Link-based Analysis on Large Graphs

Presented by Weiren Yu Mar 01, 2011

Overview

1. Introduction

Many applications require a measure of "similarity" between objects.

Existing Similarity Measures

- Textual-Content Similarity (text-based)
 - Vector-cosine similarity, Pearson correlation in IR , ...
- Structural-Context Similarity (link-based)
 - PageRank : A page's authority is decided by its neighbors' authorities.
 - HITS:
 - "a good hub" --- a page that pointed to many other pages
 - "a good authority" --- a page that was linked by many hubs
 - SimRank: similar objects are referenced by similar objects.
 - LinkFusion : reinforcement assumption
 - Penetrating-Rank : entities are similar if
 - (1) they are referenced by similar entities;
 - (2) they reference similar entities.

What is SimRank?

- ◆ The similarity in a domain can be modeled as graphs.
 [vertices → objects, edges → relationships]
- SimRank is an important similarity measure which exploits the relationships between vertices on web graphs.
 (Glen Jeh & Jennifer Widom ,2002)
- Basic intuition:
 - Two objects are similar if their neighbors are similar. (the recursive definition)
 - Objects are maximally similar to themselves. (the base case)

Overview

SimRank Equation

- ◆ Definition 1 (SimRank similarity)
 Let s: V² → [0, 1] be a similarity function on G²
 - If a = b, → s (a, b) = 1,
 - If I(a) or I(b) = Ø, → s (a, b) = 0,
 - otherwise: $s(a,b) = \frac{C}{|I(a)| \cdot |I(b)|} \cdot \sum_{i=1}^{|I(a)|} \sum_{j=1}^{|I(b)|} s(I_i(a), I_j(b))$
 - C is a decay factor btw. 0 & 1
 - symmetric : s(a,b) = s(b,a)

Similarity btw. a & b is the average similarity btw. in-neighbors of a and in-neighbors of b.

Naïve SimRank Computation

- (monotonicity) $S_k(a, b) \nearrow S(a, b)$ as $k \to \infty$.
- (symmetry) S(a, b) = S(b, a).
- (stability) S(a, b) is independent of $S_0(a, b)$.
- (complexity) Time: O(Kn²d²), Space: O(n²), where d is the average of |I(·)| over all nodes.

Existing Techniques for SimRank Optimization

Deterministic Method [PVLDB 08]

• (to compute $s(\cdot, \cdot)$ iteratively for finding a fixed point)

$$\mathbf{s}_{k+1}(a,b) = \frac{C}{\left|\mathbf{I}(a)\right| \cdot \left|\mathbf{I}(b)\right|} \cdot \sum_{i=1}^{|\mathbf{I}(a)|} \sum_{j=1}^{|\mathbf{I}(b)|} \mathbf{s}_{k}(\mathbf{I}_{i}(a),\mathbf{I}_{j}(b)), \quad k = 0, 1, \cdots$$

- Advantage: accurate
- Disadvantage: high time complexity O(Kn³)

Probabilistic Method [WWW 05]

• (to estimate $s(\cdot, \cdot)$ stochastically by using Monte-Carlo)

 $s(a,b) = E(c^{T(a,b)})$, where

T (a,b): the first meeting time btw. a & b

- Advantage: scalable (linear time)
- Disadvantage: low similarity quality

Overview

Motivation

- The computational time, which has been reduced to O(Kn³) by [PVLDB08], is still rather costly for practical purposes.
- Optimization for SimRank storage space has not been addressed in scientific literature yet.
- ★ The accuracy estimate ∈ = c^k in [PVLDB08] is solely based on the empirical inductive method and, therefore, is not preferable.

Our Contributions

- A matrix representation and a storage scheme for SimRank model has been introduced.
 - to reduce space from O(n²) to O(m + n)
 - to improve time from O(n³) to O (min {n·m, n^r}) in the worst case, where r ≤ log₂7
- Optimization techniques for minimizing the matrix bandwidth have been developed.
 - to improve I/O efficiency
- A successive over-relaxation method has been showed.
 - to accelerate the rate of convergence

3.1 Matrix Representations for SimRank Model

★ Let S = (s_{i,j}) ∈ R^{n×n} be a SimRank matrix, where s_{i,j} = the SimRank value btw. vertices i and j. P = (p_{i,j}) ∈ N^{n×n} be an adjacency matrix , where p_{i,j} = # of edges from vertices i to j.

SimRank in matrix notation O(n³) for matrix multiplication

$$\begin{cases} S^{(0)} = \mathbf{I}_{n} \\ S^{(k+1)} = c \cdot \mathbf{Q} \cdot S^{(k)} \cdot \mathbf{Q}^{\mathsf{T}} \lor \mathbf{I}_{n} \quad (k = 0, 1, \cdots) \end{cases}$$

$$\begin{split} \boldsymbol{s}_{k+1}(\boldsymbol{a},\boldsymbol{b}) &= \frac{\boldsymbol{C}}{\left|\mathbf{I}(\boldsymbol{a})\right| \cdot \left|\mathbf{I}(\boldsymbol{b})\right|} \cdot \sum_{i=1}^{\left|\mathbf{I}(\boldsymbol{a})\right|} \sum_{j=1}^{\left|\mathbf{I}(\boldsymbol{b})\right|} \boldsymbol{s}_{k}(\mathbf{I}_{i}(\boldsymbol{a}),\mathbf{I}_{j}(\boldsymbol{b})) \\ &= \boldsymbol{C} \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{\boldsymbol{p}_{i,a}}{\sum_{i} \boldsymbol{p}_{i,a}}\right) \cdot \boldsymbol{s}_{i,j}^{(k)} \cdot \left(\frac{\boldsymbol{p}_{j,b}}{\sum_{j} \boldsymbol{p}_{j,b}}\right), \quad \mathbf{k} = \mathbf{0}, \mathbf{1}, \cdots \\ \boldsymbol{S}^{(k+1)} &= \mathbf{C} \cdot \mathbf{Q} \cdot \boldsymbol{S}^{(k)} \cdot \mathbf{Q}^{\mathsf{T}} \quad \left(\mathbf{a} \neq \mathbf{b}\right) \end{split}$$

For dense graphs

- Fast matrix multiplication algorithms can be applied to speed up the SimRank computation.
 - Strassen Algorithm: $O(n^r)$, where $r = \log_2 7$
 - Coppersmith-Winograd Algorithm: O(n^{2.38})
- For sparse graphs
 - Compressed Sparse Row (CSR) are used to represent
 Q due to its high compression ratio.
 - CSR has $O(m \cdot n)$ time with the space O(m + n).

3.2 Permuted SimRank Iterative Approach

- The permutation method allows improving I/O efficiency for SimRank computation.
- The main idea involves 2 steps:
 - Reversed Cuthill-McKee (RCM) algorithm for nonsymmetric matrix is introduced for finding an optimal permutation while reordering the matrix Q during the precomputation phase.
 - Permuted SimRank iterative equation is developed for reducing the matrix bandwidth for SimRank computation.

3.2 Permuted SimRank Iterative Approach (cont.)

 \clubsuit The permutation π can be thought of as a bijection between the vertices of the labeled graph G_Q and $G_{\pi(Q)}$. ♦ β (π (Q)) ≤ β (Q). We extend the original RCM to the directed graph by adding "the mate Q^{\top} " and apply RCM to $Q + Q^T$.

3.2 Permuted SimRank Iterative Approach (cont.)

Permuted SimRank Equation

• Let π be an arbitrary permutation with an induced permutation matrix Θ . For a given graph G, SimRank similarity score can be computed as

$$\mathsf{S}^{(\mathsf{k})} = \pi^{-1}(\widehat{\mathcal{S}}^{(\mathsf{k})})$$

where

$$\begin{cases} \mathbf{\hat{S}}^{(0)} = \mathbf{I}_{n} \\ \mathbf{\hat{S}}^{(k+1)} = \mathbf{c} \cdot \pi(\mathbf{Q}) \cdot \mathbf{\hat{S}}^{(k)} \cdot \pi(\mathbf{Q})^{\mathsf{T}} \vee \mathbf{I}_{n}, \quad \mathbf{k} = 0, 1, \cdots \end{cases}$$

 For the computation to be I/O efficient, Q needs to be preordered during the precomputation phrase.

3.3 Successive Over-relaxation (SOR) SimRank Algorithm

- SOR can be used for computing S^(k) to effectively exhibit faster rate of convergence.
- SOR SimRank Equation:
 - Let $Q = (q_{i,j}) \in \mathbb{R}^{n \times n}$, $S^{(k)} = (s_1^{(k)} \ s_2^{(k)} \ \dots \ s_n^{(k)})$, where $s_i^{(k)}$ is the j-th column vector of $S^{(k)}$, then

$$\mathbf{s}_{i}^{GS\,(k+1)} = \mathbf{c} \cdot \mathbf{Q} \cdot \left(\sum_{j < i} \mathbf{q}_{i,j} \cdot \mathbf{s}_{j}^{(k)} + \sum_{j > i} \mathbf{q}_{i,j} \cdot \mathbf{s}_{j}^{(k+1)}\right) \vee \mathbf{I}_{n}$$
$$\mathbf{s}_{i}^{SOR\,(k+1)} = (\mathbf{1} - \omega) \cdot \mathbf{s}_{i}^{SOR\,(k)} + \omega \cdot \mathbf{s}_{i}^{GS\,(k+1)}$$

Overview

4 Experimental Evaluation

- Experimental Setup
 - Hardware
 - 2.0GHz Pentium(R) Dual-Core / 2GB RAM
 - Windows Vista OS / Visual C++ 6.0
 - Data Sets
 - Synthetic
 - graph with an average of 8 links per page.
 - 10 sample adjacency matrices from 1K to 10K with $\xi \sim uniform[0; 16]$ out-links on each row.
 - Real-life
 - Wikipedia (3.2M articles with 110M intra-wiki links Oct. '07)
 - We choose the relationship: "a category contains an article to be a link from the category to the article".
 - Parameter Settings
 - $c = 0.8, \omega = 1.3, \epsilon = 0.05$

Experimental Results

(f) Extended RCM (m = 5, 496, 208)

Thank You I

Overview

Conclusions

- We formalized the SimRank equation in matrix notations.
- We investigated optimization issues for SimRank computation.
 - A compressed storage scheme for sparse graphs is adopted for reducing the space from O(n²) to O (n + m).
 - A fast matrix multiplication for dense graphs is used for improving the time from $O(n^2 \cdot d)$ to $O(\min{n \cdot m, n^r}), r \le \log_2 7$.
 - A permuted SimRank iteration was developed in combination of the extended RCM algorithm to achieve its I/O efficiency.
 - A SOR method has been showed to significantly speed up the convergence rate of the SimRank iteration.
- Our experimental evaluations on synthetic and real-life data sets demonstrate the efficiency of our methods.