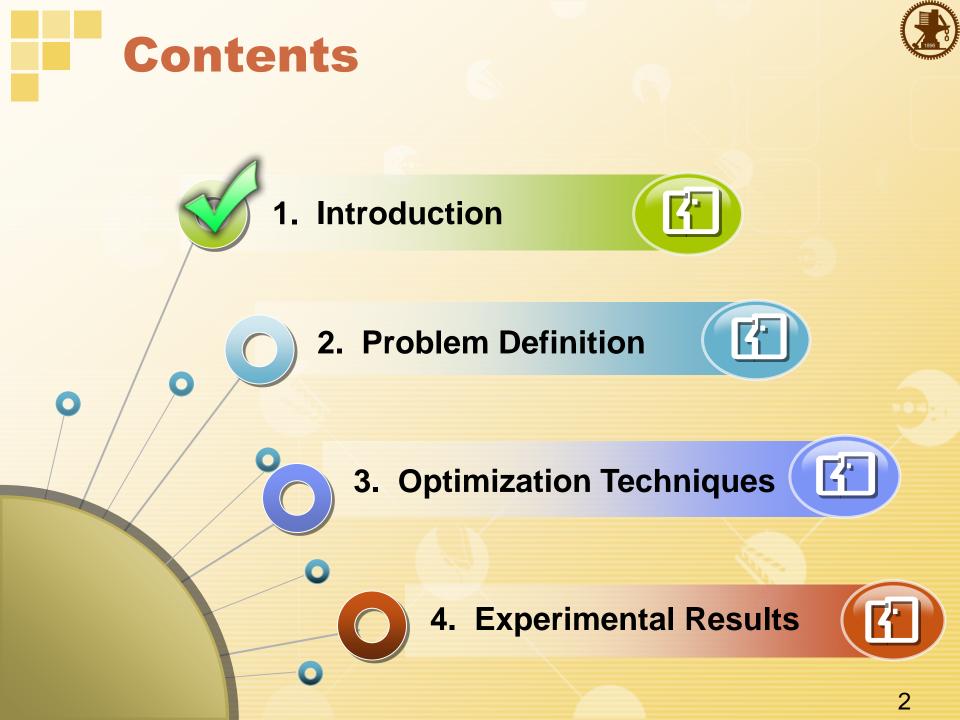


On the Efficiency of Estimating Penetrating Rank on Large Graphs

Weiren Yu¹, Jiajin Le², Xuemin Lin¹, Wenjie Zhang¹

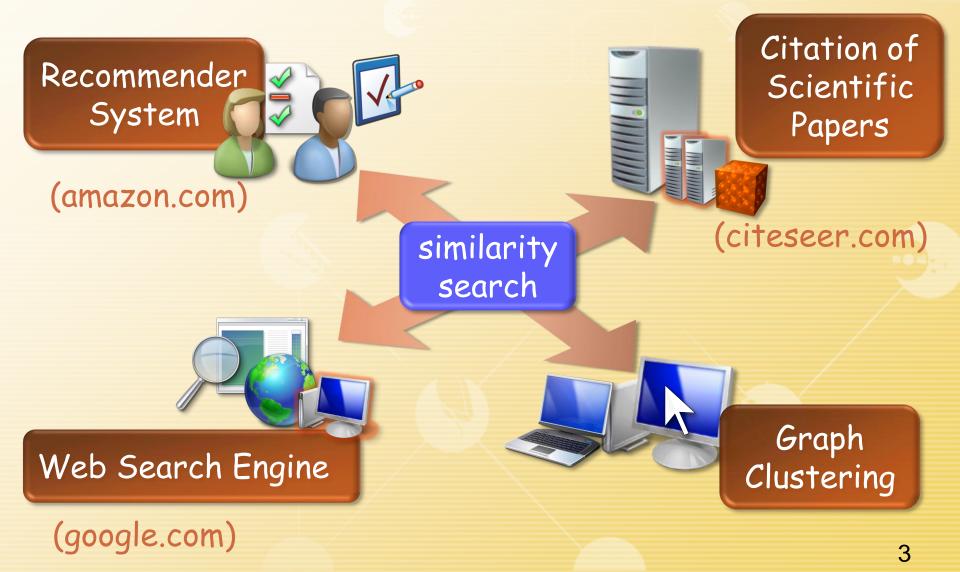
¹ University of New South Wales & NICTA, Australia

² Donghua University, China



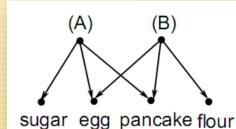
1. Introduction

Many applications require a measure of "similarity" between objects.



P-Rank : A New Link-based Similarity Measure

- Structural Similarity Measure
 - PageRank [Page et. al, 1999]
 - SimRank [Jeh and Widom, KDD 02]
- P(enetrating)-Rank similarity
 - A new promising structural measure [Zhao et. al., CIKM 09]
 - An extension of SimRank metrics
- Basic Philosophy
 - Two entities are similar, if
 - (1) they are referenced by similar entities
 - (2) they reference similar entities



SimRank(A, B) = 0P-Rank(A, B) > 0

P-Rank Overview

Features

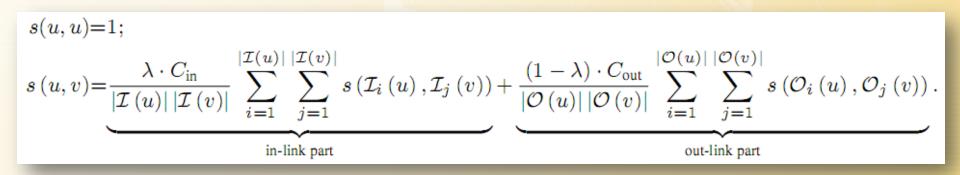
- Avoiding *"limited information problem"* of SimRank --- By taking account of both in- and out-links
- Defined recursively and is computed iteratively
- Applicable to any domain with object-to-object relationships

Challenges

- Costly to compute P-Rank on large graphs
 - Naïve Iteration O(Kn⁴)
 [Zhao et. al., CIKM 09]
 - Partial Sums Amortization O(Kn³) [Lizorkin et. al., PVLDB 08]
- Hard to estimate the error for P-Rank approximation
 Radius- and category-based Pruning Rule O(Kd²n²)
 [Zhao et. al., CIKM 09]

P-Rank Formulation

Mathematical Formula



Iterative Paradigm

$$\lim_{k \to \infty} s^{(k)}(u, v) = \sup_{k \ge 0} \{ s^{(k)}(u, v) \} = s(u, v)$$

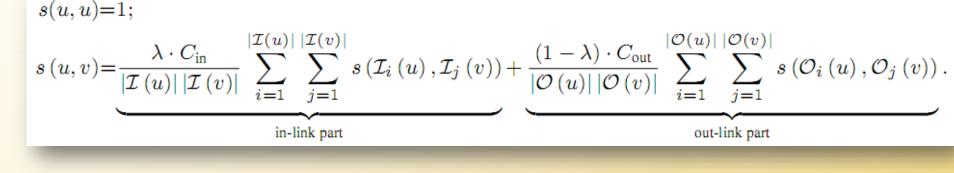
$$\begin{split} s^{(k+1)}\left(u,u\right) &= 1.\\ s^{(k+1)}\left(u,v\right) &= \frac{\lambda \cdot C_{\text{in}}}{|\mathcal{I}(u)||\mathcal{I}(v)|} \sum_{i=1}^{|\mathcal{I}(u)|} \sum_{j=1}^{|\mathcal{I}(v)|} s^{(k)}\left(\mathcal{I}_{i}\left(u\right),\mathcal{I}_{j}\left(v\right)\right) \\ &+ \frac{(1-\lambda) \cdot C_{\text{out}}}{|\mathcal{O}(u)||\mathcal{O}(v)|} \sum_{i=1}^{|\mathcal{O}(u)|} \sum_{j=1}^{|\mathcal{O}(v)|} s^{(k)}\left(\mathcal{O}_{i}\left(u\right),\mathcal{O}_{j}\left(v\right)\right) \end{split}$$

Contributions

- Characterizing P-Rank as two forms
 - matrix inversion --- deterministic optimization
 - power series --- probabilistic computation
- Deterministic optimization (off-line)
 - eliminating neighborhood structure redundancy
 - quadratic-time with an error bound
- Probabilistic computation (on-line)
 - a sampling approach
 - Inear-time with controlled accuracy

P-Rank Matrix Form

Iterative Form



Matrix Form

$$q_{i,j} \triangleq \begin{cases} a_{j,i} / \sum_{j=1}^{n} a_{j,i}, \text{ if } \mathcal{I}(i) \neq \emptyset; \\ 0, & \text{ if } \mathcal{I}(i) = \emptyset. \end{cases} \qquad p_{i,j} \triangleq \begin{cases} a_{i,j} / \sum_{j=1}^{n} a_{i,j}, \text{ if } \mathcal{O}(i) \neq \emptyset; \\ 0, & \text{ if } \mathcal{O}(i) = \emptyset. \end{cases}$$
$$\mathbf{S} = \lambda C_{\text{in}} \cdot \mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^{T} + (1 - \lambda)C_{\text{out}} \cdot \mathbf{P} \cdot \mathbf{S} \cdot \mathbf{P}^{T} + (1 - \lambda C_{\text{in}} - (1 - \lambda)C_{\text{out}}) \cdot \mathbf{I}_{n}, \end{cases}$$

$$\mathbf{S} = \lambda \cdot C_{\text{in}} \cdot \mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^T + (1 - \lambda) \cdot C_{\text{out}} \cdot \mathbf{P} \cdot \mathbf{S} \cdot \mathbf{P}^T + \mathbf{I}_n$$

8

P-Rank is a Linear Matrix Equation

Key Observation

$$vec(\mathbf{A} \cdot \mathbf{X} \cdot \mathbf{B}) = (\mathbf{B}^T \otimes \mathbf{A}) \cdot vec(\mathbf{X})$$

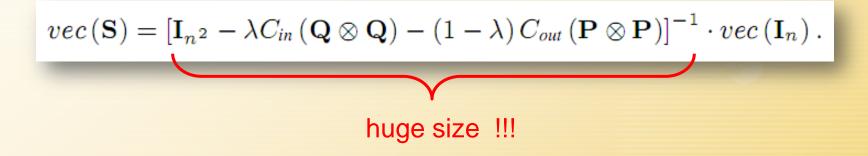
$$\mathbf{S} = \lambda \cdot C_{\text{in}} \cdot \mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^T + (1 - \lambda) \cdot C_{\text{out}} \cdot \mathbf{P} \cdot \mathbf{S} \cdot \mathbf{P}^T + \mathbf{I}_n$$

$$(\mathbf{I} - \mathbf{M})^{-1} \mathbf{b}$$
 x = **M** · **x** + **b x** = $\sum_{i=0}^{\infty} \mathbf{M}^i \cdot \mathbf{b}$

$$\mathbf{b} = vec(\mathbf{I}_n) \quad \mathbf{x} = vec(\mathbf{s}) \quad \mathbf{M} = \lambda \cdot C_{\text{in}} \cdot (\mathbf{Q} \otimes \mathbf{Q}) + (1 - \lambda) \cdot C_{\text{out}} \cdot (\mathbf{P} \otimes \mathbf{P})$$

Two Representations of P-Rank Solution

Matrix Inversion Form



Power Series Form

$$vec(\mathbf{S}) = \sum_{i=0}^{\infty} \left[\lambda \cdot C_{in} \cdot (\mathbf{Q} \otimes \mathbf{Q}) + (1-\lambda) \cdot C_{out} \cdot (\mathbf{P} \otimes \mathbf{P})\right]^{i} \cdot vec(\mathbf{I}_{n}).$$

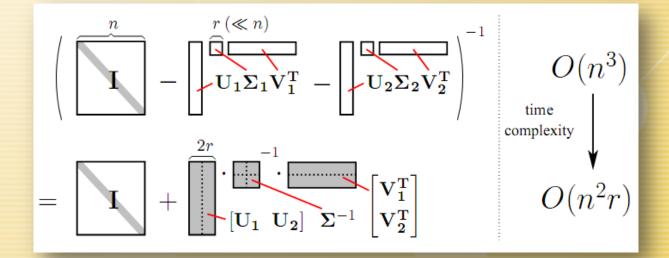
P-Rank Deterministic Optimization

Basic Idea

Most real-world graphs are low-rank and sparse.

$$vec(\mathbf{S}) = [\mathbf{I}_{n^2} - \lambda C_{in} (\mathbf{Q} \otimes \mathbf{Q}) - (1 - \lambda) C_{out} (\mathbf{P} \otimes \mathbf{P})]^{-1} \cdot vec(\mathbf{I}_n) .$$
$$\mathbf{U}_1 \mathbf{\Sigma}_1 \mathbf{V}_1^T \qquad \mathbf{U}_2 \mathbf{\Sigma}_2 \mathbf{V}_2^T$$

Extending Woodbury matrix identity



 $^{-1}$

P-Rank Deterministic Optimization

P-Rank can be solved as follows.

$$vec(\mathbf{S}) = \left(\tilde{\mathbf{U}}_{\mathbf{Q}} \ \tilde{\mathbf{U}}_{\mathbf{P}} \right) \boldsymbol{\Sigma} \begin{pmatrix} \tilde{\mathbf{V}}_{\mathbf{Q}}^{T} \\ \tilde{\mathbf{V}}_{\mathbf{P}}^{T} \end{pmatrix} vec\left(\mathbf{I}_{n} \right) + vec\left(\mathbf{I}_{n} \right)$$

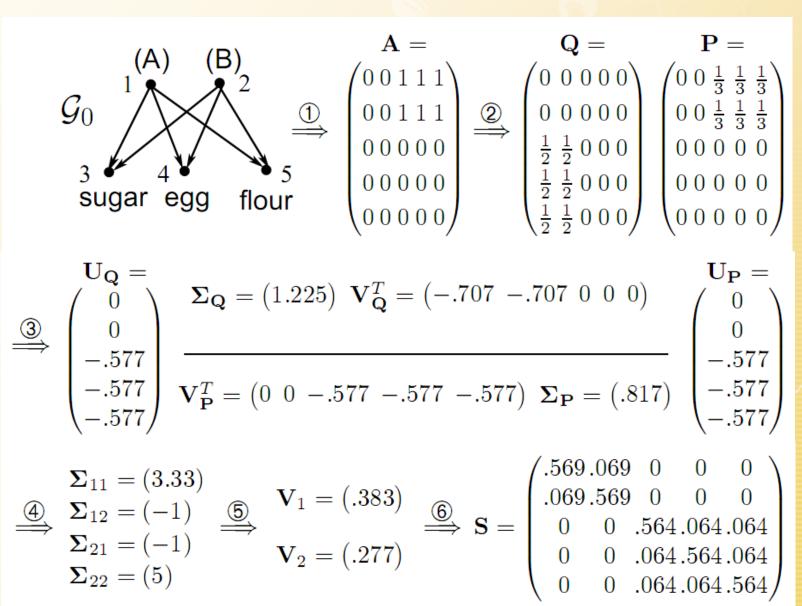
$$\boldsymbol{\Sigma} = \begin{pmatrix} \frac{1}{\lambda C_{\text{in}}} \tilde{\boldsymbol{\Sigma}}_{\mathbf{Q}}^{-1} - \tilde{\mathbf{V}}_{\mathbf{Q}}^T \tilde{\mathbf{U}}_{\mathbf{Q}} & -\tilde{\mathbf{V}}_{\mathbf{Q}}^T \tilde{\mathbf{U}}_{\mathbf{P}} \\ -\tilde{\mathbf{V}}_{\mathbf{P}}^T \tilde{\mathbf{U}}_{\mathbf{Q}} & \frac{1}{(1-\lambda)C_{\text{out}}} \tilde{\boldsymbol{\Sigma}}_{\mathbf{P}}^{-1} - \tilde{\mathbf{V}}_{\mathbf{P}}^T \tilde{\mathbf{U}}_{\mathbf{P}} \end{pmatrix}$$

where a tilde denotes the self-Kronecker product of a matrix, e.g., $\mathbf{\tilde{U}_Q} = \mathbf{U_Q} \otimes \mathbf{U_Q}$

Complexity

 $O(r^2 + r^6)$ time, $O(r \cdot max\{r^3, n\})$ space

Example

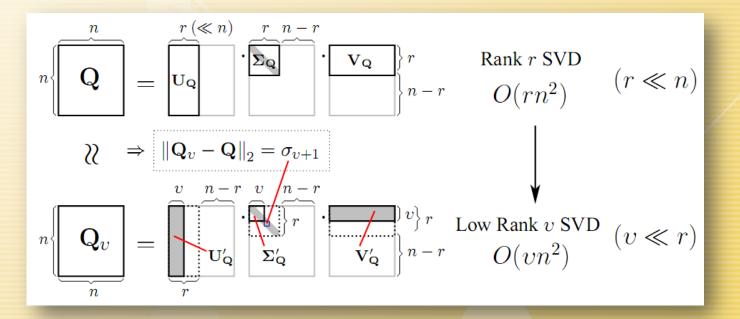


P-Rank Deterministic Approximation

P-Rank matrix inversion form

$$vec(\mathbf{S}) = [\mathbf{I}_{n^2} - \lambda C_{in} (\mathbf{Q} \otimes \mathbf{Q}) - (1 - \lambda) C_{out} (\mathbf{P} \otimes \mathbf{P})]^{-1} \cdot vec(\mathbf{I}_n).$$
$$\mathbf{U}_1 \mathbf{\Sigma}_1 \mathbf{V}_1^T \qquad \mathbf{U}_2 \mathbf{\Sigma}_2 \mathbf{V}_2^T$$

Reduced SVD for P-Rank Approximation



P-Rank Deterministic Approximation

Approximation Error

$$\epsilon_{\upsilon} \leq \frac{\lambda C_{\mathit{in}} \sigma_1 \sigma_{\upsilon+1} + (1-\lambda) C_{\mathit{out}} \bar{\sigma}_1 \bar{\sigma}_{\upsilon+1}}{1 - \lambda C_{\mathit{in}} - (1-\lambda) C_{\mathit{out}}} r$$

e.g., WIKI 0715 $(r = 15 \text{K}, \sigma_1 = 1.12, \bar{\sigma}_1 = 1.08)$

Setting $C_{\rm in} = 0.8, C_{\rm out} = 0.6$, and $\lambda = 0.5$

 $\epsilon_{\upsilon} \le \frac{0.5 \times 0.8 \times 1.12 + 0.5 \times 0.6 \times 1.08}{1 - 0.5 \times 0.8 - 0.5 \times 0.6} \times 10^{-7} \times 15 \text{K} = 0.0039$

Complexity

Time:
$$O\left(vn^2+v^6\right)$$
 with $v\leq r$

Space: $O(v \cdot \max\{v^3, n\})$

Key Observation

P-Rank can be viewed as a geometric sum of random walks

$$vec(\mathbf{S}) = \sum_{i=0}^{\infty} \left[\lambda \cdot C_{in} \cdot (\mathbf{Q} \otimes \mathbf{Q}) + (1-\lambda) \cdot C_{out} \cdot (\mathbf{P} \otimes \mathbf{P})\right]^{i} \cdot vec(\mathbf{I}_{n})$$

s (u,v) represents how soon two surfers are expected to meet

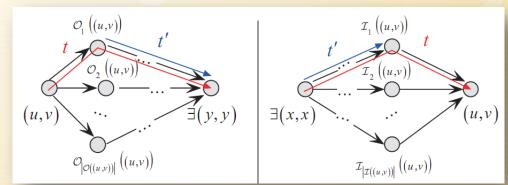
✤ Main idea

 • utilize the first hitting time τ(u, v) of coalescing walks to estimate s (u, v)

$$s(u,v) = \mathbb{E}(\lambda \cdot C_{in}^{\tau_1(u,v)} + (1-\lambda) \cdot C_{out}^{\tau_2(u,v)})$$

Random Surfer Model

♦ one-step path transformation T : t' \rightarrow t



Iength

$$l(t) = l(t') + 1$$

probability

$$p\left(T\left(t'\right)\right) = \begin{cases} \frac{1}{|\mathcal{I}((u,v))|} \cdot p\left(t'\right), t' : \exists (x,x) \to (u,v);\\ \frac{1}{|\mathcal{O}((u,v))|} \cdot p\left(t'\right), t' : (u,v) \to \exists (y,y). \end{cases}$$

Equivalence of Sampling approach

$$\begin{split} s\left(u,v\right) &= \lambda \cdot \sum_{t: \exists (x,x) \to (u,v)} p\left(t\right) \cdot C_{\mathrm{in}} \stackrel{l(t)}{\longrightarrow} + (1-\lambda) \cdot \sum_{t:(u,v) \to \exists (y,y)} p\left(t\right) \cdot C_{\mathrm{out}} \stackrel{l(t)}{\longrightarrow} \\ &= \frac{\lambda \cdot C_{\mathrm{in}}}{\left|\mathcal{I}\left(u\right)\right| \left|\mathcal{I}\left(v\right)\right|} \cdot \sum_{i=1}^{\left|\mathcal{I}\left(u\right)\right|} \sum_{j=1}^{\left|\mathcal{I}\left(u\right)\right|} s\left(\mathcal{I}_{i}\left(u\right), \mathcal{I}_{j}\left(v\right)\right) + \frac{(1-\lambda) \cdot C_{\mathrm{out}}}{\left|\mathcal{O}\left(u\right)\right| \left|\mathcal{O}\left(v\right)\right|} \cdot \sum_{i=1}^{\left|\mathcal{O}\left(u\right)\right|} s\left(\mathcal{O}_{i}\left(u\right), \mathcal{O}_{j}\left(v\right)\right) . \end{split}$$

Complexity

- ♦ Time O (N·n)
- Space O (n + N)

where N : sample size, n : # of vertices

Sample Size

♦ N ≥ -2 [(σ/ϵ)² log α] suffices to ensure that

 $\Pr\left(|s_N - s| \ge \epsilon\right) < \alpha$

In practice, N << n.</p>

e.g., on DBLP (98-07) For n = 10K, $\epsilon = 0.15\sigma$, $\alpha = 0.05$, we have $N \ge -2[0.15^{-2} \log(0.05)] = 267$.

Error Bound

Let
$$Err \triangleq \sup_{N \ge 1} \Pr\left(|\hat{s}_N - s| \ge \epsilon\right)$$

upper bound - by Bernstein's Theorem

$$Err \le \exp(-N\epsilon^2/(2\sigma^2))$$

Iower bound - by Central Limit Theorem

$$Err \ge \Pr\left(\left|\frac{1}{\sqrt{N}}\sum_{i=1}^{N}\left(\frac{\hat{s}_{N}^{(i)}-s}{\sigma}\right)\right| \ge \frac{\epsilon\sqrt{N}}{\sigma}\right) = 2 - 2\Phi\left(\frac{\epsilon\sqrt{N}}{\sigma}\right)$$

Relative Order Preserving

If
$$s(u,v) > s(u,w) + \epsilon$$
, then

$$\Pr(\hat{s}_N(u,v) - \hat{s}_N(u,w) > \epsilon) \le \exp(-N\epsilon^2/2)$$

Experiment

Datasets

- Synthetic data (RAND 0.5M-3.5M)
- Real data (AMZN, DBLP, WIKI)

	0505	0601			
$ \mathcal{V} $	410K	402K			
$ \mathcal{E} $	3,356K	3,387K			
Table 2: AMZN					

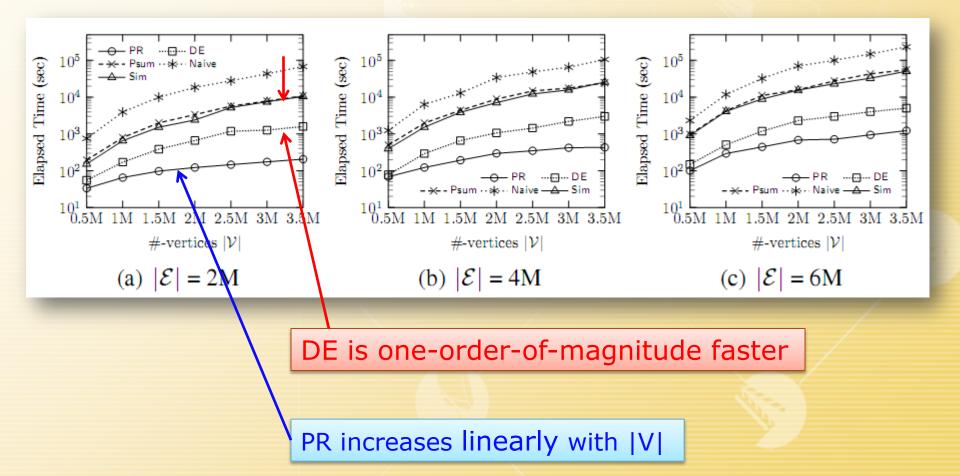
	98-99	98-01	98-03	98-05	98-07			
기	1,525	3,208	5,307	7,984	10,682 54,844			
1	5,929	13,441	24,762	39,399	54,844			
	Table 3: DBLP							

	0715	0827	0919			
$ \mathcal{V} $	3,088K	3,102K	3,116K			
$ \mathcal{E} $	1,126K	1,134K	1,142K			
Table 4: WIKI						

- Compared Algorithms
 - DE P-Rank, PR P-Rank
 - Naive, radius-based pruning iteration [Zhao et al, CIKM 2009]
 - Psum, leveraging a partial sum function to compute P-Rank
 - Sim, a SimRank algorithm, taking account of the evidence factor for incident vertices

Experiment (1)

Scalability on Synthetic Datasets



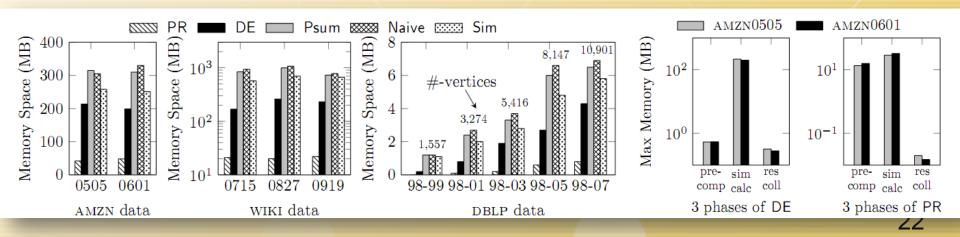
Computational Time on Real Datasets

PR outperforms the other approaches.



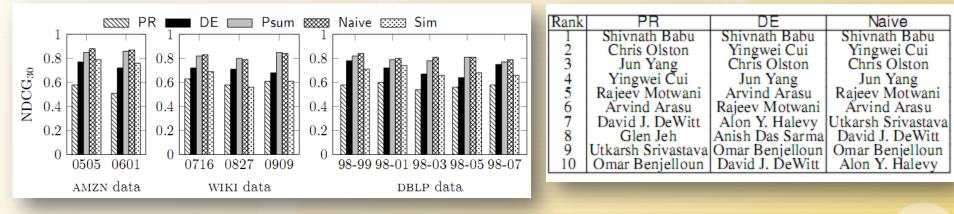
DE can cluster vertices with similar neighborhood.

Memory Space on Real Datasets



Experiment (3)

Accuracy on Real Datasets



Top-10 Co-authors of Jennifer Widom on DBLP

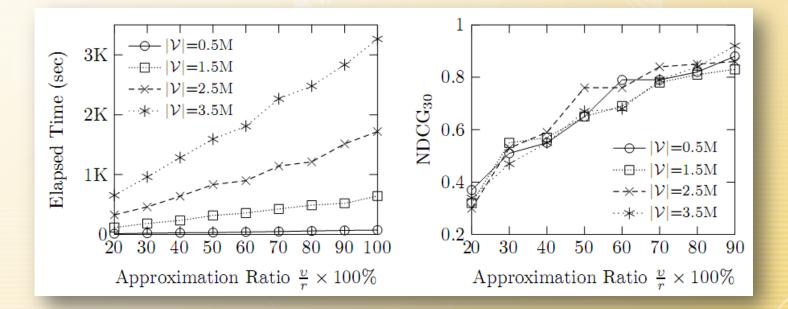
NDCG_p =
$$\frac{1}{\text{IDCG}_p} \sum_{i=1}^{p} (2^{\text{rank}_i} - 1) / (\log_2 (1+i))$$

DE achieves higher accuracy than PR.

The accuracy of PR is not that good because a few FPTs are neglected with certain probability by sampling.

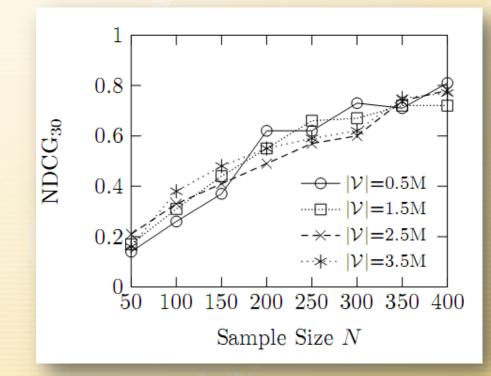
Experiment (4)

Effects of u for DE



Adding u induces smaller errors, but increases the time up to rank r.

Effects of N for PR



Adding samples of FPTs reduces errors

When N > 300, higher accuracy could be expected (NDCG₃₀ > 0.6)

Conclusions

Two matrix forms are investigated to characterize P-Rank.

- Using matrix inversion form, we propose DE P-Rank to reduce the time from cubic to quadratic.
- Sy leveraging reduced SVD, the error estimate is obtained for P-Rank approximation.
- Using power series form, we present PR P-Rank to speed up the computation of P-Rank in linear time with controlled accuracy.

Thank You !