Efficient Node-to-Node Relevance
Assessment Based on Hyperlinks

by

Weiren Yu

THE UNIVERSITY OF
NEW SOUTH WALES

SYDNEY-AUSTRALIA

A THESIS SUBMITTED IN FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN THE SCHOOL
OF
COMPUTER SCIENCE AND ENGINEERING
(January 2014)

Supervisor: Prof. Xuemin Lin

PLEASE TYPE
THE UNIVERSITY OF NEW SOUTH WALES
Thesls/Dissertatlon Sheet
Sumamea or Family nama: Yu
Firsi nama: Walren Other name/s: N/A
Abbreviation for degres as given in the University calendar PhD
School: School of Computer Scienca and Engineering Faculty. Faculty of Enginesring

Titla: Effictent Node-lo-Neds Relsvance Assassment Based on Hyperiinks

Anstract 350 words maximum: (PLEASE TYPE)

Many ubiquitous applications need to assess relevance between two objecis based on hyperlink structura. Typical
examples Include web page ranking, co-citation analysls, collaborative filtering, outlier detection, graph clustering,
and nearest naighbor search. These applicalions have spurred growing interest in a powerful class of relevance
assessment, known as link analysis. Link-based relevance assessment aims to assign a similarily score lo each
pair of objects based purely on the structure of a natwark, In contrast to the conventional lext-based countarpart
that heavily hinges on the content of objects.

In reality, networks are often large and frequently evolve with small changes over time. Due to the large seale and
dynamic nature of the Intemet, a fundamental challenge in link analysis is to design a satisfactory general-
purpose similarity measure, which not only can well simulate human judgmant behavior, but also has desirable
compulational efficiancy, together with a succinct and elagant reprasentalton. To address the challenge, this
thesis focuses on effective link-based relevance assessment over large and dynamic networks, which encom-
passes {1) computational efficiency on large networks, (2) incremental update on dynamic networks, and (3)
semanlics improvemenl of existing similarity measures.

Mora specifically, our contributions are summarized as follows:

{1) We propose afficient techniques for assessing SimRank relevance on large networks and bipanite domains.
(2] We design a novel paradigm for incrementally assessing SimRank on link-evolving networks

(3) We provide efficient techniques for Penatrating-Rank (P-Rank) assessment on large networks

(4) Wae study the Incramental assessment of Random Walk with Restart (RWR) proximities In dynamic networks,
{5) We extend SimFusion model towards efficient relevance assessment on large and dynamic networks

(6) We present a novel link-based model, SimRank®, for improving the semantic richness of SimRank and RWR.

We conduct comprehensive experiments on both real and synthetic datasets to demonstrate the superiority of our
techniques against the staie-of-the-art competitors.

Deaclaration relating 1o disposition of project thesta/dissertation

1 hereby granl 1o the University of New South \Wales or it8 agents tha right to archive and lo maka available my thesis or dissartation in whole
or in part in tha Universily libraries in all forms of media, now or hare aftar known, subject Lo the provisions of the Copyrighl Act 1968 | retain
all proparty rights, such as patent righis_ | also relain the right 1o use n fulure works (Such as articlas or books) all or part of this thesis or
dissertation.

| siso authorise University Microfiims to use tha 350 word abstracl of my thesis In Dissertation Abatracts internalional {ihis is applicable to
doctorsl theses only).

Data
Tha University recognises thal lhere may ba i on copying or conditions on Lse. Flaquem lor
restriction for a peniod of up 1o 2 years musl ba made in wming Ruqucsu fora Iongur perod of rlctic may be din p
ciicumstancas snd requirs the aj | of hg Dean of Graduate Ressarch
FOR OFFICE USE ONLY Date of complation of requirements for Award:

THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS

Originality Statement

I hereby declare that this submission is my own work and to the best of my knowledge it
contains no materials previously published or written by another person, or substantial
proportions of material which have been accepted for the award of any other degree or
diploma at UNSW or any other educational institution, except where due acknowledge-
ment is made in the thesis. Any contribution made to the research by others, with whom
I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also
declare that the intellectual content of this thesis is the product of my own work, except
to the extent that assistance from others in the project’s design and conception or in

style, presentation and linguistic expression is acknowledged.

Name: Weiren Yu
Signed LA/ @/

Date 1‘.&[7.)-2"05!’

]
o=

iii

Abstract

Many ubiquitous applications need to assess relevance between two objects based on
hyperlink structure. Typical examples include web page ranking, co-citation analysis,
collaborative filtering, outlier detection, graph clustering, and nearest neighbor search.
These applications have spurred growing interest in a powerful class of relevance assess-
ment, known as link analysis. Link-based relevance assessment aims to assign a similarity
score to each pair of objects based purely on the structure of a network, in contrast to
the conventional text-based counterpart that heavily hinges on the content of objects.

In reality, networks are often large and frequently evolve with small changes over time.
Due to the large scale and dynamic nature of the Internet, a fundamental challenge in link
analysis is to design a satisfactory general-purpose similarity measure, which not only can
well simulate human judgment behavior, but also has desirable computational efficiency,
together with a succinct and elegant representation. To address the challenge, this thesis
focuses on effective link-based relevance assessment over large and dynamic networks,
which encompasses (1) computational efficiency on large networks, (2) incremental update
on dynamic networks, and (3) semantics improvement of existing similarity measures.

More specifically, our contributions are summarized as follows:

(1) We propose efficient techniques for assessing SimRank relevance on large networks
and bipartite domains. First, we exploit a novel clustering strategy for eliminating du-
plicate computations occurring in partial sums to accelerate SimRank for each iteration.
Then, we introduce a new differential SimRank equation to reduce the total number of
SimRank iterations. Thirdly, in bipartite domains, we also speed up the computation of
the Minimax SimRank variation via edge concentration.

(2) We design a novel paradigm for incrementally assessing SimRank on link-evolving
networks. Unlike the prior method maintaining updates to singular value decomposition,
we first characterize the SimRank update matrix, in response to every link update, as a

rank-one Sylvester equation. We then leverage an effective pruning technique capturing

iv

the “affected areas” of the SimRank update matrix to skip unnecessary computations.
(3) We provide efficient techniques for Penetrating-Rank (P-Rank) assessment on
large networks. First, we estimate the accuracy for P-Rank iterations. Then, we analyze
the stability of P-Rank by obtaining a tight bound on its condition number. Finally, we
propose efficient algorithms for P-Rank assessment on digraphs and undirected networks.
(4) We investigate the incremental assessment of Random Walk with Restart (RWR)
proximities in dynamic networks. The prior attempt of RWR, deploys k-dash to find top-k
highest proximity nodes for a given query, involving an approximate strategy to incre-
mentally estimate upper proximity bounds. In contrast, we propose a fast incremental
paradigm for assessing RWR via linear combinations of vectors without loss of exactness.
(5) We extend SimFusion model towards efficient relevance assessment on large and
dynamic networks. As opposed to the original SimFusion that utilizes a Unified Rela-
tionship Matrix (URM) to represent latent relationships among heterogeneous data, we
present SimFusion+ based on a notion of the Unified Adjacency Matrix (UAM), to re-
solve the trivial solution and the divergence issues of SimFusion. We also develop fast
algorithms to speed up the assessment of SimFusion+ on large and dynamical networks.
(6) We present a novel link-based model, SimRank*, for improving the semantic
richness of SimRank and RWR. First, we justify that SimRank™* can resolve an undesirable
“zero-similarity” property in SimRank and RWR. Then, we propose a closed form of
SimRank™, to enrich relevance semantics without suffering from increased computational
cost. Finally, we devise a heuristic to speed up SimRank* assessment on large networks.
We conduct comprehensive experiments on both real and synthetic datasets to demon-

strate the superiority of our techniques against the state-of-the-art competitors.

Acknowledgements

First and foremost, I am particularly indebted to my supervisor Prof. Xuemin Lin. He
has provided me with immense help and excellent guidance throughout my PhD. He not
only steered me in the correct direction during the problem definition and solution stages,
but also provided invaluable help in disseminating my work to the research community.
My presentation and writing skills will always bear the mark of his guidance.

I offer my heartfelt thanks to Dr. Wenjie Zhang for her suggestions that led to several
improvements. Her multiple readings of the manuscript and corrections were invaluable.
I also thank Prof. Raymond Wong for giving me the opportunity to intern at National
ICT Australia (NICTA) on a very interesting and impressive research project, which was
a great learning experience for me, and molded the research direction that I took during
the rest of my PhD. I am thankful to Prof. Jian Pei for his insightful suggestions and
conversations when I was an intern at East Normal China University. I am also grateful
to Dr. Ying Zhang and Dr. Lijun Chang for providing a most fruitful collaboration.

I thank all the members of the UNSW Database Group for their useful comments and
discussions. Special thanks goes to Dr. Muhammad Aamir Cheema for organizing our
group meeting smoothly. I also thank Prof. William Wilson and Dr. Geoff Whale, two
exceptionally fine teachers, for giving me a chance to practise my tutoring skills. During
my stay at UNSW, I have enjoyed the company of many close friends. Our interactions
have ranged from fun activities to serious technical discussions. I thank, to name a few,
Haichuan Shang, Chuan Xiao, Gaoping Zhu, Ke Zhu, Zhitao Shen, Xiang Zhao, Liming
Zhan, Pengjie Ye, Yang Wang, Lin Wu, Chengyuan Zhang, Xiaoyang Wang, Shiyu Yang,
Longbin Lai, Xing Feng, Xiang Wang, Long Yuan, Shenglu Wang, Jianye Yang, for this
wonderful time.

Finally, neither this thesis nor anything else I have done in my career would have been
possible without the love, encouragement, and unwavering support from my parents and

my girl friend, Qian. I dedicate this thesis to all of them.

vi

Publications Involved in Thesis

1. W. Yu, X. Lin, and W. Zhang. Towards Efficient SimRank Computation on Large
Networks. The 29th IEEE International Conference on Data Engineering (ICDE
2013), Brisbane, Australia, 2013.

2. W. Yu, X. Lin, and W. Zhang. Fast All-Pairs SimRank Assessment on Large
Graphs and Bipartite Domains. To appear in IEEE Transactions on Knowledge
and Data Engineering (TKDE), 2014.

3. W. Yu, X. Lin, and W. Zhang. Fast Incremental SimRank on Link-Evolving
Graphs. The 30th IEEE International Conference on Data Engineering (ICDE
2014), Chicago, USA, 2014.

4. W. Yu, J. Le, X. Lin, and W. Zhang. On the Efficiency of Estimating Penetrat-
ing Rank on Large Graphs. The 24th International Conference on Scientific and
Statistical DB Management (SSDBM 2012), Crete, Greece, 2012.

5. W. Yu, and X. Lin. IRWR: Incremental Random Walk with Restart. The 36th
ACM SIGIR International Conference (SIGIR 2013), Dublin, Ireland, 2013.

6. W. Yu, X. Lin, W. Zhang, Y. Zhang, and J. Le. SimFusion+: Extending SimFusion
towards Efficient Estimation on Large and Dynamic Networks. The 35th ACM
SIGIR International Conference (SIGIR 2012), Portland, USA, 2012.

7. W. Yu, X. Lin, W. Zhang, L. Chang, and J. Pei. More is Simpler: Effectively
and Efficiently Assessing Node-Pair Similarities Based on Hyperlinks. The 39th
International Conference on Very Large Data Base (PVLDB 2013), 2013.

Below lists the relationship between the publications and the thesis chapters.

Chapters | Pub No. ‘ Problems Studied

2 1,2 Fast SimRank on Large Networks and Bipartite Domains

3 3 Incremental SimRank on Link-Evolving Networks

4 4 Fast Penetrating-Rank Search on Large Networks

5 5 Incremental RWR Proximity on Dynamic Networks

6 6 Efficient SimFusion+ on Large and Dynamic Networks

7 7 A Novel Effective Model for Node-Pair Similarity Assessment

Contents

1 Introduction

1.1
1.2
1.3

1.4

2.1

2.2

2.3

24

2.5
2.6

2.7
2.8

Real Applications
Fundamentals of Relevance Assessment
Challenges and Contributions
1.3.1 All-Pairs and Bipartite SimRank
1.3.2 Incremental SimRank,
1.3.3 Fast Penetrating-Rank
1.3.4 Incremental Random Walk with Restart
1.3.5 Fast and Incremental SimFusion
1.3.6 Semantics Enrichment
Related Work o

Fast SimRank on Large Networks and Bipartite Domains

Introduction
2.1.1 Motivation
2.1.2 Chapter Outlines
Preliminaries
2.2.1 Tterative Form o o
2.2.2 Matrix Form
Eliminating Partial Sums Duplicate Computations
2.3.1 Partition In-neighbor Sets for Inner Partial Sums Sharing
2.3.2 Use In-neighbor Set Partitions for Outer Sums Sharing
2.3.3 A SimRank Algorithm
Exponential Rate of Convergence
2.4.1 Closed Form of Exponential SimRank
2.4.2 A Space-Efficient Iterative Paradigm
2.4.3 Error Estimate o o
Partial Max Sharing for Minimax SimRank Variation in Bipartite Graphs
Empirical Evaluation
2.6.1 Experimental Setting oL
2.6.2 Experimental Results,
Related Work
Conclusions

viii

O© O© 3 W N =

CONTENTS ix

3 Incremental SimRank on Link-Evolving Graphs 65
3.1 Introduction. 65
3.1.1 Problem Statement L oo 66
3.1.2 Chapter Outlines 68

3.2 A Fly in the Ointment in [LHHT10] 69
3.3 Our Incremental Solution 72
3.3.1 Characterizing AS via Rank-One Sylvester Equation 73
3.3.2 Pruning Unnecessary Node-Pairsin AS 85

3.4 Experimental Evaluation, 92
3.4.1 Experimental Setting 92
3.4.2 Experimental Results 93

3.5 Related Work 98
3.5.1 Incremental Update 99
3.5.2 Batch Computation, 100

3.6 Conclusions e 101
4 Efficient Penetrating-Rank on Large Networks 102
4.1 Introduction L L 102
4.1.1 Motivation e 103
4.1.2 Chapter Outlines 105

4.2 Preliminaries e e 106
4.3 P-Rank Accuracy Estimate 108
4.4 Stability Analysis 110
4.4.1 Closed-formof P-Rank 110
4.4.2 Condition Number of P-Rank 112

4.5 Optimization Techniques 116
4.5.1 P-Rank on Digraphs 117
4.5.2 P-Rank on Undirected Graphs 128

4.6 Experimental Evaluation 0 0000 134
4.6.1 Experimental Setting. L. 134
4.6.2 Experimental Results 135

4.7 Related Work 142
4.8 Conclusions 144
5 Incremental Random Walk with Restart 145
5.1 Imtroduction e 145
5.1.1 Problem Statement 146
5.1.2 Chapter Outlines 147

5.2 Preliminaries e 148
5.3 Incremental RWR Computing 149
5.3.1 Unit Update 149
5.3.2 Batch Update, 153

5.4 Experimental Evaluation o oo 155
5.4.1 Experimental Setting L. 155
5.4.2 Experimental Results 156

5.5 Related Work 157

5.6 Conclusions e 158

CONTENTS x
6 Fast SimFusion+ on Large and Dynamic Networks 159
6.1 Introduction. 159
6.1.1 Motivation o 160

6.1.2 Chapter Outlines 162

6.2 SimFusion Estimation Revised 163
6.2.1 Data Space and Data Relation 163

6.2.2 Unified Adjacency Matrix 164

6.3 Computing Similarity Via Dominant Eigenvector 166
6.4 Estimating SimFusion+ With Better Accuracy 169
6.5 Incremental SimFusion+ 177
6.5.1 Incremental Unified Adjacency Matrix 178

6.5.2 An Incremental Algorithm for SimFusion+ 180

6.6 Experimental Evaluation. 183
6.6.1 Experimental Setting 183

6.6.2 Experimental Results 185

6.7 Related Work 192
6.8 Conclusions 193

7 A Novel Model for Node-Pair Relevance Assessment 194
7.1 Introduction 194
7.1.1 Motivation 194

7.1.2 Chapter Outlines 197

7.2 SimRank*: A Revision of SimRank 198
7.2.1 “Zero-SimRank” Issue 198

7.2.2 SimRank*: A Remedy for SimRank 202

7.3 Efficiently Computing SimRank* 208
7.3.1 Recursive & Closed Forms of SimRank* 209

7.3.2 SimRank* Computation 211

7.3.3 Optimizations o L. 212

7.4 An Alternative Look of SimRank* 219
7.5 Experimental Evaluation 220
7.5.1 Experimental Setting 220

7.5.2 Experimental Results 223

7.6 Related Work 232
7.7 Conclusions e 233

8 Conclusions and Future Work 235
8.1 Thesis Summary L Lo 235
8.2 Future Avenues 237

List of Figures

1.1

21

2.2

2.3
24

2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4

4.5

SimRank on each pair of G vs. SimRank on each nodein G G 5
Merits and demerits of partial sums memoization for SimRank assessment

on a paper citation network L. 17
Constructing a minimum spanning tree 7 to find an optimized topological

sort for partial sums sharing oL 26
In-neighbor sets partitioning dendrogram 28
Computing si41(z,a) and sg41(z,), Vo € V, by using outer sums sharing

(k=2and C=0.6) 31
Edge Concentration o 48
Real-life Dataset Details 52
Time Efficiency on Real Datasets 55
Amortized Time on Real Data 56
Effect of Density 56
Memory Space on Real Datasets 57
Convergence Rate 58
Relative Ordering L 59
Case Study: Co-authors of “Jeffrey Xu Yu” 59
Time Efficiency on Bipartite Networks 61
Memory Space on Bipartite Networks 61
Compute SimRank incrementally as edge (¢,7) isadded 67
Time Efficiency of Incremental SimRank on Real Data 94
% of Lossless SVD Rank w.r.t. |[AE| 94
Time Efficiency of Incremental SimRank on Synthetic Data 95
Effect of Pruning 96
% of Affected Areas w.r.t. [AE| o 96
Memory Space 98
NDCGgg Exactness e 98
The equality of Eq.(4.6) is attainable for Gy 110
The equality of Eq.(4.13) is attainable for G 116
Low-rank update of matrix inversion 117
Low rank v approximation truncating the smallest r — v singular values of

Q. e 119
Heterogenous Shopping Graph Go 122

X1

LIST OF FIGURES xii

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

5.1
5.2
5.3
5.4
9.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

7.1
7.2

7.3
7.4

7.5
7.6

Homogeneous Scientific Paper Network G 123
How UN P-Rank works on undirected G4 133
ewrt. kon IMRAND 135
kwrt Cphn IMRAND e 135
€ w.r.t. Ciy and Cyyy on Real Data (DBLP) 136
Koo W.T.t. Aon IM RAND e 137
Koo W.r.t. Cinon IM RAND 137
Koo w.T.t. Ciy and Coyt on Real Data (DBLP) 138
Scalability & Computational Time 139
UN P-Rank vs. AUGon RAND 140
Top-10 Similar Authors of “Jennifer Widom” on DBLP 140
Amortized Time on Real Data, 141
Effect of Density 141
v on Synthetic RAND (1IM) 141
Computing RWR Incrementally 147
IRWR on p2p-Gnutella 156
IRWR on cit-HepPh o 156
Edge insertions L oo 156
Edge deletions Lo 156
Exactness on p2p-Gnutella L oL 157
Exactness on cit-HepPho o 157
Trivial SimFusion on Heterogeneous Domain 160
Divergent SimFusion on Homogeneous Domain 161
Upper Triangular Process of UAM 171
NDCGlO and NDCGgO on MSN 186
Query-by-query and page-by-page comparisons for NDCG1p on MSN . . . 187
NDCGigon DBLP and WEBKB 187
Running Time on DBLP 188
Memory Space on DBLP oo o 188
Running Time on WEBKB 188
Memory Spaceon WEBKB oo oo 188
CPU time and memory for the given query and web page on MSN 189
IncSimFusion+ for queryo 190
IncSimFusion+ for web page 190
Effect of eon Time 191
Effect of e on Memory Lo oo 191
Similarities on Citation Graph 195
In-link Paths of (¢, j) for Length [€ [1, 4] Counted by SimRank, RWR/PPR,

and SimRank™® 204
The more symmetric the in-link paths are, the larger contributions they

will have to similarityo oo 206
Compression of Induced Bigraph G into G via Edge Concentration 214
Details of Real Datasets 221
Semantic Effectiveness on Real Data 224

LIST OF FIGURES xiii

7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15

Case Study: Top Co-authors on DBLP (2003-2005) 224
Role Difference of Top Ranked Node-Pairs 225
Average Similarity of Grouped Node-Pairs 226
Case Study: Top Co-Citations on CITHEPTH 227
% of “Zero-Similarity” Node-Pairs on Real Data 228
Time Efficiency on Real Datasets 229
Amortized Time on Real Data 230
Effect of Density 230
Memory Space on Real Datasets 231

Chapter 1

Introduction

The advent and increasing importance of many proliferative application areas — link
analysis, structural information search, recommender systems, and graph databases —
have led to a growing need to assess node-to-node relevance based on link structure. Ex-
isting techniques for link-based relevance assessment do not support large and dynamic
network data. Thus, applications are left to either: (1) Limit the similarity computation
in small networks with no more than thousands of nodes; or (2) Reassess all pairs of rele-
vance from scratch when a network is frequently updated with changes. While the former
method imposes a significant restriction on many large-scale real applications, the latter
results in considerable amounts of duplicate recomputational efforts and prohibitively
high time complexity to deal with real evolving networks.

This thesis develops innovative techniques for efficient node-to-node relevance assess-
ment on large and dynamic network data. Such techniques mainly involve (1) taming the
computational complexity for similarity assessment over large networks, (2) supporting
incremental updates when a network is constantly updated, as well as (3) enriching the
semantics of relevance scoring functions in a systematic fashion. Section 1.1 highlights
the importance of link-based relevance assessment that arises in modern-day applications.
Section 1.2 describes fundamentals of relevance assessment used in the rest of the thesis.

Section 1.3 introduces technical challenges involved in efficient relevance assessment on

Chapter 1. Introduction 2

large and dynamic networks, and outlines the main contributions made by this thesis.
Section 1.4 provides a broad overview of related work in the general area of relevance
assessment. (More detailed comparisons between prior work and specific contributions

of this thesis will appear in later chapters.)

1.1 Real Applications

Below are several examples of relevance assessment arising in real-world applications,
motivating the need for efficient techniques to deal with such assessment on large and

dynamic network data.

¢ Recommender Systems. Recommender systems are based on analyzing a large
amount of information on users’ preferences and providing personalized recommen-
dations of items to a user. A recent recommendation technique in [KSJ09] is based
on relevance assessment on a graph that links users to tags and tags to items.
Some additional information, e.g., friendship and social tagging embedded in social

knowledge, is also incorporated to improve the accuracy of item recommendations.

e Bibliometrics. Bibliometrics studies often require a relevance assessment for
measuring documents based on citation relationship. The methods of co-citation
[Sma73] and bibliographic coupling [Kes63a] are two most noteworthy metrics.
Both measures, however, only use the information of common immediate neighbors
to assess relevance between two documents. Recently, co-citation and bibliographic
coupling have been generalized by using the entire graph structure to assess the

relevance between documents [JWO02].

e Automated Image Annotation. Automated image annotation aims to auto-
matically assign caption keywords to a query image. A graph-based automatic
captioning method was introduced by [PYFDO04], where images and caption key-

words are regarded as nodes in a mixed media graph. Then, link-based relevance

Chapter 1. Introduction 3

1.2

assessment can be applied to measure the correlations between the query image

and the caption keywords.

Graph Clustering. Graph clustering aims to partition nodes in a network into
several different densely connected components based on node connectivity and/or
neighborhood similarity. Many graph clustering methods focus on the topological
structure of a graph partition with the aim to achieve a cohesive internal structure.
The link-based relevance assessment between two nodes can be regarded as the node
distance in a graph. One recent work in [SHZ"09] proposes RankClus to integrate

relevance assessment with clustering in large network analysis.

Social Networks. A fundamental task in social networks is to answer the question
“which new interactions among social network members are more likely to occur
in the near future?” A recent work in [LNKO03] has investigated this question by
assessing the relevance between two members. A key observation underlying this
approach is that the topological structure of the social network may suggest many
new collaborations. For instance, two members who are close in the network will

have many friends in common, and thus are more likely to collaborate in the future.

Fundamentals of Relevance Assessment

We revisit and define the basic formal concepts needed in the remainder of the thesis.

Definition 1.1. A directed graph (or digraph) is an ordered pair G = (V, E) with

e IV — a set whose elements are called nodes or vertices, and

e I/ — a set of ordered pairs of nodes, called directed edges.

|V | and |E| denote the number (cardinality) of nodes and edges, respectively, in G. [J

Definition 1.2. Given a graph G = (V, E), for any node a € V', we define

Chapter 1. Introduction 4

e 7 (a) — the in-neighbor set of node a, i.e., all nodes that have a link to a :

Z(a) = {u € V|(u,a) € E}.

e O (a) — the out-neighbor set of node a, i.e., all nodes that node v has a link to :

O(a) = {w € Vl|(a,w) € E}.

e |Z(a)| — the in-degree of node a, i.e., the cardinality of Z (a).
e |O(a)| — the out-degree of node a, i.e., the cardinality of O (a). O

Using the aforementioned notations, the famous Google PageRank [Ber(05] can be

formulated as follows.

Definition 1.3 (PageRank). Given a graph G = (V, E), the PageRank value for any

page u is defined as:

Pr(u)=C- Z

Pr(v) ta-0). L
vET(u) U)‘

O VI

where C' € (0,1) is a constant decay factor (or a damping factor). Empirically, C' is

usually set to 0.85. O]

PageRank was proposed by Larry Page [Ber05] to rank web pages based on hyperlinks
in the search engine results. It is an effective approach of measuring the importance of
web pages (nodes), by assigning a relevance score to each node.

In contrast to PageRank which is query-independent, Random walk with restart
(RWR) [TFPO06] has emerged recently as an appealing ranking algorithm relying on user

queries. The formulation of RWR is a slight modification of PageRank as follows.

Definition 1.4 (Random Walk with Restart). Given a graph G = (V, E), the RWR

proximity for any page u with respect to query ¢ is defined as:

B P,(v) 0, q#u
Py(u) =C'- Z ‘(Q(I(U>‘+(1_C)‘ . B
vET(u) , 4= u.

Chapter 1. Introduction 5

G

people.htm privacy.htm

@
index.htm / \

(7
©

productA .aspx \

productB.aspx

(a)
Figure 1.1: SimRank on each pair of G vs. SimRank on each node in G ® G

Definition 1.5. A tensor product graph GG = (V @V, E® E) of a graph G with itself

is a graph such that
e V(a,b) e VeV if a,beV;
° V((al,bl), (ag,bg)) cEQF if (al,ag) € E, and (bl,bg) cF. O

Example 1.6. Figure 1.1 depicts a digraph G (with nodes indexed by integers, denoting
web pages, and edges hyperlinks) and its induced tensor graph G ® G. It can be seen

that, in G ® G, edge ((3,6),(2,4)) corresponds to two edges (3,2) and (6,4) in G. O

Based on the definition of the tensor product graph, we next formulate SimRank

similarity, which was introduced by Jeh and Widom in [JW02].

Definition 1.7 (SimRank). Given a graph G = (V. E),let s : V®V — [0,1] C R be a

real-valued scoring function on G ® G defined as

1, a=b;

s(a,0) =3 mame L » s(id), I(a),I(b)#2; (1.1)
JET(b) i€ (a)

0, otherwise.

where C' € (0,1) is a constant decay factor (or a damping factor). We call s (a,b) the

SimRank similarity score between nodes a and b. O

Chapter 1. Introduction 6

Figure 1.1 illustrates that SimRank propagates similarities from pair to pair in G

associated with the propagation from node to node in G ® G with a decay factor C' = 0.8

Definition 1.8. A bipartite graph (or bigraph) is a graph B = (U UV, E), whose nodes
can be divided into two disjoint sets U and V', such that every edge in F connects a node

in U to one in V. O
A bipartite version of SimRank, called Minimax SimRank [JW02], is defined below.

Definition 1.9 (Minimax SimRank variation). Given a bipartite graph B = (UUV, E),
for every two distinct vertices A and B in V, the similarity of the Minimax SimRank

variation, denoted as s(A, B), is defined as follows:

A c .

s(A,B) = O] max 5(i,),
iEO(A)jEO(B)

sB(A,B) = |o(CB)| ié%f%ﬁ)s(iaj)?
JEO(B)

s(A,B) = min{s*(4,B),s?(A,B)}. O

To make the thesis self-contained, we also revisit some mathematical definitions that
will be useful throughout the thesis.
We shall use the bold symbol X = (z; ;) € R"™™ to denote a matrix of size n x m.

Based on this, we define the following notations:

e [X], . (or z; ;) — the (4, j)-entry of matrix X;

i7j

e [X],, — the i-th row of matrix X;

2y

e [X], ; — the j-th column of matrix X;

e XT — the transpose of matrix X, i.e., (X]; ;= [XT}ji.
Definition 1.10 (tensor product). The tensor product (or Kroneckor product) of two
matrices X € RP*? and Y € R"*% is the pr x ¢s matrix

.’L‘1,1Y xl,qY
def . . .
X®Y = : . : . O

Tp1Y oo TpgY

Chapter 1. Introduction 7

Definition 1.11 (vectorization). The vec operator vectorizes a matrix X = (x; ;) € RP*¢

by stacking its columns as follows:
vee(X) w11, apt, e Trgs s Tpg). O
Tensor product (®) and vectorization operator (vec) have the following relationship.
(BT @ A) - vec(X) = vec(AXB). (1.2)

Definition 1.12 (matrix norm). For a given n x n matrix X, some matrix norms of X
are defined as follows:

def
e max-norm: | X|| .- = max; ;_ |zi 4] ;

e Frobenius norm: || X|| o \/Z?:l Z?:l i j|? 5
def n n
o Lnorm: [X[, = maxj_; > 7 |z ;
. def n n
e oo-norm: || X[, = max] Zj:l |35 - =

Definition 1.13 (spectral radius). The spectral radius of matrix X, denoted by p(X),

is the maximum of the absolute values of the eigenvalues of X. O

1.3 Challenges and Contributions

The goal of this thesis is to develop innovative techniques and novel link-based similarity
models for efficiently managing relevance assessment on large and dynamic network data.
In other words, we are not only interested in new techniques to tame the computational
complexity for relevance assessment in a scalable fashion, but also propose novel effective
models to enrich the semantics for relevance assessment, without suffering from increased

computational costs. Next we enumerate the main challenges involved in the thesis.

1.3.1 All-Pairs and Bipartite SimRank

SimRank is a widely-accepted link-based similarity model, which was initially introduced

by Jeh and Widom [JWO02]. It is based on the philosophy that “two objects are similar if

Chapter 1. Introduction 8

they are referenced by similar objects”. Due to its self-referentiality, fast SimRank search
on large and dynamic networks poses significant challenges.

The most efficient existing approach [LVGT10] exploits partial sums memoization for
computing SimRank in O(K|V||E|) time on a graph G = (V, E), where K is the number
of iterations. However, it implies the following the limitations: (1) Although partial sums
memoizing can reduce repeated calculations by caching part of similarity summations
for later reuse, we observed that computations among different partial sums may have
duplicate efforts. (2) For a desired accuracy e, the existing SimRank model [LVGT10)]
requires K = [logq €] iterations [LVGT10], where C' is a damping factor. Nevertheless,
such a geometric rate of convergence is slow in practice if a high accuracy is desirable.

In Chapter 2, we address the above issues. (1) We propose adaptive clustering strate-
gies to eliminate partial sums redundancy, and devised novel efficient methods for speed-
ing up the computation of SimRank to O(Kd'|V|?) time, where d’ is typically much
smaller than the average degree of a graph. (2) We present a new notion of SimRank
that is based on a differential equation and can be represented as an exponential sum
of transition matrices, as opposed to the geometric sum of the conventional counterpart.
This leads to a further exponential speedup in the convergence rate of SimRank itera-
tions. (3) In bipartite domains, we also develop a novel finer-grained partial max clus-
tering method to speed up the computation of the Minimax SimRank variation [JW02]
from O(K|E||V]) to O(K|E'||V]) time, where |E’| (< |E]) is the number of edges in a
reduced graph after edge clustering, which can be typically much smaller than |E|.

Using real and synthetic data, we empirically verify that (1) our approach of partial
sums sharing outperforms the best known algorithm by up to one order of magnitude.
(2) The revised notion of SimRank further achieves a 5X speedup on large graphs while
also fairly preserving the relative order of original SimRank scores. (3) Our finer-grained
partial max memoization for the Minimax SimRank variation in bipartite domains is

0.5-1.2 orders of magnitude faster than the baselines.

Chapter 1. Introduction 9

1.3.2 Incremental SimRank

Real graphs are often large, and links constantly evolve with small changes over time. It
is rather costly to reassess similarities of all pairs of nodes when the graph is updated.
Inspired by this, we next considers fast incremental computations of SimRank on link-
evolving networks.

The prior approach [LHHT10] to this issue factorizes the graph via a singular value
decomposition (SVD) first, and then incrementally maintains this factorization for link
updates at the expense of exactness. Consequently, all node-pair similarities are estimated
in O(r*n?) time on a graph of n nodes without guaranteed accuracy, where 7 is the target
rank of the low-rank approximation, which is not negligibly small in practice.

In Chapter 3, we propose a novel fast incremental paradigm. (1) We characterize the
SimRank update matrix AS, in response to every link update, via a rank-one Sylvester
matrix equation. By virtue of this, we devise a fast incremental algorithm computing
similarities of n? node-pairs in O(Kn?) time for K iterations. (2) We also propose an
effective pruning technique capturing the “affected areas” of AS to skip unnecessary
computations, without loss of exactness. This can further accelerate the incremental
SimRank computation to O(K (nd + |AFF|)) time, where d is the average in-degree of
the old graph, and |AFF| (< n?) is the size of “affected areas” in AS, and in practice,
|AFF| < n?.

Our empirical evaluations verify that our algorithm (a) outperforms the best known
link-update algorithm [LHH"10], and (b) runs much faster than its batch counterpart

when link updates are small.

1.3.3 Fast Penetrating-Rank

With the striking success of PageRank [Ber05] and SimRank [JWO02], Penetrating-Rank
(P-Rank) [ZHS09] has been recently proposed as another effective link-based similarity
measure, since it provides a comprehensive way of encoding both incoming and outgoing

links into assessment, as opposed to SimRank that considers only incoming edges for

Chapter 1. Introduction 10

relevance assessment. However, the existing P-Rank algorithm is iterative in nature and
rather expensive to compute. Besides, accuracy estimation and stability issue for P-Rank
computation have not been studied yet.

In Chapter 3, optimization techniques encompassing P-Rank accuracy, stability and
computational efficiency are investigated. (1) The accuracy estimation is provided for
P-Rank iterations, with the aim to find out the total number K of iterations required
for achieving a desired accuracy € > 0. (2) A rigorous bound on the condition number
of P-Rank is obtained for stability analysis. Based on this bound, it can be shown that
P-Rank is stable and well-conditioned, providing that the damping factors are chosen to
be suitably small. (3) Two matrix-based algorithms, applicable to digraphs and undi-
rected graphs, are respectively devised for efficient P-Rank computation, which improves
the time complexity from O(K|V|*) to O(*|V|* + r2|V|) for digraphs, and to O(r|V|?)
for undirected graphs, with |V| being the number of vertices in a graph, and r (< |V|)
the rank of adjacency matrix. Both real and synthetic datasets are used for conduct-
ing extensive experiments to demonstrate the usefulness and efficiency of the proposed

techniques for P-Rank assessment on networks.

1.3.4 Incremental Random Walk with Restart

Random Walk with Restart (RWR) is a PageRank-like object proximity model proposed
by Tong and Faloutsos [TFP06]. The existing RWR model utilized a SVD method to
measure object-to-object proximity in a static graph. We noticed that in practice, while
edges in a graph often arrive over time, it is often cost-inhibitive to recompute proximities
from scratch via batch algorithms when the graph is updated. This highlights the need
for incremental algorithms to compute changes to the proximities in response to updates,
to avoid unnecessary recomputation.

Motivated by this, in Chapter 4, we propose a fast exact incremental RWR, search
model over graph streams, whose edges often change over time. The most efficient method

for measuring RWR proximity [FNOK12] deploys k-dash to find top-k highest proximity

Chapter 1. Introduction 11

nodes for a given query, which involves a strategy to incrementally estimate upper prox-
imity bounds. However, due to its aim to prune needless calculation, such an incremental
strategy is approzimate: in O(1) time for each node. Our main contribution for RWR is
to devise an exact and fast incremental algorithm for edge updates. Our solution, IRWR,
can incrementally compute any node proximity in O(1) time for each edge update with-
out loss of exactness. The empirical evaluations show the high efficiency and exactness of
IRWR for computing proximities on dynamic networks against its batch counterparts by
up to one order of magnitude. The proposed framework for assessing RWR. proximities

also can readily be extended to Google Personalized PageRank.

1.3.5 Fast and Incremental SimFusion

SimFusion is a very popular relevance model proposed in [XFFT05]. It has become a
captivating measure of similarity between objects in a web graph. The basic concept
behind SimFusion is iteratively distilled from the notion that “the similarity between two
objects is reinforced by the similarity of their related objects”. The existing SimFusion
model [XFFT05] often leverages the Unified Relationship Matriz (URM) to represent
latent relationships among heterogeneous data, and adopts an iterative paradigm for
SimFusion computation. However, due to the row normalization of URM, we noticed
that the traditional SimFusion model may produce the trivial solution, and worse still,
the iterative computation of SimFusion sometimes cannot ensure the global convergence
of the solution.

In Chapter 5, we propose a full treatment of SimFusion model from complexity to
algorithms, aiming to support fast SimFusion search on large networks and (dynamic)
graph streams. To be specific, (1) we propose SimFusion+ based on a notion of the Uni-
fied Adjacency Matriz (UAM), a modification of the URM, to prevent the trivial solution
and the divergence issue of SimFusion. (2) We show that for any vertex-pair, SimFusion+
can be performed in O(1) time and O(|V]) space with an O(K|E|)-time precomputation

done only once, as opposed to the O(K|V|*) time and O(|V|*) space of its traditional

Chapter 1. Introduction 12

counterpart on a graph G = (V, E) for K iterations. (3) We also devise an incremen-
tal algorithm for further improving the computation of SimFusion+ when networks are
dynamically updated, with performance guarantees for similarity estimation.

The experimental results on real and synthetic datasets (1) verified the scalability of
the proposed SimFusion+ model, and (2) demonstrated that the proposed SimFusion+
model not only can converge to a non-trivial solution, but also allows us to identify more

sensible structure information in large real-world networks.

1.3.6 Semantics Enrichment

Similarity semantics is an importance property in relevance assessment. Most recently,
despite its popularity of SimRank [JW02], we observe that SimRank has an undesirable
property, i.e., “zero-similarity”: It only accommodates paths with equal length from a
common “center” node. Thus, a large portion of other paths are fully ignored. Similarly,
RWR [TFPO06] also implies a SimRank-like “zero-proximity” problem.

In Chapter 6, we attempt to remedy such issues. (1) We propose and rigorously jus-
tify SimRank*, a revised version of SimRank, which resolves such counter-intuitive “zero-
similarity” problems while inheriting merits of the basic philosophy of SimRank. (2) We
show that the series form of SimRank* can be reduced to a fairly succinct and elegant
closed form, which looks even simpler than SimRank, yet enriches semantics without suf-
fering from increased computational cost. This leads to a fixed-point iterative paradigm
of SimRank* in O(K|V||E|) time on a network G = (V, E) for K iterations, which is
comparable to SimRank. (3) To further optimize SimRank* computation, we leverage a
novel clustering strategy via edge concentration. Due to its NP-hardness, we devise an
efficient and effective heuristic to speed up SimRank* computation to O(K|V||E|) time,
where |E| is generally much smaller than |E)|.

The experimental evaluations, along with theoretical proofs, show that (1) SimRank*
has richer semantics on real-life graphs than SimRank and RWR. This demonstrates the

semantic completeness of SimRank* for similarity assessment. (2) SimRank* has higher

Chapter 1. Introduction 13

computational efficiency. The speedup of SimRank* on real datasets can be 5X-10X

faster than SimRank and RWR.

1.4 Related Work

In this section, we briefly overview prior work in relevance assessment and related areas.
Detailed comparison of previous work with specific techniques developed in this thesis

will appear in the relevant chapters.

Link-based Relevance. The study of link-based relevance assessment has a long
history, dating back to a series of initial papers from the early 1960’s, e.g., co-citation
analysis [Sma73,Col74], bibliographic coupling [Kes63a,Kes63b, Kes63c|, Amsler measure
[AmsT72], author co-citation analysis (ACA) [WG81, Eom96, McC90], co-citation proxim-
ity analysis (CPA) [GB09, Gip10], and a great deal of follow-on work, Google PageRank
[Ber05, Hav03, LMO03], Hyperlink-Induced Topic Search (HITS) [Kle99], SimRank [FRO5,
HLC*T12,JW02,LLY12,LHH"10,LLY"10,LVGT10], RWR [TFP06, TFP08, TKF09], Sim-
Rank++ [AMCO08], SimFusion [XFF*05], P-Rank [ZHS09] and others. Many of these
previous works, especially earlier papers, focus on theoretical foundations, and not on
practical considerations such as efficient relevance assessment on large networks, and in-

cremental updates on dynamic networks, which are the important subjects of this thesis.

SimRank. SimRank is arguably one of the most successful link-based similarity mea-
sures in recent years. It was initially proposed by Jeh and Widom [JW02], who adopted
an iterative paradigm to compute SimRank scores of all-pairs. Since then, there has
been a surge of papers looking at various problems in efficient SimRank computing as
the naive algorithm [JWO02] has high time complexity. Recent results include matrix-
based methods [FNSO13, LHH"10], iterative optimization [LVGT10,ZZF*13], random
walk sampling [FR04, FR05, LLY12], and parallel computing [HFLC10, HLC*12]. This
thesis makes a further step towards this goal by devising novel fast optimization tech-

niques for SimRank assessment on large and dynamic networks.

Chapter 1. Introduction 14

RWR. RWR is another popular measure of node-to-node proximity, which is first pro-
posed by Tong et al. [TFP06]. Recently, it has a board range of emerging applications,
such as automatic image captioning [KSJ09], recommendation system [PYFDO04, TJ13],
and social networks [SBCT10, LNK03|. In addition, several other measures build upon
RWR, including Personalized PageRank [Hav03], ObjectRank [HHP06], Escape Prob-
ability [TKF09], and PathSim [SHY"11]. The straightforward approach [TFPO06] for
computing RWR implies a matrix inversion, which is rather expensive. Recent years
have witnessed growing interests in developing novel techniques to speed up RWR assess-
ment, (e.g., [FNOK12, TFP08, TKF09,SHY ™11, YMS14]). While previous works mainly
focus on static networks, this thesis proposes efficient incremental techniques for RWR

assessment on dynamic networks.

Other Work. There has also been a large body of work for various relevance measures
to serve different assessment purposes.

Personalized PageRank (PPR) [Hav03] is one of the most well-known proximity
measure for ranking the importance of web pages. It is almost the same as PageR-
ank [Ber05], except that all the random jumps are done back to the same node (not
random nodes), called the “source” or “seed” node, for which we are personalizing the
PageRank. Over the last decade, there are many algorithms designed to assess PPR val-
ues in different computational models, including power iteration [Hav03], approximation
methods [ZFCY13,PCD'08,SBC*06], MapReduce [BCX11], and top-k search [FNST13].

Recently, SimFusion [XFFT05] and P-Rank [ZHS09] are two appealing relevance as-
sessment models. SimFusion is a PageRank-like relevance measure based on similarity
reinforcement assumption that “the similarity between two data objects is reinforced by
the similarity of their related objects from homogenous and heterogeneous data spaces”.
P-Rank [ZHS09] is a SimRank-like measure by jointly taking account of both in- and
out-links for relevance assessment. The relationship between SimFusion and P-Rank was
shown in [CZDC10]. Other graph relevance measure [BGH'04], role similarity [JLH11],

and network clustering metric [ZCY09] are variants of SimRank and PageRank.

Chapter 2

Fast SimRank on Large Networks

and Bipartite Domains

2.1 Introduction

Identifying similar objects based on link structure is a fundamental operation for many
web mining tasks. Examples include web page ranking [Ber05], hypertext classification
(KNN) [LLY12], graph clustering (K-means) [BCO8b], and collaborative filtering [JW02].
In the last decade, with the overwhelming number of objects on the Web, there is a
growing need to be able to automatically and efficiently assess their similarities on large
graphs. Indeed, the Web has huge dimensions and continues to grow rapidly — more than
5% of new objects are created weekly [CR04]. As a result, similarity assessment on web
objects tends to be obsolete so quickly. Thus, it is imperative to get a fast computational
speed for similarity assessment on large graphs.

Amid the existing similarity metrics, SimRank [JW02] has emerged as a powerful
tool for assessing structural similarities between two objects. Similar to the well-known
PageRank [Ber05], SimRank scores depend merely on the Web link structure, independent
of the textual content of objects. The major difference between the two models is the

scoring mechanism. PageRank assigns an authority weight for each object, whereas

15

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 16

SimRank assigns a similarity score between two objects. SimRank was first proposed by
Jeh and Widom [JWO02], and has gained increasing popularity for its success in many
areas such as bibliometrics [LHH'10], top-K search [LLY12], and recommender systems
[AMCO8]. The intuition behind SimRank is a subtle recursion that “two vertices are
similar if their incoming neighbors are similar”, together with the base case that “each
vertex is most similar to itself” [JWO02]. Due to this self-referentiality, conventional
algorithms for computing SimRank have an iterative nature. The sheer size of the Web
has presented striking challenges to fast SimRank computing. The best known algorithm
proposed by Lizorkin et al. [LVGT10] (hereafter referred to as psum-SR) requires O (K mn)
time (O(Kn?) in the worst case) for K iterations, where n and m denote the number of
vertices and edges, respectively, in a graph.

The beauty of psum-SR algorithm [LVGT10] resides in the following three obser-
vations. (1) Essential nodes selection may eliminate the computation of a fraction of
node pairs with a-priori zero scores. (2) Partial sums memoizing can effectively reduce
repeated calculations of the similarity among different node pairs by caching part of sim-
ilarity summations for later reuse. (3) A threshold setting on the similarity enables a
further reduction in the number of node pairs to be computed. Particularly, the second
observation of partial sums memoizing plays a paramount role in greatly speeding up the
computation of SimRank from the naive O(Kd?n?) [JW02] to O(Kdn?), ! where d is the
number of average in-degrees in a graph.

In this chapter, we make a further step towards this goal, by proposing efficient

methods for accelerating SimRank assessment on large networks and bipartite domains.

2.1.1 Motivation

Before shedding light on the blemish of psum-SR [LVGT10], let us first revisit the central
idea of partial sums memoizing in Example 2.1, motivating our need to develop more

efficient techniques for SimRank assessment.

'As n-d =m, O(Kmn) time in [LVGT10] is equivalent to O(Kdn?).

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 17

Z(d)
Redundancy !(!)
s(a,b) s(a,d
(a) A paper citation network (b) Naive method in [JW02]
Z(a) Redundancy !! Z(c)
b g g b g d
............. Partial2¥ \(9) = Partial>* (9)
b T(a c g ~~
JISNS; AN SN
5% /,Partialz’(“a) (e) Partialz’(“c)(e) -]
> k
f @@,/Iv(;artmlz(a)(f) Partiali’(“c)(f) L LEXA 7(d)
] 3%% 0% n i %%
WA Partial”;’“)(a) Partial?’“)(z) i iz

(a C
s(a,b), s(a,d) s(c,b), s(c,d)

(c¢) psum-SR leads to redundancy among different partial sums

Figure 2.1: Merits and demerits of partial sums memoization for SimRank assessment on
a paper citation network

Example 2.1. Consider a paper citation network G in Figure 2.1a, where each vertex
represents a paper, and an edge a citation. For any vertex a, we denote by Z(a) the
set of in-neighbors of a. Individual element in Z(a) is denoted as Z;(a). Let s(a,b) be
the SimRank similarity between vertices a and b. In what follows, we want to compute
s(a,b) and s(a,d) in G.

Before partial sums memoizing is introduced, a naive way is to sum up the similar-
ities of all in-neighbors (Z;(a),Z;(b)) of (a,b) for computing s(a,b), and to sum up the
similarities of all in-neighbors (Z;(a),Z;(d)) of (a,d) for computing s(a, d), independently,

as depicted in Figure 2.1b. In contrast, psum-SR is based on the observation that Z(b)

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 18

and Z(d) have three vertices {e, f,i} in common. Thus, the three partial sums over
Z(a) (i.e., Partial;’za) (y) 2 with y € {e, f,i}) can be computed only once, and reused
for both s(a,b) and s(a,d) computation (see left part of Figure 2.1c). Similarly, for
computing s(c,b) and s(c,d), since Z(b) N Z(d) = {e, f,i}, the partial sums over Z(c)

(i.e., Partialsk

z) with = € {e, f,7}) can be cached for later reuse (see right part o
7(e) ith f b hed for | igh f

Figure 2.1c¢). O

Despite the aforementioned merits of psum-SR, the existing work [LVGT10] on Sim-
Rank has the following limitations.

Firstly, we observe from Example 2.1 that computing partial sums [LVGT10] over
different in-neighbor sets may have duplicate redundancy. For instance, Z(a) and Z(c)
in Figure 2.1c have two vertices {b,¢} in common, implying that the sub-summation
Partial?l;g}(*) is the common part shared between the partial sums Partial;’za) (%) and

Partial’k

7(¢) (%). Thus, there is an opportunity to speed up the computation of SimRank

by preprocessing the common sub-summation Partial?lg o) (%) once, and caching it for

both Partial;’za) (x) and Partial3®

*) computation. However, it is a big challenge to
Z(c)

identify the well-tailored common parts for maximal sharing among the partial sums over
different in-neighbor sets since there could be many irregularly and arbitrarily overlapped
in-neighbor sets in a real graph. To address this issue, we propose optimization techniques
to have such common parts memoized in a hierarchical clustering manner, and devise an
efficient algorithm to eliminate such redundancy.

Secondly, the existing iterative paradigm [LVGT10] for computing SimRank has a
geometric rate of convergence, which might be, in practice, rather slow when a high
accuracy is attained. This is especially evident in e.g., citation networks and web graphs
[KNTO06]. For instance, our experiments on DBLP citation network shows that a desired

accuracy of e = 0.001 may lead to more than 30 iterations of SimRank, for the damping

2Recall from [LVGT10] that a partial sum for a binary function f : X x ¥ — R over a set D =
{x1, -+, 2o} C X, denoted by Partiall,(x), is defined as

Partial{,(y) = Z flze,y), (Wed).

z; €D

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 19

factor C' = 0.8. Lizorkin et al. has proved theoretically in [LVGT10] that, for a desired
accuracy €, the number of iterations required for the conventional SimRank is K =
[log- €], which is mainly due to the geometric sum of the traditional representation
of SimRank. This highlights the need for a revised SimRank model to speed up the
geometric rate of convergence.

Moreover, for bipartite domains, a variant model of SimRank proposed by Jeh and
Widom in [JW02, Section 4.3.2], called the Minimax Variation SimRank, may also have
duplicate computational efforts in computing the partial maz over every out-neighbor
set for all vertex-pair similarities. However, we observe that the choices of granularity for
partial maz memoization is different from those for partial sums memoization. This is
because, in the context of partial sums sharing, “subtraction” is allowed to compute one
partial sum from another, whereas, in the context of partial max sharing, “subtraction”

is disallowed. We will provide a detailed discussion in Section 2.5.

2.1.2 Chapter Outlines

In this chapter, our main contributions are summarized as follow.

e We propose an adaptive clustering strategy based on a minimum spanning tree to
eliminate duplicate computations in partial sums [LVGT10] in a hierarchical fashion
(Section 2.3). By optimizing the sub-summations sharing among different partial
sums, an efficient algorithm is devised for speeding up the computation of SimRank
from O(Kdn?) [LVGT10] to O(Kd'n?) time, where d’ (< d) can, in general, be much

smaller than the average in-degree d.

e We introduce a new notion of SimRank by using a matrix differential equation to
further accelerate the convergence of SimRank iterations from the original geomet-
ric to exponential rate (Section 2.4). We show that the new notion of SimRank
can be characterized as an exponential sum in terms of the transition matrix while

fairly preserving the relative order of SimRank, as opposed to the conventional

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 20

counterpart [LVGT10] as a geometric sum. We also devise a space-efficient itera-
tive paradigm for computing the differential SimRank matrix equation, which can
integrate our previous techniques of sub-summations sharing without sacrificing

extra memory space.

e We investigate the partial max sharing problem for speeding up the computation
of the Minimax SimRank variation in bipartite graphs, a variant model proposed
in [JWO02, Section 4.3.2]. We show that the partial maxz sharing problem is different
from the partial sums sharing problem, due to “subtraction” curse in the context
of max operator. To resolve this issue, we devise a novel finer-grained partial max
clustering strategy via edge concentration, improving the computation of Minimax
SimRank variation from O(Kmn) to O(Km/n) time, where m’ (< m) is the number
of edges in a reduced graph after edge clustering, which is practically smaller than

m (Section 2.5).

e We conduct extensive experiments on real and synthetic datasets (Section 2.6),
demonstrating that (1) our approach of partial sum sharing on large graphs can
be one order of magnitude faster than psum-SR; (2) our revised notion of SimRank
achieves up to a 5X further speedup against the conventional counterpart; and (3)
for the Minimax SimRank variation in bipartite domains, our finer-grained partial
max sharing method outperforms the baselines by 0.5-1.2 orders of magnitude in

computational time.

2.2 Preliminaries

We revisit the two forms of SimRank, To our knowledge, there are two representations of
SimRank, i.e., the iterative form [JW02,LVGT10], and matrix form [LHH"10, HFLC10].

The consistency of two forms was pointed out in [LHH'10).

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 21

2.2.1 Iterative Form

Recall from Definition 1.7 of SimRank in Chapter 1. The SimRank formula (1.1) naturally
leads to the following iterative method [JW02]:
Start with sg(a,b) = {(1) 2;2 ,and for k=0,1,---, set
() sk41(0,0) = 1
(ii) sg+1(a,b0) =0,if Z (a) =@ or Z (b) = &;
(iii) otherwise,
st = = 3 3 g0, (2.1)
T [T0)] 2= 2o

The resultant sequence {sy(a,b)} 7, converges to s(a, b), the exact solution of Eq.(1.1).

2.2.2 Matrix Form

In matrix notations [LHH"10], SimRank can be formulated as
S=C-(Q-S-Q")+(1-0) L, (2.2)

where S is the similarity matrix whose entry [S], s is the similarity score s(a,b), Q is the

backward transition matrix whose entry [Ql,, = |I(1a)‘ if there is an edge from b to a,

)

and 0 otherwise, and I,, is an n X n identity matrix.

2.3 Eliminating Partial Sums Duplicate Computations

The existing method, psum-SR [LVGT10], of performing Eq.(2.1) is to memoize the partial
sums over Z(a) first:
Partial3}, (j) = Z() sk(iy§), (Vj € Z(b)) (2.3)
i€Z(a

and then iteratively compute sgy1(a,b) as follows:

C
Spr1(a,b) = ————— Partialsk . (5). 2.4
k+1() |I(CL)||I(())‘ jezz(:b) I(a)() ()

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 22

Consequently, the results of Partial;’za) (7), V5 € Z(b), can be reused later when we

compute the similarities spi1(a,*) for a given vertex a as the first argument. How-
ever, we observe that the partial sums over different in-neighbor sets may share com-
mon sub-summations. For example in Figure 2.1c, the partial sums Partial;’za) (%) and

Partial’k

(o) (%) have the sub-summation Partial?’g o) (%) in common. By virtue of this, we

next show how to optimize sub-summations sharing among different partial sums.

2.3.1 Partition In-neighbor Sets for Inner Partial Sums Sharing

We first introduce the notion of a set partition.

Definition 2.2. A partition of a set D, denoted by Z(D), is a family of disjoint subsets

D; of D whose union is D:
P (D) ={D1,Da,- -+ ,Dp}, with p=|Z (D),
where D; N D; = @ for i # j, and | J}_, D; = D.]

For instance, Z(Z(b)) = {{f,g},{e,i}} is a partition of the in-neighbor set Z(b) =
{f,g,e,i} in Figure 2.1a.
The set partition is deployed for speeding up SimRank computation, based on the

proposition below.

Proposition 2.3. For two distinct vertices a and b with Z(a) # @ and Z(b) # @,
sk+1(a,b) can be iteratively computed as
C 1Sk
Sk+1(a,b) = ———— Z Partial ¥ (7). (2.5)
IZ(a)[IZ(b)] . -
JET(b) AP (I(a))

Here, Partial’¥ (j) is defined as Eq.(2.3) with Z(a) replaced by A. O

Sketch of Proof. The proof follows immediately from the following two facts:
(i) For two disjoint sets A and B, Partial’f (j) + Partial} (j) = Partial’f z(j), Vj.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 23

The main idea in our approach is to share the common sub-summations among differ-
ent partial sums, by precomputing the sub-summations Partial}¥ (x) over A € Z(Z(a))
once, and caching them in a block fashion for later reuse, which can effectively avoid
repeating duplicate sub-summations. As an example in Figure 2.1¢c, when Z(c) is parti-
tioned as Z(Z(c)) = {Z(a),{d}} with Z(a) = {b, g}, once computed, the sub-summations
Partial;’za) (%) can be memoized and reused for computing Partial;’zc) (%). In contrast, the
existing method psum-SR [LVGT10] has to start from scratch to compute Partml;’za) (%)
and Partial;’zc) (%), independently, which is due to no reuse of common sub-summations.

The selection of a partition &?(Z(a)) for an in-neighbor set Z(a) has a great impact
on the performance of our approach. Troubles could be expected when a selected par-
tition Z(Z(a)) is too coarse or too fine. For instance, if Z(a) is taken to be a trivial
partition of itself, i.e., Z(Z(a)) = {Z(a)} for every vertex a, Eq.(2.5) can be simplified
to the conventional psum-SR iteration in Eq.(2.4). From this perspective, our approach
is a generalization of psum-SR. On the other hand, if the partitions of Z(a) become finer
(i.e., the size of A € Z(Z(a)) becomes smaller), there is a more likelihood of Partial ¥ (x)
with a high density of common sub-summations, but with a low cardinality on the simi-
larity values to be clustered. An extreme example would be a discrete partition of Z(a),
i.e., Z(I(a)) = {{z}|z € Z(a)}, where every block is a singleton vertex. In such a case,
Eq.(2.5) would deteriorate to the naive iteration [JW02] in Eq.(2.1), which may be even
worse than psum-SR. Thus, it is desirable to find the best partition &(Z(a)) for each
Z(a) that has the largest and densest clumps of common vertices.

The problem of finding such optimal partitions to minimize the total cost of partial
sums over different in-neighbor sets, referred to as Optimal In-neighbors Partitioning and
denoted as OIP, can be formulated as follows:

Given a graph G = (V, &), OIP is to find the optimal partition 2(Z(a)) = {AL | i =
1,--+,|2(Z(a))|} of each in-neighbor set Z(a), a € V, for creating chunks A’ such that

the total number of additions required for computing all the partial sums Partial;’za) (%)

over every in-neighbor set Z(a), a € V, is minimized by reusing the sub-summation results

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 24

Partialzz (%) over chunks A¥.
Proposition 2.4. The OIP problem is NP-hard. O

Proof. We verify this by reducing the NP-complete Ensemble Computation (EC) problem
[GJ79, p.66] to a special case of the decision problem of OIP.

The EC problem is defined as follows: Given a collection % of subsets of a finite set A
and a positive integer J, EC is to decide whether there is a sequence (z1 = z1Uy1, -+, 2j =
xj Uy;) of j < J union operations, where each x; and y; is either {a} for some a € A or
zp for some p < 7, such that x; and y; are disjoint for 1 <7 < j and such that for every
subset C € € there is some z;, 1 < i < j, that is identical to C.

For each instance of EC, we construct the corresponding instance of the OIP decision
problem by setting A = {si(a,*) | a € V}, € = {Partml;’za)(*) | a € V}, and an
integer J to be the maximum number of required additions. Clearly, by converting union
operations (U) of EC into additions (+), it follows that the OIP decision problem has a
solution, i.e., 3 a sequence (21 = x1+y1, -+ ,2; = xj+y;) of j < J additions, if and only
if there exists a sequence (21 = 21 Uy, ,2; = xj Uy;) of j < J union operations for
EC. Thus, the NP-completeness of the OIP decision problem follows immediately from
the NP-completeness of EC.

Also, the decision problem of OIP can be naturally converted into its corresponding
optimization problem by imposing a bound on the number of additions to be optimized,
namely, turning “whether there exists such a solution that can be done in fewer than
J additions” into “minimize the number of additions”. Hence, the OIP optimization

problem is NP-hard due to the NP-completeness of its decision problem. O

We next seek for a good heuristic method for OIP.
The basic idea is as follows. Consider a directed graph G = (V,€). For every two

in-neighbor sets Z(a) and Z(b) of vertices a,b € V, we first calculate the transition cost

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 25

from Z(a) to Z(b), denoted by TCz(q)—z(r), as follows: 3
TCr(a)-zw) = min{|[Z(a) © Z(b)|, [Z(b)| - 1}, (2.6)

where © is the symmetric difference of two sets. * Thus, the value of TCr(a)—»z) 18
actually the number of additions required to compute the partial sum Partial;’zb) (%),

given the partial sum Partial>k

Z(a) (%). Then, we construct a weighted digraph ¥ = (¥, &)

whose vertices correspond to the non-empty in-neighbor sets of G, with an extra vertex
corresponding to an empty set @, i.e., ¥ = {Z(a) | a € V} U {@}. There is an edge
from Z(a) to Z(b) in ¢ if |Z(a)] < |Z(b)|. The weight of an edge (Z(a),Z(b)) € &
represents the transition cost TCz(,)—z)- Finally, we find a minimum spanning tree
of ¢4, denoted by .7, whose total transition cost is minimum. Henceforth, every edge

(Z(a),Z(b)) in 7 implies the following: (i) Partial3®

T(a) (%) should be computed prior to

l;’zb) (%) computation, which provides an optimized topological sort for efficiently

Partia
computing all the partial sums. (ii) Z(b) needs to be partitioned as Z(b) N Z(a) and
Z(b)\Z(a), meaning that the result of Partial;’za) (%) can be cached and shared with
Partial;’zb) (x) computation.

The following example depicts how this idea works.

Example 2.5. Consider the network G in Figure 2.1a, with the vertices and the corre-
sponding non-empty in-neighbor sets depicted in Figure 2.2a. We show how to find a
decent ordering for partial sums computing and sharing in G.

Firstly, we compute the transition cost of each pair of in-neighbor sets (along with
an empty set &) in G, by using Eq.(2.6). The results are shown in Figure 2.2b, where

each cell describes the transition cost from the in-neighbor set in the left most column

*Without loss of generality, only in the case of |Z(a)| < |Z(b)|, we need to compute TCz(a)—z(»)- This is
because we are interested only in the cost of computing Partial;’zm (%) by using the given Partiali’za) (*)-
Conversely, if utilizing the result of Partial;’zw (%) to compute Partiali’za) (%), for |Z(a)| < |Z(b)], then we
have to introduce the “subtraction” to undo the summation that we have already done, which is often
an extra operation.

4The symmetric difference of two sets A and B, denoted by A & B, is the set of all elements of A or

B which are not in both A and B. Symbolically,
Ao B=(A\B)U (B\A).
As an example in Fig 2.1c, given Z(b) = {g, €, f,i} and Z(d) = {e, f, 4, a}, we have Z(b) © Z(d) = {g, a}.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 26

| vertex | Z(x) | | | Z(a) | Z(e) | Z(h) | Z(c) | Z(b) | Z(d) |
a {b,g} %) 1 1 2 3 3
e {f, 9} Z(a) 1 1 1# 3 3
h {b,d} Z(e) 1 2 | 2% 3
c {b,d, g} Z(h) 17 3 3
b {f,g,e,i} Z(c) 3 3
d {f,a,ei} Z(b) 27
(a) In-neighbors in G (b) Transition Costs (Edge Weights) in ¢

0 U 0
& %) &

ol

ll
I(h) Z(a) Z(e)
ll

#l#

) Z(
Z(e) Z(b)
(

2
7(d)
(c) Minimum Spanning Tree .7 (d) Topological Sort

Figure 2.2: Constructing a minimum spanning tree .7 to find an optimized topological
sort for partial sums sharing

to the in-neighbor set in the top line. For instance, the cell 2% at row ‘Z(e)’ column
“Z(b)’ shows that TCz(e)-z(p) = 2. This cell is tagged with #, indicating that the partial
sum Partial;’zb) (%) can be computed from the memoized result of Partial;’ze) (%) (rather
than from scratch). This is because the transition cost 2 is, in essence, obtained from
the 2 operations of symmetric difference (i.e., |Z(e) ©Z(b)| = |{e,i}| = 2) in lieu of the 3
additions (i.e., |Z(b)| — 1 = 3) w.r.t. Eq.(2.6). Note that the lower triangular part of the
table in Figure 2.2b remains empty since we are interested only in the cost TCz () 7(y)
when |[Z(z)| < [Z(y)|

Next, we build a weighted digraph ¢ in Figure 2.2c, with vertices corresponding to

the non-empty in-neighbor sets (plus @) of G (which are in column ‘Z(x)’ of Figure 2.2a),

and edge weights to the transition costs. For instance, the weight of the edge (Z(e),Z(b))

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 27

in ¢ is associated with the cell ‘2%’ at row ‘Z(e)’ column ‘Z(b)’ in Figure 2.2b. Thus,
every path in ¢ yields a linear ordering of partial sums computation. More importantly,
partial sums sharing may occur in the edges tagged with #. As an example, the path
o571 (e) LN (b) in ¢ shows that (i) Partial;’ze) (%) is computed from scratch (from &)
with 1 operation, and (ii) Partial;’zb) (x) is obtained by reusing the result of Partial?ze) (%),
involving 2 operations.

Finally, we find a directed minimum spanning tree .7 of ¢, by starting from the
vertex @, and choosing the cheapest path for partial sums computing and sharing, as

depicted in bold edges in Figure 2.2c. Consequently, using depth-first search (DFS), we

can obtain 3 paths from .7 for partial sums optimization, as shown in Figure 2.2d.

Using this idea, we can identify the moderate partitions of each in-neighbor set in G,
with large and dense chunks for sub-summations sharing. Such partitions are not optimal,
but can, in practice, achieve better performances than psum-SR. Proposition 2.6 shows

the correctness.

Proposition 2.6. Given two distinct non-empty in-neighbor sets Z(a) and Z(b), and a
partial sum Partial;’za) (%), if |Z(a) ©Z(b)| < |Z(b)| — 1, then we have the following:

(i) Z(b) can be partitioned as

Z(b) = (Z(b) N Z(a)) U (Z(b)\Z(a))- (2.7)
(ii) The partial sum Partial;"(‘b) (%) can be computed from the cached result of Partial%’za) (%)
as follows:
Partial;’zb) (y) = Partial;’za) (y) — Z sk(z,y)
z€Z(a)\Z(b)
2€Z(b)\Z(a)
with |Z(a) © Z(b)| operations being performed. O

Sketch of Proof. The proof of Eq.(2.7) is trivial, whereas the proof of Eq.(2.8) is based

on two facts :

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 28

P () I(c) = {b.d, g}

Z(h) ={b,d}

@ | {{boh @) — (b0}

I(e) {f.g}} Z(d) = {f,a,i,e}

| Wb | TN o= 1]

Z(c) | {Z(a),{d}} ®\

I(b) {I(e)v{e’i}} Z(b) ={f.g.i e}

Z(d) | {Z(b)\{g},{a}}

(a) Partitions of Z(x) in G (b) Hierarchical Clustering

Figure 2.3: In-neighbor sets partitioning dendrogram

(i) B = (A\(A\B)) U (B\A) ;

(ii) Partiali{“\lg(j) = Partial’f (j) — Partial . 4(7), Vj. O

In the sequel, we give an illustrative example to show how to find all the partitions

of in-neighbor sets for partial sums sharing via Proposition 2.6.

Example 2.7 (Find all the partitions of in-neighbor sets for partial sums sharing).
Recall the network G in Figure 2.1a, along with the optimized ordering of partial sums
in Figure 2.2d. We show how to identify the partition of each in-neighbor set in G for
partial sums sharing. For instance, consider the path @ L7 (a) 7 (¢) in Figure 2.2d.
We have the following.

(i) The first edge @ EN Z(a) implies that Partial;’za) (%) need to be computed from
scratch since the starting point of this edge is @. Thus, Z(a) has only one partition of
itself.

(ii) The second edge Z(a) 7, Z(c) suggests that Z(c) can be partitioned, by using
Eq.(2.7), as

Z(e) = (Z(c) N Z(a)) U (Z(c)\I(a)) = I(a) U {d}.

Hence, Partial%’zc) (x) can be obtained from the memoized result of Partial;’za) (%) via

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 29

Eq.(2.8) as follows:

PartialZk

Tioy(®) = Partiall \(z) + sp(d,z). (z € V)

(a)

We repeat these steps for the rest of two paths in Figure 2.2d. Finally, we get all the
partitions of in-neighbor sets in G, as shown in Figure 2.3a. Accordingly, the resultant
accumulation of reusable partial sums is visualized in Figure 2.3b, in which a letter
with a box denotes a vertex, and a symbol with a circle an operator. For example,

‘@ @ @ --Z(h)’ means that si(d,*) and s (b, *) are added to yield Partial;’zh) (%). O

2.3.2 Use In-neighbor Set Partitions for Outer Sums Sharing

After the partitions of in-neighbor sets have been identified for (inner) partial sums
sharing, optimization approaches in this subsection allow outer partial sums sharing for
further speeding up the computation of SimRank.

To avoid ambiguity, we refer to the sums w.r.t. the index ¢ in Eq.(2.3) as (inner)
partial sums, and the sums w.r.t. the index j in Eq.(2.4) as outer partial sums.

Our key observation is as follows. Recall from Eq.(2.4) that, given the memoized

results of partial sums Partial;’za) (%), the existing algorithm psum-SR for computing

Sk

I(a)(y), one by one, over all y € Z(b). Such a process can be

sk(a,b) is to sum up Partial
pictorially depicted in the left part of Figure 2.1c, in which each horizontal bar represents
a partial sum over Z(a). In order to compute s(a, b), we need to add up the horizontal bars
(i.e., the partial sums) in the first four rows. However, while computing s(a, ¢) by adding
up the horizontal bars in the last four rows, we observe that the three horizontal bars at
rows ‘e’, f7,‘a’ may suffer from repetitive additions. As another example in the right part
of Figure 2.1c, for computing s(b, ¢) and s(d, ¢), the sum of the three horizontal bars at
rows ‘e’,'f’,i’ is again a repeated operation. As such, the major problem of Eq.(2.4) is
the one-by-one fashion in which the partial sums Partial;’za)(y) for y € Z(b) are added
together.

Our main idea in optimizing Eq.(2.4) is to split Z(b) into several chunks A¢ first, such

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 30

that
2(TO) ={A)[i=1,---,|2(Z())},

and then add up the cached results of partial sums in a chunk-by-chunk fashion to

compute si11(a,b) as

C

— y I(_a)78k
Sk+1(a,b) = T[T Z Outer Partial ; (2.9)

Ab
Ale2(Z(b))

with

. 1Z(a),s - 1S .
OuterPartzalA(i) kA Z Partwlzlza) (4)-

JEA!
In contrast with Eq.(2.4), our method in Eq.(2.9) can eliminate the redundancy among
Z(a),sk

A

different outer partial sums. Once computed, the outer partial sum Outer Partial
is memoized and can be reused later without recalculation again. As an example in

Figure 2.1c, suppose Z(b) and Z(d) are split into

Z(b) =A{g} U{e, f,i}, I(d) = {e, f,i} U{a},

the outer partial sum OuterPartial%e(c?g’“ is computed only once and can be reused in

both sj41(a,b) and sg41(a,d) computation.

The problem of finding an ideal partition &(Z(b)) of Z(b) for maximal sharing outer
partial sums is still NP-hard, and its proof is the same as that of OIP in Proposition 2.4.
Thus, the partitioning techniques for (inner) partial sums sharing in Subsection 2.3.1 can
be applied in a similar way to optimize outer partial sums sharing. In other words, the
partitions of in-neighbor sets in Eq.(2.7) for (inner) partial sums sharing, once identi-
fied, can be reused later for outer partial sums sharing. The correctness is verified in

Proposition 2.8.

Proposition 2.8. Given two non-empty in-neighbor sets Z(b) and Z(d), an outer par-

tial sum OuterPartial%EZ))’sk, and (inner) partial sums Partial;’za) (%), if |Z(b) & Z(d)| <

|Z(d)| — 1, then we have the following:

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 31

vertex Partzal;’zx) (v) OuterPartialig))’sk Skt1(z, 2)

x y:b‘y—g‘y:d z=a z=c z:a‘z:c
a 1 1 0.11 2 2.11 1 0.21
e 0 1 0 1 1 0.15 0.1
h 1.11 0 1.11 1.11 2.22 0.17 0.22
c 1.11 1 1.11 2.11 3.22 0.21 1

b 0.15 1 0.08 1.15 1.23 0.09 | 0.06
d 0.23 0 0.08 0.23 0.31 0.02 | 0.02

Figure 2.4: Computing si4+1(z,a) and sgy1(x,c), V& € V, by using outer sums sharing
(k=2and C =0.6)

(1) OuterPartwlzggg *k can be computed from the memoized results of OuterPartmlIgZ)) ok

Va € V, as follows:

OuterPartial%EZ;’s’“ = OuterPartial%EZ))’sk —

- Z Partzalsk)+ Z Partialt Tl)(ZL'), Va €V
2€Z(b)\Z(d) zeI(NZ(b)

with |Z(b) © Z(d)| operations being performed.

(ii) sg+1(a,d), Ya € V\{d}, can be computed as

C . Z(a),sg
= —— P ok . 2.1
Sk+1(a,d) T(@)Z(d) Quter Partialz 7", Va € V\{d} (2.10)

(The proof is similar to Proposition 2.6. We omit it here.)
We next provide an example to illustrate how to use outer partial sums sharing for

further speeding up the computation of SimRank.

Example 2.9 (Use outer partial sums sharing for speeding up SimRank computation).
Recall the graph G in Figure 2.1a, with the (inner) partial sums sharing dendrogram in
Figure 2.3b. Suppose Partial;’zx) (%), Yz € V, have been pre-computed via Example 2.7,
as depicted in part in the first four columns of Figure 2.4. We show how to compute

Sk+1(w,a) and sgiq(x,c), Vo € V, by using outer partial sums sharing.

Z(z),8k

Firstly, for each non-empty in-neighbor set Z(z), we compute OuterPartzalI(a)

and OuterPartial E)) Vx € V, from the cached results of Partial;’zx) (%). In light

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 32

of the clustering dendrogram in Figure 2.3b, we notice that the item ‘@ &) @ - Z(a),

which, in the context of outer partial sums, can be reinterpreted as “adding up the

(inner) partial sums Partial;’zx)(b) and Partial;’zw) (9) to yield the outer partial sums

OuterPartial%Ez)) *k for all x € V”. Thus, we have

OuterPaTtialgg))’sk = Z Partial;’zz)(y). (Vz e V)
ye{b.g}

For instance, OuterPartialiEz))’s’“ =0.15+1 = 1.15, for x = b, as illustrated in row ‘b’ of

Figure 2.4.

I(I),Sk

Similarly, the item ‘Z(a) @@- --Z(c) in Figure 2.3b implies that OQuter Partialz ;™"

Vx € V, can be calculated from the cached results of OuterPartial%EZf)) "k via Eq.(2.9) as

OuterPartialiEf))’sk = OuterPartialiEz))’sk

—|—Pa7“tial;’zx) (d), (VzxeV)

Z(b),sk

e.g., OuteTPartialI(C)

=1.154+0.08 = 1.23, for = = b.
The rest of the results are shown in Cols 5-6 of Figure 2.4.
Then, using Eq.(2.10), we can obtain sgy1(z,a) and sgyi1(x,c), Vo € V, from the

memoized results of OuterPartialigz)) *k and OuterPartz’al%Ef))’s’“. For example, in row

‘b’ of Figure 2.4,

Sk+1(b,a) = x 1.15=10.09, (z=0b)

2 x4

3 x4

Sk+1(b,) = x 1.23 =0.06. (x =10)

The remainder of the similarities are depicted in the last two columns of Figure 2.4. [

2.3.3 A SimRank Algorithm

We next present a complete algorithm to efficiently compute SimRank, by integrating
the aforementioned techniques of inner and outer partial sums sharing.

The main result of this subsection is the following.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 33

Algorithm 2.1: OIP-SR (G, C, K)
Input : graph G = (V,€), damping factor C,

iteration number K.
Output: SimRank scores sg (x, *).
1 construct a transitional MST .7 < DMST-Reduce (G);

initialize so(x,y) < { o vty VT,YEV

N

3 fork«+<0,1,--- , K —1do

4 foreach vertex u € O(#) in the MST 7 do
5 foreach vertex y € V in G do
6 L Partial;’zu) (V) < Xseziu) Sk(T:Y) 3
7 Skr1(u,x) < OP (7,G,u,C k, Partz'al;’zu) (%));
8 while O(u) # @ do
9 v O(u) ;
10 foreach vertex y € V in G do
11 Partial;’zv)(y) — Partial;’zu) (v)
- Z Sk(.’E,?/)"‘ Z Sk(xvy);
x€Z(u)\Z(v) 2€Z(v)\Z(u)
12 Sky1(v, %) + OP(7,G,v,C, k, Partial;’zv) (%));
13 U v,
14 foreach vertex y € V in G do
15 free Partial;"('u) (y) ;
16 while O(u) # @ do
17 L v+ O(u), free Partial%’zv) (y), u <+ v;

18 return sk (*,*) ;

Proposition 2.10. For any graph G, it is in O(dn?+ Kd'n?) time and O(n) intermediate
memory to compute SimRank similarities of all pairs of vertices for K iterations, where

d is the average vertex in-degree of G, and d’' < d.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 34

Note that d’ is affected by the overlapped area size among different in-neighbor sets in
G. Typically, d’ is much smaller than d as in-neighbor sets in G may have many vertices
in common in real networks. That is, our approach of partial sums sharing can compute
SimRank more efficiently than psum-SR in practice, as opposed to the O(Kdn?)-time of
the conventional counterpart via separate partial sums over each in-neighbour set in G.
Even in the extreme case when all in-neighbor sets in G are pair-wise disjoint, our method
can retain the same complexity bound of psum-SR in the worst case.

We next prove Proposition 2.10 by providing an algorithm for SimRank computation,

with the desired complexity bound.

Algorithm. The algorithm, referred to as OIP-SR, is shown in Algorithm 2.1. Given
G, a damping factor C, and the total iteration number K, it returns sy (%,) of all pairs
of vertices.

In the sequel, we shall abuse the notation O(v) to denote the out-neighbor set of
vertex v.

The algorithm OIP-SR works as follows. (1) It first invokes procedure DMST-Reduce to
identify the topological sort based on a minimum spanning tree .7 for computing partial
sums (line 1). (2) For each iteration k, OIP-SR checks each path in .7, starting from
the root node # as follows. (a) For the first edge (#,u) in each path, OIP-SR com-
putes Partial;’zu) (%) from scratch (lines 5-6), and then invokes procedure OP to compute

Sk+1(u,x) by outer partial sums sharing (line 7). (b) For other edges (u,v) in each

path, OIP-SR computes Partial3

Zio (%) memoized earlier

)(*) from the result of Partial;’zu)
(lines 10-11), and gets sg4+1(v,*) by invoking procedure OP of outer partial sums sharing
(line 12). This process repeats until all edges in every path have been traversed, and
OIP-SR frees the memoized results of the partial sums generated from each path (lines
14-17). (3) The loop will continue to iterate until & reaches K, and OIP-SR returns all

the similarities sg (x,*) (line 18).

The procedures of OP and DMST-Reduce are described below.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 35

Procedure DMST-Reduce(G)
Input : graph G = (V,€).

Output: transitional MST 7.

—

initialize ¥ < VU {#}, &« O ;

2 sort the vertices of G into non-decreasing order by in-degree ;
3 initialize U < V ;

4 foreach vertex a € V in G, taken in sorted order do

5 | U« U\a);

6 foreach vertex b € U in G, taken in sorted order do
7 &+ &U{(a,b)};
8 assign a weight w to the edge (a,b) of & :

w(a,b) < min{|Z(a) © Z(b)|, |Z(b)| — 1} ;

9 find the MST .7 of the graph ¥ = (¥, &, w) :
T <« Directed-MST (¥4, #,w) ;

10 return J ;

Procedure DMST-Reduce. Given a graph G, the procedure returns a minimum span-
ning tree .7 as a topological sort for computing partial sums. First, it builds a weighed
graph ¢, whose edge weights are the transition costs of all pairs of vertices (plus a special
denoting ‘the root node’) in G (lines 1-8). Then, it runs an algorithm [GGST86] to find
a directed MST .7 of ¢ (starting from vertex #), which is returned as the final result

(lines 9-10).

Procedure OP. This procedure adopts a similar paradigm of OIP-SR for outer partial
sums sharing. The procedure OP takes as input a topological sort .7, a graph G, a vertex
u, a damping factor C, iteration k, and the cached partial sums Partial%’zu) (%). It returns

the similarities sg41(u,*).

The procedure OP runs in three phases for each path that starts from the root # of

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 36

Procedure OP(7,G,u,C\ k, Partial%’zu) (%))

Input : transitional MST .7, graph G = (V, €),

vertex u, damping factor C,
iteration k, partial sums Partial;’zu) (%).
Output: SimRank scores sp11(u, *).

1 foreach vertex w € O(#) in the MST 7 do

2 OuteTPartiang)))’sk <D yet(w) Partial;’zu) (y) ;

3 if u=w then sgiq(u,w) < 1;

4 else if Z(u) = @ or Z(w) = @ then s;11(u, w) < 0;

5 else spi1(u, w) < WﬁMOuterPartiang}))’sk;

6 while O(w) # @ do

7 z <+ O(w) ;

8 OuterPartial%EZ))’s’“ — OuterPartial%EZ)))’sk

— > Partial;’zu)(y) + > Partial;’zu) (y) ;
YEL(w)\I(2) YEL(2)\Z(w)

9 if u =z then sp1(u,2) <+ 1;
10 else if Z(u) = @ or Z(z) = @ then si1(u, z) < 0;
11 else sgi1(u, z) < WOU%TPQNMZ%Q’S’“ ;
12 W 2
13 free OuterPartial%EfU))’sk ;
14 | while O(w) # @ do
15 L z + O(w) , free OuterPartial%Eg))’sk LW 2

16 return sgiq(u,x) ;

the tree .7. (a) For the first edge (#,w) of each path, OP needs to start from scratch

to calculate OuterPartial%Z)))’s’“ (line 2) and sgy1(u,w) (lines 3-5) from the memoized

I(u)vsk

Partml;’zu) (%). (b) For other edges (w, z) in each path, OP obtains Outer Partialz

from the cached result of OuterPartial%EZ}))’sk (line 8), and then computes si11(u, z) (lines

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 37

9-11). The loop continues until all edges in the path have been visited. (c) OP releases
the memoized results of all the outer partial sums which are generated by each path
(lines 13-15). The whole process repeats until all the paths in .7 have been processed,

and returns siy1(u,*) (line 16).

Correctness & Complexity. OIP-SR consists of two phases: (i) building an MST
7 (line 1), and (ii) computing similarities (lines 2-18). One can readily verify that (1)
OIP-SR correctly computes the similarities si(u,v) in G for each vertex pair (u,v); and

(2) the total time of OIP-SR is bounded by O(Kd'n?), with d’ < d.

(1) Correctness. (i) Algorithm OIP-SR correctly computes the similarities si(u, v) in G for
each vertex pair (u,v). One can verify that after the foreach loops (lines 5-6 and lines 10-
11), for every vertex u € .7, Partial;’zu) (%) and OuterPartial%Ef)) *k are memoized, and
the similarities sgy1(u,*) are computed. (ii) The partial sums computed by our algorithm
are indeed optimized because while computing Partial;’zu) (%) and OuterPartial%Ef))’sk for
each vertex u, we allow the common parts of partial sums to be recomputed as fewer

as possible by virtue of a minimum spanning tree .7; in particular, the partial sums

sharing would definitely happen in every path of .7 for a graph with |{J,cy, Z(v)| less

than 3-,¢y [Z(v)]-

(2) Complexity. OIP-SR consists of two phases: (i) building an MST .7 (line 1), and (ii)
computing similarities (lines 2-18). We analyze the time for each phase below.

(i) The procedure DMST-Reduce is used for finding a directed MST .7, which is
bounded by O(dn?) time and O(n) space. It includes (a) O(nlogn) time and O(n)
space for sorting vertices in G by in-degree (line 2), (b) O(d) time and O(2d) space for
computing the transitional cost for a single edge (a,b) in &, being O(%) time for all
edges in & (lines 4-8), and (c) O(n?logn) time and O(n) space for finding the MST .7
of G [GGSTS6).

(ii) For each iteration, OIP-SR uses .7 rooted at # to compute similarities in G. Note

that |O(#)| paths in .7 are used for calculating partial sums over all in-neighbour sets

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 38

n

of G. Therefore, for completing a single path of average length oM@ the complexity
required for computing the partial sums, for the first edge of the path, is O(nd) time and
O(n) space (lines 5-6); the complexity required, apart from the first edge of the path, is
O(m -n-dg) time and O(n) space, with dg 2 avg(y ez | Z(u) © Z(v)| (lines 8-13). Tt
follows that the total complexity bound in this phase is O(K (|O(#)| - nd +n?-dg)) time
and O(n) space for K iterations. Since dg < d and |O(#)| < n, such a time complexity
bound is far less than O(Kdn?).

Combining (i) and (ii), the total complexity of OIP-SR is O(dn? 4+ K (|O(#)| - nd +

n? - dg)) time and O(n) space.

2.4 Exponential Rate of Convergence

For a desired accuracy e, the existing paradigm (via Eq.(2.1)) for computing SimRank
needs K = [logq €] iterations [LVGT10]. In this section, we introduce a new notion of
SimRank that is based on a matrix differential equation, which can significantly reduce
the number of iterations for attaining the accuracy € while fairly preserving the relative
order of SimRank.

The main idea in our approach is to replace the geometric sum of the conventional
SimRank by an exponential sum that provides more rapid rate of convergence. We start

by expanding the conventional SimRank matrix form (in Eq.(2.2))
$=C-(Q-5-QN)+(1-0) I,

as a power series:

o0 .
S=(1-0C)-> ¢"-Q-(Q"), (2.11)
i=0
where we notice that the coefficient for each term in the summation makes a geometric

sequence {1,C,C?,---}. For this expansion form, the effect of damping factor C? in the
summation is to reduce the contribution of long paths relative to short ones. That is,
the conventional SimRank measure considers two vertices to be more similar if they have

more paths of short length between them. Following this intuition, we observe that there

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 39

is an opportunity to speed up the asymptotic rate of convergence for SimRank iterations,

if we allow a slight (and with hindsight sensible) modification of Eq.(2.11) as follows:
s—c .3 Q) (212)
B — i ’ ‘

Comparing Eq.(2.11) with Eq.(2.12), we notice that S is just an exponential sum rather
than S that is a geometric sum. Since the exponential sum converges more rapidly, such
a modification can speed up the computation of SimRank. In addition, the modified co-
efficient for each term in the summation of Eq.(2.12) that yields the exponential sequence
{1, %, %2, .-+ } still obeys the intuition of the conventional counterpart, i.e., the efficacy

(el

of damping factor = is to reduce the contribution of long paths relative to short ones.

2.4.1 Closed Form of Exponential SimRank

With the modified notion of SimRank in Eq.(2.12), we now need to define an Eq.(2.2)-like

recurrence for S.

Definition 2.11. Let S(¢) be a matrix function w.r.t. a scalar t. The matriz differential
form of SimRank is defined to be S 2 S(t)|;—¢ such that S(t) satisfies the following

matrix differential equation:

dS(t)

- =Q80-Q", S0=¢"L. O (2.13)

Note that the solution of Eq.(2.13) is unique since the initial condition S(0) = e~©-1I,,
is specified. Based on Definition 2.11, it is crucial to verify that S (in Eq.(2.12)) is the

solution to Eq.(2.13). Proposition 2.12 shows the correctness.

Proposition 2.12. The matrix differential form of SimRank in Eq.(2.13) has an exact

solution S given in Eq.(2.12). O

Proof. We shall prove this by plugging

S()=A-(L+ > 5 -Q (@),
i=1

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 40

with an arbitrary constant A, into the SimRank differential formula Eq.(2.13):

diit) A-ij(ﬂQ“(QT)i)

i!

i=1
— ! i (AT & T
=AY Q- (QN) =Q-5(1)- Q7.
pat (i—1)!
where the first equality holds because we notice that H% Q- (QT)i|’maX < 2—:, and the

series 7%, & converges uniformly on t € [0, C].

Thus, we have verified that the solution to Eq.(2.13) takes the form
A N i
S(1) = A- (LHrZZ.!'Q ~(QT)>-
i=1

To find A, let ¢ = 0 and S(O) = ¢ ¢.1,. Then we have A-I, = ¢ ¢ - 1I,,, which

implies that A = e~¢. Therefore,
S(t)=e-> 5 Q- (Q")"
=0
Setting t = C, we obtain S £ S(C'), the solution to Eq.(2.13). O

To iteratively compute S, the conventional way is to use the Euler method [AP98] for
approximating S(t) at time ¢ = C. Precisely, by choosing a value h for the step size, and

setting tx, = k - h, one step of the Euler method from t; to t;41 is
SkJrl:Sk—i-h'Q‘Sk‘QT, S():S(O):efc-ln.

Subsequently, the value of Sy, is an approximation of the solution to Eq.(2.13) at time
t = tg, i.e., S ~ S(tk) However, the approximation error of the Euler method hinges
heavily on the choice of step size h, which is hard to determine since the small choice
of h would entail huge computational cost for attaining high accuracy. To address this

issue, we adopt the following iterative paradigm for computing S as

Tiy1=Q Ty - QT To=1
R . with { " (2.14)
Si+1 =Sk + e C. . Tri1 So = e ¢ I,

(kD!

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 41

Note that the main difference in our approach, as compared to the Euler method, is
that there is no need for the choice of a particular step size h to iteratively compute S.
The correctness of our approach can be easily verified, by induction on k, that the value
of Sj, in our iteration Eq.(2.14) equals the sum of the first & terms of the infinite series

S in Eq.(2.12).

2.4.2 A Space-Efficient Iterative Paradigm

Although the paradigm of Eq.(2.14) can iteratively compute S, that converges to the
exponential SimRank S, we observe that Eq.(2.14) requires additional memory space
to store the intermediate result T per iteration. In this subsection, we provide an
improved version of Eq.(2.14) that can produce the same result without using extra

space for caching TY.

Proposition 2.13. Given any total iteration number K, the following paradigm can be

used to iteratively compute Sk:

Sy = e ¢ I,
(2.15)

Ski1=7% QS QT +e ¢ -1, (k=0,--- ,K—1)
The result of Sk at the last iteration is exactly the same as Sx in Eq.(2.14). O

The main idea of our improved paradigm Eq.(2.15) is based on two observations: (1)
For every iteration k = 0,1,--- , K, the result of S, in Eq.(2.14) is actually the sum of
the first &k terms of the infinite series S in Eq.(2.12). (2) For any total iteration number
K, the result of Sk at the last iteration in Eq.(2.15) equals the sum of the first K terms
of the infinite series S in Eq.(2.12). Both of these observations can be readily verified
by direct inductive manipulations. As an example for K = 3, our improved paradigm
Eq.(2.15) iteratively computes Sz = e~ - Z?:O % Q- (QT)z as follows:

S1
83 =L +CQ (¢ 7L, + §Q (I, + §Q-Q7) Q") Q"

So

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 42

The merit of Eq.(2.15) over Eq.(2.14) is the space efficiency — in Eq.(2.15), we do not
need to use an auxiliary matrix Ty to store the temporary results. Moreover, since
Eq.(2.15) has a very similar form to the SimRank matrix form in Eq.(2.2), our partial
sums sharing techniques in Section 2.3 can be directly applied to the iterative form of
Eq.(2.15), i.e., when a # b, for k=0,1,--- | K — 1,

[gk-i-l}ab (K k) Z Z

] i€Z(b) i€Z(a)

It is worth noticing that in Eq.(2.14), we can iteratively compute Sk+1 from S for
any k =0,1,---, whereas, in Eq.(2.15), for any given K, we can only iteratively compute
Sk+1 from Sy, for k = 0,1,---, K — 1, but we cannot compute §K+1 from Sg. This
means that, to guarantee a given accuracy €, we have to determine the total number of
iterations K in an a-priori fashion for Eq.(2.15), in contrast with Eq.(2.14) in which K can
be determined in an either a-prior: or a-posteriori style. Fortunately, this requirement
is not an obstacle to Eq.(2.15), since in the next subsection we will show a nice a-priori

bound of the total iteration number K for Eq.(2.15) to attain a given accuracy e.

2.4.3 Error Estimate

In the SimRank matrix differential model, the following estimate for the k-th iterative

similarity matrix S with respect to the exact one S can be established.

Proposition 2.14. For each iteration k£ = 0,1,2,---, the difference between the k-th
iterative and the exact similarity matrix in Eqgs.(2.12) and (2.14) can be bounded as

follows:
Ck+ 1

1Sk = Sl imax < [k

(2.16)

where ||X]| .. = max;; |z; ;| is the max norm. O

max

Proof. Subtracting Eq.(2.12) from Eq.(2.14), we obtain

s-5-c¢. Y Z g

i=k+1

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 43

Taking the matrix-to-vector operator vec(x) [LHH'10] on both sides, and then ap-
plying the Kronecker product property that vec(AXB) = (BT ® A) - vec(X) to the

right-hand side gives

o
A~ A~

vece(S —8) =e ¢ Z % Qe Q)" vec(l,),

i=k+1
Notice that Q is a transitional matrix, i.e., the sum of each row in Q is less than 1,
which implies that ||Q ® Q|| < 1.

Take the matrix oo-norm || « ||, on both sides, and apply ||vec(*)|, = || * to

Hmax

the left-hand side:

1Sk = Sllppax <€ Z (Q® Q) - lvee(Tn)|l
i=k+1 !
0 Cz Cchrl
—C
Z 7/' -)
i=k+1

fEHD (g ChHL

where the last inequality holds because using the Lagrange remainder D)1

¢ € (0,0), of Maclaurin series for f(C) = e® yields

= Q _ et k+1 e k+1
1l | - | ’
S (k+1)! (k+1)!
which completes the proof. O

For the SimRank differential model Eq.(2.12), Proposition 2.14 allows finding out the
exact number of iterations needed for attaining a desired accuracy, based on the following

corollary.

Corollary 2.15. For a desired accuracy ¢ > 0, the number of iterations required to

perform Eq.(2.14) is

K' > (LW with ¢ = (vV2r 6)71
T IW(e B '
Here, W (%) is the Lambert W function [Has05]. O

cK'+1

Proof. Based on Eq.(2.16), Ve > 0, we need to find an integer K’ > 0 such that &)

<

€.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 44

We first use the Stirling’s formula

K +1 K+

(K + 1)t > v2m - ()

e

to obtain (Ke,il)K < Vor e
Let z = E£L It follows that 2% > (v/27 - e)‘ﬁ Using the Lambert W functi
= % - > . g the Lambert unction,

we have .

In(v2m-€) “©

- 1

W(ln (V2 -€) 7°)

back into the inequality, we get the final result. O

By substituting = = %
Noting that In(z) — In(In(z)) < W(x) < In(z), Yo > e [Has05], we have the following

improved version of Corollary 2.15, which may avoid computing the Lambert W function.

c

Corollary 2.16. For a desired accuracy 0 < € < \/%—We* '62, the number of iterations

needed to perform Eq.(2.14) is
K' > [tfrac—In(v2m - €)n —In(n)] with n = In(—2 - In(V2r -¢)). O

Comparing this with the conventional SimRank model that requires K = [log. €]
iterations [LVGT10] for a given accuracy €, we see that our revision of the differential
SimRank model in Eq.(2.13) can greatly speed up the convergence of SimRank iterations
from the original geometric to exponential rate.

As an example, setting C' = 0.8 and ¢ = 0.0001, since \/%6_0'8'82 = 0.0011 > 0.0001,
we can use Corollary 2.16 to find out the number of iterations K’ in Eq.(2.14) necessary

to our differential SimRank model Eq.(2.13) as follows:

1

n= ln(—e 08 -In(v2m - 0.0001)) = 1.3384,

K> [—m(\/zw.o.oom)] B [8.2914] B
~ 11.3384 —In(1.3384) '~ '1.0469 '

In contrast, the conventional SimRank model Eq.(2.1) needs K = [log;g0.0001] = 41

iterations.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 45

For ranking purpose, our experimental results in Section 2.6 further show that the
revised notion of SimRank in Eq.(2.13) not only drastically reduces the number of iter-
ations for a desired accuracy, but can fairly maintain the relative order of vertices with

respect to the conventional SimRank in [LVGT10].

2.5 Partial Max Sharing for Minimax SimRank Variation

in Bipartite Graphs

Having investigated the partial sums sharing problem for optimizing SimRank compu-
tation in Section 2.4, we now focus on the partial maz sharing problem for optimizing
the computation of the Minimax SimRank variation, a model proposed in [JW02, Sec-
tion 4.3.2] (see Definition 1.9).

To compute s(A, B) for bipartite SimRank, the conventional method is to perform

the following iterations:

1, A=D;
0, A#B.

For k > 0, we define (i) sii (A4, B) = 0 if O(A) = &; (ii) s, ,(A4, B) = 0 if O(B) = &;

(iii) otherwise,

C
A .o
s141(A,B) = max_sg(4,), (2.17)
O, 50, 7€0®
C
skBJrl(A,B) = 6] Z zg(loz?fl sk (i, 7), (2.18)
Sk+1(A7 B) = min{8k+1(A7 B)75k+1(AvB)}' (219)

We can readily prove that
lim sx(A, B) = s(A, B).

k—o00

To speed up the computation of sy (*,) for all pairs of vertices, we can first memoize

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 46

the partial max in Eq.(2.17) 5 as follows:

Partial,MaxS(’g’“(B)(i) = jér(lga(%) sk(4,7), (2.20)

and then compute s,‘?H(A, B) as
s 1(A,B) = O] Z Partial,Maa:S(’g’“(B)(i). (2.21)
i€O(A)
Thus, the memoized results of Partial M a:cg“(B) (%) can be reused in all s3', | (X, B) com-
putations, VX € V.

It should be pointed out that, although Eqs.(2.20) and (2.21) have a very similar form
to Eqgs.(2.3) and (2.4), we only can apply the (outer) partial sums sharing technique of
Section 2.3.2 to further speed up the summations in Eq.(2.21), but may not always employ
the (inner) partial sums sharing technique of Section 2.3.1 to accelerate the partial max
computation in Eq.(2.20). The reason is that, for partial sums sharing, “subtraction”
is allowed to compute one partial sum from another (see Eq.(2.8) in Proposition 2.6),
whereas, for partial maxz sharing, “subtraction” is disallowed in the context of “max”

operator since the mazximum value of a set X may be unequal to the mazimum value of

a subset of X. We call this the “subtraction” curse of max operation.

Example 2.17. Suppose O(B) = {c¢,d,e, f,j} and O(D) = {d,e, f, g, h,i}, with three
vertices {d,e, f} in common. Since O(D) = O(B) — {¢,j} U {g,h,i}, according to
Proposition 2.6, the partial sums Partialfo’“(D) (%) can be computed from the memoized

Partialé’“(B) (%) as

Partialé’“(D) (x) = Partialgc(B) (%) + Partialig7h7i}(*)
—Partial?’;’j}(*). (2.22)

However, in the context of partial max sharing, we may not obtain the partial max
Partial M axz’“(D)(*) directly from the memoized Partial M a,xfo’“(B) (%) via an Eq.(2.22)-

like approach. This is because “subtraction” is involved in Eq.(2.22) — although we

5In the following, we shall focus solely on optimizing Eq.(2.17). A similar method can be applied to
Eq.(2.18).

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 47

know

Partial,Ma:L‘fo’“(B)U{g hiy (%)

= maX{Partial,Maxfg’“(B) (%), Partial,Max?;’M})},
we do not know how to derive Partial M aa:‘zg’“(D) (x) from Partial M ax?o’“(B)ULg i} (F)
and Partial _M ax?;j}(*), which is due to the “subtraction” curse in the context of max

operator.]

This example tells that, for every two out-neighbor sets O(X) and O(Y), only when
O(X) C O(Y), then the partial max Partial,Maxzk(X) (%) can be reused for computing
Partial _M aa:fg’“(y) (%) as

Partial _M am‘;o’“(y) (%)
= max{Partial,Maxzk(X) (%), Partial,Max?Q’“(Y)\O(X) (%)}
Unfortunately, the condition O(X) C O(Y) is too restrictive in real-life networks for
partial max sharing. In practice, out-neighbors are often overlapped irreqularly in many
real-world graphs, i.e., O(X)NO(Y) # @. It is imperative for us to find a new differ-

ent way of partial max sharing, which can effectively avoid the “subtraction” curse for

computing the Minimax SimRank variation.

Partial Max Sharing. The main idea of our approach is based on a finer-grained partial
max sharing. Given two out-neighbor sets O(X) and O(Y), if O(X) N O(Y) # &, then

we first memoize the finer-grained partial max over the common subset O(X) N O(Y):

z(x) = Partial_Maxy; (2.23)

(X)NO(Y) (%),
then reuse z(x) to compute both Partial M ax%’c(X)(*) and Partial Mazoyy () as
Partial Maxg) (x) = max{Partial Maxg)\ oy (*); 2(x)},
Partial _Mazx gy (x) = max{ Partial Maz 5y, o x) (x), 2(4) }.

In comparison, the partial sums sharing approach in Section 2.3, if ported to the partial

max sharing, only allows Partial_M axfg’“(y) (%) being computed from another memoized

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 48

g h i
G=VUWUZ,E)

Figure 2.5: Edge Concentration

partial sums Partial M a:vfg’“(X)(*) or from scratch (depending on the transition costs);
since “subtraction” is not allowed in the context of max operator, Partial_M a:z:z“(y) (%)
have to be calculated from scratch if O(X) ¢ O(Y'). Fortunately, our approach can share
the common subparts for both Partial M axz’“(X)(*) and Partial .M aa:ék(y) (%) computa-

tion while preventing the “subtraction” curse.

Edge Concentration. To find out the common subparts z(x) in Eq.(2.23) for all out-

neighbor sets sharing, we first introduce the notion of biclique.

Definition 2.18. Given a bipartite digraph G = (VUW, £), a pair of two disjoint subsets
V', W), with V' CV and W C W, is called a biclique if (v/,w’) € € for all v/ € V' and
w ew'. O

Clearly, a biclique (V',WW') is a complete subgraph in the bipartite digraph G =
(YVUW,E), denoting the densest parts in G. For example in the left part of Figure 2.5,
({B,D},{c,d,e, f}) (dashed arrows) and ({A, D, E},{g,h}) (dotted arrows) are two bi-
cliques.

Bicliques are utilized for finding out the common subparts for partial max sharing. A
biclique, say ({B, D},{c,d,e, f}), in G means that the out-neighbor sets O(B) and O(D)
have common vertices {c,d, e, f}. Thus, Partial,Max‘E’;d&f} (%) can be reused for both
Partial M aa:g‘(B) (%) and Partial M ax?o’“(D) (%) computation. Pictorially, such a partial
max sharing optimization process can be depicted by the edge concentration [Lin00] of

a biclique in G. As shown in the right part of Figure 2.5, after edge concentration, a

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 49

biclique, say ({B, D}, {c,d,e, f}), can be simplified into a triple ({B, D}, z1,{c,d, e, f}),
where we call z1 € Z a concentration vertex. Each triple, say ({B, D}, z1,{c,d, e, f}), tells
us the following: (1) First, all the out-neighbors of vertex z; can be clustered together

to produce the memoized results z; (%), i.e.,
21(x) = Partial,Max?;d’e,f} ().

(2) Then, each in-neighbor of vertex z1, say B, indicates that the memoized z;(x) can be

reused in partial max computation Partial M aa:g“(B) (%), i.e.,

Partial_MaxJ, g (x) = maX{Partial,Mam?’g} (%), 21 (%)}

(B)

Therefore, applying edge concentration to every biclique of G provides a very efficient
way for partial max sharing. The main advantage is that, after edge concentration, the
number of edges in every biclique (V', W') can be reduced from |V'|x [W'| to |V'|+|W']. Tt
is worth mentioning that for every fixed vertex x, the total cost of performing the partial
max Partial _M a:nz’“(*) (x) over all out-neighbor sets O(x) is equal to the number |E| of
edges in G. Hence, our goal of minimizing the total cost of the partial max is equivalent
to the problem of minimizing the number of edges in G via edge concentration. However,
this problem is NP-hard, as proved in our early work [LHH'10]. Thus, to find bicliques

in G, we invoke a heuristic [BCO8b].

Algorithm. We next present an algorithm for computing Minimax SimRank variation
in a bipartite graph.

The algorithm, max-MSR; is shown in Algorithm 2.2. It takes as input the bipartite
graph G = (VUW, €), a damping factor C, and the number of iterations K, and returns
all pairs of Minimax SimRank similarities.

The algorithm max-MSR runs in three phases.

(1) Precomputing (lines 1-5). The algorithm first finds bicliques in bipartite graph G
by invoking the algorithm in [BCO8b] (line 1). It then replaces all the bicliques (densest

parts) in G via edge concentration (lines 2-5).

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains

50

Algorithm 2.2: max-MSR (G,C, K)

10

11

12

13
14

15

16
17
18
19

20

21

22

23

Input : bipartite graph G = (VU W,), damping factor C, the number of
iterations K.
Output: all the similarities of Minimax SimRank variation sx (%, *).
find all the bicliques {(V';, W;)} in G ;
foreach bicliqgue (V';, W';) in G do
Delete all the edges (v, w') € V'; x W', ;
Insert a dummy vertex z; into Z;
Add edges (V/, z), (z;,w'), Yo' € V' 0" e W,
initialize so(4, B) - { § 175 VA BeV;
for k+~0,1,--- ,K—1do

foreach vertex i €V in G do

foreach dummy verter z; € Z do

| ski) ¢ maxeoq;) sili @) ;
foreach vertexr B €V in G do

L Partial,Mang(B)(i) — mé%a()é) sk(i,) ;

foreach dummy verter z; € Z do
foreach vertex B €V in G do

Partial,kfaxg“(B)(zj) > Pa,rtia,l,AMa,xfgk(B) (x);
2€0(z5)

foreach vertex B €V in G do

foreach vertex A €V in G do

if A=B then s;.1(A, B) = 1; continue;
if O(A) = @ then sfﬂ(A, B) + 0;

else s (A, B) + WC:‘\)I > Partial,Ma:U?D’“(B) (i);
i€O(A)
if O(B) =@ then s, (A, B) « 0;

else s (A, B) « WCB)I 'eoZ(B) Partial,Mafo’“(A) (i);

Sk-i-l(Aa B) — min{sl?Jrl(A’ B)a SE+1(A7 B)}a

free Partial,Ma:L‘g“(*) (%) ;

return sg(x,*) ;

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 51

(2) Inner Partial Max Sharing (lines 8-12). The algorithm then iteratively computes the
common subparts among the different Partial M a:vfok(*) (%) (lines 9-10). Once computed,
the finer-gained inner partial max results are memoized for computing all the partial max
over different out-neighbor sets (lines 11-12).

(8) Outer Partial Sums Sharing (lines 13-22). The algorithm next computes the common
subparts among the different outer partial sums (lines 13-15). Once computed, the finer-
gained outer partial sums results are memoized for computing all the similarities of
Minimax SimRank sg1(x,*) (lines 16-21). After every iteration, the partial max results

can be removed from memory (line 22).

Correctness & Complexity. One can readily verify that the algorithm correctly com-
putes sk (x,), which satisfies Egs.(2.17)—(2.19).
The time of max-MSR is bounded by O(Km/n), where

N
m' = (€] =Y (Vi x Wil = Vi = IWil),
i=1

with NV being the total number of bicliques (V/, W) in the bipartite graph G = (VUW, E).
Here, m’ < |&|, and in practice, m’ is much smaller than || since there could be many
small dense parts in real bipartite graphs.

We analyze the time complexity in detail below. The total time of max-MSR consists
of three phases: precomputing, inner partial max sharing, and outer partial sums sharing.

(1) For the precomputing (lines 1-5), a heuristic algorithm in [BCO8b] is leveraged
for finding bicliques in G, which requires O(|€]log(|V| + [W])) time.

(2) In the inner partial max sharing phase (lines 8-12), for every iteration k£ and each
fixed vertex i, the total cost of computing Partial M ax“zo’“(N (1) is equal to the number of
edges in the reduced graph of G via edge concentration, which is O(m'). This is because
replacing each biclique can reduce the cost of max operations from |V/|x |[W!| to |VI|+|W.|.
Thus, for N bicliques in G, OS2~ ([Vi] x [W!| — [Vi| — W!])) time is reduced. Hence,
for K iterations, computing all the partial max over all the out-neighbor sets requires

O(Km'n) time.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains

Dataset Vertices Edges ‘ Avg Deg. ‘
BERKSTAN 685,230 7,600,595 11.1 (in)
PATENT 3,774,768 16,518,948 | 4.4 (in)
COURSE 8,470+1,873 46,825 5.53 (out)
IMDB 320.1K+785.6K | 3,871,636 | 12.09 (out)
D02 9,942 27,849 2.8 (in)
DBLP D05 15,976 38,356 2.4 (in)
DO8 23,471 63,723 2.7 (in)
D11 39,965 104,468 2.6 (in)

Figure 2.6: Real-life Dataset Details

(3) For the outer partial sums sharing (lines 13-22), similar to the partial max sharing
phase, the cost of computing all similarities sy (%, x) from the memoized Partial M axfo’“(*) (%)
is equal to the number of of edges in the reduced graph of G, entailing O(Km’) time for
K iterations.

Taking the three phases together, the total cost of max-MSR is dominated by the

second phase, which is in O(Km/n) time.

2.6 Empirical Evaluation

We present an experimental study on real and synthetic data to evaluate the efficacy of

our methods.

2.6.1 Experimental Setting

Datasets. For the basic SimRank model, we use three real datasets (BERKSTAN,
PATENT, DBLP) to evaluate the efficiency of our approaches, and one synthetic dataset
(SYN) to vary graph characteristics. For the Minimax SimRank variation model in bipar-
tite domains, we use two real datasets (COURSE and IMDB) and one syntectic bipartite
dataset (SYNBI).

The sizes of the datasets are illustrated in Figure 2.6. In the following, we provide a

detailed description of these datasets.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 53

(1) BERKSTAN. The first network is a Berkeley-Stanford web graph of 7.4M links

between 680K web pages (from berkely.edu and stanford.edu domains), downloaded
from the Stanford Network Analysis Project (SNAP).5

(2) PATENT. This is a citation network among U.S. Patents, obtained from the Na-
tional Bureau of Economic Research. It is our largest dataset consisting of 3.2M U.S.
patents (vertices) and 16.1M citations (edges), with a low average degree of 4.4.

(3) DBLP. This is a scientific publication network, derived from DBLP Computer
Science Bibliography.® We selected the recent 12-year publications (from 2000 to 2011) in
8 major conferences (ICDE, VLDB, SIGMOD, PODS, CIKM, ICDM, SIGIR, SIGKDD),
and then built 4 co-authorship graphs by choosing every 3 years as a time step.

(4) Course. This dataset is obtained from the transcripts of 8,470 students in the
University of New South Wales. Every transcript lists the courses that the student has
taken. There are 1,873 courses in total, with an average of about 25 courses for each
student.

(5) IMDB. The IMDB network® is a bipartite graph, with two types of vertices:
20.1K movies and 785.6K actors. Each edge from a movie to an actor means that the
actor name movies has appeared in the movie. There are 3.8M edges in this dataset,
among with 8,695 edges are multiple edges. For our Minimax SimRank analysis, we
treated multiple edges as single ones.

(6) SYN. The synthetic data were produced by the graph generator GTGraph 9,
varying two parameters: the number of vertices, and the number of edges. We generated
the graphs following the power laws.

(7) SYNBI. The synthetic bipartite graphs were also generated by GTGraph, denoted
as SYNBI, with vertex sets of two sides having one half of the vertices, and edges being

randomly generated.

Shttp://snap.stanford.edu/data/web-BerkStan.html
"http://data.nber.org/patents/
8http://dblp.uni-trier.de/ ley/db/
“http://www.imdb.com

POhttp://www.cse.psu.edu/ madduri/software/ GTgraph/

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 54

Compared Algorithms. We implement 7 algorithms via Visual C++ 8.0. (1) OIP-DSR,
our differential SimRank of Eq.(2.15)! in conjunction with partial sums sharing. (2)
OIP-SR, our basic SimRank using partial sums sharing. (3) psum-SR [LVGT10], without
partial sums sharing. (4) mtx-SR [LHH'10], a matrix-based SimRank via SVD factoriza-
tion. (5) max-MSR, our bipartite Minimax SimRank variation using finer-grained partial
max sharing. (6) psum-MSR, the baseline bipartite Minimax SimRank variation, with
partial max sharing via Eq.(2.20). (7) MSR [JWO02, Section 4.3.1], the original iterative
bipartite Minimax SimRank variation.

We set the following default parameters as used in [LVGT10]: C = 0.6,e = 0.001
(unless otherwise mentioned). For all the methods, we clip similarity values at 0.001, to
discard far-apart nodes with scores less than 0.001 for storage. It can significantly reduce

space cost with minimal impact on accuracy, as shown in [LVGT10].

Evaluation Metrics. To evaluate ranking results on DBLP, we used Normalized Dis-
counted Cumulative Gain (NDCG) [LHH"10]. The NDCG at rank position p is defined
as follows

1

P
N = — ki — 1) /logy (14
DCGP IDCGP ; (2)/ 082 (+ Z)?

where rank; is the graded relevance at position ¢, and IDCG,, is a normalization factor,
ensuring the NDCG of an ideal ranking at position p is 1.

For ground truth, we invited twelve independent evaluators from the database com-
munity, and used their final judgment, rendered by a majority vote, as the standard. To
validate the relative order of co-authors for different algorithms on DBLP, these experts
may assess the “true” relevance of each retrieved co-authorship, by referring to Co-Author
Path in Microsoft Academic Search'? to see “separations” between collaborators.

We used a machine powered by a Quad-Core Intel i5 CPU (3.10GHz) with 16GB
RAM, using Windows 7. Each experiment was run 5 times, and the average performance

is reported here.

“In the previous conference version [YLZT13b], OIP-DSR is our differential SimRank of Eq.(2.14),
which requires more memory space for storing the intermediate results.
2http:/ /academic.research.microsoft.com/VisualExplorer

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 55

30 — T T T T

=) ‘ Tk | o I

2 3K |- NS . =

Z 3 Vertices n 26) \; \@/ 40

g (Avg Deg. d) g 20 d=111 N =

= 2K \ 234K 1= =

% 1k e C gl g 10f 1 3%

= = 3.4 A g

25 N : €3 0 £a) 0 ! : N N
p02 p05 DO8 D11 5 10 15 20 25 15 20

Size n (DBLP) # Iter. K (BERKSTAN) # Iter. K (PATENT)

Figure 2.7: Time Efficiency on Real Datasets

2.6.2 Experimental Results
Exp-1: Time Efficiency.

We first evaluate (1) the CPU time of OIP-SR and OIP-DSR on real data, and (2) the
impact of graph density on CPU time, using synthetic data. To favor mtx-SR that only
works on low-rank graphs (i.e., graph with a small rank of the adjacency matrix), DBLP
data are used although OIP-SR and OIP-DSR work pretty well on various graphs.
Fixing the accuracy ¢ = .001 for DBLP, varying K for BERKSTAN and PATENT, Fig-
ure 2.7 compare the CPU time of the four algorithms. (1) In all the cases, OIP-SR consis-
tently outperforms mtx-SR and psum-SR; i.e., our partial sums sharing approach is effec-
tive. On BERKSTAN and PATENT, the speedups of OIP-SR are on average 4.6X and 2.7X,
respectively, better than psum-SR. On the large PATENT, when K > 8, psum-SR takes
too long to finish the computation in two days, which is practically unacceptable. In
contrast, OIP-SR and OIP-DSR just need about 18.6 hours for K = 10. (2) OIP-DSR al-
ways runs up to 5.2X faster than psum-SR, and 3X faster than OIP-SR on DBLP,
for the desired ¢ = .001. This is because the differential matrix form of OIP-DSR in-
creases the rate of convergence, which enables fewer iterations for attaining the given e.
(3) The speedups of OIP-SR and OIP-DSR on BERKSTAN (4.6X) are more pronounced
than those on DBLP (1.8X) and PATENT (2.7X), which is due to the high degree of
BERKSTAN (d = 11.1) that may potentially increase the overlapped area for common

in-neighbor sets, and thus provides more opportunities for partial sums sharing.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 56

- - = T T T T T -
OIP-DSR mmm OIP-SR _ i OIP.DSR B OIP-SR]
g 10° I T g 10° |- 3 psum-SR E
Zz B 94%5 10° 88%| % I share ratio i
O I 1 = .| - —
£ 10%| E I y £ 104 | \0-72 0 .
- g E X] =
T P | 10tf 18 | 1
5 10°F E E] 2 103} 5
— - | [~ 7 — = =
g I] I R €2 I]
2 3 N - B
< 10 Build Share 10 Build Share 102 - - —
MST Sums MST Sums 10 20 30 40 50
(BERKSTAN) (PATENT) Ave Deg. d (SYN 300K)
Figure 2.8: Amortized Time on Real Data Figure 2.9: Effect of Density

Figure 2.8 further shows the amortized time for each phase of OIP-SR and OIP-DSR on
BERKSTAN and PATENT data (given e = .001), in which z-axis represents different stages.
From the results, we can discern that (1) for OIP-SR, the time taken for “Building
MST?” is far less than the time taken for “Share Sums”. This confirms our complexity
analysis in Proposition 2.10. (2) “Building MST” always takes up larger portions (34%
on BERKSTAN, and 24% on PATENT) in the total time of OIP-DSR, than those (6%
on BERKSTAN, and 12% on PATENT) in the total time of OIP-SR. This becomes more
evident on various datasets because OIP-SR and OIP-DSR takes (almost) the same time
for “Building MST”, whereas, for “Sharing Sums”, OIP-DSR enables less time (4.5X on
BERKSTAN, and 2.5X on PATENT) than OIP-SR, due to the speedup in the convergence
rate of OIP-DSR.

Fixing n = 300K and varying m from 3M to 15M on the synthetic data, Figure
2.9 reports the impact of graph density (ave. in-degree) on CPU time, where y-axis
is in the log scale. The results show that (1) for e = .001, OIP-DSR significantly out-
performs psum-SR by at least one order of magnitude as m increases. In all the cases,
OIP-SR achieves 0.5 order of magnitude speedups on average. (2) Interestingly, the
speedups of OIP-DSR are sensitive to graph density (ave. in-degree d) The larger the d
is, the higher the likelihood of overlapping in-neighbors is for partial sums sharing, as
expected. The biggest speedups are observed for larger d (higher density) — with nearly

2 orders of magnitude speedup for d = 50.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 57

OIP-DSR mmm OIP-SR [psum-SR mtx-SR

o 101 T T =1 m 4 T T T T m 20 T
X % 1 2 =
I : 1 7] 1
g 103k : 4 8 5] : o} °
8 E : EIS] : 8
wn I : 1 o 2] : n 10
> 102 Ny IS] : >
— = . N 5= — N N F—t
S B 11l S 1] : S 5
g oY T:E aclE si g I z I 3 =
S oL 8 NE 1 TR %’ 0] : %” 0 \
p02 p05 DO8 D11 5 10 15 20 25 5 10 15 20

Size n (DBLP) # Iter. K (BERKSTAN) # Iter. K (PATENT)

Figure 2.10: Memory Space on Real Datasets

Exp-2: Memory Space.

We next evaluate the memory space efficiency of OIP-DSR and OIP-SR on real data. Note
that we only use mtx-SR on small DBLP as a baseline; for large BERKSTAN and PATENT,
the memory space of mtx-SR will explode as the SVD method of mtx-SR destroys the
graph sparsity.

Figure 2.10 shows the results on space. We observe that (1) on DBLP, OIP-DSR and
OIP-SR have much less space than mtx-SR by at least one order of magnitude, as expected.
(2) In all the cases, the space cost of OIP-DSR and OIP-SR fairly retains the same order
of magnitude as psum-SR. Indeed, both OIP-DSR and OIP-DSR merely need about 1.8X,
1.9X, 1.6X space of psum-SR on DBLP, BERKSTAN, PATENT, respectively, for outer
partial sums sharing. This confirms our complexity analysis in Section 2.3, suggesting
that OIP-DSR and OIP-DSR do not require too much extra space for caching outer partial
sums. Moreover, OIP-DSR has almost the same space as OIP-SR since Eq.(2.15) does not
need to memoize the auxiliary Ty in Eq.(2.14). (3) On BERKSTAN and PATENT, the
space costs of OIP-DSR and OIP-SR are stabilized as K increases. This is because the
memoized partial sums are released immediately after each iteration, thus maintaining

the same space during the iterations.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 58

I I I
6o L B~ OIP-SR A Er || OP- || OIP- | LamW | Log
—o— OIP-DSR
« ¢ Lambert W Est. .00 € SR || DSR | Est. | Est.
é 40 L k- Log Est|Z| i 10-2 19 4 4]
= g’ C =08
SIS E' n = 32,930 1073 || 30 5 5 5
200 d=26 B :
10~ 43 6 7 7
0 1075 | 50 || 7 8 9
1072 1073 107* 1075 10°°¢
Accuracy ¢ (DBLP Dp11) 107% || 64 8 9 10
(a) Accuracy vs. #-Iter. (b) Lam W & Log Bound on K

Figure 2.11: Convergence Rate

Exp-2: Memory Space.

We next compare the convergence rate of OIP-DSR and OIP-SR, using real and synthetic
data. For the interest of space, below we only report the results on DBLP D11 (C = 0.8).
The trends on other datasets are similar.

By varying € from 1072 to 1079, Figs. 2.11a and 2.12 show that (1) OIP-DSR needs
far fewer iterations than OIP-SR (also psum-SR), for a given accuracy. Even for a small
e = 1075, OIP-DSR only requires 8 iterations, whereas the convergence of OIP-SR in
this case becomes sluggish, yielding over 60 iterations. This confirms our observation
in Proposition 2.14 that OIP-DSR has an exponential rate of convergence. (2) The two
curves labeled “Lambert W Est.” and “Log Est.” (dashed line) visualize our apriori
estimates of K’ derived from Corollaries 2.15 and 2.16, respectively. We can see that
these dashed curves are close to the actual number iterations of OIP-DSR, suggesting

that our estimates of K’ for OIP-DSR are fairly precise.

Exp-4: Relative Order.

To analyze the relative order of the similarities from OIP-DSR and OIP-SR, we use DBLP
D11, a co-authorship graph with ground truth. Fixing a vertex a as a given query

(author), we compute the NDCG,, of OIP-DSR and OIP-SR via the similarities s(a,x)

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 59

1
| OIP-DSR
0.96 0.96 g OI1P_SR
0.95 0.93 h
a 0.92
8 N 3
2 09 *
Z NN
B 0.857
0.85] O'ﬂ
0.8 R

p=10 p=30 p=50
(DBLP p11)

Figure 2.12: Relative Ordering

| Co-authors # | Co-authors # | Co-authors

1 | Hongjun Lu 11 | James Cheng || 21 | Wenfei Fan

2 | Lu Qin 12 | Weifa Liang 22 | Rong-Hua Li

3 | Xuemin Lin 13 | Ying Zhang 23 | Hong Cheng v
4 | Wei Wang 14 | Bolin Ding 24 | Jun Gao A

5 | Lei Chen 15 | Haixun Wang || 25 | Xiaofang Zhou
6 | Lijun Chang 16 | Aoying Zhou || 26 | Ke Yi

7 | Yiping Ke 17 | Xiang Lian 27 | Yufei Tao

8 | Haifeng Jiang 18 | Cheqing Jin 28 | Nan Tang

9 | Philip S. Yu 19 | Baichen Chen || 29 | Jinsoo Lee

10 | Gabriel Pui Cheong Fung || 20 | Byron Choi 30 | Kam-Fai Wong

Figure 2.13: Case Study: Co-authors of “Jeffrey Xu Yu”

from the top-p query perspective. For query selection, we sort all the vertices in order
of their degree into 4 groups, and then randomly choose 100 vertices from each group,
in order to ensure that the selected vertices can systematically cover a broad range of
all possible queries. For each query, Figure 2.12 compares the average NDCG,, values
of OIP-DSR with its counterparts of OIP-SR, for p = 10,30,50. The result shows that
OIP-DSR can perfectly maintain the relative order of the similarity scores produced by
OIP-DSR with only 1% loss of NDCG3p and NDCGg5o. For p = 10 (i.e., top-10 query),
OIP-DSR produces exactly the same result of OIP-SR, as expected. Thus, we can gain a
lot in speedup from OIP-DSR while suffering little loss in quality.

For case study, Figure 2.13 shows the top-30 co-authors of “Prof. Jeffrey Xu Yu”

via OIP-DSR on DBLP D11. The results of OIP-DSR, as compared as with OIP-SR,

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 60

only differ in one inversion at two adjacent positions (#23, #24), which is practically
acceptable. This confirms our intuitions in Section 2.4, where we envisage that slightly

modifying the damping factor in OIP-DSR never incurs high quality loss.

Exp-5: Minimax SimRank Variation.

Finally, we evaluate the computational time and memory space of max-MSR against
the baseline psum-MSR and MSR on bipartite real networks (COURSE and IMDB) and
synthetic dataset (SYNBI).

To compare the CPU time of the three Minimax SimRank variations, on COURSE
and IMDB, we vary K from 5 to 25; on SYNBI, we fix n = 200K with each side of the
bipartite graph having 100K vertices, and vary the average out-degree from 5 to 35. The
results are reported in Figure 2.14. (1) In all the cases, max-MSR is always the fastest,
and psum-MSR the second, both of which significantly outperform MSR by several times
on COURSE and by one order of magnitude on IMDB. This is because partial max
memoization can achieve high speedups for Minimax SimRank computation. Moreover,
the finer-grained partial max memoization of max-MSR can share much more common
subparts that are neglected by psum-MSR. Thus, max-MSR is consistently better than
psum-MSR. On large IMDB, the speedup is more apparent, e.g., for K = 5, the time
of max-MSR (0.6hr) is 5.15X faster than psum-MSR (3.2hr); however, it takes too long
time for MSR to finish the computation within one day. Hence, we stop iterating after
K > 5 iterations on psum-MSR and K > 15 on SYNBI, respectively. (2) The graph
density has a huge impact on the speedup of max-MSR. The denser the graph, the more
likely the common out-neighbors (bicliques) can be shared for partial max memoization.
This explains why the reduced amount of time for max-MSR relative to psum-MSR is
far more pronounced on IMDB than on COURSE, as IMDB has a higher average out-
degree (12.09) than COURSE (5.53). The results on SYNBI have also confirmed this
observation, where we notice that the share ratio tends to increase w.r.t. the growing

average out-degree of the synthetic graph.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 61

max-MSR E psum-MSR 1 MSR

- 5K T T T T T — 20 T T T /al()K
g m = 46, 825 = m = 3.87TM g
e K 1 o 15 d=12.09 |138 | 8K
g 3K| 1 £ E 6K |
= = 10 [share ratio
~ 2K [B =] o] 4K
: Z o5l :
k5 1K [1 E ‘ k5 2K
m 0 £a) oL : m oL : : :
5 10 15 20 25 5 10 15 20 5 15 25 35

Iter. K (COURSE) # Iter. K (IMDB) Ave Deg. d (SYNBI 200K)

Figure 2.14: Time Efficiency on Bipartite Networks

T T
103 |- E==d max-MSR =

B psum-MSR
CIMSR

Course IMDB SynBI

—_
3
J

Memory Space (MB)
—_
o

Figure 2.15: Memory Space on Bipartite Networks

The memory space of these Minimax SimRank variations on real and synthetic
datasets is evaluated in Figure 2.15. Due to space limitations, we merely report the
results on SYNBI with the average out-degree of 25. We notice that in all the cases,
the memory space of max-MSR is a bit higher than that of psum-MSR, both of which
are a bit higher than MSR, yet maintain the same order of magnitude during the it-
erations. For instance on IMDB, the space cost for max-MSR (0.2M) is slightly higher
than psum-MSR (0.14M) and MSR (0.10M). This is because the partial max memoization
requires extra space to cache similarities of all dummy vertices. The finer the granularity

for memoization, the more space it requires, as expected.

2.7 Related Work

The development of efficient methods to compute SimRank is a vibrant research area

[YZLT12,LVGT10,LHH"10] that is fundamental to e.g., web mining and object ranking.

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 62

Recent results on SimRank can be summarized as follows.

The earliest mention of SimRank dates back to Jeh and Widom [JW02] who suggested
(i) an iterative approach to compute SimRank, which is in O(Kd?n?) time, along with
(ii) a heuristic pruning rule to set the similarity between far-apart vertices to be zero.
Unfortunately, the naive iterative SimRank is rather costly to compute, and there is no
provable guarantee on the accuracy of the pruning results. To overcome the limitations,
a very appealing attempt was made by Lizorkin et al. [LVGT10] who (i) provided accu-
racy guarantees for SimRank iterations, i.e., the number of iterations needed for a given
accuracy € is K = [logq €], and (ii) proposed three excellent optimization approaches,
i.e., essential node-pair selection, partial sums memoization, and threshold-sieved simi-
larities. Especially, partial sums memoizing serves as the cornerstone of their strategies,
which significantly reduces the computation of SimRank to O(Kdn?) time. Our work
differs from [LVGT10] in the following. (i) We put forward the phenomenon of partial
sums redundancy in [LVGT10] that typically exists in real graphs. (ii) We accelerate the
convergence of SimRank iterations from geometric [LVGT10] to exponential growth, by
revising the existing SimRank model. (iii) In bipartite domains, we also devise a partial
max sharing for the Minimax SimRank variation model.

There has also been a flurry of research interests (e.g., [LHH"10, HFLC10, ZHS09,
AMCO08,FR07,LHH"10,LLY12]) in the SimRank optimization problems. Li et al. [LHH"10]
first based SimRank computation on the matrix representation. They developed very in-
teresting SimRank approximation techniques on a low-rank graph, by leveraging the
singular value decomposition and tensor product. However, (i) for digraphs, the up-
per bound of approximation error still remains unknown. (ii) The computational time
in [LHH*10] would become O(n*) even when the rank of an adjacency matrix is rela-
tively small, e.g., [v/n] (< n). The pioneering work of He et al. [HFLC10] utilized the
node-updating method on GPU for parallel SimRank computing. They deployed itera-
tive aggregation techniques to accelerate the global convergence of parallel SimRank, in

which the speed-up in the global convergence of SimRank is due mainly to the different

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 63

local convergence rates on small matrix partitions. Recently, the new notions of weight-
and evidence-based SimRank have been suggested in [AMCO8] to address the issue of
query rewriting for sponsored search. Fogaras et al. [FR07] adopted a scalable Monte
Carlo sampling approach to estimate SimRank by using the first meeting time of two ran-
dom surfers. However, their algorithms are probabilistic in nature. Li et al. [LHH'10]
employed an effective method for locally computing single-pair SimRank by breaking the
holistic nature of the SimRank recursion. Zhao et al. [ZHS09] proposed a new ranking
model, termed Penetrating Rank (P-Rank), by taking account of both in- and out-links.
Since the iterative paradigms of SimRank and P-Rank are almost similar, our techniques
for SimRank can be easily extended to P-Rank computation. Lee et al. [LLY12] devised
a top-K SimRank algorithm needing to access only a small fraction of vertices in a graph.
Most recently, Fujiwara et al. [FNSO13] proposed an excellent SVD-based SimRank for

efficiently finding the top-k similar nodes w.r.t. a query.

2.8 Conclusions

In this chapter, we have proposed three efficient methods to speed up the computation
of SimRank on large networks and bipartite domains. Firstly, we leveraged a novel
clustering approach to optimize partial sums sharing. By eliminating the duplicates of
computational efforts among the partial summations, an efficient algorithm was devised
to greatly reduce the time complexity of SimRank. Secondly, we proposed a revised
SimRank model based on the matrix differential representation, achieving an exponential
speedup in the convergence rate of SimRank, as opposed to its conventional counterpart
of a geometric speedup. Thirdly, in bipartite domains, we developed a novel finer-grained
partial max clustering method for greatly accelerating the computation of the Minimax
SimRank variation, and showed that the partial max sharing approach is different from
the partial sums sharing method in that the “subtraction” is disallowed in the context
of max operation. Our empirical experiments on both real and synthetic datasets have

shown that the integration of our proposed methods for the basic SimRank equation

Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 64

can significantly outperform the best known algorithm by about one order of magnitude,
and that the computational time of our finer-grained partial max sharing method for the
Minimax SimRank variation in bipartite domains outperforms the baselines by 0.5-1.2

orders of magnitude.

Chapter 3

Incremental SimRank on

Link-Evolving Graphs

3.1 Introduction

With many recent eye-catching advances of the Internet, link analysis has become a com-
mon and important tool for web data management. Due to the proliferative applications
(e.g., link prediction, recommender systems, citation analysis), SimRank has stood out
as an arresting one over the last decade, due to its succinct and iterative philosophy that
“two nodes are similar if they are referenced by similar nodes”, coupled with the base case
that “every node is maximally similar to itself”. In Chapter 2, the batch computation
of SimRank on static networks has been investigated, which requires O(Kd'n?) time for
all node-pairs, where K is the number of iterations, and d’ < d (d is the average graph
in-degree).

In general, real graphs are often large, with links constantly evolving with minor
changes. This is particularly evident in e.g., co-citation networks, web graphs, and social
networks. As a statistical example [NCOO04], there are 5%—10% links updated every week
in a web graph. It is rather expensive to reassess similarities for all pairs of nodes from

scratch when the graph is updated. Fortunately, we observe that when link updates are

65

Chapter 3. Incremental SimRank on Link-Evolving Graphs 66

small, the affected areas for SimRank updates are often small as well. With this comes
the need for incremental algorithms computing changes to SimRank in response to link

updates, to skip unnecessary recomputations.

3.1.1 Problem Statement

Motivated by this, in this chapter we investigate the following problem for SimRank

assessment.

Problem (INCREMENTAL SIMRANK COMPUTATION)

Given a network G, the similarities S for G, the link changes AG ! to G, and the
damping factor C' € (0,1).

Compute the changes AS to the similarities S.

In contrast with the work on batch SimRank computation, the study on incremental
SimRank for link updates is limited. Indeed, due to the recursive nature of SimRank,
it is hard to identify “affected areas” for incrementally updating SimRank. To the best
of our knowledge, there is only one work [LHH"10] by Li et al. who gave a pioneering
method for finding the SimRank changes in response to link updates. Their idea is to
factorize the backward transition matrix Q 2 of the original graph into U-X2-V7 3 via the
singular value decomposition (SVD) first, and then incrementally estimate the updated
matrices of U, 3, VT for link changes at the expense of exactness. As a result, updating
the similarities of all node-pairs entails O(r*n?) time without guaranteed accuracy, where
r (< n) is the target rank of the low-rank approximation*, which is not always negligibly

small in practice, as illustrated in the following example.

Example 3.1. Figure 3.1 is a citation graph G (a fraction of DBLP) where each edge

depicts a reference from one paper to another. Assume G is updated by adding an edge

LAG consists of a sequence of edges to be inserted /deleted.

?In the notation of [LHHT10], the backward transition matrix Q is denoted as W, which is the
row-normalized transpose of the adjacency matrix.

3We use X7 (instead of X in [LHHT10]) to denote the transpose of matrix X.

4 According to [LHHT10], using our notations, r < rank(X + U7 - AQ - V), where AQ is the changes
to Q for link updates.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 67

) inserted edge .| inG inGUAG
G (excl L.Jdl'l’lg i Node-Pair sim || siMyue | SiMLietal
edge (i, j)) (a,b) | 0075] 0062 | 0073

(a,d) | 0000 | 0006 | 0.002
G,f) 0246 | 0246 @ 0.246
(k,g) 0128 | 0128 0.128
(k,h) 0288 0288 0.288
(j.f) | 0206 0138 | 0.206
(m,l) 0160 | 0160 0.160
(j,b) | 0000 | 0030 | 0.001

Figure 3.1: Compute SimRank incrementally as edge (i,) is added

(i,7), denoted by AG (see the dash arrow). Using the damping factor C' = 0.8 °, we
want to compute SimRank scores in the new graph G U AG. The existing method by Li
et al. (see Algorithm 3 in [LHH10]) first decomposes the old Q = U-X- V7 as a precom-
putation step, then, when edge (i, j) is added, it incrementally updates the old U, X, vT,
and utilizes their updated versions to obtain the new SimRank scores in G U AG. The
results are shown in Column ‘simy; ¢ a1’ of the table. For comparison, we also use a batch
algorithm [YLZ"13b] to compute the “true” SimRank scores in G UAG from scratch, as
illustrated in Column ‘simyye’. It can be noticed that for several node-pairs (not high-
lighted in gray), the similarities obtained by Li et al.’s incremental method [LHH™10]
are different from the “true” SimRank scores even if the lossless SVD is used during
the process of updating U, 3, VT, that is, Li et al.’s incremental approach [LHH10]
is inherently approzimate. In fact, as will be rigorously explained in Section 3.2, their
incremental strategy may miss some eigen-information whenever rank(Q) < n.

We also observe that the target rank r for the SVD of the matrix C 7 may not

be chosen to be negligibly smaller than n. As an example, in Column ‘simy; et a1’ of

5 According to [JWO02], the damping factor C is empirically set around 0.6-0.8, which indicates the
rate of decay as similarity flows across edges.

SA rank-a SVD of the matrix X € R™*" is a factorization of the form X, = U - X - VT, where
U,V € R"™* are column-orthonormal matrices, and ¥ € R**“ is a diagonal matrix, « is called the
target rank of the SVD, which is given by the user.

If o = rank(X), then X, = X, and we call it the lossless SVD of X.

If o < rank(X), then || X — X,||, gives the least square estimate error, and we call it the low-rank SVD
of X.

7As defined in [LHH"10], r is the target rank for the SVD of the auxiliary matrix C £ >+UT.-AQ-V,
where AQ is the changes to Q for link updates.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 68

Figure 3.1, r is chosen to be rank(C) = 9 for the lossless SVD of C. Although r =9
is not negligibly smaller than n = 15, the accuracy of ‘simy; et a1’ is still undesirable as

compared with ‘sim¢ue’, not to mention choosing r < 9.]

Example 3.1 tells that Li et al.’s incremental method [LHH"10] is approximate, and
the O(r*n?) time for updating all node-pair scores might be costly, as r is not always
much smaller than n. Inspired by this, we propose a novel fast (exact®) algorithm for
incrementally computing SimRank on link-evolving graphs. Instead of incrementally
finding the changes to the SVD of Q for computing new similarities, our method can cope
with the dynamic nature of link updates, by precomputing SimRank on the old entire
graph once via a batch algorithm first, and then incrementally finding SimRank updates
AS w.r.t. link updates. Moreover, as links are often updated with small changes, not
all node-pair similarities need to be updated. As an example in the table of Figure 3.1,
many node-pair similarities (highlighted in gray) remain unchanged when edge (i,)
is added. However, it is a grand challenge to identify the “affected areas” of AS, as
SimRank is defined in a recursive fashion. To resolve this problem, we formulate AS as
an aggregation of similarities based on incoming paths. There are opportunities to find

its “affected areas” by detecting the changes in these paths.

3.1.2 Chapter Outlines

In this chapter, our main contributions are summarized below.

e We characterize the SimRank update matrix AS w.r.t. every link update via a
rank-one Sylvester matrix equation. In light of this, we devise a fast incremental
algorithm that can update similarities of all n? node-pairs in O(Kn?) time for K

iterations. (Section 3.3.1)

e We also propose an effective pruning strategy to identify the “affected areas” of

AS to skip unnecessary similarity recomputations, without loss of exactness. This

8Here, the “exactness” of our iterative algorithm means that it can converge to the exact SimRank
solution as the number of iterations increases.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 69

enables a further speedup in the incremental SimRank computation, which is in
O(K (nd + |AFF|)) time, where d is the average in-degree of the old graph, and

|AFF| (< n?) is the size of “affected areas”, in practice, |AFF| < n2. (Section 3.3.2)

e We conduct extensive experiments on real and synthetic datasets to demonstrate
that our algorithm (a) consistently outperforms the best known link-incremental
algorithm [LHHT10], from several times to over one order of magnitude, and (b)
runs much faster than the batch counterpart [YLZ13b] when link updates are

small. (Section 3.4)

The rest of the chapter is structured as follows. Section 3.2 analyzes the limitations
in Li et al.’s incremental SimRank approach [LHH'10]. Section 3.3 introduces our incre-
mental method for SimRank assessment. Section 3.4 presents our experimental results.

Section 3.5 revisits the related work, followed by the chapter conclusion in Section 3.6.

3.2 A Fly in the Ointment in [LHH"10]

In this section, we provide theoretical analysis to show that Li et al.’s incremental ap-
proach [LHH"10] is approrimate in nature, which might miss some eigen-information
even if the lossless SVD is utilized for computing SimRank.

The existing incremental method [LHHT10] computes SimRank by expressing simi-
larity matrix S in terms of matrices U, X, V, where U, 3., V are the decomposed matrices
of Q via SVD:

Q=U.x.Vv7l (3.1)

Then, when links are changed, [LHH"10] incrementally computes the new SimRank ma-

trix S by updating the old U, X,V as

U=U-Ug, =3¢, V=V.Vg? (3.2)

In the sequel, we abuse a tilde to denote the updated version of a matrix, e.g., U is the updated
matrix of old U after link updates.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 70

where Ug,Xc, Ve in Eq.(3.2) are the decomposed matrices of the auxiliary matrix

C232+UT.AQ -V viaSVD, i.e.,
C=Uc- -%c-Vcl, (3.3)

and AQ is the changes to Q in response to link updates.
However, in the above process, we observe that using Eq.(3.2) to update the old
U, X,V may miss some eigen-information. The main problem in [LHH'10] is that the

derivation of Eq.(3.2) rests on the assumption that
U-Ul'=v.vl =1,. (3.4)

Unfortunately, Eq.(3.4) does not hold (unless Q is a full-rank matrix, i.e., rank(Q) = n)
because in the case of rank(Q) < n, even a “perfect” (lossless) SVD of Q via Eq.(3.1)
would produce n x « rectangular matrices U and V with a = rank(Q) < n. Thus,
rank(U-U7T) = o < n = rank(I,,), which implies that U-U7T # I,,. Similarly, V-V #£1,,

when rank(Q) < n. Hence, Eq.(3.4) is not always true.

Example 3.2. Consider the matrix Q = [J 1], and its lossless SVD: Q = U - X - VT

with U= [}], Z=[1], V=]

—o

|. One can readily verify that

whereas

Ul U=[10]-[}]=1=1" (a=rank(Q)=1).

Hence, when Q is not full-rank, Eq.(3.4) does not always hold, but one can prove that

the following identity always holds:
vh.u=vl.v=1,

since the SVD ensures that U and V are column-orthonormal matrices, i.e., every two

column-vectors, say x; and x; of U (resp.V) satisfy x;7 - x; = {(1) 22 O

0The notation I, denotes the a x a identity matrix.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 71

To clarify that Eq.(3.4) is involved in the derivation of Eq.(3.2), let us briefly recall
from [LHH™10] the 4 steps for obtaining Eq.(3.2), and the problem lies in the last step.
STEP 1. Initially, when links are changed, the old Q is updated to new Q=Q+AQ.

Replacing Q by Eq.(3.1) yields
Q=U-=- V' + AQ. (3.5)

STEP 2. Premultiply by U? and postmultiply by V on both sides of Eq.(3.5), and

use the property UT .U =VT .V =1,.'! It follows that
UT. Q- v=x+UT.AQ-V. (3.6)

STEP 3. Let C be the right-hand side of Eq.(3.6). Applying Eq.(3.3) to Eq.(3.6)
yields
T @ _ T
U’ Q- V=Uc Zc Vel (3.7)
STEP 4. Li et al. [LHH*10] attempted to premultiply by U and postmultiply by V7'

on both sides of Eq.(3.7) first, and then rested on the assumption of Eq.(3.4) to obtain

T 6. v. vl — (17, _ . T T
U-U -Q-V:-V (U-Ug) - Xc (Ve - V), (3.8)
21 21 a(SS ayT
n n U \%

which is the result of Eq.(3.2).

However, the problem lies in STEP 4. As mentioned before, Eq.(3.4) does not hold
when rank(Q) < n. That is, for Eq.(3.8), Q # U - X - VT, Consequently, updating the
old U, X,V via Eq.(3.2) may produce an error (up to ||I, — U-UT||5 = 1, which is not

practically small) in incrementally “approximating” S.

Example 3.3. Consider the old Q and its SVD in Example 3.2. Suppose there is an
added edge, associated with AQ = [99].

Li et al. [LHHT10] first computes the auxiliary matrix C as

C23+U"-AQ -V =[1]+[to] - [§§]-[]=[1].

1 As mentioned in Example 3.2, since U € R™*® is column-orthonormal (not row-orthonormal), it
follows that UT - U = 1,,, whereas U - UT £1,.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 72

Then, the matrix C is decomposed via Eq.(3.3) into
C:UC'Ec-VcT with Ug = ¥¢c = Ve = [1].

Finally, Li et al. [LHH'10] update the new SVD of Q via Eq.(3.2) as

However, one can readily verify that

U-Z-VI=[311#4[04]=Q+AQ=Q.

In comparison, a “true” SVD of Q should be

A A~

Q=U-2 - VlwithU=[9}], E=V =[}9].

This suggests that Li et al.’s incremental way [LHH'10] of updating U, X,V is
approximate (e.g., U = (3], as compared with its “true” version U = (03], misses
the eigenvector [9]). Worse still, the approximation error is not small in practice as
IQ-U-=- VI, =[5 - [§8]l,=1. il

Our analysis tells that Eq.(3.4) holds only when (i) Q is full-rank, and (ii) the
SVD of Q is lossless (n = rank(Q) = «). Only in this case, Li et al.’s incremental
method [LHH'10] produces ezact SimRank, which does not miss any eigen-information.
However, the time complexity O(r*n?) of [LHH™10] would become O(n®), which is rather
expensive. In practice, as evidenced by our statistical experiments on Stanford Large Net-
work Dataset Collection (SNAP) 2, most real-life graphs are not full-rank, which is also
in part demonstrated by our evaluations in Figure 3.3. Thus, [LHH'10] produces the

approximate solution in most cases.

3.3 Our Incremental Solution

We now propose our incremental techniques for computing SimRank, with the focus on

handling unit update (i.e., a single edge insertion or deletion). Since batch update (i.e., a

2http:/ /snap.stanford.edu/data/

Chapter 3. Incremental SimRank on Link-Evolving Graphs 73

list of link insertions and deletions mixed together) can be decomposed into a sequence
of unit updates, unit update plays a vital role in our incremental method.

The main idea of our solution is based on two methods.

(i) We first show that SimRank update matrix AS € R" " can be characterized
as a rank-one Sylvester matriz equation'®. By leveraging the rank-one structure of the
matrix, we provide a novel efficient paradigm for incrementally computing AS, which only
involves matriz-vector and wvector-vector multiplications, as opposed to matriz-matriz
multiplications to directly compute the new SimRank matrix S.

(ii) In light of our representation of AS, we then identify the “affected areas” of AS in
response to link update AQ, and devise an effective pruning strategy to skip unnecessary
similarity recomputations for link updates.

Before detailing our two methods in the subsections below, we introduce the following
notations. (i) e; denotes the n x 1 unit vector with a 1 in the i-th entry and Os in other

entries. (ii) d; denotes the in-degree of the node ¢ in the old graph G.

3.3.1 Characterizing AS via Rank-One Sylvester Equation

We first give the big picture, followed by rigorous proofs.

Main Idea. For every edge (i,7) update, we observe that AQ is a rank-one matrix,
i.e., there exist two column vectors u, v € R™! such that AQ € R™*" can be decomposed

t14

into the outer product™* of u and v as follows:

AQ=nu- vl (3.9)

Based on Eq.(3.9), we then have an opportunity to efficiently compute AS, by char-
acterizing it as

AS =M +MT7, (3.10)

13Given the matrices A, B, C € R"*", the Sylvester matrix equation in terms of X € R™*™ takes the
form: X =A-X-B + C. When C is a rank-a (< n) matrix, we call it the rank-o Sylvester equation.

MThe outer product of the column vectors x,y € R"*! is an n x n rank-1 matrix x - y”, in contrast
with the inner product xT -y, which is a scalar.

15The explict expression of u and v will be given after a few discussions.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 74

where the auxiliary matrix M € R™*™ satisfies the following rank-one Sylvester equation:
M=C-Q M- Q' +C u-w'. (3.11)

Here, u, w are two column vectors: u is derived from Eq.(3.9), and w can be represented
in terms of the old Q and S (we will provide their exact expressions later after some
discussions); and Q=Q+AQ.

Thus, computing AS boils down to solving M in Eq.(3.11). The main advantage
of solving M via Eq.(3.11), as compared to directly computing the new scores S via

SimRank formula

S=C-Q-S-QT+(1-0)-1,, (3.12)

is the high computational efficiency. More specifically, solving S via Eq.(3.12) needs
expensive matriz-matriz multiplications, whereas computing M via Eq.(3.11) involves
only matriz-vector and vector-vector multiplications, which is a substantial improvement
achieved by our observation that (C - uw?) € R™ " in Eq.(3.11) is a rank-1 matrix, as
opposed to the (full) rank-n matrix (1 — C) - I, in Eq.(3.12). To further elaborate on
this, we readily convert the recursive forms of Eqs.(3.11) and (3.12), respectively, into

the following series forms: '6

M =Y . QFu-w' - Q1) (3.13)
k=0
k

S:(I—C)-iCk-Qk-In-(QT) : (3.14)
k=0

To compute the sums in Eq.(3.13) for M, a conventional way is to memoize My <«
C-u-w' first (where the intermediate result Mg is an n x n matrix), and then iterate
as follows:

M < Mo+C-Q-M;-QF, (k=0,1,2,---)

involving costly matriz-matriz multiplications (e.g., Q -My). In contrast, our trick takes

advantage of the rank-one structure of u-w’ to compute the sums in Eq.(3.13) for M,

10ne can readily verify that if X = Y oreo AF . C.B* is a convergent matrix series, it is the solution
of the Sylvester equation X = A -X-B + C.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 75

by converting the conventional matriz-matriz multiplications Q - (uw?)- QT into matriz-
. ~ ~ T . .

vector and wvector-vector operations (Qu) - (Qw) . More specifically, by leveraging two

auxiliary vectors &g, 1, we adopt the following iterative paradigm to compute Eq.(3.13):

1. initialize &y < C-u, Mo+ w, Mo+ C-u-wl

2. for k=0,1,2,---
3. Eor1 — C-Q & M1 — Q-
4. M1 < Ept1 - Moy + My,

which only requires matriz-vector multiplications (e.g., Q - &) and wvector-vector multi-
plications (e.g., &k+1 -nkT_H), without the need to perform matriz-matriz multiplications.

It is worth mentioning that our above trick is solely suitable for efficiently computing
M in Eq.(3.13), but not applicable to accelerating S computation in Eq.(3.14). This is
because I,, is a (full) rank-n matrix that cannot be decomposed into the outer product
of two vectors. Thus, our trick is particularly tailored for improving the incremental

computation of AS via Eq.(3.11), rather than the batch computation of S via Eq.(3.12).

Finding u,v,w for Egs.(3.9) and (3.11). The challenging tasks in characterizing AS
for our incremental method are (i) to find the vectors u,v in Eq.(3.9) for the rank-one
decomposition of AQ, and (ii) to express the vector w in Eq.(3.11) in terms of the old
matrices Q and S for guaranteeing that Eq.(3.11) is a rank-one Sylvester equation.

To find u and v in Eq.(3.9), we show the following theorem.

Theorem 3.4. If there is an edge (i, j) inserted into G, then the change in Q is an nxn
rank-one matriz, i.e., AQ =u-v’, where
e, d — 0 e; d = O
wo) e @w=0] e @=0 .
T
e (dj>0) e; — [Ql;, (d; > 0)
If there is an edge (i,7) deleted from G, then the change in Q can be decomposed as

AQ =u-vT, where

u= A ' ' 0 (3.16)

Chapter 3. Incremental SimRank on Link-Evolving Graphs 76

Proof. Due to space limitations, we shall only prove the insertion case. A similar proof
holds for the deletion case.

(i) If d; =0, [Q];, = 0. Thus, for the inserted edge (4, j), [Q],; will be updated from
0tol, ie., AQ = eje;fp.

(ii) If d; > 0, all the nonzero entries in [Q]; , are d%-' Thus, for the inserted edge (i,),

the old Q can be converted into the new Q via 2 steps, as depicted below:

(i-th col)
Q s 1 1 .

d;)
7dj—J|-1 X (j-th row) : 1)
|| 0 | Fh | o | (thirow)
ﬁ+(j,i)-entry ~

J 1 1 1 = Q
e — 41 di+1 d;+1

. 1 1 . . d;
(a) We change all nonzero entries of [Q] j« from T to T by multiplying p 7 on the

j-th row of Q. Recall from the elementary matriz property that multiplying the j-th
row of a matrix by a # 0 can be accomplished by using I — (1 — a)ejeJT as a left-hand

multiplier on the matrix. Hence, after this step, Q is converted into the matrix Q’, i.e.,
d; T 1
Q' =(I-(1-gip)ejej) Q=Q— z5e;-[Q]j,.

(b) We next update the (j,4)-entry of Q' from 0 to ﬁ, which yields the new Q,

i.€.,

Q= Q'+ ziyejel =Q- ziye;- ([Ql), —ef).

)

Chapter 3. Incremental SimRank on Link-Evolving Graphs 77

Since AQ = Q — Q, it follows that
AQ=u-v!, withu:= ﬁej, vl= (el — [Q]j’*).
which proves the case d; > 0 in Eq.(3.15). O

Example 3.5. Consider the graph G in Figure 3.1. Suppose there is an edge (i,)

inserted into G. As in the old G, d; =2 > 0 and
(h) (k)
[Ql;,={0---0%00L0- 0] e RP,

according to Theorem 3.4, the change in Q is a 15 x 15 rank-one matrix, which can be
(7)

decomposed as AQ =u-v! Withu:ﬁej:%ej: [() .0 Log...0|T eRP*L

1
3
(h) (@) (5) (k)

v:ei—[Q]f*: 0---0-31 0—;0---0}T6R15X1. O

For every link update, Theorem 3.4 suggests that the change AQ has a very special
structure — the n X n rank-one matrix. More importantly, it finds a rank-one decompo-
sition for AQ, by expressing the vectors u and v in terms of d; and [QEF* It should be
noted that such a rank-one decomposition is not unique, since for any scalar A # 0, the
vectors W' £ \-u and v/ £ X can be another rank-one decomposition for AQ. However,
for any u and v that satisfy Eq.(3.9), there exists a vector w such that Eq.(3.11) is a
rank-one Sylvester equation.

Capitalizing on Theorem 3.4, we are now ready to determine the expression of w in

Eq.(3.11) in terms of the old Q and S.

Theorem 3.6. Suppose there is an edge (i, j) updated in G. Let u and v be the rank-one

decomposition of AQ in Theorem 3.4. Then, (i) there exists a vector w =y + %u with
y=Q-z, A=vl.z, z=S-v (3.17)

such that Eq.(3.11) is the rank-one Sylvester equation.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 78

(ii) Utilizing the solution M to Eq.(3.11), the SimRank update matriz AS can be

represented by Fq.(3.10). O

Proof. We show this by following the two steps:

(a) We find a recursion for the SimRank update matrix AS.
To characterize AS in terms of the old Q and S, we subtract Eq.(2.2) from Eq.(3.12),

and apply AS = S-—8, yielding
AS=C-Q-S-QT'+Cc-Q-AS-QT-C-Q-s-QT. (3.18)
By Theorem 3.4, there exist two vectors u and v such that
Q=Q+AQ=Q+u-v’. (3.19)

Then, we plug Eq.(3.19) into the term C - Q-S-Q7 of Eq.(3.18), and simplify the
result into

AS=C-Q-AS-QT'+C-T (3.20)
with T = u(QSv)? + (QSv)u? + (vTSv)uu’. (3.21)

We can readily verify that matrix T is symmetric (T = T7). Moreover, we note that
T is the sum of two rank-one matrices. This can be verified by lettingz £ S-v, y £
Q -z A&Vl .z

Then, utilizing the auxiliary vectors z,y and the scalar \, Eq.(3.21) can be simplified

into the following form:

T=u-w +w-u’, Withw:y+%u. (3.22)
(b) We next convert the recursion of AS into the series form.
One can readily verify that the solution X to the matrix equation X = A-X-B+C
has the following closed form:

X=A-X-B+C & X=> A*".C B (3.23)
k=0

Chapter 3. Incremental SimRank on Link-Evolving Graphs 79

Thus, based on Eq.(3.23), the recursive definition of AS in Eq.(3.20) naturally leads
itself to the following series form:

AS — chﬂ QF.T- (QT)k_

k=0
Combining this with Eq.(3.22) yields
AS — ick—i-l_Qk. (u-wT+w-uT) .(QT)k
= lk\jlo—&- M7 with M being defined in Eq.(3.13).
In light of Eq.(3.23), the series form of M in Eq.(3.13) satisfies the rank-one Sylvester

recursive form of Eq.(3.11). O

Theorem 3.6 obtains an exact expression for w in Eq.(3.11). To be precise, given
Q and S in the old graph G, and an edge (i,7) updated to G, one can find u and v
via Theorem 3.4 first, and then resort to Theorem 3.6 to compute w from u,v,Q,S.
Because of the existence of the vector w, the Sylvester form of Eq.(3.11) being rank-one
can be guaranteed. Henceforth, our aforementioned trick can be deployed to iteratively

compute M in Eq.(3.13), needing no matriz-matriz multiplications.

Computing AS. Determining w via Theorem 3.6 is intended to speed up the incre-
mental computation of AS. Indeed, for each link update, the whole process of computing
AS in Eq.(3.10), given Q and S, needs no matriz-matriz multiplications at all. Specifi-
cally, the computation of AS consists of two phases: (i) Given Q and S, we compute w
via Theorems 3.4 and 3.6. This phase merely includes the matrix-vector multiplications
(e.g., Qz,Sv), the inner product of vectors (e.g., v!z), and the vector scaling and addi-
tions, i.e., SAXPY (e.g., y + 3u). (ii) Given w, we compute M via Eq.(3.13). In this
phase, our novel iterative paradigm for Eq.(3.13), as mentioned earlier, can circumvent
the matriz-matriz multiplications. Thus, taking (i) and (ii) together, it suffices to harness
only matriz-vector and vector-vector operations in whole process of computing AS.
Leveraging Theorems 3.4 and 3.6, we are able to characterize the SimRank change

AS, based on the following theorem.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 80

Theorem 3.7. When there is an edge (i,7) updated in G, then the SimRank change AS

can be characterized as

AS =M +MT with

M=) CH1.QF ey AT QD) (3.24)
k=0

where the auziliary vector v is obtained as follows:

(i) For the edge insertion, v =

Q- [S]*,i + %[S]” €5 (d; =0) (3.25)
i (Q 18]y = & 1Sl + Gty + & — 1) ey) (45> 0)
(ii) For the edge deletion, v =
-Q- [S]*,i + %[S]i,i €5 (dj=1) (3.26)
@y (&8, - Q Sl + Gty — &+ 1) &) (4> 1)
and the scalar \ can be derived from
A=[S],;+& 18;;,-2-1Q];, Sl,,-&+1. O (3.27)

Proof. For space interests, we merely show insertion case.
(i) When d; = 0, by Eq.(3.15) in Theorem 3.4, v = e;, u = e;. Plugging them into
Eq.(3.17) gets z = [S]*J-, y=Q- [S]*,i’ A= [S]” Thus, by virtue of w = y + %u in

Theorem 3.6, we have w = Q - [S], ; 4+ 3[S];; - €;. Coupling this with Eq.(3.13), u = e;,

and Theorem 3.6 proves the case d; = 0 in Eq.(3.25).

(ii) When d; > 0, Eq.(3.15) in Theorem 3.4 indicates that
v=e — [Q]jTW u= ﬁ -ej. (3.28)
Substituting these back into Eq.(3.17) yields

z=[8l.,-S Q. y=Q-8,,-Q-s-[Qf,

A=18],;—2-1Ql,, [Sl,; +1Ql;. S [QF.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 81

To simplify Q - S - [Q]g:* in y, and [Q]jv* -S-[Q]T, in A, we postmultiply both sides

Jr*

of Eq.(2.2) by e; to obtain

Q-8 [Qj.=¢ (8L, - (1-0)). (3.29)

We also premultiply both sides of Eq.(3.29) by e;*-F to get

Ql,, S Q=& -(8],,-1)+1. (3.30)

Plugging Egs.(3.29) and (3.30) into y and A, respectively, and then plugging the resulting

y and A intow =y + %u produce
W:Q'[S]*,z‘_%'[S]*,j‘f‘(%‘Fm—l)'ej,

with A = [S]i,i + %) [S]j,j -2 [Q]j,*) [S]*,i - % +1
Combining this with Eqgs.(3.13), (3.28) shows the case d; > 0 for Eq.(3.25). Finally,
taking (i) and (ii) together with Theorem 3.6 completes the proof for the link insertion

case. O

For each link update, Theorem 3.7 provides a novel method to compute the incremen-
tal SimRank matrix AS, by utilizing the previous information of Q and S in the original
graph G, as opposed to [LHH'10] that entails the incremental SVD maintenance. To
efficiently compute AS via Theorem 3.7, two tricks are worth mentioning. (i) We ob-
serve that, by viewing the matrix Q as a stack of row vectors, the j-th row of the term

(Q-[S], ;) in Egs.(3.25) and (3.26) is actually the inner product [Q];, - [S], ;, being the

*,17

term in Eq.(3.27). Thus, the resulting [Q - [S] once computed, can be reused to

*,i}] %’

)

compute [Q]., - [S], . in A. (ii) As suggested earlier, computing the matrix series for M

Ik *,0
needs no matrix-matrix multiplications at all, but involves the matrix-vector multipli-
cations iteratively (e.g., Mg+1 < Q- ni). Since Q = Q + u - v’ via Theorem 3.4, we
notice that Q -1 can be computed more efficiently, with no need to memoize Q in extra

memory space, as follows: Q- mp = Q- mi + (v1 - mp) - .

Algorithm. Based on Theorem 3.7, we provide an incremental SimRank algorithm,

denoted as Inc-uSR, for each link update.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 82

Algorithm 3.1: Inc-uSR (G, S, K, (i,7),C)
Input : a graph G, old similarities S for G, #-iteration K,

the edge (7, j) updated to G, and damping factor C.
Output: the new similarities S for G U {(4,) }.
1 initialize the transition matrix Q in G ;
2 d; := in-degree of node j in G ;
3 memoize w := Q- [S], ; ;

4 compute)\::[S]i’i—l—%‘[S] 2'[w].—%+1;

I J
5 if edge (i,j) is to be inserted then
6 if dj =0 then u:=ej, v:=e;, 7::w+%[S]m--ej;
7 else u := ﬁej, vi=e; — [Q];:* ;
8 vi= @ (W= 88+ G T &~ ey

9 else if edge (i,7) is to be deleted then

10 if dj =1thenu:=ej, v:i=—e;, v:= %[S]m--ej—w;
11 else u:= ;1e;, v:i= [Q}?* — e
’ :
1 (1 A 1 .
12 V=@ (@8h,; —w+ @y — ¢ + De));

13 initialize §o :=C-e;, mo:=7v, Mo:=C-¢; AT
14 for k=0,1,--- , K —1do

15 €1 =C-Q - & +C- (vl - &) -u;

16 Mot = Q M+ (v -m) - u;

17 Myot1 = Erp1 - My + My ;

18 S:=S+ Mg +ME ;

19 return S ;

Given the old graph G, the old similarities S in G, the edge (7,j) updated to G,
and the damping factor C, the algorithm incrementally computes the new similarities
S in GU{(i,5)}. It works as follows. First, it initializes the transition matrix Q and

in-degree d; of node j in G (lines 1-2). Using Q and S, it precomputes the auxiliary

Chapter 3. Incremental SimRank on Link-Evolving Graphs 83

vector w and scalar A (lines 3-4). Once computed, both w and A are memoized for
precomputing (i) vectors u and v for a rank-one factorization of AQ, and (ii) initial
vector «y for subsequent My, iterations (lines 5-12). Then, the algorithm maintains two
auxiliary vectors & and 7y to iteratively compute matrix My, (lines 13-17). The process
continues until the number of iterations reaches a given K. Finally, the new scores S are

obtained by M7 (line 18).

Example 3.8. Recall the old graph G and S of G from Figure 3.1. When edge (i,) is
added, we show how Inc-uSR computes the new S, which is in part depicted in Column
‘SiMrye’-

Given the following information from the old S below: '®

¢ @mw 6 G
[S],; = {0, ..., 0,0.246, 0, 0, 0.590, 0.310, 0, - - , O]T € R15x1,

IORO RO
S],; = {0, ..., 0,0.246, 0, 0, 0.310, 0.510, 0, -- - , O]T € R15x1,

as dj = 2, Inc-uSR first precomputes w and A via lines 3-4:

(@ ®
w = [0.104, 0.139, 0, --- , o]T e RY*1,
1

A = 0.590
+ 0.8

1
0510 —2x0— — +1=0.978.
% 058

As an “edge insertion” operation, the vectors u and v for a rank-one decomposition of
AQ can be computed via line 7. Their results are depicted in Example 3.5.

Utilizing w and A, the vector v can be obtained via line 8:

1 1 A
Ty~ (v - sl it 5@ Tos)e5)
@ ®) (3) ()
= 10.035, 0.046, 0, 0, 0, —0.086 0, 0, —0.129, —0.075, 0, ---, 0 |1 € R1®*!

"It can be proved that |[Mx —M]||, .. < C**', with M in Eq.(3.24).
¥Due to space limitations, we only show the i-th and j-th columns of S here, which is sufficient for

computing the new S in G U {(4,)}.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 84

Then, in light of 4, Inc-uSR iteratively computes My, via lines 13-17. After K = 10

iterations, Mg is derived as

@ B © @ | B) @) | k) (0)

(a) { —0.005 —0.009 0 0.009 —0.009

(b) | —0.004 —-0.006 0 0.006 0 —0.007 0

(¢ 0 0 0 0 0
(d) | —0.002 —-0.002 0 —0.005 0

: 0 0 0 0

(i)
(4) | 0.028 0.037 0 0 —0.068 —0.104 | —0.060

0 0 0 0

(0)

Finally, using Mg and the old S, the new S is obtained via line 18, as partly shown

in Column ‘simgue’ of Figure 3.1.]

Correctness & Complexity. (i) Algorithm Inc-uSR correctly updates the SimRank
scores, which can be readily verified by Theorems 3.4-3.7. (ii) The total time of
Inc-uSR can be bounded by O(Kn?) for updating all similarities of n? node-pairs.'?
To be specific, Inc-uSR runs in two phases: preprocessing (lines 1-12), and incremental
iterations (lines 13-19). (a) For the preprocessing, it requires O(m) time in total (m is
the number of edges in the old G), which is dominated by computing w (lines 3), involv-
ing the matrix-vector multiplication Q - [S] +i- The time for computing vectors u, v, is
bounded by O(n), which only includes vector scaling and additions, i.e., SAXPY. (b) For
the incremental iterative phase, computing &1 and 11 needs O(m + n) time for each
iteration (lines 15-16). Computing My entails O(n?) time for performing one outer

product of two vectors and one matrix addition (lines 17). Thus, the cost of this phase

is O(Kn?) time for K iterations. Collecting (a) and (b), all n? node-pair similarities can

1911 the next subsection, we shall further reduce the time complexity via a pruning strategy to eliminate
node-pairs with unchanged similarities in AS.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 85

be incrementally computed in O(Kn?) total time, as opposed to the O(r*n?) time of its

counterpart [LHH'10] via SVD.

3.3.2 Pruning Unnecessary Node-Pairs in AS

After the SimRank update matrix AS has been characterized in terms of a rank-one
Sylvester equation, the pruning techniques in this subsection can further skip the node-
pairs with unchanged similarities in AS (i.e., “unaffected areas”), avoiding unnecessary
score recomputations for link update.

In practice, we observe that when link updates are small, affected areas in similarity
updates AS are often small as well. As demonstrated in Example 3.8, many entries in
matrix Mg are Os, implying that AS (= Mg + M}F{) is a sparse matrix. However, it is
a big challenge to identify such “affected areas” in AS in response to link updates. To

address this problem, we first introduce a nice property of the adjacency matrix:

Lemma 3.9. Let A be the adjacency matrix. The entry [Ak}m- counts the number of

length-k paths from node 4 to j. O

For example, [A4]i,j counts the number of specific paths p:i —+ o0 —0—0— jin
GG, with o denoting any node.

Lemma 3.9 can be extended to count the number of “specific paths” whose edges are
not necessarily in the same direction. For example, we can use [AATAAT]W- to count
the paths p:i — o ¢ 0 — 0 < j in G, where A (resp.AT) appears at the positions 1,3
(resp.2,4), corresponding to the positions of — (resp.<—) in p.

As Q is the weighted (i.e., row-normalized) matrix of AT, we can verify [QF - (QT)k]M =

0= [(AT)]c : Ak]m- = 0. The following corollary is immediate.

Corollary 3.10. Given k =0, 1,---, the entry [QF - (QT)k]m- counts the weights of the
specific paths whose left k& edges in “+—” direction and right k£ edges in “—” direction as
follows:

j 04 i@ 0—j. [(3.31)
_ —-—
length k length k

Chapter 3. Incremental SimRank on Link-Evolving Graphs 86

Definition 3.11. We call the paths in Eq.(3.31) the symmetric in-link paths of length

2k for node-pair (i, 7). O
By virtue of Eq.(3.23), the recursive form of SimRank Eq.(2.2) naturally leads itself
to the following series form:

[Sl,,=(1-C Zc’“ Q- (Q")",, (3.32)

k=0

Capitalizing on Corollary 3.10, Eq.(3.32) provides a reinterpretation of SimRank:
[S],» is the weighted sum of all in-link paths of length 2k (k =0,1,2,---) for node-pair
(a,b). The weight C* in Eq.(3.32) is to reduce the contributions of in-link paths with
long lengths relative to those with short ones. The factor (1 — C) aims at normalizing
S, into [0, 1] since | 2320 CF - QF - (Q) " < Y220 CF < o
Affected Areas in AS. In light of our interpretation for S via Eq.(3.32), we next
reinterpret the series M in Theorem 3.7, with the aim to identify the “affected areas” in
AS.

Due to space limitations, we shall mainly focus on the edge insertion case of d; > 0.
Other cases have the similar results.

By substituting Eq.(3.25) (the case d; > 0) back into Eq.(3.24), we can readily split

the series form of M into three parts:

[M]a,b - 1 <Z CkJrl) [Qk]a,j [S]z‘,*QT ’ [(QT)k]*,b

4+1I\i=
Part 1
~7.k
_ch ,] j*[(QT) *b+:uzck+1]ag[(QT)]j,b)
k=0
Part 2 P;;t 3

with the scalar p := ﬁ + % -1
J
By Lemma 3.9 and Corollary 3.10, when edge (i, j) is inserted and d; > 0, Part 1 of

[M], , tallies the weighted sum of the following new paths for node-pair (a,b) in graph

Chapter 3. Incremental SimRank on Link-Evolving Graphs 87

G U{(i,j)}:
~ =k
@, S, or @)L,
—_— —_—N—
@40 04 j4= (4-0--0{ @00k "I A—p---0—b (3.33)
—_——— ——
length k all symmetric in-link paths for node-pair (i,x) length k

Such paths are the concatenation of four types of sub-paths (as depicted above)

k
|4 4, Plus the inserted

associated with four matrices, respectively, [Qk]ayj, [S]i’*, Q7 [(QT) NS

edge 7 < i. When such entire concatenated paths exist in the new graph, they should
be accommodated for assessing the new SimRank [S] a,p 1 TESpoOnse to the edge insertion
(7,7) because our reinterpretation of SimRank indicates that SimRank counts all the
symmetric in-link paths, and the entire concatenated paths can prove to be symmetric
in-link paths.

Likewise, Parts 2 and 3 of [M], ,, respectively, tally the weighted sum of the following

new paths for node-pair (a,b):

[Qk]a]' [S]j* [(QT) }*,b
’ s
G 0---04j o0 @®—>30--:0—> x—---0—D (3.34)

length k all symmetric in-link paths for node-pair (j,x) length k
- =k
Q1. Q%)
—
@4 0---04j—>0---0—b (3.35)

length k length k

Indeed, when edge (i, j) is inserted, only these three kinds of paths have extra contri-
butions for M (therefore for AS). As incremental updates in SimRank merely tally these
paths, node-pairs without having such paths could be safely pruned. In other words, for
those pruned node-pairs, the three kinds of paths will have “zero contributions” to the
changes in M in response to edge insertion. Thus, after pruning, the remaining node-pairs
in G constitute the “affected areas” of M.

To find the “affected areas” of M, we prune the redundant node-pairs in G, based on

the following theorem.

Theorem 3.12. For the edge (i,) insertion, let O(a) and O(a) be the out-neighbors of

node a in old G and new G U {(i,7)}, respectively. Let My, be the k-th iterative matriz

Chapter 3. Incremental SimRank on Link-Evolving Graphs 88

in Line 17 of Algorithm 3.1, and let

Fii={b|beO(y), Ty, st [S],, #0} (3.36)
P (d;=0) (3.37)
{y [[Sl;, #0} (d; >0)

.Ak XBk =

i} x (RUFRU{G} (k =0) (3.38)
{(a,b)]a € O(x), be Oly), Iz, Ty, s.t. [My_1],, # 0} (k> 0)
Then, for every iteration k = 0,1,---, the matriz My, has the following sparse prop-
erty:
[Mk]a,b =0 forall (a,b) ¢ (Ar x Br) U (Ag x Bp).

For the edge (i,7) deletion case, all the above results hold except that, in Fq.(3.37),

the conditions d; = 0 and d; > 0 are, respectively, replaced by d; =1 and d; > 1. O

Proof. We only show the edge insertion case for d; > 0, due to space limitations. The
proofs of other cases are similar.

For k = 0, it follows from Eq.(3.24) that [Mo], , = [e;],[v],- Thus, V(a,b) & Ao x Bo,
there are two cases: (i) a # j, or (ii) a = j, b € F;;Y N 7Y, and b # ;.

For case (i), [ej], = 0 since a # j. Thus, [Mo],, = 0. For case (ii), [e;], = 1
since @ = j. Thus, [Mo],, = [v],, where [7], is the linear combinations of the 3 terms:
[Ql,.. - [S],» [S],, and [ej],, according to the case of d; > 0 in Eq.(3.25).

In the sequel, our goal is to show the 3 terms are all 0s. (a) For b ¢ F, by definition in
Eq.(3.36), b € O(y) for Vy, we have [S]; / = 0. Due to symmetry, b € O(y) < y € Z(b) 20,
which implies that [S]; = 0 for Vy € Z(b). Thus, [Q],, - [S],,; = ﬁ > zezv) Sy =0
(b) For b ¢ 3, it follows from the case d; > 0 in Eq.(3.37) that [S];, = 0. Hence, by S
symmetry, [S], ; = [S];, = 0. (c) [e;], = 0 since b # j.

Taking (a)-(c) together, it follows that [Mo],, = 0, which completes the proof for

the case k = 0.

20Recall that, as mentioned before, Z(a) is the in-neighbor set of node a.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 89

For k > 0, one can readily prove that the k-th iterative M in Line 17 of Algorithm 3.1
is the first k-th partial sum of M in Eq.(3.24). Thus, My can be derived from My, as

follows:
Mp=C-Q M- Q" +C-e; -~

Thus, the (a,b)-component form of the above equation is

Z(@)Z0)] || 5T X My +Co el b

xeZ(a) yeI(b)

[Mk]a,b

To show that [Mg],;, = 0 for (a,b) ¢ Ao x By U Ay, x By, we follow the 2 steps: (i) For
(a,b) ¢ Ao x By, as proved in the case k = 0, the term C' - [e;] [v], in the above equation
is obviously 0. (ii) For (a,b) ¢ Ag x By, by virtue of Eq.(3.38), a € O(z),b € O(y), for
Vx,y, we have [Mk,l]x’y = 0. Hence, by symmetry, it follows that z € f(a),y e Z(b),
[My-1],, = 0.

Taking (i) and (ii) together, we conclude that
[Mk}a,b =0 for (a,b) ¢ Ay x By U A x By,
which completes the proof.]

Theorem 3.12 provides a pruning strategy to iteratively eliminate node-pairs with
a-priori zero values in My (thus in AS). Hence, by leveraging Theorem 3.12, when
edge (i, 7) is updated, we just need to consider node-pairs in (Ax x By) U (Ag x By) for
incrementally updating AS.

Intuitively, F; in Eq.(3.36) captures the nodes “A” in (3.33). To be specific, F; can
be obtained via 2 phases: (i) For the given node i, we first build an intermediate set
T = {yl[S];, # 0}, which consists of nodes “x” in (3.33). (ii) For each node z € T,
we then find all out-neighbors of = in G, which produces Fi, i.e., , F1 = U e O(2).
Analogously, the set F» in Eq.(3.37), in the case of d; > 0, consists of the nodes “x”
depicted in (3.34). When d; = 0, F» = @ since the term [S], ; does not appear in the

expression of v in Eq.(3.25) for the case when d; = 0, in contrast with the case d; > 0.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 90

After obtaining F; and Fa, we can readily find Ag x By, according to Eq.(3.38). For
k > 0, to iteratively derive the node-pair set Ay x By, we take the following two steps: (i)
we first construct a node-pair set 71 x T2 := {(z,y)|[My-1], , # 0}. (ii) For every node
x € T1 (resp.y € T2), we then find all out-neighbors of = (resp.y) in G U {(4,7)}, which
yields A (resp.Bg), i.e., Ax = U e O(z) and By, = Uyer O(y).

The node selectivity of Theorem 3.12 hinges on AS sparsity. Since real graphs are
constantly updated with minor changes, AS is often sparse in general. Hence, a huge
body of node-pairs with zero scores in AS can be eliminated in practice. As demon-

strated by our experiments in Figure 3.5, 76.3% paper-pairs on DBLP can be pruned,

significantly reducing unnecessary similarity recomputations in response to link updates.

Example 3.13. Recall Example 3.8 and the old graph G in Figure 3.1. When edge (i,)
is inserted to G, according to Theorem 3.12, 71 = {a,b}, Fo = {f,4,7}, Ao x By =
{j} x{a,b, f,i,j}. Hence, instead of computing the entire vector « in Eq.(3.25), we only
need to compute part of its entries [y], for Vo € By.

For the first iteration, since A; x By = {a,b} x {a,b,d,j}, then we only need to
compute 18 (= 3 x 6) entries [My], , for V(z,y) € {a,b,j} x {a,b,d, .4, j}, skipping the
computations of 207 (= 152 — 18) remaining entries in M;. After K = 10 iterations,
many unnecessary node-pairs are pruned, as in part highlighted in the gray rows of the

table in Figure 3.1. O

Algorithm. We provide a complete incremental algorithm for computing SimRank,
referred to as Inc-SR (in Algorithm 3.2), by incorporating our pruning strategy into

Inc-uSR.

Correctness. The algorithm Inc-SR can correctly prune the node-pairs with a-priori
zero scores in AS, which is verified by Theorem 3.12. It also correctly returns the new

similarities, as evidenced by Theorems 3.4-3.7.

Complexity. The total time of Inc-SR is O(K (nd + |AFF|)) for K iterations, where d is

Chapter 3. Incremental SimRank on Link-Evolving Graphs 91

Algorithm 3.2: Inc-SR (G, S, K, (i,5),C)
Input / Output: the same as Algorithm 3.1.

1-2 the same as Algorithm 3.1 ;

«w

find By via Eq.(3.38) ;

memoize [w], := [Q],, - [S], ;, for all b € By ;

4-12 almost the same as Algorithm 3.1 except that the computations of the entire
vector -y in Lines 6, 8,10, 12 are replaced by the computations of only parts of
entries in 4, respectively, e.g., in Line 6 of Algorithm 3.1, “y :=w + %[S]m- -e;”

are replaced by “[v], := [w], + %[S}” - [ej],, for all b € By” ;

18 set (€], = C. fmoly = e Mol i= - [y, b € Bo

14 fork=1,---,K do

15 find A x By via Eq.(3.38) ;

16 memoize o1 := C - (vl - &,_1), 00 :=v! -mp_q ;

17 &kl == C-[Ql, ., &-—1+01-[u],, forall a € Ay ;

18 (], = [Qly . - -1 + 02 - [u]y, for all b € By ;

19 (Mg p = [&klo - Melp + [Mi—1], 4, V(a,b) € Ag X By;

20 [S],4 = [Slap + [Mil,p + Mkly,, V(a,b) € Ag x Br;

21 return S ;

the average in-degree of G, and |AFF| := avgyc(o k) (| Ak - [Bk|) with A, By in Eq.(3.38),
being the average size of “affected areas” in My for K iterations. More concretely, (a)
for the preprocessing, finding By (line 3) needs O(dn) time. Utilizing By, computing [w],
reduces from O(m) to O(d|Bp|) time, with |By| < n. Analogously, - in lines 6,8,10,12 of
Algorithm 3.1 needs only O(|Bp|) time. (b) For each iteration, finding Ay x By, (line 15)
entails O(dn) time. Memoizing o1, 02 needs O(n) time (line 16). Computing &€ (resp.n)
reduces from O(m) to O(d|Ag|) (resp.O(d|B|)) time (lines 17-18). Computing [Mg],,
reduces from O(n?) to O(|Ax||Bk|) time (line 19). Thus, the total time complexity can

be bounded by O(K (nd + |AFF|)) for K iterations.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 92

It is worth mentioning that Inc-SR, in the worst case, has the same complexity bound
of Inc-uSR. However, in practice, |AFF| < n?, as demonstrated by our experimental
study in Figure 3.6, since real graphs are constantly updated with small changes. Hence,
O(K (nd + |AFF])) is generally much smaller than O(Kn?). In the next section, we shall

further confirm the efficiency of Inc-SR by conducting extensive experiments.

3.4 Experimental Evaluation

We present an empirical study, using real and synthetic data, to show (i) the efficiency
of Inc-SR for incremental computation in terms of time and space, as compared with
(a) Inc-SVD, the best known link-update algorithm [LHH*10], (b) Inc-uSR, our incre-
mental algorithm without pruning, and (c) Batch, the batch algorithm [YLZ"13b] via
fine-grained memoization; (ii) the effectiveness of our pruning technique for identifying
“affected areas” to speed up Inc-SR computation; and (iii) the exactness of Inc-SR and

Inc-uSR, in contrast with Inc-SVD.

3.4.1 Experimental Setting

Datasets. We use both real and synthetic datasets.

(1) DBLP?!, a co-citation graph, where each node is a paper with attributes (e.g., pub-
lication year), and edges are citations. By virtue of the year of the papers, we extract
dense snapshots, each consisting of 93,560 edges and 13,634 nodes.

(2) CrTH?2, a reference network (cit-HepPh) from e-Arxiv. If a paper u references v,
the graph has one link from u to v. The dataset has 421,578 edges and 34,546 nodes.

(3) YouTu?3, a YouTube graph, where each node is a video. A video u is linked to
v if v is in the related video list of u. We extract snapshots according to the age of the

videos, and each has 953,534 edges and 178,470 nodes.

2http://dblp.uni-trier.de/ ley/db/
#http:/ /snap.stanford.edu/data/
Zhttp:/ /netsg.cs.sfu.ca/youtubedata/

Chapter 3. Incremental SimRank on Link-Evolving Graphs 93

We use GraphGen?* to build synthetic graphs and updates. The graphs are controlled
by (a) the number of nodes |V|, and (b) the number of edges |E|. We produce the
sequence of graphs following the linkage generation model [GGCMO09]. Two parameters
are utilized to control the updates: (a) update type (edge insertion/deletion), and (b)
the size of updates |AG].

All the algorithms are implemented in Visual C+4 v10.0. Each experiment is run 5
times; we report the average here. We use a machine with an Intel Core(TM) 2.80 GHz
CPU and 8GB RAM, running Windows 7.

We set the decay factor C = 0.6, as in the prior work [JW02]. Our default iteration
number is set to K = 15, with which a high accuracy C¥ < 0.0005 is attainable, according
to [LVGTO8]; on large dataset YOuTu, K is set to 5, the same value as [JW02]. For
Inc-SVD, the target rank r is a time-accuracy trade-off; as shown in the experiments
[LHH"10], the highest speedup is achieved when r = 5. Thus, in our time evaluations,

r = 5 is adopted, whereas in the exactness evaluations, we shall tune this value.

3.4.2 Experimental Results
Exp-1: Time Efficiency.

We first evaluate the running time of Inc-SR, Inc-uSR against Inc-SVD and Batch on real
data.

To favor Inc-SVD that only works on graphs of small sizes (due to memory crash for
high-dimension SVD, e.g., n > 10%), DBLP and CiTH are used, though Inc-SR works
well on a variety of graphs (e.g., YOUTU, SYN).

Figure 3.2 depicts the results for edges inserted into DBLP, CiTH, YouTu, respec-
tively. For each dataset, we fix |V, and increase |E| by |AE]|, as shown in the z-axis. Here,

the edge updates are the differences between snapshots w.r.t. the ¢

‘year” (resp.“video
age”) attribute of DBLP, CITH (resp.YOUTU), reflecting their real-world evolution. We

observe the following. (1) Inc-SR always outperforms Inc-SVD and Inc-uSR when edges

*http:/ /www.cse.ust.hk/graphgen/

Chapter 3. Incremental SimRank on Link-Evolving Graphs 94

—— Inc-SR -8 Inc-uSR -%- Inc-SVD -4 Batch

10%
— 900 — 5K ~ 2
o o <
Z Z =15
]]] °
£ 600 B 3K, Aol =
- 2 E S 14
7 o] % os
g 5 1K 0
€3} = €3} ¢ | |
(}SK 79K 83K 87K 91K 95K 401K 407K 413K 419K QSQK 895K 901K 907K 913K
|E| +|AE| (DBLP) |E| + |AE| (CiTH) |E| +|AE| (YouTu)

Figure 3.2: Time Efficiency of Incremental SimRank on Real Data

=

=100 !

= |AE| = 6K

A BN AE|=12K
c% 90 | [|AE| = 18K |
2 80 -
o

4

s 70 N B

xe DBLP CitH

Figure 3.3: % of Lossless SVD Rank w.r.t. |AE)|

are increased. For example, on DBLP, when the edge changes are 10.7%, the time for
Inc-SR (83.7s) is 11.2x faster than Inc-SVD (937.4s), and 4.2x faster than Inc-uSR (348.7s).
This is because Inc-SR deploys a rank-one matrix trick to update the similarities, with an
effective pruning strategy to skip unnecessary recomputations, as opposed to Inc-SVD that
entails rather expensive costs to incrementally update the SVD. The results on CiTH are
more pronounced, e.g., Inc-SR is about 30x better than Inc-SVD when |E| is increased
to 401K. On YouTu, Inc-SVD fails due to the memory crash for SVD. (2) Inc-SR is
consistently better than Batch when the edge changes are fewer than 19.7% on DBLP,
and 7.2% on CiTH. When the link updates are 5.3% on DBLP (resp.3.9% on CiTH),
Inc-SR improves Batch by 10.2x (resp.4.9x). This is because (i) Inc-SR exploits the sparse
structure of AS for incremental update, and (ii) small link perturbations may keep AS
sparsity. Hence, Inc-SR is highly efficient when link updates are small. (3) The running

time of Inc-SR, Inc-uSR, Inc-SVD, unlike Batch, is sensitive to the edge updates |AE],

Chapter 3. Incremental SimRank on Link-Evolving Graphs 95

—6— Inc-SR 48~ Inc-uSR -%- Inc-SVD A Batch

—~ 3K —~ 3K

] O

2 %

NS — A

g 2K | g 2K

E £

B B

T 1K T 1K

&, 8,

= 3 C

M &

85K 500K 515K 530K 545K 560K 960K 545K 530K 515K 500K 485K
Edge Insertion (SYN) Edge Deletion (SYN)

Figure 3.4: Time Efficiency of Incremental SimRank on Synthetic Data

as expected. The reason is that Batch needs to reassess all similarities from scratch in
response to link updates, whereas Inc-SR and Inc-uSR can reuse the old information in
SimRank for incremental updates. In addition, Inc-SVD is too sensitive to |AFE|, as it
needs costly tensor products to compute SimRank from the updated SVD matrices. In
contrast, Inc-SR is less sensitive than Inc-SVD as it directly computes SimRank changes
w.r.t. link updates, without the need of computing SVD.

Figure 3.3 shows the target rank r required for the lossless SVD of Eq.(3.3) w.r.t. the
edge changes |[AE| on DBLP and CiTH. The y-axis is - x 100%, where n = |V, and r
is the rank of the lossless SVD for C in Eq.(3.3). On each dataset, when increasing |AE)|
from 6K to 18K, we see that = is 95% on DBLP (resp.80% on CiTH), Thus, r is not
negligibly smaller than n in real graphs. Due to the quartic time w.r.t. 7, Inc-SVD may
be slow in practice to get a high accuracy.

Fixing |V| = 79,483 on synthetic data, we vary |E| from 485K to 560K (resp.560K
to 485K) edges in 15K increments (resp.decrements). The results are reported in Fig-
ure 3.4, confirming our observations on real datasets. For example, when 6.4% edges
are increased, Inc-SR runs 8.4x faster than Inc-SVD, 4.7x faster than Batch, and 2.7x
faster than Inc-uSR. When 8.8% edges are deleted, Inc-SR outperforms Inc-SVD by 10.4x,
Batch by 5.5x, and Inc-uSR by 2.9x. This justifies the complexity analysis of our algo-

rithms Inc-SR and Inc-uSR.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 96

/3104 B \ \ E 100 \ \

j")i ; Inc-uSR] 30 [|AE| = 6K

g 3 | M Inc-SR 1w mm AP = 12K

g "% of Pruned E < 60 W — |AE| — 18K

e | Node-Pairs [T : o

2102 | Hean | sS40} |

@ Al B | X

_% -] 7e3% : 20 | - .

€3 101 N NN A 0 [NN A

DBLP CitH YouTu DBLP CitH YouTu

Figure 3.5: Effect of Pruning Figure 3.6: % of Affected Areas w.r.t. |AFE]

Exp-2: Effects of Pruning.

As mentioned in Subsection 3.3.2, Inc-SR skips needless computations for incremental
updates. To show the effectiveness of our pruning strategy in Inc-SR, we compare its time
with that of Inc-uSR, i.e., original version of Inc-SR without pruning rules, on DBLP,
CiTH, YouTu. The results are shown in Figure 3.5, where the percentage of the pruned
node-pairs in each graph is depicted on the black bar. The y-axis is in a logarithmic scale.
It can be discerned that, on every dataset, Inc-SR constantly outperforms Inc-uSR by
nearly 0.5 order of magnitude. For instance, the running time of Inc-SR (64.9s) improves
that of Inc-uSR (314.2s) by 4.8x on CITH, with approximately 82.1% node-pairs being
pruned. That is, our pruning technique is effective in finding unnecessary node-pairs on
real graphs with various link distributions.

As our pruning strategy hinges on the size of the “affected areas” in SimRank update
matrix, it is imperative to evaluate, on real graphs, that how large these “affected areas”
are when links are evolved. The results are visualized in Figure 3.6, showing that the
percentage of the “affected areas” in similarity changes w.r.t. link updates |AF| on real
DBLP, CiTH, and YouTu. We find the following. (1) When |AE| is varied from 6K to
18K on every real dataset, the “affected areas” in similarity changes are relatively small.
For instance, when |AFE| = 12K, the percentage of the “affected areas” is only 23.9%
on DBLP, 27.5% on C1TH, and 24.8% on YouTuU, respectively. This demonstrates the

potential benefits of our pruning technique in real applications, where a larger number

Chapter 3. Incremental SimRank on Link-Evolving Graphs 97

of elements in AS with a-priori zero scores can be pruned. (2) For each dataset, the
size of “affect areas” mildly grows when |AFE] is increased. For example, on YouTu, the
percentage of |AFF| increases from 19.0% to 24.8% when |AE| is changed from 6K to
12K. This confirms our observation in the time efficiency analysis, where Inc-SR speedup

is more obvious for smaller |[AE|.

Exp-3: Memory Space.

We next evaluate the memory requirements of Inc-SR, Inc-uSR, against Inc-SVD on real
datasets. Here, the memory space means “intermediate space”, where the last step of
writing n? node-pairs of the similarity outputs is not accommodated. We also tune the
default target rank r = 5 larger for Inc-SVD to see how memory increases w.r.t. r.

The results are depicted in Figure 3.7, where, for Inc-SVD, we report r = 15,25 on only
small DBLP, as its memory space will explode on larger networks when r and |V| grow.
We notice that (1) Inc-SR and Inc-uSR consume far smaller space than Inc-SVD by at least
1.5 orders of magnitude on DBLP and CITH no matter what target rank » might be. This
is because Inc-SR and Inc-uSR use the rank-one trick to convert AS computations into the
sequence of vector operations, whereas Inc-SVD needs to memoize the decomposed SVD
matrices and to perform costly matrix tensor products. (2) Inc-SR has 4.1x (resp.4.5x)
smaller space than Inc-uSR on DBLP (resp.YouTU), due to our pruning method reducing
the memoization of many entries in auxiliary vectors, e.g., w. (3) When r is varied from
5 to 25, the space of Inc-SVD is increased from 637.9M to 3.15G on DBLP, but crashes on
CiTH and YouTu. This tells that r has a large impact on the performance of Inc-SVD,
which cannot be ignored in the big-O notation of the complexity analysis [LHH™'10].

Thus, to get Inc-SVD feasible on CITH, we set » = 5 in the evaluations.

Exp-4: Exactness.

Finally, we evaluate the exactness of Inc-SR and Inc-uSR against Inc-SVD. We adopt

the NDCG metrics [LHH10] to assess top-30 most similar node-pairs on DBLP, CI1TH,

Chapter 3. Incremental SimRank on Link-Evolving Graphs 98

) T = 7 I e r‘I‘;
3 [T Ine-SR - 2
%103§ b1 _.22-USR E 0.8 | WF o]
© - C1 :nc.g\\;g gi)) § S) N 14 Inc-SR (5)
Q - b1 7272277 Inc- 5 BN N3 B Inc-SR (15) | |
g 102 = b1l | e Inc-SVD (25) E (@) 06 A |nc—uSR((5;
n - 28 g o N 14 77277 Inc-uSR (15)
o B 4 N N A 04| B |EE Inc-SVD (5) ||
5 101 = 4 3.12 70.3 - Z N 14 I Inc-SVD (15)
= et s s 0.2] [I
< i o1) : ’ N WA N 128 1/
= 1 -k , 0 ,]
DBLP CitH YouTu DBL CitH YouTu
Figure 3.7: Memory Space Figure 3.8: NDCGj3p Exactness

YouTu. For baselines of NDCG3p, we use the results of Batch on each dataset for

35 iterations.?®

For Inc-SR and Inc-uSR, we perform K = 5,15 iterations on each
graph; for Inc-SVD, due to its non-iterative paradigm, we tune the rank r from 5 to
15. The results are depicted in Figure 3.8, telling us the following. (1) In all the cases,
Inc-SR and Inc-uSR have much better accuracy than Inc-SVD. For example, the NDCGsg
of Inc-SR and Inc-uSR are both 0.88 at K = 5, much better than Inc-SVD (0.36) at r = 25.
This confirms our observations in Section 3.2, where we envision that Inc-SVD may miss
some eigen-information in many real graphs. When K = 10, the NDCGsq of Inc-SR and
Inc-uSR are 1s, indicating that their top-30 node-pairs are perfectly accurate. This justi-
fies the correctness of our algorithms. (2) For each dataset and the fixed iteration K, the

NDCGsp of Inc-SR and Inc-uSR are exactly the same. This indicates that our pruning

strategy is lossless, i.e., it does not sacrifice any exactness for speedup.

3.5 Related Work

SimRank is arguably one of the most appealing link-based similarity measures in a graph.
Recent results on SimRank computation can be distinguished into two broad categories:
(i) incremental SimRank on dynamic graphs (e.g., [HFLC10, LHH"10]), and (ii) batch

SimRank on static graphs (e.g., [FNSO13,LLY"10,FR07,LLY12, LVGTO08, YLZ"13b]).

25 As the diameters (i.¢., the longest paths) of DBLP, CITH, YOUTU are 16,11,7, respectively, it suffices
to perform K = 35 iterations to accommodate all path-pairs between two nodes for assessing SimRank.
Thus, the resulting scores of Batch for K = 35 can be viewed as the ezact baseline solutions.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 99

3.5.1 Incremental Update

Incremental computation is useful as real graphs are often updated with small changes.
However, few results are known about incremental SimRank computation, much less
than their batch counterparts (e.g., [YMS14, AMCO8, FR07, LLY12, LLY 10, LVGTOS,
YLZ"13b,FNSO13]). Generally, there are two types of updates for dynamic graphs: (i)
link updates, and (ii) node updates. About link-incremental SimRank algorithms, we are
merely aware of [LHH'10] by Li et al. who gave an excellent matrix representation of
SimRank, and was the first to show a SVD method for incrementally updating similarities
of all node-pairs in O(r*n?) time 26, where r (< n) is the target rank of the low-rank
approximation. However, (i) their incremental approach is inherently inexact, without
guaranteed accuracy. It may miss some eigen-information (as proved in Section 3.2) even
though r is chosen to be exactly the rank (instead of low-rank) of the target matrix for
the lossless SVD. (ii) In practice, r is not much smaller than n for attaining the desirable
accuracy. This may lead to prohibitively expensive updating costs for [LHH'10] since its
time complexity O(r*n?) is quartic w.r.t. 7. In comparison, our work adopts a completely
different framework from [LHH"10]. Instead of incrementally updating SVD [LHH'10],
we characterize the changes to SimRank in response to each link update as a rank-one
Sylvester equation first, and then exploit the link structure to prune “unaffected areas” for
speeding up the incremental computation of SimRank, without loss of exactness, which
only needs constant time (independent of 7) to incrementally compute every node-pair
similarity for each link update.

Another interesting piece of work is due to He et al. [HFLC10], who devised the
parallel computation of SimRank on digraphs, by leveraging the iterative aggregation
strategy. Indeed, the parallel computing technique in [HFLC10] can be regarded as an
efficient node-incremental updating framework for SimRank. It differs from this work

in that [HFLC10] improves the efficiency by reordering and parallelizing the first-order

26 According to the proof of Lemma 2 in [LHH'10], the time is actually O(r*n?), though, the statement
of Lemma 2 says “it is bounded by O(n?)”. Observing that r < n is not often the case, we do not explicitly
omit r* in O(%) here.

Chapter 3. Incremental SimRank on Link-Evolving Graphs 100

Markov chain for node updates on GPU, instead of capturing the “unaffected areas”
of SimRank w.r.t. link updates, whereas our methods utilize pruning rules to eliminate
unnecessary recomputations for links updates on CPU via a rank-one Sylvestor equation.

There has also been work on the incremental computations for other hyperlink-based
relevance measures (e.g., [DPSK05, BCG10,SGP11, FNOK12, YLZ %12, YLZ13a]). De-
sikan et al. [DPSKO05] proposed an efficient incremental PageRank algorithm for node
updating. Their underlying principle is based on the first-order Markov model. Banhmani
et al. [BCG10] utilized the Monte Carlo method for incrementally computing Personalized
PageRank. Yu et al. [YLZ"12] provided an incremental eigenvector update algorithm for
SimFusion+ computation. Sarma et al. [SGP11] gave an excellent exposition of concate-
nating the short random walks for estimating PageRank with provable accuracy on graph
streams. All of these incremental methods are probabilistic in nature, with the focus on
node ranking, and hence cannot be directly applied in SimRank node-pair scoring. Fu-
jiwara et al. [FNOK12] proposed K-dash for finding top-k highest Random Walk with
Restart (RWR) proximity nodes for a given query, which involves a strategy to incre-
mentally estimate proximity bounds. However, their incremental process is approzimate.

Later, Yu et al. [YLZ13a] proposed an incremental strategy for RWR link updates.

3.5.2 Batch Computation

In contrast to the incremental algorithm, the batch SimRank computation has been well-
studied on static graphs. Recent results on batch SimRank can be mainly categorized into
(i) deterministic computation (e.g., [JW02, FNSO13, LHH*10,LVGTO08, YLZ"13b]), and
(ii) probabilistic estimation (e.g., [FR07,LLY12,LLY*10]). The deterministic methods
may obtain similarities of high accuracy, but the time complexity is less desirable than
the probabilistic approaches.

For deterministic methods, Jeh and Widom [JW02] are the first to propose an iterative
paradigm for SimRank, entailing O(Kd?*n?) time for K iterations, where d is the average

in-degree. Later, Lizorkin et al. [LVGTOS8] utilized the partial sums memoization to

Chapter 3. Incremental SimRank on Link-Evolving Graphs 101

speed up SimRank computation to O(Kdn?). Li et al. [LHH'10] proposed a novel non-
iterative matrix formula for SimRank. Apart from the incremental SimRank requiring
O(r*n?) time, they also used a SVD method for computing batch SimRank in O(a*n?)
time, where « is the target rank of matrix Q. Most recently, Yu et al. [YLZ"13b] have
further improved SimRank computation to O(Kd'n?) time (with d’ < d) via a fine-
grained memoization to share the common parts among different partial sums. Fujiwara
et al. [FNSO13] exploited the matrix form of [LHH'10] to find the top-k similar nodes
in O(n) time.

For probabilistic approaches, Fogaras and Récz [FR07] proposed P-SimRank in linear
time to estimate s(a,b) from the probability that two random surfers, starting from a
and b, will finally meet at a node. Li et al. [LLY'10] harnessed the random walks to
compute local SimRank for a single node-pair. Lee et al. [LLY12] deployed the Monte

Carlo method to find top-k SimRank node-pairs.

3.6 Conclusions

In this chapter, we have proposed an efficient algorithm for incrementally computing Sim-
Rank on link-evolving graphs. Our algorithm, Inc-SR; is based on two key ideas: (1) The
SimRank update matrix AS is characterized via a rank-one Sylvester equation. Based on
this, a novel efficient paradigm is devised, which improves the incremental computation of
SimRank from O(r*n?) to O(Kn?) for every link update. (2) An effective pruning strat-
egy is proposed to skip unnecessary similarity recomputations for link updates, further
reducing the computation time of SimRank to O(K (nd + |AFF|)), where |AFF| (< n?) is
the size of “affected areas” in SimRank update matrix, which can be practically much

smaller than n?2

in real evolution. Our empirical evaluations show that (1) Inc-SR consis-
tently outperforms the best known link-update algorithm [LHHT10], from several times

to over one order of magnitude, without loss of exactness. (2) Inc-SR runs substantially

faster than its batch counterpart when link updates are small.

Chapter 4

Efficient Penetrating-Rank on

Large Networks

4.1 Introduction

The problem of quantifying relevance between entities based has witnessed growing in-
terests over the last decades. There are various circumstances in which it would be useful
to answer the questions such as “How similar are every two entities (vertices)?”, and
“Which other entities (vertices) are most similar to a specific query (a given query ver-
tex)?”. Unlike SimRank [JWO02] that considers in-link relationships alone for relevance
assessment, Penetrating-Rank (P-Rank) has been recently proposed as another promising
similarity measure, which was invented by Zhao et al. [ZHS09]. It encodes both incoming
and outgoing links of entities into similarity assessment. P-Rank similarities flowing from
in-link neighbors of entities are penetrated through their out-link neighbors in a recursive

fashion. In contrast to other similarity measures, P-Rank has the following advantages:

e Semantic Completeness. P-Rank provides a comprehensive way of jointly con-
sidering both in- and out-link relationships with semantic completeness. In compar-
ison, other similarity measures (e.g., SimRank and SimFusion) have the “limited

information problem” [JWO02], in which only in-links are partially exploited, whereas

102

Chapter 4. Efficient Penetrating-Rank on Large Networks 103

out-links are totally ignored.

e Adaptivity. P-Rank can be easily combined with other textual domain-specific
similarity metrics to produce an overall similarity measure, which is fairly adaptive

to any domains with entity-to-entity relationships.

e Generality. P-Rank formula has a general form that makes itself transcend other
existing similarity measures. For instance, SimRank [JW02] and Amsler [Ams72]
are just special cases of P-Rank, by setting specific weight factors for P-Rank, as

illustrated in [ZHS09].

Therefore, P-Rank has long been recognized as an important and common similarity
measure, which has a wide range of applications in any fields where other similarity
measures (e.g., SimRank, SimFusion, and Amsler) are applicable, such as collaborative
filtering, graph clustering, link prediction, and web document ranking (e.g., [LVGT10,
ZCY09, AMCO08] and references therein).

4.1.1 Motivation

Previous work on P-Rank, however, leaves several challenging issues unaddressed, moti-
vating us to systematically develop efficient techniques for P-Rank assessment.

Firstly, it is not straightforward to estimate the accuracy for P-Rank iterations. Al-
though the convergence of P-Rank iterations has been proved in [ZHS09], it is still
difficult to determine the total number of iterations needed for guaranteeing a given ac-
curacy. To the best of our knowledge, there is only one work [LVGT10] that estimates
the accuracy for SimRank iterations, which is a special case of P-Rank (only in-links are
considered). That work provides an upper bound C**1 for the difference between the
k-th iterative SimRank and the exact one. However, there is extra difficulty in porting
this bound to P-Rank accuracy estimation since we observe that the simple linear com-
bination of the weighted bound A - CinFH + (I—=2X)- Cout*t! is not always suitable for

P-Rank (unless in-link damping factor Cj, equals out-link damping factor Coyt). The

Chapter 4. Efficient Penetrating-Rank on Large Networks 104

reason is that the recursive nature of P-Rank makes both in- and out-links have a recur-
sive impact on similarities of all pairs of vertices. Thus, it is imperative to derive a new
bound for estimating the accuracy of P-Rank.

Secondly, no prior work has studied the stability of P-Rank. In the iterative compu-
tation, analyzing P-Rank stability plays a paramount role because it not only can gauge
the sensitivity of similarity results to slight perturbations in the link structure (e.g., by
adding or removing edges) but also implies whether large amounts of accumulated round-
off errors in the P-Rank iterations will run the risk of producing nonsensical similarity
results. To address this issue, we provide an upper bound for the P-Rank condition
number that is defined over the closed-form of P-Rank. One complicated problem is to
calculate the norm of a large matrix inversion in the closed-form of P-Rank since the
straightforward computation is prohibitively expensive. Motivated by this, we propose a
new approach to obtain a neat tight bound for the P-Rank condition number, which can
avoid the computation of such a large matrix inversion.

Thirdly, it is a big challenge to improve the computational complexity of P-Rank.
The naive method computing P-Rank via the fixed-point iteration requires O(Kn*) time
for K iterations, which is inapplicable to large networks. The most efficient existing
technique using partial sum memoization for SimRank computation [LVGT10] can be
applied to P-Rank in a similar way, but this still needs O(Kn?) time to compute P-Rank.
For approximating P-Rank, Zhao et al. [ZHS09] have proposed the radius- or category-
based pruning techniques to improve the estimation of P-Rank to O(Kd?*n?) worst-case
time, with d being the average degree in a graph. However, this method is inherently
heuristic, and even worse no theoretical guarantee is provided for the approximation
error of the pruning results. Fortunately, we have an observation that a large body of
vertices in a real network usually share some similar neighborhood structures (e.g., similar
user preference in a recommender system). Thus, we have an opportunity to “merge”
these similar vertices, and devise fast algorithms to speed up P-Rank computation with

accuracy guarantees.

Chapter 4. Efficient Penetrating-Rank on Large Networks 105

4.1.2 Chapter Outlines

In this chapter, we consider the aforementioned P-Rank problems, encompassing the

accuracy, stability and computational efficiency. The main results are the following.

e We provide an accuracy estimation for P-Rank iteration (Section 4.3). We show
that K = [Ine/In (A - Cin + (1 — A) - Cout) | iterations suffices to guarantee a desired
accuracy €, where A is the weight factor and C}, and Cyy are in- and out-link

damping factors, respectively.

e We introduce the notion of P-Rank condition number ko to analyze the stability
of P-Rank (Section 4.4). We deploy a new eigenvector-based approach to obtain
a tight bound for k., and provide the conditions under which P-Rank is stable,
that is, slight perturbations in the link structure will not cause large changes in the

P-Rank similarity.

e We propose two novel matrix-based algorithms (DE P-Rank and UN P-Rank) for effi-
ciently computing P-Rank in O(r*n?+12n) and O(rn?) time (r < n), respectively,
over digraphs and undirected graphs (Section 4.5), as opposed to the conventional
counterpart of O(Kn?) time. An error estimation is also provided as a by-product

when a target low-rank v (v < r) approximation is used for P-Rank.

e We empirically verify the efficiency of our methods on real and synthetic data
(Section 4.6). The experimental results show that (1) P-Rank converges expo-
nentially w.r.t. the iteration number; (2) the stability of P-Rank is sensitive to
different choices of the damping factors and the weighted factor; (3) the proposed
DE P-Rank and UN P-Rank outperform its competitors by almost one order of

magnitude.

Chapter 4. Efficient Penetrating-Rank on Large Networks 106
Symbol Definition Symbol Definition

g network r rank of graph adjacency matrix (r < n)
Z(a) in-neighbors of vertex a v low rank of P-Rank approximation (v < r)
O (a) out-neighbors of vertex a s(a,b) P-Rank score between vertices a and b

n number of vertices in G Cin / Cout in-link / out-link damping factor

m number of edges in G A adjacency matrix of G

K number of iterations S P-Rank similarity matrix of G

A weighting factor I identity matrix

Table 4.1: Glossary of Symbols

4.2 Preliminaries

In accordance with [ZHS09], we assume that graphs studied in this paper have no multiple
edges (corresponding to a 0-1 adjacency matrix). Table 4.1 lists the notations used
throughout this chapter.
The basic essence underlying the P-Rank model [ZHS09] involves the following three
facets:
1) Two distinct entities are similar if they are referenced by similar entities. (In-link
Recursion)

2) Two distinct entities are similar if they reference similar entities. (Out-link Recursion)

3) Every entity is maximally similar to itself. (Base Case)

P-Rank Similarity. More formally, we revisit the formulation of P-Rank [ZHS09].
Given a network G = (V, &) with a vertex set V and an edge set £. the P-Rank model
can be formulated as follows:

For every two distinct vertices u,v € V, the similarity s(u,v) € [0,1] defined as

s(u,u) =1, (4.1)
in-link part
A Cy [Z(uw)[1Z(v)]
s(u,v) = IZ (w)[|Z (0)] £ ; 5 (Zi (u) L (v))
(1=) - Cous |O(u)| |O(v)]
+ s (Oi (u),0; (v)), (4.2)
O WO)] = =

out-link part

Chapter 4. Efficient Penetrating-Rank on Large Networks 107

is called the P-Rank similarity between u and v, where (i) A € [0,1] is a weight factor,
balancing the importance between in-links and out-links; (ii) Ci, and Coyt € (0, 1) are the
damping factors for in- and out-link directions, respectively; (iii) Z (u) and O (u) are the
in- and out-neighbor set of vertex u, respectively, with Z; (u) and O; (u) being the i-th
elements of Z (u) and O (u), respectively; and (iv) |Z (u)| and |O (u)| are the cardinalities
of Z (u) and O (u), respectively.
To avoid s(u,v) = oo in Eq.(4.2), we assume that
1) in-link part of Eq.(4.2)=01if Z (u) = @ or Z (v) = &;

2) out-link part of Eq.(4.2)=0if O (u) =@ or O (v) = @.

P-Rank Iterative Paradigm. The conventional method iteratively computes s(u,v)

as follows:

(1, 0) = 0,if u # v; (43)

1,if u=nw.

50

For each iteration k = 1,2, - - -, the k-th iterative P-Rank similarity s (u,v) is iteratively

computed as

s (u,u) =1;
Z()] [Z(v)]
A C'1n
(o) = s S0 3 s (@), T o)
i=1 j=1
O] |O()]

(1 - >\) out (k—1)
+ S O; (u),0; (v)); 4.4
BwowW & = * 5 () (4.4)
s%) (u,v) = Bq.(4.4)’s in-link part, if O (u) = @ or O (v) = @;
s%) (u,v) = BEq.(4.4)’s out-link part, if Z (u) = @ or Z (v) = @.

It was proved in [ZHS09] that the sequence {s*) (u,v)} non-decreasingly converges

to the exact similarity s (u,v), i.e.,

lim s (u,v) = s (u,v) (Vu,v € V). (4.5)

k—o0

Chapter 4. Efficient Penetrating-Rank on Large Networks 108

4.3 P-Rank Accuracy Estimate

Despite the convergence of the sequence {s*) (u, v) 172, the gap between the k-th itera-
tive similarity s(*) (u,v) and the exact one s (u, v) still remains unknown. This motivates
us to study the P-Rank accuracy estimate problem:

Given a network G, for each iteration number £ = 1,2,---, it is to find a tight bound
¢, for the difference between the k-th iterative similarity s*) (u,v) and the exact one
s (u,v) for Yu,v € G.

The main result of this section is the following.

Theorem 4.1. The P-Rank accuracy estimate problem has a tight upper bound
ek = (ACin+ (1 = \)Cou)*
such thatVk =0,1,---, Yu,v €V,
s (u,v) — s (u,0) | < ep. O (4.6)
Proof. (i) For u = v, Eq.(4.6) obviously holds since
s(u,u) —s®(u,u) =1—1=0. (Vk>0, Yue)

(ii) For u # v, we use induction on k to prove Eq.(4.6) as follows:
Inductive Basis. We show that Eq.(4.6) holds for k = 0. Using Eq.(4.2) and s (u,v) =

0, we have

s(u,v) — s (u,v) = s(u,v)

|Z(u)] |Z(v)] |O(u)] |O(v)]
)\ Cm (1_)\)'Cout
= 4+ 7 5(0; (u),0; (v
TEWE & & LB O) e & 2 1010 w)
<1 <1
|Z(u)] |Z(v [O(u)] |O(v)]
)\ Cm (1_/\ out
W (0 1221 BwIoW &

:/\'Cin+(1_)\)‘cout-

Inductive Step. Assume that Eq.(4.6) holds for a fixed k as the inductive hypothesis.

We need to prove that Eq.(4.6) holds for k + 1 as well. Combing Eqgs.(4.2) and (4.4)

Chapter 4. Efficient Penetrating-Rank on Large Networks 109

yields
s(u,v) — sFHD (u, v)
)] Z0)] using inductive hypothesis <(ACi,+(1—A)Cout)¥ 1
AC w v
_ _ W (T ,
=1 j=1
(1= A) Cout |O(w)| |O(v)]
ou
+ W > (500 (w),0; () =M (0: (), 0; (v)))
i=1 j=1
using inductive hypothesis <(ACi,+(1—A)Cout)*T?
IZ(w)] [Z(v)]
ACin
SEWIEm)] & & (001N G
=1 j=1
- lowliow)
oo 2 O (WGt (1= 3) G
=1 j=1
= ACin(ACin + (1 = A) Cout)" !
+ (1 -)\) C'out()\c’in + (1 -)‘) Cout)k+1
= (ACin + (1 =) Cour)* 2.
This completes the induction. O

Theorem 4.1 provides an a-priori estimate for the gap between the iterative and exact
P-Rank. For each iteration, this gap merely hinges on the A, Cj, and Cy,¢. To be precise,

for guaranteeing high accuracy at each iteration, it follows from
€k = (/\(Cin - Cout) + Cout)k—i_1

that smaller choices of Cj, and Coyy (i) with a smaller X if Ci, > Coyt, or (ii) with a

larger \ if Ci, < Cout, will result in a smaller €, and are thus more preferable.

Example 4.2. Setting Ci, = 0.6, Coyt = 0.4, A = 0.3,k = 5 produces the following high

accuracy for P-Rank:
e = (0.3 0.6+ (1 —0.3) x 0.4)°" = 0.0095. O

Note that the upper bound in Eq.(4.6) can be attainable. Consider the network Gy in

Figure 4.1. It is apparent that s(°)(u,v) = 0. For k = 1,2, -- -, it can be easily obtained

Chapter 4. Efficient Penetrating-Rank on Large Networks 110
a
Q% \\\
sen QY ww .}y .
\b

Figure 4.1: The equality of Eq.(4.6) is attainable for Gy

that s (u,v) = ACin 4+ (1 — A)Cout, which implies that s(u,v) = ACin + (1 — X\)Couy.

Hence, in the case of k = 0,
|5, v) = 5% (w,0)] = (ACin + (1 = A)Cour) ",

which gives the precise upper bound in Eq.(4.6).

As a special case when A = 1, Eq.(4.6) reduces to the SimRank accuracy estimate
problem [LVGT10]. From this perspective, P-Rank accuracy estimate problem is an
extension of Proposition 1 in [LVGT10] by jointly considering both in- and out-links for
similarity assessment.

Conversely, the exponential P-Rank convergence rate in Theorem 4.1 implies that the

total iteration number K of iterations needed for attaining a desired accuracy ¢ is

K=lne/ln(A-Ciy + (1 = X)) - Cout)] -

4.4 Stability Analysis

In this section, the stability issue of P-Rank is investigated for analyzing the sensitivity
of P-Rank similarity to the perturbations on a graph. First, a closed-form of P-Rank
solution is represented as a matrix formula (Subsect. 4.4.1). Then, a rigorous bound of

the P-Rank condition number based on this matrix formula is provided (Subsect. 4.4.2).

4.4.1 Closed-form of P-Rank

Let us first introduce some notations. For a network G with n = |V| vertices, we denote

by (i) A = (a;;) € R™™" the adjacency matriz of G whose entry a; ; is 1 if there exists

Chapter 4. Efficient Penetrating-Rank on Large Networks 111

an edge from vertex 4 to j, and 0 otherwise; (i) S = (s; ;) € R™*" the P-Rank similarity
matriz whose entry s; ; equals the P-Rank score s(4, j) between vertices i and j; and (iii)
Q = (¢ij) € R"*™ and P = (p; ;) € R™™" the one-step backward and forward transition

probability matriz of G, respectively, whose entries defined as follows:

o)il 252 agas i Z(0) # @ o) aig/ 25 aig,if O®) # &
4ij = Dij = (4.7)
0, if 7(i) = @. 0, if O(i) = @.

With the above notations, the P-Rank formulae (4.1) and (4.2) can be rewritten as !

S=Xin-Q-S- Q'+ (1=NCout - P-S- P +(1—-ACi — (1 = N)Cout)-I,. (48)
Dividing both sides of Eq.(4.8) by (1 — ACin — (1 — A)Coys) results in
S=(1-ACin — (1 =N)Cou) - S, with

S =Xiw-Q-S Q' +(1-NCou-P-8 -PT 41, (4.9)

Comparing Eq.(4.8) with Eq.(4.9), we see that the coefficient (1 — ACi, — (1 —X)Cout)
of I, in Eq.(4.8) merely contributes an overall multiplicative factor to P-Rank similarity.
Hence, setting this coefficient to 1 in Eq.(4.8) still preserves the relative magnitude of
the P-Rank score even though the diagonal entries of S in this scenario may not be equal
to 1. 2

We also introduce two useful operators [GLI6, p.180]: (i) vec(X) € R™ is defined to
be the vectorization of the matrix X € R™*™ formed by stacking the columns of X into
a single column vector. (ii) A ® B is the Kronecker product of the matrices A and B.

To represent the closed-form of S, we now take vec on both sides of Eq.(4.9), and then

apply the Kronecker property vec(AXB) = (BT ® A) - vec(X) [GL96, p.180] to obtain

vec(S') = (1 — M) Cout (P @ P) - vec(S') + A\Cin(Q ® Q) - vec(S') + vec(L,).

! Although in this case the diagonal entries of S may not equal 1, S still remains diagonally dominant,
which ensures that “every vertex is maximally similar to itself”.
2In what follows, we shall base our techniques on the P-Rank matrix form of Eq.(4.9).

Chapter 4. Efficient Penetrating-Rank on Large Networks 112

Rearranging the terms in the above equation produces
M - vec(S') = vec(I,,) with

M = nZ —)\CIH(Q & Q) - (]- -)‘)Cout(P ® P)v (410)

which is a linear matrix equation in nature.

To show the existence of M ™!, the following lemma is introduced.
Lemma 4.3. The matrices Q® Q and P ® P are both row sub-stochastic matrices.®> [

Proof. 1t follows from Eq.(4.7) that for each row i = 1,--- ,n, the sum of each row in Q

and P is no greater than 1. Then, for each row 7' of Q ® Q, we have

n

n n
D@k Y i) <Y (arxx 1) <1,
j=1 k=1

k=1
which indicates that Q ® Q is a row sub-stochastic matrix. A similar proof holds for

P®P. 0

Based on Lemma 4.3, it can be easily proved that M in Eq.(4.10) is a diagonally
dominant matrix, implying that M is invertible. Hence, by pre-multiplying M~! on

both sides of Eq.(4.10), the closed-form solution of P-Rank can be represented as

vec(S) = (1 — ACin — (1 — A\)Cout) - M1 - vec(I,,). (4.11)

4.4.2 Condition Number of P-Rank

Based on the closed-form of P-Rank solution in Eq.(4.11), we next analyze the P-Rank
stability. One complicated factor in P-Rank stability issue is to precisely bound its
condition number ko, which has important implications for the sensitivity of P-Rank
computation.

Let us first formally define the P-Rank condition number.

3 A row sub-stochastic matriz is a non-negative matrix with each row sum being no greater than 1.

Chapter 4. Efficient Penetrating-Rank on Large Networks 113

Definition 4.4 (P-Rank condition number). For a network G, let Q and P be the one-
step backward and forward transition matrix defined by Eq.(4.7), respectively, and let

M be defined by Eq.(4.10). Then, the quantity
Foo(G) 2 M|l - [IM 7Y (4.12)

is called the P-Rank condition number of G.
Here, ||x||,, denotes the co-norm that returns the maximum absolute row sum of the

matrix. O

The condition number is introduced for analyzing P-Rank stability. More specifically,

we show the following result.

Theorem 4.5. For any graph G, the P-Rank condition number has the following tight

bound
OGO @19
To prove Theorem 4.5, the following lemmas are necessary.
Lemma 4.6. |[M]|_ has the following upper bound:
M|, <14+X-Cin+(1—=X) - Cou. O (4.14)

Proof. By definition, the diagonal (i,%)-entry of Q ® Q equals gy i X g;» i, where
i' = [i/n] and i’ = [(i — 1) mod n] + 1.

Then, taking oco-norm on both sides of Eq.(4.10) yields
=1 <1 <1

M| = T2l oo +A - Cin - [Q @ Qllog + (1 = A) - Cour - [P @ P

ST+ A-Cin+ (1=) - Cous. (4.15)

Lemma 4.7. HM_lHOO has the following upper bound:

1
<)
T 14+ A Cin+ (1= Coun

[l O (4.16)

Chapter 4. Efficient Penetrating-Rank on Large Networks 114

Proof. Let 1,2 be a vector of length n? with entries of all 1s, and e; a unit vector of
length n? with a 1 in the i-th entry and Os in all others.
Since Q ® Q and P ® P are row sub-stochastic matrices, it follows from Eq.(4.10)

that Vi =1,2,--- ,n?,

[Tyo =M+ 1 =X Cip— (1= A) - Cout] - L2 - €] || o

=[[ACin(Q®Q)+ (1 = ANCout(PRP)+[1 = X-Cin — (L = A) - Coug] - L2 - e;-FHOO <1

Hence, I,> — M +[1 —X-Ciy — (1 = A) - Cout] - 1,2 - €] is a row sub-stochastic matrix.

)

Due to the spectral radius property p(x) < || % ||co, it follows that
p(Lz —MA4[1—=X-Chp— (1= X)-Cout] - L2 -€]) < 1.

Notice that I,2 — M+ [1 —X-Ciy — (1 = A) - Cout) - 1,2 - €]

; is nonnegative. According

T

to the eigen-pair property for the nonnegative matriz 4, there exists some row-vector X;

with [|x]||c = 1 such that Vi = 1,2,--- ,n?,

xI (L =MA+[1 =X Cip— (1 =A) - Cout] - 1,2 -€]) < x7.

(3

Rearranging the terms in the above inequality produces
X! M>[1 =X Ch— (1 =X -Cout] %! -1,2-€]. (4.17)

Note that ||x!||cc = 1, which implies that x! - 1,2 = 1. Post-multiplying by M~! on

both sides of Eq.(4.17) produces Vi = 1,2+, n?,

el M 1<1/0—=X-Ciu— Q=X Cou) - x/

i

and ||x7|ls = 1. Taking co-norm

Also, notice that [|[M™!|| = max;<;<p2 [le] - M7

on both sides of the above inequality yields Eq.(4.16). O

From Lemmas 4.6 and 4.7, Theorem 4.5 follows directly, which provides a tight bound

for koo (G). Intuitively, koo (G) has two important implications. Foremost, it can evaluate

4According to [Mey01, p.670], for a nonnegative matrix A € R™*" there exists a vector x € {z|z >
0 with z # 0} such that Ax = p(A)x.

Chapter 4. Efficient Penetrating-Rank on Large Networks 115

how stable the P-Rank similarity is to the perturbations in the link structure of graph
G (by inserting or deleting vertices or edges, or by changing the value of weighted factor
A and damping factors Cj, and Cqy). Moreover, it can estimate the error of P-Rank
ranking results invoked by the roundoff error in P-Rank iterations.

To get a feel for how koo (G) affects P-Rank stability, we denote by AM the updates to
the original matrix M defined in Eq.(4.10), and AS the updates to the original similarity

matrix S. From the closed-form solution of P-Rank, it is known that

|AS]
S]]

|vec(AS)]| [AM]|
max __ o8] S’ioo g RN Lo o)
vee®)le =9
1A O+ (=) Cour [AM]

T1=A O = (13 Cour Ml

max

where || X]| = maxi<; j<n{i;} is a maximum elementwise matrix norm. This tells

max
that smaller koo (G) (i.e., smaller choices of Cj, and Cyy) makes P-Rank more stable,
implying that a small change AM in the link structure to M may not cause a large
change AS in P-Rank similarity scores. Conversely, the larger value of ko (G) makes
P-Rank ill-conditioned. ®

The P-Rank condition number ko (G) can vary with the choice of weighting factor

A. To see this, let us compute the partial derivatives w.r.t. A in Eq.(4.13) :

9 <1+A.Cm+(1 A)-Cout> = 2 (Cin = Cout) (4.18)

OAN\1 =X Ciy— (1= X) Cout 1-A-Cin— (1—\) - Cou)?®

This implies that when Cy, > Cout (resp.Cin < Cout), for the increased A, a small change

in G may result in a large (resp.small) change in P-Rank, which makes P-Rank an ill-

conditioned (resp.a well-conditioned) problem; when Ci, = Cyyt, the value of ko (G) is
independent of A.

It is worth noting that the upper bound of k. (G) in Eq.(4.13) is attainable if and

only if each vertex in network G has at least one in-degree and one out-degree because

in this case each row sum and each column sum of A are strictly greater than 0, which

5A detailed discussion will be given in Subsection 4.5.1 for measuring the effectiveness of P-Rank
approximate algorithm to further appreciate the utility of P-Rank condition number koo (G).

Chapter 4. Efficient Penetrating-Rank on Large Networks 116

g1

*QL—>»
O =

 ——
-
Figure 4.2: The equality of Eq.(4.13) is attainable for G;

ensures that Q and P are exactly row stochastic matrices ® rather than sub-stochastic

ones, and hence |[Q® Q| =|P®P| =1

Example 4.8. Consider a directed cycle network of length 4, depicted as G; in Figure
4.2, in which each vertex has one in-link and one out-link. Setting A = 0.5, Cijy = 0.8,
and Coy = 0.6, one can verify that the equality of Eq.(4.13) is attained for G; as follows.

On one hand, since A = Q = P for G;,M and M~! can be solved naively from

Eq.(4.10), which follows that
Koo(G) = [[M]| . - [M ™Y = 1.7 x 3.333 = 5.667;

on the other, computing the right-hand side of (4.13) produces

14+ A Cin+ (1= Couy 1+0.5x 0.8+ (1—-0.5) x 0.6

- = 5.667.
1—=ACin—(1—=XA)-Cous 1—05x0.8—(1—0.5)x0.6

Both results are exactly the same, and hence the equality of Eq.(4.13) holds. 0

4.5 Optimization Techniques

In this section, optimization techniques for P-Rank computation are suggested. (i) For di-
rected networks, an efficient algorithm based on low rank approximation of the transition
matrices is proposed for reducing the calculations of trivial similarity values associated
with the small singular values (Subsection 4.5.1). (ii) For undirected networks, a P-
Rank solution in terms of eigenfunctions is introduced for further optimizing similarity

computations (Subsection 4.5.2).

5 A matrix having row sums equal to 1 is called a row stochastic matriz.

Chapter 4. Efficient Penetrating-Rank on Large Networks 117

n £(<< n) 1
LSS) o
L | —(luz, VT — | L U3, VT
time
complexity

.

[Ul UQ] >t

Vrlr] O(n’r)

V3

Figure 4.3: Low-rank update of matrix inversion

4.5.1 P-Rank on Digraphs

We next devise an algorithm for speeding up the computation of P-Rank to O (r4n2 =+ r2n)
from O(Kn*) [ZHS09] time in the worst case, where r (< n) is the rank of graph adja-
cency matrix, and K is the total iteration number.

The main idea in optimizing P-Rank computation is to “merge” the vertices having
similar neighbor structures by utilizing a singular value decomposition of a graph that is
represented as a matrix inversion. To effectively decompose the graph, a low-rank update
formula is also proposed to compute this matrix inversion in the r» x r dimension rather
than its conventional counterpart in n x n dimension. We observe that vertices in a
real-world graph (e.g., bibliographic networks [JW02], who-trusts-whom social networks
[LHK10]) are often sparse and may share the similar structure of the neighborhood.
Thus, the rank r of the adjacency matrix is typically much smaller than n, and the
computational efficiency can be highly achieved.

For an elaborate discussion, we first establish the following low-rank update of the

matrix inversion identity, which is useful to subsequent P-Rank optimization.

Lemma 4.9. Let I be an n x n identity matrix, U; and V; be n X r matrices , and C;

be r x r matrices (i = 1,2). Then the following matriz inversion identity holds.

-1

1 ' -viu, -viu, \%
-0V - U3V ' =1+ (U, Us) ! ! "l o
-viu, x,7'-viu, v7I

Proof. Let U = (U, Uy), V=(V,V,) and ¥ = (%1 2?2) Substituting in both sides of

Chapter 4. Efficient Penetrating-Rank on Large Networks 118

the Woodbury formula [GLI6] (I — UCVT)71 =I''+1'u(x ! - VTI*1U)_1VTI*1

gives
-1
20 \'%
LHS=|[TI- <U1 U2>
03] \VT
= (1-Uz V! - U3,V T
-1 -1
310 vT vT
RHS == I + <U1 U2> - <U1 U2>
0 3 %4 \%4
-1
»t-viu, -viu, \%
-vIiu, 3zt -VvIu, \%4
Since LHS=RHS, this yields the desired results. O

A consequence of Lemma 4.9 is to convert an n X n matrix inversion into an r X
r matrix inversion with r < n, thus greatly improving the time complexity. More
precisely, as depicted in Figure 4.3, when one wishes to compute the matrix inversion
(I- U121V{ — UgEgV%)_l, it is only necessary to calculate the RHS of Eq.(4.19),
which is in O(n?r +r?n 4+ 13) (r < n) due to the low-rank of U; 31 V7 and U35V,
as opposed to the naive O (n?) time of matrix inversion [HJ90].

Lemma 4.9 is established in conjunction with singular value decomposition for op-
timizing P-Rank computation. The key observation is that Q and P may have small
matrix rank r(< n) as most real graphs are often sparse. 7 Comparing the LHS of
Eq.(4.19) with the closed-form of P-Rank solution (Eq.(4.11)), it can be noticed that
once the matrix ACj, (Q ® Q) and (1 — A) Coyt (P ® P) are decomposed into the form
of U121V1T and UQEQVQT, respectively, Lemma 4.9 can be used for speeding up the
computation of Mt in Eq.(4.11) .

More specifically, we show the following main result in this subsection.

Theorem 4.10. Let r be the rank of the graph adjacency matriz. Given a low rank

"A sparse graph G = (V, £) is a graph with |£] = O(|V)).

Chapter 4. Efficient Penetrating-Rank on Large Networks 119

n r(«n) r n—r
2] [va]r Rank r SVD
mf Q| = |ve }”—T O(rn?) (r<n)
X
DU} r L ow Rank v SVD
n ' vLr
Q. }HT O(on?) ()

n

Figure 4.4: Low rank v approximation truncating the smallest r — v singular values of Q

v (< r), it isin O (U4n2 + U2n) time to estimate P-Rank up to an additive error

)\CmO'10'U+1T + (1 -)\) Cout(?l&vﬂr
- 1-—)\Cm - (]. -)\) Cout ’

€v

where o; and 7; (i = 1,v41) are the i-th largest singular values of Q and P respectively.

O

(A detailed proof will be provided after some discussions.)

In particular, setting the low-order v to r (the rank of adjacency matrix) gives the

following corollary.

Corollary 4.11. For digraphs, the exact P-Rank similarity S in Eq.(4.8) is solvable in

O(r*n? 4+ r2n) time. O

As remarked earlier, it takes O (nzr +r2n) time to perform the matrix inversion
in Lemma 4.9. This tells us that P-Rank estimation does not make our lives much
harder since v(< r) is typically much smaller than n in practice. In contrast with the
quartic time of its traditional counterpart via an iterative paradigm [ZHS09], the low-
rank v (< r) approximation of P-Rank allows us to estimate similarities in quadratic
time in the number of vertices.

The a-posteriori error €, in Theorem 4.10 is acceptable in practice (e.g., Wikiand
DBLP) since the (v + 1)-th largest singular values 0,41 and &,41 are reasonably small.

As depicted in Figure 4.4, the low-rank v (< r) decomposition procedure truncates the

Chapter 4. Efficient Penetrating-Rank on Large Networks 120

smallest — v almost zero singular values of the adjacency matrix which (1) contain little
practical information for computing the resultant similarity, and (2) require considerable
amounts of space for subsequent computations. For instance, setting Ci, = Coyt = 0.8

and A = 0.5 (as suggested in [ZHS09]) implies a high accuracy

0.5x0.8x1.12+0.5x0.8 x 1.08

1077 x 15K ~ 0.
= 1-05x08—05x0.8 x 1077 x 15K = 0.006,

€v

for an English Wikigraph of 1.2M vertices (v = r/2 = 15K, 01 = 1.12, 61 = 1.08) with
max(c,41,0,11) < 1077 being truncated.

The choice of low rank v (< r) has a user-controlled effect over the approximation
error, which is a time-accuracy trade-off. As an extreme case of v = r (< n), we notice
that 0,41 = 7,41 = 0 and the approximate P-Rank similarity becomes the exact P-
Rank similarity. From this perspective, the approximate P-Rank is an extension of the
conventional exact approach.

We next prove Theorem 4.10 by providing an algorithm for the low-rank v P-Rank

approximation on digraphs.

Algorithm. The algorithm, referred to as DE P-Rank, is shown in Algorithm 4.1. It
accepts as input a web graph G, a weighted factor A, two damping factors Ci, and Coyt,
and a low rank v (an optional parameter). If v is omitted, the default value is the rank
r of adjacency matrix in G. The algorithm returns the approximate P-Rank similarity
matrix S for G and an accuracy €, if v < r; otherwise it returns the exact similarity S
for €, = 0.

Before illustrating the algorithm, we first present the notations it uses. (1) RowNorm
(A) returns a row-stochastic matrix by normalizing each nonzero row of A; Rank (A)
returns the rank of A. (2) Given a matrix Q and a positive integer v, RSVD (Q,v)
returns the low-rank v singular matrix decomposition Q, = Uq2qu that minimizes
Qv — QJl; = 0ut1, where Ug and Vq are n x v orthogonal matrices, and Xq is a

v X v diagonal matrix. (3) We use fJQ, flq,\?g to denote the self-Kronecker products

Chapter 4. Efficient Penetrating-Rank on Large Networks 121

Algorithm 4.1: DE P-Rank (G, A, Cin, Cout, V)
Input : web graph G = (V,€), weight factor A,

damping factors Cj, and Cyy, low rank v.
Output: similarity matrix S, and accuracy ¢,,.
1 initialize the adjacency matrix A of G.
2 compute the transition matrices Q and P in G :
Q <+ RowNorm (AT), P + RowNorm (A).
3 if v is empty then v < Rank (A)
4 do low rank SVD approximation for Q and P :
[Uq,Xq,VQ;01,0u41] < RSVD (Q,v),
[Up, Xp, Vp;01,0,+1] < RSVD (P, v).
5 compute the self-Kronecker products :
Uqg+ Uq®Uq, Zq+« Zq®Xq, Vg« Vq® Vg,
Up« Up®Up, Zp« Zp®Tp, Vp< Vp®Vp.
6 compute the matrix 3 :
St b Sgl - VATq, S e VAT,
Soo migl —~ViUp, 39 « —VLUq.
7 compute the P-Rank similarity vector s :
vi < (Vq Ve)T vec (I,), vo <§; g;;)71v1
s < vec(I,,) + (Uq Up) va.

8 if v < Rank (A) then estimate accuracy

ACino10p4+1 + (1 = A) Cout01G0+1
1= ACin — (1 = X) Cout

Rank (A)

€y

else ¢, < 0.
9 reshape the n X n similarity matrix S s.t. s = vec (S).

10 return S and ¢,.

Chapter 4. Efficient Penetrating-Rank on Large Networks 122

(A (B) 111
1 2 00111 00000\ fo0ill
Go O (oot} 0 {00000 00%41
00000 £1000] 100000
3 4 S 00000 11000] 00000
sugar egg flour i1
g 99 00000 2000/ \00000
Uq = Up =
0 3q = (1.225) V§ = (=707 —.707 0 0 0) 0
o o ’
— 577 —.577
=517) VI = (0 0 —.577 =577 —.577) Zp = (.817) | =577
— 577 —.577
w0 i
O ilz_(1) Los— |0 0 .564.064.064
21=(=1) o — (-383> 0 0 .064.564.064
3o = (5) 277 0 0 .064.064.564

Figure 4.5: Heterogenous Shopping Graph Go

of Uq, Xq, Vg, respectively.

The algorithm DE P-Rank works as follows. It first initializes the adjacency matrix
A of G (line 1). Using A, it then computes Q and P by normalizing each nonzero row
of A and AT, respectively (line 2). When the optional argument v is not supplied, DE
P-Rank also provides a default value Rank (A) for v (line 3).

For t