Fast Incremental SimRank on Link-Evolving Graphs

 \bigcirc

Weiren Yu ^{1,2}, Xuemin Lin ¹, Wenjie Zhang ¹

University of New South Wales ² Imperial College London,

Outline

Overview

- Existing incremental method
- Our approaches
 - express ΔS as a rank-one Sylvester equation: O(Kn²)
 - prune "unaffected areas" of ΔS:
 O(K(nd+|AFF|)) with |AFF| < n²
- Empirical evaluations
- Conclusions

Overview

• Similarity Assessment plays a vital role in our lives.

SciVerse Hub ScienceDirect Scopus Applications Home Publications Search My settings My alerts				
Articles All fields SimRank Images Journal/Book title	Author Volume Issue Page			
8 Evolution of trust networks in social web applications using supervised learning Original Research Article Procedia Computer Science, Volume 3, 2011, Pages 833-839 Kiyana Zolfaghar, Abdollah Aghaie				
C Show preview 📩 PDF (417	K) Related articles Related reference			
Citation Graph				

Collaboration Network

SimRank Overview

- SimRank
 - An appealing link-based similarity measure (KDD '02)
 - Basic philosophy

Two vertices are similar if they are referenced by similar vertices.

• Two Forms

Existing SimRank Algorithms

- Batch Computations
 - All Pairs s(*,*)
 - Single Pair s(a,b)
 - Single Source s(*,q)
 - Similarity Join s(x,y) for all x in A, and y in B.
- Incremental Paradigms:
 - link-evolving:
 - Li et. al. [EDBT 2010] needs O(r⁴n²) time for approximation.
 - node-evolving:
 - He et al. [KDD 2010] --- GPU based

Motivation

Node-Pair	in G	in $G \cup \Delta G$	
	sim	sim _{true}	sim _{Li et al.}
(a,b)	0.075	0.062	0.073
(a,d)	0.000	0.006	0.002
(i,f)	0.246	0.246	0.246
(k,g)	0.128	0.128	0.128
(k,h)	0.288	0.288	0.288
(j, f)	0.206	0.138	0.206
(m,l)	0.160	0.160	0.160
(j,b)	0.000	0.030	0.001

- Li et al. [EDBT 2010] using SVD for incremental SimRank is approximate.
- When ΔG is small, the "affected areas" of ΔS are also small.

Problem (INCREMENTAL SIMRANK COMPUTATION)**Given**: G, S, ΔG, and C.**Compute**: ΔS to S.

• For every edge update, ΔQ has a rank-one structure

 $\mathbf{\Delta Q} = \mathbf{u} \cdot \mathbf{v}^T$

$$\Delta \mathbf{Q} = \mathbf{u}^T$$

• Characterize ΔS as

 $\mathbf{\Delta S} = \mathbf{M} + \mathbf{M}^T$, where M satisfies

$$\mathbf{M} = C \cdot \tilde{\mathbf{Q}} \cdot \mathbf{M} \cdot \tilde{\mathbf{Q}}^T + C \cdot \mathbf{u} \cdot \mathbf{w}^T$$

compute M via mat-vec multiplication

In comparison

$$\tilde{\mathbf{S}} = C \cdot \tilde{\mathbf{Q}} \cdot \tilde{\mathbf{S}} \cdot \tilde{\mathbf{Q}}^T + (1 - C) \cdot \mathbf{I}_n$$

compute $\widetilde{\mathsf{S}}$ via mat-mat multiplication

• Based on

$$\mathbf{X} = \sum_{k=0}^{\infty} \mathbf{A}^k \cdot \mathbf{C} \cdot \mathbf{B}^k \quad \Leftrightarrow \quad \mathbf{X} = \mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B} + \mathbf{C}$$
 we have

$$\mathbf{M} = \sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot \left(\tilde{\mathbf{Q}}^{T}\right)^{k},$$
$$\tilde{\mathbf{S}} = (1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot \left(\tilde{\mathbf{Q}}^{T}\right)^{k}.$$

• Based on

$$\mathbf{X} = \sum_{k=0}^{\infty} \mathbf{A}^k \cdot \mathbf{C} \cdot \mathbf{B}^k \quad \Leftrightarrow \quad \mathbf{X} = \mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B} + \mathbf{C}$$
 we have

$$\mathbf{M} = \sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot \left(\tilde{\mathbf{Q}}^{T}\right)^{k},$$
$$\tilde{\mathbf{S}} = (1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot \left(\tilde{\mathbf{Q}}^{T}\right)^{k}.$$

• Based on

$$\mathbf{X} = \sum_{k=0}^{\infty} \mathbf{A}^k \cdot \mathbf{C} \cdot \mathbf{B}^k \quad \Leftrightarrow \quad \mathbf{X} = \mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B} + \mathbf{C}$$
 we have

 $\mathbf{M} = \sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot (\tilde{\mathbf{Q}}^{T})^{k},$ $\tilde{\mathbf{S}} = (1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot (\tilde{\mathbf{Q}}^{T})^{k}.$

$$\tilde{\mathbf{Q}}$$
 ... $\tilde{\mathbf{Q}}$... $\tilde{\mathbf{Q}}^T$... $\tilde{\mathbf{Q}}^T$

• Based on

$$\mathbf{X} = \sum_{k=0}^{\infty} \mathbf{A}^k \cdot \mathbf{C} \cdot \mathbf{B}^k \quad \Leftrightarrow \quad \mathbf{X} = \mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B} + \mathbf{C}$$
 we have

$$\mathbf{M} = \sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot \left(\tilde{\mathbf{Q}}^{T}\right)^{k},$$
$$\tilde{\mathbf{S}} = (1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot \left(\tilde{\mathbf{Q}}^{T}\right)^{k}.$$

•

• Based on

$$\mathbf{X} = \sum_{k=0}^{\infty} \mathbf{A}^k \cdot \mathbf{C} \cdot \mathbf{B}^k \quad \Leftrightarrow \quad \mathbf{X} = \mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B} + \mathbf{C}$$

we have

$$\mathbf{M} = \sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot \left(\tilde{\mathbf{Q}}^{T}\right)^{k},$$
$$\tilde{\mathbf{S}} = (1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot \left(\tilde{\mathbf{Q}}^{T}\right)^{k}.$$

• Based on

$$\mathbf{X} = \sum_{k=0}^{\infty} \mathbf{A}^k \cdot \mathbf{C} \cdot \mathbf{B}^k \quad \Leftrightarrow \quad \mathbf{X} = \mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B} + \mathbf{C}$$
 we have

$$\mathbf{M} = \sum_{k=0}^{\infty} C^{k+1} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{u} \cdot \mathbf{w}^{T} \cdot \left(\tilde{\mathbf{Q}}^{T}\right)^{k},$$
$$\tilde{\mathbf{S}} = (1-C) \cdot \sum_{k=0}^{\infty} C^{k} \cdot \tilde{\mathbf{Q}}^{k} \cdot \mathbf{I}_{n} \cdot \left(\tilde{\mathbf{Q}}^{T}\right)^{k}.$$

$$\mathbf{M} = \sum_{k=0}^{\infty} C^{k+1} \cdot \qquad = \sum_{k=0}^{\infty} C^{k+1} \cdot$$

Challenges

• For every edge update, ΔQ has a rank-one structure

 $\mathbf{\Delta Q} = \mathbf{u} \cdot \mathbf{v}^T$

$$\Delta \mathbf{Q} = \mathbf{\mathbf{u}}^T$$

• Characterize ΔS as

 $\mathbf{\Delta S} = \mathbf{M} + \mathbf{M}^T$, where M satisfies

$$\mathbf{M} = C \cdot \tilde{\mathbf{Q}} \cdot \mathbf{M} \cdot \tilde{\mathbf{Q}}^T + C \cdot \mathbf{u} \cdot \mathbf{w}^T$$

Finding u, v, w is challenging !!

Finding u, v

• For every edge update, ΔQ has a rank-one structure

$$\Delta \mathbf{Q} = \mathbf{u} \cdot \mathbf{v}^T$$

$$\Delta \mathbf{Q} = \mathbf{u}^T$$

where

(1) for edge (i, j) insertion,

$$\mathbf{u} = \begin{cases} \mathbf{e}_j & (d_j = 0) \\ \frac{1}{d_j + 1} \mathbf{e}_j & (d_j > 0) \end{cases}, \quad \mathbf{v} = \begin{cases} \mathbf{e}_i & (d_j = 0) \\ \mathbf{e}_i - [\mathbf{Q}]_{j,\star}^T & (d_j > 0) \end{cases}$$

(2) for edge (i, j) deletion,

$$\mathbf{u} = \begin{cases} \mathbf{e}_j & (d_j = 1) \\ \frac{1}{d_j - 1} \mathbf{e}_j & (d_j > 1) \end{cases}, \quad \mathbf{v} = \begin{cases} -\mathbf{e}_i & (d_j = 1) \\ [\mathbf{Q}]_{j,\star}^T - \mathbf{e}_i & (d_j > 1) \end{cases}$$

Example

$$[\tilde{\mathbf{Q}}]_{j,\star} = \begin{bmatrix} 0 & \cdots & 0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} & 0 & \cdots & 0 \end{bmatrix}$$

• Since the old $[\mathbf{Q}]_{j,\star} = \begin{bmatrix} 0 \cdots 0 & \frac{1}{2} & 0 & 0 & \frac{1}{2} & 0 & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{1 \times 15}$, after insertion: $\Delta \mathbf{Q} = \mathbf{u} \cdot \mathbf{v}^T$ with $\mathbf{u} = \frac{1}{d_j + 1} \mathbf{e}_j = \frac{1}{3} \mathbf{e}_j = \begin{bmatrix} 0 \cdots 0 & \frac{1}{3} & 0 & \cdots & 0 \end{bmatrix}^T \in \mathbb{R}^{15 \times 1},$ $\mathbf{v} = \mathbf{e}_i - [\mathbf{Q}]_{j,\star}^T = \begin{bmatrix} 0 \cdots 0 & -\frac{1}{2} & 1 & 0 & -\frac{1}{2} & 0 & \cdots & 0 \end{bmatrix}^T \in \mathbb{R}^{15 \times 1}.$

Finding w

• For every edge update, ΔQ has a rank-one structure

$$\Delta \mathbf{Q} = \mathbf{u} \cdot \mathbf{v}^T$$
 Step 1

$$\Delta \mathbf{Q} = \mathbf{u}^T$$

• Characterize ΔS as

Step 3
$$\Delta S = M + M^T$$
, where M satisfies
 $M = C \cdot \tilde{Q} \cdot M \cdot \tilde{Q}^T + C \cdot u \cdot w^T$ (1)

Theorem There exists
$$\mathbf{w} \neq \mathbf{y} + \frac{\lambda}{2}\mathbf{u}$$
 with
 $\mathbf{y} = \mathbf{Q} \cdot \mathbf{z}, \quad \mathbf{Step 2} \cdot \mathbf{z}, \quad \mathbf{z} = \mathbf{S} \cdot \mathbf{v}$

s.t. Eq.(1) is a rank-one Sylvester Equation w.r.t. M.

 $\mathbf{z} = \mathbf{S} \cdot \mathbf{v}$ $\mathbf{y} = \mathbf{Q} \cdot \mathbf{z}$ $\mathbf{Q} = \mathbf{Q} \cdot \mathbf{z}$ $\mathbf{Q} = \mathbf{Q} \cdot \mathbf{z}$

Complexity Analysis

• Time complexity: $O(Kn^2)$ Step 1. Find \mathbf{u}, \mathbf{v} s.t. $\Delta \mathbf{Q} = \mathbf{u} \cdot \mathbf{v}^T$

$$\mathbf{u} = \begin{cases} \mathbf{e}_j & (d_j = 0) \\ \frac{1}{d_j + 1} \mathbf{e}_j & (d_j > 0) \end{cases}, \quad \mathbf{v} = \begin{cases} \mathbf{e}_i & (d_j = 0) \\ \mathbf{e}_i - [\mathbf{Q}]_{j,\star}^T & (d_j > 0) \end{cases}$$

Step 2. Find w s.t. $\mathbf{M} = C \cdot \tilde{\mathbf{Q}} \cdot \mathbf{M} \cdot \tilde{\mathbf{Q}}^T + C \cdot \mathbf{u} \cdot \mathbf{w}^T$

initialize
$$\boldsymbol{\xi}_0 \leftarrow C \cdot \mathbf{u}, \quad \boldsymbol{\eta}_0 \leftarrow \mathbf{w}, \quad \mathbf{M}_0 \leftarrow C \cdot \mathbf{u} \cdot \mathbf{w}^T$$

for $k = 0, 1, 2, \cdots$
 $\boldsymbol{\xi}_{k+1} \leftarrow C \cdot \tilde{\mathbf{Q}} \cdot \boldsymbol{\xi}_k, \quad \boldsymbol{\eta}_{k+1} \leftarrow \tilde{\mathbf{Q}} \cdot \boldsymbol{\eta}_k$
 $\mathbf{M}_{k+1} \leftarrow \boldsymbol{\xi}_{k+1} \cdot \boldsymbol{\eta}_{k+1}^T + \mathbf{M}_k$

Step 3. Compute ΔS as

$$\mathbf{\Delta S} = \mathbf{M} + \mathbf{M}^T$$

No mat-mat multiplications

Pruning

- Key observation:
 - When link updates are small, "affected areas" in ΔS (or M) are often small as well.

- Challenge:
 - How to identify only "unaffected areas" in ΔS to skip unnecessary recomputations for link update ?

Paths Aggregation

- $[\mathbf{A}^k]_{i,j}$ counts # of length-k paths from node i to j.
- $[\mathbf{S}]_{a,b}$ counts the weighted sum of paths:

$$\mathbf{S} = C \cdot (\mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^T) + (1 - C) \cdot \mathbf{I}_n$$

$$\Leftrightarrow \quad [\mathbf{S}]_{a,b} = (1 - C) \cdot \sum_{k=0}^{\infty} C^k \cdot [\mathbf{Q}^k \cdot (\mathbf{Q}^T)^k]_{a,b}$$

Q is the weighted (*i.e.*, row-normalized) matrix of A^T

Paths captured by M

$$\Delta \mathbf{S} = \mathbf{M} + \mathbf{M}^T \qquad \qquad \mathbf{M} = C \cdot \tilde{\mathbf{Q}} \cdot \mathbf{M} \cdot \tilde{\mathbf{Q}}^T + C \cdot \mathbf{u} \cdot \mathbf{w}^T$$

• Expansion of M

$$[\mathbf{M}]_{a,b} = \frac{1}{d_j+1} \left(\underbrace{\sum_{k=0}^{\infty} C^{k+1} \cdot [\tilde{\mathbf{Q}}^k]_{a,j} [\mathbf{S}]_{i,\star} \mathbf{Q}^T \cdot [(\tilde{\mathbf{Q}}^T)^k]_{\star,b}}_{\text{Part 1}} - \underbrace{\sum_{k=0}^{\infty} C^k [\tilde{\mathbf{Q}}^k]_{a,j} [\mathbf{S}]_{j,\star} [(\tilde{\mathbf{Q}}^T)^k]_{\star,b}}_{\text{Part 2}} \right)$$

$$+ \mu \underbrace{\sum_{k=0}^{\infty} C^{k+1} [\tilde{\mathbf{Q}}^k]_{a,j} [(\tilde{\mathbf{Q}}^T)^k]_{j,b}}_{\text{Part 3}} \right)$$

• Three types of paths identified by M

• P1:

$$\begin{array}{c} [\tilde{\mathbf{Q}}^{k}]_{a,j} & [\mathbf{S}]_{i,\star} \\ a \leftarrow \cdots \leftrightarrow \leftarrow j \\ ength \ k \end{array} \stackrel{(i \leftarrow \cdots \leftrightarrow \leftarrow \bullet \rightarrow \cdots \leftrightarrow \rightarrow \star}{all \ symmetric \ in-link \ paths \ for \ node-pair \ (i,\star)} \stackrel{(i \leftarrow \cdots \leftrightarrow \rightarrow \bullet)}{\longrightarrow} \\ ength \ k \end{array}$$
• P2:

$$\begin{array}{c} [\tilde{\mathbf{Q}}^{k}]_{a,j} & [\mathbf{S}]_{j,\star} \\ a \leftarrow \cdots \leftrightarrow \leftarrow j \\ ength \ k \end{array} \stackrel{(i \leftarrow \cdots \leftrightarrow \leftarrow \bullet \rightarrow \cdots \leftrightarrow \rightarrow \star}{\longrightarrow} \\ ength \ k \end{array} \stackrel{(i \leftarrow \cdots \leftrightarrow \leftarrow \bullet)}{\longrightarrow} \\ ength \ k \end{array}$$
• P3:

$$\begin{array}{c} [\tilde{\mathbf{Q}}^{k}]_{a,j} & [\tilde{\mathbf{Q}}^{T}]_{j,h} \\ ength \ k \end{array} \stackrel{(i \leftarrow \cdots \leftrightarrow \leftarrow \bullet)}{\longrightarrow} \\ ength \ k \end{array}$$

Unaffected Areas

- Since M merely tallies these paths, node-pairs without having such paths could be safely pruned.
- Iteratively Pruning:

Let
$$\mathcal{F}_1 := \{b \mid b \in \mathcal{O}(y), \exists y, s.t. [\mathbf{S}]_{i,y} \neq 0\}$$

 $\mathcal{F}_2 := \begin{cases} \varnothing & (d_j = 0) \\ \{y \mid [\mathbf{S}]_{j,y} \neq 0\} & (d_j > 0) \end{cases}$
 $\mathcal{A}_k \times \mathcal{B}_k := \begin{cases} \{j\} \times (\mathcal{F}_1 \cup \mathcal{F}_2 \cup \{j\}) & (k = 0) \\ \{(a, b) \mid a \in \tilde{\mathcal{O}}(x), b \in \tilde{\mathcal{O}}(y), \exists x, \exists y, s.t. [\mathbf{M}_{k-1}]_{x,y} \neq 0\} & (k > 0) \end{cases}$

Then

$$[\mathbf{M}_k]_{a,b} = 0 \quad for \ all \ (a,b) \notin (\mathcal{A}_k \times \mathcal{B}_k) \cup (\mathcal{A}_0 \times \mathcal{B}_0)$$

• Complexity: O(K(nd+|AFF|)) with

$$|\mathsf{AFF}| := \operatorname{avg}_{k \in [0,K]}(|\mathcal{A}_k| \cdot |\mathcal{B}_k|)$$

Experimental Settings

- Datasets
 - Real: DBLP, CITH, YOUTU
 - Synthetic: GraphGen generator
- Compared Algorithms
 - Inc-SR : Our Incremental SimRank with Pruning
 - Inc-uSR : Our Incremental SimRank without Pruning
 - Inc-SVD [EDBT '10]: the best known link-update algorithm
 - Batch, the batch SimRank via fine-grained memoization
- Evaluations
 - Time Efficiency
 - Effectiveness of Pruning
 - Intermediate Memory
 - Exactness

Time Efficiency

(a) Time Efficiency of Incremental SimRank on Real Data

Effectiveness of Pruning

Intermediate Memory & Exactness

Fig. 3: Memory Space Fig.

Fig. 4: NDCG₃₀ Exactness

Conclusions

- Two efficient methods are proposed to incrementally compute SimRank on link-evolving graphs
 - ΔS is characterized via a rank-one Sylvester equation, improving the time to O(Kn²) for every link update.
 - A pruning strategy skipping unnecessary recomputations, which further reduces the time to O(K(nd + |AFF|)).
- Empirical evaluations to show the superiority of our methods from several times to one order of magnitude.

Thank you!

0

1

-