Fast Incremental SimRank on LinkEvolving Gräphs

Outline

Overview

- Existing incremental method
- Our approaches
- express $\Delta \mathrm{S}$ as a rank-one Sylvester equation: $\mathrm{O}\left(\mathrm{Kn}^{2}\right)$
- prune "unaffected areas" of $\Delta \mathrm{S}$: $\mathrm{O}(\mathrm{K}(\mathrm{nd}+|\mathrm{AFF}|))$ with $|A F F|<\mathrm{n}^{2}$
- Empirical evaluations
- Conclusions

- Similarity Assessment plays a vital role in our lives.

SimRank Overview

- SimRank
- An appealing link-based similarity measure (KDD '02)
- Basic philosophy

Two vertices are similar if they are referenced by similar vertices.

- Two Forms
- Original form (KDD ${ }^{\prime} 02$)
similarity btw. nodes a and b

$$
\begin{aligned}
& s(a, a)=1 \\
& s(a, b)=\frac{C}{|\mathcal{I}(a)||\mathcal{I}(b)|} \sum_{j \in \mathcal{I}(b)} \sum_{i \in \mathcal{I}(a)} s(i, j)
\end{aligned}
$$

- Matrix form (EDBT '10)

$$
\mathbf{S}=C \cdot\left(\mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^{T}\right)+(1-C) \cdot \mathbf{I}_{n}
$$

Existing SimRank Algorithms

- Batch Computations
- All Pairs s(*,*)
- Single Pair $s(a, b)$
- Single Source $s\left({ }^{*}, q\right)$
- Similarity Join $s(x, y)$ for all x in A, and y in B.
- Incremental Paradigms:
- link-evolving:
- Li et. al. [EDBT 2010] needs $O\left(r^{4} n^{2}\right)$ time for approximation.
- node-evolving:
- He et al. [KDD 2010] --- GPU based

Motivation

Node-Pair	in G	in $G \cup \Delta G$	
	sim	sim $_{\text {true }}$	sim $_{\text {Li et al. }}$
(a, b)	0.075	0.062	0.073
(a, d)	0.000	0.006	0.002
$(\boldsymbol{i}, \boldsymbol{f})$	$\mathbf{0 . 2 4 6}$	$\mathbf{0 . 2 4 6}$	$\mathbf{0 . 2 4 6}$
$(\boldsymbol{k}, \boldsymbol{g})$	$\mathbf{0 . 1 2 8}$	$\mathbf{0 . 1 2 8}$	$\mathbf{0 . 1 2 8}$
$(\boldsymbol{k}, \boldsymbol{h})$	$\mathbf{0 . 2 8 8}$	$\mathbf{0 . 2 8 8}$	$\mathbf{0 . 2 8 8}$
(j, f)	0.206	0.138	0.206
$(\boldsymbol{m}, \boldsymbol{l})$	$\mathbf{0 . 1 6 0}$	$\mathbf{0 . 1 6 0}$	$\mathbf{0 . 1 6 0}$
(j, b)	0.000	0.030	0.001

- Li et al. [EDBT 2010] using SVD for incremental SimRank is approximate.
- When $\Delta \mathrm{G}$ is small, the "affected areas" of $\Delta \mathrm{S}$ are also small.

Problem (INCREMENTAL SIMRANK COMPUTATION)
Given: G, S, $\Delta \mathrm{G}$, and C .
Compute: $\Delta \mathrm{S}$ to S .

Main Idea

- For every edge update, $\Delta \mathrm{Q}$ has a rank-one structure

$$
\Delta \mathbf{Q}=\mathbf{u} \cdot \mathbf{v}^{T} \quad \Delta \mathbf{Q}=\square_{\mathbf{u}}
$$

- Characterize $\Delta \mathrm{S}$ as

$$
\Delta \mathbf{S}=\mathbf{M}+\mathbf{M}^{T}, \text { where } \mathrm{M} \text { satisfies }
$$

$$
\mathbf{M}=C \cdot \tilde{\mathbf{Q}} \cdot \mathbf{M} \cdot \tilde{\mathbf{Q}}^{T}+C \cdot \mathbf{u} \cdot \mathbf{w}^{T}
$$

compute M via mat-vec multiplication
In comparison

$$
\tilde{\mathbf{S}}=C \cdot \tilde{\mathbf{Q}} \cdot \tilde{\mathbf{S}} \cdot \tilde{\mathbf{Q}}^{T}+(1-C) \cdot \mathbf{I}_{n}
$$

compute S̃ via mat-mat multiplication

Mat-Mat \rightarrow Mat-Vec Multiplication

- Based on

$$
\mathbf{X}=\sum_{k=0}^{\infty} \mathbf{A}^{k} \cdot \mathbf{C} \cdot \mathbf{B}^{k} \Leftrightarrow \mathbf{X}=\mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B}+\mathbf{C}
$$

we have

$$
\begin{aligned}
\mathbf{M} & =\sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k}, \\
\tilde{\mathbf{S}} & =(1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k} .
\end{aligned}
$$

Mat-Mat \rightarrow Mat-Vec Multiplication

- Based on

$$
\mathbf{X}=\sum_{k=0}^{\infty} \mathbf{A}^{k} \cdot \mathbf{C} \cdot \mathbf{B}^{k} \Leftrightarrow \mathbf{X}=\mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B}+\mathbf{C}
$$

we have

$$
\begin{aligned}
\mathbf{M} & =\sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k}, \\
\tilde{\mathbf{S}} & =(1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k} .
\end{aligned}
$$

Mat-Mat \rightarrow Mat-Vec Multiplication

- Based on

$$
\mathbf{X}=\sum_{k=0}^{\infty} \mathbf{A}^{k} \cdot \mathbf{C} \cdot \mathbf{B}^{k} \Leftrightarrow \mathbf{X}=\mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B}+\mathbf{C}
$$

we have

$$
\begin{aligned}
\mathbf{M} & =\sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k}, \\
\tilde{\mathbf{S}} & =(1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k} .
\end{aligned}
$$

Mat-Mat \rightarrow Mat-Vec Multiplication

- Based on

$$
\mathbf{X}=\sum_{k=0}^{\infty} \mathbf{A}^{k} \cdot \mathbf{C} \cdot \mathbf{B}^{k} \Leftrightarrow \mathbf{X}=\mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B}+\mathbf{C}
$$

we have

$$
\begin{aligned}
\mathbf{M} & =\sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k}, \\
\tilde{\mathbf{S}} & =(1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k} .
\end{aligned}
$$

Mat-Mat \rightarrow Mat-Vec Multiplication

- Based on

$$
\mathbf{X}=\sum_{k=0}^{\infty} \mathbf{A}^{k} \cdot \mathbf{C} \cdot \mathbf{B}^{k} \Leftrightarrow \mathbf{X}=\mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B}+\mathbf{C}
$$

we have

$$
\begin{aligned}
\mathbf{M} & =\sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k}, \\
\tilde{\mathbf{S}} & =(1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k} .
\end{aligned}
$$

Mat-Mat \rightarrow Mat-Vec Multiplication

- Based on

$$
\mathbf{X}=\sum_{k=0}^{\infty} \mathbf{A}^{k} \cdot \mathbf{C} \cdot \mathbf{B}^{k} \Leftrightarrow \mathbf{X}=\mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B}+\mathbf{C}
$$

we have

$$
\begin{aligned}
& \mathbf{M}=\sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k}, \\
& \\
& \tilde{\mathbf{S}}=(1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot\left(\tilde{\mathbf{Q}}^{T}\right)^{k} . \\
& \mathbf{M}=\sum_{k=0}^{\infty} C^{k+1} \cdot \square \cdot \square=\sum_{k=0}^{\infty} C^{k+1} \cdot \square
\end{aligned}
$$

Challenges

- For every edge update, $\Delta \mathrm{Q}$ has a rank-one structure

$$
\boldsymbol{\Delta} \mathbf{Q}=\mathbf{u} \cdot \mathbf{v}^{T}
$$

- Characterize $\Delta \mathrm{S}$ as

$$
\Delta \mathbf{Q}=\downarrow_{\mathbf{u}}^{\mathbf{v}^{T}}
$$

$\Delta \mathbf{S}=\mathbf{M}+\mathbf{M}^{T}$, where M satisfies

$$
\mathbf{M}=C \cdot \tilde{\mathbf{Q}} \cdot \mathbf{M} \cdot \tilde{\mathbf{Q}}^{T}+C \cdot \mathbf{u} \cdot \mathbf{w}^{T}
$$

Finding u, v, w is challenging !!

Finding \mathbf{u}, v

- For every edge update, $\Delta \mathrm{Q}$ has a rank-one structure

$$
\Delta \mathbf{Q}=\mathbf{u} \cdot \mathbf{v}^{T}
$$

$$
\Delta \mathbf{Q}=\square \mathbf{v}_{\mathbf{u}}^{\square}
$$

where
(1) for edge (i, j) insertion,

$$
\mathbf{u}=\left\{\begin{array}{cc}
\mathbf{e}_{j} & \left(d_{j}=0\right) \\
\frac{1}{d_{j}+1} \mathbf{e}_{j} & \left(d_{j}>0\right)
\end{array}, \quad \mathbf{v}=\left\{\begin{array}{cc}
\mathbf{e}_{i} & \left(d_{j}=0\right) \\
\mathbf{e}_{i}-\left[\mathbf{Q}_{j, \star}^{T}\right. & \left(d_{j}>0\right)
\end{array}\right.\right.
$$

(2) for edge (i, j) deletion,

$$
\mathbf{u}=\left\{\begin{array}{cc}
\mathbf{e}_{j} & \left(d_{j}=1\right) \\
\frac{1}{d_{j}-1} \mathbf{e}_{j} & \left(d_{j}>1\right)
\end{array}, \quad \mathbf{v}=\left\{\begin{array}{rr}
-\mathbf{e}_{i} & \left(d_{j}=1\right) \\
{[\mathbf{Q}]_{j, \star}^{T}-\mathbf{e}_{i}} & \left(d_{j}>1\right)
\end{array}\right.\right.
$$

Example

$$
[\tilde{\mathbf{Q}}]_{j, \star}=\left[\begin{array}{lllllllll}
0 & \cdots & 0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 & \cdots
\end{array}\right]
$$

- Since the old $[\mathbf{Q}]_{j, \star}=\left[\begin{array}{lllllllll}0 & \cdots & 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & \cdots\end{array}\right] \in \mathbb{R}^{1 \times 15}$, after insertion: $\Delta \mathbf{Q}=\mathbf{u} \cdot \mathbf{v}^{T}$ with
(j)

$$
\begin{aligned}
& \mathbf{u}=\frac{1}{d_{j}+1} \mathbf{e}_{j}=\frac{1}{3} \mathbf{e}_{j}=\left[\begin{array}{lllllll}
0 & \cdots & 0 & \frac{1}{3} & 0 & \cdots & 0
\end{array}\right]^{T} \in \mathbb{R}^{15 \times 1}, \\
& \text { (h) (i) (j) (k) } \\
& \mathbf{v}=\mathbf{e}_{i}-[\mathbf{Q}]_{j, \star}^{T}=\left[\begin{array}{llllllllll}
0 & \cdots & 0 & -\frac{1}{2} & 1 & 0 & -\frac{1}{2} & 0 & \cdots & 0
\end{array}\right]^{T} \in \mathbb{R}^{15 \times 1} .
\end{aligned}
$$

Finding w

- For every edge update, $\Delta \mathrm{Q}$ has a rank-one structure

- Characterize $\Delta \mathrm{S}$ as

Theorem There exists $w=y+\frac{\lambda}{2} \mathbf{u}$ with

$$
\mathbf{y}=\mathbf{Q} \cdot \mathbf{z}, \quad \operatorname{Step} 2 \cdot \mathbf{z}, \quad \mathbf{z}=\mathbf{S} \cdot \mathbf{v}
$$

$$
\begin{aligned}
& \llbracket=\square! \\
& \mathbf{z}=\mathbf{S} \cdot \mathbf{v} \\
& \mathbf{y}=\mathbf{Q} \cdot \mathbf{z}
\end{aligned}
$$

s.t. Eq.(1) is a rank-one Sylvester Equation w.r.t. M.

Complexity Analysis

- Time complexity: $\mathrm{O}\left(\mathrm{Kn}^{2}\right)$

Step 1. Find u, v s.t. $\Delta \mathbf{Q}=\mathbf{u} \cdot \mathbf{v}^{T}$

$$
\mathbf{u}=\left\{\begin{array}{cc}
\mathbf{e}_{j} & \left(d_{j}=0\right) \\
\frac{1}{d_{j}+1} \mathbf{e}_{j} & \left(d_{j}>0\right)
\end{array}, \quad \mathbf{v}=\left\{\begin{array}{cc}
\mathbf{e}_{i} & \left(d_{j}=0\right) \\
\mathbf{e}_{i}-[\mathbf{Q}]_{j, \star}^{T} & \left(d_{j}>0\right)
\end{array}\right.\right.
$$

Step 2. Find w s.t. $\mathbf{M}=C \cdot \tilde{\mathbf{Q}} \cdot \mathbf{M} \cdot \tilde{\mathbf{Q}}^{T}+C \cdot \mathbf{u} \cdot \mathbf{w}^{T}$

$$
\begin{aligned}
& \text { initialize } \boldsymbol{\xi}_{0} \leftarrow C \cdot \mathbf{u}, \quad \boldsymbol{\eta}_{0} \leftarrow \mathbf{w}, \quad \mathbf{M}_{0} \leftarrow C \cdot \mathbf{u} \cdot \mathbf{w}^{T} \\
& \text { for } k=0,1,2, \cdots \\
& \qquad \boldsymbol{\xi}_{k+1} \leftarrow C \cdot \tilde{\mathbf{Q}} \cdot \boldsymbol{\xi}_{k}, \quad \boldsymbol{\eta}_{k+1} \leftarrow \tilde{\mathbf{Q}} \cdot \boldsymbol{\eta}_{k} \\
& \quad \mathbf{M}_{k+1} \leftarrow \boldsymbol{\xi}_{k+1} \cdot \boldsymbol{\eta}_{k+1}^{T}+\mathbf{M}_{k}
\end{aligned}
$$

Step 3. Compute $\Delta \mathrm{S}$ as

$$
\Delta \mathbf{S}=\mathbf{M}+\mathbf{M}^{T}
$$

Can we further improve it?

Pruning

- Key observation:
- When link updates are small, "affected areas" in $\Delta \mathrm{S}$ (or M) are often small as well.

	(a)	(b)	(c)	(d)	(e)	(f)	\cdots	(i)	(j)	$(k) \cdots(o)$
(a)	-0.005	-0.009	0	0.009				-0.009		
(b)	-0.004	-0.006	0	0.006		0		-0.007	0	
(c)	0	0	0	0			0			
(d)	-0.002	-0.002	0	-0.005			0	0	0	
\vdots		0			0		0			
(i)		0								
(j)	0.028	0.037	0	0	-0.068		-0.104	-0.060		
\vdots		0			0	0	0			
(o)										

- Challenge:
- How to identify only "unaffected areas" in ΔS to skip unnecessary recomputations for link update?

Paths Aggregation

- $\left[\mathbf{A}^{k}\right]_{i, j}$ counts \# of length-k paths from node ito j.
- $[\mathbf{S}]_{a, b}$ counts the weighted sum of paths:

$$
\begin{gathered}
\underbrace{\mathbf{a} \leftarrow \circ \leftarrow \cdots \leftarrow \bullet \underbrace{\rightarrow \cdots \rightarrow 0 \rightarrow \mathbf{b}}_{\text {length } k}}_{\text {length } k} \\
\mathbf{S}=C \cdot\left(\mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^{T}\right)+(1-C) \cdot \mathbf{I}_{n} \\
\Leftrightarrow[\mathbf{S}]_{a, b}=(1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot\left[\mathbf{Q}^{k} \cdot\left(\mathbf{Q}^{T}\right)^{k}\right]_{a, b}
\end{gathered}
$$

Q is the weighted (i.e., row-normalized) matrix of A^{\top}

Paths captured by M

$$
\boldsymbol{\Delta} \mathbf{S}=\mathbf{M}+\mathbf{M}^{T} \quad \mathbf{M}=C \cdot \tilde{\mathbf{Q}} \cdot \mathbf{M} \cdot \tilde{\mathbf{Q}}^{T}+C \cdot \mathbf{u} \cdot \mathbf{w}^{T}
$$

- Expansion of M

$$
\begin{aligned}
& {[\mathbf{M}]_{a, b}=\frac{1}{\alpha_{j}+1}(\underbrace{\sum_{k=0}^{\infty} C^{k+1} \cdot\left[\tilde{\mathbf{Q}}^{k}\right]_{a, j}[\mathbf{S}]_{i, \alpha} \mathbf{Q}^{T} \cdot\left[\left(\tilde{\mathbf{Q}}^{T}\right)^{k}\right]_{x, b}}_{\text {Pant }}-\underbrace{\sum_{k=0}^{\infty} C^{k}\left[\tilde{\mathbf{Q}}^{k}\right]_{a, j}[\mathbf{S}]_{j, t}\left[\left(\tilde{\mathbf{Q}}^{T}\right)^{k}\right]_{\star, b}}_{\text {Part }}} \\
& +\mu \underbrace{\sum_{k=0}^{\infty} C^{k+1}\left[\tilde{\mathbf{Q}}^{k}\right]_{a, j}\left[\left(\tilde{\mathbf{Q}}^{T}\right)^{k}\right]_{j, b}}_{\text {Patr }})
\end{aligned}
$$

- Three types of paths identified by M
- P1:

- P3: $\underbrace{\overbrace{\text { aผ๐ }}^{\left[\tilde{\mathbf{Q}}^{k}\right]_{a, j}}}_{\text {length } k} j \overbrace{\underbrace{\left[\left(\tilde{\mathbf{Q}}^{T}\right)^{k}\right]_{j, b}}_{\text {length } k}}^{\rightarrow \circ \cdots \circ \rightarrow b}$

Unaffected Areas

- Since M merely tallies these paths, node-pairs without having such paths could be safely pruned.
- Iteratively Pruning:

$$
\begin{array}{ll}
\text { Let } & \mathcal{F}_{1}:=\{b \mid b \in \mathcal{O}(y), \exists y, \\
\qquad \mathcal{F}_{2}:= \begin{cases}\varnothing & \text { s.t. } \left.[\mathbf{S}]_{i, y} \neq 0\right\} \\
\left\{y \mid[\mathbf{S}]_{j, y} \neq 0\right\} & \left(d_{j}=0\right)\end{cases} \\
\qquad \begin{array}{l}
\left.\mathcal{A}_{k} \times 0\right)
\end{array} \\
\begin{cases}\{j\} \times\left(\mathcal{B}_{k} \cup=\right. \\
\{(a, b) \mid a \in \tilde{\mathcal{O}}(x), b \in\{j\}) \\
\left\{\begin{array}{c}
\mathcal{O}
\end{array}(y), \exists x, \exists y, \text { s.t. }\left[\mathbf{M}_{k-1}\right]_{x, y} \neq 0\right\} & (k>0)\end{cases}
\end{array}
$$

Then

$$
\left[\mathbf{M}_{k}\right]_{a, b}=0 \quad \text { for all }(a, b) \notin\left(\mathcal{A}_{k} \times \mathcal{B}_{k}\right) \cup\left(\mathcal{A}_{0} \times \mathcal{B}_{0}\right)
$$

- Complexity: $\mathrm{O}(\mathrm{K}(\mathrm{nd}+|\mathrm{AFF}|))$ with

$$
|\mathrm{AFF}|:=\operatorname{avg}_{k \in[0, K]}\left(\left|\mathcal{A}_{k}\right| \cdot\left|\mathcal{B}_{k}\right|\right)
$$

Experimental Settings

- Datasets
- Real: DBLP, CITH, YOUTU
- Synthetic: GraphGen generator
- Compared Algorithms
- Inc-SR: Our Incremental SimRank with Pruning
- Inc-uSR: Our Incremental SimRank without Pruning
- Inc-SVD [EDBT '10]: the best known link-update algorithm
- Batch, the batch SimRank via fine-grained memoization
- Evaluations
- Time Efficiency
- Effectiveness of Pruning
- Intermediate Memory
- Exactness

Time Efficiency

(a) Time Efficiency of Incremental SimRank on Real Data

Effectiveness of Pruning

(d) Effect of Pruning

(e) $\%$ of Affected Areas w.r.t. $|\Delta E|$

Intermediate Memory \& Exactness

Fig. 3: Memory Space

Fig. 4: NDCG_{30} Exactness

Conclusions

- Two efficient methods are proposed to incrementally compute SimRank on link-evolving graphs
- ΔS is characterized via a rank-one Sylvester equation, improving the time to $\mathrm{O}\left(\mathrm{Kn}^{2}\right)$ for every link update.
- A pruning strategy skipping unnecessary recomputations, which further reduces the time to $\mathrm{O}(\mathrm{K}(\mathrm{nd}+|\mathrm{AFF}|))$.
- Empirical evaluations to show the superiority of our methods from several times to one order of magnitude.

