
Deconstraining DSLs

Will Jones Tony Field Tristan Allwood
Department of Computing
Imperial College London

{wlj05,ajf,tora}@doc.ic.ac.uk

Abstract
Strongly-typed functional languages provide a powerful framework
for embedding Domain-Specific Languages (DSLs). However, build-
ing type-safe functions defined over an embedded DSL can intro-
duce application-specific type constraints that end up being imposed
on the DSL data types themselves. At best, these constraints are
unwieldy and at worst they can limit the range of DSL expressions
that can be built. We present a simple solution to this problem that
allows application-specific constraints to be specified at the point
of use of a DSL expression rather than when the DSL’s embedding
types are defined. Our solution applies equally to both tagged and
tagless representations and, importantly, also works in the presence
of higher-rank types.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Constraints, Data types and structures, Polymor-
phism; D.3.2 [Language Classifications]: Applicative (functional)
languages

Keywords Static typing, constraints, domain-specific languages.

1. Introduction
Embedding a Domain-Specific Language (DSL) into a general-
purpose programming language provides a simple and effective
way to support domain-specific functionality without the need for
a custom compiler [1, 14]. Modern functional languages provide
particularly powerful host languages for DSLs due in part to their
rich type systems which, appropriately exploited, can endow the
DSL with important safety properties.

The usual way to enforce type-safety is to add constraints to the
data types used to embed the DSL. However, these constraints do
exactly what they say: they constrain the way the DSL can be used.
This is fine when there is a single use, or implementation of the
DSL, for example one involving the invocation of a domain-specific
library or the generation of code for a specific hardware platform.
However, if the intention is to support multiple implementations of
the DSL, or to use a particular DSL expression in different ways,
then these constraints can interfere in a way that precludes the co-
existence of some (and in exceptional cases, all) implementations.

To illustrate the problem, consider the following (rather crude)
Haskell embedding of a very tiny expression language comprising

Copyright c© ACM, 2012. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in ICFP’12, , http://doi.acm.org/10.1145/....
ICFP’12, September 9–15, 2012, Copenhagen, Denmark.
Copyright c© 2012 ACM 978-1-4503-1054-3/12/09. . . $10.00

polymorphic values, conditionals and equality; we will refer to this
throughout the paper:

data Exp a where
ValueE :: a → Exp a
CondE :: Exp Bool→ Exp a → Exp a → Exp a
EqE :: Eq a ⇒ Exp a → Exp a → Exp Bool

Here we have made use of Generalised Algebraic Data Types
(GADTs) [24] as supported in the Glasgow Haskell Compiler (GHC).
The intention is that the DSL be able to support any set of basic
types, provided the arguments to EqE are expressions that are
comparable under equality. The corresponding Eq a constraint
is the only constraint that we want to impose on the DSL.

Let’s now see what happens when we try to define a function
over DSL expressions that imposes its own ‘local’ constraint. The
function compileSM below implements a compiler for a very simple
stack machine that has no support for floating-point arithmetic. To
make the function type-safe it needs to enforce the rule that the
DSL expression it is given contains only integers and booleans; the
booleans False and True will be encoded as the integers 0 and 1 in
the usual way. Ignoring unique label generation, we have:

compileSM :: Exp a → String
compileSM (ValueE x)

= "PUSH "++ show (toInt x) ++ "\n"

compileSM (CondE p t f)
= compileSM p ++ "CMP #0\n"++ "BEQ L1\n"++

compileSM t ++ "BR L2\n"++
"L1: "++ compileSM f ++ "L2: "

compileSM (EqE e1 e2)
= compileSM e1 ++ compileSM e2 ++ "EQ\n"

Here, toInt is overloaded to work only on Ints and Bools, which we
can express using a type class, such as the following:

class IntBool a where
toInt :: a → Int

instance IntBool Int where toInt = id
instance IntBool Bool where toInt = fromEnum

The function fromEnum in Haskell’s Enum class converts booleans
to integers, as required.

Now we have a problem: compileSM doesn’t type check because
the use of toInt in the ValueE rule requires that a be a member of
the IntBool class. A first thought might be to add a context to the
type of compileSM itself to express the IntBool constraint:

compileSM :: IntBool a ⇒ Exp a → String

However, this doesn’t solve the problem, because the a here refers
only to the result type of the top-level expression. The Haskell type
system has no way of proving that the arguments to EqE carry

the same constraint: the a in EqE’s type signature is existentially
quantified.

The usual solution to this type of problem (see Axelsson et al. [2]
and Chakravarty et al. [7] for examples) is to add a constraint to the
type of ValueE as follows:

data Exp a where
ValueE :: IntBool a ⇒ a → Exp a

compileSM now type checks, but the unfortunate effect of the con-
straint is to restrict all uses of the DSL to expressions containing
only integers or booleans. For example, the expression ValueE sin,
which would have been perfectly valid before we added the con-
straint, now fails to type check. This was clearly not the intention:
what we wanted to do was restrict the set of DSL programs that are
compilable with compileSM, not the DSL itself.

Any function over the DSL that imposes a similar constraint
will compound the problem, as those constraints will need to be
added to ValueE’s type as well. In the worst case these constraints
may collectively have no types in common, in which case it will be
impossible to build a DSL expression at all! Although our motivation
in this paper concerns DSLs this is in fact a problem with all data
types, not just those that encode DSLs.

In this paper we present two solutions to this problem. The first
is presented somewhat as an aside, as it requires nothing more
than a relatively simple abstraction over the target implementation
platform using similar techniques to that described by Hughes [11].
The problem with this is that it breaks down in the context of higher-
rank types, which means that it becomes extremely cumbersome to
define the type of a function that uses a given DSL expression in
two different ways, as in:

f :: Exp p a → . . .
f e = . . . (compileSM e) . . . (pretty e) . . .

for example, where pretty pretty-prints a given expression. Assum-
ing that p represents the target platform, typing this function requires
instantiating p at the types required by compileSM and pretty si-
multaneously. Unfortunately, introducing the required higher-rank
type hides the type p, preventing it from being used to constrain
values dynamically. This is explained in more detail in Section 8;
the reader might wish to read this section first before continuing
with Section 2.

The second solution, which constitutes the main contribution
of the paper, takes a completely different approach and solves the
restriction problem even in the presence of higher-rank types. The
idea is to replace concrete constraints in a data type with generic
constraints which capture at the type level key properties of a
DSL expression, such as the primitive object types that it depends
upon or the set of DSL operations that are used in its construction.
Independently of the DSL data type(s), the constraints imposed by
individual functions over the data type are specified separately as
platform constraints. The trick, which involves some quite subtle
type-level reasoning, is to ensure that these platform constraints are
compatible with the generic constraints of the given DSL expression
at the point where the function is applied. This constitutes the main
technical challenge of the paper.

The key principle that underpins our idea is that implementation-
specific constraints should be imposed at the point of use of
a data type, not at the point of definition, i.e. it embodies the
established principle that an interface should be separated from
its implementation(s).

Our contributions are as follows:

• We describe a method for imposing generic constraints on
data types that avoids the restrictions ordinarily imposed by
concrete constraints (Section 2). In the context of a DSL we show

how these can be used to impose independent implementation-
specific constraints, for example on the types (Section 2.3) and
operations (Section 6) supported by a given target platform.

• We show how the idea, which is initially presented in the context
of GADTs, can be applied equally to tagless representations
(Section 5) and representations involving rank-2 types (Sec-
tion 5.1).

• We show that both the compile-time and run-time overheads
of the scheme are bounded by a constant that is a function of
the size of the list of types forming the constraint set, which we
expect typically to be small (Section 2.4).

• Our implementation makes use of many of the latest Haskell
extensions, including kind polymorphism (Section 6), constraint
kinds (Section 3) and promotion (Section 2) and thus serves
to document the application of these extensions in a practical
setting.

1.1 Motivation
This work has been inspired by our broader efforts to build type-
safe embedded DSLs for exploiting heterogeneous multi-core paral-
lelism. Our objective is to be able to target a multitude of platforms
with a view to exploiting both control and data parallelism in a
type-safe manner. From the typing perspective there are two key
challenges: 1. Allowing a variety of platform-specific program anal-
ysis (performance modelling, optimisation etc.) and compilation
functions to co-exist without restricting the application of the DSL;
2. Allowing the same DSL program to be compilable to multiple
platforms in the same context. The latter is particularly important
for heterogeneous data parallelism, for example. We do not discuss
these issues in any detail in this paper, although the running exam-
ples we use throughout have been chosen to illustrate some of the
problems that arise in this area.

2. Generic constraints
We now continue with the example of Section 1. The idea is to
associate each value of type Exp with a list of types as which
represents symbolically the types that appear in the expression.
Individual, concrete, constraints (such as IntBool) are then replaced
with a set of generic constraints of the form Elem a as (or, using
infix notation, a ∈ as).

For the ValueE constructor, a single generic constraint a ∈ as
captures the notion that the type of object wrapped by ValueE must
be an element of the list of types, as . Similarly for the CondE case,
which also requires the constraint Bool ∈ as to cater for the type of
the predicate. The EqE case again follows suit, except that it also
retains the original Eq a constraint. In many, if not all, cases it may
suffice to generate these (· ∈ ·) constraints mechanically, e.g. using
Template Haskell [26] (see Section 10.1), but for the time being we
decorate the constructor types explicitly:

data Exp as a where
ValueE :: (a ∈ as)⇒ a → Exp as a

EqE :: (Eq a, a ∈ as,Bool ∈ as)
⇒ Exp as a → Exp as a → Exp as Bool

CondE :: (a ∈ as,Bool ∈ as)
⇒ Exp as Bool→ Exp as a → Exp as a
→ Exp as a

Importantly, this definition will suffice for all functions defined over
the DSL.

A point that is worth making here is that Haskell’s type inference
engine automatically deletes duplicate constraints. As an example,
consider the following expression:

eMixed
= CondE (EqE (ValueE (3 :: Int)) (ValueE (4 :: Int)))

(ValueE (0.0 :: Float)) (ValueE (3.9 :: Float))

The constraint Bool ∈ as is inferred twice: once when typ-
ing the subexpression EqE . . . which computes the constraints
(Eq Int, Int ∈ as,Bool ∈ as), and once when typing the con-
ditional CondE . . . which independently imposes the constraint
Bool ∈ as in addition to Float ∈ as (the top-level result is an
Exp as Float). The Eq Int constraint is trivially satisfied, and so is
removed, and the duplicate Bool ∈ as constraints are collapsed into
one. The resulting inferred type for eMixed is thus:

(Int ∈ as,Bool ∈ as,Float ∈ as)⇒ Exp as Float

A key feature is that the constraints list explicitly the types that
appear within an expression that are not visible simply by looking
at the expression’s top-level type (Exp as Float in the case of
eMixed).

2.1 Aside: type-level lists
At first sight the idea of a list of types might seem rather odd, as
lists in Haskell are traditionally data types (with kind ?). What we
need here is the concept of a list itself being a type. Fortunately, a
recent extension to Haskell [29] supports the promotion of certain
values; in particular this allows Haskell’s familiar list constructors
to be used at the type level. The promotion of the Haskell list type
produces:

• A type ′[] and a type constructor (:) which may be used for
building lists at the type level. The quote (′) in the name of ′[]
exists to distinguish it from the traditional list type constructor
[] (of kind ?→ ?).

• A set of kinds [κ], each of sort 2 (pronounced ‘box’). ′[] thus
has kind ∀κ. [κ] and (:) has kind ∀κ. κ→ [κ]→ [κ].

Note that our technique does not rely on Haskell’s ability to support
type-level lists. We could equally well use the ‘pair’ and ‘unit’
type constructors (as in HLIST [13]), for example (Int, (Bool, ()))
instead of ′[Int,Bool], but choose to take advantage of the rather
more convenient list syntax and associated kind safety.

2.2 Picking types
At this point the list of types as is purely symbolic, so if an
expression e is typed as (τ1 ∈ as, . . . , τn ∈ as) ⇒ Exp as τ
then the constraints state that as must contain at least the types
τ1, . . . , τn for e to have type Exp as τ , whatever as happens to be.

Given a constrained type, one thing we should certainly be able to
do is instantiate some or all of the types specified in the constraints.
Thus, in the same way that we can instantiate a in the type of
Haskell’s built-in function abs :: Num a ⇒ a → a to the specific
instance abs :: Int→ Int, for example, so we should be able to do
the same for constraints involving (· ∈ ·). We would therefore like
all of the following to be valid instantiations for the type of eMixed
above:

eMixed :: (Bool ∈ as,Float ∈ as)⇒ Exp (Int : as) Float
eMixed :: Exp ′[Bool,Float, Int] Float
eMixed :: Exp ′[Char,Bool,Float, Int] Float

whilst an attempted instantiation such as

eMixed :: Exp ′[Bool, Int] Float

should fail to type check.
To see how this can be achieved we now develop the implementa-

tion of (· ∈ ·) and discuss some possible variations. We remark that,
in what follows, considerable care is needed to ensure that we don’t

inadvertently restrict the ability of DSL designers to use Haskell’s
operator overloading; we elaborate on this in Section 7.

We have a basic requirement to ensure that a constraint a ∈ as
is only satisfied when the list of types as contains a . The usual
approach when dealing with lists is to assert that if the head of as is
a then the constraint is satisfied trivially and, if not, to seek evidence
that a appears somewhere in the tail of as . The following GADT
describes these two cases:

data Evidence a as where
Head :: Evidence a (a : as)
Tail :: (a ∈ as)⇒ Evidence a (b : as)

This states that if an object of type Evidence a as is Head then a
is at the head of the as , and that if it is Tail then a is in the list, but
is not at the head. Notice that the recursive check into the tail of the
list is performed by virtue of the constraint a ∈ as in the definition
of Tail (but see also Section 2.2.1 below). Crucially, therefore, if
a is not in as then it should be impossible to construct an object
which matches the type of either Head or Tail. Thus, if an object
has type Evidence a as then it is irrefutably the case that a is in
as , for otherwise we have a type error! This is the key property that
governs our definition of (· ∈ ·):

class a ∈ as where
evidence :: Evidence a as

which can be read: ‘a is an element of as and the value evidence is
either Head or Tail, depending on where in the list a resides.’ There
are no other possibilities! Which of the two cases we have is now
determined by the instance declarations:

instance a ∈ (a : as) where
evidence = Head

instance (a ∈ as)⇒ a ∈ (b : as) where
evidence = Tail

Thus, for example, the following:

evidence :: Evidence Int ′[Int,Char]
evidence :: Evidence Int ′[Float, Int]

have values Head and Tail respectively, whereas there is no instance
of (· ∈ ·) which provides evidence :: Evidence Int ′[Bool].

Note that it is important that there is no case for ′[] because we
want there to be no evidence that a is an element of ′[], which is
surely a ‘lie’! However, it is interesting to see what happens if we
try to define such an instance. Rather conveniently, if we attempt
the following:

instance a ∈ ′[] where
evidence = . . .

then the only thing we can put on the right-hand side is ⊥ (or error).
Looking at this another way, such an instance can successfully
encode the ‘lie’ that a is an element of ′[], but the body cannot
provide the evidence!

2.2.1 Implementation note
A possible variation on the scheme proposed is to replace the
constraint a ∈ as in Tail with explicit evidence of the existence of
a in the tail of as as follows:

Tail :: !(Evidence a as)→ Evidence a (b : as)

instance (a ∈ as)⇒ a ∈ (b : as) where
evidence = Tail evidence -- Note: the two evidences

-- have different types.

This works in principle, but we must ensure that the Tail constructor
is strict in its argument (hence the ‘!’ annotation) in order to force
the recursion into the tail of as .

In both approaches, the two instances of (· ∈ ·) shown overlap,
and may thus only be used when one is recognisably more specific
than the other. This means that we may only eliminate (· ∈ ·)
constraints when reasoning about lists of ground types: there is no
way in general for the compiler to know if the type variable a is
a member of the list (b : as), i.e. whether a and b are the same
type. This is not a serious limitation, however, as the constraints are
typically only eliminated at the point where a concrete type must be
picked anyway (see Section 10.2).

2.3 Platform constraints
Let us now return to the compileSM function for our simple stack
machine. Thanks to compileSM’s non-discriminating type, the EqE
and CondE cases require no modification from those shown in
Section 1. The ValueE clause is less obvious so let’s reproduce it
here:

compileSM (ValueE x)
= "PUSH "++ show (toInt x) ++ "\n"

From the definition of Exp above, all we know about the type of x
(b, say) is that b ∈ as . For this particular implementation we need
to establish the fact that b is also either an integer or a boolean, i.e.
we need to satisfy the constraint IntBool b before we can invoke
toInt.

The key is to look at the type of compileSM itself. There is
clearly a platform-specific requirement that all types in a given
expression must be either Ints or Bools so the place to specify this
constraint must be in the definition of compileSM itself:

compileSM :: AllIntBool as ⇒ Exp a as → String

The idea is for the AllIntBool type class to define a ‘wrapper’
function, toInt’, whose role is to pick the right instance of IntBool
(here either the Int or Bool instance); this involves convincing the
type checker that such an instance exists. In order to do this toInt’
needs to carry with it the list of constrained types as:

class AllIntBool as where
toInt’ :: (b ∈ as)⇒ Proxy as → b → Int

What is the role of the Proxy type? On the left of the⇒ we have the
constraint that b ∈ as . To be able call toInt’ we will need to pass
an argument that makes the type as concrete, such that the Haskell
compiler can pick the correct instance of AllIntBool. Usually this
would involve passing an argument of type as , but as has kind [?]
whereas function arguments must have kind ?. The Proxy data type
suffices to effect the conversion:

data Proxy as = Proxy

Before we continue with AllIntBool, it will be useful to complete
the compiler in order to see how the proxy value comes into play:

compileSM (ValueE x)
= "PUSH "++ show (toInt’ (Proxy :: Proxy as) x)

++ "\n"

Let’s now build the AllIntBool class instances, beginning with the
instance for (:). If a is an instance of IntBool and the list as is
AllIntBool then we need to extend the constraint to the list (a : as):

instance (IntBool a,AllIntBool as)
⇒ AllIntBool (a : as) where

toInt’ x = . . .

The trick is to observe the type of toInt’:

(IntBool a,AllIntBool as, b ∈ (a : as))
⇒ Proxy (a : as)→ b → Int

Here, both a and b are type variables so in the event that b is at
the head of the list (a : as), we shall have that a ≡ b and hence
IntBool b. In this case, we can therefore apply toInt to x and we
are done. If b is in the tail of the list (a : as) then we require a proof
that b ∈ as , in which case we will proceed by recursion. How do we
know whether b is at the head of as? We use the evidence method
of the corresponding (· ∈ ·) instance:

instance (IntBool a,AllIntBool as)
⇒ AllIntBool (a : as) where

toInt’ (x :: b)
= case evidence :: Evidence b (a : as) of

Head→ toInt x
Tail → toInt’ (Proxy :: Proxy as) x

Notice that in the recursive call to toInt’ we must reconstruct a new
proxy object, as its type must reflect that of the tail of (a : as). This
proxy argument is never referred to at the object level; its role is
simply to pick the required type instance for AllIntBool.

An instance for ′[] is needed because the AllIntBool instance
for a : ′[] (see above) requires the two constraints IntBool a and
AllIntBool ′[]. Of course, in this case it must be the case that
the corresponding evidence is Head for otherwise the type we are
looking for would not be in the list; a recursive call to toInt’ with
argument (Proxy :: Proxy ′[]) can therefore never occur. We thus
need the ′[] instance, but not its associated implementation of toInt’:

instance AllIntBool ′[] where
toInt’ (x :: b)

= seq (evidence :: Evidence b ′[]) ⊥
Note that we could simply have made the right-hand side ⊥ but we
instead ‘call the bluff’ of any instance of the form b ∈ ′[]. We have
seen earlier (Section 2.2) that the value of any alleged evidence can
only be ⊥; the above code thus explicitly exposes the lie!

2.4 Implementation cost
The process of picking concrete types for each (· ∈ ·) constraint
(Section 2.2) incurs a compile-time overhead, as we must ensure
that each (· ∈ ·) constraint is satisfied by the given list of concrete
types. For example, for the DSL expression e with type (τ1 ∈
as, . . . , τn ∈ as)⇒ Exp as a we can impose any type of the form
e :: Exp τs a provided each τi appears in τs . If τs contains m types
then the cost of the static type check is O(mn).

There is also a run-time overhead, however, which depends on
how the type classes involved are implemented. In what follows we
shall assume the use of a dictionary transformation as presented by
Wadler and Blott [28] to explain in principle what must happen at run
time. Each overloaded function used in a given implementation (e.g.
toInt in compileSM) must be invoked at the correct type. This is not
done by traversing a list of types, however, as no type information is
retained at run time. Instead, each constraint in a function’s type (e.g.
C ⇒ . . .) is translated by the Haskell compiler into an additional
argument (C → . . .) that implements a dictionary of functions that
correspond to a specific instance of the corresponding class (here
C). In our example above, the invocation of the functions toInt’,
evidence and the pattern match on Tail at different types results in
the introduction of different dictionaries at runtime. When evidence
(whose dictionary corresponds to the constraint b ∈ (a :as)) returns
Head the dictionary argument of toInt’ so happens, by construction,
to contain the required instance of IntBool, i.e. the instance for
either Int or Bool.

It is not necessary to understand how the dictionary transforma-
tion effects this at run time (see the work of Wadler and Blott [28]
for full details), but suffice it to say that the cost of invoking toInt at
type τ in the example above is linearly proportional to the index, n
say, of τ in the list τs in the imposed type Exp τs a . In short, we do

not end up ‘searching’ for the correct dictionary for τ at run time;
instead toInt’ is invoked exactly n times whereupon its additional
dictionary argument provides the required τ instance of the IntBool
class.

2.5 Single expression, multiple use
Let us now consider what happens if we wish to apply several
constrained functions to a single DSL expression. Since we have so
far only seen the compileSM function, let us introduce a similarly
constrained pretty-printer:

pretty :: AllShowable as ⇒ Exp as a → String

Here the constraint AllShowable as provides a guarantee that
every type in as has a textual representation. We might apply both
compileSM and pretty to a single expression, for example:

f e = . . . (compileSM e) . . . (pretty e) . . .

For this to type check, e must be an expression of type Exp as a .
The use of compileSM requires the constraint AllIntBool as to be
satisfied. Additionally, the use of pretty introduces the constraint
AllShowable as . Assuming that no other context is required, f ’s
type will thus be inferred as:

f :: (AllIntBool as,AllShowable as)⇒ Exp as a → . . .

Note that e’s type, Exp as a , makes no reference to either platform
– it is completely removed from any implementation. A corollary of
this is that e’s type is the same at the call sites of compileSM and
pretty. If it were not, e would have to be defined as a polymorphic
argument and f would require a rank-2 type [23, 27]. We shall see
later in Section 8 some of the problems that rank-2 types can create,
all of which we avoid. Furthermore, we show in Section 5.1 that
even when rank-2 types must be introduced, the flexibility of our
terms remains unaffected.

3. Higher-order constraints
While AllIntBool is a useful type class, its implementation is both
non-trivial and tied to the needs of the compileSM function. Far
better would be to write one type class which encapsulates the notion
of traversing type-level lists and subsequently parameterise it by a
particular platform-dependent constraint. Thanks to GHC’s recently-
added support for constraint kinds (based on the work of Orchard
and Schrijvers [19]), we can do just that:

class All c as where
. . .

All’s first parameter, c, is a constraint constructor. As an example,
the idea is that instantiating c to be IntBool will recreate the
definition of AllIntBool above. Of course, this will only be the
case if toInt’ is generalised appropriately. To this end, let’s attempt
to define a function withElem, say, that abstracts over the result
type (Int, in the case of toInt’ above) , which must now carry the
constraint c b:

class All c as where
withElem :: (b ∈ as)⇒ Proxy as → (c b ⇒ d)→ d

Unfortunately, while this is a valid type in the eyes of the type
checker,1 this leads to ambiguous type constraints because of the
fact that constraints in Haskell ‘float’ to the leftmost position in a
type. As an example, consider the toInt function above. Its type is
IntBool b ⇒ b → Int, a seemingly perfect fit for the above, which
we would like to lead to the type:

1 Provided that higher-rank types are permitted.

withElem :: (b ∈ as)⇒ Proxy as
→ (IntBool b ⇒ b → Int)→ b → Int

However, the IntBool constraint is instead floated out to yield:

(b ∈ as, IntBool b)
⇒ Proxy as → (c b ⇒ b → Int)→ (b → Int)

which leaves an ambiguous constraint c b which the compiler is
unable to solve. To mitigate this issue, we transform the constraint
c b into a data type which ‘traps’ the relationship between c and b:

data Trap c b where
Trap :: c b ⇒ Trap c b

Pattern matching on a constructor Trap of type Trap c b will bring
into scope the constraint c b; similarly one may not create a value
of type Trap c b unless the constraint c b is satisfiable. Thus we
arrive at:

class All c as where
withElem :: (b ∈ as)⇒ Proxy as → (Trap c b → d)→ d

The instances of All are now simple generalisations of the AllIntBool
class above:

instance All c ′[] where
withElem (f :: Trap c b → d)

= seq (evidence :: Evidence b ′[]) ⊥
instance (c a,All c as)⇒ All c (a : as) where

withElem (f :: Trap c b → d)
= case evidence :: Evidence b (a : as) of

Head→ f Trap
Tail → withElem (Proxy :: Proxy as) f

Note that the second instance requires Haskell’s support for unde-
cidable instances [22] as the type system cannot decide whether the
constraint expressions c a and All c (a : as) can ever be the same,
in which case the type checker will loop. In this case it is easy to
see that no instantiation of c can ever satisfy this property, not least
because c a makes no reference to as .

To illustrate the use of withElem let’s see how the compileSM
function above can be defined in terms of an All c as constraint.
In this case, withElem’s second argument is a function of type
Trap IntBool b → String and its job is to show the integer
representation of a given b. The constraint that b is an instance
of IntBool is now captured by a Trap value of type Trap IntBool b
which must be named explicitly in a type signature:

compileSM :: All IntBool as ⇒ Exp as a → String
compileSM (ValueE x)

= "PUSH "++ withElem (Proxy :: Proxy as) (showInt x)
++ "\n"

where
showInt :: b → Trap IntBool b → String
showInt x Trap = show (toInt x)

The other two cases are unchanged. Without the explicit type
signature, the type of showInt would be inferred as:

showInt :: IntBool b ⇒ b → Trap c b → String

where the dictionary has an unconstrained (polymorphic) type. We
must instead enforce the IntBool constraint on the dictionary itself;
in short, we want a specific instance of showInt’s principal type that
enforces the constraint relationship between IntBool and b.

4. Summary
The basic apparatus we need is now in place, so this is a good
point at which to summarise. We have shown that we can shift

platform-specific type constraints from a DSL’s embedding data
type to the corresponding function(s) over that data type using the
steps outlined below. At this point we’ll assume we’re working
with tagged representations using GADTs, but we’ll see shortly
(Section 5) how the approach generalises to tagless representations.

1. Add generic constraints to each constructor’s type signature
that collectively identify the minimal set of types that must be
supported on a given platform in order for the constructor to be
used. For example, for a GADT T with constructor C:

data T as a where
C :: (Eq a, a ∈ as,Char ∈ as, . . . , Int ∈ as)
⇒ T as a → T as Char→ · · · → T as Int

where as represents symbolically a list of types. The key point
is that these generic constraints enumerate not only the basic
constraints such as Eq a but also constraints on the result type
(here Int) and, importantly, existential types that are otherwise
invisible outside the type (here a and Char).

2. Make each overloaded function f for which there is a platform-
specific implementation a member of some type class P that
encodes the platform constraint, for example:

class P a where f :: a → . . .

and define appropriate instances for each platform.

3. For a platform function p over the DSL data type T use higher-
order constraint classes such as All to specify the type restrictions
imposed on as by p, for example:

p :: All P as ⇒ T as a → . . .

4. Apply the platform function to a given DSL expression, e, say,
by picking a specific type list as , for example,

p (e :: T ′[Int,Char, . . .] a)

This imposes the platform-specific constraints on e , rather than
T . Type-safety is ensured by virtue of the fact that the chosen
as must be compatible both with the generic constraints in e’s
type and the platform constraints encoded in p’s type in order
for the application to type check.

5. Tagless representations
Up until now, we have focused on a GADT-based representation of
DSLs. Tagless representations [5, 21] offer an alternative approach
to embedding a domain-specific language using functions rather than
data constructors. To illustrate this, let’s construct a tagless encoding
of our simple expression language using generic constraints:

class TaglessExp e where
valueE :: (a ∈ as)⇒ a → e as a

eqE :: (Eq a, a ∈ as,Bool ∈ as)
⇒ e as a → e as a → e as Bool

condE :: (a ∈ as,Bool ∈ as)
⇒ e as Bool→ e as a → e as a
→ e as a

Functions over terms in this tagless representation are realised
as instances of the TaglessExp type class. As an example, the
compileSM function above that was previously defined over a
GADT must now be recast in terms of a data type and a corre-
sponding TaglessExp instance that defines the valueE, eqE and
condE functions. The data type is straightforward and may make
use of All:

newtype CompileSM as a
= CompileSM (All IntBool as ⇒ String)

There is a small complication with the definition of valueE, which
can be seen when we try to define the TaglessExp instance:

instance TaglessExp CompileSM where
valueE x

= . . .

At this point we need to construct a Proxy of type Proxy as , but we
have no as to refer to. The solution is to define a helper function
valueE’, whose type signature reaffirms the constraint a ∈ as on
x ’s type:

valueE’ :: (a ∈ as)⇒ a → CompileSM as a
valueE’ x

= CompileSM
("PUSH "++ withElem (Proxy :: Proxy as) (showInt x)

++ "\n")

showInt is as defined earlier. We can now complete the instance:

instance TaglessExp CompileSM where
valueE x

= valueE’ x

eqE (CompileSM s1) (CompileSM s2)
= CompileSM (s1 ++ s2 ++ "EQ\n")

condE (CompileSM p) (CompileSM t) (CompileSM f)
= CompileSM $

p ++ "CMP #0\n"++ "BEQ L1\n"++ t ++
"BR L2\n"++ "L1: "++ f ++ "L2 :"

A function for compiling an expression to our stack machine can now
be built simply by picking the correct instance of the TaglessExp
class:

compileSM :: All IntBool as ⇒ CompileSM as a → String
compileSM (CompileSM s) = s

5.1 Rank-2 types
In contrast with GADT representations, tagless encodings are
by construction parameterised by the implementation they target
(e). Consequently, invoking multiple implementations of a single
expression is not possible with the definitions given so far. Assuming
the presence of Pretty, a tagless implementation of a pretty-printer,
we may revisit our earlier example:

f e = . . . (compileSM e) . . . (pretty e) . . .

f will not type check. To see why, assume that the type checker
reaches compileSM first, whereupon the type variable e will be in-
stantiated (via unification) to the type CompileSM, associated with
the compiler. When the type checker later reaches the application of
pretty, the checker will attempt a similar thing for the pretty printer,
but will now attempt to unify the types CompileSM (the instantia-
tion of e) and Pretty and that unification will fail. This is the classic
limitation of rank-1 types: the type variable e can be instantiated to
any type for which there is a corresponding TaglessExp instance,
but it cannot be changed once it has been picked.

We may alleviate this problem by giving f a rank-2 type [23, 27],
but better would be to close our terms once and for all:

newtype AnyTaglessExp as a
= AnyTaglessExp (∀e. TaglessExp e ⇒ e as a)

f may now be rewritten to accept a value of type AnyTaglessExp:

f (AnyTaglessExp e) = . . . (compileSM e) . . . (pretty e) . . .

A key point to note is that the type being constrained, as , ‘escapes’
the rank-2 type of AnyTaglessExp. In effect, AnyTaglessExp is
equivalent to the Exp GADT introduced earlier.

6. Exploiting kind polymorphism: restricting
operations

The previous sections have demonstrated how we may restrict
the types of values that are introduced into a computation. We
shall see now that we may also bound the operations that are
used in an expression, thanks in part to GHC’s support for kind
polymorphism [29].

Thus far, the (· ∈ ·) and All type classes have been used to
constrain lists of kind [?]. However, their definitions afford them
the following, more general kinds (note that Constraint is the kind
of type class constraints – Show a or Eq b, for example):

(· ∈ ·) :: ∀κ. κ→ [κ]→ Constraint
All :: ∀κ. (κ→ Constraint)→ [κ]→ Constraint

Here, as one might expect, κ may be instantiated to any kind. What
does this buy? Consider extending Exp to record the operations, os
say, in addition to the types, that are used in the construction of an
expression:

data Exp as os a where
. . .

We would like to use the (· ∈ ·) type class to constrain os , similar
to the way we constrained types using as . We can achieve this by
promoting the constructors of a data type such as:

data Op = EqOp | CondOp

to the type level. The modifications required to Exp are straightfor-
ward:

data Exp as os a where
ValueE :: (a ∈ as)⇒ a → Exp as os a

EqE :: (Eq a, a ∈ as,Bool ∈ as,EqOp ∈ os)
⇒ Exp as os a → Exp as os a → Exp as os Bool

CondE :: (a ∈ as,Bool ∈ as,CondOp ∈ os)
⇒ Exp as os Bool→ Exp as os a → Exp as os a
→ Exp as os a

Note: we would ideally like to be able to promote the consructors of
the Exp type itself, as in:

data Exp as os a where
. . .

EqE :: (Eq a, a ∈ as,Bool ∈ as,EqE ∈ os)
⇒ Exp as os a → Exp as os a → Exp as os Bool

for example. However, Haskell does not allow the promotion of
GADTs, as that would require coercions between kinds rather than
the rather simpler notion of α-equivalence [29].

Given the modified version of Exp above, we may now pick and
choose which operations are permitted in a given implementation.
As an example, suppose we wish to generate code for an architecture
in which conditional branching is undesirable (Nvidia’s CUDA
platform, for example). Once again, a type class may be defined to
capture the operations that are supported:

class CUDACompatible o

instance CUDACompatible EqOp

The extension of CUDACompatible over a list os is then handled
by the All class:

compileCUDA :: All CUDACompatible os
⇒ Exp as os a → String

compileCUDA
= . . .

(We omit the details of a full CUDA compiler!)

6.1 Combining types and operations
Parameterising Exp by both the types it contains (as) and the
operations it uses (os) seems a little cumbersome. Another approach
is to use some form of union operation, but at the type level. For
example, we can use a promoted version of Haskell’s Either type:

data Either a b = Left a | Right b

With this, Exp can instead be parameterised by a single list, ts ,
of kind [Either ? Op]; each item of ts will be either a type or an
operation:

data Exp ts a where
ValueE :: (Left a ∈ ts)⇒ a → Exp ts a

EqE :: (Eq a, Left a ∈ ts, Left Bool ∈ ts,
Right EqOp ∈ ts)

⇒ Exp ts a → Exp ts a → Exp ts Bool

CondE :: (Left a ∈ ts, Left Bool ∈ ts,
Right CondOp ∈ ts)

⇒ Exp ts Bool→ Exp ts a → Exp ts a
→ Exp ts a

However, the All family of type classes introduced in Section 3
doesn’t fit well with this because All constrains all items in a list,
whereas we need to be able to constrain either the as (Left) or the
os (Right). We must therefore adapt the class by decomposing it
into a pair of classes, each designed to constrain one of the types
present in the list:

class AllLeft c ts where
withLeftElem :: (Left a ∈ ts)

⇒ Proxy ts → (Trap c a → d)→ d

class AllRight c ts where
withRightElem :: (Right b ∈ ts)

⇒ Proxy ts → (Trap c b → d)→ d

If we consider the AllLeft class (the workings of AllRight follow
suit), we see that we now need two instances for (:) that will begin:

instance (c a,AllLeft c ts)
⇒ AllLeft c (Left a : ts) where

. . .

instance AllLeft c ts ⇒ AllLeft c (Right a : ts) where

. . .

In the first case a type Left a can only be added to the list ts if a
satisfies the constraint c. The instance is thus similar to that given
in the definition of All:

instance (c a,AllLeft c ts)
⇒ AllLeft c (Left a : ts) where

withLeftElem (f :: Trap c b → d)
= case evidence :: Evidence (Left b) (Left a : ts) of

Head→ f Trap
Tail → withLeftElem (Proxy :: Proxy ts) f

As for the second instance, it is in fact simpler – types of the form
Right a may be added to the list ts regardless:

instance AllLeft c ts ⇒ AllLeft c (Right a : ts) where
withLeftElem (f :: Trap c b → d)

= case evidence :: Evidence (Left b) (Right a : ts) of
Tail→ withLeftElem (Proxy :: Proxy ts) f

Despite the absence of a Head clause in the case-statement, this
function is total so an attempt to pattern match on Head will be a

type error: the compiler knows that the types Left b and Right a
will never be unifiable (a fact which Head would contradict).

With these instances in place, we can now reason about types
and operations simultaneously. For example, if we have a CUDA-
capable GPU which does not support double-precision arithmetic,
we might type its compiler thus:

compileCUDASP :: (AllLeft SinglePrecision ts,
AllRight CUDACompatible ts)

⇒ Exp ts as → String

Of course, we can generalise this still, to produce a type such as:

compileCUDASP :: (All Left SinglePrecision ts,
All Right CUDACompatible ts)

⇒ Exp ts as → String

in which there is once again a single All class. We omit the details
of its implementation.

7. Operator overloading
The lists of types discussed in this paper are not so much built
as described – the presence of a list as is established before
being appropriately constrained. A side-effect of this is that every
subexpression in a term will be parameterised by the same list as –
only the constraints may differ at any given point. Importantly, this
is precisely what is required to overload many of Haskell’s operators
to work with Exp values. As an example, consider the Num type
class:

class Num a where
(+), (−), (∗) :: a → a → a
abs, signum :: a → a
fromInteger :: Integer→ a

Suppose that we wish to overload the (+) operator on expressions
in our DSL. To support this we’ll need a new Exp constructor which,
in the ‘vanilla’ GADT of Section 2 might look like this:

data Exp as a where
. . .

AddE :: (a ∈ as)
⇒ Exp as a → Exp as a → Exp as a

We then seek an instance declaration that allows us to overload the
(+) operator in Haskell’s Num class, which has type Num a ⇒
a → a → a . The required instance now falls out provided we work
the a ∈ as constraint into the instance header:

instance (a ∈ as)⇒ Num (Exp as a) where
(+) = AddE

Extending this procedure appropriately across the Haskell Prelude’s
wealth of overloadable functions, we see that it is possible to hide
much of the machinery of our technique from the end user. In fact,
the only evidence will be the need to supply an instantiation for each
type-level list accumulated. For example, let us take our example
term, eMixed, and make it more palatable:

eMixed
= if 3 ≡Exp 4 then 0.0 else 3.9

Here we have used GHC’s support for rebindable syntax to overload
Haskell’s if-then-else expression. The literals 3 and 4 are translated
into the applications fromInteger 3 and fromInteger 4 respectively,
where fromInteger is a member of the Num class described earlier.
In a similar fashion, the floating-point literals are rewritten as calls to
the overloaded fromRational function. Haskell’s equality operator,
(≡), is overloadable also, but perhaps ironically is one of a set

of operators which do not work nicely with many DSLs. In our
case, for example, we would like to implement (≡) using the EqE
constructor, which has type:

(Eq a, a ∈ as)⇒ Exp as a → Exp as a → Exp as Bool

Unfortunately, (≡)’s type, while overloaded in its arguments
(through the Eq class), must always produce a Bool:

Eq a ⇒ a → a → Bool

We have therefore defined and used an alternative operator, (≡Exp),
which provides the parametricity we need. For additional conve-
nience we have also specialised (≡Exp)’s type so that it compares
integer expressions only: if its type were to be made more general
then we would require type annotations. This is not a problem spe-
cific to our technique, however: it is a consequence of the fact that
the argument types of EqE (which implements the (≡Exp) func-
tion) are existential (i.e. they do not appear in the type of its result).
Consequently they must be fixed before the type checker is willing
to discard the knowledge of their existence. There are alternative
solutions to such problems which are common in DSL design, but
these fall outside the scope of this paper.

8. The type restriction problem revisited
As we hinted in Section 1 the problem we began with can be
solved for the case of rank-1 types using a scheme analogous to that
presented by Hughes [11]. The purpose of this section is to outline
that solution and to show how it breaks down in the presence of
higher-rank types. The idea is to abstract not only over the result
type of an expression, but also the target platform itself. By ‘target
platform’ we really mean some abstraction of a specific use of the
DSL, although the word ‘platform’ is particularly appropriate when
we think of compiling DSLs.

We first capture the notion that a type a is ‘supported by’, or is
‘typeable on’, a particular platform using a type class:

class Typeable p a
valueP :: a → p a

We can now use this to specify the constraints on DSL expressions:

data Exp p a where
ValueE :: Typeable p a ⇒ a → Exp p a
CondE :: Exp p Bool→ Exp p a → Exp p a → Exp p a
EqE :: Eq a ⇒ Exp p a → Exp p a → Exp p Bool

Here, Exp has been parameterised by a type p which represents
the target platform. The ValueE constructor can only be used to
lift values whose types are statically known to be representable in
the domain of the type p (through the valueP function). Note that
while we have once again constrained ValueE’s type, the constraint
does not tie expressions down to a specific target platform. As an
example, compileSM might now be implemented as follows:

newtype SM a = SM {fromSM :: Int}
instance IntBool a ⇒ Typeable SM a where

valueP = SM · toInt
compileSM :: Exp SM a → String
compileSM (ValueE x)

= "PUSH "++ show (fromSM (valueP x)) ++ "\n"

with the other two cases unchanged. In the ValueE clause, Typeable
has taken the role of the IntBool class above whilst valueP is an
abstraction of toInt.

So far so good! But let’s now build a second function over the
DSL in a similar way; here a pretty-printer:

newtype Pretty a = Pretty {fromPretty :: String}

instance Show a ⇒ Typeable Pretty a where
valueP = Pretty · show

pretty :: Exp Pretty a → String
pretty (ValueE x)

= fromPretty (valueP x)

pretty (EqE e1 e2)
= "("++ pretty e1 ++ " == "++ pretty e2 ++ ")"

pretty (CondE p t f)
= "(if "++ pretty p ++ " then "++ pretty t ++

" else "++ pretty f ++ ")"

This is also perfectly valid and, what’s more, it doesn’t interfere
with compileSM in the sense that neither has restricted the uses
of the DSL. However, now suppose that we wish to apply the two
functions to the same expression, as in:

f :: Exp p a → . . .
f e = . . . (compileSM e) . . . (pretty e) . . .

Type checking the applications of compileSM and pretty will result
in the instantiation of p to two different types, namely SM and
Pretty. f will therefore fail to type check. This is exactly the
problem we saw in Section 5.1 and is a direct result of representing
the target platform in an expression’s type.

8.1 Hidden types
As we have seen earlier, the usual solution is to introduce a rank-2
type. Let’s first try to attach a quantifier to the expression data type:

newtype AnyExp a = AnyExp (∀p. Exp p a)

f may now be rewritten to accept a value of type AnyExp a as its
argument:

f :: AnyExp a → . . .
f (AnyExp e) = . . . (compileSM e) . . . (pretty e) . . .

Does this solve the problem? No! Let’s see why:

AnyExp (ValueE False)

The above expression will not type check due to a missing
Typeable p Bool constraint in the type of AnyExp. Of course,
we can fix this by altering AnyExp’s type:

newtype AnyExp a
= AnyExp (∀p. Typeable p a ⇒ Exp p a)

but this will only get us so far. Let’s now consider an application
of AnyExp to the eMixed expression given in Section 2, which
harbours more than one type of ValueE application:

AnyExp $
CondE

(EqE (ValueE (3 :: Int)) (ValueE (4 :: Int)))
(ValueE (0.0 :: Float))
(ValueE (3.9 :: Float))

AnyExp’s type provides us with the constraint Typeable p Float,
but we also need Typeable p Int. We now have a new problem: the
constraint Typeable p a can only be verified with respect to the
top-level expression type; what the type checker needs is a guarantee
that every type in the expression is typeable on p. To capture this
we need to add a constraint to AnyExp for every type that we ever
expect to encounter in our DSL, thus:

newtype AnyExp a
= AnyExp (∀p. (Typeable p τ1,

Typeable p τ2,
. . .
Typeable p τn)⇒ Exp p a)

which is a mess! Worse still, every platform must now support at
least the types τ1, . . . , τn which defeats the purpose of abstracting
p in the first place!

Suppose instead, we try to constrain the type of each function
over the DSL instead, as in:

f :: (∀p. Exp p a)→ . . .

We encounter exactly the same problem as above, but now the
constraints are at least localised to the function:

f :: (∀p. (Typeable p σ1,
Typeable p σ2,
. . .
Typeable p σm)⇒ Exp p a)→ . . .

where now σ1, . . . , σm is an enumeration of all the types common
to the instances of p that f requires for its definition (SM and Pretty
in the example above). Once again the need to enumerate all these
constraints defeats the purpose of abstracting over the platform.

9. Related work
The separation of interface from implementation is a well understood
problem. Dynamically typed languages such as Ruby and Python
are very flexible in this respect (particularly with regard to DSL
embedding) but offer none of the static guarantees we seek in this
paper. In contrast, Scala [18] is a statically typed language designed
with DSL embedding in mind. Hofer et al. present a technique for
embedding DSLs [10] in Scala which is not unrelated to the tagless
encodings [5, 21] discussed earlier. Their scheme does not consider
the potential consequences of ‘impedance mismatches’ between
multiple implementations, however.

In the functional programming community, Haskell has shown
to be a popular host language for a wide variety of embedded DSLs,
many of which have been designed to exploit parallelism [1, 2, 7,
15]. Nikola [15] only supports values of type Float so the issues
addressed by this paper do not arise. Accelerate [7] is an example
of a more powerful language that has been designed with multiple
targets in mind but where the designers have opted to constrain the
DSL at the point of definition to identify explicitly a single set of
supported types. A number of unpublished articles and mailing list
discussions raise the issue of data type restriction as defined in this
paper: a few offer solutions similar to the one outlined in Section 8. 2

Phantom types [14] are an alternative tool which may be used for
embedding DSLs in which the underlying representation of the DSL
is essentially untyped [8]. This offers the designer flexibility when
writing functions such as compileSM, but means that a carefully
chosen type-safe interface must be exported to the end-user. In our
approach we have chosen not to make such a compromise, though
the lists of types we use are themselves phantom types, having no
impact on a value’s representation. Kiselyov’s work on implicit
configurations [12] also makes use of phantom types and could be
applied in the context of constraining data types, though this has not
been investigated. Pantheon [25] and Eden [9] are examples of how
Template Haskell [26] may be used effectively to manipulate DSLs
at compile-time. While this paper has not focused on compile-time
techniques, we discuss some potential opportunities in this domain
in Section 10.

Dependently typed systems, such as those exhibited by Agda [17]
and Idris [3] have already been shown to be useful in DSL construc-
tion [4, 20]. They, and the work on SHE [16] have inspired many of
the newly-added Haskell features exploited in this paper. However,
as we have already pointed out, we only leverage these features

2 http://www.haskell.org/pipermail/haskell-cafe/
2011-November/096699.html discusses a technique which uses
constraint kinds, for example.

without depending upon them. HLIST [13] is a Haskell library for
working with type-level lists and provides a far greater range of
operations and features than those described here.

10. Future work
10.1 Automatic constraint generation
As hinted at in Section 2, we could add generic constraints to
the constructors of a type (or equally, the class methods of a
tagless representation) mechanically in many cases. In the case
of annotating a GADT, T , of kind ? → ?, for example, a naı̈ve
algorithm for doing this might proceed as follows:

• Parameterise all occurrences of T by a list of types as , giving it
the new kind [?]→ ?→ ?.

• For each of T ’s constructors, C :: τ1 → · · · → τn → T as a ,
add a constraint b ∈ as for each τ of the form T as b.

Template Haskell [26] is an extension to Haskell that provides
facilities for compile-time metaprogramming (CTMP), and a tool
that could be used to implement the above transformation. More
interesting however is the question of whether or not a platform’s
specification (IntBool and its instances, for example) can be gener-
ated from a description of the platform at compile-time. Considering
our CUDA example from Section 6, it might be possible to infer that
the use of conditional operations should be prevented given some
first-class representation of the fact that it is a single instruction,
multiple thread (SIMT) architecture.

10.2 Eliminating type annotations
Somewhat frustrating is the need to supply type annotations when-
ever a list of types is eliminated, viz.:

compileSM (ValueE 3 :: Exp ′[Int] Int)

In the case of compileSM, this burden may be removed by creating
a compiler with a more grounded type signature:

compileSM’ :: Exp ′[Int,Bool] a → String
compileSM’ = compileSM

Such a definition permits the expression compileSM’ (ValueE 3)
while others such as compileSM’ eMixed are rejected as ill-typed.
This technique will not suffice for all targets however. Consider a
Haskell evaluator for our GADT expressions:

evaluate :: Exp as a → a
evaluate (ValueE x) = x
evaluate (EqE e1 e2) = evaluate e1 ≡ evaluate e2
evaluate (CondE p t f) = if evaluate p

then evaluate t
else evaluate f

In this case there are an infinite number of types we could instantiate
as to. This is particularly annoying when, given a principal type,
there is a mechanical translation from its list of (· ∈ ·) constraints
to a minimal satisfying list of types. For example, the type:

(Int ∈ as,Bool ∈ as,Float ∈ as)⇒ Exp as Float

may always be instantiated to:

Exp ′[Int,Bool,Float] Float

Each constraint of the form a ∈ as results in the type a being added
to the list of types we shall pick. We can encode this type-level
function directly, using either GADTs or GHC’s support for type
families [6]:

type family Satisfying (c :: Constraint) :: [?]

type instance Satisfying (a ∈ as) = ′[a]
type instance Satisfying (a ∈ as, c) = a : Satisfying c

However, using such a family proves impossible without a type
annotation due to the issues involved in ‘trapping’ type classes
mentioned in Section 3 (see the case for Trap). Furthermore, we
would then have to convince the compiler that the type Satisfying c
really does satisfy the constraint c. We expect that such a process is
non-trivial but it merits further investigation.

10.2.1 Making use of metaprogramming
If we are willing to ask for the compiler’s help, Template Haskell
provides a function reify which allows one to obtain information
about an identifier at compile-time. This includes an ADT represen-
tation of the identifier’s type, from which we can surely implement
the translation realised as a type family above. Moreover, since such
an instantiation would occur during type checking, the compiler
would be able to verify whether or not the types picked satisfy the
constraints being eliminated. However, due to some of Template
Haskell’s practical limitations, such as not being able to reify names
defined in the same module (see the work of Sheard and Peyton
Jones [26] for more information), we have not yet implemented
such functionality. A key point also is that reify can only operate
on named values. In this respect it would be beneficial to have
something similar to C++’s decltype operator, which is capable of
returning the declared type of an arbitrary expression.

11. Conclusions
We have presented what is essentially a design pattern for the
type-safe separation of an interface from multiple implementations.
Each implementation may enforce different typing requirements
and restrictions on a data type without limiting other uses of the
same type. Interestingly, in some situations we are able to support
an element of re-use that would ordinarily require the introduction
of a rank-2 type, for example when applying multiple functions to
the same DSL expression. This turns out to be useful when building
DSL compilers for exploiting heterogeneous data parallelism, for
example, where we may need to implement a DSL program on more
than one target architecture. When there is a need for higher-rank
types, for example to support the same type of re-use in a tagless
DSL representation, our method applies equally well. The idea of
imposing only generic, rather than concrete, constraints on a data
type thus has a number of advantages.

Somewhat as an aside, we have also found many of Haskell’s
latest type features, in particular first-class constraints and type
promotion, to be very useful, although, as we have noted, it is
possible to achieve the same effect without them.

References
[1] L. Augustsson, H. Mansell, and G. Sittampalam. Paradise: A Two-Stage

DSL Embedded in Haskell. In Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’08, pages
225–228, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-919-7.

[2] E. Axelsson, K. Claessen, M. Sheeran, J. Svenningsson, D. Engdal,
and A. Persson. The Design and Implementation of Feldspar - An
Embedded Language for Digital Signal Processing. In Proceedings
of the 22nd Symposium on Implementation and Application of Func-
tional Languages, Lecture Notes in Computer Science, pages 121–136.
Springer-Verlag, 2010. ISBN 978-3-642-24275-5.

[3] E. C. Brady. IDRIS – Systems Programming Meets Full Dependent
Types. In Proceedings of the 5th ACM Workshop on Programming
Languages Meets Program Verification, PLPV ’11, pages 43–54, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0487-0.

[4] E. C. Brady and K. Hammond. Scrapping your Inefficient Engine:
Using Partial Evaluation to Improve Domain-Specific Language Imple-
mentation. ACM SIGPLAN Notices, 45(9):297–308, September 2010.
ISSN 0362-1340.

[5] J. Carette, O. Kiselyov, and C. chieh Shan. Finally Tagless, Partially
Evaluated: Tagless Staged Interpreters for Simpler Typed Languages.
Journal of Functional Programming, 19:509–543, September 2009.
ISSN 0956-7968.

[6] M. M. T. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow. As-
sociated Types with Class. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’05, pages 1–13, New York, NY, USA, 2005. ACM. ISBN 1-58113-
830-X.

[7] M. M. T. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating Haskell Array Codes with Multicore GPUs. In Proceed-
ings of the 6th Workshop on Declarative Aspects of Multicore Pro-
gramming, DAMP ’11, pages 3–14, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0486-3.

[8] C. Elliott, S. Finne, and O. de Moor. Compiling Embedded Languages.
Journal of Functional Programming, 13(3):455–481, 2003. ISSN 0956-
7968.

[9] K. Hammond, J. Berthold, and R. Loogen. Automatic Skeletons
in Template Haskell. Parallel Processing Letters, 13(3):413–424,
September 2003. ISSN 0129-6264.

[10] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic Em-
bedding of DSLs. In Proceedings of the 7th International Conference
on Generative Programming and Component Engineering, GPCE ’08,
pages 137–148, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-
267-2.

[11] J. Hughes. Restricted Data Types in Haskell. In Proceedings of the
1999 Haskell Workshop. University of Utrecht, Technical Report UU-
CS-1999-28, October 1999.

[12] O. Kiselyov and C. chieh Shan. Functional Pearl: Implicit
Configurations–or, Type Classes Reflect the Values of Types. In Pro-
ceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell ’04,
pages 33–44, New York, NY, USA, 2004. ACM. ISBN 1-58113-850-4.

[13] O. Kiselyov, R. Lämmel, and K. Schupke. Strongly Typed Hetero-
geneous Collections. In Proceedings of the 2004 ACM SIGPLAN
Workshop on Haskell, Haskell ’04, pages 96–107, New York, NY, USA,
2004. ACM. ISBN 1-58113-850-4.

[14] D. Leijen and E. Meijer. Domain-Specific Embedded Compilers. In
Proceedings of the 2nd Conference on Domain-Specific Languages -
Volume 2, DSL’99, pages 109–122, Berkeley, CA, USA, 1999. USENIX
Association.

[15] G. Mainland and G. Morrisett. Nikola: Embedding Compiled GPU
Functions in Haskell. In Proceedings of the 3rd ACM Haskell Sym-
posium, Haskell ’10, pages 67–78, New York, NY, USA, 2010. ACM.
ISBN 978-1-4503-0252-4.

[16] C. McBride. Faking It: Simulating Dependent Types in Haskell. Journal
of Functional Programming, 12:375–392, July 2002. ISSN 0956-7968.

[17] U. Norell. Towards a Practical Programming Language based on
Dependent Type Theory. PhD thesis, Department of Computer Science
and Engineering, Chalmers University of Technology, SE-412 96
Göteborg, Sweden, September 2007.

[18] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,
N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger. An Overview
of the Scala Programming Language. Technical Report IC/2004/64,
EPFL Lausanne, Switzerland, 2004.

[19] D. A. Orchard and T. Schrijvers. Haskell Type Constraints Unleashed.
In Proceedings of the 10th International Symposium on Functional and
Logic Programming, Lecture Notes in Computer Science, pages 56–71.
Springer-Verlag, 2010. ISBN 978-3-642-12251-4.

[20] N. Oury and W. Swierstra. The Power of Pi. In Proceedings of the 13th
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’08, pages 39–50, New York, NY, USA, 2008. ACM. ISBN
978-1-59593-919-7.

[21] E. Pašalić, W. Taha, and T. Sheard. Tagless Staged Interpreters
for Typed Languages. In Proceedings of the 7th ACM SIGPLAN
International Conference on Functional Programming, ICFP ’02, pages
218–229, New York, NY, USA, 2002. ACM. ISBN 1-58113-487-8.

[22] S. Peyton Jones, M. Jones, and E. Meijer. Type Classes: Exploring the
Design Space. In Proceedings of the 1997 Haskell Workshop, 1997.

[23] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical
Type Inference for Arbitrary-Rank Types. Journal of Functional
Programming, 17:1–82, January 2007. ISSN 0956-7968.

[24] T. Schrijvers, S. Peyton Jones, M. Sulzmann, and D. Vytiniotis. Com-
plete and Decidable Type Inference for GADTs. In Proceedings of the
14th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP ’09, pages 341–352, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-332-7.

[25] S. Seefried, M. M. T. Chakravarty, and G. Keller. Optimising Embedded
DSLs Using Template Haskell. In GPCE ’04, volume 3286 of Lecture
Notes in Computer Science, pages 186–205. Springer-Verlag, 2004.
ISBN 3-540-23580-9.

[26] T. Sheard and S. Peyton Jones. Template Meta-Programming for
Haskell. SIGPLAN Notices, 37:60–75, December 2002. ISSN 0362-
1340.

[27] D. Vytiniotis, S. Weirich, and S. Peyton Jones. Boxy Types: Inference
for Higher-Rank Types and Impredicativity. In Proceedings of the 11th
ACM SIGPLAN International Conference on Functional Programming,
ICFP ’06, pages 251–262, New York, NY, USA, 2006. ACM. ISBN
1-59593-309-3.

[28] P. Wadler and S. Blott. How to Make Ad-Hoc Polymorphism Less Ad
Hoc. In Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’89, pages 60–76,
New York, NY, USA, 1989. ACM. ISBN 0-89791-294-2.

[29] B. A. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis,
and J. P. M. aes. Giving Haskell a Promotion. In Proceedings of
the 8th ACM SIGPLAN Workshop on Types in Language Design and
Implementation, TLDI ’12, pages 53–66, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1120-5.

