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1  Background 

 Many applications require a measure of similarity between objects. 
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1  Background 
 Text-based Similarity   (content) 

 Cosine similarity                                 Jaccard index 

 Link-based Similarity   (structure) 

 PageRank [Larry Page, Google Tech. Rep.’ 99] 

• One page’s authority is decided by its neighbors’ authorities. 

 SimRank [Jeh and Widom, SIGKDD’02] 

 Penetrating-Rank [Zhao et. al, CIKM’09] 

• Two objects are similar if they are referenced by similar objects. 

 SimFusion [Xi et. al, SIGIR’05] 

• The similarity between two data objects is reinforced by the 

similarity of their related objects. 
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1  Background 
 The success of Google PageRank has demystified the importance 

of link-based similarity measure.  

 

 

 

 Merits of link-based similarity measure: 

 Applicable to any domain with object-to-object relationships 

(It is a graph-theoretic model that reflects a better human intuition 

with a solid rationale.) 

 No requirement of extra human-built hierarchies 

(It purely hinges on the structure of linkage patterns.) 

 Possessing good expansibility 

(It can be combined with other domain-specific measures.) 
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2  Aims and Objectives 

 Huge networks have been mounting up, calling for new techniques to 

efficiently handle similarity computations on large-scale graphs.  

 the increasing scale of the Web 

 the ubiquity of the Internet 

 My research topic aims to develop, analyze, implement and evaluate 

novel  approaches to optimize link-based similarity computation. 

 speed up  the computations of the existing similarity models 

 (i.e., SimRank, SimFusion, P-Rank) 

 improve existing models for effectively measuring similarity 

 develop a user-friendly system prototype for evaluation 

High CPU time !! 

High RAM space !! 
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Focus on optimizing SimRank, SimFusion, P-Rank: 

 To reduce the complexity of the best-known algorithms 

 computational time 

 memory space 

 convergence rate  

 To accurately compute the similarity scores 

 accuracy estimate 

 stability & sensitivity analysis 

 To extend the existing models 

 static  graphs         dynamic networks 

 single machine      parallel version 

3  Challenges 

effectiveness 

efficiency 

scalability 
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SimRank Measure 

 Given a network G=(V,E), and a link-based scoring function s: V x V  [0,1], 

it is to efficiently compute similarity scores of all vertex-pairs in G. 

 

 SimRank Similarity   [SIGKDD’02] 

 s (a, a) = 1, 

 s (a, b) = 0,                 if  I(a) = ∅  or  I(b) = ∅, 

 otherwise: 
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High complexity  !!! 
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4  State of the Arts  : Related Work 

 Deterministic Method     [SIGKDD’02, VLDBJ’10] 

(following the fixed-point iteration to compute similarity) 

 

 

 Advantage: accuracy guarantee 

 Disadvantage: high time and space  (cubic time and quadratic space) 

 Probabilistic Method       [EDBT’05, TKDE’05] 

(utilizing the Monte-Carlo sampling approach to estimate similarity) 

 

 

 Advantage: scalability on large graphs  (linear time and space) 

 Disadvantage: low estimation quality 
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4  State of the Arts  : Related Work 

[Lizorkin et al. ,  VLDB J.’10] 

 Main Contributions. 

 A precise accuracy estimate is presented for SimRank iteration. 

 

 A partial sum function is utilized to improve SimRank 

computational complexity from O(kn4) to O(kn3). 

 

 

 

 A threshold sieving heuristic is introduced and its accuracy 

estimation is given that further improves the efficiency. 
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5.1  Contributions: SimRank 

 Motivation: 

 The high complexity of time and space is still a mighty obstacle 

in using SimRank on large networks. 

 

 

 

 SimRank computation is iterative in nature, but no prior work 

has studied the stability of SimRank, which can  

(i) gauge the sensitivity of similarity to the perturbations in the link 

structure (e.g., by adding or removing edges)  

(ii) imply whether large amounts of accumulated round-off errors will 

run the risk of producing nonsensical similarity. 
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5.1  Contributions: SimRank 

 Main Contributions: 

 A “squaring memoization” technique is devised for SimRank 

computation, which cuts down the number of iterations exponentially 

for a given accuracy. 

 An order-r (≪ n) Krylov subspace is deployed for speeding up 

SimRank computation in                                   time and             space 

up to an additive error of                        for any vertex-pair. 

 A notion of SimRank condition number is introduced, and a tight bound 

of this number is provided, aiming at analyzing similarity stability.  

 

stability 

convergence 

rate 

time / space  

complexity 
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1)  Speed up Convergence Rate 

 Naïve SimRank Iterative Paradigm.        [Lizorkin et al. ,  VLDB J.’10] 

  

 

 “Squaring Memoization” Paradigm. 

 

 

 Main Idea: 

 Once squared, the matrix         is memoized for the next iteration and 

thus will not be recomputed when subsequently needed. 
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1)  Speed up Convergence Rate 

 In each step of “squaring memoization” iteration,  

one actually computes exponential steps (with base 2) of the conventional iteration.  

As a result, the convergence rate of “squaring memoization” iteration becomes 

exponentially faster than that of conventional iteration. 

Naïve SimRank Iterative Paradigm “Squaring Memoization” Paradigm 

(0) (1 ) nc  S I

(1) (1 ) T

nc c     S I QQ

(2) 2 2 2(1 ) ( )T T

nc c c      S I QQ Q Q

(3) 2 2 2 3 3 3(1 ) ( ) ( )T T T

nc c c c       S I QQ Q Q Q Q

7
(7)

0

(1 ) ( )i i i T

i

c c


  S Q Q

(0)

2
(1 ) nc  S I

(1)

2
(1 ) T

nc c     S I QQ

(2) 2 2 2 3 3 3

2
(1 ) ( ) ( )T T T

nc c c c       S I QQ Q Q Q Q

7
(3)

2
0

(1 ) ( )i i i T

i

c c


  S Q Q



15 / 45 

1)  Speed up Convergence Rate 

 “Squaring Memoization” Paradigm. 

 

 Extending to the “u-th Powering Memoization” Paradigm:  (u=2, 3,…) 

 

 

 Complexity: 

FLOPs per iteration #-iterations total 

 O(n3) ⌈logcϵ⌉−1 O((⌈logcϵ⌉ − 1) n3)  

 O((u−1)·n3) ⌈logulogcϵ⌉ O(⌈logulogcϵ⌉ (u−1) n3) 

 “Squaring Memoization” achieves the best computational performance. 

u-th Powering  

naïve 
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2)  Improve Computational Efficiency 

 Krylov Subspace Projection 

 

 

 

 

 Main Idea 

 A projection of  the matrix Q (n x n dimension) 

onto a Krylov subspace (α x α dimension with 

α ≪ n) is used for computing similarity.  

 Due to its smaller dimension, the Krylov 

subspace based SimRank formula is relatively 

easier to solve with accuracy guarantees. 

original space (n x n) 

Krylov subspace (α x α) 

S

S

ˆ
S
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2)  Improve Computational Efficiency 

 Error Estimate 

LEMMA. Let Err(⋆) be a matrix function defined by 

 

Then for every α = 1,2,··· ,n,  we have 

 

where 

 

COROLLARY 1.  

THEOREM. For every α = 1,2,··· ,n, the following estimate holds: 

 

COROLLARY 2.  

S

S

ˆ
S α 
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3)  The Complete Framework 

 Integrated with “Squaring Memoization”.  

 

 

 Error Estimate. 

 

 COROLLARY 3. 

 

 Complexity Analysis. 

Operation Time Space Error 

 building Krylov subspace O (rm) O (rn)   

 computing      in the subspace O(Kr3) O(r2)   

 solving       in the whole space O(r2n + r2) O (rn)   

Total O(rm+Kr3+nr2) O(rn)   
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4)  SimRank Stability Analysis 

 DEFINITION 1  (SimRank Condition Number).  

For a graph G = (V,E) with Q being its backward transition matrix, let 

 

The SimRank condition number of G, denoted by κ∞(G), is defined as 

 

Here,              is the maximum absolute row sum of the matrix. 

 Underlying Rationale.   

vec (AXB) = (BT ⊗ A) vec(X) 
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4)  SimRank Stability Analysis 

 THEOREM 1.   Given a graph G = (V,E), for any damping factor c ∈ (0,1),  

the SimRank condition number has the following tight bound 

 

 Implications 

 evaluate how stable the similarity is to the perturbations in graphs 

 estimate the accuracy of the ranking results invoked by the iteration error 

 Application 

 Actual version:  

 Perturbed version:  

Setting c=0.95 holds the possibility that 

the relative error in similarity may be  

(1 + 0.95)/(1 − 0.95) = 40 times larger 

than the relative error in the link structure. 
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4)  SimRank Stability Analysis 

 EXAMPLE 1.  The bound of SimRank condition number is tight. 

 

 

 Setting c = 0.7, on one hand, 

On the other hand, 
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5.2  SimFusion Overview 

 Features 

 Using a Unified Relationship Matrix (URM)  to represent 

relationships among heterogeneous data 

 Defined recursively and is computed iteratively 

 Applicable to any domain with object-to-object relationships 

 

 Challenges 

 URM may incur trivial solution or divergence issue of SimFusion. 

 Rather costly to compute SimFusion on large graphs 

 Naïve Iteration:  matrix-matrix multiplication  

 Requiring O(Kn3) time, O(n2) space  [Xi et. al. , SIGIR 05] 

 No incremental algorithms when edges update 
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Existing SimFusion:  URM and USM 

 Data Space:                      a finite set of data objects   (vertices) 

 Data Relation  (edges)    Given an entire space  

 Intra-type Relation                        carrying info. within one space 

 Inter-type Relation                        carrying info. between spaces 

 Unified Relationship Matrix (URM): 

 

 

 

 λi,j is the weighting factor between Di and Dj 

 Unified Similarity Matrix (USM): 
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Example.    

1
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High complexity  !!! 

O(Kn3) time  
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SimFusion Similarity on Heterogeneous Domain 

Trivial Solution   !!! 

S=[1]nxn 
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Contributions 

 Revising the existing SimFusion model, avoiding 

 non-semantic convergence  

 divergence  issue 

 Optimizing the computation of SimFusion+ 

 O(Km) pre-computation time, plus O(1) time and O(n) space 

 Better accuracy guarantee 

 Incremental computation on edge updates 

 O(δn) time and O(n) space for handling δ edge updates 
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Revised SimFusion 

Motivation:  Two issues of the existing SimFusion model 

 Trivial Solution on Heterogeneous Domain 

 

 

 

 Divergent Solution on Homogeneous Domain 

 

 

 

Root cause:  row normalization of URM !!! 
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From URM to UAM 

 Unified Adjacency Matrix (UAM) 

 

 

 

 

 Example 
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Revised SimFusion+ 

 Basic Intuition 

 replace URM with UAM to postpone “row normalization” 

in a delayed fashion while preserving the reinforcement 

assumption of the original SimFusion 

 Revised SimFusion+ Model                     Original SimFusion 

 

 

squeeze similarity scores in S into [0, 1]. 
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Optimizing SimFusion+ Computation 

 Conventional Iterative Paradigm 

 

 

 Matrix-matrix multiplication,   requiring O(kn3) time and O(n2) space 

 Our approach:  To convert SimFusion+ computation into 

finding the dominant eigenvector of the UAM A. 

 

 

 

 Matrix-vector multiplication,   requiring O(km) time and O(n) space 

 

Pre-compute σmax(A) only once, and cache it for later reuse 
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Example 

 Conventional Iteration: 

 

 Our approach: 

 

 

Assume                                 with  
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Key Observation 

 Kroneckor product “⊗”: 

 

e.g.  

 

 Vec operator: 

 e.g.  

 Two important Properties: 
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Key Observation 

 Two important Properties: 

P1. 

P2. 

 Our main idea: 

 

 

 

(1) 

(2) 

Power Iteration 
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Accuracy Guarantee 

 Conventional Iterations:  No accuracy guarantee !!! 

 

Question:    || S(k+1) – S || ≤ ? 

 Our Method: Utilize Arnoldi decomposition to build an 

order-k orthogonal subspace for the UAM A. 

 

 

 

 
Due to Tk small size and almost “upper-triangularity”,  
Computing σmax(Tk) is less costly than σmax(A). 
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Accuracy Guarantee 

 Arnoldi Decomposition: 

 

 

 k-th iterative similarity 

 

 Estimate Error:  
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Example 

 Arnoldi Decomposition: 

 

 

 

 

 

 

Assume                                 with  

Given   

(1) 

(2) 

(3) 
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Edge Update on Dynamic Graphs 

 Incremental UAM 

Given old G =(D,R) and a new G’=(D,R’), the incremental UAM is 

a list of edge updates, i.e., 

Main idea  

  To reuse       and the eigen-pair (αp, ξp) of  the old A to compute  

      is a sparse matrix when the number δ of edge updates is small.  

 Incrementally computing SimFusion+  

 

 

 

 

O(δn) time 

O(n) space 
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Example 

 

 

 

 

 

Suppose edges (P1,P2) and (P2,P1) are removed.  
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Experimental Setting 
 Datasets 

 Synthetic data  (RAND  0.5M-3.5M) 

 Real data  (DBLP, WEBKB) 

 

 

 

 

 Compared Algorithms 

 SimFusion+ and IncSimFusion+ ;  

 SF, a SimFusion algorithm via matrix iteration [Xi et. al, SIGIR 05];  

 CSF, a variant SF, using PageRank distribution [Cai et. al, SIGIR 10];  

 SR, a SimRank algorithm via partial sums [Lizorkin et. al, VLDBJ 10];  

 PR, a P-Rank encoding both in- and out-links [Zhao et. al, CIKM 09];  

DBLP 

WEBKB 
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Experiment (1): Accuracy 

 

On DBLP and WEBKB 

SF+ accuracy is consistently 
stable on different datasets. 

SF seems hardly to get sensible similarities  
as all its similarities asymptotically approach 
the same value as K grows. 
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Experiment (2): CPU Time and Space 

 On DBLP 

On WEBKB 

SF+ outperforms the other approaches, due to the use of σmax(Tk) 
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Experiment (3): Edge Updates 

 

IncSF+ outperformed SF+ when δ is small. 

For larger δ, IncSF+ is not that good because 
the small value of δ preserves the sparseness 
of the incremental UAM. 

Varying δ 
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Experiment (4) : Effects of   

 

The small choice of     imposes more iterations 
on computing Tk and vk, and hence increases 
the estimation costs. 



43 / 45 

Conclusions 
 
 A revision of SimFusion+, for preventing the trivial solution 

and the divergence issue of the original model.  

 Efficient techniques to improve the time and space of 

SimFusion+ with accuracy guarantees.  

 An incremental algorithm to compute SimFusion+ on 

dynamic graphs when edges are updated. 

 

 Devise vertex-updating methods for incrementally 

computing SimFusion+. 

 Extend to parallelize SimFusion+ computing on GPU. 

Future Work 
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