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Abstract—SimRank has been a powerful model for assessing
the similarity of pairs of vertices in a graph. It is based on
the concept that two vertices are similar if they are referenced
by similar vertices. Due to its self-referentiality, fast SimRank
computation on large graphs poses significant challenges. The
state-of-the-art work [16] exploits partial sums memorization
for computing SimRank in O(Kmn) time on a graph with n
vertices and m edges, where K is the number of iterations.
Partial sums memorizing can reduce repeated calculations by
caching part of similarity summations for later reuse. However,
we observe that computations among different partial sums may
have duplicate redundancy. Besides, for a desired accuracy ϵ, the
existing SimRank model requires K = ⌈logC ϵ⌉ iterations [16],
where C is a damping factor. Nevertheless, such a geometric rate
of convergence is slow in practice if a high accuracy is desirable.

In this paper, we address these gaps. (1) We propose an
adaptive clustering strategy to eliminate partial sums redundancy
(i.e., duplicate computations occurring in partial sums), and
devise an efficient algorithm for speeding up the computation
of SimRank to O(Kd′n2) time, where d′ is typically much
smaller than the average in-degree of a graph. (2) We also
present a new notion of SimRank that is based on a differential
equation and can be represented as an exponential sum of
transition matrices, as opposed to the geometric sum of the
conventional counterpart. This leads to a further speedup in
the convergence rate of SimRank iterations. (3) Using real and
synthetic data, we empirically verify that our approach of partial
sums sharing outperforms the best known algorithm by up to
one order of magnitude, and that our revised notion of SimRank
further achieves a 5X speedup on large graphs while also fairly
preserving the relative order of original SimRank scores.

I. INTRODUCTION

Identifying similar objects based on hyperlink structure is a
fundamental operation for many web mining tasks. Examples
include web page ranking [3], hypertext classification (KNN)
[13], graph clustering (K-means) [5], and collaborative filter-
ing [11], [17]. In the last decade, with the overwhelming num-
ber of objects on the Web, there is a growing need to be able
to automatically and efficiently assess the similarity of these
objects on large graphs. Indeed, the Web has huge dimensions
and continues to grow rapidly— more than 5% of new objects
are created per week [4]. As a result, similarity assessment on
web objects is apt to become obsolete very shortly. In light
of this, it is imperative for similarity assessment to get a fast
computational speed on large graphs.

Amid the existing similarity metrics, SimRank [11] has
emerged as a powerful tool for assessing structural similarities
between objects. Similar to the well-known PageRank [3],
SimRank scores depend merely on the link structure of the

Web, independent of the textual content of objects. The main
difference between the two models is the scoring mechanism.
PageRank assigns an authority weight for each object, whereas
SimRank assigns a similarity score between two objects.
SimRank was first proposed by Jeh and Widom [11], and has
gained enormous popularity for its success in many areas such
as bibliometrics [14], top-K search [13], and recommender
systems [1]. This reveals the importance of SimRank as an
effective measure. The intuition underlying SimRank is a
subtle recursion that “two vertices are similar if their incoming
neighbors are similar”, together with the base case that “every
vertex is maximally similar to itself” [11]. Due to this self-
referential concept, conventional algorithms for computing
SimRank have an iterative nature. The sheer size of the Web
has presented striking challenges to fast SimRank computing.
The best known algorithm proposed by Lizorkin et al. [16]
(hereafter referred to as psum-SR) requires O(Kmn) time
(O(Kn3) in the worst case) for K iterations, where n and m
denote the number of vertices and edges, respectively.

The beauty of psum-SR algorithm [16] resides in the
following three observations. (1) Essential nodes selection may
eliminate the computation of a fraction of node pairs with a-
priori zero scores. (2) Partial sums memorizing can effectively
reduce repeated calculations of the similarity among different
node pairs by caching part of similarity summations for later
reuse. (3) A threshold setting on the similarity enables a further
reduction in the number of node pairs to be computed. Par-
ticularly, the second observation of partial sums memorizing
plays a paramount role in greatly speeding up the computation
of SimRank from the naive O(Kd2n2) [11] to O(Kdn2), 1

where d is the number of average in-degrees in a graph.
Before shedding light on the limitations of psum-SR [16],

let us first revisit the central idea of partial sums memorizing,
as illustrated in the following example.

Example 1. Consider a paper citation network G in Fig. 1a,
where each vertex represents a paper, and an edge a citation.
For any vertex a, we denote by I(a) the set of in-neighbors of
a. Individual element in I(a) is denoted as Ii(a). Let s(a, b)
be the SimRank similarity between vertices a and b. In what
follows, we want to compute s(a, b) and s(a, d) in G.

Before partial sums memorizing is introduced, a naive way
is to sum up the similarities of all in-neighbors (Ii(a), Ij(b))
of (a, b) for computing s(a, b), and to sum up the similarities

1The degree sum formula n · d = m implies that O(Kmn) time in [16]
is equivalent to O(Kdn2).
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Fig. 1: Merit and demerit of partial sums memorizing for SimRank computation on a paper citation network

of all in-neighbors (Ii(a), Ij(d)) of (a, d) for computing
s(a, d), independently, as depicted in Fig. 1b. In contrast,
psum-SR is based on the observation that I(b) and I(d) have
three vertices {e, f, i} in common. Thus, the three partial sums
over I(a) (i.e., PartialskI(a)(y)

2 with y ∈ {e, f, i}) can be
computed only once, and reused for both s(a, b) and s(a, d)
computation (see left part of Fig. 1c). Similarly, for computing
s(c, b) and s(c, d), since I(b) ∩ I(d) = {e, f, i}, the partial
sums over I(c) (i.e., PartialskI(c)(x) with x ∈ {e, f, i}) can
be cached for later reuse (see right part of Fig. 1c). �

Despite the aforementioned merits of psum-SR, existing
work [16] on SimRank has the following limitations.

Firstly, we observe from Example 1 that computing partial
sums [16] over different in-neighbor sets may have duplicate
redundancy. For instance, I(a) and I(c) in Fig. 1c have two
vertices {b, g} in common, implying that the sub-summation
Partialsk{b,g}(⋆) is the common part shared between the partial
sums PartialskI(a)(⋆) and PartialskI(c)(⋆). Thus, there is an
opportunity to speed up the computation of SimRank by pre-
processing the common sub-summation Partialsk{b,g}(⋆) once,
and caching it for both PartialskI(a)(⋆) and PartialskI(c)(⋆)
computation. However, it is a big challenge to identify the
well-tailored common parts for maximal sharing among the
partial sums over different in-neighbor sets since there could
be many irregularly and arbitrarily overlapped in-neighbor sets
in a real graph. To address this issue, we propose optimization
techniques to have such common parts memorized in a hier-
archical clustering manner, and devise an efficient algorithm
to eliminate such redundancy.

Secondly, the existing iterative paradigm [16] for computing
SimRank has a geometric rate of convergence, which might
be, in practice, rather slow when a high accuracy is attained.
This is especially evident in e.g., citation networks and web
graphs [12]. For instance, our experiments on DBLP citation
network shows that a desired accuracy of ϵ = 0.001 may lead
to more than 30 iterations of SimRank, for the damping factor
C = 0.8. Lizorkin et al. [16] has proved theoretically in [16]
that, for a desired accuracy ϵ, the number of iterations required
for the conventional SimRank is K = ⌈logC ϵ⌉, which is due

2Recall from [16] that a partial sum for a binary function f : X ×Y → R
over a set D = {x1, · · · , xn} ⊆ X , denoted by PartialfD(⋆), is defined as

PartialfD(y) =
∑

xi∈D
f(xi, y), (y ∈ Y).

mainly to the geometric sum of the traditional representation
of SimRank. This highlights the need for a revised SimRank
model to speed up the geometric rate of convergence.

Contributions. Our main contributions are as follows.
• We propose an adaptive clustering strategy based on a

minimum spanning tree to eliminate the partial sums
redundancy [16] in a hierarchical fashion (Section III).
By optimizing the sub-summations shared among the
different partial sums, an efficient algorithm is devised for
speeding up the computation of SimRank from O(Kdn2)
[16] to O(Kd′n2) time, where d′ (≤ d) can, in general,
be much smaller than the average in-degree d.

• We introduce a new notion of SimRank by using a matrix
differential equation to further accelerate the convergence
of SimRank iterations from the traditional geometric to
exponential rate (Section IV). We show that the new
notion of SimRank can be characterized as an exponential
sum in terms of the transition matrix while fairly preserv-
ing the relative order of SimRank scores, as opposed to
the conventional counterpart [16] as a geometric sum.

• We conduct extensive experiments on real and synthetic
datasets (Section V), demonstrating that our approach of
partial sum sharing on large graphs can be one order of
magnitude faster than psum-SR. In addition, our revised
notion of SimRank achieves up to a 5X further speedup
against the conventional counterpart.

Related Work. The development of methods for efficiently
computing SimRank is a vibrant research area [14], [16], [18]
that is fundamental to e.g., web mining and object ranking.
Recent results on SimRank can be summarized as follows.

The earliest mention of SimRank dates back to Jeh and
Widom [11] who suggested (i) an iterative approach to com-
pute SimRank, which is in O(Kd2n2) time, along with (ii)
a heuristic pruning rule to set the similarity between far-
apart vertices to be zero. Unfortunately, the naive iterative
SimRank is rather costly to compute, and there is no provable
guarantee on the accuracy of the pruning results. To overcome
the limitations, a very appealing attempt was made by Lizorkin
et al. [16] who (i) provided accuracy guarantees for SimRank
iterations, i.e., the number of iterations needed for a given
accuracy ϵ is K = ⌈logC ϵ⌉, and (ii) proposed three excellent
optimization approaches, i.e., essential node-pair selection,
partial sums memorization, and threshold-sieved similarities.
Especially, partial sums memorizing serves as the cornerstone
of their strategies, which significantly reduces the compu-
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tation of SimRank to O(Kdn2) time. However, repeated
sub-summations among different partial sums were largely
overlooked by Lizorkin et al. . Our work differs from [16] in
the following. (i) We put forward the phenomenon of partial
sums redundancy in [16] that typically exists in real graphs.
(ii) We accelerate the convergence of SimRank iterations from
geometric [16] to exponential growth, by revising the existing
SimRank model.

There has also been a flurry of research interests (e.g., [1],
[6], [10], [13]–[15], [19]) in the SimRank optimization prob-
lems. Li et al. [14] first based SimRank computation on the
matrix representation. They developed very interesting Sim-
Rank approximation techniques on a low-rank graph, by lever-
aging the singular value decomposition and tensor product.
However, (i) for digraphs, the upper bound of approximation
error still remains unknown. (ii) The computational time in
[14] would become O(n4) even when the rank of an adjacency
matrix is relatively small, e.g., ⌈

√
n⌉ (≪ n). The pioneering

work of He et al. [10] utilized the node-updating method on
GPU for parallel SimRank computing. They deployed iterative
aggregation techniques to accelerate the global convergence
of parallel SimRank, in which the speed-up in the global
convergence of SimRank is due mainly to the different local
convergence rates on small matrix partitions. Recently, the
new notions of weight- and evidence-based SimRank have
been suggested in [1] to address the issue of query rewriting
for sponsored search. Fogaras et al. [6] adopted a scalable
Monte Carlo sampling approach to estimate SimRank by using
the first meeting time of two random surfers. However, their
algorithms are probabilistic in nature. Li et al. [15] employed
an effective method for locally computing single-pair SimRank
by breaking the holistic nature of the SimRank recursion. Zhao
et al. [19] proposed a new ranking model, termed Penetrating
Rank (P-Rank), by taking account of both in- and out-links.
Since the iterative paradigms of SimRank and P-Rank are
almost similar, our techniques for SimRank can be easily
extended to P-Rank computation. Lee et al. [13] devised a
top-K SimRank algorithm that only needs to access a small
fraction of vertices in a graph.

II. PRELIMINARIES

In this section, we review the two formulations of SimRank,
i.e., the iterative form [11], [16], and the matrix form [10],
[14]. The consistency of two forms was pointed out in [14].

A. Iterative Form of SimRank

Formally, given a directed graph G = (V, E) with a vertex
set V and an edge set E , the SimRank similarity between ver-
tices a and b, denoted by s(a, b), is defined as (i) s(a, a) = 1;
(ii) s(a, b) = 0, if I(a) = ∅ or I(b) = ∅; (iii) otherwise,

s(a, b) =
C

|I(a)| |I(b)|
∑

j∈I(b)

∑
i∈I(a)

s(i, j), (1)

where C ∈ (0, 1) is a damping factor, I (a) is the in-neighbor
set of a vertex a, and |I(a)| is the cardinality of I(a).

The above formulas naturally serve to introduce the iterative
method by starting with s0(a, a) = 1 and s0(a, b) = 0 if

a ̸= b, and for k = 0, 1, 2, · · · , setting (i) sk+1(a, a) = 1; (ii)
sk+1(a, b) = 0, if I (a) = ∅ or I (b) = ∅; (iii) otherwise,

sk+1(a, b) =
C

|I(a)||I(b)|
∑

j∈I(b)

∑
i∈I(a)

sk(i, j). (2)

The resultant sequence {sk(a, b)}∞k=0 converges to s(a, b),
the exact solution of Eq.(1).

B. Matrix Form of SimRank

In matrix notations, SimRank can be formulated as follows.

S = C · (Q · S ·QT ) + (1− C) · In, (3)

where S is the similarity matrix whose entry [S]i,j denotes the
similarity score s(i, j), Q is the backward transition matrix
whose entry [Q]i,j = 1/|I(i)| if there is an edge from j to i,
and 0 otherwise, and In is an n× n identity matrix.

III. ELIMINATING PARTIAL SUMS REDUNDANCY

The existing method psum-SR [16] of performing Eq.(2)
is to memorize the partial sums over I(a) first:

Partial
sk
I(a)(j) =

∑
i∈I(a)

sk(i, j), (j ∈ I(b)) (4)

and then iteratively compute sk+1(a, b) as follows:

sk+1(a, b) =
C

|I(a)||I(b)|
∑

j∈I(b)

Partial
sk
I(a)(j). (5)

Consequently, the results of PartialskI(a)(j), ∀j ∈ I(b), can
be reused later when we compute the similarities sk+1(a, ⋆)
for a given vertex a as the first argument. However, we
observe that the partial sums over different in-neighbor sets
may share common sub-summations. For example in Fig. 1c,
the partial sums PartialskI(a)(⋆) and PartialskI(c)(⋆) have the
sub-summation Partialsk{b,g}(⋆) in common. Based on this
observation, we will discuss how to optimize sub-summations
shared among different partial sums in this section.

A. Partition In-neighbor Sets for (Inner) Partial Sums Sharing

We first introduce the notion of a set partition.

Definition 1. A partition of a set D, denoted by P(D), is a
family of disjoint subsets Di of D whose union is D, i.e.,

P(D) = {D1,D2, · · · ,Dp}, with p = |P(D)|,

where Di ∩ Dj = ∅ for i ̸= j, and
∪p

i=1 Di = D.

For instance, P(I(b)) = {{f, g}, {e, i}} is a partition of
the in-neighbor set I(b) = {f, g, e, i} in Fig 1a.

The set partition is deployed for speeding up the computa-
tion of SimRank based on the following proposition.

Proposition 1. For two distinct vertices a, b with I(a) ̸= ∅
and I(b) ̸= ∅, sk+1(a, b) can be iteratively calculated as

sk+1(a, b) =
C

|I(a)||I(b)|
∑

j∈I(b)

∑
∆∈P(I(a))

Partial
sk
∆ (j), (6)

where Partial
sk
∆ (j) is defined as Eq.(4) with I(a) replaced by ∆.
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Sketch of Proof: The proof follows immediately from (i)
for two disjoint sets A and B, PartialskA (j)+PartialskB (j) =
PartialskA∪B(j), ∀j, and (ii)

∪
∆∈P(I(a)) = I(a), ∀a.

The main idea in our approach is to share the common sub-
summations among different partial sums, by precomputing
the sub-summations Partialsk∆ (⋆) over ∆ ∈ P(I(a)) once,
and caching them in a block fashion for later reuse, which
can effectively avoid repeating duplicate sub-summations.
As an example in Fig. 1c, when I(c) is partitioned as
P(I(c)) = {I(a), {d}} with I(a) = {b, g}, once computed,
the sub-summations PartialskI(a)(⋆) can be memorized and
reused for computing PartialskI(c)(⋆). In contrast, the existing
method psum-SR [16] has to start from scratch to compute
PartialskI(a)(⋆) and PartialskI(c)(⋆), independently, which is
due to no reuse of common sub-summations.

The selection of a partition P(I(a)) for an in-neighbor set
I(a) has a great impact on the performance of our approach.
Troubles could be expected when a selected partition P(I(a))
is too coarse or too fine. For instance, if I(a) is taken to
be a trivial partition of itself, i.e., P(I(a)) = {I(a)} for
every vertex a, Eq.(6) can be simplified to the conventional
psum-SR iteration in Eq.(5). From this perspective, our ap-
proach is a generalization of psum-SR. On the other hand, if
the partitions of I(a) get finer (i.e., the size of ∆ ∈ P(I(a))
becomes smaller), there is a more likelihood of Partialsk∆ (⋆)
with a high density of common sub-summations, but with
a low cardinality on the similarity values to be clustered.
An extreme example would be a discrete partition of I(a),
i.e., P(I(a)) = {{x}|x ∈ I(a)}, where every block is a
singleton vertex. In such a case, Eq.(6) would deteriorate to
the naive iteration [11] in Eq.(2), which may be even worse
than psum-SR. Thus, it is desirable to find the best partition
P(I(a)) for each I(a) that has the largest and densest clumps
of common vertices.

The problem of finding such optimal partitions to minimize
the total cost of partial sums over different in-neighbor sets,
referred to as Optimal In-neighbors Partitioning and denoted
as OIP, can be formulated as follows:

Given a graph G = (V, E), OIP is to find the optimal
partition P(I(a)) = {∆i

a | i = 1, · · · , |P(I(a))|} of each
in-neighbor set I(a), a ∈ V , for creating chunks ∆i

a such that
the total number of additions required for computing all the
partial sums PartialskI(a)(⋆) over every in-neighbor set I(a),
a ∈ V , is minimized by reusing the sub-summation results
Partialsk∆i

a
(⋆) over chunks ∆i

a.

Proposition 2. The OIP problem is NP-hard.

Proof: We verify this by reducing the NP-complete En-
semble Computation (EC) problem [8, p.66] to a special case
of the decision problem of OIP. The EC problem is defined as
follows: Given a collection C of subsets of a finite set A and a
positive integer J , EC is to decide whether there is a sequence
(z1 = x1 ∪ y1, · · · , zj = xj ∪ yj) of j ≤ J union operations,
where each xi and yi is either {a} for some a ∈ A or zp for
some p < i, such that xi and yi are disjoint for 1 ≤ i ≤ j and
such that for every subset C ∈ C there is some zi, 1 ≤ i ≤ j,
that is identical to C. For each instance of EC, we construct the

corresponding instance of the OIP decision problem by setting
A = {sk(a, ⋆) | a ∈ V}, C = {PartialskI(a)(⋆) | a ∈ V}, and
an integer J to be the maximum number of required addi-
tions. Clearly, by converting union operations (∪) of EC into
additions (+), it follows that the OIP decision problem has a
solution, i.e., ∃ a sequence (z1 = x1 + y1, · · · , zj = xj + yj)
of j ≤ J additions, if and only if there exists a sequence
(z1 = x1∪y1, · · · , zj = xj∪yj) of j ≤ J union operations for
EC. Thus, the NP-completeness of the OIP decision problem
follows immediately from the NP-completeness of EC. Also,
the decision problem of OIP can be naturally converted into
its corresponding optimization problem by imposing a bound
on the number of additions to be optimized, namely, turning
“whether there exists such a solution that can be done in fewer
than J additions” into “minimize the number of additions”.
Hence, the OIP optimization problem is NP-hard due to the
NP-completeness of its decision problem.

We next seek instead for a good heuristic method for OIP.
The basic idea is as follows. Consider a directed graph G =

(V, E). For every two in-neighbor sets I(a), I(b) of vertices
a, b ∈ V , we first calculate the transition cost from I(a) to
I(b), denoted by T CI(a)→I(b), as follows: 3

T CI(a)→I(b) , min{|I(a)⊖ I(b)|, |I(b)| − 1}, (7)

where ⊖ is the symmetric difference of two sets. 4 Thus,
the value of T CI(a)→I(b) is actually the number of additions
required to compute the partial sum PartialskI(b)(⋆), given the
partial sum PartialskI(a)(⋆). Then, we construct a weighted
digraph G = (V ,E ) whose vertices correspond to the non-
empty in-neighbor sets of G, with an extra vertex correspond-
ing to an empty set ∅, i.e., V = {I(a) | a ∈ V} ∪ {∅}.
There is an edge from I(a) to I(b) in G if |I(a)| ≤ |I(b)|.
The weight of an edge (I(a), I(b)) ∈ E represents the
transition cost T CI(a)→I(b). Finally, we find a minimum
spanning tree of G , denoted by T , whose total transition cost
is minimum. Henceforth, every edge (I(a), I(b)) in T implies
the following: (i) PartialskI(a)(⋆) should be computed prior
to PartialskI(b)(⋆) computation, which provides an optimized
topological sort for efficiently computing all the partial sums.
(ii) I(b) needs to be partitioned as I(b)∩I(a) and I(b)\I(a),
meaning that the result of PartialskI(a)(⋆) can be cached and
shared with PartialskI(b)(⋆) computation.

The following example illustrates how this idea works.

Example 2. Consider the network G in Fig. 1a, with the
vertices and the corresponding non-empty in-neighbor sets

3Without loss of generality, only in the case of |I(a)| ≤ |I(b)|, we need to
compute T CI(a)→I(b). This is because we are interested only in the cost of
computing Partial

sk
I(b)

(⋆) by using the given Partial
sk
I(a)

(⋆). Conversely,
if utilizing the result of Partial

sk
I(b)

(⋆) to compute Partial
sk
I(a)

(⋆), for
|I(a)| ≤ |I(b)|, then we have to introduce the “subtraction” to undo the
summation that we have already done, which is often an extra operation.

4The symmetric difference of two sets A and B, denoted by A⊖B, is the
set of all elements of A or B which are not in both A and B. Symbolically,

A⊖ B = (A\B) ∪ (B\A).

As an example in Fig 1c, given I(b) = {g, e, f, i} and I(d) = {e, f, i, a},
we have I(b)⊖ I(d) = {g, a}.

4



vertex I(⋆)
a {b, g}
e {f, g}
h {b, d}
c {b, d, g}
b {f, g, e, i}
d {f, a, e, i}

(a) In-neighbors in G

I(a) I(e) I(h) I(c) I(b) I(d)
∅ 1 1 1 2 3 3

I(a) 1 1 1# 3 3
I(e) 1 2 2# 3
I(h) 1# 3 3
I(c) 3 3
I(b) 2#

(b) Transition Costs (Edge Weights) in G

I(h)

I(a)

I(e)I(c)

I(b)

I(d)
1

1

1

2

3

3

1

1

1#

3

3

1

2

2#

3

1#

3

3

33

∅

2#

(c) Minimum Spanning Tree T of G

∅

I(h)

I(b)

I(e)

I(d)

I(a)

I(c)

∅∅

1 1 1

1# 2#

2#

① ③②

(d) Partial Sums Order

Fig. 2: Constructing a minimum spanning tree T to find an optimized topological sort for partial sums sharing in G

depicted in Fig. 2a. We show how to find a decent ordering
for partial sums computing and sharing in G.

Firstly, we compute the transition cost of each pair of in-
neighbor sets (along with an empty set ∅) in G, by using
Eq.(7). The results are shown in Fig. 2b, where each cell
describes the transition cost from the in-neighbor set in the
left most column to the in-neighbor set in the top line. For
instance, the cell ‘2#’ at row ‘I(e)’ column ‘I(b)’ shows that
T CI(e)→I(b) = 2. This cell is tagged with #, indicating that the
partial sum PartialskI(b)(⋆) can be computed from the memo-
rized result of PartialskI(e)(⋆) (rather than from scratch). This
is because the transition cost 2 is, in essence, obtained from
the 2 operations of symmetric difference (i.e., |I(e)⊖I(b)| =
|{e, i}| = 2) in lieu of the 3 additions (i.e., |I(b)| − 1 = 3)
w.r.t. Eq.(7). Note that the lower triangular part of the table
in Fig. 2b remains empty since we are interested only in the
cost T CI(x)→I(y) when |I(x)| ≤ |I(y)|.

Next, we build a weighted digraph G in Fig. 2c, with
vertices corresponding to the non-empty in-neighbor sets (plus
∅) of G (which are in column ‘I(⋆)’ of Fig. 2a), and edge
weights to the transition costs. For instance, the weight of the
edge (I(e), I(b)) in G is associated with the cell ‘2#’ at row
‘I(e)’ column ‘I(b)’ in Fig. 2b. Thus, every path in G yields a
linear ordering of partial sums computation. More importantly,
partial sums sharing may occur in the edges tagged with #.

As an example, the path ∅ 1−→ I(e) 2#−−→ I(b) in G shows that
(i) PartialskI(e)(⋆) is computed from scratch (from ∅) with 1
operation, and (ii) PartialskI(b)(⋆) is obtained by reusing the
result of PartialskI(e)(⋆), involving 2 operations.

Finally, we find a directed minimum spanning tree T of G ,
by starting from the vertex ∅, and choosing the cheapest path
for partial sums computing and sharing, as depicted in bold
edges in Fig. 2c. Consequently, using depth-first search (DFS),
we can obtain 3 paths from T for partial sums optimization,
as shown in Fig. 2d. �

Using this idea, we can identify the moderate partitions of
each in-neighbor set in G, with large and dense chunks for
sub-summations sharing. Such partitions are not optimal, but
can, in practice, achieve better performances than psum-SR.
Proposition 3 shows the correctness.

Proposition 3. Given two distinct non-empty in-neighbor sets
I(a) and I(b), and a partial sum PartialskI(a)(⋆), if |I(a)⊖
I(b)| < |I(b)| − 1, then we have the following:

(i) I(b) can be partitioned as

I(b) = (I(b) ∩ I(a)) ∪ (I(b)\I(a)). (8)

P(⋆)

I(a) {{b, g}}
I(e) {{f, g}}
I(h) {{b, d}}
I(c) {I(a), {d}}
I(b) {I(e), {e, i}}
I(d) {I(b)\{g}, {a}}

(a) Partitions of I(⋆) in G

d

b

g

f

i

e

a

+

+

+

+

+

−

+

+

I(c) = {b, d, g}

I(h) = {b, d}

I(a) = {b, g}

I(d) = {f, a, i, e}

I(e) = {f, g}

I(b) = {f, g, i, e}

(b) Hierarchical Clustering Dendrogram

Fig. 3: In-neighbor sets partitioning and hierarchical clustering

(ii) The partial sum PartialskI(b)(⋆) can be computed from
the cached result of PartialskI(a)(⋆) as follows

Partial
sk
I(b)(y) = Partial

sk
I(a)(y)−

∑
x∈I(a)\I(b)

sk(x, y)

+
∑

x∈I(b)\I(a)

sk(x, y), (y ∈ V) (9)

with |I(a)⊖ I(b)| operations being performed.

Sketch of Proof: The proof of Eq.(8) is trivial, whereas
the proof of Eq.(9) is based on (i) B = (A\(A\B))∪ (B\A),
(ii) PartialskA\B(j) = PartialskA (j)−PartialskB∩A(j), ∀j.

Example 3. Recall the network G in Fig. 1a, along with the
optimized ordering of partial sums in Fig. 2d. We show how
to identify the partition of each in-neighbor set in G for partial

sums sharing. For instance, consider the path ∅ 1−→ I(a) 1#−−→
I(c) in Fig. 2d. We have the following.

(i) The first edge ∅ 1−→ I(a) implies that PartialskI(a)(⋆)
need to be computed from scratch since the starting point of
this edge is ∅. Thus, I(a) has only one partition of itself.

(ii) The second edge I(a) 1#−−→ I(c) suggests that I(c) can
be partitioned, by using Eq.(8), as

I(c) = (I(c) ∩ I(a)) ∪ (I(c)\I(a)) = I(a) ∪ {d}.

Hence, PartialskI(c)(⋆) can be obtained from the memorized
result of PartialskI(a)(⋆) via Eq.(9) as follows:

PartialskI(c)(x) = PartialskI(a)(x) + sk(d, x). (x ∈ V)

We repeat these steps for the rest of two paths in Fig. 2d.
Finally, we get all the partitions of in-neighbor sets in G, as
shown in Fig. 3a. Accordingly, the resultant accumulation of
reusable partial sums is visualized in Fig. 3b, in which a letter
with a box denotes a vertex, and a symbol with a circle an
operator. For example, ‘ d ⊕ b · · · I(h)’ means that sk(d, ⋆)
and sk(b, ⋆) are added to yield PartialskI(h)(⋆). �
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B. Use In-neighbor Set Partitions for Outer Sums Sharing
After the partitions of in-neighbor sets have been identified

for (inner) partial sums sharing, optimization approaches in
this subsection allow outer partial sums sharing for further
speeding up the computation of SimRank.

To avoid ambiguity, we shall refer to the sums w.r.t. the
index i in Eq.(4) as (inner) partial sums, and the sums w.r.t. the
index j in Eq.(5) as outer partial sums.

Our key observation is as follows. Recall from Eq.(5) that,
given the memorized results of partial sums PartialskI(a)(⋆),
the existing algorithm psum-SR for computing sk(a, b) is to
sum up PartialskI(a)(y), one by one, over all y ∈ I(b). Such
a process can be pictorially depicted in the left part of Fig.
1c, in which each horizontal bar represents a partial sum over
I(a). In order to compute s(a, b), we need to add up the
horizontal bars (i.e., the partial sums) in the first four rows.
However, while computing s(a, c) by adding up the horizontal
bars in the last four rows, we observe that the three horizontal
bars at rows ‘e’,‘f ’,‘i’ may suffer from repetitive additions.
As another example in the right part of Fig. 1c, for computing
s(b, c) and s(d, c), the sum of the three horizontal bars at
rows ‘e’,‘f ’,‘i’ is again a repeated operation. As such, the
major problem of Eq.(5) is the one-by-one fashion in which the
partial sums PartialskI(a)(y) for y ∈ I(b) are added together.

Our main idea in optimizing Eq.(5) is to split I(b) into
several chunks ∆i

b first, such that

P(I(b)) = {∆i
b | i = 1, · · · , |P(I(b))|},

and then add up the cached results of partial sums in a chunk-
by-chunk fashion for computing sk+1(a, b) as follows:

sk+1(a, b) =
C

|I(a)||I(b)|
∑

∆i
b
∈P(I(b))

OuterPartial
I(a),sk
∆i

b

(10)

with

OuterPartial
I(a),sk
∆i

b

,
∑
j∈∆i

b

PartialskI(a)(j).

In contrast with Eq.(5), our method in Eq.(10) can eliminate
the redundancy among different outer partial sums. Once
computed, the outer partial sum OuterPartial

I(a),sk
∆i

b

is mem-
orized and can be reused later without recalculation again. As
an example in Fig. 1c, suppose I(b) and I(d) are split into

I(b) = {g} ∪ {e, f, i}, I(d) = {e, f, i} ∪ {a},

the outer partial sum OuterPartial
I(a),sk
{e,f,i} is computed only

once and can be reused in both sk+1(a, b) and sk+1(a, d)
computation.

The problem of finding an ideal partition P(I(b)) of I(b)
for maximal sharing outer partial sums is still NP-hard, and
its proof is the same as that of OIP in Proposition 2. Thus,
the partitioning techniques for (inner) partial sums sharing in
Subsection III-A can be applied in a similar way to optimize
outer partial sums sharing. In other words, the partitions of in-
neighbor sets in Eq.(8) for (inner) partial sums sharing, once
identified, can be reused later for outer partial sums sharing.
The correctness is proved in Proposition 4.

vertex PartialskI(x)(y) OuterPartial
I(x),sk
I(z) sk+1(x, z)

x y = b y = g y = d z = a z = c z = a z = c

a 1 1 0.11 2 2.11 1 0.21
e 0 1 0 1 1 0.15 0.1
h 1.11 0 1.11 1.11 2.22 0.17 0.22
c 1.11 1 1.11 2.11 3.22 0.21 1
b 0.15 1 0.08 1.15 1.23 0.09 0.06
d 0.23 0 0.08 0.23 0.31 0.02 0.02

Fig. 4: Computing sk+1(x, a) and sk+1(x, c), ∀x ∈ V , by
using outer sums sharing (k = 2 and C = 0.6)

Proposition 4. Given two non-empty in-neighbor sets I(b)
and I(d), an outer partial sum OuterPartial

I(a),sk
I(b) , and (in-

ner) partial sums PartialskI(a)(⋆), if |I(b)⊖I(d)| < |I(d)|−1,
then we have the following:

(i) The outer partial sums OuterPartial
I(a),sk
I(d) can be

computed from the memorized results of OuterPartial
I(a),sk
I(b) ,

∀a ∈ V , as follows:

OuterPartial
I(a),sk
I(d) = OuterPartial

I(a),sk
I(b) −

−
∑

x∈I(b)\I(d)

Partial
sk
I(a)(x) +

∑
x∈I(d)\I(b)

Partial
sk
I(a)(x), ∀a ∈ V

with |I(b)⊖ I(d)| operations being performed.
(ii) sk+1(a, d), ∀a ∈ V\{d} can be computed as

sk+1(a, d) =
C

|I(a)||I(d)|OuterPartial
I(a),sk
I(d) , ∀a ∈ V\{d}. (11)

(The proof is similar to Proposition 3. We omit it here.)

Example 4. Recall the network G in Fig. 1a, with the
(inner) partial sums sharing dendrogram in Fig. 3b. Suppose
PartialskI(x)(⋆), ∀x ∈ V , have been pre-computed based on
Example 3, as depicted in part in the first four columns of
Fig. 4. We show how to compute sk+1(x, a) and sk+1(x, c),
∀x ∈ V , by using outer partial sums sharing.

Firstly, for each non-empty in-neighbor set I(x), we com-
pute OuterPartial

I(x),sk
I(a) and OuterPartial

I(x),sk
I(c) , ∀x ∈ V ,

from the cached results of PartialskI(x)(⋆). In light of the
clustering dendrogram in Fig. 3b, we notice that the item
‘ b ⊕ g · · · I(a)’, which, in the context of outer partial sums,
can be reinterpreted as “adding up the (inner) partial sums
PartialskI(x)(b) and PartialskI(x)(g) to yield the outer partial

sums OuterPartial
I(x),sk
I(a) , for all x ∈ V”. Thus, we have

OuterPartial
I(x),sk
I(a) =

∑
y∈{b,g}

PartialskI(x)(y). (∀x ∈ V)

For instance, OuterPartial
I(b),sk
I(a) = 0.15 + 1 = 1.15, for

x = b, as illustrated in row ‘b’ of Fig. 4.
Similarly, the item ‘I(a)⊕ d · · · I(c)’ in Fig. 3b implies that
OuterPartial

I(x),sk
I(c) , ∀x ∈ V , can be calculated from the

cached results of OuterPartial
I(x),sk
I(a) via Eq.(10) as

OuterPartial
I(x),sk
I(c) = OuterPartial

I(x),sk
I(a)

+PartialskI(x)(d), (∀x ∈ V)

e.g., OuterPartial
I(b),sk
I(c) = 1.15 + 0.08 = 1.23, for x = b.

The rest of the results are shown in columns 5-6 of Fig. 4.
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Algorithm 1: OIP-SR (G, C,K)

Input : graph G = (V, E), damping factor C, iteration K.
Output: SimRank scores sK(⋆, ⋆).

1 construct a transitional MST T ← DMST-Reduce (G);
2 initialize s0(x, y)←

{ 1, x=y
0, x ̸=y ∀x, y ∈ V

3 for k ← 0, 1, · · · ,K − 1 do
4 foreach vertex u ∈ O(#) in the MST T do
5 foreach vertex y ∈ V in G do
6 Partial

sk
I(u)(y)←

∑
x∈I(u) sk(x, y) ;

7 sk+1(u, ⋆)← OP (T ,G, u, C, k, Partial
sk
I(u)(⋆)) ;

8 while O(u) ̸= ∅ do
9 v ← O(u) ;

10 foreach vertex y ∈ V in G do
11 Partial

sk
I(v)(y)← Partial

sk
I(u)(y)−∑

x∈I(u)\I(v)

sk(x, y) +
∑

x∈I(v)\I(u)

sk(x, y) ;

12 sk+1(v, ⋆)← OP(T ,G, v, C, k, Partial
sk
I(v)(⋆));

13 u← v ;

14 foreach vertex y ∈ V in G do
15 free Partial

sk
I(u)(y) ;

16 while O(u) ̸= ∅ do
17 v ← O(u), free Partial

sk
I(v)(y), u← v ;

18 return sK(⋆, ⋆) ;

Then, using Eq.(11), we obtain sk+1(x, a) and sk+1(x, c),
∀x ∈ V , from the cached results of OuterPartial

I(x),sk
I(a) and

OuterPartial
I(x),sk
I(c) . For example, in row ‘b’ of Fig. 4,

sk+1(b, a) =
0.6
2×4 × 1.15 = 0.09, (x = b)

sk+1(b, c) =
0.6
3×4 × 1.23 = 0.06. (x = b)

The remainder of the similarities are depicted in the last two
columns of Fig. 4. �

C. An Algorithm for Computing SimRank

We next present a complete algorithm for efficiently com-
puting SimRank, by integrating the aforementioned techniques
of inner and outer partial sums sharing.

The main result of this subsection is the following.

Proposition 5. For any graph G, it is in O(dn2 + Kd′n2)
time and O(n) intermediate memory to compute SimRank
similarities of all pairs of vertices for K iterations, where
d is the average vertex in-degree of G, and d′ ≤ d.

Note that d′ is affected by the overlapped area size among
different in-neighbor sets in G. Typically, d′ is much smaller
than d as in-neighbor sets in G may have many vertices in
common in real networks. That is, our approach of partial
sums sharing can compute SimRank more efficiently than
psum-SR in practice, as opposed to the O(Kdn2)-time of
the conventional counterpart via separate partial sums over
each in-neighbour set in G. Even in the extreme case when all
in-neighbor sets in G are pair-wise disjoint, our method can
retain the same complexity bound of psum-SR in the worst
case.

Procedure DMST-Reduce(G)
Input : graph G = (V, E).
Output: transitional MST T .

1 initialize V ← V ∪ {#}, E ← ∅ ;
2 sort the vertices of G into non-decreasing order by in-degree ;
3 initialize U ← V ;
4 foreach vertex a ∈ V in G, taken in sorted order do
5 U ← U\{a} ;
6 foreach vertex b ∈ U in G, taken in sorted order do
7 E ← E ∪ {(a, b)} ;
8 assign a weight w to the edge (a, b) of E :

w(a, b)← min{|I(a)⊖ I(b)|, |I(b)| − 1} ;

9 find the MST T of the graph G = (V , E , w) :
T ← Directed-MST (G ,#, w) ;

10 return T ;

We next prove Proposition 5 by providing an algorithm for
SimRank computation, with the desired complexity bound.

Algorithm. The algorithm, referred to as OIP-SR, is shown
in Algorithm 1. Given G, a damping factor C, and the total
iteration number K, it returns sK(⋆, ⋆) of all pairs of vertices.

In the sequel, we shall abuse the notation O(v) to denote
the out-neighbor set of vertex v.

The algorithm OIP-SR works as follows. (1) It first in-
vokes procedure DMST-Reduce to identify the topological
sort based on a minimum spanning tree T for computing
partial sums (line 1). (2) For each iteration k, OIP-SR checks
each path in T , starting from the root node # as follows.
(a) For the first edge (#, u) in each path, OIP-SR com-
putes PartialskI(u)(⋆) from scratch (lines 5-6), and then in-
vokes procedure OP to compute sk+1(u, ⋆) by outer partial
sums sharing (line 7). (b) For other edges (u, v) in each
path, OIP-SR computes PartialskI(v)(⋆) from the result of
PartialskI(u)(⋆) memorized earlier (lines 10-11), and gets
sk+1(v, ⋆) by invoking procedure OP of outer partial sums
sharing (line 12). This process repeats until all edges in every
path have been traversed, and OIP-SR frees the memorized
results of the partial sums generated from each path (lines 14-
17). (3) The loop will continue to iterate until k reaches K,
and OIP-SR returns all the similarities sK(⋆, ⋆) (line 18).

Procedure DMST-Reduce. Given a graph G, the procedure
returns a minimum spanning tree T as a topological sort for
computing partial sums. First, it builds a weighed graph G ,
whose edge weights are the transition costs of all pairs of
vertices (plus a special # denoting ‘the root node’) in G (lines
1-8). Then, it runs an algorithm [7] to find a directed MST T
of G (starting from vertex #), which is returned as the final
result (lines 9-10).

Procedure OP. This procedure adopts a similar paradigm of
OIP-SR for outer partial sums sharing. OP takes as input a
topological sort T , a graph G, a vertex u, a damping factor
C, iteration k, and the cached partial sums PartialskI(u)(⋆). It
returns the similarities sk+1(u, ⋆).

The procedure OP runs in three phases for each path
that starts from the root # of the tree T . (a) For the first
edge (#, w) of each path, OP needs to start from scratch to
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Procedure OP(T ,G, u, C, k, PartialskI(u)(⋆))

Input : transitional MST T , graph G = (V, E),
vertex u, damping factor C,
iteration k, partial sums Partial

sk
I(u)(⋆).

Output: SimRank scores sk+1(u, ⋆).
1 foreach vertex w ∈ O(#) in the MST T do
2 OuterPartial

I(u),sk
I(w) ←

∑
y∈I(w) PartialskI(u)(y) ;

3 if u = w then sk+1(u,w)← 1 ;
4 else if I(u) = ∅ or I(w) = ∅ then sk+1(u,w)← 0 ;
5 else sk+1(u,w)← C

|I(u)||I(w)|OuterPartial
I(u),sk
I(w) ;

6 while O(w) ̸= ∅ do
7 z ← O(w) ;
8 OuterPartial

I(u),sk
I(z) ← OuterPartial

I(u),sk
I(w) −∑

y∈I(w)\I(z)

Partial
sk
I(u)(y) +

∑
y∈I(z)\I(w)

Partial
sk
I(u)(y) ;

9 if u = z then sk+1(u, z)← 1 ;
10 else if I(u) = ∅ or I(z) = ∅ then sk+1(u, z)← 0 ;
11 else sk+1(u, z)← C

|I(u)||I(z)|OuterPartial
I(u),sk
I(z) ;

12 w ← z ;

13 free OuterPartial
I(u),sk
I(w) ;

14 while O(w) ̸= ∅ do
15 z ← O(w) , free OuterPartial

I(u),sk
I(z) , w ← z ;

16 return sk+1(u, ⋆) ;

calculate OuterPartial
I(u),sk
I(w) (line 2) and sk+1(u,w) (lines

3-5) from the memorized PartialskI(u)(⋆). (b) For other edges

(w, z) in each path, OP obtains OuterPartial
I(u),sk
I(z) from

the cached result of OuterPartial
I(u),sk
I(w) (line 8), and then

computes sk+1(u, z) (lines 9-11). The loop continues until
all edges in the path have been visited. (c) OP releases the
memorized results of all the outer partial sums which are
generated by each path (lines 13-15). The whole process
repeats until all the paths in T have been processed, and
returns sk+1(u, ⋆) (line 16).

Correctness. (i) Algorithm OIP-SR correctly computes the
similarities sk(u, v) in G for each vertex pair (u, v). One can
verify that after the foreach loops (lines 5-6 and lines 10-11),
for every u ∈ T , PartialskI(u)(⋆) and OuterPartial

I(u),sk
I(⋆)

are memorized, and the similarities sk+1(u, ⋆) are computed.
(ii) The partial sums computed by our algorithm are in-
deed optimized because while computing PartialskI(u)(⋆) and

OuterPartial
I(u),sk
I(⋆) for each vertex u, we allow the common

parts of partial sums to be recomputed as fewer as possible
by virtue of a minimum spanning tree T ; in particular, the
partial sums sharing would definitely happen in every path of
T for a graph with |

∪
v∈V I(v)| less than

∑
v∈V |I(v)|.

Complexity. OIP-SR consists of two phases: (i) building an
MST T (line 1), and (ii) computing similarities (lines 2-18).

(i) The procedure DMST-Reduce is used for finding a
directed MST T , which is bounded by O(dn2) time and O(n)
space. It includes (a) O(n log n) time and O(n) space for
sorting vertices in G by in-degree (line 2), (b) O(d) time and
O(2d) space for computing the transitional cost for a single
edge (a, b) in E , being O(dn

2

2 ) time for all edges in E (lines

4-8), and (c) O(m log n) time and O(n) space for finding the
MST T of G [7].

(ii) For each iteration, OIP-SR uses T rooted at # to
compute similarities in G. Note that |O(#)| paths in T are
used for calculating partial sums over all in-neighbour sets
of G. Therefore, for completing a single path of average
length n

|O(#)| , the complexity required for computing the
partial sums, for the first edge of the path, is O(nd) time
and O(n) space (lines 5-6); the complexity required, apart
from the first edge of the path, is O( n

|O(#)| · n · d⊖) time
and O(n) space, with d⊖ , avg(u,v)∈T |I(u) ⊖ I(v)| (lines
8-13). It follows that the total complexity bound in this phase
is O(K(|O(#)| · nd + n2 · d⊖)) time and O(n) space for
K iterations. Since d⊖ ≪ d and |O(#)| ≪ n, such a time
complexity bound is far less than O(Kdn2).

Combining (i) and (ii), the total complexity of OIP-SR is
O(dn2 +K(|O(#)| · nd+ n2 · d⊖)) time and O(n) space.

IV. EXPONENTIAL RATE OF CONVERGENCE FOR
SIMRANK ITERATIONS

For a desired accuracy ϵ, the existing paradigm (via Eq.(2))
for computing SimRank needs K = ⌈logC ϵ⌉ iterations [16].
In this section, we introduce a new notion of SimRank that is
based on a matrix differential equation, which can significantly
reduce the number of iterations for attaining the accuracy ϵ
while fairly preserving the relative order of SimRank.

The main idea in our approach is to replace the geometric
sum of the conventional SimRank by an exponential sum
that provides more rapid rate of convergence. We start by
expanding the conventional SimRank matrix form (in Eq.(3))

S = C · (Q · S ·QT ) + (1− C) · In,

as a power series:

S = (1− C) ·
∞∑
i=0

Ci ·Qi · (QT )
i
, (12)

where we notice that the coefficient for each term in the
summation makes a geometric sequence {1, C, C2, · · · }. For
this expansion form, the effect of damping factor Ci in the
summation is to reduce the contribution of long paths relative
to short ones. That is, the conventional SimRank measure
considers two vertices to be more similar if they have more
paths of short length between them. Following this intuition,
we observe that there is an opportunity to speed up the
asymptotic rate of convergence for SimRank iterations, if we
allow a slight (and with hindsight sensible) modification of
Eq.(12) as follows:

Ŝ = e−C ·
∞∑
i=0

Ci

i!
·Qi · (QT )

i
, (13)

Comparing Eq.(12) with Eq.(13), we notice that Ŝ is just an
exponential sum rather than S that is a geometric sum. Since
the exponential sum converges more rapidly, such a modifica-
tion can speed up the computation of SimRank. In addition,
the modified coefficient for each term in the summation of
Eq.(13) that yields the exponential sequence {1, C

1! ,
C2

2! , · · · }
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still obeys the intuition of the conventional counterpart, that is,
the efficacy of damping factor Ci

i! is to reduce the contribution
of long paths relative to short ones.

With the modified notion of SimRank in Eq.(13), we now
need to define an Eq.(3)-like recurrence for Ŝ.

Definition 2. Let Ŝ(t) be a matrix function w.r.t. a scalar
t. The matrix differential form of SimRank is defined to be
Ŝ , Ŝ(t)|t=C such that Ŝ(t) satisfies the following matrix
differential equation:

dŜ(t)
dt

= Q · Ŝ(t) ·QT , Ŝ(0) = e−C · In. (14)

Note that the solution of Eq.(14) is unique since the initial
condition Ŝ(0) = e−C · In is specified. Based on Definition
2, it is crucial to verify that Ŝ (in Eq.(13)) is the solution to
Eq.(14). Proposition 6 shows the correctness.

Proposition 6. The matrix differential form of SimRank in
Eq.(14) has an exact solution Ŝ given in Eq.(13).

Proof: We shall prove this by plugging Ŝ(t) = A · (In +∑∞
i=1

ti

i! ·Q
i · (QT )

i
), with an arbitrary constant A, into the

SimRank differential formula Eq.(14):

dŜ(t)
dt

=A ·
∞∑
i=1

d
dt

(
ti

i!
·Qi · (QT )

i
)

=A ·
∞∑
i=1

ti−1

(i− 1)!
·Qi · (QT )

i
= Q · Ŝ(t) ·QT ,

where the first equality holds because
∥∥ ti

i! ·Q
i · (QT )

i∥∥
max

≤
ti

i! , and the series
∑∞

i=1
ti

i! converges uniformly on t ∈ [0, C].
Therefore, we have verified that the solution to Eq.(14) takes

the form Ŝ(t) = A ·
(
In +

∑∞
i=1

ti

i! ·Q
i · (QT )

i
)

.

To find A, let t = 0 and Ŝ(0) = e−C · In. Then we have
A · In = e−C · In, which implies that A = e−C . Thus,

Ŝ(t) = e−C ·
∞∑
i=0

ti

i!
·Qi · (QT )

i
.

Setting t = C, we get Ŝ , Ŝ(C) is the solution to Eq.(14).
To iteratively compute Ŝ, the conventional way is to use

the Euler method [2] for approximating Ŝ(t) at time t = C.
Precisely, by choosing a value h for the step size, and setting
tk = k · h, one step of the Euler method from tk to tk+1 is

Ŝk+1 = Ŝk + h ·Q · Ŝk ·QT , Ŝ0 = Ŝ(0) = e−C · In.

Subsequently, the value of Ŝk is an approximation of the
solution to Eq.(14) at time t = tk, i.e., Ŝk ≈ Ŝ(tk). However,
the approximation error of the Euler method hinges heavily
on the choice of step size h, which is hard to determine since
the small choice of h would entail huge computational cost
for attaining high accuracy. To address this issue, we adopt
the following iterative paradigm for computing Ŝ by taking a
finite sum of Eq.(13):{

Tk+1 = Q ·Tk ·QT

Ŝk+1 = Ŝk + e−C · Ck+1

(k+1)! ·Tk+1
with

{
T0 = In
Ŝ0 = e−C · In

(15)

Note that the main difference in our approach, as compared
to the Euler method, is that there is no need for the choice of a
particular step size h to iteratively compute Ŝ. The correctness
of our approach can be easily verified, by induction on k, that
the value of Ŝk in our iteration Eq.(15) equals the sum of the
first k terms of the infinite series Ŝ in Eq.(13).

Regarding the computational time, our iteration Eq.(15) of
the matrix differential SimRank may retain the same complex-
ity, in the worst case, as that of the conventional SimRank in
Eq.(2). It is worth noticing that the matrix equation in Eq.(15)
can be rewritten in the following component form:

[Tk+1](a,b) = [Q ·Tk ·QT ](a,b) =
∑
i,j

[Q](a,i)[Q](b,j)[Tk](i,j)

=
1

|I(a)||I(b)|
∑

j∈I(b)

∑
i∈I(a)

[Tk](i,j),

which takes the same form as the conventional SimRank for-
mula Eq.(2) except for the damping factor C. Thus, our prior
optimization techniques of partial sums sharing in Section
III for the conventional SimRank Eq.(2) can be applied in
a similar way to Eq.(15), for achieving a better complexity.
For the interest of space, we omit the detailed algorithm here.

Error Estimate. In the SimRank matrix differential model,
the following estimate for the k-th iterative similarity matrix
Ŝk with respect to the exact one Ŝ can be established.

Proposition 7. For each iteration k = 0, 1, 2, · · · , the differ-
ence between the k-th iterative and the exact similarity matrix
in Eqs.(13) and (15) can be bounded as follows:

∥Ŝk − Ŝ∥max ≤ Ck+1

(k+1)! , (16)

where ∥X∥max , maxi,j |xi,j | is the max norm.

Proof: Subtracting Eq.(13) from Eq.(15), we obtain

Ŝk − Ŝ = e−C ·
∞∑

i=k+1

Ci

i!
·Qi · (QT )

i
.

Taking the matrix-to-vector operator vec(⋆) [14] on both
sides, and then applying the Kronecker product property that
vec(AXB) = (BT ⊗A) ·vec(X) to the right-hand side gives

vec(Ŝk − Ŝ) = e−C ·
∞∑

i=k+1

Ci

i!
· (Q⊗Q)

i · vec(In),

Notice that Q is a transitional matrix, i.e., the sum of each
row in Q is less than 1, which implies that ∥Q⊗Q∥∞ ≤ 1.

Take the matrix ∞-norm ∥ ⋆ ∥∞ on both sides, and apply
∥vec(⋆)∥∞ = ∥ ⋆ ∥max to the left-hand side, we have

∥Ŝk − Ŝ∥max ≤ e−C ·
∞∑

i=k+1

Ci

i!
· ∥(Q⊗Q)∥i∞ · ∥vec(In)∥∞

≤ e−C ·
∞∑

i=k+1

Ci

i!
≤ Ck+1

(k + 1)!
,

where the last inequality holds since using the Lagrange
remainder f(k+1)(ξ)

(k+1)! Ck+1, ξ ∈ (0, C), of Maclaurin series for
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f(C) = eC yields
∑∞

i=k+1
Ci

i! = eξ

(k+1)!C
k+1 ≤ eC

(k+1)!C
k+1.

For the SimRank differential model Eq.(13), Proposition 7
allows finding out the exact number of iterations needed for
attaining a desired accuracy, based on the following corollary.

Corollary 1. For a desired accuracy ϵ > 0, the number of
iterations required to perform Eq.(15) is

K ′ ≥
⌈

ln ϵ′

W (
1

e·C ·ln ϵ′)

⌉
, with ϵ′ = (

√
2π · ϵ)

−1
.

Here, W (⋆) is the Lambert W function [9].

Proof: Based on Eq.(16), ∀ϵ > 0, we need to find an
integer K ′ > 0 such that CK′+1

(K′+1)! ≤ ϵ.
We first use the Stirling’s formula (K ′ + 1)! ≥

√
2π ·

(K
′+1
e )

K′+1
to obtain ( e·C

K′+1 )
K′+1 ≤

√
2π · ϵ.

Let x = K′+1
e·C . It follows that xx ≥ (

√
2π · ϵ)−

1
e·C . Using

the Lambert W function, we have x ≥ ln (
√
2π·ϵ)−

1
e·C

W (ln (
√
2π·ϵ)−

1
e·C )

. By

substituting x = K′+1
e·C back into the inequality, we get the

final result, which completes the proof.
Noting that ln(x) − ln(ln(x)) ≤ W (x) ≤ ln(x), ∀x > e

[9], we have the following improved version of Corollary 1,
which may avoid computing the Lambert W function.

Corollary 2. For a desired accuracy 0 < ϵ < 1√
2π

e−C·e2 , the
number of iterations needed to perform Eq.(15) is

K ′ ≥
⌈− ln(

√
2π·ϵ)

η−ln(η)

⌉
with η = ln(− 1

e·C · ln(
√
2π · ϵ)).

Comparing this with the conventional SimRank model that
requires K = ⌈logC ϵ⌉ iterations [16] for a given accuracy ϵ,
we see that our revision of the differential SimRank model
in Eq.(14) can greatly speed up the convergence of SimRank
iterations from the original geometric to exponential rate.

As an example, setting C = 0.8 and ϵ = 0.0001, since
1√
2π

e−0.8·e2 = 0.0011 > 0.0001, we can use Corollary 2 to
find out the number of iterations K ′ in Eq.(15) necessary to
our differential SimRank model Eq.(14) as follows:

η = ln(− 1
e·0.8 · ln(

√
2π · 0.0001)) = 1.3384,

K ′ ≥
⌈ − ln(

√
2π·0.0001)

1.3384−ln(1.3384)

⌉
=

⌈
8.2914
1.0469

⌉
= 7.

In contrast, the conventional SimRank model Eq.(2) needs
K = ⌈log0.8 0.0001⌉ = 41 iterations.

For ranking purpose, our experimental results in Section V
further show that the revised notion of SimRank in Eq.(14) not
only drastically reduces the number of iterations for a desired
accuracy, but can fairly maintain the relative order of vertices
with respect to the conventional SimRank in [16].

V. EMPIRICAL EVALUATION

We present an experimental study on both real and synthetic
data to evaluate the efficacy of our proposed methods.

A. Experimental Setting
Datasets. We use the real data (BERKSTAN, PATENT, DBLP)
to evaluate the efficiency of our approaches (see Fig. 5), and

Dataset Vertices Edges Avg Deg.
BERKSTAN 685,230 7,600,595 11.1

PATENT 3,774,768 16,518,948 4.4

DBLP

D02 5,982 15,985 2.7
D05 9,342 22,427 2.4
D08 13,736 37,685 2.7
D11 19,371 51,146 2.6

Fig. 5: Real-life Dataset Details
the synthetic data (SYN) to vary graph characteristics.

(1) BERKSTAN. The first network is a Berkeley-Stanford
web graph of 7.4M hyperlinks between 680K web pages (from
berkely.edu and stanford.edu domains), downloaded
from the Stanford Network Analysis Project (SNAP). 5

(2) PATENT. This is a citation network among U.S. Patents,
obtained from the National Bureau of Economic Research. 6 It
is our largest dataset consisting of 3.2M U.S. patents (vertices)
and 16.1M citations (edges), with a low average degree of 4.4.

(3) DBLP. This is a scientific publication network, derived
from DBLP Computer Science Bibliography. 7 We selected the
recent 12-year publications (from 2000 to 2011) in 8 major
conferences (ICDE, VLDB, SIGMOD, PODS, CIKM, ICDM,
SIGIR, SIGKDD), and then built 4 co-authorship graphs by
choosing every 3 years as a time step.

(4) SYN. The synthetic data were produced by the well-
known graph generator GTGraph 8, varying two parameters:
the number of vertices, and the number of edges.

Compared Algorithms. We implement the following algo-
rithms using Visual C++ 8.0. (1) OIP-DSR, our differential
form of SimRank in conjunction with partial sums sharing.
(2) OIP-SR, the conventional SimRank using partial sums
sharing. (3) psum-SR [16], without partial sums sharing. (4)
mtx-SR [14], a matrix-based SimRank via SVD factorization.

We set the following default parameters: C = 0.6, ϵ = 0.001
(unless otherwise mentioned).

Evaluation Metrics. For evaluating ranking results on DBLP,
we adopted Normalized Discounted Cumulative Gain (NDCG)
[14]. The NDCG at a rank position p is defined as NDCGp =

1
IDCGp

∑p
i=1 (2

ranki − 1)/log2 (1 + i), where ranki is the grad-
ed relevance at position i, and IDCGp is a normalization factor,
ensuring the NDCG of an ideal ranking at position p is 1.

For ground truth, we invited ten independent evaluators
from the database community, and used their final judgment,
rendered by a majority vote, as the standard.

We used a machine powered by a Quad-Core Intel i5
CPU (3.10GHz) with 16GB RAM, running Windows 7. Each
experiment was run 5 times, and the average is reported here.

B. Experimental Results

Exp-1: Time Efficiency. We first evaluate (1) the computa-
tional time of OIP-SR and OIP-DSR against psum-SR and
mtx-SR over real data, and (2) the impact of graph density

5http://snap.stanford.edu/data/web-BerkStan.html
6http://data.nber.org/patents/
7http://dblp.uni-trier.de/˜ley/db/
8http://www.cse.psu.edu/˜madduri/software/GTgraph/index.html
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(d) Memory Space on Real Datasets
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(g) Relative Ordering

# Co-authors # Co-authors
1 Hongjun Lu 16 Aoying Zhou
2 Lu Qin 17 Xiang Lian
3 Xuemin Lin 18 Cheqing Jin
4 Wei Wang 19 Baichen Chen
5 Lei Chen 20 Byron Choi
6 Lijun Chang 21 Wenfei Fan
7 Yiping Ke 22 Rong-Hua Li
8 Haifeng Jiang 23 Hong Cheng H
9 Philip S. Yu 24 Jun Gao N
10 Gabriel Pui Cheong Fung 25 Xiaofang Zhou
11 James Cheng 26 Ke Yi
12 Weifa Liang 27 Yufei Tao
13 Ying Zhang 28 Nan Tang
14 Bolin Ding 29 Jinsoo Lee
15 Haixun Wang 30 Kam-Fai Wong

(h) Top-30 Co-authors of “Jeffrey Xu Yu”

Fig. 6: Performance Evaluation of OIP-SR and OIP-DSR on Real and Synthetic Datasets

on CPU time, using synthetic data. To favor mtx-SR that only
works on low-rank graphs (i.e., graph with a small rank of the
adjacency matrix), DBLP data are used although OIP-SR and
OIP-DSR work pretty well on various graphs.

Fixing ϵ = .001 for DBLP, varying K for BERKSTAN and
PATENT, we compare the CPU time of the four algorithms.
The results are depicted in Figure 6a, telling us the following.
(1) In all cases, OIP-SR consistently outperforms mtx-SR and
psum-SR, i.e., our partial sums sharing approach is effective.
On BERKSTAN and PATENT, the speedups of OIP-SR are on
average 4.6X and 2.7X, respectively, better than psum-SR.
On the large PATENT, when K ≥ 8, psum-SR takes too long
to finish the computation in two days, which is practically
unacceptable. In contrast, both OIP-SR and OIP-DSR just
need about 18.6 hours for K = 10. (2) OIP-DSR always
runs up to 5.2X faster than psum-SR, and 3X faster than
OIP-SR on DBLP, for the desired ϵ = .001. This is because
the differential matrix form of OIP-DSR increases the rate of
convergence, which enables fewer iterations for attaining the
prescribed ϵ, as expected. (3) The speedups of OIP-SR and
OIP-DSR on BERKSTAN (4.6X) are more pronounced than
those on DBLP (1.8X) and PATENT (2.7X), which is due to
the high degree of BERKSTAN (d = 11.1) that may potentially
increase the overlapped area for common in-neighbor sets, and
thus provides more opportunities for partial sums sharing.

Figure 6b further shows the amortized time for each phase

of OIP-SR and OIP-DSR on BERKSTAN and PATENT data
(given ϵ = .001), in which x-axis represents different stages.
From the results, we can discern that (1) for OIP-SR, the
time taken for “Building MST” is far less than the time taken
for “Share Sums”. This confirms our complexity analysis in
Proposition 5. (2) “Building MST” always takes up larger
portions (34% on BERKSTAN, and 24% on PATENT) in the
total time of OIP-DSR, than those (6% on BERKSTAN, and
12% on PATENT) in the total time of OIP-SR. This be-
comes more evident on various datasets because OIP-SR and
OIP-DSR takes (almost) the same time for “Building MST”,
whereas, for “Sharing Sums”, OIP-DSR enables less time
(4.5X on BERKSTAN, and 2.5X on PATENT) than OIP-SR,
due to the speedup in the convergence rate of OIP-DSR.

Fixing n = 300K and varying m from 3M to 15M on the
synthetic data, Figure 6c reports the impact of graph density
(ave. in-degree) on CPU time, where y-axis is in the log scale.
The results show that (1) for ϵ = .001, OIP-DSR significantly
outperforms psum-SR by at least one order of magnitude as
m increases. In all the cases, OIP-SR achieves 0.5 order of
magnitude speedups on average. (2) Interestingly, the speedups
of OIP-DSR are sensitive to graph density (ave. in-degree d)
The larger the d is, the higher the likelihood of overlapping in-
neighbors is for partial sums sharing, as expected. The biggest
speedups are observed for larger d (higher density) — with
nearly 2 orders of magnitude speedup for d = 50.
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Exp-2: Memory Space. We next evaluate the space efficiency
of OIP-DSR and OIP-SR against psum-SR and mtx-SR,
using real data. Note that we only use mtx-SR on small
DBLP as a baseline; for large BERKSTAN and PATENT, the
memory space of mtx-SR will explode since the SVD method
of mtx-SR destroys the sparsity of a graph.

Figure 6d shows the results on space. We observe that (1)
on DBLP, OIP-DSR and OIP-SR have much less space than
mtx-SR by at least one order of magnitude, as expected. (2) In
all the cases, the space cost of OIP-DSR and OIP-SR fairly
retains the same order of magnitude as psum-SR. Indeed, both
OIP-DSR and OIP-DSR merely need about 1.8X, 1.9X, 1.6X
space of psum-SR on DBLP, BERKSTAN, PATENT, respec-
tively, for outer partial sums sharing. This confirms our com-
plexity analysis in Section III, suggesting that OIP-DSR and
OIP-DSR do not require too much extra space for caching
outer partial sums. Moreover, OIP-DSR needs a bit more
space than OIP-SR due to the memoization of the auxiliary
Tk in Eq.(15) per iteration. (3) On BERKSTAN and PATENT,
the space costs of OIP-DSR and OIP-SR are stabilized as
K increases. This is because the memorized partial sums are
released immediately after each iteration, thus maintaining the
same space costs during the iterations.

Exp-3: Convergence Rate. We next compare the convergence
rate of OIP-DSR and OIP-SR, using real and synthetic data.
For the interest of space, below we only report the results on
DBLP D11 (C = 0.8). The trends on other data are similar.

By varying ϵ from 10−2 to 10−6, Fig. 6e and 6g show that
(1) OIP-DSR needs far fewer iterations than OIP-SR (also
psum-SR), for a given accuracy. Even for a small ϵ = 10−6,
OIP-DSR only requires 8 iterations, whereas the convergence
of OIP-SR in this case becomes sluggish, yielding over 60
iterations. This confirms our observation in Proposition 7 that
OIP-DSR has an exponential rate of convergence. (2) The two
curves labeled “Lambert W Est.” and “Log Est.” (dashed line)
visualize our apriori estimates of K ′ derived from Corollaries
1 and 2, respectively. We can see that these dashed curves are
close to the actual number iterations of OIP-DSR, suggesting
that our estimates of K ′ for OIP-DSR are fairly precise.

Exp-4: Relative Order. To analyze the relative order of the
similarity scores obtained from OIP-DSR and OIP-SR, we
use DBLP D11, a co-authorship graph with ground truth.
Fixing the vertex a as a given query (author), we compute the
NDCGp values of OIP-DSR and OIP-SR via the similarities
s(a, ⋆) from the top-p query perspective. We issue the three
queries a = “Jeffrey Xu Yu”, “Philip S. Yu”, “Jian Pei”. For
each query, Figure 6g compares the average NDCGp values of
OIP-DSR with its counterparts of OIP-SR, for p = 10, 30, 50.
The result shows that OIP-DSR can perfectly maintain the rel-
ative order of the similarity scores produced by OIP-DSR with
only 1% loss of NDCG30 and NDCG50. For p = 10 (i.e., top-
10 query), OIP-DSR produces exactly the same result of
OIP-SR, which is to be expected. Thus, we can gain a lot in
speedup from OIP-DSR while suffering little loss in quality.

Figure 6h shows the top-30 co-authors of “Jeffrey Xu Yu”,
by using OIP-DSR on DBLP D11. Comparing this with the

results of OIP-SR, we see that the results of OIP-DSR merely
differ in one inversion at two adjacent positions (#23, #24),
which is practically acceptable. This confirms our intuitions in
Section IV, where we envisage that the slight modification of
a damping factor in OIP-DSR never incurs high quality loss.

VI. CONCLUSIONS

In this study, we have proposed two efficient methods to
speed up the computation of SimRank on large graphs. Firstly,
we leveraged a novel clustering approach to optimize partial
sums sharing. By eliminating the duplicates of computational
efforts among the partial summations, an efficient algorithm
was devised to greatly reduce the time complexity of SimRank.
Secondly, we proposed a revised SimRank model based on
the matrix differential representation, achieving an exponential
speedup in the convergence rate of SimRank, as opposed
to its conventional counterpart of a geometric speedup. Our
empirical experiments on both real and synthetic datasets
have shown that the integration of our proposed methods can
significantly outperform the best known algorithm by about
one order of magnitude, with very little sacrifice in quality.
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