
Warp Speed Haskell

William Jones
〈wlj05@doc.ic.ac.uk〉
Department of Computing
Imperial College London

Supervisor: Dr. Tony Field 〈ajf@doc.ic.ac.uk〉
Second Marker: Prof. Susan Eisenbach 〈sue@doc.ic.ac.uk〉

December 31, 2009

mailto:wlj05@doc.ic.ac.uk
mailto:ajf@doc.ic.ac.uk
mailto:sue@doc.ic.ac.uk




Abstract

We present an approach to parallel programming that expresses parallelism through
types. We use operator overloading to recognise uses of these types and to build a
representation of the parallelisable components of a program dynamically at run-
time. We implement these ideas within Haskell – a pure functional language with
a rich type system. We explore a simple stream-based model of parallelism that
is expressed in a platform-independent manner through a suitably defined stream
data type and document the development of a code generator for a specific target
architecture – the CUDA platform for Nvidia’s family of General Purpose Graphical
Processing Units (GPGPUs). Experiments with small benchmarks show that ex-
tremely efficient CUDA code can be generated from very high-level Haskell source
code. Haskell’s rewrite system is also shown to be an excellent vehicle for optimis-
ing the performance of parallel programs through source-level program transfor-
mation. We show that the application of optimisation rules targeted specifically at
stream types can lead to substantial performance improvements in some cases.
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Introduction 1
Writing parallel software is hard. Non-deterministic execution, race conditions and
synchronisation are just a few of the common pitfalls encountered when writing
parallel programs. Attempts to rectify these issues in the form of annotations [1]
or libraries [2] have been proposed, but these still entail a degree of program
markup: code that exposes parallelism but that is extraneous to the functionality of
the application. Furthermore, heterogeneous platforms such as graphical processing
units (GPUs) and specialised coprocessors impose further problems such as non-
uniform memory access times and the lack of a single global address space.

Consequently, writing general purpose parallel code remains a non-trivial pro-
cess. Commitments to a paradigm and platform often end up being deeply woven
into an application, and portability and robustness suffer as a result. To illustrate
this, consider the following very simple C program.

1 float f(float );
2

3 ...
4

5 void main(int argc , char **argv) {
6 int i;
7 int N = ...;
8 float *xs = ...;
9 float *ys = ...;

10

11 ...
12

13 for (i = 0; i < N; i++) {
14 ys[i] = f(xs[i]);
15 }
16 }

Here, the function f is applied to each element of an N element array of single-
precision floating point numbers. If the loop is parallelisable, an equivalent OpenMP
(Section 2.6.2) program could be written as follows.
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1 float f(float );
2

3 ...
4

5 void main(int argc , char **argv) {
6 int i;
7 int N = ...;
8 float *xs = ...;
9 float *ys = ...;

10

11 ...
12

13 #pragma omp parallel shared(xs, ys , N) private(i)
14 {
15 #pragma omp for schedule(dynamic , chunk)
16 {
17 for (i = 0; i < N; ++i) {
18 ys[i] = f(xs[i]);
19 }
20 }
21 }
22 }

With a good compiler, this should perform well on any commodity multi-core CPU:
a team of threads will be spawned to tackle different parts of the loop in parallel.
However, it is also well suited to execution on a vector processor, such as a gen-
eral purpose graphical processing unit (GPGPU). We could, for example, rewrite the
program for Nvidia’s CUDA platform (Section 2.4.1):

1 __global__ void kernel(float *xs, float *ys, int N) {
2 int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
3

4 if (thread_id < N) {
5 // f is inlined into the kernel and uses
6 // xs[thread_id ].
7 float f_x = ...;
8

9 ys[thread_id] = f_x;
10 }
11 }
12

13 void main(int argc , char **argv) {
14 ...
15

16 kernel <<<..., ...> >>(...);
17

18 ...
19 }

Both these programs require introducing parallelism at quite a low level. In the
OpenMP code, we must deal with scheduling the threads that execute the loop. In
CUDA, we must rewrite f as a kernel. In both cases, we have no portability. Ideally,
we’d like to forget about these low level details and not write any explicit parallel
code at all.
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1.1 The Idea

In this project we explore parallelism at a much higher level of abstraction. Specif-
ically we investigate how pure functions can allow us to concentrate on the data
and not potential side-effects that affect how it is handled. We look at how the
use of pure functions allows us to make guarantees about the code we parallelise,
letting us generate efficient code without making compromises with regards to ex-
pressiveness. The functional programming language Haskell provides an excellent
testbed for such an undertaking – in Haskell, all functions are pure, and powerful
abstractions can be created using higher-order functions – functions that take other
functions as arguments.

Higher-order functions have been used to study parallelism before; in [3], skele-
tons are introduced as a functional method of capturing patterns of parallel compu-
tation such as farming and pipelining. In this report we look at exposing parallelism
using the type system, specifically by providing data types which are known to be
parallelisable. We explore a stream-based model of parallel computation, which is
simple yet powerful. To illustrate the idea, consider the program below, which is a
Haskell version of our earlier C program that uses streams instead of arrays.

1 f :: H Float → H Float
2 f x = ...
3

4 main :: IO ()
5 main =
6 do
7 let
8 xs = streamFromList ...
9 ys = mapS f xs

10

11 ...

The only difference between this and a normal Haskell program is the H that
annotates the type signature. H changes functions so that they return descriptions
of the values they compute rather than the values themselves, i.e., H is an abstract
syntax tree (AST). While this seems like a substantial change to impose on a func-
tion or program, we later show that this is all that is needed to parallelise this
Haskell program.

1.2 Contributions

In the remainder of this report we document our efforts to parallelise programs
automatically using domain-specific knowledge embedded in the type system. We
make the following contributions:

• We present a Haskell (Section 2.2) framework for runtime code generation
(Section 3.3), and apply it to a stream-based model of computation (Sec-
tion 2.5).

• We use our framework to exploit stream-based parallelism (Section 4.2) on
an example platform, specifically Nvidia’s CUDA platform for their family of
GPGPUs (Section 2.4.1).

• We evaluate our implementation against a serial counterpart, and find that
extremely efficient CUDA code can be generated from pure Haskell source.
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• We discuss how we can exploit rewriting in GHC, the Glasgow Haskell Com-
piler (Section 2.3), and see that it can dramatically improve performance in
some cases.

• We discuss an alternative method for modifying GHC in order to achieve
similar results at compile-time, and compare it with the runtime approach
that forms the core of the project.
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Background 2
In this chapter we present the background for our work, both with respect to
Haskell and its compilers and parallel programming in general. We first define au-
tomatic parallelisation, and look at prior work that has been conducted within the
field. We then detail the programming language Haskell and its flagship compiler,
GHC. Finally we explore some of the platforms and models that are available for
parallel programming in order to evaluate effectively the criteria for successfully
creating high level abstractions thereof.

2.1 Automatic Parallelisation

Automatic parallelisation is the act of removing all responsibility for parallelisa-
tion from the programmer. Parallelisation of this nature has been studied now for
many years [4, 5, 6], but advances in the field have largely come as compromises.
Commonly a language’s expressibility is the first sacrifice, limiting the knowledge
required by the compiler to generate correct parallel code; contrast the progress
that has been made with Fortran 77 with that made with C/C++. Recent years
have seen more activity within this scope – developments such as SPIRAL [7, 8]
(for digital signal processors (DSPs)) and pMatlab [9] 1 (for MATLAB) provide fur-
ther evidence that domain-specific languages (DSLs) are substantially easier to par-
allelise than their general purpose siblings.

But what does it mean for parallelisation to be “automatic” in this context?
Definitions vary in strictness with respect to how much the programmer can do to
“help” the compiler, ranging from nothing at all to dense annotations; this project
takes a somewhat intermediate standpoint based upon the following criteria:

• Parallelisation is not considered automatic if the user consciously writes code
to tell the compiler to parallelise part of a program, as in OpenMP (see Sec-
tion 2.6.2) or CUDA (see Section 2.4.1).

• The autonomy of parallelisation is unaffected if the user chooses to use spe-
cific data structures or libraries which he or she knows to have a parallel
evaluation semantics. Examples of this approach include parallel arrays in
Data Parallel Haskell (DPH, see Section 2.3.4) and distributed arrays in pMat-
lab [9]. The distinction remains that the user is not telling the machine how
or where to parallelise the program, just that parallelism should be exploited.

It is important to note that our definition is not a denouncement of the work
that falls outside its scope; far from it – discussions within the scope of this project
will likely encompass generating this “help” for the compiler as an intermediate
stage of program transformation. Such parallelisation would then fall under our
definition, since the annotations and hints are no longer decisive additions made
by the user.2

1Which bears resemblances to the approach used in DPH, discussed in Section 2.3.4.
2Or rather, the intermediate stage autonomously functions as a user of these technologies.
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2.2 Haskell

Haskell, named after the mathematician and logician Haskell B. Curry, is a purely
functional, lazy programming language. Its inception in Autumn of 1987 was de-
signed to address the lack of a common functional programming language; the
most widely adopted at the time being Miranda, a proprietary product. Over the
last twenty years it has matured as Haskell 98 [10], a diverse platform for users,
developers and researchers alike with its empowering features and open specifica-
tion [11]. 2006 marked the beginning of work on Haskell 98’s successor, Haskell’,3

but at the time of writing the specification is incomplete and thus has yet to be im-
plemented or adopted. There are currently numerous implementations of Haskell
98 in circulation; GHC is arguably the most widely known and is discussed in Sec-
tion 2.3, but there are several such as Hugs [12], NHC [13, 14], YHC [15, 16] and
JHC [17]. One of Haskell’s most powerful features is its support for monads, which
we provide a brief introduction of here.

2.2.1 Monads

Monads are a construction that allow a pure functional language such as Haskell to
handle side-effects such as failure, state and I/O. As an example of how monads can
be used, consider Figure 2.1, where we have two functions f and g (all examples
are adapted from [18]).

1 f :: b → c
2 f x = ...
3

4 g :: a → b
5 g x = ...

Figure 2.1: The functions f and g.

Like all functions in Haskell, f and g are pure – for any argument, they always
return the same result when given that argument. But suppose we wish for f and g
to print out a message (represented by a String) when they are called. In Haskell,
the only way that a function can affect the environment is through the value that it
returns. We therefore need to change the types of f and g—let us call these newly
typed functions f' and g' respectively—to return two values: the first being the
result of applying f or g to the input, and the second being the message. Figure 2.2
gives the types of f' and g'.

1 f' :: b → (c, String)
2 f' = ...
3

4 g' :: a → (b, String)
5 g' = ...

Figure 2.2: The functions f' and g'.

f' and g' are now message producing variants of f and g, as required, but in
solving this problem, we have created another. While we can compose f and g to
combine their computations, this is not the case with f' and g' – their types no
longer match. We can alleviate this issue by writing code such as that in Figure 2.3.

3Pronounced “Haskell Prime.”
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1 let (y, s) = g' x
2 (z, t) = f' y in (z, s ++ t)

Figure 2.3: Code for combining f' and g'.

This kind of “glue code” is likely to be common, so we can refactor it into
a higher order function that allows us to bind f' and g' together conveniently.
Figure 2.4 gives the definition of the binding function.

1 bind :: (b → (c, String )) → ((b, String) → (c, String ))
2 bind f' (y, s) =
3 (z, s ++ t)
4 where
5 (z, t) = f' y

Figure 2.4: The bind function.

With this we can now combine f' and g' by writing bind f' . g'. For
convenience, we will combine bind and composition into the infix operator �= .
Thus we can rewrite bind f' . g' as f'�= g'. You might now ask if there is
an identity message producing function for bind—let us name it unit—such that
unit behaves in an analogous manner to Haskell’s id function (as in Figure 2.5).

1 f . id = id . f = f
2

3 unit �= f = f �= unit = f

Figure 2.5: The unit function’s required behaviour.

The identity on strings with respect to concatenation is the empty string, so we
can define unit as in Figure 2.6.

1 unit :: a → (a, String)
2 unit x =
3 (x, "")

Figure 2.6: The unit function.
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We have in fact just defined Haskell’s Writer monad (apart from the fact that
messages can be of a more general type).4 This is the purpose of monads: they
allow programmers to compose sequences of actions which exhibit side-effects into
larger actions. As mentioned earlier, side-effects encompass a wide range of fea-
tures such as state and I/O. Consequently monads are defined as a type class, as
shown in Figure 2.7.

1 class Monad m where
2 (�= ) :: m a → (a → m b) → m b
3 (� ) :: m a → m a → m b
4 return :: a → m a
5 ...

Figure 2.7: The Monad type class.

If we define:

1 type MessageProducing a = (a, String)

and substitute MessageProducing into m, we see that return is the same as the
unit function we defined earlier: it returns a value that has been lifted into the
monad. �= is exactly the same (albeit its generalised type signature) as its earlier
definition, and � is like �= except that it discards the result produced by its first
argument. �’s definition is not strictly necessary since it can be defined in terms
of�= .

We can illustrate the type class using another example. Consider the type
Maybe, presented in Figure 2.8.

1 data Maybe a
2 = Just a
3 | Nothing

Figure 2.8: The Maybe type.

Maybe represents the possibility of failure, using the Nothing constructor. Its
monadic instance declaration is given in Figure 2.9.

1 instance Monad Maybe where
2 return = Just
3 Just x �= f = f x
4 Nothing �= f = Nothing

Figure 2.9: Maybe’s monadic instance declaration.

We see that lifting a value x into the Maybe monad is the same as writing Just
x, and that�= ’s job is to propagate failure by moving Nothings through a chain
of computations that may fail. This ability to sequentially compose actions is what
makes monads so useful in a language such as Haskell.

4Defined in Control.Monad.Writer.
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2.3 The Glasgow Haskell Compiler

Commonly referred to as The Glasgow Haskell Compiler or simply GHC, the Glori-
ous Glasgow Haskell Compilation System is an open source optimising compiler for
Haskell that is itself written mostly in Haskell.5 GHC is compliant with the Haskell
98 standard and provides a large number of optional extensions. It is an imple-
mentation of the Spineless Tagless G-Machine, an abstract machine that allows for
the interpretation of functional programming languages on commodity hardware
[19, 11].

The GHC project started soon after the specification for Haskell 1.0 had been fi-
nalised in January 1989 when Kevin Hammond at the University of Glasgow began
working on a prototype compiler in Lazy-ML. Whilst this first version was resource
hungry and exposed limitations and drawbacks in both the use of Lazy-ML and
Haskell’s design, it had almost completely implemented the Haskell 1.0 specifica-
tion by June of the same year. In the Autumn, a team consisting of Cordelia Hall,
Will Partain and Simon Peyton-Jones completely redesigned GHC with the idea that
it would be written in Haskell – and thus bootstrapped by the prototype compiler
[11]. It is this incarnation that has evolved into the current version of GHC.

2.3.1 Compiler Architecture

GHC’s compilation process is structured as a pipeline in which a Haskell program
is successively refined before delivery of a binary (or whichever output the user has
requested); this is illustrated in Figure 2.10. At a first approximation, a program is
transformed through four intermediate representations:

HsSyn

HsSyn is a collection of data types that describe the full abstract syntax of Haskell.
It is capable of representing all of the “sugar”6 that Haskell offers and is therefore
the largest and most complex of GHC’s intermediate representations. All error
checking procedures operate on the HsSyn type (with a few exceptions, discussed
later), giving GHC the ability to produce error messages that relate to what the
user wrote, not some stripped down internal manifestation [20].

HsSyn is parameterised over the type of terms which it contains, which is also
indicative of which phase of the compilation it is in:

• The parser generates terms parameterised by the RdrName type. To a degree
a RdrName is what the programmer originally wrote. It can be thought of
as containing either one or two strings – these contents represent names and
qualified names respectively.

• The renamer generates terms parameterised by the Name type, which can
be conceptualised as a RdrName paired with a unique value. This prevents
scoping conflicts and allows GHC to check that all names referencing a single
binding occurrence share the same unique value.

• The typechecker generates terms parameterised by the Id type, which is yet
another pairing; this time of a Name and a type.

These three parts of the pipeline comprise what is known as the front end of
GHC [20].

5Strictly speaking the code is mostly Literate Haskell, a variant of the language where human read-
ability is the primary goal.

6“(Syntactic) Sugar” is a collective term for features in a language that do not affect its functionality
but merely make it easier or more natural for a programmer to write code.
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Haskell Source (*.hs)

Parsing

Renaming

HsSyn RdrName

Typechecking

HsSyn Name

Desugaring

HsSyn Id

Optimisation

CoreExpr

Tidying

CoreExpr

Normalisation

CoreExpr

Interface File Generation

Interface File (*.hi)Stg Transformation

CoreExpr

Code Generation

Stg

C Pretty Printing

Cmm

Machine Code Generation

C (*.hc) Assembly (*.s)

Figure 2.10: The GHC Compilation Pipeline, adapted from [20].
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Core

Core is GHC’s implementation of System FC , an extension of System F7 which is
expressive enough to support features such as newtypes and generalised abstract
data types (GADTs) [21, 20]. It pervades the next five phases of the compilation:

• The desugarer transforms HsSyn into Core. Core is a dramatically smaller
data type than HsSyn and, as such, a lot of information deemed unnecessary
is discarded. Errors can be produced at this point, but these often pertain to
more generic problems than those noted in the front end (pattern matching
overlaps, for example).

• The optimiser is composed of several passes—known collectively as the Sim-
plCore pass—which apply a series of Core-to-Core transformations; cur-
rently these include the following [20]:

1. Simplification and inlining [22, 23]

2. Float-out and float-in transformations [24]

3. Strictness analysis

4. Liberate-case transformations

5. Constructor-specialisation

6. Common sub-expression elimination

• The tidying phase (denoted CoreTidy internally) cleans up the generated
Core so that it is in a form suitable for processing later in the pipeline.

At this point two independent operations are applied:

• The Core is transformed and output into an interface file. An interface file
contains information accumulated by the compiler that allows it to make ad-
ditional safety checks and assertions when using and linking the correspond-
ing code. In an unoptimising compilation it is little more than a collection of
type signatures, but when the optimiser is active a lot more data about the
applied transformations is logged, resulting in a larger file.

• A final Core-to-Core pass named CorePrep translates the Core into Admin-
istrative Normal Form (ANF), a canonical form of the program in which all
arguments are either variables or literals.

The last part, CorePrep, is the first part of what is known as the back end of
GHC, comprising Stg and Cmm.

Stg

Stg (an abbreviation for Spineless Tagless G-Machine, the abstract machine on
which GHC is built [19, 11]) is the last form a program takes before code gen-
eration occurs. It is produced by the CoreToStg translation, although this trans-
formation performs little work due to the similarities between Core in ANF and
Stg.

The differences between Stg and its predecessor are mainly a result of further
normalisation and expansion – constructor and primitive operator applications are
saturated, lambda forms can only appear on the right hand side of a let binding
and type information is largely discarded [20]. Stg retains some decorations [20]
that are not present in the Core, particularly:

7Also known as the polymorphic lambda calculus or the second-order lambda calculus.
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1 forkIO :: IO () → IO ThreadId
2 forkOS :: IO () → IO ThreadId

Figure 2.11: Functions for forking threads in Concurrent Haskell.

• All lambda forms list their free variables. These are the variables in the body
of the expression that are bound by the let.

• Case expressions list their live variables, that is, the variables that will be
reachable from their continuation.

Static Reference Tables (SRTs) are also added to the program’s lambda forms.
SRTs contain references that enable the garbage collector to locate constant ap-
plicative forms (CAFs)8 relating to the object.

Cmm

Cmm is produced from Stg by GHC’s code generator, and is an implementation of
C−− [25].9 The decision to use a high level target language like Cmm gives GHC
the ability to work with a variety of back ends, and indeed it currently supports
native (assembly) and C code generation in this manner [20]. This part of the
compilation process is where code generation actually occurs.

2.3.2 Concurrent Haskell

Concurrent Haskell [26] refers to GHC’s Control.Concurrent library, which
provides mechanisms for writing threaded (and therefore non-deterministic) pro-
grams in Haskell. It offers two functions for forking threads, shown in Figure 2.11.

• forkIO spawns a thread that is scheduled by the GHC runtime system,
known as a lightweight thread.10 Such threads are usually one or two times
more efficient (in terms of both time and space) than native threads (those
managed by the operating system) [27].

• forkOS creates a native thread, referred to as a bound thread. Bound threads
may be cross foreign interfaces where other parts of the program expect op-
erating system threads, and may carry thread-local state.

In order to alleviate the potential for unnecessary blocking, GHC schedules
lightweight threads onto underlying operating system threads.11 A lightweight
thread may be scheduled onto many different native threads in its lifetime [27].

Synchronisation can be accomplished using mutable shared variables12 and locks,
or through GHC’s support for Software Transactional Memory (STM). Software
Transactional Memory is an optimistic alternative to lock-based synchronisation
that views all operations on memory as transactions. Transactions execute in the
context of a thread, and are atomic; between a transaction’s initialization and com-
pletion there is no way for another thread to observe an intermediate state [28].
Concurrent Haskell’s interface to STM is the Control.Concurrent.STM library,
and is particularly comprehensive, supporting composable transactions and sophis-
ticated failure handling operations [29, 27].

8A CAF is an expression that is only evaluated once within the execution of a program.
9Pronounced “C Minus Minus.”

10Also known as a green thread.
11When the Haskell program in question is linked against the multi-threaded version of the GHC

runtime (through use of the -threaded option when building).
12MVars in the Control.Concurrent library.
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1 infixr 0 `par `
2 infixr 1 `seq `
3

4 par :: a → b → b
5 seq :: a → b → b

Figure 2.12: Annotation functions provided by the Control.Parallel library.

1 import Control.Parallel
2

3 nFib :: Int → Int
4 nFib n | n <= 1 = 1
5 | otherwise = par x (seq y (x + y + 1))
6 where
7 x = nFib (n - 1)
8 y = nFib (n - 2)

Figure 2.13: Parallelising the computation of the nth Fibonacci number with anno-
tation functions.

2.3.3 Parallel Haskell

Parallel Haskell encompasses GHC’s support for running Haskell on multiple pro-
cessors. Primarily this is achieved either through the direct mapping of threads
(provided by Concurrent Haskell) onto processors or by the use of so called anno-
tation functions [27], as in Figure 2.12.

• The expression par x y hints that x could be executed in parallel with y.
Specifically, the call to par sparks the evaluation of x to weak head normal
form (WHNF). It is important to realise that sparks are not threads; sparks
are queued in first in, first out (FIFO) order and then progressively converted
into real threads whenever the runtime detects a free (idle) core.

• A call seq x y ensures that x is evaluated before y and returns y as its re-
sult. seq is strict with respect to both of its arguments, which means that the
compiler may occasionally rewrite its applications unfavourably. For these
scenarios there is an alternative, pseq, that is strict only in its first argu-
ment.13

We can illustrate the use of par and seq using a simple example (adapted from
[27]) that parallelises the retrieval of the nth Fibonacci number; this is shown in
Figure 2.13.

In this program we see that, for cases other than the zeroth and first Fibonacci
numbers, a spark is created to evaluate nFib (n - 1). seq’s importance is now
apparent: for the parallel evaluation to have any benefit we must force the parent
thread to evaluate nFib (n - 2) before returning the inclusive sum.

In their basic forms par and seq are examples of control parallelism – the
evaluation of arbitrary subexpressions in parallel. More elaborate parallelisation
strategies have been built around these functions14 that express higher level con-
structs such as data parallelism (Section 2.3.4), divide and conquer and pipelining
[30, 27]. Such abstractions demonstrate the power of annotation functions but do
not remove the need for the programmer to understand their purpose altogether.

13Both par and pseq are defined in the Control.Parallel library.
14Available in the Control.Parallel.Strategies library.
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Figure 2.14: Removing unnecessary synchronisation points between data parallel
operations.

2.3.4 Data Parallel Haskell

Data Parallelism (also flat data parallelism) is the act of performing the same task
on different pieces of data in parallel. Focus is placed on the distribution of data as
opposed to the processing, as in control parallelism. Nested Data Parallelism (NDP)
describes what happens when flat data parallelism occurs at many levels, over an
array of arrays, for example.

Data Parallel Haskell (DPH) is a relatively recent development in the GHC code-
base working towards an implementation of nested data parallelism in Haskell
[31]. The key abstraction is the parallel array, a strictly evaluated data structure.
The strictness property means that in evaluating one element of a parallel array,
the remaining elements will be demanded also and therefore might be evaluated
in parallel. Syntactically they bear a resemblance to lists, but there are several
differences:

• Parallel arrays are denoted with [: and :]. Analogous to lists, [:a:] rep-
resents the parallel array with elements of type a.

• Pattern matching is limited – the pattern [:x, y, z:] matches a parallel
array with exactly three elements which can be matched to x, y and z respec-
tively. Parallel arrays are not inductively defined; there is no notion of “cons”
(:) as there is with lists.

Such semantics mean that parallel arrays have excellent optimisation potential
[32], indeed DPH offers several possibilities for performance gain:
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• Flattening (or vectorisation) transforms all operations on nested data struc-
tures into their equivalents on flat data structures, which allows for efficient
implementation on commodity hardware.

• Redundant synchronisation points between computation are exposed and can
be removed without affecting the overall result (see Figure 2.14). These can
be implemented using rewrite rules at the Haskell source level (supported by
GHC).

• Array contraction reduces both space and time overhead, and is implemented
using a technique discussed in [32] which the authors call stream fusion.

All these features leave DPH in a favourable light, but unfortunately much of
that described in [31] and [32] is still work in progress. This leaves a current ver-
sion which is an actively developed compromise between elegance and efficiency,
with major changes happening without warning.

2.4 Parallel Architectures

In this section some existing parallel architectures and their respective program-
ming models are discussed. Later on, a brief evaluation of their benefits and short-
comings with respect to this project is presented.

2.4.1 CUDA

CUDA (Compute Unified Device Architecture) is a generalised parallel computing
platform developed by Nvidia atop of their range of Graphical Processing Units
(GPUs). It is a massively multi-threaded architecture (described by Nvidia as sin-
gle instruction, multiple thread (SIMT)) which uses busy thread scheduling to hide
memory latency [33]. The motivation for exposing the capabilities of GPUs to gen-
eral purpose computing is apparent - a GPU dedicates many more transistors to
data processing—potentially floating point ALUs—than a traditional CPU, allow-
ing many programs utilising CUDA to run an order of magnitude faster than their
CPU-only counterparts [34, 35, 36].

Concepts and Nomenclature

Applications harness CUDA by instructing the CPU (the host) to delegate the pro-
cessing of various kernels to the GPU (the device). Each kernel is run by N threads
in parallel on the device. Threads are grouped into blocks, with multiple blocks
forming a grid upon which the kernel is executed. Both block and grid dimensions
can be specified on a per-kernel basis, described in the next section.

At a physical level, a CUDA-capable GPU consists of copious multi-processors
(see Figure 2.15). Each multi-processor is equipped with several scalar processors
(SPs) (the exact number is platform dependent), two special functional units (SFUs)
(used for transcendentals) and four types of on-board memory [33]:

• One set of 32 registers per SP.

• A shared memory that can be accessed by all the SPs.

• A read-only constant cache—again accessible from all SPs—that speeds up
reads from the constant space held in device memory.

• A read-only texture cache that provides the same functionally as the constant
cache, only for the texture space in device memory. Access to the texture
cache is via a texture unit that implements the necessary addressing modes
and filtering operations to work correctly with texture memory.
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ity.
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1 for (i = 0; i < N; i++) {
2 xs[i] = xs[i] * xs[i];
3 }

Figure 2.16: Squaring an array with serial C code.

At runtime, the threads are scheduled in groups of 32, known as warps,‡ with
each thread being mapped onto one SP.15 Only one kernel may be present on the
device at a time, but the CPU is free to perform other operations once the device
has been allocated work.

Programming Interface

CUDA kernels and their host programs are written in a subset of C with a small
base of extensions; a proprietary software development kit (SDK) available from
Nvidia16 provides the necessary toolchain and libraries. The most notable differ-
ences with ANSI C are the prohibitions of recursive functions and function pointers,
which would cause problems for CUDA’s evaluation model.17 One might imagine
that the use of C means a significantly reduced learning curve for developers than
that imposed by say, the use of a DSL, and to an extent this is the case. How-
ever, CUDA is not without its idiosyncrasies, the understanding of which will often
enable the creation of more elegant, more performant solutions [33, 37]:

• The mindset associated with CUDA programming is very different to that
one must adapt when writing conventional serial code. Threads are much
more lightweight entities than their CPU-world counterparts, and can often
be used at a much finer granularity than one might expect; one per pixel, for
example, is not uncommon.

• Developers should ensure that they use the whole device, spawning at least as
many blocks as multiprocessors and multiples of 32 threads per block in order
to utilise the card as best as possible.

• Memory access comes at a high price, but if each thread in a warp uses a
different address then the accesses will be coalesced. Equally important is
the consideration of whether a thread needs to load data at all, since other
threads may load data which exhibits spatial locality.

• Thread synchronisation is limited to threads within a block (via a call to
__syncthreads()) – there is no “across the card” barrier facility.

The first point is best illustrated by an example. Figure 2.16 contains a trivial
serial for-loop that squares an array of single-precision floating point numbers, xs,
which we assume has already been initialised. In contrast, Figure 2.17 constructs
the equivalent CUDA kernel, which is a C function annotated with the __global__
keyword. Since the resulting compiled code will be designed to run on the device,
any data it processes must also be on the card. Consequently CUDA programs
typically entail a certain amount of “boilerplate” code involving memory copying
and initialisation; this code has been omitted to preserve clarity.

We observe a couple of key differences, which also serve to emphasize some of
the other points made above:

‡Hence the title of this project.
15The term half-warp is also used as one might expect, referring to either the first or second half of a

warp.
16http://www.nvidia.com/object/cuda_get.html
17That is to say, each of hundreds of threads stepping through the same instruction at any one point.
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1 __global__ void squareArray(float *xs, int N) {
2 int i = blockIdx.x * blockDim.x + threadIdx.x;
3

4 if (i < N) {
5 xs[i] = xs[i] * xs[i];
6 }
7 }

Figure 2.17: Squaring an array in parallel using CUDA.

1 dim3 dimBlock (256);
2 dim3 dimGrid(N / dimBlock.x + 1);
3

4 squareArray <<<dimGrid , dimBlock >>>(xsDevice , N);

Figure 2.18: Calling the squareArray kernel from C.

1. There is no for-loop: rather than squaring N items sequentially there are now
N threads each squaring one item in parallel. This is a pattern commonly
seen in CUDA that can be additionally extended to nested loops using the
various levels of block and thread indexing available.

2. Indices are calculated from the thread’s location in the grid; since each thread
has a unique location the memory addresses requested by each warp will not
collide and the accesses will be coalesced.

As mentioned earlier the grid and block sizes can be chosen on a per-kernel
basis. Specifically they are determined at the kernel’s point of call through CUDA’s
<<<. . .>>> syntax. Figure 2.18 depicts an example in which the squareArray
kernel is called with a block size of 256 and a grid size that ensures there is at
least one thread per array element. The ability to use runtime variables in deciding
grid and block size contributes to the portability that CUDA enjoys somewhat more
than other parallel platforms, but peak performance will always depend on the
exact generation and model of the Nvidia GPU the code is running on.

2.4.2 The Cell Broadband Engine Architecture

The Cell Broadband Engine Architecture (usually referred to as just Cell or Cell
BE) is based on a multi-core chip consisting of a Power Processing Element (PPE)
and eight Synergistic Processing Elements (SPEs), linked together by an Element
Interconnect Bus (EIB) [38]. The bus is composed of four uni-directional channels
that connect the processing cores and the other important on-board components,
namely the Memory Interface Controller (MIC) and two I/O interfaces. This makes
for a configuration of twelve interlinked units as shown in Figure 2.19.

The Power Processing Element

The PPE is a 64-bit two-way multi-threaded core based on IBM’s Power Architec-
ture. It supports a reduced instruction set computer (RISC) architecture and acts as
the controller for the other elements, as such it has supplemental instructions for
starting, stopping and scheduling tasks on the SPEs [38]. Unlike the SPEs it can
also read from and write to main memory, as well as the local memories of the
SPEs themselves. Consequently it is the PPE that runs the operating system, and
typically the top-level thread of an application [39].
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Figure 2.19: The Cell Processor.

The Synergistic Processing Elements

Each SPE is also a RISC processor, specialised for floating point calculations. As
mentioned above only the PPE can communicate with main memory; to this end
all of the SPEs are equipped with an asynchronous direct memory access (DMA)
controller. Both the PPE and the SPEs are single instruction, multiple data (SIMD)
processors,18 with the SPEs handling 128-bit instructions for both single and dou-
ble precision operations [40].

Programming Interface

Applications for the Cell are written in C with a set of hardware-specific extensions:

• SIMD computation is facilitated by intrinsics that support vectorised data
types, as well as functions that wrap the underlying VMX instruction set that
operates on them.

• Threading and SPE control is achieved using library calls,19 which form a set
of APIs for working with the synergistic units.

Separate applications must be written for the PPE and the SPEs – the SPEs may
all run identical kernels but this does not always yield optimal results as discussed
below. Strictly speaking only the PPE needs to be programmed, but if one wants
to realise the Cell’s potential then the SPEs must be used effectively, which in this
context means considering factors such as the following:

• SPE assignment – Dividing a problem into a number of independent sub-
problems and solving those simultaneously is often a natural way to paral-
lelise the task at hand, but the Cell’s ring structure offers the potential for

18Although they do not share the same SIMD capabilities; a fact that contributes to their heterogeneity.
19Provided by libspe2 at the time of writing.
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pipelining between SPEs running different kernels, with varying performance
returns depending on the application.

• Memory management – The forced use of DMA on the SPEs means that ef-
ficient memory usage is critical to performance. The local memories of the
SPEs can be used as caches but they do not function as such automatically in
that their use is not transparent to the programmer [39].

The Cell has seen adoption in the image processing and digital media markets,
with Sony’s Playstation 3 being perhaps the most widespread example of its use.
But with a challenging programming model that emphasizes peak computational
throughput over code simplicity [41], it has yet to gain a strong position in general
purpose computing.

2.5 Stream Programming

Stream programming is a paradigm not dissimilar to SIMD that is concerned with
the application of concurrent kernels to a sequence of data – a stream. It was
originally developed for media and imaging [42] (see Section 2.4.1 for a discussion
of its use in CUDA), but is applicable to a wide range of problems and fields. The
stream programming model has been developed over many years [43], but they
remain an active area of research; we examine a few of the contributions.

2.5.1 StreaMIT

Developed at MIT, StreaMIT is a language and compiler toolchain that enables
the development of stream-based applications at a high level of abstraction [44].
StreaMIT was implemented initially as an extension to the Kopi Java compiler, and
has evolved into a successful platform on which much research has been conducted
[45, 46].

Programming in StreaMIT focuses around the construction of a stream graph,
which is optimised by the compiler for the target architecture. A stream graph is
composed of a number of blocks which define operations upon the streams passing
through them. The smallest block is the filter, whose body consists of code that
operates on a single input to produce a single output. More complex kernels can be
built up using composite blocks [47]:

• Pipelines connect the inputs and outputs of a number of child streams.

• Split-joins allow computation to take place in parallel, possibly on different
parts of the input stream.

• Feedback loops have a body stream, the output of which is split into two
streams. The first leaves the loop, whilst the second is joined with the next
input and passed back into the body stream.

Figure 2.20 gives examples of each of these composite blocks in operation.
All blocks work on the same basis of single input, single output, and so may be
recursively composed to form applications of arbitrary complexity. Each block is
also obliged to declare its data rate, that is how much input and output it consumes
and produces per use; such rates may be static or dynamic [48, 47].

Syntactically StreaMIT bears some resemblances to Java and other imperative
languages; semantically it is a rich system that also supports messaging and pa-
rameterised stream types.20

20Analogous to C++’s templates; see [48] for more information.
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Figure 2.20: Composite blocks in StreaMIT, adapted from [48].

2.5.2 Streamware

Streamware is an effort to move away from dedicated stream processors and imple-
ment the stream programming model on general purpose multi-core CPUs. Specif-
ically it exposes a runtime system that can be targeted by higher-level compilers
[42]; essentially a stream virtual machine (SVM). From the compiler’s perspective,
Streamware provides a set of local memories (LMs), used for storing stream data,
and kernel processors, for executing kernels.

What distinguishes Streamware from previous SVMs is that the runtime ac-
cepts a model of the physical machine as input. Compilation then generates a
parameterised model, into which machine dependent values are substituted upon
execution. There are three such parameters of importance in Streamware:

• NUM_DMAS represents the number of LMs available in the underlying ma-
chine.

• NPROC[ndma] is the number of kernel processors sharing the LM with iden-
tifier ndma.

• LM_SIZE[ndma] defines the capacity (in bytes) of the LM with identifier
ndma.

From these values the runtime’s control thread can calculate derived parame-
ters, such as those relating to strip size when optimising bulk memory operations.
In many cases these performance gains justify the overheads of having an inter-
mediate runtime system, with some applications approaching linear scaling factors
[42].

Unfortunately the youth of the research means that little has been constructed
atop its foundations, though it offers a promising insight into general purpose
stream-based computing.

2.5.3 Streams and OpenMP

In [49], Gaster presents an implementation of streams that builds upon OpenMP
(Section 2.6.2). It consists of a C++ API and a “modest set of extensions,” and aims
to address OpenMP’s lack of consideration for non-shared memories, exploiting
accelerator cores such as those found in GPUs (Section 2.4.1) and heterogeneous
processors like the Cell (Section 2.4.2).

The C++ API is not much more than a declarative wrapper around the lan-
guage’s arrays, and can therefore be used in programs that don’t utilise OpenMP.
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1 double sumSquares(double xsArray[], int size) {
2 double sum = 0.0;
3 int i;
4

5 Stream *xs = Stream.create(
6 xsArray , // The stream 's backing array.
7 size , // The stream 's size.
8 CHUNK_SIZE , // The chunk size.
9 LINEAR_FORWARD // The access pattern to use.

10 );
11

12 #pragma omp parallel reduction (+:sum) connect(xs)
13 {
14 while (!xs->endOfStream(xs)) {
15 double x = xs->getNextElement ();
16

17 if (xs->streamActive ()) {
18 sum += x;
19 }
20 }
21 }
22

23 xs->destroy ();
24

25 return sum;
26 }

Figure 2.21: Using the parameterised Stream<T> type and the OpenMP connect
clause in Gaster’s model of streams. Adapted from [49].
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The real power of the application comes from the addition of the connect clause
to OpenMP’s parallel construct. Conceptually, connect joins a stream defined
outside a parallel region to the gang of threads executing the contained block.
On the block’s termination, data is flushed to the stream defined in the outer scope.
An example of this behaviour is shown in Figure 2.21.

Gaster also considers formalisation: an operational semantics is defined for the
provided API that reasons about the evaluation of programs utilising streams.

2.6 Other Programming Models

Streams are a very simple and powerful model for parallel programming. They are
by no means the only model, however. Here we look at some other models which
are used for writing parallel applications.

2.6.1 MPI

MPI (Message-Passing Interface) is a message-passing library interface specification
[2] that allows many computers to communicate with one another. It is main-
tained and developed by the MPI Forum, a broad group of vendors, developers and
specialists, and is currently available in two versions:

• MPI 1.2 (MPI-1 in common usage, where the minor number is omitted) is
the most current revision of MPI-1, and modifies MPI 1.0 only through the
addition of clarifications and corrections.

• MPI 2.1—MPI-2 as indicated above—adds completely new functionality to
its predecessor, such as support for parallel I/O and bindings for Fortran 90
and C/C++.

MPI provides a plethora of capabilities, all of which are underpinned by a set
of core concepts [2].

Processes

Processes are the building blocks of an MPI application. They execute autonomously
in a multiple instruction, multiple data (MIMD) style, communicating using the MPI
primitives discussed later in this section. Consequently there is no requirement for
any pair of processes to share the same program code (or even architecture if they
are running on different platforms).

Point-to-Point Communication

Two processes may communicate directly with each through use of send and receive
primitives, exposed as MPI_Send and MPI_Recv respectively. Such sending and
receiving forms the basis of MPI’s communication mechanism, with support for
both blocking (synchronous) and non-blocking (asynchronous) sending available. A
few esoteric mechanisms, such as the ready send, where a send attempt will fail if
a matching receive has not been posted prior, are also specified.

Collective Communication

Collective communication is defined as “communication that involves a group or
group of processes,” [2] and forms a large portion of MPI. Numerous methods for
such communication exist in MPI, some of which are shown in Figure 2.22.

Collective operations do not operate on groups of processes, rather communi-
cators, a layer of abstraction inserted by MPI that pairs groups with the notion of
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context. Contexts partition the communication space such that messages received
in one context cannot be received in another; to this end there are two types of
communicator:

• Intra-communicators are concerned with processes in the same group. Oper-
ations such as those depicted in Figure 2.22 fall within the domain of intra-
communication.

• Inter-communicators allow the exchange of data between different groups,
an action which is initiated by a point-to-point communication occurring be-
tween two processes in separate groups.

Initially there is just one communicator, known as MPI_COMM_WORLD, from
which other communicators can be constructed through progressive “slicing” of
the communication space. The decision to prohibit creating communicators from
scratch provides additional guarantees of safety, though the specification does recog-
nise it as a “chicken and egg” scenario [2].

Implementations

The initial implementation of MPI was MPICH [50], a project which has demon-
strated the application and scalability of MPI-1 on supercomputers and cluster plat-
forms [51]. MPICH2 has since superseded it, bringing a new implementation and
support for MPI-2.21

Bindings are also available for a variety of other languages, including Python
(mpi4py, PyMPI and MYMPI to name but a few), and OCaml (the OCamlMPI mod-
ule). Success with Java has been limited due to the language’s lack of explicit
pointers and memory management.

2.6.2 OpenMP

Open Multi-Processing (OpenMP) is an API presented as a set of compiler direc-
tives that allows multi-platform, shared memory multiprogramming in C, C++ and
Fortran. In each case the base language remains unchanged, leaving the imple-
mentation design and detail to the compiler writer [1]. Designed to be platform
independent, OpenMP’s structure can be partitioned into five distinct parts [52]:

Thread Creation

The key to thread creation in OpenMP is the parallel construct. When a thread
reaches an instance of parallel, a team of threads is spawned to execute the
region contained within it. Consider Figure 2.23, a (contrived) example that uses
multiple threads to print a string in C/C++.

The thread that encounters the parallel construct becomes the master of the
team that is created as a result. Since parallel regions can be nested, a thread
may master one group and merely participate in another.22 There is an implied
barrier at the end of a parallel instance’s execution, at which point the team is
disbanded and only the master thread continues processing [1, 52].

Work Sharing

OpenMP’s work sharing directives must appear within a parallel region, and
control how work is distributed amongst a team of threads. There are currently
three constructs that fall into this category (excluding the Fortran-specific workshare

21http://www.mcs.anl.gov/research/projects/mpich2/index.php
22Though this depends on the compiler’s support for nested parallel constructs.
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1 #include <omp.h>
2 #include <stdio.h>
3

4 int main(int argc , char **argv) {
5 #pragma omp parallel
6 {
7 printf("Hello world!\n");
8 }
9

10 return 0;
11 }

Figure 2.23: Thread creation using the C language bindings for OpenMP.

1 #pragma omp sections
2 {
3 #pragma omp section
4 ...
5

6 #pragma omp section
7 ...
8 }

Figure 2.24: Use of the OpenMP sections construct in the C language
bindings.

construct); in each case the team of threads referenced is that created by the in-
nermost parallel instance:

• The loop construct (designated by the for construct in C/C++) segregates
the team of threads so that the iterations of one or more associated loops
are divided amongst the group.23 As the keyword hints, in C/C++ the loops
in question must be for-loops. They must also obey the rules set out in Sec-
tion 2.5.1—“Loop Construct”—of [52].

• The sections construct provides a model akin to that with which most par-
allel programmers will likely be familiar, that is the declaration of structured
tasks which are to be executed in parallel. Individual blocks are delimited
with the section construct, vis Figure 2.24. Each section is executed
once, with the scheduling order being implementation specific.

• The single construct specifies that the child region should be processed by
one thread only, which is not necessarily the master of the team.

• The master construct specifies that the enclosed region should be executed
by the master thread only. For this reason it is also sometimes considered a
synchronisation primitive, the rest of which are discussed later.

Both the loop and sections constructs may be “chained” onto the declaration
of a parallel region to create a combined parallel worksharing construct. Such
a construct is semantically equivalent to a parallel instance enclosing only the
chosen work sharing construct; Figure 2.25 gives an example. Whether work shar-
ing constructs are included plainly or combinatorially, certain restrictions govern
their usage, outlined in [52]:

23The programmer may use the schedule clause to control exactly how work is assigned.
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1 #pragma omp parallel for
2 {
3 for (...) {
4 ...
5 }
6 }
7

8 ...
9

10 #pragma omp parallel sections
11 {
12 #pragma omp section
13 ...
14

15 #pragma omp section
16 ...
17 }

Figure 2.25: Combined parallel constructs in the C language bindings for OpenMP.

1. Each work sharing region must be encountered either by all threads in a team
or by none at all.

2. The sequence in which worksharing regions are encountered must be identi-
cal for all threads in a team.

By default a work sharing region mirrors the parallel construct in that there
is an implicit barrier upon its completion. This can however be removed (using
the nowait clause), allowing threads which complete early to continue executing
code within their enclosing region.

Data Environment

The data environment directives provided by OpenMP allow the control of data
visibility and access within a parallel region. There are three options when
choosing the locality of data:

• The shared clause accepts a list of variables that are in scope at the point
at which it is defined. Any reference to a variable in this list will refer to the
location of the original variable, regardless of the thread in which the refer-
ence appears. Synchronisation remains the responsibility of the programmer,
who must ensure that the variable is active for the duration of the threaded
region.

• The private clause accepts a list of variables in the same manner as shared.
References to list items refer to new, thread local copies of the original item.
The item is not initialised24 and its value is not kept for usage outside the
parallel region. By default loop counters in work sharing regions are
private.

• The threadprivate clause operates identically to the private clause with
one exception: threadprivate variables maintain their value across parallel
regions.

24Though the firstprivate and lastprivate directives can be used to annotate instances where
this is not the case.

27



Synchronisation

Synchronisation clauses can be used to demarcate areas in the program where
thread interleaving would otherwise cause problems:

• critical and atomic specify areas that must be entered by only one thread
at a time. In particular, atomic hints to the compiler that special machine
instructions should be used for better performance, but the compiler is per-
mitted to ignore this and act as if critical had been used.

• A barrier creates an explicit barrier at the point it is declared, causing
all threads in the innermost team to wait for each other before continuing
execution.

• The ordered clause can be used to define a region that is executed in the
order that the innermost loop construct would have executed had it been
processed sequentially.

The nowait clause mentioned earlier is also categorised as a synchronisation
directive; as stated its purpose is to remove the barrier that is implicitly present at
the end of all work sharing regions.

Runtime Library and Environment Variables

OpenMP’s runtime library provides definitions for the important data types and
functions that allow developers to work with its capabilities during program exe-
cution:

• Execution environment routines relate to threads and their parallel scope.
Functions for managing the number of running threads (omp_get,set_num_threads())
and working with team sizes (omp_get_team_size()) are examples of this
type of procedure.

• Lock functions form the basis of general purpose synchronisation within OpenMP,
and work with the lock data types also defined in OpenMP’s runtime library.
Both simple locks—which may only be locked once before being unlocked—
and nested locks—which may be locked multiple times (by the same owning
thread) before being unlocked—are supported.

• Two timing procedures support a “portable wall clock timer” [52].

Implementations

OpenMP has seen considerable adoption in commercial products, with vendors
such as IBM, Intel, Sun and HP implementing the specification for C, C++ and
Fortran.25 As of version 4.2 the GNU Compiler Collection (GCC) has supported
version 2.5 of OpenMP, an effort coordinated under the GOMP project; GCC 4.4 is
expected to support OpenMP 3.26

25http://www.openmp.org/wp/openmp-compilers
26http://gcc.gnu.org/projects/gomp
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Streams in Haskell 3
We now discuss the use of streams in Haskell to write parallel programs. Streams
offer a powerful yet simple model of parallelism which frees the user from the bur-
den of explicitly parallelising code; the use of streams is the “hint” that a compiler
or runtime needs in order to parallelise code automatically. In this chapter we dis-
cuss the methods that may be used to parallelise stream code written in Haskell
using CUDA, both at compile-time and runtime. We focus on a runtime approach
and present Haskgraph (Section 3.3), a pure Haskell library that uses metapro-
gramming to generate code for parallelising stream code. Chapter 4 continues
with details of how the library is built with respect to an implementation on CUDA.

3.1 Aims and Motivations

Any high level abstraction must satisfy the two criteria of simplicity and predictabil-
ity. The stream programming model fulfills both of these:

• Conceptually a stream is just a set of data – analogous to a list in Haskell.
Anyone that can understand lists should therefore be able to understand
streams.

• By providing a similar family of stream processing functions to those for lists,
code and results are predictable.

In principle we would like to be able to write a program as in Figure 3.1. Even with
no knowledge of streams or their combinators, it is clear what this program does.1

1 f :: a → b
2 g :: a → b → c
3

4 ...
5

6 main :: IO ()
7 main =
8 print zs
9 where

10 xs = streamFromList [1..100]
11 ys = mapS f xs
12 zs = zipWithS g xs ys

Figure 3.1: A stream program in Haskell.

But how does it end up being parallelised? The answer depends on the target
platform.

1Not including the definitions of f and g, of course.
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3.1.1 Underlying Architecture

Stream computers have been implemented on a variety of targets using various
methods of abstraction. Section 2.4 presented two heterogeneous platforms on
which parallel software has been developed: Nvidia’s GPU-based CUDA and STI’s
Cell Broadband Engine. In this project we explore a solution that utilises CUDA,
for the following reasons:

• Performance gains have been widespread with CUDA [34, 35, 36]; the lit-
erature on its advantages, disadvantages and methodologies is consequently
substantial.

• CUDA’s programming interface is relatively uncluttered and intuitive, largely
due to the use of a domain-specific language (DSL).

• Good software engineering practices should ensure that architecture-specific
back ends can be swapped in and out or combined with little effort.

So how might the program in Figure 3.1 be realised in CUDA? Taking the ap-
plication of mapS f in line 11, for example, and assuming that f has type Int→
Int, we would perhaps write its equivalent CUDA kernel as in Figure 3.3.

1 __global__ void mapSCuda(int *xs, int *ys , int N) {
2 int thread_id = blockIdx.x * blockDim.x + threadIdx.x;
3

4 if (thread_id < N) {
5 int x = xs[thread_id ];
6 int y;
7

8 ...
9 /* The inlined body of f, which assigns to y. */

10 ...
11

12 ys[thread_id] = y;
13 }
14 }

Figure 3.2: A CUDA kernel for the function mapS f.

Conceptually this would be launched with N threads (where the stream xs has
N elements), each of which applies f to a unique element in the stream. This is
illustrated in Figure 3.3.

x i

Thread i

f x i

Figure 3.3: Applying the function mapS f using CUDA.

Generating this kernel from the stream code is non-trivial; there are several
points that must be addressed:

30



Type Correspondence

Haskell’s type system is richer than that of C/CUDA. In our example, Haskell Ints
are mapped to C ints. This merging of type systems presents several potential
pitfalls:

• There may be no suitable CUDA representation for a given Haskell type. Con-
sider, for example, an infinite data structure, or the Integer type, which can
handle arbitrarily precise numbers.

• Only a partial representation may exist: this is the case in our example – the
upper bound of the Int type is actually implementation specific: there is
consequently no guarantee that it will fit in an int.

• C’s lack of bounds checking means that the sizes of variable length structures
must be supplied to the kernel as extra parameters (here, the value N).

Function Code Generation

We need to convert f to some CUDA equivalent. In order to do this we must be
certain that f is computable on CUDA. Data movement is also an issue: instead
of returning values, CUDA kernels make use of output parameters. In our example
this is the purpose of the ys parameter, and its relationship with the return value
is clear. In general however, we may be required to encode arbitrary return types.
The separation of inward and outward parameters also raises questions about how
much data movement should occur – do ingoing parameters have to be copied back
from the GPU to the host, for example?

3.2 Implementation Options

There are two points within a program’s life cycle at which we can parallelise code:
compile-time and runtime. Instrumentation from inside the compiler brings some
attractive performance benefits – a one-off cost is paid in the form of program
compilation time in exchange for a self-contained, parallelised executable file. A
compile-time implementation using GHC’s Cmm code generator was explored in the
initial stages of the project, but was later abandoned. It turns out that exploiting
parallelism well at compile-time is very hard to do, since a lot of necessary infor-
mation isn’t available until runtime. An outline of an alternative approach using
GHC is given in Section 6.1.1; for the remainder of this and the next chapter we
present Haskgraph, a runtime approach for handling stream code.

3.3 Haskgraph

At runtime, compilation and linking are expensive, but the availability of extra in-
formation may facilitate optimisations; for example, if the kernel in Figure 3.2 was
generated at runtime, the parameter N could be omitted and hard wired into the
source code. Haskgraph is a pure Haskell library that uses runtime code generation
to parallelise stream applications without any modifications to the compiler. In this
section we discuss the interface it presents to a user, and provide a first look at
how it generates parallel code. In Chapter 4 we focus on implementation details,
covering a CUDA specific back end in Section 4.2.
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3.3.1 Restricting Streamable Types

Consider once again the application of the function mapS f. What is f’s type? Our
experience with map and its applications to lists suggests that it should be a → b.
This is a problem: f is polymorphic, but we noted earlier that not all types may
have a representation on a GPU, or indeed any other multi-core back end. We must
restrict the types on which f may operate. Typically this is achieved using type
classes, and it is in this manner that we introduce the notion of a describable type, a
type which any back end architecture can represent. The class’ definition is given
in Figure 3.4.

1 data TypeDesc
2 = Int
3 | Float
4 ...
5

6 class DescribableType a where
7 getTypeDescriptor :: a → TypeDesc

Figure 3.4: DescribableTypes have a representation in CUDA (or any back end).

f’s type becomes (DescribableType a, DescribableType b)⇒ a→ b; ap-
plying it to invalid objects is now a type error, and will be raised as such at compile-
time.

3.3.2 Describing Computation

In a similar vein let us think about f’s body. With the proposed approach we want
to make f responsible for generating its own code, i.e., f doesn’t so much compute
an answer as describe how it should be computed. This can be modeled with an
abstract syntax tree (AST). Haskgraph.Core.Expr is a data type for building
such an AST; its definition is shown in Figure 3.5.

1 data Expr a where
2 Lit :: DescribableType a ⇒ Const a → Expr a
3 Val :: DescribableType a ⇒ Var a → Expr a
4 App :: DescribableType a ⇒ Op → [Expr a] → Expr a
5 Cast :: Castable b a ⇒ Expr b → Expr a
6 If :: DescribableType a ⇒
7 BoolExpr → Expr a → Expr a → Expr a

Figure 3.5: The Haskgraph.Core.Expr type.

Expr is a small DSL for working with basic arithmetic, additionally supporting
conditional expressions (if...then...else in Haskell) and type casting. As a
first attempt we could use it to build an arbitrary expression representing f, giving
f a type of Expr a → Expr b. Note that f’s restriction over describable types is
preserved through the contexts of Expr’s constructors.

Unfortunately, this representation of f suffers a few limitations. In an imper-
ative environment such as that of CUDA, functions are composed of statements,
which implement actions such as assignment. We therefore need to be able to
accumulate these statements in order to construct kernels – we need to maintain
state. As mentioned in Section 2.2.1, this can be achieved using a suitably defined
monad. In Haskgraph, this monad is called H. It is important to note that Expr
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is still used to construct f: the monadic type H a returns values of type Expr,
whilst allowing statements to be accumulated as a side-effect. The internals of H
are discussed further in Chapter 4

3.3.3 Overloading for Expression Construction

Constructing expressions explicitly in terms of the constructors of Expr is inel-
egant. The expression 2 + x, for example, would have to be written as App
Add [Lit Const 2, x]. Since operators are just infix functions in Haskell, we
can overload their behaviour so that they build expressions directly. This is done
through instance definitions, since most operators belong to type classes. Figure 3.6
illustrates this point using the Prelude’s Num class, all instances of which must pro-
vide arithmetic operators for working with integers.

1 class (Eq a, Show a) ⇒ Num a where
2 (+) :: a → a → a
3 (-) :: a → a → a
4 (*) :: a → a → a
5 negate :: a → a
6 abs :: a → a
7 signum :: a → a
8 fromInteger :: Integer → a
9

10 instance Num a ⇒ Num (H a) where
11 (+) = liftedBinaryApplication Add
12 ...

Figure 3.6: Overloading arithmetic operators using the Num class.

We can now write the above expression as just 2 + x – our instance definition
means that the function actually called is liftedBinaryApplication Add 2
x, a function which builds the expression explicitly for us.

3.3.4 Streams as a Type Class

We now turn to the representations of streams themselves. In our example, mapS
f is being applied to the stream xs. It is possible that xs is nothing more than
an array in memory, but it could also be a closure (cf. Haskell lists). Ultimately,
it doesn’t matter – we want to provide a consistent interface irrespective of issues
such as this. This leads us to define the streams as a type class, shown in Figure 3.7.

1 class DescribableType a ⇒ Stream s a where
2 newStream :: Int → a → s a
3 newEmptyStream :: Int → s a
4 streamFromList :: [a] → s a
5

6 mapS :: Stream s b ⇒ (H a → H b) → s a → s b
7 zipWithS :: (Stream s b, Stream s c) ⇒
8 (H a → H b → H c) → s a → s b → s c
9 foldS :: (H a → H a → H a) → s a → a

Figure 3.7: Haskgraph’s Stream type class.
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1 let
2 xs = newStream 5 1
3 -- xs = [1, 1, 1, 1, 1]
4

5 ys = newEmptyStream 5
6 -- ys = [⊥, ⊥, ⊥, ⊥, ⊥]
7

8 zs = streamFromList [1..5]
9 -- zs = [1, 2, 3, 4, 5]

Figure 3.8: Stream construction using the Stream class. Streams have been writ-
ten out as lists for clarity.

Lines 2 to 4 are functions for constructing streams – newStream and newEmptyStream
both take a size and, in the case of newStream, an initial value for all elements
of the list. streamFromList creates a stream from a list. Figure 3.8 gives an
example of each.
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A stream is parameterised by two types:

• s is the type of the container. This can be seen as analogous to a list of type
[a]. Here, the container is the list, i.e., [ ]. An example of this is given
in Section 4.2, where we introduce the CudaStream container, a type well
suited for moving between host and GPU devices.

• a is the type of the elements, which must be of a describable type. In the case
of the list with type [a], this is the type a.

By offering an interface parameterised in this fashion, implementing back ends
can choose to represent streams in a manner that can be easily manipulated on the
target platform. Issues such as contiguity and alignment, for example, can be dealt
with on a per-module basis.
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3.3.5 A Working Stream Program

Recall the program we wished to be able to write at the beginning of this chap-
ter (reproduced in Figure 3.9), along with possible definitions for floating point
versions of the functions f and g.

1 f :: Float → Float
2 f x =
3 sin x / cos x
4

5 g :: Float → Float → Float
6 g x y =
7 2 * x + y
8

9 main :: IO ()
10 main =
11 print zs
12 where
13 xs = streamFromList [1..100]
14 ys = mapS f xs
15 zs = zipWithS g xs ys

Figure 3.9: A stream program in Haskell.

The program we can actually write using Haskgraph is given in Figure 3.10.

1 f :: H Float → H Float
2 f x =
3 sin x / cos x
4

5 g :: H Float → H Float → H Float
6 g x y =
7 2 * x + y
8

9 main :: IO ()
10 main =
11 print zs
12 where
13 xs = streamFromList [1..100]
14 ys = mapS f xs
15 zs = zipWithS g xs ys

Figure 3.10: A working stream program using Haskgraph.

We observe that only the type signatures of f and g are different, having had
their parameters wrapped by H. Thanks to overloading their bodies actually remain
the same, despite now doing completely different things. This will be the case in
general, assuming f and g are pure functions (i.e., produce no side-effects).
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Implementing Haskgraph 4
In this chapter we turn to the internals of the Haskgraph library: how computa-
tional kernels are built and how code is generated. We examine these features
with respect to a CUDA back end, but the library’s design should facilitate their
implementation on any multi-core platform.

4.1 Haskgraph.Core

Haskgraph.Core is at the top of Haskgraph’s module hierarchy (depicted in Fig-
ure 4.1). Together with the Stream type class (defined in Haskgraph.Stream
and discussed in Section 3.3.4), it comprises the interface presented to user pro-
grams. It defines describable types (Section 3.3.1) and provides the Expr data type
(Section 3.3.2), along with its associated instance definitions.

Haskgraph.Core

Haskgraph.Stream

Haskgraph.Stream.Cuda Haskgraph.Stream.Cell

Figure 4.1: The Haskgraph module hierarchy. Dashed lines indicate modules that
do not exist, but which could be added to extend the library’s capabilities.
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4.1.1 Why State is Necessary

In Section 3.3.2 the H monad was introduced to capture state when generating
code for Haskgraph expressions. You might ask why – we could just build an ex-
pression tree representing a kernel and generate all the code in one go, when
needed. The problem with such an approach becomes apparent when compound-
ing expressions, as in Figure 4.2.

1 let
2 x = 3
3 y = 2 + x
4 z = 5 * y

Figure 4.2: Compounding expressions in stream computation.

On line 4, z makes use of y. If we had just used pure Expr values, then gen-
erating code for z would involve generating code to compute y twice: once when
computing y itself and once when computing z. Clearly this is inefficient. By build-
ing kernels incrementally, we can avoid this; now line 3 can return an expression
holding the name of a variable that will be assigned the value 2 + x at runtime.
However, as a side-effect, it also adds a statement to the current kernel body that
makes such an assignment. In this manner, z now references y symbolically, and
duplicate computation is avoided. This is illustrated in Figure 4.3, where we see
the two possible expression trees for z (x has been inlined for simplicity).

y

+

2 3

z with y inlined – bad

*

5 +

2 3

z with y referenced – good

*

5 y

Figure 4.3: Expression trees created through expression compounding.

We note that the same point is not valid with respect to y’s use of x – since x is
a constant there is no performance lost if it is used in multiple places.
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4.1.2 Accumulating Kernel Bodies

Since state is (perhaps surprisingly) a common requirement when writing Haskell
programs, the standard libraries define MonadState and State1, a type class
and a monad instance for threading state through a program. Figure 4.4 contains
their definitions; the syntax m → s in a class definition’s head expresses that s is
functionally determined by m, that is, there can only be one value for s associated
with each value for m.

1 class Monad m ⇒ MonadState s m | m → s where
2 get :: m s
3 put :: s → m ()
4

5 newtype State s a = State {
6 runState :: s → (s, a)
7 }
8

9 instance MonadState s (State s) where
10 ...

Figure 4.4: The MonadState type class and the accompanying State monad.
Here, s is the type of the state and a is the type of the return value.

We can use the State monad in a first attempt at defining H. An example of how
this might be applied to our earlier example (Figure 4.2) is given in Figure 4.5.

1 type H a = State [Stmt] a
2

3 evaluate :: ... → H (Expr a)
4 evaluate ... =
5 do
6 -- Generate a variable to assign the result to.
7 result ← generateVariable ...
8

9 -- Add an assignment to the generated variable.
10 assign result ...
11

12 -- Return the name of the variable.
13 return result
14

15 assign :: ... → H ()
16 assign ... =
17 do
18 body ← get
19

20 let assignment = ...
21

22 put $ body ++ [assignment]

Figure 4.5: Using the State monad to build kernels.

Here, evaluate is an arbitrary function that might handle addition, for ex-
ample. It creates a statement that assigns the result of some expression into a

1Part of the Control.Monad.State module.
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freshly generated variable, and returns that variable as its result. We see that this
definition of H is still not quite right according to the definitions given in Sec-
tions 3.3.3 and 3.3.4, but that it implements the accumulation we discussed in this
and the previous section.

4.1.3 Name Generation

When kernels are produced, the code generator creates a fresh name for each iden-
tifier it encounters. For example, an application of the function mapS (2+) to a
stream of floating point numbers might produce a kernel as shown in Figure 4.6.

1 __global__ void name_1(float *name_4 , float *name_5) {
2 int name_6 = (( blockDim.x * blockIdx.x) + threadIdx.x);
3

4 if (name_6 < 65536) {
5 float name_7 = name_4[name_6 ];
6 float name_8 = (2.0 + name_7 );
7 name_5[name_6] = name_8;
8 }
9 }

Figure 4.6: Using generated identifiers to construct a kernel.

Clearly each name much be unique! Unique values are also a common requirement,
and to this end the Haskell libraries provide the Unique type, as in Figure 4.7

1 data Unique = ...
2

3 newUnique :: IO Unique
4 hashUnique :: Unique → Int

Figure 4.7: The Unique type, provided by the Data.Unique module.

We notice that Unique values exist only within the IO monad, but that we have
already committed to working inside the environment provided by State. To
overcome this issue we can transform the IO monad so that it supports stateful
computation using the StateT type, a so-called state transformer. StateT’s defi-
nition is given in Figure 4.8. Here, s is (as before) the type of the state and m is the
underlying monad that StateT is transforming.

1 newtype StateT s m a = StateT {
2 runStateT :: s → m (a, s)
3 }
4

5 instance Monad m ⇒ MonadState s (StateT s m) where
6 ...

Figure 4.8: The StateT state transformer monad.
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Applying a transformer in this manner creates a monad stack. This is the
Haskgraph monad, defined in Figure 4.9.

1 data HaskgraphState = HaskgraphState {
2 graphBody :: [Stmt]
3 }
4

5 newtype Haskgraph a = Haskgraph {
6 run :: StateT HaskgraphState IO a
7 }

Figure 4.9: The Haskgraph monad.

We have generalised the state to a record type so that extra information may
be passed around. We see that lifting expressions into this monad encapsulates
the necessary side-effects discussed up to this point whilst facilitating the construc-
tion of arbitrary ASTs; finally, this yields the H monad introduced in Section 3.3.2.
Figure 4.10 gives H’s definition.

1 type H a = Haskgraph (Expr a)

Figure 4.10: Defining H.

Note that H is actually a type synonym that lets us talk explicitly about expres-
sions that have been lifted into the Haskgraph monad.

4.2 HsCUDA

HsCUDA is an example of a code generating back end that could be implemented
using Haskgraph. It provides the CudaStream type, an instance of the Stream
type class that generates CUDA kernels at runtime to exploit parallelism exposed
by the usage of streams. Figure 4.11 shows the type’s definition.

1 newtype CudaStream a = CudaStream (StorableArray Int a)
2

3 instance DescribableType a ⇒ Stream (CudaStream a) where
4 ...

Figure 4.11: The CudaStream type.

StorableArray is a data type provided by Haskell’s array libraries that offers
the following guarantees:

• Contiguous storage – the array is laid out in a C compatible manner, and all
elements are unboxed i.e. in-place as opposed to referenced by pointers.

• Access to an underlying foreign pointer, so that the data structure may be
passed across language barriers (C to Haskell, for instance).

• Use of pinned memory, ensuring that any use of a foreign pointer will not be
interrupted by the garbage collector.
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These points mean StorableArrays are ideal for using with CUDA; the type’s
support for foreign pointers means that we can use Haskell’s foreign function in-
terface (FFI) to move streams from Haskell to C and back, while marshalling is
simplified by the fact that stream data on the heap is unboxed and contiguous.

4.2.1 Generating CUDA Code

Like Haskgraph.Core, HsCUDA pairs a domain-specific language (Cuda.Expr)
with a monad (Cuda) for code generation. Since Cuda.Expr is used exclusively by
HsCUDA, it does not prevent the construction of many potentially dangerous state-
ments. Despite this it could be modified with little effort to produce a general-
purpose DSL for working with CUDA in Haskell. Definitions are given in Fig-
ure 4.12.

1 data CudaType
2 = Void
3 | Pointer CudaType
4 ...
5

6 data Direction
7 = HostToDevice
8 | DeviceToHost
9

10 data Expr where
11 Constant :: DescribableType a ⇒ a → Expr
12 Variable :: String → Expr
13 Apply :: Op → [Expr] → Expr
14 Cast :: CudaType → Expr → Expr
15 AddressOf :: Expr → Expr
16 Dereference :: Expr → Expr
17 Index :: Expr → Expr → Expr
18 CopyDirective :: Direction → Expr
19

20 data Stmt = ...
21

22 data CudaState = CudaState {
23 kernelBody :: [Stmt]
24 }
25

26 newtype Cuda a = Cuda {
27 run :: StateT CudaState IO a
28 }

Figure 4.12: Cuda.Expr and the Cuda monad.

Cuda.Expr is a closer realisation of a CUDA expression’s AST, supporting point-
ers, void types and directives for moving data between the host and the GPU.
Kernel bodies are again realised as sequential lists of statements, supporting op-
erations like control flow, memory management and block-local synchronisation
(__syncthreads()). As with Haskgraph.Expr, Cuda.Expr is also an instance
of common type classes such as Num and Floating, making it easy to construct
arbitrary expressions.
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4.2.2 Wrappers

Wrappers are pure C functions callable from Haskell that wrap calls to CUDA ker-
nels. They are also used for compartmentalising several “boilerplate” actions.

Global Synchronisation

There is no facility in CUDA for synchronising threads “across the card” (see Sec-
tion 2.4.1). This restriction is typically overcome by using kernel launch (a rela-
tively cheap operation) as a global synchronisation primitive. An illustration of this
technique is given in Figure 4.13, whereby a stream of elements is being summed.
After the first invocation of the summing kernel, a set of partial sums remain. By
invoking the same kernel again, we obtain the single result we need.

xs1

︸ ︷︷ ︸

+

xs2
︸ ︷︷ ︸

+

xs3

︸ ︷︷ ︸

+

xs4

︸ ︷︷ ︸

+
Iteration 1

y1 y2 y3 y4

︸ ︷︷ ︸

+
Iteration 2

y

Figure 4.13: Using kernel invocation to synchronise data in a sum.

HsCUDA supports this type of synchronisation through iterative kernels, i.e., ker-
nels whose domain and codomain are the same. Kernels of this nature are repeat-
edly launched with their input and output parameters switched (an O(1) operation
since all parameters are pointers). This is cheaper than moving data between it-
erations and, in the event that there are an even number of invocations, an extra
kernel for copying the data to its correct location (in parallel) is generated and
called after the last iteration has completed execution.

Marshalling and Blocking

Marshalling is the act of gathering data and copying it between the host and the
GPU, prior to and following computation. As stated earlier, this is a relatively sim-
ple process as a result of choosing the StorableArray type as a stream represen-
tation. However, it requires that blocking be taken into account. Blocking is the act
of dividing up streams of data into pieces—blocks—that will fit into GPU memory
and arranging for the pieces to be processed separately. This is not a straightfor-
ward process: it is heavily dependent on the data and algorithm being used. We
overcome this in HsCUDA by introducing parameter strategies, which describe how
partial computations on separate blocks should be composed into an end product.
Strategies are defined as an ADT, the definition of which is given in Figure 4.14.
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1 data ParameterStrategy
2 = Reduce (Expr → Expr → Cuda Expr)

Figure 4.14: Parameter strategies as defined in HsCUDA.

Currently, only one scheme is supported: Reduce f specifies that the function f
should be used to reduce pairs of results. Since blocks could could be processed in
any order, potentially using multiple GPUs,2 f should be associative and commuta-
tive. For example, addition could be implemented as in Figure 4.15.

1 reduceAddition :: Expr → Expr → Cuda Expr
2 reduceAddition x y = return $ x + y
3

4 ...
5

6 let
7 strategy = Reduce reduceAddition

Figure 4.15: Using addition as a reduction function with the Reduce parameter
strategy.

No checks are made with regard to whether f is associative and commutative – it
is assumed that the user knows what they are doing.3

Kernel parameters are also associated with a high level type, another ADT de-
fined as in Figure 4.16.

1 data ParameterType
2 = Array Int32
3 | Scalar ParameterStrategy

Figure 4.16: High-level parameter types for generating boilerplate code.

In the case of an array we pair it with its size; currently only scalar parameters
can be assigned strategies. This does not limit the library at present – arrays are
implicitly assigned a strategy whereby their blocks are processed separately and
copied back into the correct part of the array.

2Neither of these features is implemented currently.
3The “users” in this context are the implementations of mapS and the like; users of the stream type

class do not need to concern themselves with this.
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4.2.3 Code Generation and Compilation

The features we have discussed up to now are aggregated by the generateKernel
and generateIterativeKernel functions, whose type signatures are shown in
Figure 4.17.

1 generateKernel :: [ParameterSpec]
2 → (Expr → [(Expr , Expr)] → Cuda ())
3 → IO (String , String)
4

5 generateIterativeKernel :: Int32
6 → [ParameterSpec]
7 → (Expr → [(Expr , Expr)] → Cuda ())
8 → IO (String , String)

Figure 4.17: Type signatures for the kernel generation functions in HsCUDA.

Aside from the fact that generateIterativeKernel takes an additional integer
argument – the number of iterations, they both take the same parameters:4

• A kernel signature, given as a list of formal parameter specifications. The
ParameterSpec type is a synonym for a triple containing the following:

– A parameter’s direction (either In or Out). Only outward parameters
are copied back from the GPU to the host; this level of control can allow
for simple optimisations or just tactful variable reuse.

– A primitive type. This is a CudaType as defined in Figure 4.12.

– The parameter’s high level type, as given in in Figure 4.16.

• A body generation function. The parameters that the function must accept are
the current thread’s unique identifier and a list of actual parameters, each of
which is a pair composed of:

– An expression representing the corresponding formal parameter; this
can be used inside the generator’s closure to reference the parameter’s
value.

– The parameter’s size, with blocking taken into account.

The generation function can also make use of CUDA-specific variables (blockDim
and threadIdx, to name a couple) through similarly named functions;
gridDim.x, for example, becomes gridDim X.

With all this information, generation and compilation proceeds as follows:

1. Kernel generation is almost entirely directed by the body generation function
– the statement list is evaluated and code is produced.

2. Wrapper generation is hidden from the caller; it is performed using the formal
parameter list:

• Boilerplate code is generated through the analysis of parameter direc-
tions and strategies. For example, an steam may contain more elements
than there are threads, and will be blocked as a result. All code is di-
vided into pre- and post- kernel invocation blocks.

4generateKernel is, as you might expect, implemented in terms of
generateIterativeKernel.
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• Kernel calls are instrumented with appropriate sizings – iterative ker-
nels are handled as described earlier. The blocks of boilerplate code are
then assembled around the invocations.

3. The CUDA compiler5 is called to compile the kernel and wrapper into a
shared library. In the case of the wrapper, which is pure C, the host com-
piler will be invoked automatically by the CUDA compiler.

The names of the wrapper and shared library are then returned as a tuple, so
that the caller has enough information to utilise the generated code.

A Kernel Generation Example

Figure 4.18 shows the call to generateKernel used in zipWithS.

1 generateKernel
2 [ (In , x_type , arrayP size),
3 (In, y_type , arrayP size),
4 (Out ,z_type , arrayP size) ] $
5

6 \thread_id [(xs, xs_size), (ys, ys_size), (zs, zs_size )] →
7 ifThen (thread_id *< xs_size) $ do
8 x ← declareAssignLocal x_type (xs *!! thread_id)
9 y ← declareAssignLocal y_type (ys *!! thread_id)

10

11 z ← insertHaskgraph (f (parameter x) (parameter y))
12

13 zs *!! thread_id *= z

Figure 4.18: The kernel generation code used in zipWithS. Operators beginning
with * are HsCUDA versions of their vanilla Haskell equivalents.

Given an application of zipWithS (+) xs ys for two streams of one million
floating point numbers, the CUDA code generated by this implementation is shown
in Figure 4.19 (snipped and formatted for clarity). Let us quickly correlate the two
pieces of code:

• Lines 2 to 4 of the Haskell code define the formal parameter list of the CUDA
kernel and its wrapper. This corresponds to lines 1 and 13 in the generated
code.

• Lines 8 to 9 declare local variables for holding one element of each of the two
streams. These declarations appear in lines 5 and 6 of the generated code.

• Line 11 inserts the code that represents the function, f, that was passed to
zipWithS. In this case f is the function (+), and this is reflected in line 7
of the CUDA kernel code.

• Line 13 assigns the computed result back into the output parameter – this
occurs in line 8 of the generated code.

We see also that the wrapper takes care of blocking and marshalling (lines 22 to 42),
keeping the kernel and the Haskell code required to build everything relatively
small.

5nvcc at the time of writing.
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1 __global__ void name_1(float* name_4 , float* name_5 , float* name_6) {
2 int name_7 = (( blockDim.x * blockIdx.x) + threadIdx.x);
3

4 if (name_7 < 65536) {
5 float name_8 = name_4[name_7 ];
6 float name_9 = name_5[name_7 ];
7 float name_10 = (name_8 + name_9 );
8 name_6[name_7] = name_10;
9 }

10 }
11

12 extern "C" {
13 void name_2(float* name_14 , float* name_17 , float* name_20) {
14 float* name_15;
15 cudaMalloc ((void **)& name_15 , (sizeof(float) * 65536));
16 float* name_18;
17 cudaMalloc ((void **)& name_18 , (sizeof(float) * 65536));
18 float* name_21;
19 cudaMalloc ((void **)& name_21 , (sizeof(float) * 65536));
20 dim3 name_11 (256);
21 dim3 name_12 (256);
22 cudaMemcpy(name_15 , (name_14 + 0),
23 (sizeof(float) * 65536) , cudaMemcpyHostToDevice );
24 cudaMemcpy(name_18 , (name_17 + 0),
25 (sizeof(float) * 65536) , cudaMemcpyHostToDevice );
26 cudaMemcpy(name_21 , (name_20 + 0),
27 (sizeof(float) * 65536) , cudaMemcpyHostToDevice );
28 name_1 <<<name_11 , name_12 , 2048>>>(name_15 , name_18 , name_21 );
29 cudaMemcpy (( name_20 + 0), name_21 ,
30 (sizeof(float) * 65536) , cudaMemcpyDeviceToHost );
31

32 ... " 70 lines snipped
33

34 cudaMemcpy(name_15 , (name_14 + 983040) ,
35 (sizeof(float) * 16960) , cudaMemcpyHostToDevice );
36 cudaMemcpy(name_18 , (name_17 + 983040) ,
37 (sizeof(float) * 16960) , cudaMemcpyHostToDevice );
38 cudaMemcpy(name_21 , (name_20 + 983040) ,
39 (sizeof(float) * 16960) , cudaMemcpyHostToDevice );
40 name_1 <<<name_11 , name_12 , 2048>>>(name_15 , name_18 , name_21 );
41 cudaMemcpy (( name_20 + 983040) , name_21 ,
42 (sizeof(float) * 16960) , cudaMemcpyDeviceToHost );
43 cudaFree(name_15 );
44 cudaFree(name_18 );
45 cudaFree(name_21 );
46 }
47 }

Figure 4.19: The CUDA code generated by the Haskell code shown in Figure 4.18.
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4.2.4 Other Considerations

The use of output parameters means that all kernels constructed by HsCUDA are de-
structive, that is, they return results by overwriting their output parameters in the
Haskell heap. Clearly this is against the functional programming ethos, whereby
change is reflected in returning new values. Rather than make the link between
Haskell and C bidirectional, this behaviour is emulated by creating the required
number of empty streams in Haskell code and passing them to wrappers. This is
done with the expectation that they will be filled as a result of expectation. Conse-
quently the stream functions retain their purity, leaving their parameters unmodi-
fied.
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Evaluation 5
At this point we turn to the evaluation of the Haskgraph library. We first evaluate
the compromises between speed and ease of programming by comparing several
serial benchmarks with their equivalent Haskgraph implementations. We then ex-
amine how program rewriting can be exploited to minimise unnecessary use of the
library, and the impact this has upon performance.

5.1 Benchmarking

All benchmarks were conducted on a machine with a 3.00Ghz Intel Core 2 Duo
CPU with 6MB of shared L2 cache. The CUDA-compatible GPU used was an Nvidia
GeForce 8600 GTS/PCIe, targeted by version 2.2 of the nvcc compiler. A maximum
GPU thread limit of 65536 (a grid of 256 blocks of 256 threads each) was imposed
so that the effects of blocking could be analysed, and each test was run five times
with an average result taken. Unless stated otherwise, all tests were compiled using
GHC 6.10.1 with no optimisations or other parameters.

5.1.1 Non-Iterative Benchmarks

The first set of benchmarks were non-iterative, that is, no looped computation oc-
curred on the GPU.

mapS

Figure 5.1 shows the how runtime varies with stream size as the cosine of every
element in a stream of single-precision floating point numbers is computed using
mapS. We see that the serial implementation easily outperforms CUDA. This is to
be expected – the non-iterative nature of the application means that the work done
per byte copied is very low. Consequently, data movement dominates the CUDA ap-
plication’s runtime, resulting in poor performance. The extreme decrease in speed
between 100,000 and 1,000,000 elements can be attributed to blocking – with
only 65536 threads available on the GPU, the application suddenly moves from
not needing blocking at all to requiring around 16 separately blocked computa-
tions. Since the current version of Haskgraph does not asynchronously stream new
data to the GPU whilst existing data is being processed, this imposes a heavy ad-
ditional cost. Figure 5.2 shows the increasing overhead that synchronous blocking
adds to mapS’s runtime.

foldS

Figure 5.3 graphs runtime against stream size for computing the sum of a list of
single-precision floating point numbers. Again we see that the overheads are dom-
inant even for large streams, moreso than with mapS. We attribute this to the use
of multiple kernel launches per block of computation, as covered in Section 4.2.2.
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Figure 5.1: Performance of mapS cos vs. map cos.
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Figure 5.2: The effect of blocking on mapS’s performance.
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Figure 5.3: Performance of foldS (+) vs. foldr (+) 0.
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Figure 5.4: The effect of blocking on foldS’s performance.
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5.1.2 Iterative Benchmarks

The second set of benchmarks were iterative, that is, looped computation occurred
on the GPU. Iteration in Haskgraph is provided by the iterateH function, defined
in Figure 5.5.

1 iterateH :: Int32 → (H a → H a) → H a → H a

Figure 5.5: Haskgraph’s iterateH function.

iterateH takes an iteration count, a function to iterate and an initial value. It
constructs an AST representing an iterated computation and returns an expression
holding a reference to the result. In HsCUDA, iterated expressions are then trans-
formed into for-loops. This often presents good opportunities for the compiler
to unroll iterated computation, since the bounds are hard wired into the kernel’s
source code.

In Haskell, we emulate iterative behaviour using iterateN, a recursive func-
tion defined in Figure 5.6. Though similar to the Prelude’s iterate, iterateN
takes an iteration count, and only returns the final result of its computation.

1 iterateN :: Int32 → (a → a) → a → a
2 iterateN n f x =
3 iterateN ' n f x x
4 where
5 iterateN ' :: Int32 → (a → a) → a → a → a
6 iterateN ' 0 f x a = a
7 iterateN ' n f x a =
8 iterateN ' (n - 1) f x (f a)

Figure 5.6: The iterateN function, used for emulating iterative behaviour in
Haskell.

iterateN is written in a tail recursive manner, so that GHC is able to compile it to
iterative code if it can do so.

mapS

Figure 5.7 plots runtime against iteration count for repeatedly doubling every el-
ement in a stream of single-precision floating point numbers. We see that the
CUDA applications are relatively unaffected by rising iteration count; this is further
demonstrated in Figure 5.8. Note that the scale in Figure 5.8 is much finer, and
that the fluctuation in Figure 5.8 are therefore marginal and arguably unavoidable.

These results suggest that iteration on CUDA is very cheap, which is as we
would expect: as a platform CUDA is perfectly suited for looped floating point
computation. The serial implementations suffer from being tail recursive – GHC
actually compiles tail recursive to a series of jumps to entry code, and not as loops.
Consequently they grow linearly with respect to the number of iterations. In terms
of space their growth will also be linear due to the use of the stack; contrast this
with the constant space requirements of the CUDA versions.
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Figure 5.7: mapS (iterateH (2*)) vs. map (iterateN (2*)).
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zipWithS

Figures 5.10 and 5.11 graph analogous runtimes for the zipWithS combinator.
The functions zipperH and zipper are defined in Figure 5.9.

1 zipperH :: H Float → H Float → H Float
2 zipperH x y =
3 cos (x + y)
4

5 zipper :: Float → Float → Float
6 zipper =
7 cos (x + y)

Figure 5.9: The functions zipperH and zipper.

Similar results are again produced, although the CUDA runtimes are less vari-
adic; this is a consequence of the extra stream that must be moved between the
host and the device in a zipWithS. It is clear from all of the results we present
that CUDA excels when computational load is intensive – when iterating 10,000
times over each of 50,000 elements we see that CUDA performs over 200 times
faster than vanilla Haskell. This is further illustrated by the fact that CUDA contin-
ues to perform well for much larger iteration counts, as shown in Figure 5.12. For
these iteration counts, serial benchmarking became intractable as stack operations
dominated the runtime.
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5.2 Rewriting for Optimisation

Rewriting is the process of applying a series of source-to-source transformations at
compile-time. This is typically done in order to produce a better program, for some
given definition of “better” – faster or more space efficient, for example. Figure 5.13
shows an application of this functionality as provided by GHC (Section 2.3).

1 {-# RULES
2 "map/map"
3 forall f g xs. map f (map g xs) = map (f . g) xs
4 # -}
5

6 main :: IO ()
7 main =
8 do
9 let

10 xs = [1..10]
11 ys = map (2*) (map (2+) xs)
12

13 print ys

Figure 5.13: Rewrite rules as supported by GHC.

Rewriting actions are specified as a sequence of rewrite rules, denoted by GHC’s
RULES pragma. Each rule is assigned a name—used only for debugging purposes—
and a corresponding body. During compilation, GHC will rewrite instances of the
body’s left hand side with the body’s right hand side.

In Figure 5.13, line 11 will generate an unnecessary intermediate list through
the double use of map. With the application of the map/map rule, this is no longer
the case. The functions (2*) and (2+) will be composed, and the result will be
an improvement in both space and time.

5.2.1 Rewriting Stream Code

The same principle can be applied to the stream functions provided by Haskgraph.
Consider mapS, for example. Figure 5.14 shows how its type is compatible with
the same compositions—and consequently rewritings—as map.

1 f :: b → c
2 g :: a → b
3

4 map f . map g :: [a] → [c]
5 map (f . g) :: [a] → [c]
6

7 f' :: H b → H c
8 g' :: H a → H b
9

10 mapS f' . mapS g' :: s a → s c
11 mapS (f' . g') :: s a → s c

Figure 5.14: Composing mapS with other stream functions.

Since mapS has significant startup overheads compared to map, rewriting to
reduce its applications may offer considerable increases in performance. In this
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section we quantify these increases by comparing the execution times of programs
which have been compiled several times, with rewriting enabled and with rewriting
disabled. As before, the benchmarks were conducted on a machine with a 3.00Ghz
Intel Core 2 Duo CPU (6Mb L2 cache) and an Nvidia GeForce 8600 GTS/PCIe, and
the average time was taken over five executions.

mapS and mapS

First let us consider the stream analogue of the program given in Figure 5.13, that
is, the program given in Figure 5.15.

1 {-# RULES
2 "mapS/mapS"
3 forall f g xs. mapS f (mapS g xs) = mapS (f . g) xs
4 # -}
5

6 main :: IO ()
7 main =
8 do
9 let

10 xs = streamFromList [1..10]
11 ys = mapS (2*) (mapS (2+) xs)
12

13 print ys

Figure 5.15: Applying the mapS/mapS rule to a stream program.

Only one rewrite will occur – the application on line 11. Figure 5.16 shows the
runtimes of the original and rewritten programs over a scale of ten to one million
elements.
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Figure 5.16: The performance gains of rewriting applications of mapS.
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Overall we see about a 50% reduction in execution time if rewriting is enabled.
Arguably this is as you might expect. One kernel is generated and compiled as op-
posed to two, and the copying of data between the host and the GPU only happens
once, and not twice. The severe drop in performance between 10,000 elements
and 1,000,000 is again a result of blocking. Figures 5.17 and 5.18 illustrate this
point at coarse and fine levels, where we observe a steady increase in runtimes for
both programs as more blocking is needed.
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Figure 5.17: The effects of blocking on mapS (coarse grained).
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Figure 5.18: The effects of blocking on mapS (fine grained).
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mapS and zipWithS

We now turn to the composition of mapS and zipWithS. There are three possible
compositions here – the application of mapS g to either zipWithS’s first stream
parameter, its second stream parameter, or both. Here we only consider the first
and third cases: the second is analogous to the first and can be built using the flip
function. For benchmarking purposes, we test the program shown in Figure 5.19
in three configurations:

1. With rewriting disabled.

2. With rewriting enabled and the inclusion of the zipWithS/mapS rule only.
This will result in one rewriting, and two kernel generation / invocation
processes.

3. With rewriting enabled and the inclusion of the zipWithS/mapS3 rule only.
This will result in one complete rewriting of the zipWithS call, leaving only
one kernel generation and invocation process.

1 {-# RULES
2 "zipWithS/mapS"
3 forall f g xs ys.
4 zipWithS f (mapS g xs) ys = zipWithS (f . g) xs ys;
5

6 "zipWithS/mapS3"
7 forall f g h xs ys.
8 zipWithS f (mapS g xs) (mapS h ys) =
9 zipWithS (flip (f . h) . g) xs ys

10 # -}
11

12 main :: IO ()
13 main =
14 do
15 let
16 xs = streamFromList [1..10]
17 ys = streamFromList [1..10]
18 zs = zipWithS (+) (mapS (2*) xs) (mapS (3*) ys)
19

20 print zs

Figure 5.19: Applying the zipWithS/mapS rule to a stream program.

The results for varying stream sizes are plotted in Figure 5.20. We observe that
we remove approximately 33% of the total work for each call to mapS we rewrite
away. Avoiding this data movement is especially important as blocking increases,
as indicated by Figures 5.21 and 5.22 by the divergent nature of the results.
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Figure 5.20: The performance gains of rewriting applications of zipWithS.
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Figure 5.21: The effects of blocking on zipWithS (coarse grained).
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Figure 5.22: The effects of blocking on zipWithS (fine grained).

mapS, iterateH and iterateN

We already saw in Section 5.1.2 that iterated computation is one of CUDA’s strengths.
Consequently, our last experiment concerns rewriting iterated computations onto
the GPU in order to transform tail recursion into iteration. Consider the two meth-
ods of repeatedly applying a function to every element of a stream, as presented in
Figure 5.23.

mapS f

mapS f

mapS f

iterateN n (mapS f) xs

xs

xs′

xs′′

ys

mapS (iterateH n f) xs

x1 x2 x3 x4 x5 x6 x7 x8 x9

f

x ′1 x ′2 x ′3 x ′4 x ′5 x ′6 x ′7 x ′8 x ′9

f

x ′′1 x ′′2 x ′′3 x ′′4 x ′′5 x ′′6 x ′′7 x ′′8 x ′′9

f

y1 y2 y3 y4 y5 y6 y7 y8 y9

Figure 5.23: Rewriting the composition of iterated functions for better perfor-
mance.
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We expect that the rightmost application will be faster – the other will likely
incur repeated data movement costs. The leftmost method is also tail recursive,
whilst the rightmost will be compiled to purely iterative code. Figure 5.24 shows
how we can rewrite the slow version to the fast version.

1 {-# RULES
2 "iterateN/mapS"
3 forall n f xs.
4 iterateN n (mapS f) xs = mapS (iterateH n f) xs
5 # -}

Figure 5.24: Rewriting iterateN as iterateH to eliminate tail recursion.

Figure 5.25 shows the results of this rewriting for streams of 10,000 and 100,000
elements, with a varying number of iterations.
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Figure 5.25: The performance gains of rewriting iterateN as iterateH.

The results are as expected: iteration is much cheaper on the GPU. Since Hask-
graph does not currently implement any caching, each call to mapS in the slow
version creates and compiles a new kernel. The cost of doing so, combined with
the cost of moving data to and from the card for each invocation, is vastly greater
than performing all of the iteration on the GPU.
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Conclusions 6
In this report we have demonstrated that it is possible to provide high levels of
abstraction for parallel programming. We have shown that the type system can
be used to expose opportunities for parallelism, by introducing stream data types
to Haskell. In evaluating our implementation, we showed that speed need not be
sacrificed for these conveniences. We also exploited existing features such as GHC’s
rewrite engine to make some programs run even faster. We conclude the following:

• Using the type system to expose parallelism is an effective method that re-
duces programming complexity. Overloading means that markup code is
minimised and program clarity is maintained (Section 3.3.3)

• Runtime code generation is a viable technique for producing parallel software
(Section 5.1). In many cases the costs of generation and linking can be offset
against the performance gained by parallelisation.

• Program transformations such as rewriting can provide further performance
improvements by reducing unnecessary parallelisation (Section 5.2)

6.1 Future Work

In the remainder of this chapter we discuss some extensions and improvements
that could be investigated, and their implications for what we have presented.

6.1.1 Constructing a Core-to-Core Pass

An alternative approach to parallelising code is at compile-time. In GHC, this could
be achieved with a Core-to-Core pass, such as the SimplCore pass described in Sec-
tion 2.3.1. A Core-to-Core pass receives a list of bindings from the program being
compiled and returns a new list, representing the results of that pass’ execution.
In this manner stream functions could be recognised and replaced with parallelised
equivalents. While parallelisation of this nature is typically more conservative since
less information is available, it is likely that a statically linked executable would
perform better than one that links in parallel components at runtime.

6.1.2 Complex Data Types

The current version of Haskgraph does not support the streaming of complex data
types such as tuples or records. To make the library more useful, this would need
to be addressed. Also of interest is an investigation into whether infinite data struc-
tures (lists, for example) could be handled by progressively blocking successive
parts of the computation.
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6.1.3 Using Performance Models

In the evaluation we presented many parallel applications that actually ran slower
than their serial counterparts. These results were attributed to the overheads of
data movement, and a low ratio of work done per byte copied. A possible solution
to this is to use performance models to speculatively evaluate stream functions on
CUDA. This is feasible since a function’s structure can be determined by traversing
its AST. For example, a simple model could only send iterative computations to
the card, but a more complex one could potentially analyse the complexity of a
function on a per-application basis.

6.1.4 Back End Specific Optimisations

The introduction of complex data types as described in Section 6.1.2 could present
problems for a back end such as CUDA, where memory coalescing is needed to
maximise performance returns. For example, it is often much more efficient to
use structures of arrays (streams) (SoA) rather than arrays (streams) of structures
(AoS). In general, transformations such as these can be considered back end spe-
cific optimisations, and adding support for them would greatly add to the value of
the Haskgraph library.

6.1.5 Pluggable Back Ends

In this report we documented a CUDA-based implementation, but the layers of ab-
straction provided by Haskgraph mean that writing a back end for another platform
(the Cell, for example) should be possible. It is expected that multiple platforms
could be combined: since each back end provides a different stream data type,
stream function calls could be delegated to different platforms, potentially in par-
allel.
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