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Abstract—Hardware simulation offers the potential of improving code evaluation speed by orders of magnitude over workstation or

PC-based simulation. We describe a hardware-based Gaussian noise generator used as a key component in a hardware simulation

system, for exploring channel code behavior at very low bit error rates (BERs) in the range of 10�9 to 10�10. The main novelty is the

design and use of nonuniform piecewise linear approximations in computing trigonometric and logarithmic functions. The parameters

of the approximation are chosen carefully to enable rapid computation of coefficients from the inputs while still retaining high fidelity to

the modeled functions. The output of the noise generator accurately models a true Gaussian Probability Density Function (PDF) even

at very high � values. Its properties are explored using: 1) several different statistical tests, including the chi-square test and the

Anderson-Darling test, and 2) an application for decoding of Low-Density Parity-Check (LDPC) codes. An implementation at 133MHz

on a Xilinx Virtex-II XC2V4000-6 FPGA produces 133 million samples per second, which is seven times faster than a 2.6GHz Pentium-

IV PC; another implementation on a Xilinx Spartan-IIE XC2S300E-7 FPGA at 62MHz is capable of a three times speedup. The

performance can be improved by exploiting parallelism: An XC2V4000-6 FPGA with nine parallel instances of the noise generator at

105MHz can run 50 times faster than a 2.6GHz Pentium-IV PC. We illustrate the deterioration of clock speed with the increase in the

number of instances.

Index Terms—Algorithms implemented in hardware, error-checking, gate arrays, simulation.

�

1 INTRODUCTION

SEQUENCES of random numbers with Gaussian probability
distribution functions are needed to simulate a wide

variety of natural phenomena [18], [54]. Applications of
such sequences include channel code evaluation [21], [25],
watermarking [15], oscilloscope testing [51], simulation of
economic systems [5], [49], and molecular dynamics
simulations [22].

Numerical methods for Gaussian random number

generation have a long history in mathematics and

communications. As described in [23] and the references

cited therein, most methods involve initially generating

samples of a uniform random variable and then applying a

transformation to obtain samples drawn from a unit-

variance, zero-mean Gaussian PDF fðxÞ ¼ ð1=
ffiffiffiffiffiffi
2�

p
Þ e�x2=2.

In the overwhelming majority of cases, this occurs in

environments such as computer-based simulation, where

functions such as sine, cosine, and square roots are easily

performed and where there is sufficient precision so that

finite-word length effects are negligible.
There has been far less attention focused on efficient

hardware implementation of Gaussian noise generators as

the noise in real hardware systems is, of course, supplied by

the environment and does not typically need to be

generated internally. Recent advances in coding, however,

have made the case for hardware-based simulation of

channel codes much more compelling [30] and provide

strong motivation to examine the Gaussian noise generation

problem in the framework of limited word length and

limited computational and memory resources. For example,

Low-Density Parity-Check (LDPC) codes are currently the

focus of intensive interest in the coding community due to

their ability to approach the Shannon bound very closely

and with only moderate decoding complexity [17], [32].

Computer simulations to examine LDPC code behavior can

be time-consuming, particularly when the behavior at low

bit error rates (BERs) in the error floor region is being

studied. Hardware-based simulation [30] offers the poten-

tial of speeding up code evaluation by several orders of

magnitude, but is feasible only if suitably fast and high-

quality noise generators can be implemented in hardware

alongside the channel decoder.
The principal contribution of this paper is a hardware

Gaussian noise generator that offers quality suitable for

simulations involving very large numbers of noise samples.

The noise generator occupies approximately 10 percent of

the resources on a Xilinx Virtex-II XC2V4000-6 device [52],

while producing over 133 million samples per second. In

contrast to previous work, we focus specific attention on the

accuracy of the noise samples in the high � regions of the

Gaussian PDF, which are particularly important in achiev-

ing accurate results during large simulations. The key

novelties of our work include:

IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 12, DECEMBER 2004 1523

. D. Lee and W. Luk are with the Department of Computing, Imperial
College, London, UK. E-mail: {dong.lee, w.luk}@ic.ac.uk.

. J.D. Villasenor is with the Electrical Engineering Department, University
of California, Los Angeles, CA 90095. E-mail: villa@icsl.ucla.edu.

. P.Y.K. Cheung is with the Department of Electrical and Electronic
Engineering, Imperial College, London, UK. E-mail: p.cheung@ic.ac.uk.

Manuscript received 26 July 2003; revised 18 Apr. 2004; accepted 11 June
2004.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0102-0703.

0018-9340/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



. a hardware architecture which involves the use of
nonuniform piecewise linear approximations in
computing trigonometric and logarithmic functions;

. exploration of hardware implementations of the
proposed architecture targeting both advanced
high-speed FPGAs and low-cost FPGAs;

. evaluation of the proposed approach using several
different statistical tests, including the chi-square
test and the Anderson-Darling test, as well as
through application to decoding of Low-Density
Parity-Check (LDPC) codes.

The rest of this paper is organized as follows: Section 2

covers background material and previous work. Section 3

briefly reviews the Box-Muller algorithm and discusses

how each of its steps can be handled in a hardware

architecture. Section 4 presents a method for function

evaluation based on nonuniform segments. Section 5

explains how the function evaluation method is used to

compute the functions in the Box-Muller algorithm.

Section 6 describes technology-specific implementation of

the hardware architecture. Section 7 presents our LDPC

simulation framework. Section 8 discusses evaluation and

results and Section 9 offers conclusions and future work.

2 BACKGROUND

Previous work on Gaussian noise generation can be divided

into two types: the generation of Gaussian noise using a

combination of analog components and the generation of

pseudorandom noise using purely digital components. The

first method tends to be practical only in highly restricted

circumstances and suffers from its own problems with noise

accuracy. The second method is often more desirable

because of its flexibility. In addition, when simulating

communication systems, we may wish to use pseudoran-

dom noise so that we can adopt the same noise for different

systems. Also, if the system fails, we may wish to know

which noise samples cause the system to fail. Comprehen-

sive but rather dated comparisons of such digital methods

can be found in [3], [39], and [45].
Digital methods for generating random Gaussian vari-

ables are almost always based on transformations or

operations on uniform random variables [50]. The most

widely used methods are: various rejection-acceptance

methods [1], [29], [31], [33], [36], the use of the central limit

theorem [23], the inversion method [19], and the Box-Muller

method [7]. The rejection-acceptance methods, while pop-

ular in software implementations, contain conditional loops

such that the output rates are not constant, making them

less amenable to a hardware simulation environment.
The central limit theorem can, in principle, be used to

produce Gaussian samples, if a suitable number of samples

are involved. In practice, however, approaching a Gaussian

PDF to a high accuracy using the central limit theorem

alone would require an impractically large number of

samples. Our choice for hardware implementation is based

on the Box-Muller algorithm [7], which generates random

Gaussian variables by transforming two uniform random

variables over ½0; 1Þ. Properly implemented, it offers a

predictable output rate and, in combination with the central
limit theorem, extremely good Gaussian modeling.

There is very little previous work on digital hardware
Gaussian noise generators. The most relevant publications
are probably [6] and [55], which discuss designs targeting
Field-Programmable Gate Arrays (FPGAs). We present a
design with significantly improved efficiency which also
passes statistical tests widely used for testing normality. In
addition, previous work produces noise samples that are
targeted primarily for the output region below about 4�
and, therefore, does not specifically address the high
� values of 4� to 6� and beyond; these are critical in the
large simulations motivating our work.

The Box-Muller algorithm requires the approximation of
nonlinear functions. Advanced FPGAs enable the develop-
ment of low-cost and high-speed function evaluation units,
customizable to particular applications [37]. Applications
that do not require high precision often employ direct table
look-ups. However, this becomes impractical for precisions
higher than a few bits because the size of the table is
exponential in the input size.

CORDIC [53] has been a popular method for evaluating
functions, involving only shift and add operations. How-
ever, it has an execution time which is linearly proportional
to the number of bits of the operands and is not suitable for
applications requiring high accuracy and speed. High radix
CORDIC [2] algorithms can be used to reduce the number
of iterations. However, they suffer from increased complex-
ity in digit selection process for microrotation.

Piñeiro et al. [46] divide the interval into several uniform
segments. For each segment, they store the second degree
minimax polynomial approximation coefficients and accu-
mulate the partial terms in a fused accumulation tree. Such
approximations using uniform segments [8], [20], [44] are
suitable for functions with linear regions, but are inefficient
for nonlinear functions, especially when the function varies
exponentially. It is desirable to choose the boundaries of the
segments to cater to the nonlinearities of the function.
Highly nonlinear regions may need smaller segments than
linear regions. This approach minimizes the amount of
storage required to approximate the function, leading to
more compact and efficient designs.

Methods that use nonuniform segment sizes to cater for
the nonlinearities of functions have been proposed before.
Cantoni [9] uses optimally placed segments and presents an
algorithm to find such segment boundaries. However,
although this approach minimizes the number of segments
required, such arbitrarily placed segments are impractical
for actual hardware implementation since the hardware
circuitry to find the right segment for a given input would
be too complex. Combet et. al. [12] and Mitchell [40] use
segments that increase by powers of two to approximate the
base two logarithm. The principles of their approaches are
similar to ours, but we use a more advanced segmentation
scheme by using segments that increase and decrease by
powers of two. We also employ a hierarchy of uniform
segments and segments that vary by powers of two to cover
the nonlinearities of different functions better. Moreover,
we present a hardware architecture which is suitable for
FPGA implementation.
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3 ARCHITECTURE

This section provides an overview of the Box-Muller

method and the associated four-stage hardware architec-

ture. The implementation of this architecture in FPGA

technology is presented in Section 6.
The Box-Muller method is conceptually straightforward.

Given two independent realizations u1 and u2 of a uniform

random variable over the interval ½0; 1Þ and a set of

intermediate functions f , g1, and g2 such that

fðu1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� lnðu1Þ

p
; ð1Þ

g1ðu2Þ ¼
ffiffiffi
2

p
sinð2�u2Þ; ð2Þ

g2ðu2Þ ¼
ffiffiffi
2

p
cosð2� u2Þ; ð3Þ

the products,

x1 ¼ fðu1Þ g1ðu2Þ; ð4Þ

x2 ¼ fðu1Þ g2ðu2Þ; ð5Þ

provide two samples of a Gaussian distribution Nð0; 1Þ.
The above equations lead to an architecture that has four

stages (Fig. 1).

1. A shift register-based uniform random number
generator,

2. implementation of the functions f , g1, g2, and the
subsequent multiplications,

3. a sample accumulation step that exploits the central
limit theorem to overcome quantization and approx-
imation errors, and

4. a simple multiplexor-based circuit to support gen-
eration of one result per clock cycle.

A similar basic approach has been taken in other hardware
Gaussian noise implementations [6]; what distinguishes our
work is thedetail of the functional implementationdeveloped
to deal with: 1) Gaussian noise with high � values and
2) evaluations using commonly used statistical tests.

In the following, each of the four stages in our
architecture is described in detail.

The first stage. This stage involves generation of the
uniformly distributed realizations u1 and u2. The imple-
mentation of this stage is straightforward and can be
accomplished using well-known techniques based on
Linear Feedback Shift Registers (LFSRs) [11]. To ensure
maximum randomness, we use an independent shift
register for each bit of u1 and u2. The resources needed
are related to the periodicity desired in the shift registers.
Since m-bit LFSRs with irreducible polynomials can
produce random numbers with periodicity of 2m � 1, the
hardware required will be proportional to the number of
bits of precision needed in u1 and u2.

The necessary precisions of u1 and u2 are related to the
maximum � value that the full system will produce. Since
g1 and g2 are bounded by ½�

ffiffiffi
2

p
;

ffiffiffi
2

p
�, the maximum

output is determined by f , which in turn takes on its
largest values when u1 is smallest. For example, when
16 bits are used for u1, the maximum possible Gaussian
sample has an absolute value of 4:7�. In addition, the
precisions of u1, u2, g1, and g2 should be large enough so
that there are enough diversities in the outputs. Low
precisions will cause the statistical tests to fail.

The second stage. This stage involves the most interest-
ing challenges: efficient implementation of the functions f ,
g1, and g2. Direct computation of the functions using
methods such as CORDIC [53] leads to prohibitively long
computation times. A direct look-up table would allow
outputs to be obtained in only a few clock cycles, but this
leads to prohibitively large memory requirements. For
example, a look-up table for fðu1Þ with sufficient resolution
for u1 would require 232 entries. Instead, we use a two-step
process based on nonuniform piecewise linear approxima-
tion. Our approach is described in Sections 4 and 5.

The third stage. This stage involves a sample accumula-
tion step that exploits the central limit theorem to overcome
quantization and approximation errors. As is well known,
given a sequence of realizations of independent and
identically distributed random variables x1; x2; . . . ; xl with
unit variance and zero mean, the distribution of

x1 þ x2 þ :::þ xlffiffi
l

p

tends to be normally distributed as l ! 1. We find that
l ¼ 2 is sufficient, so we use an accumulator (the ACCð2Þ
component shown in Fig. 1) that sums two successive
inputs to produce an output every other cycle. The central
limit theorem calls for a division by

ffiffiffi
2

p
, which is potentially

problematic in hardware. Fortunately, since computation of
g1 and g2 involves a multiplication by

ffiffiffi
2

p
((2) and (3)), this

multiplication is, in effect, canceled by the subsequent
division, so it can be dispensed with in both places in the
implementation. This optimization also alters the range of g
as implemented to [-1,1].
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The fourth stage. This stage involves a multiplexor-
based circuit to select one of the two ACCð2Þ component
outputs in alternate clock cycles. The multiplexor is
controlled by a circuit that toggles its output. This enables
producing an output every clock cycle, rather than two
outputs every other cycle. The buffer after the second
ACCð2Þ is needed to ensure one valid noise sample is fed to
the multiplexor every clock cycle, rather than two valid
samples every two clock cycles.

Two further remarks about this architecture can be
made. First, it is possible to speed up the output rate further
by having multiple noise generators running in parallel,
provided that the LFSRs are initialized with different
random seeds. Second, the periodicity can be increased by
using larger LFSRs and higher � values can be obtained
using more bits for u1, both with very little increase in
complexity.

4 FUNCTION EVALUATION FOR NONUNIFORM

SEGMENTATION

This section presents a method for function evaluation
based on an innovative technique involving nonuniform
segmentation. The interval of approximation is divided into
a set of subintervals, called segments. The best-fit straight
line, in a minimax sense (minimize worst-case error), to
each segment is found. A look-up table is used to store the
coefficients for each line segment and the functions can then
be evaluated using a multiplier and an adder to calculate
the linear approximation. Uniform segmentation methods
have been proposed which involve similar hardware [37].

Using well-known methods that compute elementary
functions such as CORDIC [53], the evaluation of com-
pound functions is a multistage process. Consider the
evaluation of the f function as defined in (1) over the
interval ð0; 1Þ (Fig. 2). Using CORDIC, the computation of
this function is a two-stage process: the logarithm of x
followed by the square root. With our approach, we look at
the entire function over the given domain and, therefore, we
do not need to have two stages. As shown in Fig. 2, the
greatest nonlinearities of the f function occur in the regions
close to zero and one. If uniform segments are used, a large
number of small segments would be required to get
accurate approximations in the nonlinear regions. However,

in the middle part of the curve where it is relatively linear,
accurate approximation can be obtained using relatively
few segments. It would be efficient to use small segments
for the nonlinear regions, and large segments for linear
regions. Arbitrary-sized segments would enable us to have
the least error for a given number of segments; however, the
hardware to calculate the segment address for a given input
can be complex. Our objective is to provide near arbitrary-
sized segments with a simple circuit to find the segment
address for a given input.

We have developed a novel method which can construct
piecewise linear approximation such that: 1) The segment
lengths used in a given region depend on the local linearity,
with more segments deployed for regions of higher
nonlinearity, and 2) the boundaries between segments are
chosen such that the task of identifying which segment to
use for a given input can be rapidly performed.

As an example to illustrate our approach, consider
approximating f with an 8-bit input. Using the traditional
approach, the most-significant bits of u are used to index the
uniform segments. For instance, if the most-significant four
bits are used, 16 uniform segments are used to approximate
the function. Using our approach, it is possible to adopt small
segments for nonlinear regions (regions near 0 and 1) and
large segments for linear regions (regions around 0.5). The
idea is to use segments that grow by a factor of two from 0 to
0.5 and segments that shrink by a factor of two from 0.5 to 1 in
the horizontal axis of Fig. 2. We use segment boundaries at
locations 2n�8 and 1� 2�n, where 0 � n < 8. Up to 14 seg-
ments can be formed this way. A circuit based on prefix
computation can be used for calculating segment addresses
(Fig. 3) for a given input x. It checks the number of leading
zeros and ones towork out the segment address. A cascade of
ORgates is used for segments that grow by factors of two and
a cascade of AND gates is used for segments that shrink by
factors of two; these circuits can be pipelined and a circuit
with a shorter critical path but requiring more area can be
used [24].Note that the choice of segmentsdoesnot have to be
factors of two, it could be more. The appropriate taps are
taken from the cascades depending on the choice of the
segments and are added to work out the segment address. In
Fig. 3, the maximum available taps are taken, giving
14 segment addresses. Some taps would not be taken if the
segments grow or shrink by more than a factor of two. It can
be seen that the critical path of this circuit is the path from x6
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Fig. 2. The f function. The asterisks indicate the boundaries of the linear

approximations.

Fig. 3. Circuit to calculate the segment address for a given input x. The

adder counts the number of ones in the output of the two prefix circuits.

Note that the least-significant bit xo is not required.



or x7 to the output of the adder. By introducing pipeline
registers between the gates, higher throughput can easily be
achieved.

When approximating f with 32-bit inputs based on
polynomials of the form

pðuÞ ¼ c1 � uþ c0; ð6Þ

the gradient of the steepest part of the curve is on the order of
108, thus large multipliers would be required. To overcome
this problem, we use scaling factors of multiples of two to
reduce the magnitude of the gradient, essentially trading
precision for range. This is appropriate since the larger the
gradient, the less important precision becomes. The use of
scaling factors provides the user the ability to control the
precision for both c1 and c0, resulting in variation of the size of
the multiplier and adder. Hence, for each segment, four
coefficients are stored: c1 and its scaling factor, c0 and its
scaling factor. Note that the precision of the approximation
pðxÞ depends on the maximum error desired between pðxÞ
and the actual function.

It is also possible to divide the input interval into
uniform or nonuniform intervals and have uniform or
nonuniform segments inside each interval. In this case, the
most-significant bits are used to address the intervals and
the least-significant bits are used to address the segments
inside each interval. It can be seen that one can have any
number of nested combinations of uniform and nonuniform
segments. This hybrid combination of nested uniform and
nonuniform segments provides a flexible way to choose the
segment boundaries.

The architecture of our function evaluator, shown in
Fig. 4, is based on first order polynomials. The most-
significant bits are used to select the interval and the least-
significant bits are passed through the segment address
calculator, which calculates the segment address within the
interval. The ROM outputs the four coefficients for the

chosen interval and segment. c1 is multiplied by the input x
and c s1 is used to scale the output. The scaling circuit
involves shifters, which increase or decrease the value by
powers of two. This scaled multiplication value is added to
the scaled c0 coefficient to produce the final result.

This work on function evaluation has been extended by
employing a hierarchy of uniform and nonuniform seg-
ments. Details about this hierarchical segmentation scheme
can be found in [27].

5 FUNCTION EVALUATION FOR NOISE GENERATOR

This section explains in detail how the function evaluation
method based on nonuniform segmentation is used to
compute the f and g functions for Gaussian noise
generation ((1)-(3)). We first consider the f function. As
stated earlier, the greatest nonlinearities of this function
occur in the regions close to zero and one. To be consistent
with the change in linearity, we use line segment locations
to boundaries at locations 2n�32 for 0 < u � 0:5 and 1� 2�n

for 0:5 < u � 1, where 0 � n < 32. A total of 59 segments
are used to approximate this function, as shown in Fig. 2.
Since f approaches infinity for u values close to zero, the
smallest u value is 2�32, resulting in a maximum output
value of around 4.7.

The maximum absolute error of this approximation is
0.020 (compared against IEEE double precision). However,
this is the case only if we have infinite precision for the
coefficients and data paths, which is not realistic. Multi-
pliers take a significant amount of resources on FPGAs,
therefore the coefficients for the gradient should be as small
as possible. Tests are carried out to find the optimum
number of bits for the gradient coefficients that provides the
least absolute error. Fig. 5 shows how the maximum
absolute error varies with the number of bits used for the
gradient of the f function. Similar tests are performed for
the y-intercept coefficients and various data paths. The
figure indicates that six bits are sufficient to give a
maximum absolute error of 0.031. Our requirement is
faithfully rounded results [16] (results are rounded to the
nearest or next nearest), where the approximation should
differ from the true value by less than one unit in the last
place (ulp). With this error, it is sufficient to give an output
accuracy of eight bits (three bits for integer and five for
fraction). If uniform segments are used, small segment size
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Fig. 4. Function evaluator architecture based on nonuniform

segmentation.

Fig. 5. Variation of function approximation error with number of bits for

the gradient of the f function.



would be needed in order to cope with the highly nonlinear

parts of the curve. In fact, one would require around

617 million segments to get the same maximum absolute

error with uniform segments. This is a good example to

demonstrate the effectiveness of our nonuniform approach.

It is clear that our approach works well, especially for

functions with exponential behavior.
The computation of g1 and g2 is carried out in a similar

way. Given the symmetry of the sine and cosine functions,

the axis can be considered in four regions related by

symmetry, labeled 0 to 3 in Fig. 6. To evaluate the functions

g1 and g2, due to the symmetry of the sine and cosine

functions, only the input range ½0; 1=4Þ for g1 needs to be

approximated [41]. The specific axis-partitioning technique

for f is unsuitable for g1 since the nonlinearities of the two

functions are different. If the same technique is used, there

would be many unnecessary segments near the beginning

and end of the curve and not enough segments in the

middle regions. As before, we consider both the local

linearity of the curve and the computational concerns with

respect to choosing specific segment boundary locations,

leading to the approximations shown in Fig. 7. The curve is

divided into four uniform intervals and, within each

interval, nonuniform segmentation is applied. Note that,

for each interval, not all taps are taken from the segment

address calculator. The boundaries are chosen in a way to

minimize the approximation error. For the first three

intervals, nonuniform segments increasing and decreasing

by powers of two with six segments each are used. For the

last interval, only three segments are used by omitting taps.

Since this interval is the most nonlinear, sufficiently good

accuracy can be achieved with only a few segments. We use

a total of 21 segments to approximate this function.

With finite precision on the coefficients and data paths,
the maximum absolute error of this approximation is
0.0035, which is sufficient to give an output accuracy of
eight bits (all eight bits for fraction). Using uniform
segments, the same error can be obtained with a slightly
larger number of segments; this is because the curve does
not have high nonlinearities.

The maximum absolute errors to the two functions, 0.031
and 0.00079, may seem to be rather high. However, the
average errors for the two functions are in fact 0.000048 and
0.0000012, respectively. Lower average approximation
errors to the functions ensure overall higher noise quality.
The error plots for the approximations to f and g1 are
shown in Figs. 8 and 9.

Table 1 shows a comparison of the number of segments
for the two functions for nonuniform and uniform
segmentation in order to achieve the same worst-case error.
Note that, for uniform segmentation, the number of
segments needs to be a power of two. This is because the
most-significant n bits are used for addressing. For instance,
the actual number of uniform segments needed for the
f function is 617 million, but one billion segments are used,
which is the next power of two (230). We do not have this
kind of restriction with our nonuniform addressing scheme.
The table also shows the number of bits used for each
coefficient in the look-up tables. The look-up table sizes are
59� ð6þ 5þ 32þ 5Þ ¼ 2; 832 bits for the f function and
21� ð8þ 4þ 16þ 4Þ ¼ 672 bits for the g1 function, giving a
total look-up table size of just 3,504 bits for all three
functions. With such a small look-up table size, all the
coefficients can be stored on-chip for fast access. Note that
the g2 function shares the same look-up table with g1.

6 IMPLEMENTATION

This section presents implementations of the four-stage
architecture using FPGA technology.
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Fig. 6. The g functions. Only the thick line is approximated; see Fig. 4.

The most significant two bits of u2 are used to choose which of the four

regions to use; the remaining bits select a location within Region 0.

Fig. 7. Approximation for g1 over ½0; 1=4Þ. The asterisks indicate the

segment boundaries of the linear approximations.

Fig. 8. Approximation error to f. The worst case and average errors are

0.031 and 0.000048, respectively.

Fig. 9. Approximation error to g1. The worst case and average errors are

0.00079 and 0.0000012, respectively.



We use 32 bits for u1, allowing a maximum output of
6:7�. Higher values of � can be supported by increasing the
number of bits for u1; for instance, 46 bits would yield a
maximum output of 8�. For u2, 18 bits are found to be
sufficient without loss of performance (lower bit widths
cause the statistical tests to fail). This is because the
trigonometric functions in g1 and g2 can be computed over
½0; 1=4Þ instead of ½0; 1Þ, with symmetry used to derive the
remainder of the ½0; 1Þ interval. In terms of hardware
resources, the size of these uniform random number inputs
(u1, u2, g1, and g2) affects the size of the multipliers and
adders (see Fig. 4). The more bits there are, the more one
needs larger multipliers and adders.

The combination of 32 bits for u1 and 18 bits for u2 means
that 50 shift registers are needed.We choose to target a period
of about 1018 for thenoisegenerator,whichexceedsby several
orders ofmagnitude even themost ambitious simulation size
that can be contemplatedwith current hardware. Since 1018 is
approximately260,weuse60-bitLFSRs. Inorder for theLFSRs
to iterate through this large period, they are configured with
polynomialswhichwill producemaximumsequence lengths
for a given LFSR size [38].

The 50 60-bit LFSRs can be implemented in configurable
hardware using surprisingly few resources. Recent-genera-
tion reconfigurable hardware has a large amount of user-
configurable elements. For instance, the Xilinx Virtex-II
XC2V4000-6 has 23,040 user-configurable elements known
as slices. The SRL16 primitive in Xilinx Virtex FPGAs
enables a look-up table to be configured as a 16-bit shift
register. A 60-bit LFSR using SRL16s instead of flipflops can
be packed into three slices instead of 32 [38]. So, we just
need 150 slices for the 50 LFSRs. Note that all 50 LFSRs are
initialized with random seeds.

It could also be argued that application of the central
limit theorem should be unnecessary if f , g1, and g2 are
implemented with sufficient accuracy. However, there is
hardware trade off involved in increasing the accuracy of
these functions. We have found that application of the
central limit theorem once (by summing two values as
described above) results in a net reduction in complexity
when the corresponding looser tolerances in the piecewise
linear approximations are exploited.

Having a larger number of terms in the central limit
theorem step would further simplify the linear approxima-
tions, but would slow the execution speed due to the need
for accumulating more terms. For instance, when 17 approx-
imations are used for f and six for g, eight values need to be
summed in order to pass the statistical tests. When

59 approximations are used for f and 21 for g, without
summing, the statistical tests fail after around 700 million
samples. Therefore, we sum two samples to pass the tests.

Several FPGA implementations have been developed,
using the Handel-C hardware compiler from Celoxica [10].
We have mapped and tested the design onto a hardware
platform with a Xilinx Virtex-II XC2V4000-6 device. This
design occupies 2,514 slices, eight block multipliers, and two
block RAMs,which takes up around 10 percent of the device.
Stage two, the function evaluator, takes up 2,137 slices or
85percent of the slicesused.Apipelinedversionofourdesign
operates at 133MHz, and, hence, our design produces
133 million Gaussian noise samples per second.

We have also implemented our design on a low-cost
Xilinx Spartan-IIE XC2S300E-7 FPGA. This design runs at
62MHz and has 2,829 slices and eight block RAMs, which
requires over 90 percent of this device. This implementation
can produce 133 million samples in around two seconds.

It is possible to increase the performance by exploiting
parallelism. We have experimented with placing multiple
instances of our noise generator in an FPGA and find that
there is a small reduction in clock speed, probably due to the
high fan-out of the clock tree. For instance, a designwith three
instances of ournoise generator takesuparound32percent of
the resources in an XC2V4000-6 device; it runs at 126MHz,
producing 378 million noise samples per second.

In Section 8, the performance of the hardware designs
presented above is compared with those of software
implementations.

7 LDPC SIMULATION SYSTEM

Error correcting coding (ECC) [42] is a critical part of
modern communications systems, where it is used to detect
and correct errors introduced during a transmission over a
channel. In the past few years, LDPC codes have received a
lot attention because of their excellent performance [32].
They have been widely considered as the most promising
candidate ECC scheme for many applications in telecom-
munications and storage devices.

If the binary Hamming distance between all pairs of
codewords (the distance spectrum) is known, then analytic
techniques for describing the performance of the codes in
the presence of noise is available. However, in the case of
capacity achieving random linear codes (such as LDPC
codes), the problem of finding the distance spectrum of the
code is intractable and researchers resort to the use of
Monte Carlo simulation in order to characterize various
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TABLE 1
Comparing Two Segmentation Methods

The second column shows the comparison of the number of segments for nonuniform segmentation. The third column shows the number of bits
used for the coefficients to approximate f and g1.



code constructions in terms of bit error rate (BER) versus
signal to noise ratio (SNR). At very low SNRs, errors occur
often and a sufficient statistic can be gathered readily
within a workstation. However, at higher SNRs where
errors occur rarely, the situation is different. Thorough
characterization of a code in this region may require
simulation of 1010 � 1012 code symbols and workstation
simulations provide inadequate means of finding a statis-
tically sufficient set of error events. We are working on a
hardware LDPC simulation framework that is several
orders of magnitude faster than simulations provided by
workstations or an array of workstations.

Our real-time LDPC simulation framework has been
implemented on a Virtex-II prototyping board from
Nallatech [43] and a block diagram is provided in Fig. 10.
The LDPC encoder follows an algorithm suggested in [47]
and has been implemented in hardware [28]. Details of our
LDPC decoder are described in [21]. Our noise generator
offers significant value to the system as a Monte Carlo
simulator since noise quality at high SNR (tails of the
Gaussian) is essential.

8 EVALUATION AND RESULTS

This section describes the statistical tests that we use to
analyze the properties of the generated Gaussian noise.

In order to ensure the randomness of the uniform
random samples u1 and u2, we have tested the LFSR with
the Diehard tests [34]. The LFSR passed all the tests,
indicating that the uniform random samples generated are
indeed uniformly randomly distributed.

We use two well-known goodness-of-fit tests to check the
normality of the random variables: the chi-square (�2) test
and the Anderson-Darling (A-D) test [13]..

The �2 test involves quantizing the x axis into k bins,
determining the actual and expected number of samples
appearing in each bin, and using the results to derive a
single number that serves as an overall quality metric. Let t

be the number of observations, pi be the probability that
each observation fall into the category i, and Yi be the
number of observations that actually do fall into category i.
The �2 statistic is given by

�2 ¼
Xk

i¼1

ðYi � tpiÞ2

tpi
: ð7Þ

This test, which is essentially a comparison between an
experimentally determined histogram and the ideal PDF, is
sensitive not only to the quality of the noise generator itself,
but also to the number and size of the k bins used on the
x axis. For example, a noise generator that models the true
PDF very accurately for low absolute values of x but fails
for large x could yield a good �2 result if the examined
regions are too closely centered around the origin. It is
precisely for these high jxj regions where a noise generator
is critically important and most likely to be flawed.

Consider a simulation involving generation of 1012 noise
samples, conducted with the goal of exploring performance
for a channel decoder in the range of BERs from 10�9 to
10�10. In samples drawn from a true unit-variance Gaussian
PDF, we would expect that approximately half a million
samples from the set of 1012 would have absolute value
greater than x ¼ 5. These high � noise values are precisely
the ones likely to cause problems in decoding, so a
hardware implementation that fails to faithfully produce
them appropriately risks creating incorrect and deceptively
optimistic results in simulation. To counter this, we extend
the tests to specifically examine the expected versus actual
production of high � values.

While the �2 test deals with quantized aspects of a
design, the A-D test deals with continuous properties. It is a
modification of the Kolmogorov-Smirnov (K-S) test [23] and
gives more weight to the tails than the K-S test does. The
K-S test is distribution free in the sense that the critical
values do not depend on the specific distribution being
tested. The A-D test makes use of the specific distribution
(normal in our case) in calculating critical values. For
comparing a data set to a known CDF F ðxÞ, the A-D statistic
A2 is defined by

A2 ¼
XN

i¼1

1� 2i

N
½lnF ðxiÞ þ lnð1� F ðxNþ1�iÞÞ� �N; ð8Þ

where xi is the ith sorted and standardized sample value
and N is the sample size.

A p-value [13] can be obtained from the tests, which is
the probability that the deviation of the observed from that
expected is due to chance alone. A sample set with a small
p-value means that it is less likely to follow the target
distribution. The general convention is to reject the null
hypothesis—that the samples are normally distributed—if
the p-value is less than 0.05.

Figs. 11, 12, and 13 illustrate the effect on the PDF of
different implementation choices. Fig. 11 shows the PDF
obtained when 17 and 6 linear approximations are used for
f and g1, respectively. The figure (as well as the others in
this section) is based on a simulation of four million
Gaussian random variables. There are distinct error regions
visible in the PDF, which occur when there are large errors
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Fig. 10. LDPC simulator.



in the approximation of f and g1. These distinct errors cause

the �2 and A-D tests to fail. Increasing the number of linear

approximations to 59 and 21, respectively, leads to the PDF

shown in Fig. 12. It is clear that the error regions have

decreased significantly. However, although this passes the

A-D test, it fails the �2 test when the sample size is

sufficiently large. When the further enhancement of sum-

ming two successive samples as discussed earlier is added,

the PDF of Fig. 13 results.
This implementation passes the statistical tests even with

extremely large numbers of samples. We have run a

simulation of 1010 samples to calculate the p-values for

the �2 and A-D test. For the �2 test, we use 100 bins for the

x axis over the range ½�7; 7�. The p-values for the �2 and

A-D tests are found to be 0.3842 and 0.9058, respectively,

which are well above 0.05, indicating that the generated

noise samples are indeed normally distributed. To test the

noise quality in the high � regions, we run a simulation of

107 samples over the range ½�7;�4� and ½4; 7� with 100 bins.

This is equivalent to a simulation size of over 1011 samples.

The p-values for the �2 and A-D tests are found to be 0.6432

and 0.9143, showing that the noise quality even in the high

� regions is high.
In order to explore the possibility of temporal statistical

dependencies [48] between the Gaussian variables, we

generate scatter plots showing pairs yi and yiþ1. This is to

test serial correlations between successive samples, which

can occur if the noise generator is improperly designed. If

correlations exist, certain patterns can be seen in the scatter

plot [48]. An example based on 10,000 Gaussian variables is

shown in Fig. 14, which displays no obvious correlations.

Our hardware implementations, described in Section 6,
have been compared to several software implementations
based on the polarmethod [23] and theZigguratmethod [36],
which are the fastest methods for generating Gaussian noise
for instruction processors. The uniform random number
generator used for the software implementations is the
mrand48() C function in UNIX, which uses a linear con-
gruential algorithm [23] and 48-bit integer arithmetic (period
of 248). This algorithm can generate one billion 48-bit uniform
random numbers on a Pentium-IV 2.6GHz PC in just
23 seconds.

The results are shown in Table 2. It can be seen that our
hardware designs are faster than software implementations
by 3-200 times, depending on the device used and the
resource utilization. Looking at the PC results, we can see
that the Ziggurat method performs significantly better than
the polar method on both the Athlon and the Pentium-IV.

Fig. 15 shows how the number of noise generator
instances affects the output rate. While, ideally, the output
rate would scale linearly with the number of noise
generator instances, in practice, the output rate grows
slower than expected because the clock speed of the design
deteriorates as the number of noise generators increases.
This deterioration is probably due to the increased routing
congestion and delay.

We have used our noise generator in LDPC decoding
experiments [21]. Although the output precision of our
noise generator is 32 bits, 16 bits are found to be sufficient
for our LDPC decoding experiments (other applications,
such as financial modeling using the BGM model, require
higher precisions [4]). To obtain a benchmark, we per-
formed LDPC decoding using a full precision (64-bit
floating-point representation) software implementation of
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Fig. 11. PDF of the generated noise with 17 approximations for f and six

for g for a population of four million. The p-values of the �2 and A-D tests

are 0.00002 and 0.0084, respectively.

Fig. 12. PDF of the generated noise with 59 approximations for f and 21

for g for a population of four million. The p-values of the �2 and A-D test

are 0.0012 and 0.3487, respectively.

Fig. 13. PDF of the generated noise with 59 approximations for f and 21

for g with two accumulated samples for a population of four million. The

p-values of the �2 and A-D tests are 0.3842 and 0.9058, respectively.

Fig. 14. Scatter plot of two successive accumulative noise samples for a

population of 10,000. No obvious correlations can be seen.



belief propagation in which the noise samples are also of
full precision. We then performed decoding using the
LDPC algorithm, but with noise samples created using the
design presented in this paper. Over many simulations, we
have found no distinguishable difference in code perfor-
mance, even in the high Eb=N0 regions where the error floor
in BER is as low as 10�9 (1012 codewords are simulated). To
generate 1012 noise samples on a 2.6GHz Pentium-IV
workstation, it takes over 11 hours, whereas a single
instance of our hardware noise generator takes just over
two hours. On a workstation where LDPC encoding, noise
generation, and LDPC decoding are performed, the simula-
tion time for 1012 codeword samples will be a lot longer
than 10 hours since all three modules need to be performed.
However, in our hardware simulation, we have the
advantage of running all three modules in parallel.
Although the hardware implementation of our hardware
LDPC decoder is currently at a preliminary stage (im-
plemented serially), it has a throughput of around 500Kbps,
which is over 20 times faster than our workstation-based
simulations. We are currently in the process of implement-
ing a fully parallel scalable decoder, which we predict will
be several orders of magnitude faster than traditional
software simulations.

Comparing our implementation with other hardware
Gaussian noise generators, the only implementation known
on a Xilinx FPGA is the AWGN core [55] from Xilinx. This
implementation follows the ideas presented in [6].
Although this core is around twice as fast as and four
times smaller than our design, it is only capable of a
maximum � value of 4.7 (whereas we can achieve 6.7 � and
more). In addition, we have tested the design with our
statistical tests and found out that the noise samples fails
the �2 test after around 200,000 samples. Hence, we found

the design to be inadequate for our low BER and high
quality LDPC decoding experiments.

9 CONCLUSION

We have presented a hardware-based Gaussian noise
generator designed to facilitate channel code simulations
implemented in hardware which involve very large
numbers of samples. A key aspect of the design is the use
of nonuniform piecewise linear approximations in comput-
ing trigonometric and logarithmic functions, with the
boundaries between each approximation chosen carefully
to enable rapid computation of coefficients from the inputs.

Our noise generator design occupies approximately
10 percent of a Xilinx Virtex-II XC2V4000-6 FPGA and
90 percent of a Xilinx Spartan-IIE XC2S300E-7 and can
produce 133 million samples per second. The performance
can be improved by exploiting parallelism: An XC2V4000-6
FPGA with nine parallel instances of the noise generator at
105MHz can run 50 times faster than a 2.6GHz Pentium-IV
PC. Statistical tests, including the �2 test and the A-D test, as
well as application in LDPC decoding, have been used to
confirm the quality of the noise samples. The output of the
noise generator accurately models a true Gaussian PDF
even at very high � values. Ongoing and future work
includes further refinement of our hardware noise gen-
erator architecture for various applications, for instance,
those which involve different channels such as Rayleigh
[14], Ricean and Nakagami-m [56] channels.
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[46] J.A Piñeiro, J.D. Bruguera, and J.M. Muller, “Faithful Powering
Computation Using Table Look-Up and a Fused Accumulation
Tree,” Proc. 15th IEEE Symp. Computer Arithmetic, 2001.

[47] T. Richardson and R. Urbanke, “Efficient Encoding of Low-
Density Parity-Check Codes,” IEEE Trans. Information Theory,
vol. 47, pp. 638-656, 2001.

[48] B.D. Ripley, Stochastic Simulation. Wiley, 1987.
[49] C. Rose, J. Economic Dynamics and Control, vol. 19, no. 1391, 1997.
[50] M.F. Schollmeyer and W.H. Tranter, “Noise Generators for the

Simulation Of Digital Communication Systems,” Proc. 24th Ann.
Simulation Symp., pp. 264-275, 1991.

[51] J. Vedral and J. Holub, “Oscilloscope Testing by Means of
Stochastic Signal,” Measurement Science Rev., vol. 1, no. 1, 2001.

[52] Xilinx Inc., Virtex-II User Guide v1.5, 2002.
[53] J.E. Volder, “The CORDIC Trigonometric Computing Technique,”

IEEE Trans. Electronic Computers, vol. 8, no. 3, pp. 330-334, 1959.
[54] N. Wax, Noise and Stochastic Processes. Donver Publications, 1954.
[55] “Additive White Gaussian Noise (AWGN) Core v1.0,” Xilinx

Product Specification, 2002.
[56] K.W. Yip and T.S. Ng, “A Simulation Model for Nakagami-m

Fading Channels, m < 1,” IEEE Trans. Comm., vol. 48, no. 2,
pp. 214-221, 2000.

LEE ET AL.: A GAUSSIAN NOISE GENERATOR FOR HARDWARE-BASED SIMULATIONS 1533



Dong-U Lee received the BEng degree in
information systems engineering from Imperial
College, London, in 2001. He is currently
finishing the PhD degree in computing at the
same university. He visited the Electrical
Engineering Department, University of Califor-
nia, Los Angeles, in 2002 and 2003 as a
visiting scholar, where he developed hard-
ware designs for LDPC codes. His research
interests include reconfigurable computing,

computer arithmetic, channel coding, and video processing. He is
a student member of the IEEE.

Wayne Luk received the MA, MSc, and PhD
degrees in engineering and computer science
from the University of Oxford, Oxford, United
Kingdom. He is a member of the academic staff
in the Department of Computing, Imperial
College of Science, Technology and Medicine
and leads the Custom Computing Group there.
His research interests include theory and prac-
tice of customizing hardware and software for
specific application domains, such as graphics

and image processing, multimedia, and communications. Much of his
current work involves high-level compilation techniques and tools for
parallel computers and embedded systems, particularly those containing
reconfigurable devices such as field-programmable gate arrays. He is a
member of the IEEE.

John D. Villasenor received the BS degree in
1985 from the University of Virginia, the MS
degree in 1986 from Stanford University, and the
PhD degree in 1989 from Stanford, all in
electrical engineering. From 1990 to 1992, he
was with the Radar Science and Engineering
Section of the Jet Propulsion Laboratory in
Pasadena, California, where he developed
methods for imaging the earth from space. He
joined the Electrical Engineering Department at

the Univesity of California, Los Angeles (UCLA), in 1992 and is currently
a professor. He served as vice chair of the department from 1996 to
2002. At UCLA, his research efforts lie in communications, computing,
imaging and video compression, and networking. He is a senior member
of the IEEE.

Peter Y.K. Cheung graduated from Imperial
College of Science and Technology, University
of London in 1973 with first class honors and
was awarded the IEE prize. After working at
Hewlett Packard for a few years, he returned to
Imperial College as a lecturer in 1980. He runs
an active research group in digital design,
attracting support from many industrial partners.
He was elected as one of the first Imperial
College Teaching Fellows in 1994 in recognition

of his innovation in teaching. He is currently a professor of digital
systems and deputy head of the Department of Electrical & Electronic
Engineering at Imperial College. His research interests include VLSI
architectures for signal processing, asynchronous systems, reconfigur-
able computing using FPGA, and architectural synthesis. He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1534 IEEE TRANSACTIONS ON COMPUTERS, VOL. 53, NO. 12, DECEMBER 2004


