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1.  Introduction 

 Many applications require a measure of “similarity” between objects. 

 

 

similarity 
search 

Citation of 
Scientific 

Papers 

(citeseer.com) 
(amazon.com) 

Recommender 
System 

Graph 
Clustering Web Search Engine 

  (google.com) 



4 

P-Rank : A New Link-based Similarity Measure 

 Structural Similarity Measure 

 PageRank [Page et. al, 1999] 

 SimRank [Jeh and Widom, KDD 02] 

 P(enetrating)-Rank similarity 

 A new promising structural measure    [Zhao et. al. , CIKM 09] 

 An extension of SimRank metrics 

 Basic Philosophy 

 Two entities are similar, if 

(1) they are referenced by similar entities 

(2) they reference similar entities 
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P-Rank Overview 

 Features 

 Avoiding “limited information problem” of SimRank 

 --- By taking account of both in- and out-links 

 Defined recursively and is computed iteratively 

 Applicable to any domain with object-to-object relationships 

 

 Challenges 

 Costly to compute P-Rank on large graphs 

 Naïve Iteration O(Kn4) [Zhao et. al. , CIKM 09] 

 Partial Sums Amortization O(Kn3) [Lizorkin et. al. , PVLDB 08] 

 

 Hard to estimate the error for P-Rank approximation 

 Radius- and category-based Pruning Rule      O(Kd2n2)    

 [Zhao et. al. , CIKM 09] 
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P-Rank Formulation 

Mathematical  Formula 

 

 

 

 

 

 Iterative Paradigm 
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Contributions 

 Characterizing P-Rank as two forms 

 matrix inversion --- deterministic optimization 

 power series --- probabilistic computation 

 Deterministic optimization  (off-line) 

 eliminating neighborhood structure redundancy 

 quadratic-time with an error bound 

 Probabilistic computation  (on-line) 

 a sampling approach 

 linear-time with controlled accuracy 
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P-Rank Matrix Form 

 Iterative Form 

 

 

 

Matrix Form 
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P-Rank is a Linear Matrix Equation 

 Key Observation 
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Two Representations of P-Rank Solution 

Matrix Inversion Form 

 

 

 

 Power Series Form 

huge size  !!!  
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P-Rank Deterministic Optimization 

 Basic Idea 

Most real-world graphs are low-rank and sparse. 

 

 

 Extending Woodbury matrix identity 
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P-Rank Deterministic Optimization 

 P-Rank can be solved as follows. 

 

 

 

 

 where a tilde denotes the self-Kronecker product of a matrix, e.g., 

 Complexity 

 O (rn2 + r6) time,     O(r·max{r3, n}) space 
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Example 
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P-Rank Deterministic Approximation 

 P-Rank matrix inversion form 

 

 

 Reduced SVD for P-Rank Approximation 
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P-Rank Deterministic Approximation 

 Approximation Error 

 

 

e.g., WIKI  0715  

        Setting  

 

 Complexity 

Time: 

Space: 
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P-Rank Probabilistic Computation 

 Key Observation 

 P-Rank can be viewed as a geometric sum of random walks 

 

 

 s (u,v) represents how soon two surfers are expected to meet 

Main idea 

 utilize the first hitting time τ(u, v) of coalescing walks to 

estimate s (u, v) 



17 

P-Rank Probabilistic Computation 

 Random Surfer Model 

 one-step path transformation T : t′ →  t 

 

 

 

 

 length 

 probability 

 

 Equivalence of Sampling approach  
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P-Rank Probabilistic Computation 

 Complexity 

 Time O (N·n)  

 Space O (n + N)  

 

 Sample Size 

 N ≥ −2 ⌈(σ/ϵ)2 log α⌉ suffices to ensure that  

Pr (|sN − s| ≥ ϵ) < α 

 In practice,  N << n .  

     e.g., on DBLP (98-07)   For  n = 10K,  ϵ = 0.15σ,  α = 0.05,  we have  

N ≥ −2⌈0.15−2 log(0.05)⌉ = 267. 

where  N : sample size,  n : # of vertices 
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P-Rank Probabilistic Computation 

 Error Bound 

     Let 

 upper bound  - by Bernstein’s Theorem 

 

 

 lower bound   - by Central Limit Theorem 

 

 

 Relative Order Preserving 

      If                                     ,  then 
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Experiment 

 Datasets 

 Synthetic data  (RAND  0.5M-3.5M) 

 Real data  (AMZN, DBLP, WIKI) 

 

 

 

 Compared Algorithms 

 DE P-Rank, PR P-Rank 

 Naive, radius-based pruning iteration   [Zhao et al, CIKM 2009] 

 Psum, leveraging a partial sum function to compute P-Rank 

 Sim, a SimRank algorithm, taking account of the evidence factor 

for incident vertices 
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Experiment (1) 

 
Scalability on Synthetic Datasets 

DE is one-order-of-magnitude faster  

PR increases linearly with |V|  
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Experiment (2) 

 Computational Time  on Real Datasets 

Memory Space on Real Datasets 

DE can cluster vertices with similar neighborhood. 

PR outperforms the other approaches. 
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Experiment (3) 

 
Accuracy on Real Datasets 

DE achieves higher accuracy than PR.  

The accuracy of PR is not that good 
because a few FPTs are neglected with 
certain probability by sampling.  

Top-10 Co-authors of 

Jennifer Widom on DBLP 
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Experiment (4) 

 
Effects of υ for DE 

Adding υ induces smaller errors,  
but increases the time up to rank r. 
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Experiment (5) 

 
Effects of N for PR 

Adding samples of FPTs reduces errors 

When N > 300, higher accuracy could be expected 
(NDCG30 > 0.6) 
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Conclusions 
 

 Two matrix forms are investigated to characterize P-Rank. 

 Using matrix inversion form, we propose DE P-Rank to 

reduce the time from cubic to quadratic. 

 By leveraging reduced SVD, the error estimate is obtained 

for P-Rank approximation. 

 Using power series form, we present PR P-Rank to speed 

up the computation of P-Rank in linear time with controlled 

accuracy. 
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