Efficient Partial-Pairs SimRank Search on Large Networks

Weiren Yu and Julie McCann

Department of Computing Imperial College London

Outline

Overview

- Partial-Pairs SimRank search
 - Motivation
 - "High iteration coupling" problem
- Our solutions
 - "Seed germination" model
 - Backward pruning method
 - Extension to partial-pairs SimRank*
- Experimental Evaluation
- Conclusions

Overview

• SimRank in real-world applications:

Collaboration Network

SimRank Overview

- SimRank
 - An appealing similarity measure based on graph structure
 - Central idea:

Two nodes are similar if they are pointed to by similar nodes.(recursion)Each node is most similar to itself.(base case)

• Two formulations of SimRank

 $\mathbf{S} = C \cdot \mathbf{W}^T \cdot \mathbf{S} \cdot \mathbf{W} + \mathbf{D}$

Motivation

Can we evaluate <u>only</u> the similarities of the papers between DB and AI areas?

- Partial-Pairs SimRank Problem:
 - **Given** a graph G(V,E), a decay factor C, and two collections of nodes A and B in G
 - **Retrieve** partial-pairs scores $\{s(x,y)\} \forall x \in A, \forall y \in B$

Existing "high iteration coupling" barrier

High Iteration Coupling

 To retrieve a single-pair S_{k+1}(a,b), all pairs of S_k (*,*) at the previous iteration need to be determined beforehand.

Kusumoto et al.'s linearization

• Linearized SimRank model: (SIGMOD'14) $S = C \times W^T SW + D$

$$\Leftrightarrow \mathbf{S}(a,b) = \mathbf{e}_a^T \mathbf{D} \mathbf{e}_b + C \left(\mathbf{W} \mathbf{e}_a \right)^T \mathbf{D} \left(\mathbf{W} \mathbf{e}_b \right) + C^2 \left(\mathbf{W}^2 \mathbf{e}_a \right)^T \mathbf{D} \left(\mathbf{W}^2 \mathbf{e}_b \right) + \cdots$$

Complexity of Single-Pair SimRank

Computing S_k(a,b) needs O(m) space and O(k²m) time.
 (m=|E|, k = # of iterations)

If straightforwardly extended to partial-pairs case

• O(m) space and O($k^2|A||B|m$) time would be required **Can we do** it better? to compute {S_k(x,y) | $\forall x \in A, \forall b \in B$ }

"Seed germination" model

$\mathbf{S}(*,j) = \mathbf{D}\mathbf{e}_{j} + C\mathbf{W}^{T}\mathbf{D}(\mathbf{W}\mathbf{e}_{j}) + C^{2}(\mathbf{W}^{2})^{T}\mathbf{D}(\mathbf{W}^{2}\mathbf{e}_{j}) + C^{3}(\mathbf{W}^{3})^{T}\mathbf{D}(\mathbf{W}^{3}\mathbf{e}_{j}) + \cdots$

- 3^{rd} term: $\mathbf{W}^T \mathbf{W}^T \mathbf{D} \mathbf{W}_{*,i}$
- 4th term: $\mathbf{W}^T \mathbf{W}^T \mathbf{W}^T \mathbf{D} \mathbf{W} \mathbf{W}_{*,j}$

 $\mathbf{W}^{T}\mathbf{W}^{T}\mathbf{D}\mathbf{W}\mathbf{W}_{*,j}$ $\mathbf{W}^{T}\mathbf{W}^{T}\mathbf{W}^{T}\mathbf{D}\mathbf{W}\mathbf{W}\mathbf{W}_{*,j}$

Question

• How to keep "right-to-left association" while reducing duplicate computations across summands?

Our solution

"Seed germination" model to compute {s(x,y)} ∀x∈A,∀y∈B
 O(km min{|A|, |B|}) time ; O(m+kn) memory

Existing: O(k²m |A||B|) time ; O(m) memory

Main Idea

$$\mathbf{S}(*,j) = \mathbf{D}\mathbf{e}_j + C\mathbf{W}^T \mathbf{D} (\mathbf{W}\mathbf{e}_j) + C^2 (\mathbf{W}^2)^T \mathbf{D} (\mathbf{W}^2\mathbf{e}_j) + \cdots$$

• *l*-th term, $(\mathbf{W}^l)^T \mathbf{D}(\mathbf{W}^l \mathbf{e}_j)$, can tally the paths starting from node j: $\underbrace{l \ length}_{\mathbf{x} \leftarrow \circ \leftarrow \cdots \leftarrow \circ \leftarrow} \circ \underbrace{\stackrel{l-1 \ length}{\rightarrow \circ \rightarrow \cdots \rightarrow}}_{\mathbf{W}^{l-1}} \underbrace{\stackrel{\circ \rightarrow j}{\underbrace{\mathbf{w}}_{\circ,j}}}_{[\mathbf{W}]_{\circ,j}}$

Phase 1

 merging the paths that are counted by *l*-th summands into a compact tree:

Main idea (Cont.)

Phase 2

• "Seed germination" search over the compact tree:

Separated Position

Given two collections of nodes A and B, the term
 [W^T]_{A,*} · (W^T)^{l-1} · W^{l-1} · [W]_{*,B}

 can be computed efficiently by grouping all the multiplications
 a) from "left- to-right" if |A| < |B|;</p>

$$\left(\left(\left(\left(\left(\left[\mathbf{W}^{T}\right]_{A,\star} \cdot \underbrace{\mathbf{W}^{T}\right) \cdot \mathbf{W}^{T}\right) \cdot \ldots \cdot \mathbf{W}^{T}}_{l-1}\right) \cdot \underbrace{\mathbf{W}\right) \cdot \ldots \cdot \mathbf{W}}_{l-1}\right) \cdot \underbrace{\mathbf{W}}_{l-1} \cdot \left[\mathbf{W}\right]_{\star,B}$$

b) from "right-to-left" if $|A| \ge |B|$.

$$[\mathbf{W}^{T}]_{A,\star} \cdot \big(\underbrace{\mathbf{W}^{T} \cdot \ldots \cdot \big(\mathbf{W}^{T}}_{l-1} \cdot \big(\underbrace{\mathbf{W} \cdot \ldots \cdot \big(\mathbf{W} \cdot \big(\mathbf{W} \cdot \big(\mathbf{W}]_{\star,B}\big)\big)\big)\big)}_{l-1}\big)$$

Minimum cost is attained when the "separated position" *p* is at end points

$$\underbrace{\left(\left(\left([\mathbf{W}^{T}]_{A,\star}\cdot\mathbf{W}^{T}\right)\cdot\mathbf{W}^{T}\right)\cdot\ldots\right)}_{p \text{ terms}}\cdot\underbrace{\left(\cdots\cdot\left(\mathbf{W}\cdot\left(\mathbf{W}\cdot\left[\mathbf{W}\right]_{\star,B}\right)\right)\right)}_{(2l-p) \text{ terms}}$$

Partial-Pairs Iteration Model

Partial-Pairs SimRank Iteration

 Given two subsets A and B of nodes in V (assume |A|>|B|), the partial-pairs SimRank at iteration k can be computed as

$$[\mathbf{S}_k]_{A,B} = C \times [\mathbf{W}^T]_{A,*} \mathbf{V}_{k-1} + \mathbf{I}_{A,B}$$

where

$$\begin{cases} \mathbf{V}_0 = \mathbf{D}\mathbf{U}_{k-l} \\ \mathbf{V}_l = \mathbf{C} \cdot \mathbf{W}^T \mathbf{V}_{l-1} + \mathbf{U}_{k-l} \end{cases} \text{ and } \begin{cases} \mathbf{U}_0 = \mathbf{I}_{*,B} \\ \mathbf{U}_l = \mathbf{W}\mathbf{U}_{l-1} \end{cases}$$

Convergence

• For every iteration k=0,1,2, ...,

$$\| [\mathbf{S}_k]_{A,B} - [\mathbf{S}]_{A,B} \|_{\max} \le C^{k+1}$$

Eliminating Redundant Edge Access

• Unnecessary edge access in SpMxM can be pruned further.

Edge Access: $8 \rightarrow 2$

Time Complexity: $O(m \min\{|A|, |B|\})$, with $m \le \min\{k|E|, \Delta^{2k}\}$

Partial-pairs SimRank*

$$\begin{split} \left[\tilde{\mathbf{S}}_{3} \right]_{\star,j} &= (1 - C) \cdot \left(\mathbf{W}^{T} \cdot \mathbf{v}_{2} + \mathbf{e}_{j} \right) \\ &= (1 - C) \cdot \sum_{l=0}^{3} \left(\frac{C}{2} \right)^{l} \cdot \sum_{\alpha=0}^{l} {l \choose \alpha} \cdot \left(\mathbf{W}^{T} \right)^{l-\alpha} \cdot \mathbf{W}^{\alpha} \cdot \mathbf{e}_{j} \end{split}$$

α	l	$\textit{update } \left\{ \mathbf{u}_{2+\alpha-l} \right\}_{0 < \alpha < l < 2}$
0	0	$\mathbf{u}_2 := \mathbf{u}_2 + \mathbf{W} \cdot \mathbf{u}_3 = \left(\left(rac{C}{2} ight)^2 \mathbf{I} + \left(rac{C}{2} ight)^3 \mathbf{W} ight) \mathbf{e}_j$
0	1	$\mathbf{u}_1 := \mathbf{u}_1 + \mathbf{W} \cdot \mathbf{u}_2 = \left(\left(rac{C}{2} ight) \mathbf{I} + \left(rac{C}{2} ight)^2 \mathbf{W} + \left(rac{C}{2} ight)^3 \mathbf{W}^2 ight) \mathbf{e}_j$
	2	$\mathbf{u}_0 := \mathbf{u}_0 + \mathbf{W} \cdot \mathbf{u}_1 = \left(\mathbf{I} + \left(rac{C}{2} ight) \mathbf{W} + \left(rac{C}{2} ight)^2 \mathbf{W}^2 + \left(rac{C}{2} ight)^3 \mathbf{W}^3 ight) \mathbf{e}_j$
1	1	$\mathbf{u}_2 := \mathbf{u}_2 + \mathbf{W} \cdot \mathbf{u}_3 = \left(\left(rac{C}{2} ight)^2 \mathbf{I} + 2 \left(rac{C}{2} ight)^3 \mathbf{W} ight) \mathbf{e}_j$
	2	$\mathbf{u}_1 := \mathbf{u}_1 + \mathbf{W} \cdot \mathbf{u}_2 = \left(\left(rac{C}{2} ight) \mathbf{I} + 2 \left(rac{C}{2} ight)^2 \mathbf{W} + 3 \left(rac{C}{2} ight)^3 \mathbf{W}^2 ight) \mathbf{e}_j$
2	2	$\mathbf{u}_2 := \mathbf{u}_2 + \mathbf{W} \cdot \mathbf{u}_3 = \left(\left(rac{C}{2} ight)^2 \mathbf{I} + 3 \left(rac{C}{2} ight)^3 \mathbf{W} ight) \mathbf{e}_j$

$$\begin{array}{c|c|c|c|c|c|c|}
l & update \left\{\mathbf{v}_{l}\right\}_{0 \leq l \leq 2} \\
\hline 0 & \mathbf{v}_{0} \coloneqq \mathbf{u}_{3} = \left(\frac{C}{2}\right)^{3} \mathbf{e}_{j} \\
\hline 1 & \mathbf{v}_{1} \coloneqq \mathbf{W}^{T} \cdot \mathbf{v}_{0} + \mathbf{u}_{2} = \left(\left(\frac{C}{2}\right)^{3} \mathbf{W}^{T} + 3\left(\frac{C}{2}\right)^{3} \mathbf{W} + \left(\frac{C}{2}\right)^{2} \mathbf{I}\right) \mathbf{e}_{j} \\
\hline 2 & \mathbf{v}_{2} \coloneqq \mathbf{W}^{T} \cdot \mathbf{v}_{1} + \mathbf{u}_{1} = \left(\left(\frac{C}{2}\right)^{3} (\mathbf{W}^{T})^{2} + 3\left(\frac{C}{2}\right)^{3} \mathbf{W}^{T} \mathbf{W} + 3\left(\frac{C}{2}\right)^{3} \mathbf{W}^{2} \\
& \quad + \left(\frac{C}{2}\right)^{2} \mathbf{W}^{T} + 2\left(\frac{C}{2}\right)^{2} \mathbf{W} + \left(\frac{C}{2}\right) \mathbf{I}\right) \mathbf{e}_{j}
\end{array}$$

Experimental Settings

- Datasets
 - Real-life Data:

Data	$ G \;(V , E)$	d	Data	$ G \;(V , E)$	d
P2P	27.1K (6.3K, 20.8K)	3.3	AM	3.8M (403K, 3.4M)	8.4
DBLP	49.5K (13.2K, 36.3K)	2.7	CitP	20.3M ($3.8M$, $16.5M$)	4.4
WebS	2.6M (282K, 2.3M)	8.2	SocL	73.8M (4.8M, 69.0M)	14.2

- Synthetic Data: GraphGen generator
- Compared Algorithms

Algorithm	Description	Type
PrunPar-SR	our algorithm in Sect. 3.2, with pruning	
Par-SR	our algorithm in Sect. 3.1, without pruning	partial
PrunPar-SR*	variation of PrunPar-SR ported to SimRank*	pairs
SJR	SimRank-based similarity join [20]	
TopSim-SM	top-K random walk based SimRank [10]	single
SimMat	top-K matrix-based SimRank [4]	source
Psum	partial sum memoization SimRank [13]	
OIP	fine-grained memoization SimRank [16]	all
Psum-SR*	partial sum memoization SimRank* [18]	pairs
Memo-SR*	edge concentration SimRank* [18]	

Exp-1 Computational Time

Exp-2 Time w.r.t. query size, k, d

(g) Ave Time per Col for All Pairs (h) Vary d on SYN for SS

Exp-3 Memory Usage

Exp-4 Accuracy & Exactness

In Conclusion

- We have proposed efficient techniques for partialpairs SimRank evaluation:
 - Design a "seed germination" model that can achieve
 O(k|E| min{|A|, |B|}) time and O(|E|+k|V|) memory
 - Devise an effective backward pruning method to speed up the time to $O(m \min\{|A|, |B|\})$, with $m \le \min\{k|E|, \Delta^{2k}\}$
 - Extend our method to other similarity measures to evaluate their partial-pairs scores

Thank you!

0

1

-