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e The quality of SimRank search

e Superfluous error
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e Qur solutions
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e A “kernel-based” model to improve search quality
e A semantic comparison of two SimRank models

e Experimental Results
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e SimRank in real-world applications:
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SimRank Overview

e SimRank
e An appealing similarity measure based on graph structure
e Central idea:

Two nodes are similar if they are pointed to by similar nodes.  (recursion)
Each node is most similar to itself. (base case)

e Two formulations of SimRank

* Jeh and Widom’s form (SIGKDD’02)
similarity 1 |_damping factor (a =b)
btw. nodes « | s(a, b) = S (i.)ENg x Ny, 8(1:3)
and b YT NaliN| (@ # b)

in-neighbor set
e Kusumoto et al.’s form (SIGMOD’14) of node b

S = max{yP' SP, I}
.



Kusumoto et al.’s linearization

e Linearized SimRank model:
S =max{yP 'SP, I} & S=~P 'SP+ D
e Single-pair score S(a,b) can be computed as
s(a,b) = e] Dey + v(Pea) ' D(Pes) +~%(P%e,) ' D(P2%e,) + - -
However, it is difficult to determine D in advance.

e Kusumoto et al.’s approximation
D=~ (1—7)I

S =max{yP'SP, I} ¢ S=~P"SP+(1—~)I




Prob 1: Superfluous Diag Error

e Two Types of Error:

s(a,b) = e) Dey + 'y(Pea)TD(Peb) + 2 (P2ea)TD(P2eb) + ..

€diag = |s(a,b) — sp(a,b)

4

-
sp(a,b) = ezf)eb + fy(Pea)TD(Peb) + ’)’2(P26a)TD(P26b) 4.

k+1
) €iter := |Sp(a,b) — sg)(a, b)| < =

sg)(a, b) = e] Dey + v(Peo) ' D(Pep) + - - +~* (Pkea)TD(Pkeb)

e “Iter Err” is convergent when k increases
“Diag Err” is not convergent and sensitive to search quality



Our Method: Varied-D Iteration

e [Kusumoto et al. SIGMOD’14]
e Hard to determine the exact D in advance
S =D +~PTDP +--- +~4*(P*) DP*
e Our main idea : Varied-D Model

e To iteratively compute D and S at the same time
S® .— Dy +yP Dj_1P +--- ++*(PT) Do P*

Sgc) — S5 (#8) (since D # D) , - How to

@® |  iteratively
s 5 (since Dy — D) - findD,?




Iteratively Find D, 8

e D, can be obtained iteratively as follows:

- .
(Dr);; =1—=30 (b o‘hl)szag(Dk_l) with Do = I

hlZWPhl_l (l=1,2,---,k’)

e D, is obtainable in linear memory, independent of SK
(scalability)



Convergence of Varied-D Model

e Varied-D model to compute S:
S® .— Dy +yP T Dj_1P+--- ++*(PT) Do P*

s 5 (since Dy, — D)

e How closeisSKtoS?

e Qur model: ||S("’) S| m——

max—7
I

e Existing work [SIGMOD’14]:

k+1

€iter 1= |55 (a,b) — 55 (a,b)] < T €diag = |s(a,b) — 55(a,b)|



Accelerate Computation for Each Column of SimRank -

S® .= Dy + yP Dy_1P +--- +~4*(PT) Do P*
e Computing i-th column of S

(S(k))z.’* = Dyzo +YP " Dp_121 + -+ +~F (PT)kDosck with z; := Ple;

——
[l
——
——
[l
——
——
[l
——




Accelerate Computation for Each Column of SimRank .

S® .= Dy + yP Dy_1P +--- +~4*(PT) Do P*
e Computing i-th column of S

(S(’“))z.’* = Dyzo +YP " Dp_121 + -+ +~F (PT)kDo:r:,c with z; := Ple;

| = o |+ e o]+

Naive Cost: O(k?|E|) time [SIGMOD'14]
e QOur approach

e multiplying a matrix by a group of vectors added together
(S(k)),;,* = Dyzo +yP ' (Dr—121 + YP " (Di—2z2 +
-+ 4P (Dizk—1+vP" (Dozy))))
Our Cost: O(k|E|) time



Prob 2: “Connectivity Trait” of SimRank

e “Connectivity Trait” Problem:

e increasing # of paths between two nodes, say a and b,
would incur a decrease in SimRank s(a, b).

SR | SR™ | RS | SR*
s(1,2) > s(4,5) X X |
s(2,8) > s(8,10) | X X X | v
s(4,5) > s(3,9) X v |

Four paths between node pair (2,8):

24+ |11|>5—8, 23+ |11|—>5—8

24+ |12|>5—8, 23+ |12|—>5—>8

SimRank ignores
high connectivity
between (2,8) 8 5+ |12 — 91—> IQ

Only one path between node pair (8,10):




Root Cause of “Connectivity Trait” Issue

(a,b) (1 (a =)
s\ a, = < > i,j a s(%,7)
v RN (a # b)

\

* The order of the normalized factor 17; Illel is too high.

After & paths of {a < x — b} are inserted into G:

NqogNN )
56(a,0) =7 qRLTse(NES ~ Y 5z = 0. (8 0)




Our Remedy

e “Cosine-based SimRank” model:

Sap = (1—7) ZO’Y "¢(A%eq, A%ep) with ¢(z,y) := ||mﬁcz||32||2

e Main idea:

e Aggregates weighted cosine similarities between node a’s
and node b’s multi-hop in-neighbor sets

e Advantage:

e Provides a correct normalized factor for common multi-
hop in-neighbors of aand b

S, = (1— Z,yk lhopy (a) N hop, (b)|
’ \/|h°Pk(a)| |h°Pk(b)|
> T Ak) AFe,
— (1 — k €a (
(=1 27 e, To T4l
e




Fixing “Connectivity Trait” Issue

After 6 paths of {a < x — b} are inserted into G:

Aca=(L1 - ,1,0.0011L )T Ae =000 1L L1 L1

|Na| |Nb I 5 |N Nb

Sap(6) = (1 =)y~ ZmeZmt— = (L=7)7 (6 = o0)

NgNNy|+6 )
s(a,0) =7 g o ~ 7 5r 0. (8 00)



Semantic Difference of Two SimRank models

e Jeh and Widom’” model:
_ T Any semantic
S = ma,x{'yP SP’ I} ? relationship?
e Lietal.’s model: 3

S=~rP'SP+(1—~)I

¢l

These two models

1) neither yield the same
relative rankings,
[SIGKDD'10]

2) nor have the same top-K
rankings
[SIGMOD'14]

node pairs | (3,3) (6,6) ... (1,2) (7,8)
rank by é’ 1 1 - 9 9
rank by S 4 3 . 10 9




Their Semantic Relationship

e Jeh and Widom’ model: S = max{yP 'SP, I}

S :I+/Y(PTP)Oﬁ+72(PT(PTP)OﬁP)Oﬁr+ A

<:> _'_,yk(PT_..(PT(PTP)O P)Oﬁ_..p)oﬁ_|_...

\ 7

k mested (*)oﬁ'

e Lietal’s model: S=vP'SP+(1—~)I

& 1 =I+9P P+ (P PPt N (PY) PR

- =
1 T T/pT )
(P (PT(PTP)4P) - P), off >
k nested (x) o ov.erlapplng 5
disallowed”
k ;clrges ko (?d?]es

\_

J




Their Semantic Relationship

7T4~6+<5+|3—>4—>6—>28

e can be tallied by ((P?)' P?)
e but cannot be tallied by

(P"(P"(P"P)ogP)ofP) oy

k=0 k=1 k=2
Lietal’s @ @ ® @ ® ®
s-wrsra-an 2| AT G
U +( 7) Variation o ‘/\\ {
S | T i Gl i) i G| G| i) | i0)
Jeh and
_ T Widom’s . m
S = max{yP SP, I} SimRank | /\ | ]
s, | t0) i i

Li et al.’s model can tally more paths with self-intersected nodes than Jeh and Widom’s.



Experimental Settings

e Datasets

e Real-life Data: "Dataset vV E| | |E|/IV Type
WikiV 7,115 103,689 14.57 Directed

CaD 15,683 55,064 5.31 | Undirected

CitH 34,546 421,578 12.20 Directed

WebN 325,729 1,497,134 4.59 Directed

ComY | 1,134,890 2,987,624 2.63 | Undirected

SocL | 4,847,571 68,993,773 14.23 Directed

e Synthetic Data: GraphGen generator

e Compared Algorithms

Name | Description

SR7 our scheme (“cosine” kernel + computation sharing)
MSR the state-of-the-art SimRank [7]
OIP all-pairs SimRank (fine-grained clustering) [13]

PSUM | all-pairs SimRank (partial sums memoization) [12]
SMAT | single-source SimRank (matrix decomposition) [3]
JSR Jeh and Widom’s SimRank [5]

LSR Li et al.’s SimRank [9]

SRT* | SimRank++ (revised “evidence factor”) [1]

RS RoleSim (automorphism equivalence) [6]
RWR Random Walk with Restart
COS classic cosine similarity




Ave. NDCG200

1
0.9
0.8
0.7
0.6
0.5

(a) Semantics on Real Data (Measured by NDCG, Spearman’s p, Kendall’s 7)

B SR# SSLSR (MSR)

A

e
25

XXX XX KX

228

e

Ave. Spearman’s p

- B

C—3JSR

1

o 9
o

RN
N s

X SR+

Ave. Kendall’s 7

PRIXR XXX RN
DSOS

IS4

Exp 1: Semantic Quality
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SR# can avoid “connectivity trait” issue by using a “cosine” kernel.

COS considers only direct overlapped in-neighbors.
JSR and LSR both have a “connectivity trait” problem.

C—RWR

YXOOOOOOL
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Exp 1: Semantic Quality
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e SR# achieves ~95% coverage of common multi-hop in-neighbors
(due to its suitable normalized factor)

e COS (~0.41) consistently outperforms JSR/LSR (~0.20) since COS is not
limited by the “connectivity trait” problem.

e The superiority of SR# is more pronounced in the groups with longer paths.



Exp 2: Speedup
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Exp 3: Scalability

Bl SR# MSR 3 PSUM XX OIP =3 SR*

104
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(j) Memory vs. k on SocL

e Only SR# and MSR survive on large datasets, highlighting their scalability.

e The disparity in the memory between SR# and MSR is comparatively small,
due to SR# that stores the iterative diagonal correction matrix D,.




Exp 4: Relative Ordering
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e For different graphs, the quality of relative order is irrelevant to top K size.

e |SR does not maintain the relative rank of JSR, even for top 50.

e Many points below the diagonal imply that low-ranked node-pairs by JSR
have greater likelihood to get promoted to a high rank of LSR.



Exp 5: Effect of Diag Error

—8- SR#
-3¢ - Est. Bound ~F+1
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(m) (ediag + eiter) vs. k

e QOur “varied-D” iterative model can guarantee the error to be small and
convergent w.r.t k.

e The SR# curve is always below the Est. Bound curve, showing the
correctness of our error estimation.



In Conclusion

e We have focused on high quality of SimRank

search:

e Devise a “varied-D” method to remove diagonal
error of Kusumoto et al.”s SimRank model

e Design a “kernel-based” model to resolve
connectivity trait problem of SimRank

e Semantically show the difference between
Li et al.’s and Jeh et al.”’s SimRank models







Existing Link-based Measure

e PageRank
p:C.WT .p+(1-C)-1 — vector of all 1s

e Personalized PageRank

p=C-W -p+(1-C)-q — personalized vector

e Random Walk with Restart

p=C-WT-p+(1—C)-el._ unit vector
e SimRank
S=C-(Q-S-Q"+(1-0C)-1I, — identity matrix
S=C-Q-S-Q"+D diagonal matrix






