
An Introduction to NASA’s Java Pathfinder

Andrew V. Jones
〈andrewj@doc.ic.ac.uk〉

Department of Computing
Imperial College London

February, 2010

Deadlock 2: The Return of Deadlock

Thread 1

synchronized (A) {
synchronized (B) { ... }

}

Thread 2

synchronized (B) {
synchronized (A) { ... }

}

Andrew V. Jones Java Pathfinder

Introducing Formal Methods

Generally, an approach to reasoning about a system (possibly code)
to determine if it’s correct.

What you’ve covered in your “Reasoning about Programs” course
can be seen as “formal methods”.

Andrew V. Jones Java Pathfinder

Model Checking vs. Testing

Testing explores a single path. Model checking explores all paths.

Andrew V. Jones Java Pathfinder

Model Checking Is Big Business

Edmund M. Clarke

Awarded the 2008 Turing Prize for development of Model Checking!

Andrew V. Jones Java Pathfinder

Java Pathfinder

Java Pathfinder (JPF) is an explicit state “model checker” for Java.

It’s developed by NASA at their Ames Research Center (one of the
active developers did her Ph.D. in DSE, with the current HoD).

It can be used to systemically verify if a program satisfies a given
property.

Historically, JPF was originally a translator of Java to Promela –
the input language for the model checker SPIN.

Andrew V. Jones Java Pathfinder

Current Architecture

Taken from http://javapathfinder.sourceforge.net

Andrew V. Jones Java Pathfinder

A JPF “State”

Information about each thread (i.e., the current stack frame).

The current static, and dynamic, fields of classes (including locks).

For the curious: this is stored in an int array.

Andrew V. Jones Java Pathfinder

Using JPF

Given that JPF is itself a JVM, it can be used as a “drop-in”
replacement for the $ java <classname>.

The easiest way to “run” JPF is specify a .jpf file corresponding to
your class.

This file contains the properties you wish to check.

$ java -jar path/to/jpf/RunJPF.jar\
+classpath=. class.jpf

Andrew V. Jones Java Pathfinder

How JPF Searches

1 Start the program from the start (i.e., Line 1 of main(...))

2 Execute series of bytecode until a new state is reached

3 Check the properties
On an error – stop.

4 See if we’ve already visited that state
If yes – backtrack
If no – visit successors

Andrew V. Jones Java Pathfinder

Built-in Properties

Deadlock

Unhandled Exceptions

Java assertions (assert(x == y))

. . . and a lot more!

Andrew V. Jones Java Pathfinder

Implementing Properties

Listeners are the preferred way to interact with JPF.

public class PropertyListenerAdapter
extends GenericProperty
implements SearchListener, VMListener
{

public boolean check(Search search, JVM vm)
{

return true;
}

}

Andrew V. Jones Java Pathfinder

Search Listeners

Basic idea: Observer pattern
Listeners are notified about events in the VM

E.g., when the Java class performs a specific operation

Listeners can interact with the executing code
E.g., to get additional information such as field values

Example: VMListener class
Can monitor the execution of Java bytecode instructions

void executeInstruction (JVM vm);

Can be used to inspect method calls and field assignments

Andrew V. Jones Java Pathfinder

Example – Specifying our own property

Detecting possible race conditions

Andrew V. Jones Java Pathfinder

Modelling Non-Determinism

s0

s1 s2

a a

Non-deterministic Choice

Andrew V. Jones Java Pathfinder

Using JPF’s Verify Package

import gov.nasa.jpf.jvm.Verify;

public class VerifyExample
{

public static void main(String[] args)
{

int i = Verify.getInt(-1, 1);
System.out.println("i = " + i);

}
}

Andrew V. Jones Java Pathfinder

Using JPF Verify Package

int i = 0;
while (i < 2)

i++;
assert(i == 2);

Andrew V. Jones Java Pathfinder

Using JPF Verify Package

int i = 0; int j = 0;
boolean cond = Verify.getBoolean();
if (cond)

j = 1;
assert(i == j);

Andrew V. Jones Java Pathfinder

Advanced JPF Topics

Partial Order Reduction.

Compositional Reasoning (Assume-Guarantee Reasoning).

Andrew V. Jones Java Pathfinder

If you found any of this interesting, I thoroughly recommend Alessio
Lomuscio’s (alessio@doc) 3rd year “Software Engineering –
Systems Verification” course.

Thank you for coming – any questions?

