptions into a single multi-

threaded application to simulate behaviour and

communication protocols. On the other hand, hard-

Figure 5. The pipelined design for the posture analysis system. The design contains two stages that run concurrently using dual-buffers.

Figure 6. This figure shows the Haydn design flow, which performs hardware synthesis, simulation and source-level transformations. The

Haydn-C language is used to describe hardware designs, whereas C++ is used to implement the host which runs on a software platform. The

hardware synthesis process configures the FPGA device with the posture analysis bitstream and selects the iTools block filter to communicate

with the FPGA board. The simulation process, on the other hand, creates an iTools block filter that incorporates the Haydn-C description

code for software execution.

40 Coutinho et al.

ware execution involves generating a bitstream to

configure the FPGA, which in turn communicates

with the host through the PCI bus.

The posture analysis system has been developed

using iTools (Fig. 7). This framework has a GUI

interface that enables developers to build a system by

connecting block filters.

5. Evaluation

5.1. Accuracy

The accuracy of our results is an important criterion

for building a posture estimation system. When a

posture is compared against a set of known postures,

the most useful definition of accuracy is the

percentage of correctly identified matches.

Image data used in testing the algorithm is a

selection of video sequences portraying different

postures. The postures are classified as standing,

sitting and lying. The test data comprises 2,943

frames totalling 1,830 MB of raw image data. The

data are acquired with a stationary Samsung SCC-

641 camera and stored in AVI format with Motion

JPEG (MJPEG) compression. We choose reference

images from the entire data set by selecting typical

examples for each posture (standing, sitting and

lying). The amount of movement in these images is

smaller than that in the test data, so that we can

evaluate the tolerance of the algorithm.

Table 1 shows the accuracy of the different

algorithms. The horizontal projection description

returns the most accurate matches for both the

standing and the sitting postures. For the lying

posture, radial shape is slightly more accurate than

projection. Overall, horizontal projection seems to

give a higher accuracy for all three postures. This

may partly be a characteristic of the selected set of

three postures. The horizontal projection of a

standing person is likely to be significantly different

from that of a sitting or a lying posture.

Figure 7. The iTools application is used to verify the posture analysis system at software level or using the FPGA board. The right-pane

window shows the connections between block filters that implement the posture analysis system. The window showing the video frame

depicts the centroid coordinates. The text-box next to the video-frame outputs the estimated posture type (standing).

Table 1. Accuracy of the different posture estimation algorithms.

Accuracy (%)

Data set (posture) Frame count Horiz. project. Vert. project. Radial shape

Standing 1,261 97.3 86.2 43.5

Sitting 841 98.6 44.9 64.3

Lying 841 86.9 64.0 91.1

Designing a Posture Analysis System with Hardware Implementation 41

The accuracy of the vertical projection, on the

other hand, is not very high for the lying posture. It

would seem logical to assume that the vertical

projection would describe the lying posture in much

the same way as the horizontal projection describes

the standing posture. One possible reason for the

lower accuracy may be the lack of contrast between

the person_s shirt and the carpet in the image

sequence, possibly distorting the blob shape.

The classification process can combine the results

of different posture matching algorithms to improve

the accuracy of the system by selecting the posture

with most support. For instance, if both horizontal

and vertical projection algorithms match the stand-
ing posture then the classification algorithm can be

more confident about the outcome. Note that the

system is usable even with accuracies below 100%,

as we can still derive statistical information about the

change of posture over time.

5.2. Performance

The test data used in this project are captured at a

rate of 15 frames per second, a common rate for

computer-based applications. Common frame rates

vary between 15 and 30 frames per second. The

frame size used for this project is 320 by 240

pixels.

Table 2 shows eight designs that implement the

posture analysis system described in Section 4. Note

that frame rate is projected for the design maximum

clock frequency reported by Xilinx tools. The

projected frame rate is for data streamed into the

processing core, and does not take into account other

I/O constraints such as video input and output. We

use the Haydn hardware design-flow (Section 4.1) to

derive these architectures automatically using two

types of multipliers (block and LUT multipliers), and

different colour depths (12, 24, 36 and 48 bits per

pixel). As expected, different resource and depth

configurations provide performance tradeoffs in

execution time and area.

We compare the 24-bit (RGB) FPGA version

(XC2V6-blk2) against the software versions running

on different instruction processors in Table 3,

including the Athlon AMD64 3700+ [1], the Intel

Xeon [11] and the Trimedia TM1300 [20]. As one

can see, the FPGA design outperforms the Athlon 64

Table 2. Performance comparison of eight FPGA-based designs that implement the posture analysis system.

Design Depth (bits/pixel) Max. Freq. (MHz) Slices Frame rate (frames/s)

XC2V6-blk1 12 96.3 1,435 1,243

XC2V6-blk2 24 90.2 1,543 1,164

XC2V6-blk3 36 80.9 1,651 1,044

XC2V6-blk4 48 79.5 1,759 1,026

XC2V6-lut1 12 92.6 2,857 1,195

XC2V6-lut2 24 89.3 2,965 1,153

XC2V6-lut3 36 78.6 3,073 1,014

XC2V6-lut4 48 80.2 3,181 1,035

The table includes frame rate and resource utilisation for the Xilinx Virtex-II XC2V6000-4 FPGA. The frame rate is calculated for a 320 by

240 frame for 12, 24, 36 and 48 bits per pixel. Designs with a Fblk_ suffix use block multipliers, otherwise LUT multipliers are employed.

Table 3. Performance comparison between different platform implementations, including an FPGA and three instruction processors.

Platform Clock rate (MHz) Frame rate (frames/s) Bandwidth (Mbits/s)

XC2V6-blk2 (FPGA) 90.2 MHz 1,164 2,046

Athlon 64 3700+ 2.4 GHz 330 580

Intel Xeon 2.66 GHz 264 464

Trimedia TM1300 (DSP) 180 MHz 30 52

The frame rate is calculated for a 320 by 240 frame using 24-bit pixels. The bandwidth corresponds to the number of bits processed per

second for each implementation.

42 Coutinho et al.

3700+ by a 3.5 fold speedup, while running at 90.2

MHz clock rate. The software versions have been

implemented with full optimisations on all platforms,

and frame rate results do not take into account video

capturing and rendering.

6. Conclusion

This paper describes the design and implementation

of an FPGA-based architecture for human posture

analysis to monitor and assess the daily activities of

home care patients. We show the use of multiple

visual cues, such as projection histogram and radial

shape description, to estimating changes in posture.

The hardware implementation can run 3.5 times

faster (1,164 frames/s) than a software version

running on 2.4 GHz AMD Athlon 64 3700+

computer (330 frames/s).

Current and future work includes refining our

architecture and tools. For example, currently the

position of the blob is found by analysing the

histograms. A more sophisticated object tracking

algorithm capable of tracking multiple people would

be an useful extension.

In the future we intend to develop more efficient

designs that analyse blob metrics. In particular, blob

radial description is a basis for many algorithms,

such as skeletonisation, to measure changes in stride

and gait frequency. Such algorithms are more useful

to track changes in gait compared to simpler posture-

based algorithms.

The architecture runs fast enough to analyse more

image data than one camera supplies, so another

interesting improvement consists of adding support

for multiple cameras. Furthermore, smart video-

cameras work either independently of each other to

monitor a large area, or together to improve

detection accuracy. Alternatively, further tradeoffs,

involving metrics such as speed, area and power

consumption, can be examined in order to target

low-cost devices while still keeping performance

sufficient for real-time operation.

Acknowledgements

The support of DTI Next Wave Programme, Funda-
ção para a Ciência e Tecnologia (Grant number

SFRH/BD/3354/2000), UK Engineering and Physi-

cal Sciences Research Council (Grant number EP/C

509625/1 and EP/C 549481/1), Celoxica Limited and

Xilinx, Inc. is gratefully acknowledged. Further-

more, we thank the reviewers for their useful

suggestions.

References

1. Advanced Micro Devices (AMD) Inc., http://www.amd.com.

2. A. Azarbayejani, C. Wren, and A. Pentland, BReal-time 3D

Tracking of the Human Body,^ in Proc. of IMAGE_COM 96,

1996.

3. T. Boult, BFrame-rate Multibody Tracking for Surveillance,^
in Proc. of DARPA Image Understanding Workshop, 1998.

4. Celoxica Ltd, http://www.celoxica.com/.

5. C. C. Cheung, W. Luk, and P. Y. K. Cheung, BReconfigurable

Elliptic Curve Cryptosystem on a Chip,^ in Proc. Int. Conf. on
Design Automation and Test in Europe (DATE), vol. 1, 2005,

pp. 24–29.

6. J. G. F. Coutinho, J. Jiang, and W. Luk, BInterleaving

Behavioural and Cycle-accurate Descriptions for Reconfigur-

able Hardware Compilation,^ in IEEE Symposium on Field-

Programmable Custom Computing Machines, 2005.

7. D. M. Gavrila, BThe Visual Analysis of Human Movement: A

Survey,^ Comput. Vis. Image Underst., vol. 73, no. 1, 1999,

pp. 82–98.

8. S. Ghiasi, H. J. Moon, A. Nahapetian, and M. Sarrafzadeh,

BCollaborative and Reconfigurable Object Tracking,^ J.
Supercomput., vol. 30, 2004, pp. 213–238.

9. E. Grimson and C. Stauffer, BAdaptive Background Mixture

Models for Real Time Tracking,^ in Proc. of the Computer

Vision and Pattern Recognition Conference, 1999.

10. I. Haritaoglu, D. Harwood, and L. S. Davis, BW4: Real-time

Surveillance of People and their Activities,^ IEEE Trans.

Pattern Anal. Mach. Intell., vol. 22, no. 8, 2000, pp. 809–830.

11. Intel Corporation, http://www.intel.com.

12. M. P. T. Juvonen, J. G. F. Coutinho, J. L. Wang, B. L. Lo, W.

Luk, O. Mencer, and G. Z. Yang, BCustom Hardware

Architectures for Posture Analysis,^ in IEEE International
Conference on Field Prog. Tech., 2005.

13. A. Lipton, H. Fujiyoshi, and H. Patil, BMoving Target

Detection and Classification from Real-time Video,^ in

Proc. of the IEEE Workshop Application of Computer Vision,

1998.

14. B. Lo, J. L. Wang, and G. Z. Yang, BFrom Imaging Networks

to Behavior Profiling: Ubiquitous Sensing for Managed

Homecare of the Elderly,^ in Adjunct Proc. of the 3rd
International Conference on Pervasive Computing, May 2005.

15. W. Luk, T. K. Lee, J. R. Rice, P. Y. K. Cheung, and N.

Shirazi, BReconfigurable Computing for Augmented Reality,^
in Proc. of the IEEE Symposium on Field-Programmable

Custom Computing Machines, 1999, pp. 136–145.

16. O. Mencer and W. Luk, BParameterized High Throughput

Function Evaluation for FPGAs,^ J. VLSI Signal Process., vol.

36, no. 1, 2004, pp. 17–25.

17. T. Olson and F. Brill, BMoving Object Detection and

Event Recognition Algorithms for Smart Cameras,^ in

Proc. of DARPA Image Understanding Workshop, 1997,

pp. 159–175.

Designing a Posture Analysis System with Hardware Implementation 43

http://www.amd.com
http://www.intel.com

18. J. M. Rehg, M. Loughlin, and K. Waters, BVision for a Smart

Kiosk,^ in IEEE Conference Computer Vision and Pattern

Recognition, 1997.

19. G. Stitt, F. Vahid, and S. Nematbakhsh, BEnergy Savings and

Speedups from Partitioning Critical Software Loops to

Hardware in Embedded Systems,^ in ACM Trans. on

Embedded Computing Systems, vol. 3, no. 1, 2004, pp. 218–

232.

20. TriMedia TM1300, http://www.tm1300.com/.

21. J. Verghese et al., BAbnormality of Gait as Predictor of Non-

Alzheimer_s Dementia,^ N. Engl. J. Med., vol. 347, no. 22,

2002, pp. 1761–1768.

22. J. Villasenor, B. Schoner, K. Chia, and C. Zapata,

BConfigurable Computing Solutions for Automatic Target

Recognition,^ in Proc. IEEE Symposium on FPGAs for

Custom Computing Machines, 1996, pp. 70–79.

23. L. Wang, W. Hu, and T. Tan, BRecent Developments in

Human Motion Analysis,^ Pattern Recogn., vol. 36, no. 3,

2003, pp. 585–601.

24. C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland,

BPfinder: Real-time Tracking of the Human Body,^ in Pfinder:

Real-time Tracking of the Human Body, vol. 19, no. 7, 1997,

pp. 780–785.

Jose Gabriel de F. Coutinho received his B.Eng. degree in

Computing Engineering from Instituto Superior Tecnico in

Lisbon (Portugal) in 1997 and his M.Sc. degree from Imperial

College London in 2000. He is currently finishing his Ph.D.

studies and working as a research assistant at the Custom

Computing group at Imperial College London. His research

interests include high-level compilation techniques and tools

for reconfigurable and embedded systems, and application

domains that can benefit from parallelisation, such as graphics

and image processing.

Matti Juvonen received his M.Eng. degree in information

systems engineering in 2005 and his M.Sc. degree in advanced

computing in 2006, both from Imperial College London, UK.

He is currently working as a research assistant at the Custom

Computing group of the Department of Computing, Imperial

College London. His research interests include high-level

hardware design methodologies, image processing and com-

puter vision applications.

Dr. Liang Wang obtained his Ph.D. from National

Laboratory of Pattern Recognition, Institute of Automation,

Chinese Academy of Sciences in 2004 and his B.E. and M.E.

from the Department of Electronics Engineering and Informa-

tion Sciences, Anhui University, China in 1997 and 2000,

respectively. He worked as a research assistant in the

Department of Computing, Imperial College London from

July 2004 to September 2005. From October 2005, he has

been in the Department of Electrical and Computer Systems

Engineering, Monash University, Australia. His main research

interest includes computer vision, pattern recognition, image/

video processing, machine learning, etc.

44 Coutinho et al.

Benny Ping Lai Lo received his B.Sc. degree in electrical

engineering from the University of British Columbia, Vancou-

ver, BC, Canada in 1995 and his M.Sc. degree with distinction

in electronic research from King_s College London, University

of London, London, UK in 2000. He is currently pursuing his

Ph.D. degree at Warwick University, Coventry, UK. He

worked as a project engineer with Cybermation System Inc.,

Canada, for 2 years, and later joined the Mass Transit Railway

Corporation, Hong Kong SAR, where he was a design officer

of infrastructure design—operating control system until 1999.

Later, he was a research associate at King_s College London

until 2001 and a senior researcher at Kingston University,

Kingston, UK until 2003 on two EU-funded projects:

ADVISOR and PRISMATICA. He is currently working as a

research associate in Imperial College London on a DTI-

funded project, UbiMon.

Wayne Luk (S_85—M_89) received his M.A., M.Sc., and

Ph.D. degrees in engineering and computing science from the

University of Oxford, Oxford, U.K in 1984, 1985, and 1989,

respectively. He is a professor of computer engineering in the

Department of Computing, Imperial College London, U.K.

and leads the Custom Computing Group there. His research

interests include theory and practice of customizing hardware

and software for specific application domains, such as

graphics and image processing, multimedia, and communica-

tions. Much of his current work involves high-level compila-

tion techniques and tools for parallel computers and embedded

systems, particularly those containing reconfigurable devices

such as field-programmable gate arrays.

Oskar Mencer (M_96) received his B.S. degree in computer

engineering from The Technion, Israel in 1994 and his M.S.

and Ph.D. degrees in electrical engineering from Stanford

University, Stanford, CA in 1997 and 2000, respectively. He

founded MAXELER Technologies, in 2003, after 3 years as a

member of the technical staff in the Computing Sciences

Research Center at Bell Labs. He is a member of the academic

staff in the Department of Computing, Imperial College

London, U.K., and with the Custom Computing group. His

research interests include computer architecture, computer

arithmetic, very large scale integration (VLSI) microarchitec-

ture, VLSI computer-aided design (CAD), and reconfigurable

(custom) computing. More specifically, he is interested in

exploring application-specific representation of computation at

the algorithm level, the architecture level, and the arithmetic

level.

Guang-Zhong Yang (g.z.yang@imperial.ac.uk) received

his Ph.D. in computer science from Imperial College, London.

His research has focused on medical imaging, robotics, and

sensing. He is an associate editor for IEEE Transactions on

Medical Imaging and has received several major international

awards including the I.I. Rabi Award from the International

Society for Magnetic Resonance in Medicine. He is director of

medical imaging at the Institute of Biomedical Engineering,

Imperial College; chair of the Imperial College Imaging

Sciences Centre; and founding director of the Royal Society/

Wolfson Medical Image Computing Laboratory at Imperial

College. In 2001, he was honored with the Royal Society

Research Merit Award chair in medical image computing.

Designing a Posture Analysis System with Hardware Implementation 45

	Designing a Posture Analysis System with Hardware Implementation
	Abstract
	Introduction
	Background
	Technique Overview
	Previous Work

	Design Workflow
	Noise Reduction
	Reference Image Updating
	Projection Histogram
	Radial Shape

	Hardware Implementation
	Haydn Approach
	Architecture Design
	System Development and Execution

	Evaluation
	Accuracy
	Performance

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

