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P-Rank Overview 

• Information Network (IN) 
– Physical / Conceptual entities  vertices 

– Interconnected relationships  edges 

• INs form a critical component of 

modern information infrastructure 
– highway or urban transportation networks 

– research collaboration and publication networks 

– Biological networks 

– social networks 
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P-Rank Overview (cont.) 

• P(enetrating)-Rank similarity 

– A new promising structural measure (CIKM’09) 

– An extension of SimRank metrics 

• Basic Philosophy 

– Two entities are similar, if 

• they are referenced by similar entities 

• they reference similar entities 

• Mathematical  Formula 
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P-Rank Overview (cont.) 

• P-Rank Computation 

– Naïve way: a fixed-point iterative paradigm 

 

 

 

 

• Iterative P-Rank Properties 

– Symmetry:  s(k) (a,b) = s(k) (b,a) 

– Monotonicity:  0 ≤ s(k) (a,b) ≤ s(k+1) (a,b) ≤ 1 

– Existence & Uniqueness  (0<c<1) 

5 



Motivations 

• Despite the convergence of P-Rank 

iteration, a precise P-Rank accuracy 

estimation is not provided. 

• P-Rank condition number is not 

studied, which can measure how much 

networks may change in proportion to 

small perturbation in P-Rank scoring 

results. 

• No efficient algorithm is designed 

specially for computing P-Rank on 

undirected graphs. 
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Contributions 

• We provide an accuracy estimation of the 

P-Rank convergence rate with a 

prescribed iterative error in the fixed 

number of iterations. 

• We show that P-Rank is well-conditioned 

for small choices of the damping factors, 

by providing a tight stability bound for κ∞. 

• We propose a novel non-iterative O(n3)-

time algorithm (ASAP) for efficiently 

computing similarities over undirected 

graphs. 
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P-Rank accuracy estimation 

• P-Rank iterative paradigm: 

 

 

 

 

 

• P-Rank accuracy estimate problem: 

Given a network G, for each iteration k = 1, 2, … ,  

it is to find an upper bound ϵk s.t. 

|s(k) (u, v) − s (u, v) | ≤ ϵk    

for any vertices u and v in G. 
9 



P-Rank accuracy estimation 

• Theorem 1. The P-Rank accuracy estimate 

problem has a tight upper bound 

ϵk = (λCin + (1 − λ)Cout)
k+1 

 such that  ∀ k=0,1,…,  ∀ u, v ∈ V 

|s(k) (u, v) − s(u,v) | ≤ ϵk. 

 

• Theorem 1 provides an a-priori estimate for 

the gap between iterative and exact P-Rank 

similarity: 

k = ⌈log ϵ / log (λ·Cin + (1−λ)·Cout)⌉ 
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P-Rank accuracy estimation 

• Example: 

Setting  Cin = 0.6,Cout = 0.4, λ = 0.3, k = 5 

produces the high accuracy : 

ϵk = (0.3×0.6+(1−0.3)×0.4) 5+1 = 0.0095. 

 

• The “=” in Theorem 1 can be attainable : 

s(0) (u,v) =0,  

 ∀ k=1,2… 

s(k) (u,v) = λCin+(1−λ)Cout. 

 Hence, for k=0, 

|s(u,v)−s(k)(u,v)| = (λCin+(1−λ)Cout) 
0+1 
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Stability Analysis of P-Rank 

• P-Rank stability: 

– how the slight perturbation of the network 

affects P-Rank similarity scores s(·, ·). 

 

• P-Rank Matrix Representation 
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Stability Analysis of P-Rank 

• P-Rank conditional number : 

Let  

 

 

P-Rank conditional number of G is defined as 

 

 

 

• κ∞(G) measures how stable the P-Rank 

similarity score is to the changes in the link 

structure of the network G. 

 (e.g., inserting or deleting vertices or edges) 
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Stability Analysis of P-Rank 

• Theorem 2. Given a network G, ∀ λ∈[0,1] 

and ∀ Cin, Cout ∈ (0,1), P-Rank conditional 

number has the following tight bound: 

 

 

 

• Small choices of κ∞ (G) would make P-

Rank stable (well-conditioned). 
  (i.e., a small change ∆M in link structure to M may not 

cause a large change ∆s in P-Rank scores). 
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Stability Analysis of P-Rank 

• The weighting factor λ affects κ∞ (G) as follows: 

 

 

– when Cin > Cout and λ ↗, 

a small change in G produces a large change in P-

Rank, which makes P-Rank ill-conditioned. 

– when Cin < Cout and λ ↗, 

a small change in G produces a small change in P-

Rank, which makes P-Rank well-conditioned. 

– when Cin = Cou, κ ∞ (G) is independent of λ. 
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Stability Analysis of P-Rank 

• The upper bound of κ∞(G) is attainable iif 

 each vertex in G has at least one in-degree 

and one out-degree. 

  

 

Example: 

 

κ∞(G) = || M ||∞ · || M-1 || ∞ = 1.7 × 3.333 = 5.667; 
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Estimating P-Rank On Undirected Graphs 

• Theorem 3. For undirected networks, the P-

Rank similarity problem  

 

 can be solvable in O(n3) worst-case time. 

 

Comparison: 

– O(Kn4) time [CIKM 09’] via naive iterative fashion 

– O(Kn3) time  [EDBT 10’] via matrix iteration 

– O(n3) time [this work] via non-iterative paradigm 
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Estimating P-Rank On Undirected Graphs 

• The key idea in our optimization is to maximally 

use the adjacency matrix A : 

– characterizing S as a power series form 

 

 

 A = AT for undirected graphs, implying ∃ D s.t. 

Q = P = D · A 

– diagonalizing A into Λ to compute Ak 

 

Hence, calculating f(Ak) reduces to computing the 

function on each eigenvalue for A. 
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Estimating P-Rank On Undirected Graphs 

• Proposition. For the undirected network G 

with n vertices, let 

 

 and  

[U, Λ] = eig (D1/2AD1/2) 

 Then, S′ can be computed as 

 

 where 
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Estimating P-Rank On Undirected Graphs 

O(m) 
O(n2) 

O(n2) 

O(n3) 

O(n3+n2) 

O(n2) 

O(n3) 

The total time complexity of ASAP is bounded by O(n3). 
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Estimating P-Rank On Undirected Graphs 

• Running Example for ASAP: 

Consider an undirected G2 with  

 vertex set V = V1∪V2 = {a, c, d}∪{b} 

 edge set E = {(a, c), (a, d), (c, d), (b, c)}.  
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Experimental Evaluation 

• Dataset 

Real-life.    

DBLP (co-authorships among scientists from 1998 to 2007) 

The papers published on 6 conferences are picked up  

(“ICDE”,“VLDB”, “SIGMOD”,“WWW”, “SIGIR”, “KDD”).  

Synthetic. 

  Using a C++ boost generator to produce graphs 

  with vertices ranging from 100K to 1M  

       and edges being randomly chosen 

Algorithms.  

(i) Iter: conventional P-Rank algorithm [CIKM ’09]  

 with the radius-based pruning technique 

(ii)Memo:  the memoization-based algorithm [VLDB J. ’10] 

(iii)AUG : SimRank algorithm [WAIM ’10] on undirected graphs. 
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Experimental Results 

• P-Rank Accuracy 

For each fixed λ, the downward lines for P-Rank iterations reveal an 

exponential accuracy as k increases, as expected in Theorem 1.  
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Experimental Results 

• P-Rank Accuracy 

 

When 0 < λ ≤ 1, k shows a general increased tendency as Cin is growing. This 

tells us that small choices of damping factors may reduce the number of 

iterations required for a fixed accuracy. 
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Experimental Results 

• P-Rank Accuracy 

 

The residual becomes huge only when Cin and Cout are both increasing to 1; and 

the iterative P-Rank is accurate when Cin and Cout are less than 0.6. This explains 

why small choices of damping factors are suggested in P-Rank iteration. 28 



Experimental Results 

• P-Rank Stability 

Increasing λ induces a large P-Rank conditional number when Cin > 0.6. 

When Cin < 0.6, κ∞(G) is decreased as λ grows. 
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Experimental Results 

• P-Rank Stability 

When λ = 0, the curve approaches to a horizontal line. These indicate that 

varying Cin as λ = 0 has no effect on the stability κ∞ of P-Rank, for in this case 

only the contribution of out-links is considered for computing P-Rank similarity. 30 



Experimental Results 

• P-Rank Stability 

 

The result demonstrates that P-Rank is comparatively stable when both Cin and Cout are 

small (less than 0.6). When Cin and Cout  1, P-Rank is ill-conditioned since small 

perturbations in similarity computation may cause P-Rank scores drastically altered. 31 



Experimental Results 

• P-Rank Time Efficiency 

 

In all cases, ASAP performed the best, by taking advantage of its non-

iterative paradigm. 
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Experimental Results 

• P-Rank Time Efficiency 

 

ASAP runs approx. 3x faster than AUG because after eigen-decomposition, AUG still 

requires extra iterations to be performed in the small eigen-subspace, which takes a 

significant amount of time, whereas ASAP can straightforwardly compute similarities 

in terms of eigenvectors with no need for iterations, and therefore takes less time. 33 



Conclusions 

• An accuracy estimate has been proposed for the P-

Rank iterative paradigm, by finding out the exact 

number of iterations needed to attain a given 

accuracy.  

 

• The notion of P-Rank conditional number was 

introduced based on P-Rank matrix representation. 

A tight bound of P-Rank conditional number was 

provided to show how the weighting factor and the 

damping factors affect the P-Rank stability. 

 

• An O(n3)-time algorithm has been devised to deal 

with the P-Rank optimization problem over 

undirected networks. 
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Q / A ? 
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