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Taming Computational Complexity :

Efficient and Parallel SimRank
Optimizations on Undirected Graphs
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The similarity in a domain can be modeled as graphs.
[ verticesA objects, edges A relationships |

SimRank is an important similarity measure which exploits
the relationships between vertices on web graphs.

Basic intuition:

Two objects are similar if their neighbors are similar.
(the recursive definition)

Objects are maximally similar to themselves.
(the base case )




Existing Similarity measures

Textual-Content Similarity (text-based)

Vector-cosine similarity, Pearson correlation in IR

Structural-Context Similarity  (link-based)

PageRank

AOne pageds authority is decide

SimRank

A Two objects are similar if they are referenced by similar objects.
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G vs. G2 Model

Basic Graph Model: G = (V, E)
For each vertex v V , we define:

N(v): all the neighbors of vertex v

N,(v): individual member of N(v)
Node-pair Graph: G? = (V?, E?)
I (a,b)r VZ?represents a pair (a, b) of nodes in G.

I &ay, by), (a,, by)ar E? denotes the edges 6a,, a,aand ab,, b, aexist in G.

G g -%
pm@’pb'mm ,_pri&sht I SimRank propagating similarity
: 4; / \ / from node to node in G is
productA.aspx % ooy 23— s associated with the propagation
p d@up D) ’ from pair to pair in G2.
a ‘e :
(a) | ()




Definition 1 (SimRank similarity)

Lets:V2Y [ 0, 1] be a s iZmi
Aif a=b, A s(ab)=1
Aif N(@ orN(b)=r,A s(a,b)=0

A otherwise:

o han
(40~ g & A4 1D

where c is a decay factor btw. 0 & 1

Similarity btw. a & b is the average similarity
btw. neighbors of a and neighbors of b.

| ar | t



Existing Techniques for SimRank Optimization

Deterministic Method [ vLDB J. 610, EDBT 061C

computing s(A, A) iteratively fo
INa) [N(B)
(k+1) _ C : = (K)
e Nayeng & &5 (NN

Advantage: accurate

Disadvantage: high time complexity (O(Kn3) in the worse case)

Probabilistic Method [ WWW 605, SIGIR 006]

( estimating s(A, A) alrhastical
s(a,b) = E (c™@b)) | where T (a,b) : the first meeting time btw. a & b

Advantage: scalable (linear time)

Disadvantage: low similarity quality



Existing Techniques for @
SimRank Deterministic Computation

Jeh and Widom yrst proposedwwaw 502

taking O(Kn#) worst-case time.

Li et al. proposed a non-iterative approximate algorithm, [ EDBT 61

yielding O(r*n?) time for dynamic information networks.

Lizorkin et al. used a partial sum function, [ VLDB 061

reducing the time to O(Kn?3) in the worst case.

Yu et al. showed a fast matrix multiplication for digraph, [ APWEB &6

requiring O(Kmin (mn, n ), where 2<r<log,?7.



The time required for SimRank deterministic algorithms
IS still about cubic in the number of vertices for each

iteration, which is costly over large graphs.

As for SimRank deterministic computation, parallel

| mpl ementation has not been

literature yet.



We present an efficient spectral decomposition based algorithm
for SimRank computation over undirected graphs, which reduces

the time complexity from O(Kn3) to O(n® + Kn?).

We develop a block partition technique in combination with the
Parallel Linear Algebra Package (PLAPACK) to parallelize

SimRank algorithm on distributed memory multi-processors.

We perform extensive evaluations of our proposed methods

demonstrating the efficiency and effectiveness of our algorithms.
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3.1 AUG-SImRank




Definition 1. (Graph Spectrum) Given a web graph G, let Qg
denote its transition probability matrix. The spectrum of G is

defined to be the set of the eigenvalues of Q. In symbols,

g(G)={2eC|Qg-u=A-u, VYu#0}

8 0 0110 a -1
G J 00000 =
. ® 1 0100 @& 0.338 +0.489p
directed =z 2 s(G)=
pcop]c.hlm privacy.htm ra h Qg @ 0 % 0O 0 % ( ) 20338-04892
@—’Q) grap @ 0000 1 &0.338+ 0.489P
Vd / \ ® 00100 £0.338 0.4890
" index.htm , .
?) — @ $> 30 1 04110 & -1
productA.aspx \ aboy(.htm o<} 1 s &)
\ i 012000 1
\\ / - % 1 8 100 20.1667
\@-) undirected Q ,=a& 2 . 7 s(9)
6 = a4 01-0—-0-1 = 0.1667
productB.aspx g p & 0000 % ;05
é% 001210 &-05



For a digraph G,

some el ement s icompleXnGmbersai ght be

For an undirected graph G,

all el ement s leainumdeS) must be

Theorem 1. Given an undirected graph G, all the eigenvalues of
its transition probability matrix Qg are real numbers associated

with a complete set of orthonormal eigenvectors.



Theorem 2. Foran undirectedgr aph G, | éteaQ = UL
complete spectral decomposition of Q, where

U is an orthogonal matrix with real entities whose columns are
eigenvectors of Q,

S I s a real di agonal matri x whose
corresponding eigenvalues.

Then we can construct the following iteration:

] I, R=0
S = { ({p - d’,-‘_'ag (A:J -d’iag(ﬁleﬂ O ék-—l) VIp, k=1,2,---

And SimRank similarity can be thereby obtained as follows:

‘Sk::IJ-ék-Ijl‘




Key Observations

0. SimRank Matrix Representation

SO @b ={§azp

I:> s =1,
1, N N a=b: { g(k) — (C‘ Q- g(k-1) , QT) \/ I |
(@b = voiver X X 7Y (Ni@),N; (), N (@), N (b) £ &
0. = - otherwise. ! !
1. Spectral Predecomposition  [Theorem 1] g(p3) | Q=U-A-U'
2. Iterative Element-wise Matrix Multiplication ‘ ‘
PP ———————————————_—
: S, = ({C diag (A) - diag(A) } ng_l) VI, <:> S = (c A-Sp_4 A) VIn } :
: !
I |
L 1




Key Observations (cont.) @

Noticethat s . S Ls =[ di &aJd) S(issour trick todeduce ( s
the time complexity from O(n3) to O(n?) per iteration.

A1 .. 0 S11 812 ... S1n A0 ... 0
0O Xo ... O S21 S22 ... San 0O Xo... O
A-S- A= - -
[
A12 A2 L A1An $11 812 ... Sin\ | A12:811 A1A2-812 ... A1An - 81 |
Ao A1 )sgg co. A2AR 821 822 ... 82n = A2l - 891 )xgg © 829 ... A2Ap -804 | |
AnAl Anda .. A2 Snl Sn2 --- Snn AnAL - Sn1 AnA2 - Sn2 . An2 - Snn
[
- /A1 T 511 812 ... Sin
. _ - A2 $21 822 ... S2n
[d-za,g (A) - diag(A) } ®S = At A2 - A) L O
| | )\'n il sr,:bl 8?:3,2 s?:m




AUG-SimRank Algorithm

Theorem 3. For undirected graphs, SimRank can be performed for K
iterations in O(n® + Kn 2) time in the worst case, where n is the

number of vertices, and n| K.

Algorithm 1: AUG-SimRank: Accelerative SimRank for Undirected Graphs
Input :adjacency matrix P = (p; ;) € R™*", decay factor ¢, accuracy e
Output: SimRank matrix S = (s; ;) € [0, 1]™*", iteration number k

1 begin

2 Calculate transition probability matrix Q according to q; ; < p;.;/> I, Pj.i

3 Decompose Q — U - A - U, vielding U, orthogonal, and A, diagonal

4 Initialize Sp « I,JM <« ¢ diag (A) - a’iag(A)T k0

5 repeat 7% each iteration takes O(n?) time =/

6

7

8

9

Setk+ k+1

Update Sy «+ (M © ék_l) vV In
until the auxiliary matrix S} converges with an error of e
Calculate SimRank matrix Sy «+— U - gk Ut
10 Return S, k

Preconditioning techniqgues may be adbpt ec
Once computed, this rank-1 matrix is memorized and is therefore not recomputed
when subsequently required.
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3.2 PAUG-SImRank




To parallelize the AUG-SimRank algorithm, we utilize PLAPACK in

combination with matrix partition techniques on distributed memory

architectures.

PLAPACK is a parallel ARPACK version based on MPI (Message

Passing Interface) for constructing parallel linear algebra libraries.
It provides a high-level object-oriented programming interface.

The coding of parallel linear algebra routines becomes a

straightforward translation of algorithms.




In the spectral predecomposition phase,
Use a PLAPACKeigen-s ol ver t o decomp'dse
Partition the TYowdsg@EtbW):dig@g(s
In the iterative element-wise matrix multiplication phase,
Initialize the upper triangular partof MOY ¢ L ditg (s

Partition the similarity matrix as

L) gy _ (1)~ &(1)
(bk ‘ ‘bﬁ.‘. ) o (I\'I = bﬁ.‘.—'_

‘M{.\"} 5 5;1}_) v (T®)] . 1N

Calculate each partition in parallel as

Jo (1_..1-;:ﬂ 5 5;1) VIO (Y=l N, kE=12--)



In the SimRank matrix computation phase,

parallel computation of S, can be performed by the following substeps:

A symmetric matrix-matrix multiplication

can be parallelized in PLAPACK.

The upper (or lower) triangular part of S, can be updated as

hence, S, can be computed as



