More is Simpler: Effectively and Efficiently Assessing Node-Pair Similarities Based on Hyperlinks

Weiren Yu¹, Xuemin Lin¹, Wenjie Zhang¹, Lijun Chang¹, Jian Pei²

¹ University of New South Wales, Australia ² Simon Fraser University, Canada

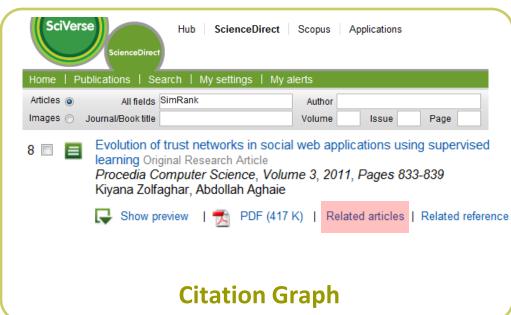
Outline

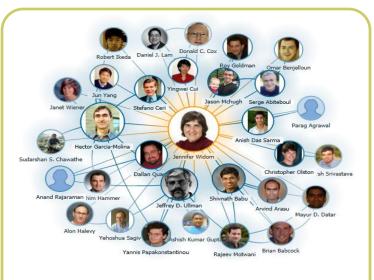
Overview

- The existing "zero-SimRank" problem
- Our approaches
 - SimRank*, a semantically-enhanced version
 - Two succinct closed forms of SimRank*
 - Edge concentration for speeding up computation
- Empirical evaluations
- Conclusions

Overview

• SimRank plays an important part in real applications.





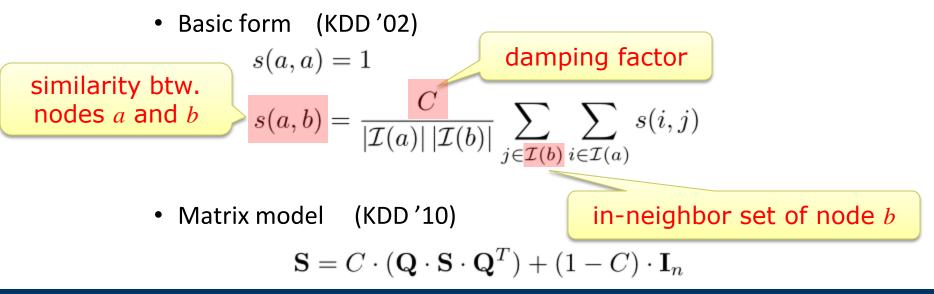
Collaboration Network

SimRank Overview

- SimRank
 - An attractive similarity measure based on hyperlinks, (proposed by Jeh and Widom in KDD '02)
 - Basic philosophy

Two nodes are similar if they are referenced by similar nodes.

• Two SimRank models



Existing Link-based Measure

• PageRank

$$\mathbf{p} = C \cdot \mathbf{W}^T \cdot \mathbf{p} + (1 - C) \cdot \mathbf{1} - \mathbf{vector of all 1s}$$

• Personalized PageRank

$$\mathbf{p} = C \cdot \mathbf{W}^T \cdot \mathbf{p} + (1 - C) \cdot \mathbf{q} - \mathbf{personalized vector}$$

• Random Walk with Restart

$$\mathbf{p} = C \cdot \mathbf{W}^T \cdot \mathbf{p} + (1 - C) \cdot \mathbf{e}_i \qquad \text{unit vector}$$

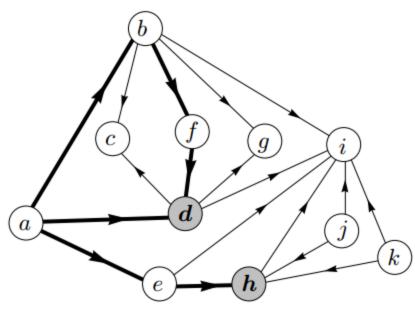
• SimRank

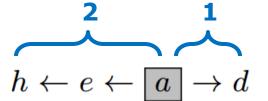
$$\mathbf{S} = C \cdot (\mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^T) + (1 - C) \cdot \mathbf{I}_n - \mathbf{identity matrix}$$

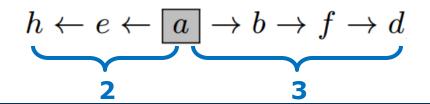
$$\mathbf{S} = C \cdot \mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^T + \mathbf{D}$$
 diagonal matrix

Motivation

• "Zero-Similarity" Problem







Node-Pairs	SR	PR	SR*	RWR
(h,d)	0	.049	.010	0
(a, f)	0	.075	.032	.032
(a,c)	0	0	.025	.024
(g,a)	0	0	.025	0
(g,b)	0	0	.075	0
(i,a)	0	0	.015	0
(i,h)	.044	.041	.031	0

Simrank (h,d) = 0 !!

There are no nodes with equal distance to nodes h and d

Motivation

• Zero-Similarity" Problem

$$a_{-n} \leftarrow \cdots \leftarrow a_{-1} \leftarrow a_0 \rightarrow a_1 \rightarrow \cdots \rightarrow a_n$$

 $s(a_i, a_j) = 0$, for all $|i| \neq |j|$

Simrank $(a_i, a_j) = 0$ (for all |i|!=|j|)

There are no nodes with equal distance to nodes a_i and a_i

Zero-Similarity" Problem

- Power of Adjacency Matrix A
 - The (x, j)-entry of \mathbf{A}^{l} counts # of paths: $\underbrace{x \to \circ \to \circ \cdots \circ \to j}_{l \text{ length}}$
 - The (i, x)-entry of $(\mathbf{A}^T)^l$ counts # of paths: $\underbrace{i \leftarrow \circ \leftarrow \circ \cdots \circ \leftarrow x}_{l \text{ length}}$
 - The value of $\sum_{k=1}^{\infty} \left[\left(\mathbf{A}^T \right)^k \cdot \mathbf{A}^k \right]_{i,j}$ counts # of paths:

$$\underbrace{i \leftarrow \circ \leftarrow \circ \cdots \circ \leftarrow}_{k \text{ length}} \circ \underbrace{\circ \cdots \circ \rightarrow \circ \rightarrow j}_{k \text{ length}}$$

k length

$$\mathbf{Q} = rowNorm(\mathbf{A}^T)$$

• SimRank series form:

$$\mathbf{S} = C \cdot (\mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^T) + (1 - C) \cdot \mathbf{I}_n \quad \Longleftrightarrow \quad \mathbf{S} = (1 - C) \cdot \sum_{l=0}^{\infty} C^l \cdot \mathbf{Q}^l \cdot (\mathbf{Q}^T)^l$$

Sim (i, j) = 0 if there are no nodes with equal length to (i, j)

A Remedy for SimRank

- SimRank : $\mathbf{S} = (1 C) \cdot \sum_{l=0}^{\infty} C^l \cdot \mathbf{Q}^l \cdot (\mathbf{Q}^T)^l$
- SimRank*: $\hat{\mathbf{S}} = (1 C) \cdot \sum_{l=0}^{\infty} \frac{C^l}{2^l} \cdot \sum_{\alpha=0}^{l} {l \choose \alpha} \cdot \mathbf{Q}^{\alpha} \cdot (\mathbf{Q}^T)^{l-\alpha}$

Length	SimRank	RWR / PPR	α SimRank*	
1	N/A	i ightarrow j	$egin{array}{c c c c c c c c c c c c c c c c c c c $	
2	$i \leftarrow ullet ightarrow j$	$i ightarrow \circ ightarrow j$	$\begin{array}{c cccc} 0 & i \rightarrow \circ \rightarrow j \\ \hline 1 & i \leftarrow \bullet \rightarrow j \\ \hline 2 & i \leftarrow \circ \leftarrow j \\ \end{array}$	
3	N/A	$i ightarrow \circ ightarrow \circ ightarrow j$	$\begin{array}{c cccc} 0 & i \rightarrow \circ \rightarrow \circ \rightarrow j \\ \hline 1 & i \leftarrow \bullet \rightarrow \circ \rightarrow j \\ \hline 2 & i \leftarrow \circ \leftarrow \bullet \rightarrow j \\ \hline 3 & i \leftarrow \circ \leftarrow \circ \leftarrow j \\ \end{array}$	
4	$i \leftarrow \circ \leftarrow ullet ightarrow \circ ightarrow j$	$i ightarrow \circ ightarrow \circ ightarrow j$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
\circ – any node in \mathcal{G} <i>i</i> , •, <i>j</i> – in-link "source"				

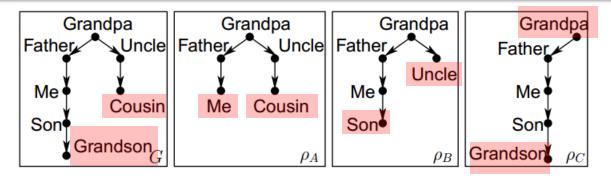
Two Kinds of Weighted Coefficients

- SimRank*: $\hat{\mathbf{S}} = (1 - C) \cdot \sum_{l=0}^{\infty} \frac{C^{l}}{2^{l}} \cdot \sum_{\alpha=0}^{l} {\binom{l}{\alpha}} \cdot \mathbf{Q}^{\alpha} \cdot \left(\mathbf{Q}^{T}\right)^{l-\alpha}$
 - Length weights: $\{C^l\}_{l=0}^{\infty}$ is decreasing w.r.t. l (0<C<1)

Longer paths should have a **smaller** contribution to S

• Symmetry weights:
$$\left\{\binom{l}{\alpha}\right\}_{\alpha=0}^{l}$$
 (binomial)

More symmetric paths should have a **larger** contribution to S



Variations of SimRank*

• SimRank*:

$$\hat{\mathbf{S}} = (1-C) \cdot \sum_{l=0}^{\infty} \frac{C^{l}}{2^{l}} \cdot \sum_{\alpha=0}^{l} {\binom{l}{\alpha}} \cdot \mathbf{Q}^{\alpha} \cdot (\mathbf{Q}^{T})^{l-\alpha}$$

$$\|\mathbf{Q}^{l_{1}} \cdot (\mathbf{Q}^{T})^{l_{2}}\|_{\max} \leq 1, \text{ for } \forall l_{1}, l_{2}$$
• Length weights: $\{C^{l}\}_{l=0}^{\infty}$
• Symmetry weights: $\{\binom{l}{\alpha}\}_{\alpha=0}^{l}$ (binomial)

$$\sum_{\alpha=0}^{l} \frac{C^{l}}{\alpha=l} \left(\sum_{\alpha=0}^{l} \binom{l}{\alpha} = 2^{l}\right)$$
Why not use $e^{-(l-\frac{\alpha}{2})^{2}}$?
Why not use $e^{-(l-\frac{\alpha}{2})^{2}}$ is not a simple form for normalization

Variations of SimRank*

• SimRank* :

Geometric

version

$$\hat{\mathbf{S}} = (\mathbf{1} - C) \cdot \sum_{l=0}^{\infty} \frac{C^{l}}{2^{l}} \cdot \sum_{\alpha=0}^{l} {l \choose \alpha} \cdot \mathbf{Q}^{\alpha} \cdot (\mathbf{Q}^{T})^{l-\alpha}$$

• Length weights: C^l

$$\sum_{l=0}^{\infty} C^l = \frac{1}{1-C}$$

Can we use
$$\frac{C^l}{l!}$$
 ? $\sum_{l=0}^{\infty} \frac{C^l}{l!} = e^C$

is a simple form for normalization

Exponential

version

$$\hat{\mathbf{S}}' = e^{-C} \cdot \sum_{l=0}^{\infty} \frac{C^{l}}{l!} \cdot \frac{1}{2^{l}} \sum_{\alpha=0}^{l} {\binom{l}{\alpha}} \cdot \mathbf{Q}^{\alpha} \cdot {(\mathbf{Q}^{T})}^{l-\alpha}$$

Convergence of SimRank*

• The first k-th partial sums:

$$\hat{\mathbf{S}}_{\boldsymbol{k}} = (1 - C) \cdot \sum_{l=0}^{\boldsymbol{k}} \frac{C^{l}}{2^{l}} \cdot \sum_{\alpha=0}^{l} {l \choose \alpha} \cdot \left(\mathbf{Q}^{\alpha} \cdot \left(\mathbf{Q}^{T}\right)^{l-\alpha}\right)$$

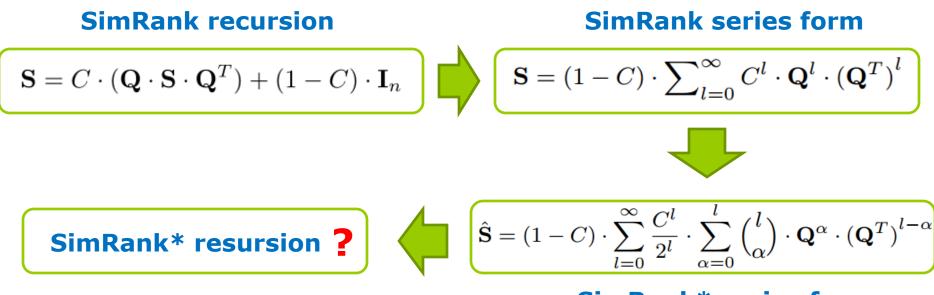
• (Geometric) convergence:

$$\|\hat{\mathbf{S}} - \hat{\mathbf{S}}_k\|_{\max} \le C^{k+1}. \quad (\forall k = 0, 1, \cdots)$$

• (Exponential) convergence:

$$\hat{\mathbf{S}}_{k}^{\prime} = e^{-C} \cdot \sum_{l=0}^{k} \frac{C^{l}}{l!} \cdot \frac{1}{2^{l}} \sum_{\alpha=0}^{l} {\binom{l}{\alpha}} \cdot \mathbf{Q}^{\alpha} \cdot \left(\mathbf{Q}^{T}\right)^{l-\alpha}$$
$$\|\hat{\mathbf{S}}^{\prime} - \hat{\mathbf{S}}_{k}^{\prime}\|_{\max} \leq \frac{C^{k+1}}{(k+1)!}. \quad (\forall k = 0, 1, \cdots)$$

Recursive Form of SimRank*

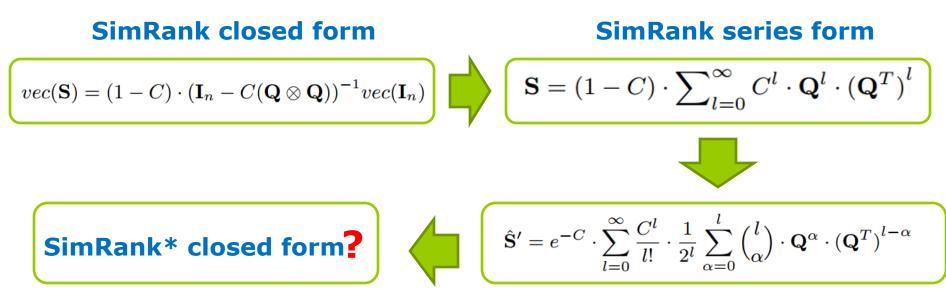


SimRank* series form

• Geometric SimRank* has the following recursive form:

$$\hat{\mathbf{S}} = \frac{C}{2} \cdot (\mathbf{Q} \cdot \hat{\mathbf{S}} + \hat{\mathbf{S}} \cdot \mathbf{Q}^T) + (1 - C) \cdot \mathbf{I}_n$$

Closed Form of Exponential SimRank*



SimRank* series form

• Exponential SimRank* has the following closed form:

$$\hat{\mathbf{S}}' = e^{-C} \cdot e^{\frac{C}{2}\mathbf{Q}} \cdot e^{\frac{C}{2}\mathbf{Q}^T}$$

where
$$e^{\mathbf{X}} = \sum_{k=0}^{\infty} \frac{\mathbf{X}^k}{k!}$$

SimRank* Computation

• Iterative Model:

$$\begin{cases} \hat{\mathbf{S}}_0 = (1 - C) \cdot \mathbf{I}_n, \\ \hat{\mathbf{S}}_{k+1} = \frac{C}{2} \cdot (\mathbf{Q} \cdot \hat{\mathbf{S}}_k + \hat{\mathbf{S}}_k \cdot \mathbf{Q}^T) + (1 - C) \cdot \mathbf{I}_n \end{cases}$$

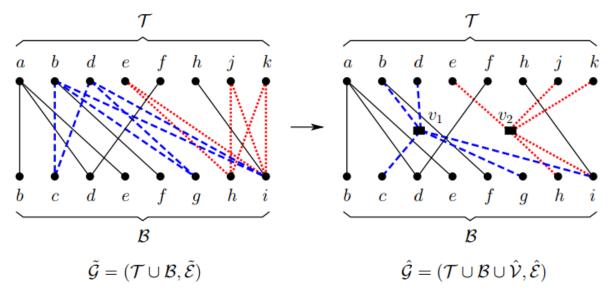
• Entry-wise Form:

$$\hat{s}_{k+1}(a,b) = \frac{C}{2|\mathcal{I}(b)|} \sum_{y \in \mathcal{I}(b)} \hat{s}_k(a,y) + \frac{C}{2|\mathcal{I}(a)|} \sum_{x \in \mathcal{I}(a)} \hat{s}_k(x,b)$$
$$\hat{s}_{k+1}(a,\star) = \frac{C}{2|\mathcal{I}(\star)|} \sum_{y \in \mathcal{I}(\star)} \hat{s}_k(a,y) + \frac{C}{2|\mathcal{I}(a)|} \sum_{x \in \mathcal{I}(a)} \hat{s}_k(x,\star)$$

If $\mathcal{I}(b) \cap \mathcal{I}(\star) \neq \emptyset$, then $\operatorname{Partial}_{\Delta}^{\hat{s}_k}(a) \triangleq \sum_{y \in \Delta} \hat{s}_k(a, y) \text{ with } \Delta \subseteq \mathcal{I}(\star) \cap \mathcal{I}(b)$ can be memoized for subsequent reuse.

Fine-grained Memoization

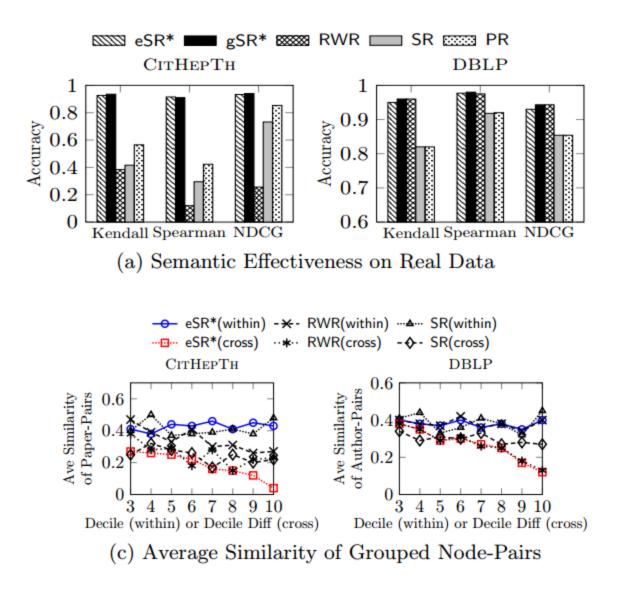
- How to find Δ in general case for maximal sharing? Partial $\hat{s}_k(a) \triangleq \sum_{y \in \Delta} \hat{s}_k(a, y)$ with $\Delta \subseteq \mathcal{I}(\star) \cap \mathcal{I}(b)$
- Edge Concentration
 - Replace bicliques with stars: $|X|^*|Y| \rightarrow |X|+|Y|$
 - Apply Buehrer and Chellapilla's heuristic



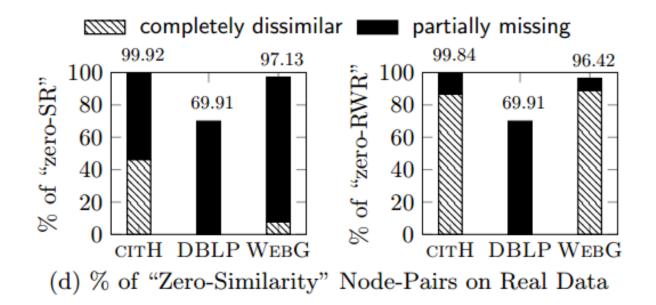
Experimental Settings

- Datasets
 - Real: CitHepTh, DBLP (D05, D08, D11), WebG
 - Synthetic: GraphGen generator
- Compared Algorithms
 - memo-gSR* : our geometric SimRank* + fine-grained memoization
 - memo-eSR*: our exponential SimRank* + fine-grained memoization
 - iter-gSR*: our geometric SimRank* + conventional iteration
 - psum-SR : best-known SimRank
 - mtx-SR: SimRank + singular value decomposition
- Evaluations
 - Semantics & Relative Ordering
 - Computational Efficiency

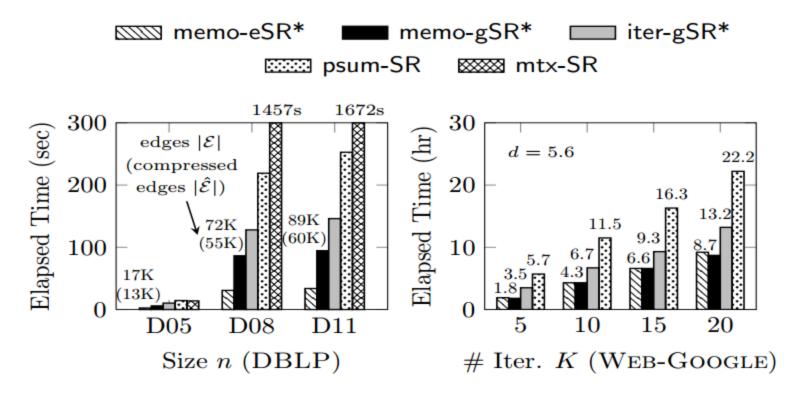
Semantic Effectiveness



Existence of "Zero-Similarity" Problem

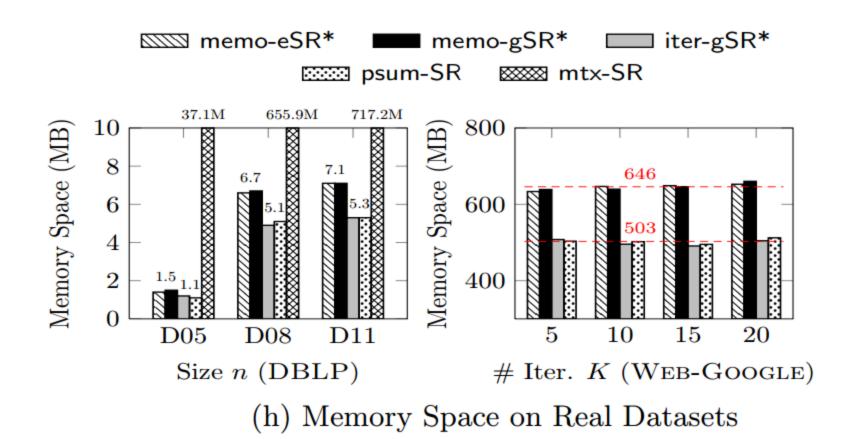


Time Efficiency



(e) Time Efficiency on Real Datasets

Memory Requirement



Conclusions

- We have proposed SimRank*, a refinement of SimRank.
 - Resolve "Zero SimRank" issue for semantic richness
 - Geometric & Exponential SimRank*
 - Derive the closed forms and recursive forms of SimRank*
 - Fine-grained memoization for speeding up its computation
- Empirical evaluations to show richer semantics and higher computation efficiency of SimRank*.

Thank you!

0

1

-