

SimFusion+: Extending SimFusion Towards Efficient Estimation on Large and Dynamic Networks

<u>Weiren Yu¹</u>, Xuemin Lin¹, Wenjie Zhang¹, Ying Zhang¹ Jiajin Le²,

¹ University of New South Wales & NICTA, Australia

² Donghua University, China

1. Introduction

Many applications require a measure of "similarity" between objects.

SimFusion: A New Link-based Similarity Measure

- Structural Similarity Measure
 - PageRank [Page et. al, 99]
 - SimRank [Jeh and Widom, KDD 02]
- SimFusion similarity
 - A new promising structural measure [Xi et. al, SIGIR 05]
 - Extension of Co-Citation and Coupling metrics
- Basic Philosophy
 - Following the Reinforcement Assumption:

The similarity between objects is reinforced by the similarity of their related objects.

SimFusion Overview

Features

- Using a Unified Relationship Matrix (URM) to represent relationships among heterogeneous data
- Defined recursively and is computed iteratively
- Applicable to any domain with object-to-object relationships

Challenges

- URM may incur trivial solution or divergence issue of SimFusion.
- Rather costly to compute SimFusion on large graphs
 - Naïve Iteration: matrix-matrix multiplication
 - Requiring O(Kn³) time, O(n²) space [Xi et. al., SIGIR 05]
- No incremental algorithms when edges update

Existing SimFusion: URM and USM

- ✤ Data Space: $\mathcal{D} = \{o_1, o_2, \cdots\}$ a finite set of data objects (vertices)
- ✤ Data Relation (edges) Given an entire space $\mathcal{D} = \bigcup_{i=1}^{N} \mathcal{D}_i$
 - ♦ Intra-type Relation $\mathcal{R}_{i,i} \subseteq \mathcal{D}_i \times \mathcal{D}_i$ carrying info. within one space
 - ♦ Inter-type Relation $\mathcal{R}_{i,j} \subseteq \mathcal{D}_i \times \mathcal{D}_j$ carrying info. between spaces

Unified Relationship Matrix (URM):

$$\mathbf{L}_{\text{URM}} = \begin{pmatrix} \lambda_{1,1}\mathbf{L}_{1,1} & \lambda_{1,2}\mathbf{L}_{1,2} & \cdots & \lambda_{1,N}\mathbf{L}_{1,N} \\ \lambda_{2,1}\mathbf{L}_{2,1} & \lambda_{2,2}\mathbf{L}_{2,2} & \cdots & \lambda_{2,N}\mathbf{L}_{2,N} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{N,1}\mathbf{L}_{N,1} & \lambda_{N,2}\mathbf{L}_{N,2} & \cdots & \lambda_{N,N}\mathbf{L}_{N,N} \end{pmatrix} \qquad \qquad \mathbf{L}_{i,j}(x,y) = \begin{cases} \frac{1}{n_j}, & \text{if } \mathcal{N}_j(x) = \emptyset; \\ \frac{1}{|\mathcal{N}_j(x)|}, & \text{if } (x,y) \in \mathcal{R}_{i,j}; \\ 0, & \text{otherwise.} \end{cases}$$

 $\diamond \lambda_{i,i}$ is the weighting factor between D_i and D_i

Unified Similarity Matrix (USM):

$$\exists \mathbf{S} = \begin{pmatrix} s_{1,1} & \dots & s_{1,n} \\ \vdots & \ddots & \vdots \\ s_{n,1} & \dots & s_{n,n} \end{pmatrix} \in \mathbb{R}^{n \times n} \quad s.t. \quad \mathbf{S} = \mathbf{L} \cdot \mathbf{S} \cdot \mathbf{L}^{T}.$$

Contributions

- Revising the existing SimFusion model, avoiding
 - non-semantic convergence
 - divergence issue
- Optimizing the computation of SimFusion+
 - O(Km) pre-computation time, plus O(1) time and O(n) space
 - Better accuracy guarantee
- Incremental computation on edge updates
 - O(δn) time and O(n) space for handling δ edge updates

Revised SimFusion

Motivation: Two issues of the existing SimFusion model

Trivial Solution on Heterogeneous Domain

Divergent Solution on Homogeneous Domain

\mathcal{G}_2 \mathcal{D} \mathcal{D}	$\lim_{k\to\infty} \mathbf{SimFusion}^{(2k)}$	$\lim_{k \to \infty} \mathbf{SimFusion}^{(2k+1)}$	$\lim_{k \to \infty} \mathbf{SimFusion}^{+(k)}$
	[.46 0 .46 0 0 .46]	[.38 0 .38 0 0 .38]	$\begin{bmatrix} 1 & 0 & .25 & 0 & 0 & .25 \end{bmatrix}$
	0 .38 0 .38 .38 0	$0.46\ 0.46.46\ 0$	0 1 0 .25 .18 0
P_1 / P_6	.46 0 .46 0 0 .46	≠ .38 0 .38 0 0 .38	.25 0 1 0 0 .18
	0 .38 0 .38 .38 0	$0.46\ 0.46.46\ 0$	0 .25 0 1 .25 0
$P_{0} \rightarrow P_{1}$	0 .38 0 .38 .38 0	$0.46\ 0.46.46\ 0$	0 .18 0 .25 1 0
\mathcal{D}_1 $\overset{I_3}{\longrightarrow}$ $\overset{I_5}{\longrightarrow}$.46 0 .46 0 0 .46	[.38 0 .38 0 0 .38]	.25 0 .18 0 0 1

Root cause: row normalization of URM !!!

From URM to UAM

* Unified Adjacency Matrix (UAM) $A = \tilde{A} + 1/n^2$

Example

$$\Lambda = \begin{bmatrix} \mathcal{D}_{1} \ \mathcal{D}_{2} \ \mathcal{D}_{3} \\ \frac{1}{2} \ \frac{1}{6} \ \frac{1}{3} \\ \frac{1}{3} \ \frac{1}{4} \ \frac{5}{12} \end{bmatrix} \Rightarrow \tilde{\mathbf{A}} = \begin{bmatrix} \frac{1}{2} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \ \frac{1}{6} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ \frac{1}{7} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ \frac{1}{12} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \ \frac{1}{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \frac{1}{6} \ \frac{1}{3} \ 0 \\ \frac{1}{6} \begin{bmatrix} \frac{7}{12} \ \frac{7}{12} \ \frac{1}{8} \end{bmatrix} \\ \frac{1}{6} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ \frac{1}{7} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ \frac{1}{7} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \ \frac{1}{4} \begin{bmatrix} \frac{1}{2} \ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \begin{bmatrix} \frac{7}{12} \ \frac{1}{2} \end{bmatrix} \\ \frac{1}{6} \begin{bmatrix} \frac{1}{7} \ \frac{7}{12} \ \frac{1}{2} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} 1 \\ \frac{1}{3} \end{bmatrix} \ \frac{1}{4} \begin{bmatrix} \frac{1}{2} \ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \begin{bmatrix} \frac{1}{7} \ \frac{1}{7} \ \frac{1}{8} \end{bmatrix} \\ \frac{1}{6} \begin{bmatrix} \frac{1}{7} \ \frac{1}{2} \end{bmatrix} \\ \frac{1}{6} \begin{bmatrix} \frac{1}{2} \ \frac{1}{2} \end{bmatrix} \\ \frac{1}{2} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix} \end{bmatrix} \\ \frac{1}{6} \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{7} \ \frac{1}{12} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{7} \ \frac{1}{12} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{7} \ \frac{1}{12} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{7} \ \frac{1}{12} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \ \frac{1}{6} \end{bmatrix} \\ \frac{1}{6} \ \frac{1}{6$$

Revised SimFusion+

Basic Intuition

replace URM with UAM to postpone "row normalization"
 in a delayed fashion while preserving the reinforcement
 assumption of the original SimFusion

Revised SimFusion+ Model

Original SimFusion

 $\mathbf{S} = \mathbf{L} \cdot \mathbf{S} \cdot \mathbf{L}^T$

$$\mathbf{S} = \frac{\mathbf{A} \cdot \mathbf{S} \cdot \mathbf{A}^{T}}{\|\mathbf{A} \cdot \mathbf{S} \cdot \mathbf{A}^{T}\|_{2}},$$

squeeze similarity scores in S into [0, 1].

Optimizing SimFusion+ Computation

Conventional Iterative Paradigm

$$\mathbf{S}^{(k+1)} = \frac{\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}}{\|\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}\|_{2}}.$$

Matrix-matrix multiplication, requiring O(kn³) time and O(n²) space

Our approach: To convert SimFusion+ computation into finding the dominant eigenvector of the UAM A.

$$[\mathbf{S}]_{i,j} = [\sigma_{\max}(\mathbf{A})]_i imes [\sigma_{\max}(\mathbf{A})]_j$$

Pre-compute $\sigma_{max}(A)$ only once, and cache it for later reuse

Matrix-vector multiplication, requiring O(km) time and O(n) space

K

Assume $\mathbf{A} = \tilde{\mathbf{A}} + 1/5^2$ with $\tilde{\mathbf{A}} = \begin{bmatrix} \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \frac{1}{6} \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \frac{1}{3} \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \frac{1}{4} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \\ \frac{1}{6} \begin{bmatrix} 1 \\ 1 \end{bmatrix} & \frac{7}{12} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} & \frac{1}{4} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \\ = \begin{bmatrix} \frac{1}{2} & \frac{1}{6} & \frac{1}{6} & \frac{1}{3} & 0 \\ \frac{1}{6} & \frac{1}{7} & \frac{7}{12} & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{6} & \frac{7}{12} & 0 & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{3} & \frac{1}{6} & \frac{1}{2} & 0 & \frac{1}{8} & \frac{1}{8} \\ \frac{1}{3} & \frac{1}{8} & \frac{1}{8} & 0 & \frac{5}{12} \\ 0 & \frac{1}{8} & \frac{1}{8} & \frac{5}{12} & 0 \end{bmatrix}$

Conventional Iteration:

$$\mathbf{S}^{(0)} = \mathbf{1} \qquad \mathbf{S}^{(k+1)} = \frac{\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}}{\|\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}\|_{2}} \cdot \mathbf{S} = \begin{bmatrix} .186 & .290 & .194 & .139 & .100 \\ .290 & .453 & .304 & .217 & .156 \\ .194 & .304 & .203 & .145 & .105 \\ .139 & .217 & .145 & .104 & .075 \\ .100 & .156 & .105 & .075 & .054 \end{bmatrix} \cdot \mathbf{S} = \begin{bmatrix} \mathbf{S}_{1,2} = [\sigma_{\max}(\mathbf{A})]_{1} \times [\sigma_{\max}(\mathbf{A})]_{2} = .431 \times .673 = .290. \\ \mathbf{S}_{1,3} = [\sigma_{\max}(\mathbf{A})]_{1} \times [\sigma_{\max}(\mathbf{A})]_{3} = .431 \times .451 = .194. \end{bmatrix}$$

Key Observation

♦ Kroneckor product "⊗":

$$\mathbf{X} \otimes \mathbf{Y} \stackrel{\text{def}}{=} \left[\begin{array}{cccc} x_{1,1}\mathbf{Y} & \cdots & x_{1,q}\mathbf{Y} \\ \vdots & \ddots & \vdots \\ x_{p,1}\mathbf{Y} & \cdots & x_{p,q}\mathbf{Y} \end{array} \right]$$

$$\mathbf{e.g.} \quad \mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \quad \mathbf{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, \quad \mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 1 \times \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \\ 3 \times \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \\ 4 \times \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$

**$$\diamond$$
 Vec operator:** $vec(\mathbf{X}) \stackrel{\text{def}}{=} [x_{1,1}, \cdots, x_{p,1}, \cdots, x_{1,q}, \cdots, x_{p,q}]^T$

e.g.
$$vec(\mathbf{X}) = [1 \ 3 \ 2 \ 4]^T$$

Two important Properties:

$$vec(\mathbf{B}\mathbf{C}\mathbf{D}^T) = (\mathbf{D}\otimes\mathbf{B})\cdot vec(\mathbf{C})$$

$$\sigma_{\max}(\mathbf{A}\otimes\mathbf{A})=\sigma_{\max}(\mathbf{A})\otimes\sigma_{\max}(\mathbf{A})$$

Accuracy Guarantee

Conventional Iterations: No accuracy guarantee !!!

 $\mathbf{S}^{(k+1)} = \frac{\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}}{\|\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}\|_{2}}.$ $\mathbf{S} = \frac{\mathbf{A} \cdot \mathbf{S} \cdot \mathbf{A}^{T}}{\|\mathbf{A} \cdot \mathbf{S} \cdot \mathbf{A}^{T}\|_{2}}$ $\mathbf{Question:} \quad \| \mathbf{S}^{(k+1)} - \mathbf{S} \| \leq \mathbf{?}$

Our Method: Utilize Arnoldi decomposition to build an

order-k orthogonal subspace for the UAM A.

Accuracy Guarantee \diamond Arnoldi Decomposition: $\mathbf{V}_k^T \mathbf{A} \mathbf{V}_k = \mathbf{T}_k$, $\mathbf{V}_k^T \mathbf{A} \mathbf{V}_k = \mathbf{T}_k$, $\mathbf{A} \mathbf{V}_k - \mathbf{V}_k \mathbf{T}_k = \delta_k \mathbf{v}_{k+1} \mathbf{e}_k^T$, $\mathbf{T}_{k+1} = [\mathbf{T}_{\star} \star]$ \diamond k-th iterative similarity

$$[\hat{\mathbf{S}}_k]_{i,j} = [\mathbf{V}_k \cdot \sigma_{\max}(\mathbf{T}_k)]_i \times [\mathbf{V}_k \cdot \sigma_{\max}(\mathbf{T}_k)]_j$$

Estimate Error:

$$egin{aligned} &\|\hat{\mathbf{S}}_k - \mathbf{S}\|_2 \leq \epsilon_k \ &\epsilon_k = 2 imes |\delta_k imes [\sigma_{\max}(\mathbf{T}_k)]_k \end{aligned}$$

Edge Update on Dynamic Graphs

Incremental UAM

Given old G = (D,R) and a new G' = (D,R'), the incremental UAM is a list of edge updates, i.e., $\bar{\mathbf{A}} = \mathbf{A}' - \mathbf{A}$

Main idea

To reuse A and the eigen-pair (α_p , ξ_p) of the old A to compute S' A is a sparse matrix when the number δ of edge updates is small.

Incrementally computing SimFusion+

$$[\mathbf{S}']_{i,j} = [\mathbf{\xi}']_i \cdot [\mathbf{\xi}']_j$$
 with $[\mathbf{\xi}']_i = [\mathbf{\xi}_1]_i + \sum_{p=2}^n c_p \times [\mathbf{\xi}_p]_i$

$$c_p = \frac{\boldsymbol{\xi}_p^T \cdot \boldsymbol{\eta}}{\alpha_p - \alpha_1} \quad and \quad \boldsymbol{\eta} = \bar{\mathbf{A}} \cdot \boldsymbol{\xi}_1$$
O(δn) time
O(n) space

space

Suppose edges (P1,P2) and (P2,P1) are removed.

	0	$-\frac{1}{6}$	000]
	$-\frac{1}{6}$	0	000
$\bar{\mathbf{A}} =$	0	0	000
	0	0	000
	0	0	000

p	$lpha_p$	$\boldsymbol{\xi}_p$	c_p
1	1.184	$[.431.673.451.322.232]^T$	_
2	.503	$\left[.708522242 .388 .132\right]^T$.062
3	480	$\left[256020 \ .095 \ .716 \641\right]^T$	018
4	-,366	$\begin{bmatrix}021507 .853119 .017 \end{bmatrix}^T$	025
5	.242	$\left[.497\ .127\ .037\467\719 ight]^T$.069

$$\eta = \bar{\mathbf{A}} \cdot \boldsymbol{\xi}_{1} = \begin{bmatrix} -.112 & -.072 & 0 & 0 \end{bmatrix}^{T}.$$

$$c_{2} = \boldsymbol{\xi}_{2}^{T} \cdot \boldsymbol{\eta} / (\alpha_{2} - \alpha_{1}) = -.0419 / (.503 - 1.184) = .062,$$

$$c_{3} = \boldsymbol{\xi}_{3}^{T} \cdot \boldsymbol{\eta} / (\alpha_{3} - \alpha_{1}) = .030 / (-.480 - 1.184) = -.018.$$

$$\boldsymbol{\xi}' = \boldsymbol{\xi}_1 + \sum_{p=2}^{5} c_p \times \boldsymbol{\xi}_p = [.327.703.485.326.266]^T$$

	F .107	.230	.159	.107	.087]
	.230	.494	.341	.230	.187
$\mathbf{S}' =$.159	.341	.235	.158	.129
	.107	.230	.158	.107	.087
	0.087	.187	.129	.087	.071

Experimental Setting

Datasets

- Synthetic data (RAND 0.5M-3.5M)
- Real data (DBLP, WEBKB)

DBLP		$G_1: 01-02$	$G_2: 01-04$	$G_3: 01-06$	$G_4: 01-08$	$G_5: 01-10$
	$ \mathcal{D} $	1,838	3,723	5,772	9,567	12,276
	$ \mathcal{R} $	7,103	14,419	29,054	45,310	64,208

WEBKB

	U_1 : CO	U_2 : TE	U_3 : WA	U_4 : WI
$ \mathcal{D} $	867	827	1,263	1,205
$ \mathcal{R} $	1,496	1,428	2,969	1,805

Compared Algorithms

- SimFusion+ and IncSimFusion+ ;
- SF, a SimFusion algorithm via matrix iteration [Xi et. al, SIGIR 05];
- CSF, a variant SF, using PageRank distribution [Cai et. al, SIGIR 10];
- SR, a SimRank algorithm via partial sums [Lizorkin et. al, VLDBJ 10];
- PR, a P-Rank encoding both in- and out-links [Zhao et. al, CIKM 09]; 21

Experiment (1): Accuracy

On DBLP and WEBKB

SF+ accuracy is consistently stable on different datasets.

SF seems hardly to get sensible similarities as all its similarities asymptotically approach the same value as K grows.

Experiment (2): CPU Time and Space

On DBLP

SF+ outperforms the other approaches, due to the use of $\sigma_{max}(T_k)$

On WEBKB

Experiment (3): Edge Updates

Varying **D**

IncSF+ outperformed SF+ when δ is small.

For larger δ , IncSF+ is not that good because the small value of δ preserves the sparseness of the incremental UAM.

Experiment (4) : Effects of ϵ

The small choice of ϵ imposes more iterations on computing T_k and v_k , and hence increases the estimation costs.

Conclusions

- A revision of SimFusion+, for preventing the trivial solution and the divergence issue of the original model.
- Efficient techniques to improve the time and space of SimFusion+ with accuracy guarantees.
- An incremental algorithm to compute SimFusion+ on dynamic graphs when edges are updated.

Future Work

Devise vertex-updating methods for incrementally computing SimFusion+.

Extend to parallelize SimFusion+ computing on GPU.

Thank You !