
Optimization Techniques for Structural Similarity

Computation on Large Networks

Presented by

Weiren Yu

School of Computer Science & Engineering,

The University of New South Wales

2 / 45

2 Aims and Objectives

Outline

5 Main Contributions

1 Background

3 Challenges

4 State of the Arts

6 Empirical Evaluations

3 / 45

1 Background

 Many applications require a measure of similarity between objects.

similarity
computation

Citation of
Scientific

Papers

(citeseer.com)
(amazon.com)

Recommender
System

Graph
Clustering Web Search Engine

 (google.com)

4 / 45

1 Background
 Text-based Similarity (content)

 Cosine similarity Jaccard index

 Link-based Similarity (structure)

 PageRank [Larry Page, Google Tech. Rep.’ 99]

• One page’s authority is decided by its neighbors’ authorities.

 SimRank [Jeh and Widom, SIGKDD’02]

 Penetrating-Rank [Zhao et. al, CIKM’09]

• Two objects are similar if they are referenced by similar objects.

 SimFusion [Xi et. al, SIGIR’05]

• The similarity between two data objects is reinforced by the

similarity of their related objects.

5 / 45

1 Background
 The success of Google PageRank has demystified the importance

of link-based similarity measure.

 Merits of link-based similarity measure:

 Applicable to any domain with object-to-object relationships

(It is a graph-theoretic model that reflects a better human intuition

with a solid rationale.)

 No requirement of extra human-built hierarchies

(It purely hinges on the structure of linkage patterns.)

 Possessing good expansibility

(It can be combined with other domain-specific measures.)

6 / 45

2 Aims and Objectives

 Huge networks have been mounting up, calling for new techniques to

efficiently handle similarity computations on large-scale graphs.

 the increasing scale of the Web

 the ubiquity of the Internet

 My research topic aims to develop, analyze, implement and evaluate

novel approaches to optimize link-based similarity computation.

 speed up the computations of the existing similarity models

 (i.e., SimRank, SimFusion, P-Rank)

 improve existing models for effectively measuring similarity

 develop a user-friendly system prototype for evaluation

High CPU time !!

High RAM space !!

7 / 45

Focus on optimizing SimRank, SimFusion, P-Rank:

 To reduce the complexity of the best-known algorithms

 computational time

 memory space

 convergence rate

 To accurately compute the similarity scores

 accuracy estimate

 stability & sensitivity analysis

 To extend the existing models

 static graphs dynamic networks

 single machine parallel version

3 Challenges

effectiveness

efficiency

scalability

8 / 45

SimRank Measure

 Given a network G=(V,E), and a link-based scoring function s: V x V [0,1],

it is to efficiently compute similarity scores of all vertex-pairs in G.

 SimRank Similarity [SIGKDD’02]

 s (a, a) = 1,

 s (a, b) = 0, if I(a) = ∅ or I(b) = ∅,

 otherwise:

1 1

, ,

I a I b

i j

i j

c
s a b s I a I b

I a I b

1

2

3

4

5

6

univ

Prof B

Prof A Stu A

Stu B

Stu C

Setting c=0.8, we compute s(2,3) and s(4,5).

(2) (3) {1}, (4) {2}, (5) {3}.

0.8
(2,3) (1,1) 0.8

1 1

0.8
(4,5) (2,3) 0.64

1 1

I I I I

s s

s s

High complexity !!!

O(Kn4) time

O(n2) space

9 / 45

4 State of the Arts : Related Work

 Deterministic Method [SIGKDD’02, VLDBJ’10]

(following the fixed-point iteration to compute similarity)

 Advantage: accuracy guarantee

 Disadvantage: high time and space (cubic time and quadratic space)

 Probabilistic Method [EDBT’05, TKDE’05]

(utilizing the Monte-Carlo sampling approach to estimate similarity)

 Advantage: scalability on large graphs (linear time and space)

 Disadvantage: low estimation quality

1

1 1

, ,

I a I b

k k

i j

i j

c
s a b s I a I b

I a I b

 (,), a bs a b E c

10 / 45

4 State of the Arts : Related Work

[Lizorkin et al. , VLDB J.’10]

 Main Contributions.

 A precise accuracy estimate is presented for SimRank iteration.

 A partial sum function is utilized to improve SimRank

computational complexity from O(kn4) to O(kn3).

 A threshold sieving heuristic is introduced and its accuracy

estimation is given that further improves the efficiency.

 1, ,
k ks a b s a b c

()

()

1

1 1

(())

, ,

ks
I a j

I a I b

k k

i j

i j

Partial I b

c
s a b s I a I b

I a I b

11 / 45

5.1 Contributions: SimRank

 Motivation:

 The high complexity of time and space is still a mighty obstacle

in using SimRank on large networks.

 SimRank computation is iterative in nature, but no prior work

has studied the stability of SimRank, which can

(i) gauge the sensitivity of similarity to the perturbations in the link

structure (e.g., by adding or removing edges)

(ii) imply whether large amounts of accumulated round-off errors will

run the risk of producing nonsensical similarity.

12 / 45

5.1 Contributions: SimRank

 Main Contributions:

 A “squaring memoization” technique is devised for SimRank

computation, which cuts down the number of iterations exponentially

for a given accuracy.

 An order-r (≪ n) Krylov subspace is deployed for speeding up

SimRank computation in time and space

up to an additive error of for any vertex-pair.

 A notion of SimRank condition number is introduced, and a tight bound

of this number is provided, aiming at analyzing similarity stability.

stability

convergence

rate

time / space

complexity

13 / 45

1) Speed up Convergence Rate

 Naïve SimRank Iterative Paradigm. [Lizorkin et al. , VLDB J.’10]

 “Squaring Memoization” Paradigm.

 Main Idea:

 Once squared, the matrix is memoized for the next iteration and

thus will not be recomputed when subsequently needed.

14 / 45

1) Speed up Convergence Rate

 In each step of “squaring memoization” iteration,

one actually computes exponential steps (with base 2) of the conventional iteration.

As a result, the convergence rate of “squaring memoization” iteration becomes

exponentially faster than that of conventional iteration.

Naïve SimRank Iterative Paradigm “Squaring Memoization” Paradigm

(0) (1) nc S I

(1) (1) T

nc c S I QQ

(2) 2 2 2(1) ()T T

nc c c S I QQ Q Q

(3) 2 2 2 3 3 3(1) () ()T T T

nc c c c S I QQ Q Q Q Q

7
(7)

0

(1) ()i i i T

i

c c

 S Q Q

(0)

2
(1) nc S I

(1)

2
(1) T

nc c S I QQ

(2) 2 2 2 3 3 3

2
(1) () ()T T T

nc c c c S I QQ Q Q Q Q

7
(3)

2
0

(1) ()i i i T

i

c c

 S Q Q

15 / 45

1) Speed up Convergence Rate

 “Squaring Memoization” Paradigm.

 Extending to the “u-th Powering Memoization” Paradigm: (u=2, 3,…)

 Complexity:

FLOPs per iteration #-iterations total

 O(n3) ⌈logcϵ⌉−1 O((⌈logcϵ⌉ − 1) n3)

 O((u−1)·n3) ⌈logulogcϵ⌉ O(⌈logulogcϵ⌉ (u−1) n3)

 “Squaring Memoization” achieves the best computational performance.

u-th Powering

naïve

16 / 45

2) Improve Computational Efficiency

 Krylov Subspace Projection

 Main Idea

 A projection of the matrix Q (n x n dimension)

onto a Krylov subspace (α x α dimension with

α ≪ n) is used for computing similarity.

 Due to its smaller dimension, the Krylov

subspace based SimRank formula is relatively

easier to solve with accuracy guarantees.

original space (n x n)

Krylov subspace (α x α)

S

S

ˆ
S

17 / 45

2) Improve Computational Efficiency

 Error Estimate

LEMMA. Let Err(⋆) be a matrix function defined by

Then for every α = 1,2,··· ,n, we have

where

COROLLARY 1.

THEOREM. For every α = 1,2,··· ,n, the following estimate holds:

COROLLARY 2.

S

S

ˆ
S α

18 / 45

3) The Complete Framework

 Integrated with “Squaring Memoization”.

 Error Estimate.

 COROLLARY 3.

 Complexity Analysis.

Operation Time Space Error

 building Krylov subspace O (rm) O (rn)

 computing in the subspace O(Kr3) O(r2)

 solving in the whole space O(r2n + r2) O (rn)

Total O(rm+Kr3+nr2) O(rn)

()K

rS

()ˆ K

rS

2K

c

1/ n

2 1/
K

c n

19 / 45

4) SimRank Stability Analysis

 DEFINITION 1 (SimRank Condition Number).

For a graph G = (V,E) with Q being its backward transition matrix, let

The SimRank condition number of G, denoted by κ∞(G), is defined as

Here, is the maximum absolute row sum of the matrix.

 Underlying Rationale.

vec (AXB) = (BT ⊗ A) vec(X)

20 / 45

4) SimRank Stability Analysis

 THEOREM 1. Given a graph G = (V,E), for any damping factor c ∈ (0,1),

the SimRank condition number has the following tight bound

 Implications

 evaluate how stable the similarity is to the perturbations in graphs

 estimate the accuracy of the ranking results invoked by the iteration error

 Application

 Actual version:

 Perturbed version:

Setting c=0.95 holds the possibility that

the relative error in similarity may be

(1 + 0.95)/(1 − 0.95) = 40 times larger

than the relative error in the link structure.

21 / 45

4) SimRank Stability Analysis

 EXAMPLE 1. The bound of SimRank condition number is tight.

 Setting c = 0.7, on one hand,

On the other hand,

22 / 45

5.2 SimFusion Overview

 Features

 Using a Unified Relationship Matrix (URM) to represent

relationships among heterogeneous data

 Defined recursively and is computed iteratively

 Applicable to any domain with object-to-object relationships

 Challenges

 URM may incur trivial solution or divergence issue of SimFusion.

 Rather costly to compute SimFusion on large graphs

 Naïve Iteration: matrix-matrix multiplication

 Requiring O(Kn3) time, O(n2) space [Xi et. al. , SIGIR 05]

 No incremental algorithms when edges update

23 / 45

Existing SimFusion: URM and USM

 Data Space: a finite set of data objects (vertices)

 Data Relation (edges) Given an entire space

 Intra-type Relation carrying info. within one space

 Inter-type Relation carrying info. between spaces

 Unified Relationship Matrix (URM):

 λi,j is the weighting factor between Di and Dj

 Unified Similarity Matrix (USM):

1 2{ , , }o o

,i i i i

,i j i j

1

N

ii

1

1
, ,

, if ;

, , if , ;

0, otherwise.

j

j

jn

i j i jx

x

x y x y

L

1,1 1,1 1,2 1,2 1, 1,

2,1 2,1 2,2 2,2 2, 2,

URM

,1 ,1 ,2 ,2 , ,

N N

N N

N N N N N N N N

L L L

L L L
L

L L L

1,1 1,

,1 ,

. . .

n

n n T

n n n

s s

s t

s s

S S L S L

24 / 45

Example.

1
2

3

intra-type
relationship

inter-type
relationship

data
space

data object

1v

2v 3v

4v
5v

6v

1 2 3

1 1 1
1 4 4 2

51 1
2 8 4 8

31 1
3 5 5 5

Λ

1 1 1 1 1
8 8 4 4 4

1 1 1
4 4 2

5 5 51 1 1
16 16 4 24 24 24

URM 31 1 1 1 1
10 10 5 15 15 15

31 1 1 1 1
10 10 5 15 15 15

31 1 1 1
10 10 5 10 10

0

0 0 0

0

L

High complexity !!!

O(Kn3) time

O(n2) space

. . .n n Ts t S S L S L

1,2 1,

2,1 2,

USM

,1 ,2

1

1

1

n

n

n n

s s

s s

s s

S

SimFusion Similarity on Heterogeneous Domain

Trivial Solution !!!

S=[1]nxn

25 / 45

Contributions

 Revising the existing SimFusion model, avoiding

 non-semantic convergence

 divergence issue

 Optimizing the computation of SimFusion+

 O(Km) pre-computation time, plus O(1) time and O(n) space

 Better accuracy guarantee

 Incremental computation on edge updates

 O(δn) time and O(n) space for handling δ edge updates

26 / 45

Revised SimFusion

Motivation: Two issues of the existing SimFusion model

 Trivial Solution on Heterogeneous Domain

 Divergent Solution on Homogeneous Domain

Root cause: row normalization of URM !!!

27 / 45

From URM to UAM

 Unified Adjacency Matrix (UAM)

 Example

1

, ,

, if ;

, if , ;

0, otherwi e

1

s

,

.

j jn

i j i j

x

x y x y

A

28 / 45

Revised SimFusion+

 Basic Intuition

 replace URM with UAM to postpone “row normalization”

in a delayed fashion while preserving the reinforcement

assumption of the original SimFusion

 Revised SimFusion+ Model Original SimFusion

squeeze similarity scores in S into [0, 1].

29 / 45

Optimizing SimFusion+ Computation

 Conventional Iterative Paradigm

 Matrix-matrix multiplication, requiring O(kn3) time and O(n2) space

 Our approach: To convert SimFusion+ computation into

finding the dominant eigenvector of the UAM A.

 Matrix-vector multiplication, requiring O(km) time and O(n) space

Pre-compute σmax(A) only once, and cache it for later reuse

30 / 45

Example

 Conventional Iteration:

 Our approach:

Assume with

31 / 45

Key Observation

 Kroneckor product “⊗”:

e.g.

 Vec operator:

 e.g.

 Two important Properties:

5 6 5 6 5 6 10 12
1 2

7 8 7 81 2 5 6 7 8 14 16
, ,

3 4 7 8 15 18 20 245 6 5 6
3 4

21 24 28 327 8 7 8

X Y X Y

() [1 3 2 4]Tvec X

32 / 45

Key Observation

 Two important Properties:

P1.

P2.

 Our main idea:

(1)

(2)

Power Iteration

33 / 45

Accuracy Guarantee

 Conventional Iterations: No accuracy guarantee !!!

Question: || S(k+1) – S || ≤ ?

 Our Method: Utilize Arnoldi decomposition to build an

order-k orthogonal subspace for the UAM A.

Due to Tk small size and almost “upper-triangularity”,
Computing σmax(Tk) is less costly than σmax(A).

34 / 45

Accuracy Guarantee

 Arnoldi Decomposition:

 k-th iterative similarity

 Estimate Error:

35 / 45

Example

 Arnoldi Decomposition:

Assume with

Given

(1)

(2)

(3)

36 / 45

Edge Update on Dynamic Graphs

 Incremental UAM

Given old G =(D,R) and a new G’=(D,R’), the incremental UAM is

a list of edge updates, i.e.,

Main idea

 To reuse and the eigen-pair (αp, ξp) of the old A to compute

 is a sparse matrix when the number δ of edge updates is small.

 Incrementally computing SimFusion+

O(δn) time

O(n) space

37 / 45

Example

Suppose edges (P1,P2) and (P2,P1) are removed.

38 / 45

Experimental Setting
 Datasets

 Synthetic data (RAND 0.5M-3.5M)

 Real data (DBLP, WEBKB)

 Compared Algorithms

 SimFusion+ and IncSimFusion+ ;

 SF, a SimFusion algorithm via matrix iteration [Xi et. al, SIGIR 05];

 CSF, a variant SF, using PageRank distribution [Cai et. al, SIGIR 10];

 SR, a SimRank algorithm via partial sums [Lizorkin et. al, VLDBJ 10];

 PR, a P-Rank encoding both in- and out-links [Zhao et. al, CIKM 09];

DBLP

WEBKB

39 / 45

Experiment (1): Accuracy

On DBLP and WEBKB

SF+ accuracy is consistently
stable on different datasets.

SF seems hardly to get sensible similarities
as all its similarities asymptotically approach
the same value as K grows.

40 / 45

Experiment (2): CPU Time and Space

 On DBLP

On WEBKB

SF+ outperforms the other approaches, due to the use of σmax(Tk)

41 / 45

Experiment (3): Edge Updates

IncSF+ outperformed SF+ when δ is small.

For larger δ, IncSF+ is not that good because
the small value of δ preserves the sparseness
of the incremental UAM.

Varying δ

42 / 45

Experiment (4) : Effects of

The small choice of imposes more iterations
on computing Tk and vk, and hence increases
the estimation costs.

43 / 45

Conclusions

 A revision of SimFusion+, for preventing the trivial solution

and the divergence issue of the original model.

 Efficient techniques to improve the time and space of

SimFusion+ with accuracy guarantees.

 An incremental algorithm to compute SimFusion+ on

dynamic graphs when edges are updated.

 Devise vertex-updating methods for incrementally

computing SimFusion+.

 Extend to parallelize SimFusion+ computing on GPU.

Future Work

44 / 45

