
A Space and Time Efficient Algorithm for SimRank Computation

Weiren Yu
Dept. of Computer Science & Technology

Donghua University
Shanghai, China

ywr0708@mail.dhu.edu.cn

Xuemin Lin
School of Computer Science & Engineering

University of New South Wales
NSW, Australia

lxue@cse.unsw.edu.au

Jiajin Le
Dept. of Computer Science & Technology

Donghua University
Shanghai, China

lejiajin@dhu.edu.cn

Abstract—SimRank has been proposed to rank web documents based
on a graph model on hyperlinks. The existing techniques for conducting
SimRank computation adopt an iteration computation paradigm. The
most efficient technique has the time complexity O

(
n3

)
with the space

requirement O
(
n2

)
in the worst case for each iteration where n is

the number of nodes (web documents). In this paper, we propose
novel optimization techniques such that each iteration takes the time
O (min {n ·m,nr}) and requires space O (n+m) where m is the
number of edges in a web-graph model and r ≤ log2 7. We also show
that our algorithm accelerates the convergence rate of the existing
techniques. Moreover, our algorithm not only reduces the time and
space complexity of the existing techniques but is also I/O efficient.
We conduct extensive experiments on both synthetic and real data
sets to demonstrate the efficiency and effectiveness of our iteration
techniques.

Keywords-Graph Similarity; SimRank; Link-based Analysis; Opti-
mal Algorithms;

I. INTRODUCTION

Recently, the complex hyperlink-based similarity search has
attracted considerable attention in the field of Information Retrieval.
One of the promising measures is the SimRank similarity with
applications to search engine ranking and document corpora clus-
tering. SimRank is a recursive refinement of co-citation measure
that computes similarity by common neighbours alone [1]. The
intuitive model for SimRank measure is based on random walk
over a web-graph like Google PageRank [2]. The SimRank sim-
ilarity between two pages is defined recursively as the average
similarity between their neighbours, along with the base case that
a page is maximally similar to itself. Unlike many other domain-
specific measures that require human-built hierarchies, SimRank
can be used in any domain in combination with traditional textual
similarity to produce an overall similarity measure [3], [4].

Motivations: For the efficient SimRank computation, it is de-
sirable to have optimization techniques that improve the time
and space complexity of the SimRank algorithm. The idea of
approximating SimRank scores has been studied in [3] based
on Monte Carlo method. This computation model is inherently
stochastic. However, with respect to the non-probabilistic SimRank
iterative computation, little work has been done to establish a
theoretical foundation of the optimization. The straightforward
iterative SimRank computation has the time complexity O

(
Kn4

)
in the worst case and requires the space O

(
n2

)
[1]. The bottleneck

mainly lies in high computational complexity. To the best of our
knowledge, there is only one research work in [5] concerning
deterministic methods for SimRank optimization. In that work
SimRank computation takes the time O

(
n3

)
per iteration in the

worst case with the space requirement O
(
n2

)
, which has yet

been regarded as the most efficient technique in non-probabilistic
SimRank iteration.

Contributions: In this paper, we investigate the optimal al-
gorithms that can further improve the efficiency of SimRank
computation. We provide theoretical guarantee for our methods and

present experimental results. The main contributions of this paper
are summarized below:

• We introduce a matrix representation and storage schemes
for SimRank model to reduce space requirement from
O
(
n2

)
to O (m+ n) with time complexity from O

(
n3

)
to

O (min {n ·m,nr}) in the worst case, where r ≤ log27.
• We develop optimization techniques for minimizing the max-

trix bandwidth for SimRank computation, which may improve
the I/O efficiency of SimRank iteration.

• We show a successive over-relaxation method for SimRank
computation to significantly accelerate the convergence rate
of the existing technique.

Organizations: The rest of the paper is organized as follows. In
the next section, the problem definition for SimRank is formally
introduced. In Sect. III, a solution framework for SimRank opti-
mization techniques is established. In Sect. IV, three optimization
techniques for SimRank computation are suggested; the time and
space complexity of the proposed algorithm is analyzed. In Sect.
V, the experimental results are reported on the efficiency of our
methods over synthetic and real-life data sets. The related work
appears in Sect. VI and Sect. VII concludes the paper.

II. PRELIMINARIES

In this section, the formal definition of SimRank is given and
some notations are presented. The material in this section recalls
Jeh’s previous work [1].

A. Problem Definition
Given a directed graph G = (V,E) , where each node in V

represents a web page and a directed edge ⟨a, b⟩ in E corresponds
to a hyperlink from page a to b, we can derive a node-pair graph
G2 ,

(
V 2, E2

)
, where

(i) ∀ (a, b) ∈ V 2 if a, b ∈ V ;
(ii) ∀ ⟨(a1, b1) , (a2, b2)⟩ ∈ E2 if ⟨a1, a2⟩ , ⟨b1, b2⟩ ∈ E.

On a node-pair graph G2, we formally define a similarity
function measured by SimRank score.

Definition 1 (SimRank similarity): Let s : V 2 → [0, 1] ⊂ R be
a real-valued function on G2 defined by

s (a, b) =

1, a = b;

c
|I(a)||I(b)|

|I(b)|∑
j=1

|I(a)|∑
i=1

s (Ii (a) , Ij (b)), I (a) , I (b) ̸= ∅;

0, otherwise.

(1)

where c ∈ (0, 1) is a constant decay factor , I (a) denotes all in-
neighbours of node a , |I (a)| is the cardinality of I (a), an indi-
vidual member of I (a) is referred to as Ii (a) (1 ≤ i ≤ |I (a)|),
then s (a, b) is called SimRank similarity score between node a and
b.

The underlying intuition behind SimRank definition is that “two
pages are similar if they are referenced by similar pages”. Figure 1
visualizes the propagation of SimRank similarity in G2 from node
to node, which corresponds to the propagation from pair to pair in
G, starting with the singleton node {4, 4}. Since a unique solution
to the SimRank recursive equation (1) is reached by iteration to a

2010 12th International Asia-Pacific Web Conference

978-0-7695-4012-2/10 $26.00 © 2010 IEEE

DOI 10.1109/APWeb.2010.42

164

productB.aspx

1

54

6

3

2

index.htm

people.htm privacy.htm

productA.aspx about.htm

63

44

42

5231

54

66

61

0.353
0.345

1

1

0.431

0.539

0.590

0.476

G G2

(a) (b)

Figure 1. SimRank propagating similarity from pair to pair in G associated
with the propagation from node to node in G2 with a decay factor c = 0.8

fixed-point, we can carry out the following iteration for SimRank
computation.

s(0) (a, b) =

{
1, a = b;
0, a ̸= b.

(2)

s(k+1) (a, b) =

1, a = b;

c
|I(a)||I(b)|

|I(b)|∑
j=1

|I(a)|∑
i=1

s(k) (Ii (a) , Ij (b)), I (a) , I (b) ̸= ∅;

0, otherwise.

(3)

where s(k) (a, b) (∀k = 0, 1, 2, · · ·) gives the score between a
and b on the k-th iteration, and this sequence nondecreasingly
converges to s (a, b), i.e.,

s (a, b) = lim
k→+∞

s(k) (a, b) .

In Table I, we list the notations that are used throughout this paper.
Note that symbols defined and referenced in a local context are not
listed here.

Table I
SYMBOLS AND NOTATIONS

Sym Definition Sym Definition
P adjacency matrix of G π permutation function
Q transpose of column-

normalized matrix P
Θπ permutation matrix corre-

sponding to π
S SimRank matrix n number of nodes on G
In n× n identity matrix m number of edges on G
K number of iterations d average node degree of G∨

disjunction operator ε error of accuracy
β (Q) bandwidth of matrix Q c decay factor, 0 < c < 1
N(a) set of neighbors of node a |N(a)|degree of node a

III. SOLUTION FRAMEWORK

In this section, we present our solution framework. The main
optimization issue of SimRank computation covers the following
three consecutive steps.

Firstly, a scheme for SimRank matrix representation is adopted.
We introduce a compressed storage scheme for sparse graphs and
a fast matrix multiplication for dense graphs, reducing the space
requirement from O

(
n2

)
to O (m+ n) and the time complexity

from O
(
n3

)
to O (min {n ·m,nr}) in the worst case, where r ≤

log2 7, respectively. We show the results in Sect. IV-A.
Secondly, a technique for permuted SimRank equation is pro-

posed. For the SimRank computation to be I/O-efficient, the
adjacency matrix needs to be preordered, which requires off-line
precomputation to minimize the bandwidth at query time. We
discuss the approaches in detail in Sect. IV-B.

Finally, a method for successive over-relaxation (SOR) iteration
is suggested to speed up the convergence rate of SimRank compu-
tation. We show that our SimRank iterative method is practically
faster than the most efficient existing techniques [5]. We show
theoretical results in Sect. IV-C.

IV. OPTIMIZATIONS FOR SIMRANK ALGORITHMS

In what follows, each of the three outlined techniques is pre-
sented in its own subsection accordingly.

A. Matrix Representations for SimRank Model
For an elaborate discussion on the subject, we first consider

the SimRank similarity problem in matrix formulation. Let S =
(si,j) ∈ Rn×n be a SimRank matrix of G whose entry si,j equals
the similarity score between page i and j, and P = (pi,j) ∈ Nn×n

be an adjacency matrix of G whose entry pi,j equals the number
of edges from vertex i to j. Clearly, we can write (2) and (3) as

s
(0)
a,b =

{
1, a = b;
0, a ̸= b.

(4)

s
(k+1)
a,b =

c

|I (a)| |I (b)|

n∑
i=1

n∑
j=1

pi,a · s
(k)
i,j · pj,b

= c ·
n∑

i=1

n∑
j=1

 pi,a
n∑

i=1
pi,a

 · s(k)i,j ·

 pj,b
n∑

j=1
pj,b

 (5)

where we assume, without loss of generality, that a ̸= b (otherwise,
s
(k)
a,a ≡ 1 (∀k = 0, 1, 2, · · ·)).

In matrix notation, equation (4) and (5) become{
S(0) = In
S(k+1) =

(
c ·Q · S(k) ·QT

)∨
In (∀k = 0, 1, · · ·) (6)

As we have seen in equation (6), the computational com-
plexity is O

(
n3

)
per iteration with the space requirement

O
(
n2

)
since the naive matrix multiplication algorithm ui,j =∑n

k=1 qi,k · sk,j (∀i, j = 1, · · · , n) performs O
(
n3

)
operations

for all entries of U ∈ Rn×n. In the following, two techniques are
investigated to obtain the time and space efficient algorithms for
SimRank computation. For sparse graph, the compressed storage
scheme is adopted to reduce the space requirement to O (n+m)
with time complexity O (n ·m). For dense graph, the fast matrix
multiplication algorithm is suggested to reduce the time complexity
from O

(
n3

)
to O (nr) in the worst case, where r ≤ log2 7.

1) Compressed Matrix Storage Scheme for Sparse Graph: For
certain large scale web graphs, the relative sparseness of the adja-
cency matrix increases with the growth of the matrix dimension.
To calculate SimRank for large domains, the memory requirements
do not allow the adjacency matrix stored in its full format. Hence
we suggest a compressed sparse matrix representation to be kept
in main memory.

There are various compressed storage schemes to store a matrix
[6], including Compressed Sparse Row (CSR), Compressed Sparse
Column (CSC), Jagged Diagonal (JAD) format, etc. We use the
CSR storage scheme for the sparse row-normalized adjacency
matrix Q due to the high compression ratio. Observing that the
directed graph G implies that Q is a non-symmetric sparse matrix,
we construct a triple ⟨val, col idx, row ptr⟩, where val is a
floating-point vector whose element stores the nonzero entry of the
matrix Q, col idx is an integer vector whose element stores the
column index of the nonzero entry in Q to make random jumps
in the val vector, row ptr is an integer vector whose element
stores the location in the val vector that starts a row. Therefore
we may infer from val (k) = qi,j that col idx (k) = j and
k ∈ [row ptr (i) , row ptr (i+ 1)).

1 2 3 4 5 6 7 8 9index

val 1 1 1 1
3

1
3

1
3 1 1

2
1
2

col idx 2 3 4 1 3 6 1 4 5

row ptr 1 2 3 4 7 8 10

Q =

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
1
3 0 1

3 0 0 1
3

1 0 0 0 0 0

0 0 0 1
2

1
2 0

Figure 2. CSR representation of the adjacency matrix Q

In Figure 2, we give an illustrative example of CSR repre-
sentation of the adjacency matrix Q. And many basic mathe-
matical operations on the sparse matrix such as matrix-matrix

165

multiplication should be implemented in a new way. For our
application, to calculate U = Q · S in (6) , where Q is a
sparse matrix and S is a dense matrix, we cannot use the sum
ui,j =

∑n
k=1 qi,k · sk,j (∀i, j = 1, · · · , n) directly because the

column traversal operation in CSR format matrix Q is costly. We
adopt the following algorithm that is more efficient for sparse
matrix multiplication [6].

Algorithm 1: SpM times DeM (Q,S)

Input : sparse adjacency matrix
Q =

⟨
valQ, col idxQ, row ptrQ

⟩
∈ Rn×n,

dense SimRank matrix S = (si,j) ∈ Rn×n

Output: dense matrix U = (ui,j) ∈ Rn×n ← Q · S
1 begin
2 Initialize U← 0
3 for i← 1 : n do
4 for j ← 1 : n do
5 for k ← row ptrQ (j) : row ptrQ (j + 1)− 1 do
6 Calculate U (j, i)←

U (j, i) + valQ (k)× S
(
col idxQ (k) , i

)
7 return U

In Algorithm 1, Q is stored in CSR format and the
performance of matrix multiplication Q · S requires only
O
(∑n

i=1

∑n
j=1

∑row ptrQ(j+1)−1

k=row ptrQ(j) 1
)

≡ O (n ·m) time and
O (n+m) storage. If G is sparse, then m = O (n). It follows
that the complexity for computing the whole SimRank matrix S
reduces to quadratic time and linear intermediate memory, which
is a substantial improvement achieved by CSR storage schemes.

2) Fast Matrix Multiplication for Dense Graph: Even when the
input graph is rather dense, we still consider that our algorithm
is more time-efficient than the existing work [5]. Though in this
case the naive dense matrix multiplication requires O

(
n3

)
time

complexity, fast matrix multiplication algorithms can be applied
in our algorithms to speed up the computation of the dense
matrices product. To the best of our knowledge, in standard
matrix storage format, the Coppersmith-Winograd algorithm [7]
is the fastest technique for square matrix multiplication, with a
complexity of O

(
n2.38

)
which is a considerable improvement

over the naive O
(
n3

)
time algorithm and the O

(
nlog27

)
time

Strassen algorithm [8]. The interested reader can refer to [9], [7],
[8] for a detailed description. For our purpose, we implemented the
Coppersmith-Winograd algorithm in dense graphs for achieving
high performances of our algorithms. Therefore, combined with
the sparse case, the time efficiency of our techniques is guaranteed
with O (min {n ·m,nr}) per iteration, where r ≤ log27, much
preferable to the existing approach [5] with a complexity of O

(
n3

)
in the worst case.

B. Permuted SimRank Iterative Approach
After the CSR storage scheme has been created for the sparse

adjacency matrix Q, the optimization technique suggested in this
subsection allows improving I/O efficiency for SimRank computa-
tion. The main idea behind this optimization involves two steps: (a)
Reversed Cuthill-McKee(RCM) algorithm [10] for non-symmetric
matrix is introduced for finding an optimal permutation π while
reordering the matrix Q during the precomputation phase. (b)
Permuted SimRank iterative equation is developed for reducing the
matrix bandwidth for SimRank computation.

We first introduce the notion of matrix bandwidth [11].
Definition 2 (Matrix Bandwidth): Given a matrix Q = (qi,j) ∈

Rn×n, let βi (Q) ,
∣∣∣∣i− min

1≤j≤n
{qi,j ̸= 0}

∣∣∣∣ denote the i-th band-

width of matrix Q. We define the bandwidth of matrix Q to be the
quantity

β (Q) , max
1≤i≤n

βi (Q)

If Q is non-symmetric, β (Q) is the maximum of its distinct
upper and lower bandwidths βupper (Q) and βlower (Q). Figure 3
briefly illustrates an example of the above concept.

βupper (Q) = 2

βlower (Q) = 4 β (Q) = max {βupper (Q) , βlower (Q)} = 4

Q =

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1
3

0 1
3

0 0 1
3

1 0 0 0 0 0
0 0 0 1

2
1
2

0

i-th row min
1≤j≤n

{qi,j ̸= 0} βi (Q)

1 2 1
2 3 1
3 4 1
4 1 3
5 1 4
6 4 2

Figure 3. Bandwidth of the adjacency matrix Q

A matrix bandwidth is introduced for measuring the I/O effi-
ciency for SimRank computation. For achieving smaller bandwidth,
we need to reorder the sparse matrix Q with precomputation by
finding an optimal permutation π.

We now give the notions of permutation and permutation matrix
which are helpful for further discussion [10].

Definition 3 (Permutation Matrix): Given a permutation π of n
objects, π : {1, 2, · · · , n} → {1, 2, · · · , n} defined in two-line
form by (

1 2 · · · n
π (1) π (2) · · · π (n)

)
The corresponding permutation matrix is Θπ = (θi,j) ∈

{0, 1}n×n, whose entries satisfy

θi,j =

{
1, j = π (i) ;
0, otherwise.

One important property of a permutation matrix is that multiply-
ing any matrix Q by a permutation matrix Θπ on the left/right has
the same effect of rearranging the rows/columns of Q. With this
property, we may find an optimal permutation π while reordering
the sparse matrix Q and can thus effectively minimize the band-
width for SimRank computation.

1) Reversed Cuthill-McKee (RCM) algorithm for directed graph:
The RCM algorithm for directed graph [10] is used for finding an
optimal permutation π corresponding to Q. With this permutation
π, we can separate Q into dense blocks, store them individually in
a CSR format and remove as many empty blocks as possible from
Q. However, it is an NP-complete problem [10] for finding such a
permutation π, which may also be viewed as a web graph labeling
problem in our models. We give an intuitive example in Figure 4.

Figure 4 indicates that our permutation problem for adjacency
matrix is equivalent to the graph labeling problem. It is easy to
see that the graph GQ and Gπ(Q) have the identical structure and
the different node labeling when we choose a new permutation π
on both rows and columns of matrix Q. Thus, the permutation π
can be thought of as a bijection between the vertices of the labeled
graph GQ and Gπ(Q). And the bandwidth β (π (Q)) is often no
greater than β (Q). In the following, our goal is to find a better
permutation π minimizing the bandwidth of the matrix Q.

There have been several heuristic approaches available for deter-
mining the better permutation π for a given matrix. Observe that
the popular Reversed Cuthill-McKee(RCM) algorithm [10] is most
widely used for ordering sparse symmetric matrices. We extend
the original RCM to the directed graph associated with the non-
symmetric adjacency matrix Q. We reorder the rows of Q by
adding “the mate QT ” of each entry and applying RCM to Q+QT

whose structure is symmetric since the bandwidth of π (Q) is no
greater than that of π

(
Q+QT

)
. We describe Algorithm 2 in

high-level terms for finding the optimal permutation π, which is
essentially a modification of RCM algorithm [10].

2) Permuted SimRank iterative equation: We now combine the
extended RCM techniques into the SimRank equation (6) for
achieving smaller memory bandwidths and better I/O efficiency.
We develop a permuted SimRank equation based on the following
theorem.

166

GQ Gπ(Q)

productB.aspx

1

54

6

3

2

index.htm

people.htm privacy.htm

about.htmproductA.aspx

4

63

5

1

2

people.htm index.htm

productB.aspxprivacy.htm

about.htm

productA.aspx

π =

(
1 2 3 4 5 6
4 2 1 3 6 5

)
node vi
π (vi)

Q π (Q)
1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 6

1

2

3

4

5

6

Figure 4. A simplified version of SimRank minimum bandwidth ordering
problem with permutation π on the adjacency matrix Q

Algorithm 2: Extended RCM (G)
Input : web graph G (V,E)
Output: permutation array Π′

1 begin
/* 1. Initialization */

2 T.empty() /* Create an empty queue T */
3 Π← ∅ /* Create an permutation array Π */

/* 2. Determination of a starting node with
the minimum degree */

4 foreach a′ ∈ argmina∈V −Π |N (a)| do
5 Π← Π

∪
{a′}

6 Sort the nodes in N (a′) by degrees in ascending order
7 T.enqueue (N (a′))

/* 3. Main loop */
8 while T ̸= ∅ do
9 b← T.dequeue()

10 if b ∈ Π then continue
11 Π← Π

∪
{b}

12 Sort the nodes in N(b) by degrees in ascending order
T.enqueue (N(b))

/* 4. Reverse ordering */
13 for i← 1 : n do
14 Π′ (n+ 1− i)← Π (i)

15 return Π′

Theorem 1 (Permuted SimRank Equation): Let π be an arbi-
trary permutation with an induced permutation matrix Θ. For a
given sparse graph G, SimRank similarity score can be computed
as

S(k) = π−1
(
Ŝ(k)

)
,

where Ŝ(k) satisfies{
Ŝ(0) = In
Ŝ(k+1) = c · π (Q) · Ŝ(k) · π(Q)T

∨
In (∀k = 0, 1, 2, · · ·)

Proof: Since π−1 (In) = In, we shall consider only the case
when k > 0. Taking permutation π at both sides of SimRank equation
(6) gives that

π (S) = π
(
c ·Q · S ·QT

∨
In

)
= Θ ·

(
c ·Q · S ·QT

)
·ΘT

∨
π (In)

= c ·Θ ·Q ·
(
ΘT ·Θ

)
︸ ︷︷ ︸

=I

·S ·
(
ΘT ·Θ

)
︸ ︷︷ ︸

=I

·QT ·ΘT
∨

In

= c ·
(
Θ ·Q ·ΘT

)
︸ ︷︷ ︸

=π(Q)

·
(
Θ · S ·ΘT

)
︸ ︷︷ ︸

=π(S)

·
(
Θ ·Q ·ΘT

)T

︸ ︷︷ ︸
=π(Q)T

∨
In

= c · π (Q) · π (S) · π(Q)T
∨

In

Let Ŝ , π (S) = Θ · S ·ΘT , it follows that

S = ΘT · Ŝ ·Θ , π−1
(
Ŝ
)

so that {
S = π−1

(
Ŝ
)

Ŝ = c · π (Q) · Ŝ · π(Q)T
∨

In
(7)

and this results in the above iterations, which completes the proof.

This theorem implies that the optimal bandwidth compression
technique for sparse non-symmetric adjacency matrix is a very
promising choice for large scale SimRank computations. The
concentration of nonzero entries about the main diagonal may result
in a significant reduction on not only the banded SimRank solvers
but also memory storage and arithmetic operations consumed.

For the SimRank computation to be I/O efficient, Q needs
to be preordered during the precomputation. We first determine
the permutation matrix Θ produced by RCM Algorithm 2, for
which π (Q) = Θ · Q · ΘT has a smaller bandwidth. Then
based on equation (7), the optimal techniques in earlier subsections
can be applied to compute the k-th iterative permuted SimRank
matrix Ŝ(k). And we can obtain the SimRank matrix by S(k) =

π−1
(
Ŝ(k)

)
= ΘT · Ŝ ·Θ.

C. SOR SimRank Algorithm

When the permuted SimRank equation is established, the opti-
mization technique presented in this subsection allows significantly
accelerating the convergence rate for computing S(k). The main
idea behind the optimization is that a successive over-relaxation
(SOR) iterative method is used for computing S(k) and can thus
effectively exhibit faster convergence than the existing technique
[5].

We consider the SimRank problem S(k+1) = c · Q · S(k) ·
QT ∨

In, where Q = (qi,j)n×n, S(k) =
(
s1

(k) s2
(k) · · · sn(k)

)
, and si

(k) denotes the i-th column vector of matrix S(k). For each
si

(k) (i = 1, 2, · · · , n), we can write (6) in component form

si = c ·Q ·

 n∑
j=1

qi,j · sj

∨
In

= c ·Q ·

∑
j<i

qi,j · sj + qi,i · si +
∑
j>i

qi,j · sj

∨
In

Since qi,i = 0, we can carry out the following iteration

sGS
i

(k+1) = c ·Q ·

∑
j<i

qi,j · sj(k) +
∑
j>i

qi,j · sj(k+1)

∨
In (8)

167

where sGS
i

(k+1) is a Gauss-Seidel auxiliary vector. The actual
components sSOR

i
(k+1) of this iterative method are then defined

from

sSOR
i

(k+1) = sSOR
i

(k) + ω
(
sGS
i

(k+1) − sSOR
i

(k)
)

= (1− ω) sSOR
i

(k) + ω · sGS
i

(k+1) (9)

where ω is a relaxation factor, sSOR
i

(k+1) is a weighted mean
of sSOR

i
(k) and sGS

i
(k+1), which can be computed sequentially

using forward substitution. Now we substitute (8) back into the
above equation to get

sSOR
i

(k+1) = (1− ω) sSOR
i

(k)

+ ω · c ·Q

∑
j<i

qi,j · sj(k) +
∑
j>i

qi,j · sj(k+1)

∨
In

And we call this equation the successive over-relaxation SimRank
iteration.

Choosing the value of ω plays a crucial part in the convergence
rate of our algorithm. It has been proven in [12] that when
0 < ω < 2, the SOR iterative method converges; ω = 1 shows
that the iteration simplifies to the Gauss-Seidel iteration; ω > 1
is used to significantly accelerate convergence, corresponding to
overrelaxation. For our purpose, we take the optimal value ω = 1.3,
which gives a significant improvement in the convergence rate of
the existing technique [5].

Algorithm 3: SOR SimRank Iteration (GQ, ε, c, ω)

Input : weh graph GQ with the transpose of column-normalized
adjacency matrix in CSR format

Q =
⟨
valQ, col idxQ, row ptrQ

⟩
∈ Rn×n,

error of accuracy ε, decay factor c, relaxation factor ω
Output: SimRank matrix S = (si,j) ∈ [0, 1]n×n,

the number of iterations k
1 begin
2 Initialize S̃← 0, S← I, k ← 0

3 Initialize π ←ExtendedRCM
(
GQ+QT

)
4 while

(∥∥∥Ŝ− S̃
∥∥∥ ≥ ε

)
do

5 for i← 1 : n do
6 Initialize v← 0
7 Initialize j ← row ptrQ (i)
8 while (j ≤ row ptrQ (i+ 1)− 1 &&

col idxQ (j) ≤ i) do
9 Set v← v + valQ (j) · S̃

(
:, col idxQ (j)

)
10 Set j ← j + 1

11 Set r ← j
12 if i = 0 then
13 Set Ŝ← (1− ω) · Ŝ+ ω · S̃
14 for j ← r : row ptrQ (i+ 1)− 1 do
15 Set v← v + valQ (j) · Ŝ

(
:, col idxQ (j)

)
16 Set S̃ (:, i)← 0
17 for m← 1 : n do
18 for n← row ptrQ (m) : row ptrQ (m+ 1)− 1

do
19 Set S̃ (m, i)←

S̃ (m, i) + c · valQ (n) · v
(
col idxQ (n)

)
20 Set S̃ (i, i)← 1

21 Set k ← k + 1

22 Set S← π−1
(
Ŝ
)

23 return S, k

Algorithm 3 describes the SOR technique applied to SimRank

computation in combination with the CSR-styled matrix representa-
tion and the permuted SimRank equation proposed in the previous
subsections.

• In Line 3, π can be calculated by Algorithm 2.
• In Line 8, the condition in the header of the while loop is

justified by Algorithm 1.
• In Line 9-10, the iteration is justified by Equation 8.
• In Line 12-13, the expression is calculated by Equation 9.
• In Line 15-20, the iteration is justified by Equation 8.
• In Line 14,18, the condition in the header of the for loop is

justified by Algorithm 1.
It is easy to analyze that Algorithm 3 has the time complexity

O (n ·m) with the space requirement O (n+m) for each iteration.
It is worth mentioning that there is an inherent trade-off between
computational time complexity and I/O efficiency. However, for our
optimization techniques, we can achieve higher I/O efficiency while
improving computational time complexity. The reason is that the
I/O efficiency of our algorithm is greatly achieved by our extended
RCM algorithm, which has the same time complexity as the naive
RCM algorithm. According to [10], the time complexity of RCM
algorithm (a) is O(m) in the worst case and (b) even can be
reduced to O(n) with optimal implementation. In comparison, our
SOR SimRank algorithm takes the time O (min {n ·m,nr}) much
greater than the RCM algorithm, so that the time consumption for
achieving I/O efficiency can be ignored.

V. EXPERIMENTAL EVALUATION

In this section, we present experimental results of our proposed
algorithms. The primary purpose of the evaluation is to show that
our algorithms do in fact improve the time, space and I/O efficiency
of the existing technique [5]. The experiments also illustrate the
effects of varying the parameters of our algorithms.

A. Experimental Setup
1) Hardware: The experiments were carried out on 2.0GHz

Pentium(R) Dual-Core CPU with 2GB RAM and Windows Vista
OS. We implemented our algorithms using Visual C++.

2) Data Sets: Both synthetic and real-life data sets were used
in the evaluation: one for randomly generated graphs and the other
for a subset of Wikipedia corpus.
Synthetic Data Sets: To test our implementations, we simulated
the web graph with an average of 8 links per page. We generated
10 sample adjacency matrices with the dimensionality (web docu-
ments) from 1K to 10K and with ξ out-links on each row, where
ξ ∼uniform[0, 16] is a random variable. Two storage schemes were
used respectively to represent these graphs: (a) the CSR-styled
compression for sparse graphs; (b) the full matrix format for dense
graphs.
Real-life Data Sets: For practical applications, we tested our
algorithms over the Wikipedia graph to investigate the relative
improvement in SimRank computation time with respect to op-
timization techniques employed. Wikipedia is a popular online
encyclopedia, containing 3.2M articles with 110M intra-wiki links
in the English version (exported in October 2007). To build such a
Wikipedia adjacency matrix, we chose the relationship “a category
contains an article to be a link from the category to the article”.

3) Parameter Settings: In our evaluations, for a correspondence
with experiment conditions in [5], the following parameters were
used as default values: the decay factor c = 0.8, the SOR weight
value ω = 1.3 and the accuracy ε = 0.05 (unless otherwise
specified).

4) Performance Measures: For our optimization techniques, the
efficiency was measured by the computation time complexity, the
space requirement and the convergence rate needed to reach a
certain desired SimRank accuracy.

B. Experimental Results
1) Time Efficiency: For the proposed optimization techniques,

we first compare the computation time of our methods with that of
the existing algorithm [5]. Figure 5(a) and 5(b) show the dynamics

168

0K

2K

4K

6K

8K

10K

12K

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

with SOR & CSR-styled format

with par!al sums

sample curve for cubic polynomial

0K

2K

4K

6K

8K

10K

12K

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

with SOR & CSR-styled format

with par!al sums

sample curve for cubic polynomial

(a) Time Efficiency on Sparse Graphs

0K

10K

20K

30K

40K

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

with SOR & fast matrix mul!plica!on

with par!al sums

sample curve for cubic polynomial

0K

10K

20K

30K

40K

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

with SOR & fast matrix mul!plica!on

with par!al sums

sample curve for cubic polynomial

(b) Time Efficiency on Dense Graphs

3

6

9

12

15

18

0.03 0.05 0.07 0.09 0.11 0.13 0.15

with SOR

with par!al sums

(c) Convergence Rate (n = 10K,ω = 1.3)

0K

5K

10K

15K

20K

25K

30K

35K

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

(d) Relaxation Factor (n = 10K, ε = 0.05)

0K

2K

4K

6K

8K

10K

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

ini al

with unsymmetric RCM reordering

0K

2K

4K

6K

8K

10K

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

ini al

with unsymmetric RCM reordering

(e) I/O Efficiency on Sparse Graphs

0 2K 4K 6K 8K 10K

2K

4K

6K

8K

10K

0 2K 4K 6K 8K 10K

2K

4K

6K

8K

10K
without extended RCM with extended RCM

(f) Extended RCM (m = 5, 496, 208)

Figure 5. Experimental results on SimRank computation

in SimRank computation time with respect to the number of nodes
for 10 generated sparse and dense graphs respectively. Each bar
chart is approximated by a polynomial curve, in a least squares
sense. We can see that given an accuracy ε, our algorithms with
matrix representation and SOR iteration is more time-efficient than
the existing technique with partial sums [5] for both sparse and
dense graphs. Note that the different maximum value is chosen
across the vertical axis in Figure 5(a) and 5(b). For sparse graphs,
our method may reduce almost half of the computation time when
nodes are growing, whereas for dense graphs, the time complexity
of our method has been significantly improved due to the fast
matrix multiplication.

The results have been well consistent with the theoretical anal-
ysis. The time complexity in [5] requires O

(
n2 · d

)
per iteration,

where d is the average node degree, resulting in O
(
n3

)
for

dense graphs. For comparison, our approach requires O (n ·m)
per iteration for computing sparse matrix multiplication. For each
iteration, since m = n · d, it is not surprising that our method
for sparse graphs has the same time complexity as [5]. Hence, in
Figure 5(a), it is reasonable to see that for a given accuracy ε,
our method has reduced just half of the time due to the SOR
techniques accelerating the convergence rate and reducing the
number of iterations to reach a desired accuracy. By contrast,
for dense graphs, our method in Figure 5(b) has a significant
improvement in computation time because the time consumption
in [5] requires O

(
n3

)
in the dense case whilst our technique

adopts the fast matrix multiplication for computing SimRank score,
involving O (nr), where r ≤ log27.

2) Convergence Rate: To investigate the correlation between the
residual accuracy ε and the number of iterations K, we vary the
accuracy ε from 0.03 to 0.15 over a 10K generated sparse graph.
Figure 5(c) compares the convergence rate of our SOR SimRank
method with the existing technique. In [5], for achieving accuracy
ε, the existing algorithm requires K = ⌈logc ε⌉ − 1 iterations.
For evaluating our algorithm, here we choose the relaxation factor
ω = 1.3 for SOR SimRank computation. It is interesting to note
that for a given accuracy ε, the number of iterations needed for
SOR computation is much fewer than [5]. It follows that the SOR
technique with ω = 1.3 for computing SimRank can speed up the
convergence roughly twice faster over the algorithm in [5].

Furthermore, to investigate how the computation time is influ-
enced by the relaxation factor ω of our SOR method, we vary
ω from 0 to 2. The results in Figure 5(c) indicate that the SOR
computation time bottomed out when ω ∈ [1.2, 1.4]; when ω = 0
or 2, our algorithm is not convergent, which fully agrees with the

theoretical expectation for SOR in [12]. That is the reason why we
choose ω = 1.3 for achieving the best performance of our SOR
SimRank algorithm.

3) I/O Efficiency: Now we show results of applying the extended
RCM algorithms to the sparse matrix Q + QT for the SimRank
precomputation. Figure 5(e) presents the effect of applying our
reordering Algorithm 2 to 10 generated sparse graphs. We can
see that RCM does reduce the total bandwidths for these sparse
matrices and can thus improve the I/O efficiency of our algorithm.
In Figure 5(f), we visualize the sparsity pattern of our generated
10K × 10K adjacency matrix (a) without and (b) with the extended
RCM algorithm. Here, we separate the large matrix into 25 blocks.
For each block, the nonzeros will cluster as much as possible
about the main diagonal of the submatrix so that the computation
bandwidth may be greatly minimized.

4) Space Efficiency: For achieving storage efficiency, the CSR
scheme is adopted for our large and sparse matrix representations,
yielding significant savings in memory usage. From the space
perspective, we implement corresponding arithmetic operations
such as matrix-matrix multiplications for our algorithm. We also
use the CSR scheme for computing SimRank over the Wikipedia
graph (a huge matrix with few non-zero elements) and it only takes
up 846.6MB.

In the final experiment over the Wikipedia graph, we chose
c = 0.6, ε = 0.1 corresponding with the evaluation conditions
in [5]. We set the cache size of 128MB for Oracle Berkeley DB
and kept the Wikipedia graph in the CSR format. Due to space
constraints, we will focus only on the experimental result. From
the time and convergence rate perspective, our evaluation shows
that it takes nearly 35 hours with 5 iterations to complete the
SimRank computation on one processor, whereas our method takes
approximately 16 hours with only 2 iterations, thus saving almost
half of the computation time. From the space perspective, our
representation in CSR scheme requires 846.6MB storage space,
whereas their scheme takes up nearly 2.7GB. Our results on a single
machine demonstrate that our method is preferable as it demands
less computation time and storage requirement, which agrees with
our theoretical considerations addressed in Sect. IV.

VI. RELATED WORK

The issue of measuring object-to-object similarity has attracted a
lot of attention. Existing work on similarity search techniques can
be distinguished into two broad categories: text-based and link-
based [1], [3], [4], [13], [14].

169

The link-based similarity computation can be modeled by a
web-graph, with vertices corresponding to web pages and edges
to the hyperlinks between pages. In terms of a graph structure,
the methods of bibliographic coupling [15] and co-citation [16]
have been applied to cluster scientific papers according to topic. In
both schemes, similarities between two nodes are measured only
from their immediate neighbors. As a generalization of similarity
functions to exploit the information in multi-step neighborhoods,
HITS [17], PageRank [14], SimRank [1] and SimFusion [18]
algorithms were suggested by adapting link-based ranking schemes.

Jeh first introduced a similarity measure called SimRank [1]
aiming at “two pages are similar if they are referenced by similar
pages”. The underlying intuition behind the SimRank approach
somewhat resembles the one for SimFusion “integrating relation-
ships from multiple heterogeneous data sources”. In [1], SimRank
is known to be efficient since it recursively refines the co-citation
measure and forms a homogenous language-independent data set.

Optimization algorithms for SimRank computation have been
explored in [3], [5], [19], [20]. Results show that the use of
fingerprint trees and random permutations with extended Jaccard
coefficient can approximately compute SimRank scores under a
scalable Monte Carlo framework. The algorithms in [3] use prob-
ability theory to calculate the expected-f meeting time τ (u, v) and
estimate s (u, v) by E

(
cτ(u,v)

)
. The solution is rather stochastic.

In comparison, our algorithm can get a deterministic solution by
using numerical techniques for computing SimRank.

There has also been work for computing SimRank determinsit-
ically, the most efficient optimization techniques presented in [5]
introduced a partial sum function to reduce the number of access
operations to the SimRank function and speed up similarity scores
calculation by sk (u, ∗) values clustering. The algorithm in [5] has
improved SimRank computational complexity from O

(
Kn2 · d2

)
in [1] to O

(
Kn2 · d

)
, where d is the average node degree, n is

the number of nodes. In comparison, our method has achieved the
same time complexity O (Kn ·m) for sparse graphs, where m
is the number of edges. When the graph is rather dense, the time
complexity in [5] is O

(
Kn3

)
, whereas our technique only requires

O (nr) operations, where r ≤ log2 7, taking advantage of fast
matrix multiplications. In addition, our algorithm also accelerates
the convergence rate of [5].

Antonellis et al. [20] extended the weighted and evidence-
based SimRank yielding better query rewrites for sponsored search;
however, their framework lacks a solid theoretical background
and the edge weight in the transition probability is an empirical
distribution.

Meanwhile, Xi et al. [18] introduced SimFusion algorithm to
represent heterogeneous data objects. The Unified Relationship Ma-
trix (URM) approach is employed to support for various intra-nodes
relations and information spaces. SimFusion iterative reinforcement
similarity score takes the form:

Sk
usm (a, b) = Lurm (a) · Sk−1

usm (a, b) · (Lurm (b))T

=
1

|I (a)| |I (b)|

|I(b)|∑
j=1

|I(a)|∑
i=1

Sk−1
usm (Ii (a) , Ij (b))

where Lurm is a single step probability transformation matrix
in a Markov Chain that combines all the relationships among
nodes, Surm is a Unified Similarity Matrix (USM) that represents
similarity values between node pairs. The computational complex-
ity for SimFusion is O

(
n3

)
whilst our approach takes the time

O (min {n ·m,nr}), where r ≤ log27. The storage for SimFusion
requires O

(
n2

)
, whereas we use CSR representation for reducing

the space requirement to O (n+m) for sparse graphs. Moreover,
our algorithm is I/O efficient, minimizing the bandwidth during the
precomputation and has the faster convergence rate.

Finally, some of the iterative matrix-analytic methods used in
this work are surveyed in [12].

VII. CONCLUSIONS

This paper investigated the optimization issues for SimRank
computation. We first formalized the SimRank equation in ma-
trix notations. A compressed storage scheme for sparse graphs
is adopted for reducing the space requirement from O

(
n2

)
to

O (n+m), whereas a fast matrix multiplication for dense graph
is used for improving the time complex from O

(
n2 · d

)
to

O (min {n ·m,nr}), where r ≤ log27. Then, for achieving the
I/O efficiency of our algorithm, we developed a permuted Sim-
Rank iteration in combination of the extended Reversed Cuthill-
McKee algorithm. Finally, we have shown a successive over-
relaxation method for computing SimRank to significantly speed up
the convergence rate of the existing technique. Our experimental
evaluations on synthetic and real-life data sets demonstrate that
our algorithms have high performances in time and space, and can
converge much faster than the existing approaches.

ACKNOWLEDGMENT

Part of the work done while the first author was a joint PhD
candidate at Prof. Xuemin Lin’s Research Groups and Laboratories.
Prof. Xuemin Lin was supported by three ARC DPs (DP0666428,
DP0881035, and DP0987557) and a Google research award.

REFERENCES
[1] G. Jeh and J. Widom, “Simrank: a measure of structural-context

similarity,” in KDD, 2002.
[2] A. Pathak, S. Chakrabarti, and M. S. Gupta, “Index design for

dynamic personalized pagerank,” in ICDE, 2008.
[3] D. Fogaras and B. Rácz, “Scaling link-based similarity search,”

in WWW, 2005.
[4] D. Fogaras and B. Racz, “A scalable randomized method to

compute link-based similarity rank on the web graph,” in EDBT
Workshops, 2004.

[5] D. Lizorkin, P. Velikhov, M. Grinev, and D. Turdakov, “Accuracy
estimate and optimization techniques for simrank computation,”
PVLDB, vol. 1, no. 1, 2008.

[6] E. F. D’Azevedo, M. R. Fahey, and R. T. Mills, “Vectorized
sparse matrix multiply for compressed row storage format,” in
International Conference on Computational Science (1), 2005.

[7] D. Coppersmith and S. Winograd, “Matrix multiplication via
arithmetic progressions,” J. Symb. Comput., vol. 9, no. 3, 1990.

[8] J. Cohen and M. S. Roth, “On the implementation of strassen’s
fast multiplication algorithm,” Acta Inf., vol. 6, 1976.

[9] D. Coppersmith and S. Winograd, “On the asymptotic complexity
of matrix multiplication,” SIAM J. Comput., vol. 11, no. 3, 1982.

[10] W. M. Chan and A. George, “A linear time implementation of
the reverse cuthill-mckee algorithm,” BIT, vol. 20, no. 1, 1980.

[11] A. Lim, B. Rodrigues, and F. Xiao, “Heuristics for matrix band-
width reduction,” European Journal of Operational Research, vol.
174, no. 1, 2006.

[12] R. Bhatia, Matrix Analysis. Springer, 1997.
[13] J. U. Quevedo and S.-H. S. Huang, “Similarity among web pages

based on their link structure,” in IKE, 2003.
[14] R. M. Lawrence Page, Sergey brin and T. Winograd, “The

pagerank citation ranking bringing order to the web,” 1998,
technial report.

[15] B. H. Weinberg, “Bibliographic coupling: A review,” Information
Storage and Retrieval, vol. 10, no. 5-6, 1974.

[16] D. T. Wijaya and S. Bressan, “Clustering web documents using
co-citation, coupling, incoming, and outgoing hyperlinks: a com-
parative performance analysis of algorithms,” IJWIS, vol. 2, no. 2,
2006.

[17] A. O. Mendelzon, “Review - authoritative sources in a hyper-
linked environment,” ACM SIGMOD Digital Review, vol. 1, 2000.

[18] W. Xi, E. A. Fox, W. Fan, B. Zhang, Z. Chen, J. Yan, and
D. Zhuang, “Simfusion: measuring similarity using unified re-
lationship matrix,” in SIGIR, 2005.

[19] Y. Cai, P. Li, H. Liu, J. He, and X. Du, “S-simrank: Combining
content and link information to cluster papers effectively and
efficiently,” in ADMA, 2008.

[20] I. Antonellis, H. Garcia-Molina, and C.-C. Chang, “Simrank++:
query rewriting through link analysis of the click graph,” PVLDB,
vol. 1, no. 1, 2008.

170

