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<+ Many applications require a measure of “similarity” between objects.

Citati

(google.com)



_nilarity Measures

» Textual-Content Similarity (fext-based)
= Vector-cosine similarity, Pearson correlation in IR, ...
% Structural-Context Similarity (link-based)
= PageRank : A page's authority is decided by its neighbors’ authorities.
HITS:
- "a good hub" --- a page that pointed to many other pages

* "a good authority” --- a page that was linked by many hubs

SimRank :  similar objects are referenced by similar objects.

LinkFusion : reinforcement assumption

Penetrating-Rank : entities are similag



-t IS SimRank??

» The similarity in a domain can be modeled as graphs.

[ vertices = objects , edges -2 relationships |

< SimRank is an important similarity measure which exploits

the relationships between vertices on web graphs.
(Glen Jeh & Jennifer Widom ,2002)

*» Basic intuition:

= Two objects are similar if their

(the recursive definition)

= Objects are maximally simi

(the base case ) - | &






 SimRank Equatior

< Definition 1 (SimRank similarity)
Let s: V2— [0, 1] be a similarity function on G2
= ifa=Db, = s(a,b)=1,

= if I(a) or I(b) = @, = s(a,b)=0,
C T(a) [L(b)

b) = : I(a),IL(b
A R UL ORIC)

= otherwise: s(

- Cis a decay factor btw. 0 & 1

- symmeftric : s(a,b) = s(b,a)

Similarity btw.



* Naive SimRank Computatior

<» Iterative Paradigm:

o= f0 27
b ¢ |I(°)| s (T(a).I(b)), k=01
Sk+1(a/ ) |I( )| |I(b)| - ZS ( (G) ( )) — Y, 4,0

(monotonicity) Sy(



-es for SimRank Optimization

% Deterministic Method [PVLDRB 08]
= (to compute s(, -) iteratively for finding a fixed point )
¢

I I(b k=0,1,---
Sk+1( ‘I( )‘ ‘I(b)‘ Z zs( ()} ( )}

= Advantage:  accurate
= Disadvantage: high time complexity O(Kn3)

% Probabilistic Method [WWW 05]
= ( to estimate s(:, -) stochastically by using.Monte-Carlo )

s(a,b) = E (c™aP)) , where

g Advan’rage. scalable (lme,ar gl
- Disadvantage: low similarity'quality s






~ Motivator

<» The computational time, which has been reduced to
O(Kn3) by [PVLDBO08], is still rather costly for

practical purposes.

< Optimization for SimRank storage space has not

been addressed in scientific literature yet.

<> The accuracy estimate € = ¢ in [PVLDBO8] is solely

based on the empirical inductive

therefore, is not preferable



.~ OurContributions

< A matrix representation and a storage scheme for
SimRank model has been introduced.

= to reduce space from O(n?) to O(m + n)

= to improve time from O(n3) to O (min {n'm, n"})
in the worst case, where r < log,7

< Optimization techniques for minimizing the matrix
bandwidth have been developed.

= to improve I/0 efficiency



3.1 Matrix Representations for SimRank Model
“Let S=(s;;) € R™" bea SimRank matrix, where
s;; = the SimRank value btw. vertices i and j.

P=(p;;) € N"*" be an adjacency matrix , where
pi;= # of edges from vertices i fo .

< SimRank in matrix notation O(n3) for matrix multiplication

S(O) . In
Stkil) _ Q . sk -QT VIn (k = 0,1,)
_———l

pu T [Tee))

1E I, b
()| - [ZB)) le ZS( (a).I;(b))

P
- EION bl o
Zz[zp] [ij

S _c.Q-5®.QT (a=b)

Sk1 (a,b) =

13




_ntations for SimRank Model (cont.)

<+ For dense graphs

= Fast matrix multiplication algorithms can be applied to
speed up the SimRank computation.

» Strassen Algorithm: O(n"), where r = log,7
* Coppersmith-Winograd Algorithm: O(n?38)

» For sparse graphs

= Compressed Sparse Row (CSR) ¢



-Rank Iterative Approach

> The permutation method allows improving I/0 efficiency

for SimRank computation.
<» The main idea involves 2 steps:

= Reversed Cuthill-McKee (RCM) algorithm for non-
symmetric matrix is infroduced for finding an optimal
permutation while reordering the matrix Q during the

precomputation phase.

reducing the matrix bandwic

computation.



3.2 Permuted SimRank Iterative Approach (cont.)

<» The permutation ™ can
be thought of as a
bijection between the
vertices of the labeled

graph G4 and G,

node v;

b M(Q) < p (Q). ™ (vi)
<» We extend the original
RCM 1o the directed
graph by adding "the
mate Q' “ and apply

RCM to Q + QT.




3_k Iterative Approach (cont.)

<» Permuted SimRank Equation

= Let m be an arbitrary permutation with an induced
permutation matrix O. For a given graph G, SimRank
similarity score can be computed as

S® — 7150
where

S _1
S*D — . 7(Q)- S - A(QT VI, k=01,

» For the computation to be I/0
efficient, Q needs to be
preordered during the

- ~ A
precomputation phrase. &



» SOR can be used for computing S to effectively exhibit

faster rate of convergence.
<+ SOR SimRank Equation:

N LeT Q - (ql,J) < Rnxn ' S(k): (Sl(k) Sz(k) Sn(k)) '

where sj(") is the j-th column vector of S, then

6S (k+1) K
sV =c-Q-(Q.q,;-5" +

J<i

sSORMK) _ (1 _ ). Siqu




Definition

ation Techniques

v



mental Evaluation
< Experimental Setup

= Hardware
+ 2.0GHz Pentium(R) Dual-Core / 2G6B RAM
- Windows Vista OS / Visual C++ 6.0

= Data Sets

» Synthetic
- graph with an average of 8 links per page.

- 10 sample adjacency matrices from 1K to 10K
with £ ~uniform[O; 16] out-links on each row.

* Real-life
- Wikipedia (3.2M articles with '07)
- We choose the relationship ; e

= Parameter Settings TR T an kel
' CZO.8,LU=1.3,E=O.O5 . = 20



Experimental Results

—— 1 with SOR & CSR-styled format
with partial sums
sample curve for cubic polynomial
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(a) Time Efficiency on Sparse Graphs §&




1 with SOR & fast matrix multiplication
with partial sums
sample curve for cubic polynomial
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(b) Time Efficiency on Dense Graphs




—3é— with SOR

-=3-- with partial sums
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O initial
BE with unsymmetric RCM reordering
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- Conclusions

<» We formalized the SimRank equation in matrix notations.
<+ We investigated optimization issues for SimRank computation.

= A compressed storage scheme for sparse graphs is adopted
for reducing the space from O(n?) fo O (n + m).

= A fast matrix multiplication for dense graphs is used for
improving the time from O(n?-d) fo O (min {n‘m, n"}), r < log,7.

= A permuted SimRank iteration was developed in combination of
the extended RCM algorithm to achieve its I/O efficiency.

= A SOR method has been showed to
convergence rate of the SimRa

<» Our experimental evaluations on sy thetic

- >

demonstrate the efficiency of ourmethods.
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