

東美大渟

Optimization Techniques for Structural Similarity Computation on Large Networks

Presented by
Weiren Yu
School of Computer Science \＆Engineering，
The University of New South Wales

1 Background

C) 2 Aims and Objectives

514)

[草

0
 3 Challenges

4 State of the Arts

(5 Main Contributions

1 Background

* Many applications require a measure of similarity between objects.

1 Background

Text-based Similarity (content)

- Cosine similarity $\sigma_{\text {cosine }}=\frac{\left|\Gamma_{i} \cap \Gamma_{j}\right|}{\sqrt{\left|\Gamma_{i}\right|\left|\Gamma_{j}\right|}} \quad$ Jaccard index $\sigma_{\text {aseard }}=\frac{\left|\Gamma_{i} \cap \Gamma_{j}\right|}{\left|\Gamma_{i} \cup \Gamma_{j}\right|}$
- Link-based Similarity (structure)
- PageRank [Larry Page, Google Tech. Rep.' 99]
- One page's authority is decided by its neighbors' authorities.
- SimRank
[Jeh and Widom, SIGKDD'02]
- Penetrating-Rank [Zhao et. al, CIKM'09]
- Two objects are similar if they are referenced by similar objects.
- SimFusion
[Xi et. al, SIGIR'05]
- The similarity between two data objects is reinforced by the similarity of their related objects.

1 Background

＊The success of Google PageRank has demystified the importance of link－based similarity measure．

```
A space and time efficient algorithm for SimRank computation
dl.acm.org/citation.cfm?id=2158804 - 翻译此页
作者:WYu-2012-被引用次数: 6-相关文章
A space and time efficient algorithm for SimRank computation, 2012 Article.
Bibliometrics Data Bibliometrics. - Downloads (6 Weeks): n/a - Downloads (12 ...
```

Merits of link－based similarity measure：
＊Applicable to any domain with object－to－object relationships （It is a graph－theoretic model that reflects a better human intuition with a solid rationale．）
－No requirement of extra human－built hierarchies （It purely hinges on the structure of linkage patterns．）
－Possessing good expansibility
（It can be combined with other domain－specific measures．）

2 Aims and Objectives

* Huge networks have been mounting up, calling for new techniques to efficiently handle similarity computations on large-scale graphs.
* the increasing scale of the Web
* the ubiquity of the Internet

High CPU time !! High RAM space !!

* My research topic aims to develop, analyze, implement and evaluate novel approaches to optimize link-based similarity computation.
* speed up the computations of the existing similarity models (i.e., SimRank, SimFusion, P-Rank)
* improve existing models for effectively measuring similarity
* develop a user-friendly system prototype for evaluation

3 Challenges

Focus on optimizing SimRank, SimFusion, P-Rank:
To reduce the complexity of the best-known algorithms

- computational time
memory space
convergence rate
efficiency
scalability
To accurately compute the similarity scores
accuracy estimate
stability \& sensitivity analysis
effectiveness
To extend the existing models static graphs \rightarrow dynamic networks single machine \rightarrow parallel version

SimRank Measure

Given a network $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, and a link-based scoring function $\mathrm{s}: \mathrm{V} \times \mathrm{V} \rightarrow[0,1]$, it is to efficiently compute similarity scores of all vertex-pairs in G .

- SimRank Similarity [SIGKDD'02]

$$
\begin{aligned}
& s(a, a)=1, \\
& s(a, b)=0, \quad \text { if } l(a)=\varnothing \text { or } l(b)=\emptyset,
\end{aligned}
$$

High complexity !!! $O\left(\mathrm{Kn}^{4}\right)$ time $O\left(n^{2}\right)$ space
otherwise:

$$
s(a, b)=\frac{c}{|I(a)| \cdot|I(b)|} \cdot \sum_{i=1}^{|(a)||(b)|} \sum_{j=1} s\left(I_{i}(a), I_{j}(b)\right)
$$

Setting $c=0.8$, we compute $s(2,3)$ and $s(4,5)$.

$$
\begin{aligned}
& \because \quad I(2)=I(3)=\{1\}, \quad I(4)=\{2\}, \quad I(5)=\{3\} . \\
& \therefore \\
& \therefore s(2,3)=\frac{0.8}{1 \times 1} \times s(1,1)=0.8 \\
& \quad s(4,5)=\frac{0.8}{1 \times 1} \times s(2,3)=0.64
\end{aligned}
$$

4 State of the Arts : Related Work

Deterministic Method [SIGKDD'02, VLDBJ'10]
(following the fixed-point iteration to compute similarity)
\checkmark Advantage: accuracy guarantee
\checkmark Disadvantage: high time and space (cubic time and quadratic space)

- Probabilistic Method [EDBT'05, TKDE'05]
(utilizing the Monte-Carlo sampling approach to estimate similarity)

$$
s(a, b)=E\left(c^{\tau(a, b)}\right)
$$

\checkmark Advantage: scalability on large graphs (linear time and space)
\checkmark Disadvantage: low estimation quality

4 State of the Arts : Related Work

[Lizorkin et al., VLDB J.'10]

- Main Contributions.
* A precise accuracy estimate is presented for SimRank iteration.

$$
\left|s^{(k)}(a, b)-s(a, b)\right| \leq c^{k+1}
$$

* A partial sum function is utilized to improve SimRank computational complexity from $O\left(k n^{4}\right)$ to $O\left(k n^{3}\right)$.

$$
s^{(k+1)}(a, b)=\frac{c}{|I(a)| \cdot|(b)|} \cdot \sum_{i=1}^{|(a)||(b)|} \underbrace{\sum_{j=1}^{(k)} s^{(k)}\left(I_{i}(a), I_{j}(b)\right)}_{=\operatorname{Partital}^{(k)} I_{i(a)}^{(k)}\left(I_{j}(b)\right)}
$$

A threshold sieving heuristic is introduced and its accuracy estimation is given that further improves the efficiency.

5.1 Contributions: SimRank

- Motivation:

* The high complexity of time and space is still a mighty obstacle in using SimRank on large networks.

Paper	Computational Time	Space	Accuracy
SIGKDD '02	$\mathcal{O}\left(K n^{4}\right)$	$\mathcal{O}\left(n^{2}\right)$	not given
vLDB J. '10	$\mathcal{O}\left(K n^{3}\right)$	$\mathcal{O}\left(n^{2}\right)$	c^{K}
EDBT '10	$\mathcal{O}\left(\left(r^{3}+1\right) r n^{2}+r^{4}\right)$	$\mathcal{O}\left(r^{2} n^{2}+r^{4}\right)$	not given
future work	$\mathcal{O}\left(r m+r^{2} n+K r^{3}\right)$	$\mathcal{O}(r n)$	$c^{2^{K}}+\frac{1}{\sqrt{n}}$

* SimRank computation is iterative in nature, but no prior work has studied the stability of SimRank, which can
(i) gauge the sensitivity of similarity to the perturbations in the link structure (e.g., by adding or removing edges)
(ii) imply whether large amounts of accumulated round-off errors will run the risk of producing nonsensical similarity.

5.1 Contributions: SimRank

* Main Contributions:

convergence
 rate

A "squaring memoization" technique is devised for SimRank computation, which cuts down the number of iterations exponentially for a given accuracy.

An order-r (<<n) Krylov subspace is deployed for speeding up SimRank computation in $\mathcal{O}\left(r m+r^{2} n+K^{\prime} r^{3}\right)$ time and $\mathcal{O}(r n)$ space up to an additive error of $\left(c^{2^{K^{\prime}}}+\frac{1}{\sqrt{n}}\right)$ for any vertex-pair.

A notion of SimRank condition number is introduced, and a tight bound of this number is provided, aiming at analyzing similarity stability.

1) Speed up Convergence Rate

Naïve SimRank Iterative Paradigm. [Lizorkin et al. , VLDB J.'10]

$$
\left\{\begin{array}{l}
\mathbf{S}^{(0)}=(1-c) \cdot \mathbf{I}_{n}, \\
\mathbf{S}^{(k+1)}=c \cdot \mathbf{Q} \cdot \mathbf{S}^{(k)} \cdot \mathbf{Q}^{T}+(1-c) \cdot \mathbf{I}_{n} .
\end{array} \quad\left\|\mathbf{S}^{(k)}-\mathbf{S}\right\|_{\max } \leq c^{k+1}\right.
$$

"Squaring Memoization" Paradigm.

$$
\left\{\begin{array}{l}
\mathbf{S}_{\langle 2\rangle}^{(0)}=(1-c) \cdot \mathbf{I}_{n}, \\
\mathbf{S}_{\langle 2\rangle}^{(k+1)}=\mathbf{S}_{\langle 2\rangle}^{(k)}+c^{2^{k}} \cdot \mathbf{Q}^{2^{k}} \cdot \mathbf{S}_{\langle 2\rangle}^{(k)} \cdot\left(\mathbf{Q}^{2^{k}}\right)^{T} \quad\left\|\mathbf{S}_{\langle 2\rangle}^{(k)}-\mathbf{S}\right\|_{\max } \leq c^{2^{k}}
\end{array}\right.
$$

- Main Idea:
- Once squared, the matrix $\mathbf{Q}^{2^{k}}$ is memoized for the next iteration and thus will not be recomputed when subsequently needed.

$$
\mathbf{Q}^{2^{k}}=\underbrace{\mathbf{Q} \cdot \mathbf{Q} \cdots \cdot \mathbf{Q}}_{2^{k}} \quad \mathbf{Q}^{2^{k}}=\underbrace{\left(\left(\left(\mathbf{Q}^{2}\right)^{2}\right)^{2} \cdots\right)^{2}}_{k}
$$

1) Speed up Convergence Rate

Naïve SimRank Iterative Paradigm
"Squaring Memoization" Paradigm

$$
\begin{aligned}
& \mathbf{S}^{(0)}=(1-c) \cdot \mathbf{I}_{n} \\
& \mathbf{S}^{(1)}=(1-c) \cdot\left[\mathbf{I}_{n}+c \mathbf{Q} \mathbf{Q}^{T}\right] \\
& \mathbf{S}^{(2)}=(1-c) \cdot\left[\mathbf{I}_{n}+c \mathbf{Q} \mathbf{Q}^{T}+c^{2} \mathbf{Q}^{2}\left(\mathbf{Q}^{2}\right)^{T}\right] \\
& \mathbf{S}^{(3)}=(1-c) \cdot\left[\mathbf{I}_{n}+c \mathbf{Q} \mathbf{Q}^{T}+c^{2} \mathbf{Q}^{2}\left(\mathbf{Q}^{2}\right)^{T}+c^{3} \mathbf{Q}^{3}\left(\mathbf{Q}^{3}\right)^{T}\right] \\
& \ldots \\
& \cdots \\
& \mathbf{S}^{(7)}=(1-c) \cdot \sum_{i=0}^{7} c^{i} \mathbf{Q}^{i}\left(\mathbf{Q}^{i}\right)^{T}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{S}_{\langle 2\rangle}^{(0)}=(1-c) \cdot \mathbf{I}_{n} \\
& \mathbf{S}_{\langle 2\rangle}^{(1)}=(1-c) \cdot\left[\mathbf{I}_{n}+c \mathbf{Q} \mathbf{Q}^{T}\right] \\
& \mathbf{S}_{\langle 2\rangle}^{(2)}=(1-c) \cdot\left[\mathbf{I}_{n}+c \mathbf{Q} \mathbf{Q}^{T}+c^{2} \mathbf{Q}^{2}\left(\mathbf{Q}^{2}\right)^{T}+c^{3} \mathbf{Q}^{3}\left(\mathbf{Q}^{3}\right)^{T}\right] \\
& \mathbf{S}_{\langle 2\rangle}^{(3)}=(1-c) \cdot \sum_{i=0}^{7} c^{i} \mathbf{Q}^{i}\left(\mathbf{Q}^{i}\right)^{T}
\end{aligned}
$$

$$
\mathbf{S}_{\langle 2\rangle}^{(k)}=\mathbf{S}^{\left(2^{k}-1\right)} .
$$

\% In each step of "squaring memoization" iteration, one actually computes exponential steps (with base 2) of the conventional iteration.
As a result, the convergence rate of "squaring memoization" iteration becomes exponentially faster than that of conventional iteration.

1) Speed up Convergence Rate

"Squaring Memoization" Paradigm.

$$
\left\{\begin{array}{l}
\mathbf{S}_{\langle 2\rangle}^{(0)}=(1-c) \cdot \mathbf{I}_{n}, \\
\mathbf{S}_{\langle 2\rangle}^{k+1)}=\mathbf{S}_{\langle 2\rangle}^{(k)}+c^{2^{k}} \cdot \mathbf{Q}^{2^{k}} \cdot \mathbf{S}_{\langle 2\rangle}^{(k)} \cdot\left(\mathbf{Q}^{2^{k}}\right)^{T}
\end{array}\right.
$$

$$
\left\|\mathbf{S}_{\langle 2\rangle}^{(k)}-\mathbf{S}\right\|_{\max } \leq c^{2^{k}}
$$

* Extending to the "u-th Powering Memoization" Paradigm: (u=2, 3, ...)

$$
\left\{\begin{array}{l}
\mathbf{S}_{\langle u\rangle}^{(0)}=(1-c) \cdot \mathbf{I}_{n}, \\
\mathbf{S}_{\langle u\rangle}^{(k+1)}=\sum_{i=0}^{u-1} c^{i \cdot u^{k}} \cdot \mathbf{Q}^{i \cdot u^{k}} \cdot \mathbf{S}_{\langle u\rangle}^{(k)} \cdot\left(\mathbf{Q}^{i \cdot u^{k}}\right)^{T}, \quad\left\|\mathbf{S}_{\langle u\rangle}^{(k)}-\mathbf{S}\right\|_{\max } \leq c^{u^{k}}
\end{array}\right.
$$

* Complexity:

FLOPs per iteration \#-iterations total
naïve $\quad \mathrm{O}\left(\mathrm{n}^{3}\right)$
u-th Powering $O\left((u-1) \cdot n^{3}\right)$
$\left\lceil\log _{c} \epsilon\right\rceil-1 \quad O\left(\left(\left\lceil\log _{c} \epsilon\right\rceil-1\right) \mathrm{n}^{3}\right)$
$\left\lceil\log _{u} \log _{c} \epsilon\right\rceil \quad \mathrm{O}\left(\left\lceil\log _{\mathrm{u}} \log _{\mathrm{c}} \epsilon\right\rceil(\mathrm{u}-1) \mathrm{n}^{3}\right)$
"Squaring Memoization" achieves the best computational performance.

$$
\mathcal{O}(f(u)) \text { with } f(u)=\left\lceil\ln \left(\log _{c} \epsilon\right)\right\rceil \cdot \frac{u-1}{\ln u} \cdot n^{3} \quad(u=2,3, \cdots)
$$

2) Improve Computational Efficiency

Krylov Subspace Projection
orthogonal
upper Hessenburg

$$
\Rightarrow \begin{aligned}
& \mathbf{V}_{\alpha}^{T} \cdot \mathbf{V}_{\alpha}=\mathbf{I}_{\alpha} \\
& \mathbf{V}_{\alpha}^{T} \cdot \mathbf{R}_{\alpha}=0 \\
& \mathbf{V}_{\alpha}^{T} \cdot \mathbf{Q} \cdot \mathbf{V}_{\alpha}=\mathbf{H}_{\alpha}
\end{aligned}
$$

with $\mathbf{R}_{\alpha}=h_{\alpha+1, \alpha} \mathbf{v}_{\alpha+1} \mathbf{e}_{\alpha}^{T}$

Main Idea

- A projection of the matrix Q ($\mathrm{n} \times \mathrm{n}$ dimension) onto a Krylov subspace ($\alpha \times \alpha$ dimension with $\alpha \ll n$) is used for computing similarity.

Krylov subspace ($\alpha \times \alpha$)

$$
\begin{gathered}
\mathbf{S}_{\alpha}=c \cdot \mathbf{H}_{\alpha} \cdot \mathbf{S}_{\alpha} \cdot \mathbf{H}_{\alpha}^{T}+(1-c) \cdot \mathbf{I}_{\alpha} \\
\downarrow \\
\hat{\mathbf{S}}_{\alpha}=\mathbf{V}_{\alpha} \cdot \mathbf{S}_{\alpha} \cdot \mathbf{V}_{\alpha}^{T}
\end{gathered}
$$

\% Due to its smaller dimension, the Krylov subspace based SimRank formula is relatively easier to solve with accuracy guarantees.
original space ($n \times n$)

$$
\mathbf{S}=c \cdot\left(\mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^{T}\right)+(1-c) \cdot \mathbf{I}_{n}
$$

2) Improve Computational Efficiency

* Error Estimate

LEMMA. Let $\operatorname{Err}(\star)$ be a matrix function defined by

$$
\operatorname{Err}(\mathbf{X}) \stackrel{\operatorname{def}}{=} c \cdot \mathbf{Q} \cdot \mathbf{X} \cdot \mathbf{Q}^{T}-\mathbf{X}+(1-c) \cdot \mathbf{I}_{n}, \quad\left(\mathbf{X} \in \mathbb{R}^{n \times n}\right)
$$

Then for every $a=1,2, \cdots, n$, we have

$$
\left\|\operatorname{Err}\left(\hat{\mathbf{S}}_{\alpha}\right)\right\|_{2} \leq \epsilon_{\alpha},
$$

where

$$
\epsilon_{\alpha}=1-c\left(1-h_{\alpha+1, \alpha} \sqrt{2\left\|\mathbf{H}_{\alpha}\left[\mathbf{S}_{\alpha}\right]_{\star, \alpha}\right\|_{2}^{2}+h_{\alpha+1, \alpha}^{2}\left[\mathbf{S}_{\alpha}\right]_{\alpha, \alpha}^{2}}\right)
$$

COROLLARY 1. $\left\|\operatorname{Err}\left(\hat{\mathbf{S}}_{r}\right)\right\|_{2} \leq 1-c$.
THEOREM. For every $\alpha=1,2, \cdots, n$, the following estimate holds:

$$
\left\|\mathbf{S}-\hat{\mathbf{S}}_{\alpha}\right\|_{2} \leq \frac{\sqrt{n}}{1-c} \cdot\left\|\operatorname{Err}\left(\hat{\mathbf{S}}_{\alpha}\right)\right\|_{2}
$$

COROLLARY 2. $\left\|\mathbf{S}-\hat{\mathbf{S}}_{r}\right\|_{2} \leq \sqrt{n}$.

3) The Complete Framework

Integrated with "Squaring Memoization".

$$
\left\{\begin{array}{l}
\mathbf{S}_{\alpha}^{(0)}=(1-c) \cdot \mathbf{I}_{\alpha}, \\
\mathbf{S}_{\alpha}^{(k+1)}=\mathbf{S}_{\alpha}^{(k)}+c^{2^{k}} \cdot \mathbf{H}_{\alpha}^{2^{k}} \cdot \mathbf{S}_{\alpha}^{(k)} \cdot\left(\mathbf{H}_{\alpha}{ }^{2^{k}}\right)^{T}
\end{array} \quad \hat{\mathbf{S}}_{\alpha}^{(k)}=\mathbf{V}_{\alpha} \cdot \mathbf{S}_{\alpha}^{(k)} \cdot \mathbf{V}_{\alpha}^{T}\right.
$$

- Error Estimate.

$$
\left\|\mathbf{S}-\hat{\mathbf{S}}_{\alpha}^{(k)}\right\|_{2} \leq \epsilon, \text { with } \epsilon=n \cdot c^{2^{k}}+\frac{\sqrt{n}}{1-c} \cdot \epsilon_{\alpha}
$$

COROLLARY 3.

$$
\frac{1}{n} \sqrt{\sum_{i, j=1}^{n}\left([\mathbf{S}]_{i, j}-\left[\hat{\mathbf{S}}_{r}^{(k)}\right]_{i, j}\right)^{2}} \leq c^{2^{k}}+\frac{1}{\sqrt{n}}
$$

Complexity Analysis.

Operation	Time	Space	Error
building Krylov subspace	$\mathrm{O}(r \mathrm{rm})$	$\mathrm{O}(\mathrm{rn})$	
computing $\mathbf{S}_{r}^{(K)}$ in the subspace	$\mathrm{O}\left(\mathrm{Kr}^{3}\right)$	$\mathrm{O}\left(\mathrm{r}^{2}\right)$	$c^{2^{K^{K}}}$
solving $\hat{\mathbf{S}}_{r}^{(K)}$ in the whole space	$\mathrm{O}\left(\mathrm{r}^{2} \mathrm{n}+\mathrm{r}^{2}\right)$	$\mathrm{O}(\mathrm{rn})$	$1 / \sqrt{n}$
Total	$\mathrm{O}\left(r m+\mathrm{Kr}^{3}+n r^{2}\right)$	$\mathrm{O}(\mathrm{rn})$	$c^{2^{K}}+1 / \sqrt{n}$

4) SimRank Stability Analysis

DEFINITION 1 (SimRank Condition Number).

For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with Q being its backward transition matrix, let

$$
\mathbf{L} \stackrel{\text { def }}{=} \mathbf{I}_{n^{2}}-c \cdot(\mathbf{Q} \otimes \mathbf{Q})
$$

The SimRank condition number of G, denoted by $\mathrm{K}_{\infty}(\mathrm{G})$, is defined as

$$
\kappa_{\infty}(\mathcal{G}) \stackrel{\operatorname{def}}{=}\|\mathbf{L}\|_{\infty} \cdot\left\|\mathbf{L}^{-1}\right\|_{\infty}
$$

Here, $\|\mathbf{L}\|_{\infty}$ is the maximum absolute row sum of the matrix.

* Underlying Rationale.

$$
\begin{aligned}
s(a, b) & =\frac{c}{|\mathcal{I}(a)||\mathcal{I}(b)|} \sum_{i=1}^{|\mathcal{I}(a)||\mathcal{I}(b)|} \sum_{j=1} s\left(\mathcal{I}_{i}(a), \mathcal{I}_{j}(b)\right) \\
\mathbf{S} & =c \cdot\left(\mathbf{Q} \cdot \mathbf{S} \cdot \mathbf{Q}^{T}\right)+(1-c) \cdot \mathbf{I}_{n}
\end{aligned}
$$

$$
\operatorname{vec}(\mathbf{S})=(1-c) \cdot \mathbf{L}^{-1} \cdot \operatorname{vec}\left(\mathbf{I}_{n}\right) \text { with } \mathbf{L}=\mathbf{I}_{n^{2}}-c \cdot(\mathbf{Q} \otimes \mathbf{Q}) .
$$

4) SimRank Stability Analysis

THEOREM 1. Given a graph $G=(V, E)$, for any damping factor $c \in(0,1)$, the SimRank condition number has the following tight bound

$$
\kappa_{\infty}(\mathcal{G}) \leq \frac{1+c}{1-c}
$$

- Implications
\% evaluate how stable the similarity is to the perturbations in graphs
* estimate the accuracy of the ranking results invoked by the iteration error

Application
Actual version: $\quad \mathbf{L} \cdot \operatorname{vec}(\mathbf{S})=(1-c) \cdot v e c\left(\mathbf{I}_{n}\right)$
Perturbed version: $\tilde{\mathbf{L}} \cdot \operatorname{vec}(\tilde{\mathbf{S}})=(1-c) \cdot \operatorname{vec}\left(\mathbf{I}_{n}\right)$

$$
\frac{\|\mathbf{S}-\tilde{\mathbf{S}}\|_{\max }}{\|\tilde{\mathbf{S}}\|_{\max }} \leq \frac{1+c}{1-c} \cdot \frac{\|\tilde{\mathbf{L}}-\mathbf{L}\|_{\infty}}{\|\mathbf{L}\|_{\infty}} .
$$

Setting $\mathrm{c}=0.95$ holds the possibility that the relative error in similarity may be $(1+0.95) /(1-0.95)=40$ times larger than the relative error in the link structure $20 / 45$

4) SimRank Stability Analysis

EXAMPLE 1. The bound of SimRank condition number is tight.

Setting c $=0.7$, on one hand,

$$
\begin{array}{rl}
\mathbf{L} & =\mathbf{I}_{n^{2}}-c \cdot(\mathbf{Q} \otimes \mathbf{Q}) \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 \\
0 & 0 & 1
\end{array} 0\right. \\
0 & 0
\end{array} 0
$$

On the other hand, $\quad \frac{1+c}{1-c}=\frac{1+0.7}{1-0.7}=5.667$.

5.2 SimFusion Overview

Features

- Using a Unified Relationship Matrix (URM) to represent relationships among heterogeneous data
* Defined recursively and is computed iteratively
* Applicable to any domain with object-to-object relationships
- Challenges
* URM may incur trivial solution or divergence issue of SimFusion.
* Rather costly to compute SimFusion on large graphs
* Naïve Iteration: matrix-matrix multiplication
* Requiring $\mathrm{O}\left(\mathrm{Kn}^{3}\right)$ time, $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space [Xi et. al., SIGIR 05]
* No incremental algorithms when edges update

Existing SimFusion: URM and USM

- Data Space: $\mathcal{D}=\left\{o_{1}, o_{2}, \cdots\right\}$ a finite set of data objects (vertices)
\% Data Relation (edges) Given an entire space $\mathcal{D}=\bigcup_{i=1}^{N} \mathcal{D}_{i}$
- Intra-type Relation $\mathcal{R}_{i, i} \subseteq \mathcal{D}_{i} \times \mathcal{D}_{i}$ carrying info. within one space
* Inter-type Relation $\mathcal{R}_{i, j} \subseteq \mathcal{D}_{i} \times \mathcal{D}_{j}$ carrying info. between spaces
- Unified Relationship Matrix (URM):

$$
\mathbf{L}_{\mathrm{URM}}=\left(\begin{array}{cccc}
\lambda_{1,1} \mathbf{L}_{1,1} & \lambda_{1,2} \mathbf{L}_{1,2} & \cdots & \lambda_{1, N} \mathbf{L}_{1, N} \\
\lambda_{2,1} \mathbf{L}_{2,1} & \lambda_{2,2} \mathbf{L}_{2,2} & \cdots & \lambda_{2, N} \mathbf{L}_{2, N} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{N, \mathbf{L}} \mathbf{L}_{N, 1} & \lambda_{N, 2} \mathbf{L}_{N, 2} & \cdots & \lambda_{N, N} \mathbf{L}_{N, N}
\end{array}\right) \quad \mathbf{L}_{i, j}(x, y)= \begin{cases}\frac{1}{n_{j}}, & \text { if } \mathcal{N}_{j}(x)=\varnothing \\
\frac{1}{\mathcal{N}_{j}(x)}, & \text { if }(x, y) \in \mathcal{R}_{i, j} ; \\
0, & \text { otherwise }\end{cases}
$$

- $\lambda_{i, j}$ is the weighting factor between D_{i} and D_{j}
* Unified Similarity Matrix (USM):

$$
\exists \mathbf{S}=\left(\begin{array}{ccc}
s_{1,1} & \cdots & s_{1, n} \\
\vdots & \ddots & \vdots \\
s_{n, 1} & \cdots & s_{n, n}
\end{array}\right) \in \mathbb{R}^{n \times n} \quad \text { s.t. } \mathbf{S}=\mathbf{L} \cdot \mathbf{S} \cdot \mathbf{L}^{T} .
$$

SimFusion Similarity on Heterogeneous Domain

Trivial Solution !!!

$$
S=[1]_{n \times n}
$$

$$
\begin{aligned}
& \mathbf{L}_{\mathrm{URM}}=\left(\begin{array}{cc|c|ccc}
\left(\frac{1}{8}\right. & \frac{1}{8} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 0 \\
\hline \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} & 0 & 0 \\
\hline \frac{1}{16} & \frac{1}{16} & \frac{1}{4} & \frac{5}{24} & \frac{5}{24} & \frac{5}{24} \\
\hline \frac{1}{10} & \frac{1}{10} & \frac{3}{5} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{10} & \frac{1}{10} & \frac{3}{5} & \frac{1}{15} & \frac{1}{15} & \frac{1}{15} \\
\frac{1}{10} & \frac{1}{10} & \frac{3}{5} & \frac{1}{10} & \frac{1}{10} & 0
\end{array}\right) \\
& \exists \mathbf{S} \in \mathbb{R}^{n \times n} \\
& \text { S.t. }
\end{aligned} \mathbf{S}=\mathbf{L} \cdot \mathbf{S} \cdot \mathbf{L}^{T} .
$$

$$
\mathbf{\Lambda}=\begin{aligned}
& \mathcal{D}_{1} \\
& \mathcal{D}_{2} \\
& \mathcal{D}_{3}
\end{aligned}\left(\begin{array}{ccc}
\mathcal{D}_{1} & \mathcal{D}_{2} & \mathcal{D}_{3} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{8} & \frac{1}{4} & \frac{5}{8} \\
\frac{1}{5} & \frac{3}{5} & \frac{1}{5}
\end{array}\right) \quad \mathbf{S}_{\mathrm{USM}}=\left(\begin{array}{cccc}
1 & s_{1,2} & \cdots & s_{1, n} \\
s_{2,1} & 1 & \cdots & s_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
s_{n, 1} & s_{n, 2} & \cdots & 1
\end{array}\right)
$$

High complexity !!!
$O\left(\mathrm{Kn}^{3}\right)$ time $O\left(n^{2}\right)$ space

Contributions

\%Revising the existing SimFusion model, avoiding

* non-semantic convergence
* divergence issue

Optimizing the computation of SimFusion+
\% O(Km) pre-computation time, plus $\mathrm{O}(1)$ time and $\mathrm{O}(\mathrm{n})$ space

* Better accuracy guarantee
\% Incremental computation on edge updates
- $O(\delta n)$ time and $O(n)$ space for handling δ edge updates

Revised SimFusion

Motivation: Two issues of the existing SimFusion model

* Trivial Solution on Heterogeneous Domain

* Divergent Solution on Homogeneous Domain

Root cause: row normalization of URM !!!

From URM to UAM

Unified Adjacency Matrix (UAM) $\quad \mathbf{A}=\tilde{\mathbf{A}}+1 / n^{2}$
$\tilde{\mathbf{A}}=\left(\begin{array}{cccc}\lambda_{1,1} \mathbf{A}_{1,1} & \lambda_{1,2} \mathbf{A}_{1,2} & \cdots & \lambda_{1, N} \mathbf{A}_{1, N} \\ \lambda_{2,1} \mathbf{A}_{2,1} & \lambda_{2,2} \mathbf{A}_{2,2} & \cdots & \lambda_{2, N} \mathbf{A}_{2, N} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{N, 1} \mathbf{A}_{N, 1} & \lambda_{N, 2} \mathbf{A}_{N, 2} & \cdots & \lambda_{N, N} \mathbf{A}_{N, N}\end{array}\right), \quad \mathbf{A}_{i, j}(x, y)= \begin{cases}\frac{1}{n_{j}}, & \text { if } \mathcal{N}_{j}(x)=\varnothing ; \\ 1, & \text { if }(x, y) \in \mathcal{R}_{i, j} ; \\ 0, & \text { otherwise } .\end{cases}$

- Example

Revised SimFusion+

* Basic Intuition
\%replace URM with UAM to postpone "row normalization" in a delayed fashion while preserving the reinforcement assumption of the original SimFusion
* Revised SimFusion+ Model

Original SimFusion

$$
\mathbf{S}=\frac{\mathbf{A} \cdot \mathbf{S} \cdot \mathbf{A}^{T}}{\left\|\mathbf{A} \cdot \mathbf{S} \cdot \mathbf{A}^{T}\right\|_{2}}, \quad \mathbf{S}=\mathbf{L} \cdot \mathbf{S} \cdot \mathbf{L}^{T}
$$

Optimizing SimFusion+ Computation

* Conventional Iterative Paradigm

$$
\mathbf{S}^{(k+1)}=\frac{\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}}{\left\|\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}\right\|_{2}}
$$

* Matrix-matrix multiplication, requiring $\mathrm{O}\left(\mathrm{kn}^{3}\right)$ time and $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space
\% Our approach: To convert SimFusion+ computation into finding the dominant eigenvector of the UAM A.

$$
[\mathbf{S}]_{i, j}=\left[\sigma_{\max }(\mathbf{A})\right]_{i} \times\left[\sigma_{\max }(\mathbf{A})\right]_{j}
$$

Pre-compute $\sigma_{\max }(\mathrm{A})$ only once, and cache it for later reuse
\% Matrix-vector multiplication, requiring $\mathrm{O}(\mathrm{km})$ time and $\mathrm{O}(\mathrm{n})$ space

Example

* Conventional Iteration:

$$
\begin{aligned}
& \mathbf{S}^{(0)}=1 \quad \mathbf{S}^{(k+1)}=\frac{\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}}{\left\|\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}\right\|_{2}} \\
& \text { Our approach: } \\
& \sigma_{\max }(\mathbf{A})=\left[\begin{array}{llllllll}
.431 & .673 & .451 & .322 & .232
\end{array}\right]^{T}
\end{aligned}
$$

$$
[\mathbf{S}]_{1,2}=\left[\sigma_{\max }(\mathbf{A})\right]_{1} \times\left[\sigma_{\max }(\mathbf{A})\right]_{2}=.431 \times .673=.290
$$

$$
[\mathbf{S}]_{1,3}=\left[\sigma_{\max }(\mathbf{A})\right]_{1} \times\left[\sigma_{\max }(\mathbf{A})\right]_{3}=.431 \times .451=.194
$$

Key Observation

e.g. $\left.\mathbf{X}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \mathbf{Y}=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right], \mathbf{X} \otimes \mathbf{Y}=\left[\begin{array}{lll}1 \times\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right] \\ 3 \times\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right] \times\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right] \\ 5 & 6 \\ 7 & 8\end{array}\right]\right]\left[\begin{array}{llll}5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32\end{array}\right]$
\% Vec operator: $\operatorname{vec}(\mathbf{X}) \stackrel{\text { def }}{=}\left[x_{1,1}, \cdots, x_{p, 1}, \cdots, x_{1, q}, \cdots, x_{p, q}\right]^{T}$
e.g. $\quad \operatorname{vec}(\mathbf{X})=\left[\begin{array}{llll}1 & 3 & 2 & 4\end{array}\right]^{T}$
\% Two important Properties:

$$
\operatorname{vec}\left(\mathbf{B C D}^{T}\right)=(\mathbf{D} \otimes \mathbf{B}) \cdot \operatorname{vec}(\mathbf{C})
$$

$$
\sigma_{\max }(\mathbf{A} \otimes \mathbf{A})=\sigma_{\max }(\mathbf{A}) \otimes \sigma_{\max }(\mathbf{A})
$$

Key Observation

- Two important Properties:

$$
\begin{aligned}
& \text { P1. } \operatorname{vec}\left(\mathbf{B C D}^{T}\right)=(\mathbf{D} \otimes \mathbf{B}) \cdot \operatorname{vec}(\mathbf{C}) \\
& \text { P2. } \sigma_{\max }(\mathbf{A} \otimes \mathbf{A})=\sigma_{\max }(\mathbf{A}) \otimes \sigma_{\max }(\mathbf{A})
\end{aligned}
$$

* Our main idea:

$$
\begin{equation*}
\mathbf{S}^{(k+1)}=\frac{\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}}{\left\|\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}\right\|_{2}} . \tag{1}
\end{equation*}
$$

$$
\operatorname{vec}\left(\mathbf{S}^{(k+1)}\right)=\frac{(\mathbf{A} \otimes \mathbf{A}) \cdot \operatorname{vec}\left(\mathbf{S}^{(k)}\right)}{\left\|(\mathbf{A} \otimes \mathbf{A}) \cdot \operatorname{vec}\left(\mathbf{S}^{(k)}\right)\right\|_{2}}
$$

Power Iteration

> (2)
$\operatorname{vec}(\mathbf{S})=\sigma_{\max }(\mathbf{A}) \otimes \sigma_{\max }(\mathbf{A}) \lim _{k \rightarrow \infty} \operatorname{vec}\left(\mathbf{S}^{(k)}\right)=\sigma_{\max }(\mathbf{A} \otimes \mathbf{A})$

Accuracy Guarantee

Conventional Iterations: No accuracy guarantee !!!

$$
\mathbf{S}^{(k+1)}=\frac{\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}}{\left\|\mathbf{A} \cdot \mathbf{S}^{(k)} \cdot \mathbf{A}^{T}\right\|_{2}} . \quad \mathbf{S}=\frac{\mathbf{A} \cdot \mathbf{S} \cdot \mathbf{A}^{T}}{\left\|\mathbf{A} \cdot \mathbf{S} \cdot \mathbf{A}^{T}\right\|_{2}}
$$

Question: $\quad\left\|S^{(k+1)}-S\right\| \leq$?
Our Method: Utilize Arnoldi decomposition to build an order-k orthogonal subspace for the UAM A.

Due to T_{k} small size and almost "upper-triangularity", Computing $\sigma_{\max }\left(T_{k}\right)$ is less costly than $\sigma_{\max }(A)$.

Accuracy Guarantee

* Arnoldi Decomposition:

$$
\begin{array}{cl}
\mathbf{V}_{k}^{T} \mathbf{A} \mathbf{V}_{k}=\mathbf{T}_{k}, & \mathbf{V}_{k}=\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \mathbf{v}_{k}\right] \\
\mathbf{A} \mathbf{V}_{k}-\mathbf{V}_{k} \mathbf{T}_{k}=\delta_{k} \mathbf{v}_{k+1} \mathbf{e}_{k}^{T}, & \mathbf{T}_{k+1}=\left[\begin{array}{c}
\mathbf{T}_{k} \\
\star
\end{array} \underset{\star}{\star}\right]
\end{array}
$$

* k-th iterative similarity

$$
\left[\hat{\mathbf{S}}_{k}\right]_{i, j}=\left[\mathbf{V}_{k} \cdot \sigma_{\max }\left(\mathbf{T}_{k}\right)\right]_{i} \times\left[\mathbf{V}_{k} \cdot \sigma_{\max }\left(\mathbf{T}_{k}\right)\right]_{j}
$$

* Estimate Error:

$$
\begin{gathered}
\left\|\hat{\mathbf{S}}_{k}-\mathbf{S}\right\|_{2} \leq \epsilon_{k} \\
\epsilon_{k}=2 \times\left|\delta_{k} \times\left[\sigma_{\max }\left(\mathbf{T}_{k}\right)\right]_{k}\right|
\end{gathered}
$$

Assume $\mathbf{A}=\tilde{\mathbf{A}}+1 / 5^{2}$ with

$$
\tilde{\mathbf{A}}=\left[\begin{array}{ccccc}
\frac{1}{2} & \frac{1}{6} & \frac{1}{6} & \frac{1}{3} & 0 \\
\frac{1}{6} & \frac{7}{12} & \frac{7}{12} & \frac{1}{8} & \frac{1}{8} \\
\frac{1}{6} & \frac{7}{12} & 0 & \frac{1}{8} & \frac{1}{8} \\
\frac{1}{3} & \frac{1}{8} & \frac{1}{8} & 0 & \frac{5}{12} \\
0 & \frac{1}{8} & \frac{1}{8} & \frac{5}{12} & 0
\end{array}\right]
$$

Given $\epsilon=0.05$

$$
\begin{equation*}
\epsilon_{k}=2 \times\left|\delta_{k} \times\left[\sigma_{\max }\left(\mathbf{T}_{k}\right)\right]_{k}\right| \tag{2}
\end{equation*}
$$

- Arnoldi Decomposition:

k	\mathbf{T}_{k}	\mathbf{v}_{k+1}	δ_{k}	$\sigma_{\max }\left(\mathbf{T}_{k}\right)$	ϵ_{k}
0	-	$[.447 .447 .447 .447 .447]^{T}$	-	-	-
1	$[1.08]$	$[.125 .750-.125-.125-.625]^{T}$.298	$[1]$.596
2	$\left[\begin{array}{cc}1.08 & .298 \\ .298 .190\end{array}\right]$	$[-.089 .044 .710-.697 .032]^{T}$.359	$\left[\begin{array}{c}.957 \\ .290\end{array}\right]$.208
3	$\left[\begin{array}{cc}\frac{1.08}{} .298 \\ \hline .298 .190 & .359 \\ \hline 0 & .359-.083\end{array}\right]$	$[-.881 .329 .137 .280 .135 .231]^{T}$.231	$\left[\begin{array}{c}.945 \\ .316 \\ .090\end{array}\right]$.041

(1)
$\mathbf{A} \mathbf{V}_{k}-\mathbf{V}_{k} \mathbf{T}_{k}=\delta_{k} \mathbf{v}_{k+1} \mathbf{e}_{k}^{T}$,
$\left[\hat{\mathbf{S}}_{k}\right]_{i, j}=\left[\mathbf{V}_{k} \cdot \sigma_{\max }\left(\mathbf{T}_{k}\right)\right]_{i} \times\left[\mathbf{V}_{k} \cdot \sigma_{\max }\left(\mathbf{T}_{k}\right)\right]_{j}$

Edge Update on Dynamic Graphs

* Incremental UAM

Given old $G=(D, R)$ and a new $G^{\prime}=\left(D, R^{\prime}\right)$, the incremental UAM is a list of edge updates, i.e., $\overline{\mathbf{A}}=\mathbf{A}^{\prime}-\mathbf{A}$

* Main idea

To reuse $\overline{\mathbf{A}}$ and the eigen-pair (α_{p}, ξ_{p}) of the old A to compute S^{\prime}
$\overline{\mathbf{A}}$ is a sparse matrix when the number δ of edge updates is small.

* Incrementally computing SimFusion+

$$
\begin{gathered}
{\left[\mathbf{S}^{\prime}\right]_{i, j}=\left[\boldsymbol{\xi}^{\prime}\right]_{i} \cdot\left[\boldsymbol{\xi}^{\prime}\right]_{j} \text { with }\left[\boldsymbol{\xi}^{\prime}\right]_{i}=\left[\boldsymbol{\xi}_{1}\right]_{i}+\sum_{p=2}^{n} c_{p} \times\left[\boldsymbol{\xi}_{p}\right]_{i}} \\
c_{p}=\frac{\boldsymbol{\xi}_{p}^{T} \cdot \boldsymbol{\eta}}{\alpha_{p}-\alpha_{1}} \text { and } \boldsymbol{\eta}=\overline{\mathbf{A}} \cdot \boldsymbol{\xi}_{1} \quad \mathrm{O}(\delta \mathrm{n}) \text { time }
\end{gathered}
$$

Example

Suppose edges ($\mathrm{P} 1, \mathrm{P} 2$) and ($\mathrm{P} 2, \mathrm{P} 1$) are removed.

$$
\overline{\mathbf{A}}=\left[\begin{array}{ccc}
0 & -\frac{1}{6} & 0
\end{array} r_{0} 0\right.
$$

p	α_{p}	$\boldsymbol{\xi}_{p}$	c_{p}
1	1.184	$[.431 .673 .451 .322 .232]^{T}$	-
2	.503	$[.708-.522-.242 .388 .132]^{T}$.062
3	-.480	$[-.256-.020 .095 .716-.641]^{T}$	-.018
4	-.366	$[-.021-.507 .853-.119 .017]^{T}$	-.025
5	.242	$[.497 .127 .037-.467-.719]^{T}$.069

$$
\begin{aligned}
& \boldsymbol{\eta}=\overline{\mathbf{A}} \cdot \boldsymbol{\xi}_{1}=\left[\begin{array}{lllll}
-.112 & -.072 & 0 & 0 & 0
\end{array}\right]^{T} . \\
& c_{2}=\boldsymbol{\xi}_{2}^{T} \cdot \boldsymbol{\eta} /\left(\alpha_{2}-\alpha_{1}\right)=-.0419 /(.503-1.184)=.062, \\
& c_{3}=\boldsymbol{\xi}_{3}^{T} \cdot \boldsymbol{\eta} /\left(\alpha_{3}-\alpha_{1}\right)=.030 /(-.480-1.184)=-.018 .
\end{aligned}
$$

$$
\boldsymbol{\xi}^{\prime}=\boldsymbol{\xi}_{1}+\sum_{p=2}^{5} c_{p} \times \boldsymbol{\xi}_{p}=[\text {. 327. } 703.485 .326 .266]^{T}
$$

$$
\mathbf{S}^{\prime}=\left[\begin{array}{lllll}
.107 & .230 & .159 & .107 & .087 \\
.230 & .494 & .341 & .230 & .187 \\
.159 & .341 & .235 & .158 & .129 \\
.107 & .230 & .158 & .107 & .087 \\
.087 & .187 & .129 & .087 & .071
\end{array}\right]
$$

Experimental Setting

Datasets

- Synthetic data (RAND 0.5M-3.5M)
* Real data (DBLP, WEBKB)

DBLP

	$\mathcal{G}_{1}: 01-02$	$\mathcal{G}_{2}: 01-04$	$\mathcal{G}_{3}: 01-06$	$\mathcal{G}_{4}: 01-08$	$\mathcal{G}_{5}: 01-10$
$\|\mathcal{D}\|$	1,838	3,723	5,772	9,567	12,276
$\|\mathcal{R}\|$	7,103	14,419	29,054	45,310	64,208

WEBKB

	$U_{1}: \mathrm{CO}$	$U_{2}:$ TE	$U_{3}:$ WA	$U_{4}: \mathrm{WI}$
$\|\mathcal{D}\|$	867	827	1,263	1,205
$\|\mathcal{R}\|$	1,496	1,428	2,969	1,805

* Compared Algorithms
- SimFusion+ and IncSimFusion+ ;
* SF, a SimFusion algorithm via matrix iteration [Xi et. al, SIGIR 05];
* CSF, a variant SF, using PageRank distribution [Cai et. al, SIGIR 10];
* SR, a SimRank algorithm via partial sums [Lizorkin et. al, VLDBJ 10];
* PR, a P-Rank encoding both in- and out-links [Zhao et. al, CIKM 09]; $38 / 45$

Experiment (1): Accuracy

$$
\mathrm{NDCG}_{p}=\frac{1}{\mathrm{IDCG}_{p}} \sum_{i=1}^{p}\left(2^{\mathrm{rank}_{i}}-1\right) /\left(\log _{2}(1+i)\right)
$$

On DBLP and WEBKB

SF+ accuracy is consistently stable on different datasets.

SF seems hardly to get sensible similarities as all its similarities asymptotically approach the same value as K grows.

Experiment (2): CPU Time and Space

On DBLP

$\mathrm{SF}+$ outperforms the other approaches, due to the use of $\sigma_{\max }\left(\mathrm{T}_{\mathrm{k}}\right)$
On WEBKB

Experiment (3): Edge Updates

Varying δ

IncSF+ outperformed SF+ when δ is small.
For larger δ, IncSF+ is not that good because the small value of δ preserves the sparseness of the incremental UAM.

Experiment (4) : Effects of ϵ

Conclusions

- A revision of SimFusion+, for preventing the trivial solution and the divergence issue of the original model.
* Efficient techniques to improve the time and space of SimFusion+ with accuracy guarantees.
* An incremental algorithm to compute SimFusion+ on dynamic graphs when edges are updated.

Future Work

- Devise vertex-updating methods for incrementally computing SimFusion+.
* Extend to parallelize SimFusion+ computing on GPU.

Thenk You !

