Efficient Partial-Pairs SimRank Search on Large Networks

Weiren Yu and Julie McCann

Department of Computing Imperial College London

Outline

Overview

- Partial-Pairs SimRank search
- Motivation
- "High iteration coupling" problem
- Our solutions
- "Seed germination" model
- Backward pruning method
- Extension to partial-pairs SimRank*
- Experimental Evaluation
- Conclusions

Overview

- SimRank in real-world applications:

Customers Who Bought This Item Also Bought

Nikon COOLPIX P510 16.1 MP CMOS Digital Camera with $42 \times$ Zoom NIKKOR ED Glass
 \$299.00

Canon SX40 HS 12.1MP Digital Camera with 35 x Wide Angle Optical Image Stabilized Zoom and tothoth (389) \$319.76

Sony Cyber-shot DSC HX200V 18.2 MP Exmor R CMOS Digital Camera with 30x
 $\$ 348.00$

Canon PowerShot SX500 IS 16.0 MP Digital Camera with $30 x$ Wide-Angle Optical为軲 (86) $\$ 249.00$

Recommender System

Collaboration Network

SimRank Overview

- SimRank
- An appealing similarity measure based on graph structure
- Central idea:

Two nodes are similar if they are pointed to by similar nodes. (recursion)
Each node is most similar to itself.

- Two formulations of SimRank
- Jeh and Widom's form
(SIGKDD'02)
similarity
btw. nodes a and b

$$
s(a, b)= \begin{cases}1 \text { damping factor } & (a=b) \\ \gamma \cdot \frac{\sum_{(i, j) \in N_{a} \times N_{b}} s(i, j)}{\left|N_{a}\right|\left|N_{b}\right|} & (a \neq b)\end{cases}
$$

- Kusumoto et al.'s form
(SIGMOD'14)
in-neighbor set of node b

$$
\mathbf{S}=C \cdot \mathbf{W}^{T} \cdot \mathbf{S} \cdot \mathbf{W}+\mathbf{D}
$$

Motivation

- Example:

Can we evaluate only the similarities of the papers between DB and AI areas?

- Partial-Pairs SimRank Problem:
- Given a graph $G(V, E)$, a decay factor C, and two collections of nodes A and B in G
- Retrieve partial-pairs scores $\{s(x, y)\} \quad \forall x \in A, \forall y \in B$

Existing "high iteration coupling" barrier

$(a \neq b)$

$$
\underset{\mathrm{k}+1}{\mathbf{S}=C} \cdot \mathbf{W}^{T} \cdot \mathbf{S}_{\mathrm{k}} \mathbf{W}+\mathbf{D}
$$

High Iteration Coupling

- To retrieve a single-pair $\mathrm{S}_{\mathrm{k}+1}(a, b)$, all pairs of $\mathrm{S}_{\mathrm{k}}\left({ }^{*}, *\right)$ at the previous iteration need to be determined beforehand.

Kusumoto et al.'s linearization

- Linearized SimRank model: (SIGMOD'14)

$$
\mathbf{S}=C \times \mathbf{W}^{T} \mathbf{S W}+\mathbf{D}
$$

$\Leftrightarrow \quad \mathbf{S}(a, b)=\mathbf{e}_{a}^{T} \mathbf{D} \mathbf{e}_{b}+C\left(\mathbf{W e}_{a}\right)^{T} \mathbf{D}\left(\mathbf{W} \mathbf{e}_{b}\right)+C^{2}\left(\mathbf{W}^{2} \mathbf{e}_{a}\right)^{T} \mathbf{D}\left(\mathbf{W}^{2} \mathbf{e}_{b}\right)+\cdots$

Complexity of Single-Pair SimRank

- Computing $\mathrm{S}_{\mathrm{k}}(\mathrm{a}, \mathrm{b})$ needs $\mathrm{O}(\mathrm{m})$ space and $\mathrm{O}\left(\mathrm{k}^{2} \mathrm{~m}\right)$ time. ($\mathrm{m}=|\mathrm{E}|, \mathrm{k}=$ \# of iterations)

If straightforwardly extended to partial-pairs case

- $O(m)$ space and $O\left(k^{2}|A||B| m\right)$ time would be required

Can we do it better? to compute $\left\{S_{k}(x, y) \mid \forall x \in A, \forall b \in B\right\}$

"Seed germination" model

$$
\mathbf{S}(*, j)=\mathbf{D} \mathbf{e}_{j}+C \mathbf{W}^{T} \mathbf{D}\left(\mathbf{W e}_{j}\right)+C^{2}\left(\mathbf{W}^{2}\right)^{T} \mathbf{D}\left(\mathbf{W}^{2} \mathbf{e}_{j}\right)+C^{3}\left(\mathbf{W}^{3}\right)^{T} \mathbf{D}\left(\mathbf{W}^{3} \mathbf{e}_{j}\right)+\cdots
$$

- $3^{\text {rd }}$ term: $\mathbf{W}^{T} \mathbf{W}^{T} \mathbf{D} \mathbf{W} \mathbf{W}_{*, j}$
- $4^{\text {th }}$ term: $\mathbf{W}^{T} \mathbf{W}^{T} \mathbf{W}^{T} \mathbf{D} \mathbf{W} \mathbf{W W}_{*, j}$

$\mathbf{W}^{T} \mathbf{W}^{T} \mathbf{D W W}$ $\mathbf{W}^{T} \mathbf{W}^{T} \mathbf{W}^{T} \mathbf{D W W W}_{*, j}$

Question

- How to keep "right-to-left association" while reducing duplicate computations across summands?

Our solution

- "Seed germination" model to compute $\{s(x, y)\}{ }_{\forall x \in A, \forall y \in B}$ $O(k m \min \{|A|,|B|\})$ time ; $O(m+k n)$ memory

Existing: $\quad \mathrm{O}\left(\mathrm{k}^{2} \mathrm{~m}|\mathrm{~A}||\mathrm{B}|\right)$ time ; $\mathrm{O}(\mathrm{m})$ memory

$$
\mathbf{S}(*, j)=\mathbf{D} \mathbf{e}_{j}+C \mathbf{W}^{T} \mathbf{D}\left(\mathbf{W e}_{j}\right)+C^{2}\left(\mathbf{W}^{2}\right)^{T} \mathbf{D}\left(\mathbf{W}^{2} \mathbf{e}_{j}\right)+\cdots
$$

- l-th term, $\left(\mathbf{W}^{l}\right)^{T} \mathbf{D}\left(\mathbf{W}^{l} \mathbf{e}_{j}\right)$, can tally the paths starting from node j:

$$
\underbrace{\overbrace{\star \leftarrow \circ}^{l \text { length }}}_{\left(\mathbf{W}^{T}\right)^{l}} \circ \overbrace{\mathbf{W}^{l-1}}^{\overbrace{\rightarrow \cdots \rightarrow \cdots}^{l-1 \text { length }}} \underbrace{\circ \rightarrow j}_{[\mathbf{W}]_{\circ, j}}
$$

Phase 1

- merging the paths that are counted by l-th summands into a compact tree:

Main idea (Cont.)

Phase 2

- "Seed germination" search over the compact tree:

Paths Tallied via "Seed Germination"	Step	Associated with Iterations
"seed" nodes new "bud" nodes	1	$\begin{aligned} & \mathbf{u}_{0}:=\mathbf{e}_{j} \\ & \mathbf{u}_{1}:=\mathbf{W} \cdot \mathbf{e}_{j} \end{aligned}$
	2	$\mathbf{u}_{2}:=\mathbf{W} \cdot \mathbf{u}_{1}=\mathbf{W}^{2} \cdot \mathbf{e}_{j}$
$\begin{gathered} \mathbf{u}_{3} \mathrm{O} \\ \left(\mathbf{v}_{0}\right) \end{gathered} \longrightarrow \mathrm{O} \longrightarrow 0 \longrightarrow j$	3	$\begin{aligned} & \mathbf{u}_{3}:=\mathbf{W} \cdot \mathbf{u}_{2}=\mathbf{W}^{3} \cdot \mathbf{e}_{j} \\ & \mathbf{v}_{0}:=\mathbf{u}_{3} \end{aligned}$
$\mathbf{v}_{1} \mathrm{O} \stackrel{\mathrm{O}}{ }{ }^{-1} \mathbf{v}_{1} \mathrm{O} \mathrm{O} \longrightarrow \mathrm{l}$	4	$\begin{aligned} \mathbf{v}_{1} & :=C \cdot \mathbf{W}^{T} \cdot \mathbf{v}_{0}+\mathbf{u}_{2} \\ & =C \cdot \mathbf{W}^{T} \cdot \mathbf{W}^{3} \cdot \mathbf{e}_{j}+\mathbf{W}^{2} \cdot \mathbf{e}_{j} \end{aligned}$
$\mathbf{v}_{2} \mathrm{O} \longleftarrow \mathrm{O} \not \mathbf{v}_{2} \mathrm{O} \rightleftarrows \mathrm{O} \not \mathbf{v}_{2}{ }^{-} \mathrm{O}_{-}^{\top} \longrightarrow j$	5	$\begin{aligned} \mathbf{v}_{2} & :=C \cdot \mathbf{W}^{T} \cdot \mathbf{v}_{1}+\mathbf{u}_{1} \\ & =C \cdot\left(\mathbf{W}^{T}\right)^{2} \cdot \mathbf{W}^{3} \cdot \mathbf{e}_{j}+\mathbf{W}^{T} \cdot \mathbf{W}^{2} \cdot \mathbf{e}_{j}+\mathbf{W} \cdot \mathbf{e}_{j} \end{aligned}$
	6	$\begin{aligned} \mathbf{v}_{3} & :=C \cdot \mathbf{W}^{T} \cdot \mathbf{v}_{2}+\mathbf{u}_{0} \\ & =C \cdot \sum_{l=0}^{3}\left(\mathbf{W}^{T}\right)^{l} \cdot \mathbf{W}^{l} \cdot \mathbf{e}_{j} \end{aligned}$

- Given two collections of nodes A and B, the term

$$
\left[\mathbf{W}^{T}\right]_{A, \star} \cdot\left(\mathbf{W}^{T}\right)^{l-1} \cdot \mathbf{W}^{l-1} \cdot[\mathbf{W}]_{\star, B}
$$

can be computed efficiently by grouping all the multiplications
a) from "left- to-right" if $|A|<|B|$;

$$
(((((\left[\mathbf{W}^{T}\right]_{A, \star} \cdot \underbrace{\left.\left.\mathbf{W}^{T}\right) \cdot \mathbf{W}^{T}\right) \cdot \ldots \cdot \mathbf{W}^{T}}_{l-1}) \cdot \underbrace{\mathbf{W}) \cdot \ldots \cdot \mathbf{W})}_{l-1} \cdot[\mathbf{W}]_{\star, B}
$$

b) from "right-to-left" if $|\mathrm{A}| \geq|\mathrm{B}|$.

$$
\left[\mathbf{W}^{T}\right]_{A, \star} \cdot(\underbrace{\mathbf{W}^{T} \cdot \ldots \cdot\left(\mathbf{W}^{T}\right.}_{l-1} \cdot(\underbrace{\mathbf{W} \cdot \ldots \cdot(\mathbf{W} \cdot(\mathbf{W}}_{l-1} \cdot[\mathbf{W}]_{\star, B})))))
$$

Minimum cost is attained when the "separated position" p is at end points

$$
\underbrace{\left(\left(\left(\left[\mathbf{W}^{T}\right]_{A, \star} \cdot \mathbf{W}^{T}\right) \cdot \mathbf{W}^{T}\right) \cdot \ldots\right)}_{p \text { terms }} \cdot \underbrace{\left(\cdot \ldots \cdot\left(\mathbf{W} \cdot\left(\mathbf{W} \cdot[\mathbf{W}]_{\star, B}\right)\right)\right)}_{(2 l-p) \text { terms }}
$$

Partial-Pairs Iteration Model

Partial-Pairs SimRank Iteration

- Given two subsets A and B of nodes in V (assume $|A|>|B|)$, the partial-pairs SimRank at iteration k can be computed as
where

$$
\left.\left[\mathbf{S}_{k}\right]_{A, B}=C \nmid \mathbf{W}^{T}\right]_{A, *} \mathbf{V}_{k 1}+\mathbf{I}_{A, B}
$$

$$
\left\{\begin{array} { l }
{ \mathbf { V } _ { 0 } = \mathbf { D } \mathbf { U } _ { k l } } \\
{ \mathbf { V } _ { l } = C \cdot \mathbf { W } ^ { T } \mathbf { V } _ { l , 1 } + \mathbf { U } _ { k l } }
\end{array} \text { and } \left\{\begin{array}{l}
\mathbf{U}_{0}=\mathbf{I}_{*, B} \\
\mathbf{U}_{l}=\mathbf{W} \mathbf{U}_{l 1}
\end{array}\right.\right.
$$

Convergence

- For every iteration $k=0,1,2, \ldots$,

$$
\left\|\left[\mathbf{S}_{k}\right]_{A, B}-[\mathbf{S}]_{A, B}\right\|_{\max } \leq C^{k+1}
$$

Eliminating Redundant Edge Access

- Unnecessary edge access in SpMxM can be pruned further.

Edge Access: $\mathbf{8 \rightarrow 2}$
Time Complexity:
$O(m \min \{|A|,|B|\})$, with $m \leq \min \left\{k|E|, \Delta^{2 k}\right\}$

Partial-pairs SimRank*

$$
\begin{aligned}
{\left[\tilde{\mathbf{S}}_{3}\right]_{\star, j} } & =(1-C) \cdot\left(\mathbf{W}^{T} \cdot \mathbf{v}_{2}+\mathbf{e}_{j}\right) \\
& =(1-C) \cdot \sum_{l=0}^{3}\left(\frac{C}{2}\right)^{l} \cdot \sum_{\alpha=0}^{l}\binom{l}{\alpha} \cdot\left(\mathbf{W}^{T}\right)^{l-\alpha} \cdot \mathbf{W}^{\alpha} \cdot \mathbf{e}_{j}
\end{aligned}
$$

α	l	update $\left\{\mathbf{u}_{2+\alpha-l}\right\}_{0<\alpha<l<2}$
0	0	$\mathbf{u}_{2}:=\mathbf{u}_{2}+\mathbf{W} \cdot \mathbf{u}_{3}=\left(\left(\frac{C}{2}\right)^{2} \mathbf{I}+\left(\frac{C}{2}\right)^{3} \mathbf{W}\right) \mathbf{e}_{j}$
	1	$\mathbf{u}_{1}:=\mathbf{u}_{1}+\mathbf{W} \cdot \mathbf{u}_{2}=\left(\left(\frac{C}{2}\right) \mathbf{I}+\left(\frac{C}{2}\right)^{2} \mathbf{W}+\left(\frac{C}{2}\right)^{3} \mathbf{W}^{2}\right) \mathbf{e}_{j}$
	2	$\mathbf{u}_{0}:=\mathbf{u}_{0}+\mathbf{W} \cdot \mathbf{u}_{1}=\left(\mathbf{I}+\left(\frac{C}{2}\right) \mathbf{W}+\left(\frac{C}{2}\right)^{2} \mathbf{W}^{2}+\left(\frac{C}{2}\right)^{3} \mathbf{W}^{3}\right) \mathbf{e}_{j}$
1	1	$\mathbf{u}_{2}:=\mathbf{u}_{2}+\mathbf{W} \cdot \mathbf{u}_{3}=\left(\left(\frac{C}{2}\right)^{2} \mathbf{I}+2\left(\frac{C}{2}\right)^{3} \mathbf{W}\right) \mathbf{e}_{j}$
	2	$\mathbf{u}_{1}:=\mathbf{u}_{1}+\mathbf{W} \cdot \mathbf{u}_{2}=\left(\left(\frac{C}{2}\right) \mathbf{I}+2\left(\frac{C}{2}\right)^{2} \mathbf{W}+3\left(\frac{C}{2}\right)^{3} \mathbf{W}^{2}\right) \mathbf{e}_{j}$
2	2	$\mathbf{u}_{2}:=\mathbf{u}_{2}+\mathbf{W} \cdot \mathbf{u}_{3}=\left(\left(\frac{C}{2}\right)^{2} \mathbf{I}+3\left(\frac{C}{2}\right)^{3} \mathbf{W}\right) \mathbf{e}_{j}$

l	update $\left\{\mathbf{v}_{l}\right\}_{0<l<2}$
0	$\mathbf{v}_{0}:=\mathbf{u}_{3}=\left(\frac{C}{2}\right)^{3} \mathbf{e}_{j}$
1	$\mathbf{v}_{1}:=\mathbf{W}^{T} \cdot \mathbf{v}_{0}+\mathbf{u}_{2}=\left(\left(\frac{C}{2}\right)^{3} \mathbf{W}^{T}+3\left(\frac{C}{2}\right)^{3} \mathbf{W}+\left(\frac{C}{2}\right)^{2} \mathbf{I}\right) \mathbf{e}_{j}$
2	$\left.\begin{array}{r}\mathbf{v}_{2}:=\mathbf{W}^{T} \cdot \mathbf{v}_{1}+\mathbf{u}_{1}=\left(\left(\frac{C}{2}\right)^{3}\left(\mathbf{W}^{T}\right)^{2}+3\left(\frac{C}{2}\right)^{3} \mathbf{W}^{T} \mathbf{W}+3\left(\frac{C}{2}\right)^{3} \mathbf{W}^{2}\right. \\ \\ \\ \\ \hline\end{array} \quad+\left(\frac{C}{2}\right)^{2} \mathbf{W}^{T}+2\left(\frac{C}{2}\right)^{2} \mathbf{W}+\left(\frac{C}{2}\right) \mathbf{I}\right) \mathbf{e}_{j}$

Experimental Settings

- Datasets

- Real-life Data:

Data	$\|G\|(\|V\|,\|E\|)$	d	Data	$\|G\|(\|V\|,\|E\|)$	d
P2P	$27.1 \mathrm{~K}(6.3 \mathrm{~K}, 20.8 \mathrm{~K})$	3.3	AM	$3.8 \mathrm{M}(403 \mathrm{~K}, 3.4 \mathrm{M})$	8.4
DBLP	$49.5 \mathrm{~K}(13.2 \mathrm{~K}, 36.3 \mathrm{~K})$	2.7	CitP	$20.3 \mathrm{M}(3.8 \mathrm{M}, 16.5 \mathrm{M})$	4.4
WebS	$2.6 \mathrm{M}(282 \mathrm{~K}, 2.3 \mathrm{M})$	8.2	SocL	$73.8 \mathrm{M}(4.8 \mathrm{M}, 69.0 \mathrm{M})$	14.2

- Synthetic Data: GraphGen generator
- Compared Algorithms

Algorithm	Description	Type
PrunPar-SR	our algorithm in Sect. 3.2, with pruning	
Par-SR	our algorithm in Sect. 3.1, without pruning	
partial		
PrunPar-SR*	variation of PrunPar-SR ported to SimRank*	

Exp-1 Computational Time

(a) Time on Real Data

(b) Vary (A, B) on DBLP

(c) Vary $|A|$ on WebS

(d) Vary k on WebS and CitP

(e) Time for SS (Single Source)

(SimRank)

(g) Ave Time per Col for All Pairs (h) Vary d on SYN for SS

Exp-3 Memory Usage

(j) Memory on Real Data

(k) Memory vs. k on SYN
(m) Memory on Real Data for All Pairs

Exp-4 Accuracy \& Exactness

(n) Accuracy on Real Data

(o) Accuracy vs. Top-K Size

- We have proposed efficient techniques for partialpairs SimRank evaluation:
- Design a "seed germination" model that can achieve $O(k|E| \min \{|A|,|B|\})$ time and $O(|E|+k|V|)$ memory
- Devise an effective backward pruning method to speed up the time to $O(m \min \{|A|,|B|\})$, with $m \leq \min \left\{k|E|, \Delta^{2 k}\right\}$
- Extend our method to other similarity measures to evaluate their partial-pairs scores

