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Abstract

We describe a cost-effective method for developing paral-
lel architectures which increase the performance of range
and image sensors. A parametrised edge detector and its
systolic implementation using Field-Programmable Gate
Arrays (FPGAs) are presented. Experiments and analy-
ses indicate that our circuits can satisfy the performance
requirements, and some of the designs out-perform the soft-
ware equivalent on a 486-based PC by nearly two orders
of magnitude.

1 Introduction

This paper describes an approach for developing architec-
tures for range and image sensors, which have applications
in industrial inspection and in autonomous vehicles and
robots. Our work has been inspired by three develop-
ments: the need to include powerful processing in sensing
and control systems, the availability of programmable hard-
ware like Field-Programmable Gate Arrays (FPGAs), and
the advance in languages and tools for hardware synthesis.

Custom hardware is often used in real-time sensing; for
example, Graefe [5] describes a vision system based on
custom devices for car navigation. While commercial sys-
tems, such as the Datacube vision system, are available for
realising more general algorithms, they are usually expen-
sive, difficult to interface and may be too bulky for some
applications.

Our work differs from the above in exploiting reconfig-
urable, off-the-shelf logic circuits as accelerators for low-
level processing, with low power consumption and small
physical size. In particular, we are interested in low-cost,
flexible and efficient implementation of general-purpose
image processing algorithms such as median filtering, con-
volution and edge detection. The rest of this paper shows
that, for a number of sensing applications, FPGA-based
processors provide a cost-effective implementation with
increased flexibility and performance. Moreover, such im-
plementations can be produced rapidly and reliably from
parametrised descriptions in an appropriate language.

2 Range Sensors and Feature Extraction

The data used in the experiments described later are ob-
tained from an optoelectronic range sensor [11] designed
for vehicle navigation which triangulates a laser spot onto
a lateral effect photodiode. The sensor scans in one di-
mension over ranges between 0.3m and 2.5m, and has been
designed to operate at low signal-to-noise ratios. An ear-
lier design consists of a pipeline of three transputers: one
to control the hardware and for calibration, one for edge
detection and one for tracking features between images.
The cycle time of the transputer pipeline is about 400 �s,
limiting the point sampling rate of the sensor. We would
like to achieve one to two orders of magnitude increase in
speed to handle faster changing environments, or to allow
us to use a two dimensional scan.

Another sensor that we have used in vehicle guidance
is an AMCW optoelectronic sensor [1], which employs a
modulation frequency of about 5MHz on a light emitting
diode source and detects range through measuring the phase
difference between the transmitted and received waves.
Adams and Probert [12] show how very dense spatial sam-
pling results in improved reliability in sensing, but this
requires faster hardware to achieve sufficient bandwidth
even for a one dimensional scan.

Many manufacturing tasks also require high bandwidth
processing. A recent application that we have addressed
in industrial inspection aims for a resolution of about one
square mm over a width of 1m for a production line trav-
elling at 0.5m/s. This is equivalent to a sampling rate of
around 1MHz, which cannot be achieved by many conven-
tional low-cost processors.

Although the applications and technologies for sensing
differ, the low-level processing usually requires two stages:
filtering to reduce noise and feature detection. Common
filters for range sensing and for image processing include
linear filters, such as Gaussian convolvers, and non-linear
filters, such as median filters. Feature detection frequently
involves operations like edge detection and segmentation.
Since these pixel-based operations are highly parallel, they
are promising candidates for FPGA implementation.
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3 Sensor Processing Architectures

Many robotics sensing algorithms cannot be implemented
in real time on a single microprocessor. While multiple
DSP devices or transputer-based parallel architectures can
significantly increase the speed of signal processing, they
are only effective in exploiting coarse-grain parallelism,
when two or more of such processors run in parallel.

Array-based architectures, and systolic array architec-
tures in particular, provide a means of exploiting fine-grain
parallelism. There is little control overhead since all data
movements are explicitly factored into the design,and often
only nearest-neighbour communication is required.

However, the systolic approach has its drawbacks. One
major disadvantage is its inflexibility. In many cases, a
systolic architecture is restricted to only one kind of com-
putational task. Thus custom systolic hardware may not be
cost effective for experimental systems or for small-scale
productions.

RAM-based FPGA technology offers an attractive so-
lution: an array of FPGAs, consisted of a large matrix of
uncommitted logic gates and registers, can be deployed as a
special-purpose processor for many applications. The main
advantages of FPGA-based systems can be summarised as
follows:� they enable rapid development since there is no fabri-

cation delay and no need to test for fabrication errors;� the reconfigurability of FPGAs results in flexibility;� the fine-grain parallel architecture of FPGAs allows
high performance;� they can be developed at relatively low cost since
FPGAs are mass produced, off-the-shelf parts.

FPGA-based prototypes are a fast and cheap alternative
to a custom or semi-custom hardware prototype for explor-
ing and verifying designs. A number of hardware acceler-
ators based on FPGAs have been reported recently [4],[9].
Moreover, prototype compilers are available for convert-
ing imperative and declarative programs into a format for
configuring FPGAs [7]; experimental software for design-
ing array-based circuits, such as numerical and symbolic
simulators and floorplanners, have also been developed.

4 A Hardware Edge Detector

4.1 Algorithm

This section illustrates our approach by developing in hard-
ware the edge detector proposed by Marr and Hildreth [10].
The one-dimensional range image I(x) is first convolved
with the Laplacian of Gaussian function,Ī(x) = I(x) � (r2G(x)) (4.1)

wherer2G(x) = 1��2 ( x2

2�2 � 1)exp(� x2

2�2 ) (4.2)

For the discrete case, by choosing an appropriate �,
(4.2) can be transformed to an operator mask. The mask
we choose isG = [1 3 � 8 3 1] (4.3)

which corresponds to computingIx + 3Ix�1 � 8Ix�2 + 3Ix�3 + Ix�4 (4.4)

Notice that the coefficients of the mask have been simplified
to obtain an efficient implementation.

Edges are then extracted by detecting the zero-crossings
of Ī(x). A scheme is adopted to reduce the false detection
of zero-crossings due to noise: if the magnitude of the
convolution at a point is less than a threshold value, we
assign zero as the convolution result of this point.

4.2 A Gaussian convolver

Since an FPGA has limited resources, choosing an efficient
architecture is important. The symmetry of the coefficients
in (4.4) allows us to add Ix�1 and Ix�3 before multipli-
cation (see Figure 1), eliminating a multiplier. Moreover
the coefficients of the mask, 1, 3 and �8, are chosen so
that multiplications can be implemented by shifters and
adders. This again reduces cell resources compared with
using general-purpose multipliers.
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Figure 1 A Gaussian convolver with mask[1 3 �8 3 1]. Here D denotes a D latch, Add de-
notes an adder, Mult denotes a multiplier, X(i) is input and
Y(i) is output

4.3 Parametrised Gaussian convolvers

We have chosen very simple coefficients for our mask. For
more general cases, suppose the size of the mask is 2n+ 1.
Because of the symmetry of the Laplacian of Gaussian
convolution, the mask can be described as



[w0 w1 ::: wn ::: w1 w0] (4.5)

One possible architecture is shown in Figure 2. It con-
sists of a repeating unit A which, once designed, can be
replicated as many times as desired.
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Figure 2 A Gaussian convolver with mask[w0 w1 ::: wn ::: w1 w0]
More importantly, we can exploit this regular structure

for parametrising and transforming designs [6],[7],[8], so
that optimised designs satisfying specific requirements can
be built rapidly and correctly. For example, we can intro-
duce a high degree of pipelining to obtain a design with a
short critical path (Figure 3) at the expense of having an
extra latency of n clock cycles and n extra registers. Al-
ternatively, we can introduce a lower degree of pipelining
which results in the design shown in Figure 4, whose size,
critical path and latency are between those of the design
in Figure 2 and the one in Figure 3. Indeed, by varying
the size of the repeating unit in Figure 4, one can produce
designs with a variety of space-time trade-offs.

The above examples can in fact be generated from a
single description in the Ruby language [6],[7]. Ruby has
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Figure 3 Fully pipelined version of Gaussian convolver
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Figure 4 An alternative pipelined Gaussian convolver

various operators for capturing common patterns of compu-
tations: for instance Q$R denotes the composite circuit
with Q placed beside R, provided that Q and R have a
compatible interface; similarly, rownR denotes n copies
of R lying beside one another. Given that A and B are
respectively the repeating units in Figure 2 and Figure 3
and C is the rightmost cell, the Ruby expression(rowm (rowa A$ rowb B))$C

describes the design in Figure 2 when m = n, a = 1
and b = 0. The designs in Figure 3 and Figure 4 can be
obtained respectively by having m = n, a = 0 and b = 1
and m = n=2, a = 1 and b = 1.

The characteristics of the designs in Figure 2, Figure 3
and Figure 4 are summarised in Table 1. Note that Tm and
Ta are respectively the combinational delays of a multiplier
and an adder, and we ignore wire delays in estimating the
critical path delays.

4.4 Thresholding and zero-crossing detection

Figure 5 shows the hardware design for thresholding and
zero-crossing detection. Zero-crossing detection is imple-
mented by comparing the sign bits of successive convolu-
tion results; a zero-crossing is detected when they are dif-
ferent. To reduce the false detection of edges due to noise,
we use a thresholding scheme rather than directly compar-
ing the sign bits of the convolution outputs. A comparator
is used to compare the absolute value of the convolution
result with a threshold value. If the convolution result is
less than the threshold, we take it as zero. Otherwise, we
compare its sign bit with that of the previous sample (using
an exclusive-or gate), and store the current sign bit in a
D latch for the next comparison. Hence the output of the
comparator controls the updating of the D latch containing
the sign bit of the previous sample.



Table 1 Characteristics of the designs in Figure 2, Fig-
ure 3 and Figure 4

Figure 2 Figure 3 Figure 4

number of
adders 2n+1 2n+1 2n+1

number of
multipliers n+1 n+1 n+1

Number of
latches 2n 3n 2.5n

Latency 2n 3n 2.5n

Critical path (n+2)Ta 2Ta 3Ta
delay +Tm +Tm +Tm

And

1

1the convolver

fromInput

Output

Threshold

XOR
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13 13 12
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CLK
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Figure 5 Hardware for thresholding and zero-crossing
detection

Note that if the D latch is initialised to zero, then if
the first convolution result is negative and its magnitude is
larger than the threshold, the sign comparison will become
one although no zero-crossing occurs. A similar situation
will happen if the D latch is initialised to one. To avoid
falsely identifying such cases as zero-crossings, we use
another D latch to register the first occurence of the con-
volution whose magnitude is greater than one; both this
and the other D latch will be initialised to zero. Conse-
quently zero-crossing is detected only when the following
conditions hold: (1) the absolute value of the convolution
– except the first occurence – is greater than the threshold,
and (2) the sign bit of the current convolution is different
from that of the previous convolution whose magnitude is
greater than the threshold.

4.5 FPGA implementations

Our current design and development environment is based
on a commercially available system from Algotronix Lim-
ited known as CHS2x4 [3]. It is an add-on card for
the PC/AT bus, and contains eight user programmable
CAL1024 chips. At present, data transfer between the
CAL1024 chips and the on-board memory is restricted
to sequential input and output over a byte-wide channel,
controlled by invoking C-library routines provided by the
manufacturer.

CAL arrays are orthogonally connected structures ob-
tained by replicating a basic cell which has an input port
and an output port on each of its four sides. An input port of
a CAL cell can be programmed to connect to one or more
output ports, or to a functionunit which can be programmed
to behave either as a two-input combinational logic gate or
as a latch. See [2] for further details of CAL devices.

The implementation of the edge detector in Figure 1 oc-
cupies two CAL1024 chips (Figure 6). This design is ob-
tained from a parametrised description in the OAL language
[7], a variant of Ruby specialised for the CAL architecture.
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Figure 6 CAL implementation of an edge detector

The performance of the hardware implementations of the
edge detector has been evaluated and compared with that
implemented in software on a 486-based PC. The process-
ing time required by software and hardware is summarised
in Table 2; Figure 7 shows the processing results of our
hardware edge detector. The results indicate that our de-
signs detect edges precisely and robustly. Moreover, the
CAL measured performance corresponds to a data rate of
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Figure 7 In each figure, the upper part is the raw range
data while the lower part is the output of the hardware edge
detector implemented using CAL chips

200KHz, which should be adequate for our optoelectronic
range sensor mentioned earlier, while the peak performance
of the pipelined design reaches 1MHz, which matches the
speed requirement for industrial inspection. Better results
have been obtained by another edge detector based on me-
dian filtering; the features of this design is summarised in
Table 3.

Note that the hardware implementation is capable of per-
forming one or two orders of magnitude faster than the soft-
ware version, although in our present experimental setting
the speed of data transfer is limited by the fixed software-
controlled routines provided by Algotronix. Moreover,
the speed of the hardware can be increased further by bit-
level pipelining [6], although the resulting designs will have
more registers and larger latencies.

5 Summary

We have described the architectural development and
FPGA implementation of an edge detector. Although the
architectures of the pipelined convolvers are well known,
the use of high-level languages such as Ruby for rapid
prototyping using FPGAs is novel. To summarise, the pro-
cedure for implementing a specific algorithm is as follows:� develop a parallel architecture for the given algorithm;

� capture the architecture as a parametrised expression
in a language such as Ruby;� check the correctness of the design by numerical and
symbolic simulation;� apply correctness-preserving transformations to opti-
mise the design to satisfy user constraints, like em-
ploying pipelining [6] to increase bandwidth, or seri-
alisation [8] to reduce size;� develop the most efficient implementation of the re-
peating units, using device-specific descriptions like
OAL if necessary.

Our experience suggests that the reconfigurability of FP-
GAs offers increased flexibility, and increased performance
can be obtained by exploiting fine-grain parallelism. From
experimental results and analyses, some of our hardware
implementations are capable of achieving a speed-up of
one or two orders of magnitude over the equivalent soft-
ware implementations on a 486-based PC.

We have shown that FPGA-based hardware can be ex-
ploited effectively in a systolic mode; some of our other
work indicates that data-dependent and irregular operations
can also be implemented using FPGAs. Other possibil-
ities include using FPGA-based parallel processing units
for data preprocessing of intelligent sensors, such as fil-
tering and edge detection, while high-level processing can
be implemented on general-purpose processors, transputers
for example.

Although implementing algorithms in hardware is not a
new idea, FPGA-based real-time architectures are still at
an early stage of development. While others and our work
have shown their promising prospect, much remains to be
done. Examples include developing more efficient, high-
level design tools for FPGA-based platforms, designing
general-purpose interfaces between sensors, FPGAs and
other devices, and extending our libraries of systolic im-
plementations of signal and image processing algorithms.
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