
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2007 1003

Run-Time Integration of Reconfigurable Video
Processing Systems

Pete Sedcole, Member, IEEE, Peter Y. K. Cheung, Senior Member, IEEE, George A. Constantinides, Member, IEEE,
and Wayne Luk, Member, IEEE

Abstract—Embedded systems in field-programmable gate ar-
rays (FPGAs) can be customized and adaptive if assembled from
modular components at run time. This paper examines realizing
run-time system assembly by extension of platform-based design.
Two major challenges are addressed in this paper. First, the design
of a reconfigurable platform architecture suitable for run-time
system assembly is described. Different systems are constructed
by integrating the platform architecture with different modular
components, which employ the communication infrastructure
supplied by the platform in order to interact. Second, where
on-chip communications channels use shared media, we propose
techniques for modeling the intermodule communication behavior
based on statistical time-division multiplexing. The proposed
techniques enable system designers to guarantee that logical
communication requirements between the adjunct modules can be
satisfied by the infrastructure. An in-depth analysis is presented
and then verified with cycle-accurate simulations for an example
reconfigurable platform for real-time video applications.

Index Terms—Adaptive systems, bus architecture, design au-
tomation, field-programmable gate arrays (FPGAs), on-chip
communication, platform-based design, reconfigurable architec-
tures, video processing.

I. INTRODUCTION

THROUGH continuous effort and innovation, the semicon-
ductor industry has maintained an unrelenting increase in

VLSI transistor density over the last several decades. The pace
of the transistor density increase has not been matched by cor-
responding advances in designer productivity, causing design
costs to spiral upwards and threatening the continuation of the
semiconductor roadmap [1]. To ameliorate this situation, new
design methodologies have emerged to exploit a greater degree
of design reuse, primarily through extensive, planned reuse of
design focused around a standardized bus architecture, an ap-
proach known as platform-based design [2], [3]. Derivative sys-
tems are built by integrating a basic platform architecture kernel
with a specific set of modules, which interact using the commu-
nication infrastructure defined by the kernel. Derivatives have a
lower integration design effort than ad hoc block-based reuse,
mainly due to the reduced design complexity of intermodular

Manuscript received July 27, 2006; revised January 19, 2007. This work was
supported in part by the Commonwealth Scholarship Commission, by the New
Zealand Vice Chancellors’ Committee, and by the U.K. Engineering and Phys-
ical Sciences Research Council under Grant EP/C549481/1.

P. Sedcole, P. Y. K. Cheung, and G. A. Constantinides are with the De-
partment of Electrical and Electronic Engineering, Imperial College London,
London SW7 2BT, U.K.

W. Luk is with the Department of Computing, Imperial College London,
London SW7 2BZ, U.K.

Digital Object Identifier 10.1109/TVLSI.2007.902203

communication. While the initial development effort of the plat-
form kernel may be high, this can be amortized over a number
of derivatives resulting in overall lower design cost.

The user-exposed transistor density of field-programmable
gate arrays (FPGAs) inevitably lags behind that of applica-
tion-specific integrated circuits (ASICs). Nevertheless, modern
FPGAs are now reaching gate counts where design produc-
tivity is becoming a bottleneck, leading to the application of
platform-based design techniques to reconfigurable systems
[4]. However, a significant difference exists between FPGA
and ASIC platform-based design; whereas ASIC derivative
designs are necessarily fixed at design-time, the reconfig-
urability of FPGAs engenders the possibility of derivative
designs generated and integrated at run time. This we have
termed late integration [5]. One of the most significant chal-
lenges in achieving late integration is the resolution of logical
intermodular communication channels onto finite on-chip
interconnect resources. The advantage of late integration is
that it enables an instance of a system to be customized to the
environment in which it is deployed and adaptable to changes
in the environment. Increasing the customization of reconfig-
urable derivatives partly mitigates the reduced performance of
FPGA-based designs compared to ASIC implementations.

For example, consider a video processing system for intelli-
gent tracking surveillance cameras deployed in two situations:
one monitoring an underground car parking garage and the other
a busy street. The type and quantity of scene activity in the two
situations are quite different; moreover, the lighting and con-
ditions in the street scene are time-variant. Depending on the
instantaneous operating conditions, different algorithms are re-
quired for optimal results; an ASIC derivative must be generic
enough to support all possible algorithms (whether or not a par-
ticular algorithm is ever invoked), whereas an automated recon-
figurable platform can, by monitoring the environment, selec-
tively instantiate the momentarily optimal algorithms for the
conditions.

One can view platform-based design as the application
of constraints to the design space in order to simplify the
integration effort of derivative designs. In reconfigurable
platform-based design employing late integration, further
restrictions are made, particularly with regard to on-chip
communication, such that the integration phase is simple
enough to be automated. Therefore, it is necessary to determine
which (conventional derivate) design tasks may be reasonably
performed automatically at run time. The remaining design
tasks must then be incorporated into the development of the
reconfigurable platform architecture.

1063-8210/$25.00 © 2007 IEEE

1004 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2007

A. Contributions

This paper provides three main contributions. First, we ex-
amine the tasks in platform-based design in order to identify
changes to the design flow necessary to achieve a late integra-
tion scheme and the resulting impact on the system architec-
ture. Derivative integration is primarily a function of resolving
communication between the adjunct modules which form the
system. Traditionally, this task is performed at design time, in
which case simulations or statistical techniques can be used to
set the communication schedules. These are too computation-
ally demanding to be performed at run time. Therefore, we pro-
pose circumscribing the communication behavior of the mod-
ules forming the system.

This proposal leads to the second contribution, which is the
first FPGA-based platform architecture that has been designed
specifically to support automatic derivative generation and in-
tegration at run time. The architecture comprises a bus-based
network which provides connectivity between a number of cus-
tomizable processing element modules. Constraints are imposed
on the internal design of modules to limit the communication
behavior they may exhibit.

Finally, to demonstrate that the proposed approach enables
rapid resolution of intermodular communication, we present a
detailed analysis of the communication system. It is shown that
the mapping of algorithms to the architecture results in pre-
dictable behavior, enabling real-time requirements to be guaran-
teed. The analysis is verified through the use of cycle-accurate
simulations for several example systems.

B. Organization of This Paper

Section II describes research related to the work in this
paper. The reconfigurable platform architecture requirements
and the exemplar template of Sonic-on-a-Chip1 is the subject
of Section III. Following that, an analysis of the on-chip com-
munication behavior is presented in Section IV. Closed-form
expressions are derived to determine arbitration parameters
and required minimum buffer sizes for a given system. Finally,
Section V presents the results of simulations, verifying the
validity of the communication analysis.

II. RELATED WORK

Several architectures for on-chip communication have been
developed previously. Bus-based architectures are conceptually
the simplest, and much work exists on high-level system design
using buses (for example, [7]–[11]). Many of these approach
communication as a synthesis task; Gasteier and Glesner
describe a method for determining a static bus scheduling
for transfers between communicating low-level processes [8],
which works for fully deterministic traffic. In [7], abstract
communication channels (characterized by average and peak
data rates) are assigned to shared media using an allocation
algorithm. More complex models of communication traffic
include trace-based communication analysis [9], which aids the

1Note that the use of Sonic in this paper is historical; the precursor to
Sonic-on-a-Chip was named Sonic by its inventors S. D. Haynes et al. [6].
In this paper, Sonic does not in any way refer to the on-chip interconnect
technology of Sonics Inc.

exploration of architectural design space [10]. Communication
synthesis also includes bus topology exploration; in [11] several
custom bus architectures are automatically generated, using a
library of bus components. Communication synthesis specifi-
cally for reconfigurable devices has also been examined [12].
Platform-based design benefits from standardization, and a
number of on-chip microprocessor bus standards have emerged
over the last several years, such as AMBA [13], CoreConnect
[14], and Wishbone [15].

The fundamental disadvantage of microprocessor buses is
their lack of scalability, which can only be partially mitigated
with bus hierarchies. Such buses typically employ a form of
priority-based arbitration which is ineffective when the bus
bandwidth utilization is high. A more scalable alternative to a
bus-based approach is the implementation of a packet network
on-chip (NoC) [16]–[18]. In a network, many transactions
can occur in parallel over shorter, faster, and less capacitive
wires, leading to higher overall bandwidths and lower energy
costs. However, these advantages come at a price; additional
hardware (including buffer memory) for packet routing, and
increased complexity in the communication system. Static
routing schedules may be determined at design-time if the
network traffic is sufficiently deterministic. This is equivalent
to time multiplexing [18]. Dynamic routing may be supported
with complicated routing hardware [19]. As an alternative,
in [20], a discrete number of static schedules are determined,
which are dynamically switched as required. In complicated
systems, on-chip network traffic exhibits time-variant behavior,
which may be modeled using statistical methods [21]. This
can then be used to determine buffer sizes and reduce simu-
lation times. This is related to techniques of queueing theory,
which have long been applied to telecommunication networks.
Statistical approaches produce probabilistic results. However,
embedded systems often have hard real-time requirements;
moreover, if sufficient information is known about the system
a priori a deterministic solution can be found.

Our architecture work occupies an interesting space in-be-
tween pure microprocessor buses and on-chip networks. The
communication infrastructure is a linear array of buses, but
the bus arbitration protocol chosen is statistical time-division
multiplexing (STDM) which enables high bandwidth utiliza-
tion. Since data are packetized in STDM, the movement of data
has similarities to networks, particularly for data that traverses
two or more buses. Moreover, there is a high degree of sepa-
ration between computation and system-level data movement
within each processing node, which is typical of a network.
For a system to be assembled at run time, the communication
architecture must be designed without exact knowledge of the
traffic that the architecture must carry. In other words, the com-
munication architecture cannot be customized to a specific set
of communication channels. Therefore, deterministic synthesis
and scheduling approaches are not applicable, while simulation
or trace-based methods are impractical.

Run-time reconfiguration in FPGAs has been proposed for
bus-based systems [22] as well as on-chip networks [23], [24].
In all these cases, the focus is on the (undoubtedly important)
practicalities of reconfiguration and connectivity. However, it is
the thesis of this paper that for such reconfigurable systems to

SEDCOLE et al.: RUN-TIME INTEGRATION OF RECONFIGURABLE VIDEO PROCESSING SYSTEMS 1005

TABLE I
TASKS IN PLATFORM-BASED DESIGN

guarantee functionality, the construction of reconfigurable plat-
form architectures must consider communication performance
requirements explicitly and by design.

III. RECONFIGURABLE PLATFORM ARCHITECTURE

In this section, the design of a reconfigurable platform
architecture is examined. We first extend standard (ASIC)
platform-based design with the requirements for reconfigurable
platforms. This is followed by a description of our architectural
template.

A. Architectural Requirements

For a platform architecture to support automatic, run-time
derivative generation, the architecture must be developed fur-
ther than in standard platform-based design. The creation of an
integration platform comprises developing one or more hard-
ware kernels which encapsulate the core common functionality
of all the derivatives. A kernel includes buses, specialized com-
ponent blocks, interface ports for attaching the “virtual compo-
nents” of derivative designs, central control, and test functions.
The kernel is a hard block of intellectual property (IP), although
limited parameterization is possible. A reconfigurable platform
architecture includes kernel development; however, in order to
make the run-time design effort low enough that it may be com-
pleted quickly and automatically requires limiting the degrees
of freedom in the derivative designs. The platform development
in the reconfigurable case, therefore, includes tasks that would
normally be carried out in the development of derivatives, such
as defining the clock tree and global floor-planning (see Table I).

Derivative design involves selecting virtual component mod-
ules required to complete the functionality of system, verifica-
tion that the functionality meets specification, the implementa-
tion of all component blocks, and final assembly. Convention-
ally, the derivative development phase is repeated several times,
once for each specific derivative implementation. For a reconfig-
urable platform, a reduced set of design tasks can be achieved at
design time. Rather than design and validation of the complete
derivative system, a library of subsystems (each comprising sev-
eral communicating virtual component blocks) is validated and
implemented. Thus, at run time, the generation process is lim-
ited to extracting information about the environment, selecting
and assembling together subsystems, and setting programming
parameters.

The most intensive integration task is validating that the
system-level communication meets the requirements for the
correct functioning of the system once assembly is complete.
In ASIC development, this is usually achieved through the use
of extensive simulations, trace-based methods, or statistical
approaches such as those used in queueing theory. Computa-
tionally demanding approaches (such as simulations) are clearly
impractical at run time. Although statistical methods could be
used, they have the disadvantage of producing probabilistic
results: they cannot guarantee that hard real-time requirements
will be met.

Instead, we propose imposing constraints on the communi-
cation infrastructure, protocols, and virtual channels, such that
communication becomes predictable and analyzable. During
design time, the communication channels are characterized and
parameterized, reducing the processing at run time to simple
calculations. This procedure is detailed in Section IV.

Note that the proposed approach precludes the use of stan-
dard microprocessor buses (for example, [13] and [14]) which
exhibit a level of flexibility that makes predicting communica-
tion behavior problematic.

The physical design, performed at the platform develop-
ment stage, involves the creation of a floor-plan in which the
placement and routing of the hardware kernel, clock trees,
input/output (I/O) and the communication infrastructure are
fixed. Note that the clock resources (such as wires and buffers)
are already highly constrained in FPGA devices, however,
the clock trees must still be constructed by appropriately
connecting and enabling the clock resources. The floor-plan
must be flexible enough to allow for the instantiation of several
modules, accounting for variation in number and (preferably)
size. Fixed interface points are required to which modules
are connected to the kernel structure; moreover, it is highly
desirable that the communication infrastructure supports both
intermodular communication as well as transporting informa-
tion between the modules and the kernel.

B. Architectural Template

Having established in qualitative terms the requirements for
a reconfigurable platform, we now briefly introduce a specific
platform architectural template Sonic-on-a-Chip. The template
is a generalized form of an architecture from which platform
instances are distilled; its structure is illustrated in Fig. 1. The
template is an evolution of a board-level system developed by
Haynes et al. which comprised multiple FPGAs. This original
system was named Sonic [6] (later UltraSONIC [25]), hence, the
nomenclature “Sonic-on-a-Chip” for the template. The targeted
application domain is real-time video image processing.

The core of the template consists of a variable number
of shared buses (named SonicBuses), connected by bridges.
Customizable processing element virtual components (PEs) are
attached to the SonicBuses at certain, fixed locations via socket
interfaces. A series of chain buses connect each PE to its adja-
cent neighbors, making use of physical locality to bypass the
shared bus for fast local data transfers. Video data are processed
as they stream through the processing elements; the Sonic
processing subsystem is managed via a microprocessor-based

1006 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2007

Fig. 1. Sonic-on-a-Chip architectural template. The shaded areas form the
static platform, derivatives are created by integration of customized virtual
component processing elements.

Fig. 2. Internal components and data-path of a processing element.

control subsystem, which may additionally perform other pro-
cessing, control, and I/O tasks, and resembles a conventional
hardware kernel.

A specific platform is created from the template by designing
the microprocessor subsystem and fixing the number of buses
and the sockets on each bus; a process which is necessarily cog-
nizant of the physical floorplan of the whole system. Deriva-
tive systems are instantiated by selecting and attaching specific
processing element modules to the SonicBuses via the socket
interfaces. Internally, a PE comprises a router, an engine and
memory/buffering as depicted in Fig. 2. The engine processes
data provided by the input stream buffer(s) and writes the re-
sulting data to the output buffer(s). The engine design is fully
user-defined; the remainder of the PE is fixed in design but has
some limited scope for customization, for example, the number
and size of the input and output buffers can be modified. Pro-
grammability of the engine is provided for by engine registers,
the purpose of which are, again, user-defined.

Fig. 3. Details of a stream buffer.

Fig. 4. Motion vector stream buffer behavior. At the top, the graph shows the
number of words in the buffer and the location accessed by the engine. If the
location accessed does not hold valid data, the engine is stalled (middle graph).
The wait signal is asserted when the buffer is full (lower graph).

The router provides the interface between the input and output
buffer stages and the intermodule interconnect and communica-
tion protocols. Communication in the Sonic subsystem is en-
tirely source-driven: data are pushed from producer outputs to
consumer inputs. Data-flow is managed through the use of the
router control registers, which hold information on the destina-
tion module and port number for each of the output ports of the
engine. The control registers also determine which (if any) of the
input ports source data from the incoming chain bus and which
(if any) of the output ports write to the outgoing chain bus.

The output buffers are simple first-input–first-outputs
(FIFOs), however, the input stream buffers are subtly modified
so they can be used for data-reuse as well as normal buffering.
This optimization is particularly beneficial in FPGA designs
where on-chip memory is significantly limited. As shown in
Fig. 3, data are streamed in serially to the input buffer as in a
normal FIFO, while on the output side the engine supplies the
address of a queued element relative to the front of the queue
to read. A Stall signal is asserted if the address points to an
empty location, and indicates that the engine operation should
stall until the location is filled. As with normal FIFOs, data
width conversion is possible. At each cycle, the engine-supplied
Advance[A:0] signal will cause the queue to be shifted forward
by the given number of positions.

SEDCOLE et al.: RUN-TIME INTEGRATION OF RECONFIGURABLE VIDEO PROCESSING SYSTEMS 1007

Fig. 5. Bus cycle-by-cycle view of STDM.

Importantly, data can only be discarded from the front of the
stream buffer queue. The stream buffer is, therefore, less flexible
than a cache or a scratch pad memory, and the way in which data
are serialized is important if the features of the stream buffer are
to be exploited. The advantage of the stream buffer scheme is
that, unlike more flexible methods, the scope of communication
behavior that can be exhibited is narrow and well-defined. This
results in analyzable and predictable communication patterns.

Example 1: Stream Buffers in Motion Vector Estimation:
Consider a PE which performs block-based motion vector
estimation, a computationally demanding operation which is
used in MPEG video compression algorithms. The task is as
follows: for a given square macro-block (typically 16 16
pixels) of a reference image, find the coordinates of the most
similar block in a target image. To speed processing, the range
of target locations to search is limited to a search window (say
44 44 pixels). Thus, a motion vector estimation PE could be
constructed with two input stream buffers (one for the reference
macro-blocks and one for the search windows). Fig. 4 is a graph
of the state of the search window buffer in a simulation of a
motion vector estimator PE which uses a three-step coarse-fine
search algorithm. Note that since the search windows overlap,
only some of the data are discarded from the buffer after
performing each search.

The trichotomy of the engine, router, and buffering within
each PE ensures that computation and intermodule communica-
tion are kept separate; this facilitates the design and reuse of the
computational component (the engine). Moreover, this separa-
tion is fundamental to ensuring predictability in communication,
which, as will be seen in Section IV, is a necessity in our ana-
lytical approach to the run-time integration of shared-medium
communication channels.

C. SonicBus Communication Protocols

Two communication protocols are supported for transmission
of information on the shared SonicBus. The first is in essence of
a STDM scheme: a series of consecutive bus cycles are allocated
to a specific channel; if the channel becomes inactive during its
allotted time (either by a lack of data to transmit or a lack of
space to put the data at the consumer end) the bus is released
early for rearbitration. This is depicted in Fig. 5. A channel is
formed by transmission of data from an output buffer of one

PE to an input stream buffer of another PE, thus the STDM
scheme is used for the majority of data movement transactions in
the Sonic subsystem. The second protocol is based on message
passing, and used for reading from and writing to the router
control registers and optional engine registers in each PE. This
protocol is used infrequently, typically during initialization or
occasional monitoring of the status of a PE.

The routers within each PE are responsible for implementing
the protocols, with the assistance of an arbitration unit (one for
each bus). Within the unit, an arbitration table is programmed
with an entry for each of the normal channels sharing the bus,
as well as special entry for each PE, which is used when the PE
sends a message. Each normal table entry includes the PE and
port number of the producer side of the channel and the number
of consecutive cycles allocated to the channel. The arbitrator
begins by issuing a bus grant command to the producing PE
and port for the programmed number of cycles. The appropriate
PE router responds by issuing a stream data command which is
detected by the receiving PE. Data are then streamed from the
producer buffer to the consumer buffer until there is no more
data, the receiving buffer is full, or the count is reached, at which
point the producer issues a release command to pass control
of the bus back to the arbitrator. The overhead of the STDM
scheme is three cycles per channel transfer.

The SonicBus uses a 32-bit multiplexed bus with two extra
control lines and an acknowledge signal. The control lines indi-
cate the type of the information on the bus in the current cycle
(address, data, or command), while the acknowledge signal is
used by a receiving PE to indicate that the destination buffer ei-
ther has space or is full. Interrupt lines are provided for message
passing only.

The protocols are easily expanded over multiple buses by
using buffering bridges. Each bridge includes queues for STDM
channels and separate message queues. The arbitration unit for
the secondary side bus (the bus further from the microprocessor
control subsystem) is also built into the bridge. Each PE is as-
signed a module ID number which includes the bus on which
it resides. The bridge behaves like any other PE, but picks up
all traffic from either side of the bus which is destined for a PE
on the other side of the bridge. The arbitration unit within the
bridge is programmed using the standard message passing pro-
tocol.

1008 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2007

TABLE II
NOTATION USED IN THE ANALYSIS

IV. COMMUNICATION ANALYSIS

One of the most challenging issues in automatic run-time as-
sembly of derivative systems is mapping communication chan-
nels to shared resources while ensuring performance targets are
met. In this section, we develop an analysis of the communica-
tion system based on the previously described platform archi-
tectural template. The objectives of this analysis are, for each
channel, to determine 1) the arbitration parameters (the cycle
count value), 2) the minimum required amount of buffering, and
3) an upper bound on the latency.

The analysis begins with a description of the necessary
assumptions regarding the communication system, to which
the previously described Sonic-on-a-Chip architecture con-
forms. A first approximation is made by assuming that there
is sufficient buffering throughout the system such that buffer
saturation never occurs. The analysis is then modified to de-
scribe situations where buffer saturation does occur. The result
is a method, summarized in Section IV-E, by which the system
designer ensures that derivative designs constructed at run time
will achieve the desired performance at all times.

For reference, the notation used in the analysis is summarized
in Table II.

A. Scenario and Assumptions

We start with the assumption that the processing system is
a process network comprising a number of processing nodes
(PEs) connected by a series of communication channels,
which is to be mapped to a system of buses connected by
fully buffering bridges, as in the template. The features of a
communication channel are depicted in Fig. 6. A channel is
defined by a continuous stream of data from the output of a
producing node to the input of a consuming node across a
shared communication medium. Assume that each node has
been assigned to a bus. By using bridges which buffer data, the
behavior of each bus can be isolated and studied separately.
We will ignore channels which are assigned to using the chain

Fig. 6. Abstract communication channel k. Data are buffered on the producer
side by a FIFO of depth � and on the consumer side by a stream buffer of
depth � .

TABLE III
CHARACTERISTICS OF VIDEO PROCESSING ALGORITHMS (IMAGE SIZE r � c)

bus connections, as they do not use shared media and thus are
of no interest in this analysis. Therefore, for a particular bus
we need to set the time-slot size for each channel to ensure
throughput is met and determine the maximum latency and
buffering required.

In the analysis which follows, the processing nodes are as-
sumed to have a common pattern of behavior: One or more
streams of data are stored in input buffers; the engine performs
a number of accesses on the stored data and outputs results to
the output buffer; input data which are no longer needed are dis-
carded. This pattern is repeated indefinitely, such that the pro-
cessing node has a baseline periodicity. Note that in some cases
a node may exhibit different input and output periodicity; for
example, a node which computes a histogram of the intensity
values of an image may access and discard pixels one at a time
(input periodicity of one pixel), whereas the results are only pre-
sented to the output buffer once per frame (output periodicity of
one frame).

Table III lists some sample video processing algorithms and
shows how they may be parameterized in pixels. All algorithms
(with the exception of the motion vector estimator) process non-
interlaced raster-scanned images of height and width . The
amount of data to store can be calculated by considering how
many lines of a raster-scanned image need to be buffered. For
example, a window function which operates on a 5-by-5 group
of pixels requires four complete lines and an additional five
pixels to be stored (). For algorithms with more than one
input data stream, all streams are characterized separately. For
example, motion vector estimation requires two inputs: blocks
from a reference image and windows from a target image.

SEDCOLE et al.: RUN-TIME INTEGRATION OF RECONFIGURABLE VIDEO PROCESSING SYSTEMS 1009

B. First Approximation

A first approximation analysis is formulated by making sev-
eral simplifying assumptions, including unlimited buffer sizes,
and a constant rate of data production and consumption. The
aim is to determine, for a given mapping of channels to a bus,
what size time slot to allocate to each channel, and the actual
required amount of channel buffering. In Section IV-C, the as-
sumptions are removed and the analysis extended to this more
complex case.

Consider a bus with maximum bandwidth supporting
channels. Each channel has a required average throughput ,
and is allocated consecutive bus cycles for each data transfer
(at one word per cycle) excluding the STDM overhead of cy-
cles. Clearly, the average bandwidth required must be less than
that available

(1)

If data are produced and consumed at a constant rate (for
each channel) and there are no buffer overflows, then the ser-
vice period (the time taken for all channels to have completed
one transfer each, see Fig. 5) is

(2)

During this time, data are produced for channel . In steady
state, . So we can solve for

(3)

When allocating the time slot for channel , the lower bound
is

(4)

This value is used as the cycle count limit in the programming
of the arbitration unit. The minimum source buffer size for
each channel is the number of words which need to be stored
during the time the channel does not have control of the bus

(5)

However, avoiding buffer saturation comes at a cost of greater
than necessary consumer side buffering; this is highly nonde-
sirable as on-chip memory is limited, and particularly so in
FPGAs. The following example illustrates this point.

Example 2: Simple Input Buffer Sizing: Consider the mo-
tion vector estimation buffer case of Example 1. Each search
window comprises pixels, with an overlap
of pixels between adjacent search windows.
To ensure that valid data are always available to the engine, a
simple method for determining the buffer size is to store 1936
pixels (for the current search window), and an additional

pixels (the nonoverlapping part of the subsequent
search window), totalling 2640 pixels. The actual memory con-

Fig. 7. Motion vector estimation search window buffering. The address pattern
shows all possible address accesses over one fundamental period. Buffer fill
levels for nonsaturating and saturating buffer conditions are shown.

sumed is a power of 2, 4096 pixels, and, therefore, 112% larger
than required for storing just the current search window.

C. Size-Limited Buffers

In order to account for limited buffer sizes, we will modify the
assumptions and allow buffers to saturate. Channel throughput
is no longer constant, but has inactive periods (when the desti-
nation buffer is full), which must be balanced by periods where
the throughput is higher than average. This is shown in Fig. 7 for
the case of Example 2 . The two “fill level” lines represent the
amount of valid data in the buffer at any particular moment. In
the case where the buffer saturates (lower line) the rate at which
data is fed into the buffer is slightly higher than the rate for the
simple example (upper line). This is necessary to compensate
for the brief period when the buffer is full. There are several im-
portant features to be noted as follows.

1) In the analysis of the saturating buffer case, we also take
into account the pattern of locations accessed in the buffer.
This must be determined at design time. In Fig. 7, all pos-
sible accesses are plotted for the MVE example. The buffer
must be filled sufficiently and quickly such that data ac-
cesses are all within the available buffered data.

2) To simplify the calculation of the required fill rate for a
given access pattern, not all addressed locations need to be
considered. The required fill rate can be quickly calculated
from the envelope of possible accessed locations.

3) It is assumed that the engine processing rate will be at least
as fast as the overall required throughput rate and poten-
tially faster. This is accounted for by introducing an allow-
able “stall time” per fundamental period when determining
the required fill rate. This can be seen to be 1000 cycles in
the example of Fig. 7.

Each of the channels may now exhibit one of two modes
of behavior. If the destination buffer of a channel saturates, the
channel bandwidth demand is time-variant, since during satura-
tion no data transfer can be made. We will denote these chan-
nels as V-channels. If the destination buffer never saturates, the

1010 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2007

bandwidth demand is constant. These are denoted time-invariant
I-channels. Without loss of generality the channels are ordered
so that the first are V-channels. The V-channels have a re-
quired peak throughput , . The bus must be able
to support concurrent peak demands of the V-channels

(6)

If the peak demand on the bus, including the time-invariant
channels, is less than the bus capacity

(7)

then (4) can be used to calculate the STDM time-slot parameters
by substituting for and for . If the inequality of

(7) does not hold, let us term the bus usage critical. In a bus with
a critical level of usage, bandwidth demands vary over time.
During periods of peak activity by the V-channels the remaining
I-channels are starved of bandwidth. This is compensated for
during off-peak times. As a result the I-channels have increased
buffering requirements.

Consider the case where : there is one time-variant,
saturating channel . The peak demand on bus bandwidth is

(8)

where is the reduced total bandwidth available to the
I-channels. For a given value of (4) reduces to the equality.
Rearranging and substituting variables

(9)

(is the time-variant channel) and also

(10)

for the I-channels. The variable denotes the bandwidth avail-
able to channel during the peak demand times, and is given by

(11)

From these equations it will be possible to determine the time-
slot size () to allocate to each of the time-invariant channels,
provided a value can be found for first.

Using (8)–(11), we can derive

(12)

Now, the service period in the critical bus usage case also
varies over time. During peak activity periods by the V-channels
the service time will be longer than when these same channels
are idle. For the case, during the off-peak period (when
channel is idle) the service period is given by

(13)

Now substitute (12) into (13), and simplify, noting that
in this case and . Solve for

(14)

The channel will be active for of the time, during
which each time-invariant channel has bandwidth . The av-
erage bandwidth requirement for channel to be met

(15)

Therefore

(16)

So, finally

(17)

This can be generalized for situations where

(18)

All the variables in this equation are known, so can be
calculated for all V-channels . One of these channels is
then used to find using (9). This can be used to find the
values for for the remaining I-channels . This
is illustrated in the following example.

Example 3: Calculation of Arbitration Parameters: A
system comprises two of the motion vector estimation process
nodes of Example 2, processing VGA-sized images at dif-
ferent frame rates (22 and 18 frames/s). Each node has two
input channels (the reference block and the search window)
and one output channel (the vectors), making six channels in
total, with an overall mean bandwidth of 46.1 Mw/s, mapped
to a bus with capacity 50 Mw/s. On inspection of the ad-
dress patterns, buffer sizes and consumption behavior of the
channels it is determined that two of the destination channel
buffers will saturate, increasing the peak bandwidth demand
to 52.5 Mw/s, as shown in Table IV. Using (18), and ,

, Mw s, Mw s, , we find
and . The critical bandwidth demand

is Mw s from (9), and from (8) we find that
Mw s. Therefore, using (11) and (10) we find the

values for . These
are rounded up to integer values, while ensuring that the ratio

for each does not decrease in the
process, giving for . After
similarly rounding and adjusting and , we obtain the
values for as shown in the right column of Table IV.

SEDCOLE et al.: RUN-TIME INTEGRATION OF RECONFIGURABLE VIDEO PROCESSING SYSTEMS 1011

TABLE IV
CHANNEL CHARACTERISTICS FOR EXAMPLE 3

D. Buffer Sizing and Latency

We have so far found a method for determining the time-slot
sizes to use in the bus arbitration, including situations in which
limited buffering causes time-variant behavior on some chan-
nels. We now must determine the required buffer space on the
producer side of these channels and the effect on the size of the
buffers for the remaining channels in the system. If the bus usage
is critical, channels which do not exhibit time-variant behavior
require extra buffer space to compensate for periods where their
bandwidth is temporarily restricted.

Consider a channel which is a time-invariant channel: its
bandwidth demand is constant. Due to the changes in band-
width demands by time-variant channels, the actual throughput
of channel will be time-varying: . On the consumer side
of the channel, there must be extra buffer space sufficient
to prevent the supply processing node engine without causing
stalls during deviances from the average throughput rate .
Thus

(19)

Determining the buffer sizes requires finding the worst cases
for (19). This occurs when the throughput reduces, due
to all V-channels being active concurrently. Assuming the ac-
tive channels are not source limited and, therefore, (using the
STDM protocol) consume the maximum amount of bandwidth
available to them when active. The V-channels when idle due to
buffer saturation consume a single bus cycle of their allocated
time slot before releasing the bus for arbitration. By inspection
of Fig. 5, one can observe that the time-varying throughput of
channel is, therefore

(20)

where for time-variant channel , when the channel
is active and at other times. Therefore, the evaluation
of the integral of (19) is computationally not difficult, since the
worst case (approximate) is piecewise constant. However,
it is necessary to determine the active and inactive times for
each channel, and the interval . Assume that all burst
channels become active at time , and each channel
has periodicity , determined by the periodicity of the node

it supplies. The procedure for determining the channel active
times is relatively straightforward.

1) At time , each active channel starts with a
number of words to be transferred
before the channel will become inactive again.

2) For each channel calculate the transfer bandwidth
from (20).

3) Determine the time for the first channel to become inactive

(21)

This channel is marked as inactive for .
4) Record the number of words remaining to be transferred at

time in the other channels

(22)

5) For each subsequent stage , the duration
of the stage is given by

active channels

inactive channels
(23)

where can be calculated from (20) and

(24)

In the term , is an integer value that is in-
cremented each time channel becomes inactive. At each
stage, one channel becomes active or inactive, depending
on which term in (23) is minimum.

For each channel there will be a time at which
. The integral of (19) is, therefore, calculated between .
On the source side, the equation is slightly different. The pro-

ducer FIFOs must be large enough to contain data generated by
the node without causing a stall, even when the data generation
rate is not constant. If the producer for channel is node and
generates data at a rate , then the equation for the buffer
space required is

(25)

To simplify this, we will compute a conservative estimate for
the upper bound, by setting to a periodic function

(26)

Here, is the peak rate at which node can produce data
and is the periodicity of the node. Equation (25) is now a
piecewise constant function and can be computed in a similar
way to (19).

For a time-variant channel , the source side buffer must be
sufficiently large to hold the data produced while the consumer-
side buffer has saturated. Again, (25) must be evaluated, how-
ever, in this case, we find the worst case conditions by assuming

1012 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2007

TABLE V
SPARE BUFFER SPACE AND LATENCY FOR EXAMPLE 4

that the destination buffer saturates at time and is
the periodic function

(27)

In addition to the buffer space required resulting from vari-
ations in throughput, the buffer levels also ripple up and down
over the duration of each service period . The height of this
ripple is given by

(28)

The total spare buffer space required is found by adding
and . Finally, the maximum latency introduced by the
channel can be approximated by the buffer size and the average
throughput rate

(29)

Example 4: Buffer Sizing and Latency: We now calculate the
required buffer space for each channel from Example 3. Assume
that data are fed into channels 1 to 4 at a constant rate, such
that for input node and corresponding channel , .
Thus, . Channel 1 has periodicity

s, and for channel 2, s. We find
s (channel 1 becomes inactive) and s

(channel 2 becomes inactive). For channel 3, from (20)

Mw
s

Mw
s

Therefore

The ripple for channel 3

Other values for the buffers are listed in Table V. Note that for
channels 1 and 2 (where consumer-side buffers saturate) the
buffering values are the minimum producer-side buffer sizes.
For channels 3 to 6, the totals are the minimum producer-side

buffer sizes, and the total spare capacity required before satura-
tion of the consumer-side buffers.

E. Method Summary

The aim of the analysis is to show how the system designer
can ensure that derivative designs constructed at run time will
achieve required performance when sharing communication
media. The process is summarized as follows. At design time,
the system designer collects the following information about
each processing node:

1) envelope of the address pattern, including the baseline re-
peat period;

2) magnitude of the consume delta function;
3) maximum theoretical processing throughput, assuming no

stalling due to lack of data or output buffer space;
4) input and output buffer sizes.
Algorithms are created from communicating clusters of

nodes. The designer determines a set of possible mappings of
nodes to platform buses for each application. At run time, the
necessary algorithms and the associated performance require-
ments are determined by supervisory application software. The
run-time system software selects a mapping for each algorithm
and then verifies the performance requirements can be fulfilled
by executing the following steps:

1) calculate the required throughput for each node and
channel, based on algorithmic throughput requirements;

2) verify mean demand on each bus does not exceed available
bandwidth;

3) determine for each node the stall time for the engine;
4) from the stall time, the required throughput, and the ad-

dress pattern envelope, determine for each channel if the
destination buffer will saturate, or if not, the spare capacity
in the buffer;

5) based on the buffer saturation, divide channels by their
bandwidth demand into time-invariant and time-variant;

6) calculate the peak bandwidth demand of the time-variant
channels and verify the aggregate peak bandwidth demand
is less than the bandwidth available;

7) calculate the time-slot size (arbitration count) for each
channel ();

8) calculate the required spare buffer capacity for all
source-side buffers and all time-invariant channel desti-
nation buffers, and verify this is less than the available
capacity;

9) verify the latency of each channel is acceptable.
The verification process is linear in computational com-

plexity, that is . If each verification step in the process is
successful, the required performance will be achieved. If any
step fails, the selected mapping is not acceptable; at this point
a number of options are available to the system. A different
bus assignment may be selected, if the bandwidth require-
ments of different buses are mismatched. A less aggressive
approach could be to instantiate an alternative processing
algorithm that has lower performance requirements, such as
one with a lower quality of service, and is, therefore, more
likely to be implementable. The high-level decision made here
is system-dependent, and not covered in the scope of this paper.

SEDCOLE et al.: RUN-TIME INTEGRATION OF RECONFIGURABLE VIDEO PROCESSING SYSTEMS 1013

It is emphasized that the run-time evaluation of communica-
tion parameters involve calculations with low computational in-
tensity, and moreover, the evaluation is performed infrequently
relative to the operation time of the algorithms (which process
continuous streams of video data). Taking the example men-
tioned in the introduction to this paper, where a surveillance
camera responds to changes in lighting conditions and activity,
the system could reconfigure once every few hours or every few
minutes. Computing the communication parameters and veri-
fying the operating performance would be met takes of the order
of microseconds, and moreover, may be done as a background
task while the system continues to operate. The reconfigura-
tion time is of the order of milliseconds for recent high density
FPGAs [26]. Thus, the overhead incurred is slight.

V. EXPERIMENTAL RESULTS

In order to verify the late integration design methodology and
communication analysis previously presented, several prototyp-
ical platforms have been created. These have informed the de-
velopment of a cycle-accurate simulation model of the commu-
nication system. This section presents results obtained from the
prototyping and simulations.

The prototype platforms are based on implementations of
Sonic-on-a-Chip (e.g., [5]) and target Xilinx Virtex-II Pro and
Virtex-4 FPGAs. The platforms were designed in Verilog and
VHDL, synthesised using Synplicity Synplify 7.2 and imple-
mented using Xilinx EDK and ISE 6.3 tools. The prototype sys-
tems were designed to be assembled using an advanced modular
dynamic reconfiguration scheme [27]. As functionality was the
primary goal, the target speed for the SonicBus was a relatively
modest 50 MHz. Although late integration requires careful con-
trol over the physical routing of signals, the constraints did not
contribute significantly to the achieved bus speed. The max-
imum achieved propagation delay for the constrained bus sig-
nals was 19.08 ns (as reported by the vendor tools). This only
improved by 1.22% by removing the routing constraints.

Several other processing element nodes have been created for
the prototypes in addition to the motion vector estimators of Ex-
ample 1. The performance and behavior of the prototypes have
been used in the creation of the simulation model. Several dif-
ferent systems were simulated. Detailed results are presented
for the simple example system described in Example 3, com-
prising two motion vector estimation nodes. This type of node
is interesting because it exhibits data-dependent behavior and
generates bus traffic which varies with time. The results of sim-
ulations of other systems are summarized at the end of this sec-
tion.

The address patterns for the MVE nodes have been extracted
from real data (a “carphone” video sequence), and the parame-
ters calculated in Examples 3 and 4 and listed in Tables IV and V
are used as nominal values. The simulated system has four input
nodes; the rate at which these nodes supply data to the system
is independently adjustable.

Fig. 8 is a graph of the time-averaged bandwidth of the four
main channels (1 to 4) and the overall bus bandwidth usage
over a period of 2 ms (bus cycles). For this simulation,

Fig. 8. Bandwidths of channels 1–4 in the simulated system, averaged over
2000 cycles. The arbitration scheme is effective at high bus utilization (92% in
this case), and copes with time-variant demand while maintaining the required
average throughput for each channel.

Fig. 9. Maximum and minimum latencies of channels 1 (circles) and 3
(squares). Measured latencies match the calculated expected values.

all input nodes were set to supply data at the fastest rate pos-
sible (one word per cycle). The graph shows that the STDM ar-
bitration scheme is able to cope with high overall bandwidth
utilization and allocate bandwidth to each channel appropri-
ately despite the time-variable demands of the channels. In-
deed, the STDM scheme can achieve aggregate mean bandwidth
usage arbitrarily close to the available bus bandwidth if suffi-
cient buffering is available in each node. Note the mean band-
width for each channel is as expected from Table IV.

The expected maximum latency for each channel (see
Table V) was confirmed by the experimental data. Fig. 9 shows
the maximum and minimum latency for channels 1 and 3.
The latency of each channel can vary significantly over time,
which, as will be seen in the following, has an impact on the
instantaneous throughput of the nodes.

In a real system, data would not necessarily be supplied to
the system faster than they can be processed. Instead, the rate
at which data are available for processing may be limited, and
the system is required to process the data at the supplied rate.
The communication system must cope with scenarios in which
some channels may be supplied by a rate-limited source, and
other channels the data are available at an unmoderated rate.
Regardless of the source data-rate, the communication parame-
ters can be calculated based on the desired system throughput.

1014 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2007

Fig. 10. Simulated block-by-block throughput of the motion vector estimators,
as input data rates are varied. The instantaneous throughput is variable due to
variable channel latency. The average throughputs meet or exceed the designed
rates.

Fig. 10 plots the block-by-block frame rates achieved
by the motion vector estimators over a period of 26 ms
(1.28 cycles). In this case, the data rate of each input
channel to the system is varied between fractionally below (by
0.1 to 0.2 frames/s) the designed-for rates (18 and 22 frames/s)
and the maximum possible rate. Different channel combinations
are tested for periods of 1.6 ms (8 cycles). Note that in
all cases the average throughputs meet or exceed the expected
throughputs. The instantaneous throughputs vary considerably;
this is due to the variation in latency of the communication. The
maximum latency for the channels supplying the higher-rate
MVE processing node is 19.4 s (as per Table V). Compared
with the mean processing time of a single macro-block (at 22
fps and 1200 macro-blocks per frame) of 37.9 s, the instan-
taneous throughput could be expected to vary between 15 and
45 frames/s.

The buffer sizing calculations listed in Table V were veri-
fied by varying the size of the buffers by 50% of the nom-
inal value and then measuring the corresponding throughput
for the affected motion vector estimator. Rate-limiting of the
source data channels was applied where it results in lower per-
formance. Moreover, the address pattern used was set to the
worst-case values (i.e., the addresses closest to the address enve-
lope of Fig. 7). The normalized outcomes are plotted in Fig. 11.
It can be seen that the calculated required buffer sizes are suffi-
cient to avoid degrading the system throughput performance. In
addition, the buffer sizes calculated are not significantly larger
than necessary in this instance, with the exception of the source
buffer for channel 1, which appears to be oversized by around
50%. In general, the calculated required buffer sizes are based
on worst-case conditions, which may never occur in a given
system, and therefore, the calculations result in conservative es-
timates.

Thus far, for consistency all examples and experiments have
been based on a single node type, namely motion vector esti-
mators. This node type has been used because it exhibits in-
teresting data-dependent behavior. It is important to note that
our approach is applicable to a wide variety of node types and

Fig. 11. Effect of varying buffer sizes on system throughput. Buffers smaller
than the sizes calculated in Example 4 cause the system throughput to drop
below the target rate.

TABLE VI
CHARACTERISTICS OF THE SIMULATED SYSTEMS

system compositions. In addition to the two-MVE system de-
scribed before (from now denoted sys1) four other sample sys-
tems (sys2 to sys5) were designed and simulated. The param-
eters of the systems are given in Table VI, showing that they
are constructed from different mixtures of various types of pro-
cessing nodes operating at different rates. The designs of the
systems are contrived to create a range of communication sce-
narios. The simplest case (sys2) is where no buffer saturation
occurs. In sys2, buffer saturation does occur for one channel,
but the peak bandwidth demand is less than the maximum bus
bandwidth. The most complex cases are sys3 and sys4, which
each have seven channels, buffer saturation as well as unbal-
anced demand between the channels.

Time-slot sizes () and minimum buffer sizes were calcu-
lated for all systems as per the method given in Section IV.
To verify the correctness of the time-slot size calculations, the
values for were collectively varied by and the effect
on system throughput and channel latency measured. Fig. 12(a)
plots the throughput for each node of each system, normalized
to the desired throughput rate as listed in Table VI, as is
varied. All buffers were sized 2 the required minimum and
data were supplied at an unlimited rate. With the correctly cal-
culated time-slot allocation , measured throughput was at
least the desired rate (to within measurement error of 0.5%).
When the time-slot values were collectively reduced, the desired

SEDCOLE et al.: RUN-TIME INTEGRATION OF RECONFIGURABLE VIDEO PROCESSING SYSTEMS 1015

Fig. 12. Effect of changing the time-slot allocation from the nominal calculated
values on (a) node throughput, (b) channel latency. Results from all five systems
are overlayed in the plot. (a) Normalized throughput versus ! variation. (b)
Relative channel latency versus ! variation.

throughput rates were not met. Increasing the time-slot values
for all channels generally resulted in higher throughput rates, al-
though not in all cases. This is due to some channels dominating
the available bandwidth, starving other channels.

Fig. 12(b) shows the effect on channel latency, relative to
the latency of systems with nominally sized buffers and sup-
plied with data from rate-limited sources. It can be seen that
latency generally increases as the time slots for all channels are
increased. This is because more the time between the channel
having access to the bus increases. The minimum latency case
actually occurs marginally below the nominal values calculated
by the proposed method.

VI. CONCLUSION

Platform-based design in FPGAs offers the unique prospect
of derivative systems created automatically at run time. Such
systems can be customized and adapted to variations in the op-
erating conditions, but require the judicious application of archi-
tectural constraints to reduce the integration complexity, partic-
ularly in satisfying communication requirements.

This paper presented the first platform architecture
(Sonic-on-a-Chip) designed specifically for run-time assembly
of FPGA-based derivative systems. The target domain of the

architecture is real-time video image processing. To ensure that
intermodular communication in Sonic-on-a-Chip is analyzable,
it is first separated from computation by dividing each compute
node into distinct parts: a router and an engine, connected by
innovative buffers. Second, an appropriate arbitration scheme,
STDM, is employed for the shared SonicBuses. Moreover,
interactions between buses are isolated by using fully buffering
bridges. Finally, by ensuring the compute nodes designs always
exhibit periodic behavior, the characteristics of the nodes can
be encapsulated in parameters which describe the periodicity,
as well as data consumption, storage, and access patterns.

An analysis was presented of the constrained communication
system, based on the nodal parameters and architectural con-
straints. The analysis accounts for limitations in buffer sizes,
which is especially important in FPGAs where on-chip memory
is a particularly limited resource. It was shown how to calculate
the time-slot parameters of the STDM protocol in order to meet
the real-time throughput requirements of all channels. In addi-
tion, a method for determining the minimum necessary sizes
of all buffers in the communication system was detailed, along
with estimations on the maximum channel latency. All calcula-
tions involve simple closed-form formulae and are suitable for
execution at run time.

The analysis has been verified in simulations of five different
sample systems using a cycle-accurate model of the communi-
cation system. The systems can support a variety of processing
node types and different throughput requirements.

Current and future work includes generalizing the architec-
tural template and extending our approach to applications other
than video systems.

ACKNOWLEDGMENT

The authors would like to thank K. Masselos for his com-
ments and suggestions and the support from Xilinx Inc., in par-
ticular P. Lysaght, B. Blodget, J. Anderson, and A. Donlin.

REFERENCES

[1] Semiconductor Industry Association, “International Technology
Roadmap for Semiconductors,” 1999.

[2] H. Chang, L. Cooke, M. Hunt, G. Martin, A. J. McNelly, and L. Todd,
Surviving the SOC Revolution: A Guide to Platform-Based Design.
Norwell, MA: Kluwer, 1999.

[3] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-
Vincentelli, “System-level design: Orthogonalization of concerns and
platform-based design,” IEEE Trans. Comput.-Aided Des. Integr. Cir-
cuits Syst., vol. 19, no. 12, pp. 1523–43, Dec. 2000.

[4] P. Lysaght, “FPGAs as meta-platforms for embedded systems,” in
Proc. IEEE Int. Conf. Field-Program. Technol., 2002, pp. 7–12.

[5] P. Sedcole, P. Y. K. Cheung, G. A. Constantinides, and W. Luk, “A
structured methodology for system-on-an-FPGA design,” in Proc. Int.
Conf. Field-Program. Logic Appl., 2004, pp. 1047–1051.

[6] S. D. Haynes, J. Stone, P. Y. K. Cheung, and W. Luk, “Video image
processing with the Sonic architecture,” IEEE Comput., vol. 33, no. 4,
pp. 50–57, Apr. 2000.

[7] J.-M. Daveau, T. B. Ismail, and A. A. Jerraya, “Synthesis of system-
level communication by an allocation-based approach,” in Proc. Int.
Symp. Syst. Level Synth., 1995, pp. 150–155.

[8] M. Gasteier and M. Glesner, “Bus-based communication synthesis on
system level,” ACM Trans. Des. Autom. Electron. Syst., vol. 4, no. 1,
pp. 1–11, Jan. 1999.

[9] K. Lahiri, A. Raghunathan, and S. Dey, “System-level performance
analysis for designing on-chip communication architectures,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 20, no. 6, pp.
768–83, Jun. 2001.

1016 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 9, SEPTEMBER 2007

[10] K. Lahiri, A. Raghunathan, and S. Dey, “Design space exploration
for optimizing on-chip communication architectures,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 23, no. 6, pp. 952–61,
Jun. 2004.

[11] K. K. Ryu and V. J. Mooney, “Automated bus generation for multipro-
cessor SoC design,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 23, no. 11, pp. 1531–1549, Nov. 2004.

[12] M. Eisenring and M. Platzner, “Synthesis of interfaces and communi-
cation in reconfigurable embedded systems,” IEE Proc.–Comput. Digit.
Techn., vol. 147, no. 3, pp. 159–165, May 2000.

[13] ARM Ltd., Cambridge, U.K., “AMBA, Spec., 2nd. ed.,” 1999.
[14] IBM Inc., Research Triangle Park, NC, “The CoreConnect bus archi-

tecture, white paper,” 1999.
[15] OpenCores, “WISHBONE: System-on-chip (SoC) interconnect archi-

tecture for portable IP cores, Revision: B.3,” 2002 [Online]. Available:
http://www.opencores.org/

[16] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. Des. Autom. Conf., 2001, pp. 684–689.

[17] L. Benini and G. De Micheli, “Networks on chips: A new SoC para-
digm,” IEEE Comput., vol. 35, no. 1, pp. 70–78, Jan. 2002.

[18] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wilson,
M. Wrighton, and A. DeHon, “Packet switched vs. time multiplexed
FPGA overlay networks,” in Proc. IEEE Symp. Field-Program. Custom
Comput. Mach., 2006, pp. 205–216.

[19] E. Waingold et al., “Baring it all to software: Raw machines,” IEEE
Comput., vol. 30, no. 9, pp. 86–93, Sep. 1997.

[20] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An architecture
and compiler for scalable on-chip communication,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 12, no. 7, pp. 711–26, Jul. 2004.

[21] G. V. Varatkar and R. Marculescu, “On-chip traffic modeling and syn-
thesis for MPEG-2 video applications,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 12, no. 1, pp. 108–119, Jan. 2004.

[22] H. Kalte, D. Langen, E. Vonnahme, A. Brinkmann, and U. Rückert,
“Dynamically reconfigurable system-on-programmable-chip,” in Proc.
Euromicro Workshop Parallel, Distrib. Network-Based Process., 2002,
pp. 235–242.

[23] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and R. Lauwereins,
“Interconnection networks enable fine-grain dynamic multi-tasking in
FPGAs,” in Proc. Int. Conf. Field-Program. Logic Appl., 2002, pp.
795–805.

[24] C. Bobda, M. Majer, D. Koch, A. Ahmadinia, and J. Teich, “A dynamic
NoC approach for communication in reconfigurable devices,” in Proc.
Int. Conf. Field-Program. Logic Appl., 2004, pp. 1032–1036.

[25] S. D. Haynes, H. G. Epsom, R. J. Cooper, and P. L. McAlpine, “Ultra-
SONIC: A reconfigurable architecture for video image processing,” in
Proc. Int. Conf. Field-Program. Logic Appl., 2002, pp. 482–491.

[26] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridgford, “En-
hanced architectures, design methodologies and CAD tools for dy-
namic reconfiguration of Xilinx FPGAs,” in Proc. Int. Conf. Field-Pro-
gram. Logic Appl., 2006, pp. 12–17.

[27] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, “Mod-
ular dynamic reconfiguration in Virtex FPGAs,” IEE Proc. Comput.
Digit. Techn., vol. 153, no. 3, pp. 157–164, May 2006.

Pete Sedcole (S’96–M’99) received the B.E. degree
in electrical and electronic engineering from the Uni-
versity of Canterbury, Christchurch, New Zealand,
and the Ph.D. degree from Imperial College London,
London, U.K., in 1999 and 2006, respectively.

He is currently a Research Associate with the
Department of Electrical and Electronic Engi-
neering, Imperial College London, where he works
on variation-aware design in reconfigurable systems.
In between degrees, he was an Electronics Engineer
with Trimble Navigation Ltd., Christchurch, New

Zealand, where he designed embedded electronics for navigational guidance
systems and handheld GPS products.

Dr. Sedcole is a member of the IET.

Peter Y. K. Cheung (M’85–SM’04) received the
B.S. degree with first class honors from Imperial
College of Science and Technology, University of
London, London, U.K., in 1973.

Since 1980, he has been with the Department of
Electrical Electronic Engineering, Imperial College,
where he is currently a Professor of digital systems
and deputy head of the department. He runs an active
research group in digital design, attracting support
from many industrial partners. Before joining Impe-
rial College he was with Hewlett Packard, Scotland.

His research interests include VLSI architectures for signal processing, asyn-
chronous systems, reconfigurable computing using FPGAs, and architectural
synthesis.

Prof. Cheung was elected as one of the first Imperial College Teaching Fel-
lows in 1994 in recognition of his innovation in teaching.

George A. Constantinides (S’96–M’01) received
the M.Eng. degree in information systems en-
gineering and the Ph.D. degree in electrical and
electronic engineering from Imperial College
London, London, U.K., in 1998 and 2001, respec-
tively.

Since 2002, he has been a Lecturer in digital sys-
tems in the Electrical and Electronic Engineering De-
partment, Imperial College London. He is the author
of over 60 refereed conference and journal papers and
the book Synthesis and Optimization of DSP Algo-

rithms (Kluwer, 2004). His research interests include reconfigurable computing
and electronic design automation, with a particular focus on numerical algo-
rithms.

Dr. Constantinides was programme Co-Chair of the International Conference
on Field-Programmable Logic and Applications (2003) and the International
Conference on Field-Programmable Technology (2006), and serves on the Pro-
gramme Committees of FPL, FPT, CODES+ISSS, DATE, ISCAS, and ARC.
He is a member of the ACM, SIAM, and the MPS.

Wayne Luk (S’85–M’89) received the M.A., M.Sc.,
and D.Phil. degrees in engineering and computer sci-
ence from the University of Oxford, Oxford, U.K.

He is Professor of Computer Engineering with the
Department of Computing, Imperial College London,
and a Visiting Professor with Stanford University,
Stanford, CA, and Queen’s University Belfast,
Belfast, Northern Ireland. His research interests
include theory and practice of customizing hardware
and software for specific application domains, such
as graphics and image processing, multimedia, and

communications. Much of his current work involves high-level compilation
techniques and tools for parallel computers and embedded systems, particularly
those containing reconfigurable devices such as field-programmable gate
arrays.

