
Efficient Node-to-Node Relevance
Assessment Based on Hyperlinks

by

Weiren Yu

A THESIS SUBMITTED IN FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY
IN THE SCHOOL

OF
COMPUTER SCIENCE AND ENGINEERING

(January 2014)

Supervisor: Prof. Xuemin Lin







ii



iii

Abstract

Many ubiquitous applications need to assess relevance between two objects based on

hyperlink structure. Typical examples include web page ranking, co-citation analysis,

collaborative filtering, outlier detection, graph clustering, and nearest neighbor search.

These applications have spurred growing interest in a powerful class of relevance assess-

ment, known as link analysis. Link-based relevance assessment aims to assign a similarity

score to each pair of objects based purely on the structure of a network, in contrast to

the conventional text-based counterpart that heavily hinges on the content of objects.

In reality, networks are often large and frequently evolve with small changes over time.

Due to the large scale and dynamic nature of the Internet, a fundamental challenge in link

analysis is to design a satisfactory general-purpose similarity measure, which not only can

well simulate human judgment behavior, but also has desirable computational efficiency,

together with a succinct and elegant representation. To address the challenge, this thesis

focuses on effective link-based relevance assessment over large and dynamic networks,

which encompasses (1) computational efficiency on large networks, (2) incremental update

on dynamic networks, and (3) semantics improvement of existing similarity measures.

More specifically, our contributions are summarized as follows:

(1) We propose efficient techniques for assessing SimRank relevance on large networks

and bipartite domains. First, we exploit a novel clustering strategy for eliminating du-

plicate computations occurring in partial sums to accelerate SimRank for each iteration.

Then, we introduce a new differential SimRank equation to reduce the total number of

SimRank iterations. Thirdly, in bipartite domains, we also speed up the computation of

the Minimax SimRank variation via edge concentration.

(2) We design a novel paradigm for incrementally assessing SimRank on link-evolving

networks. Unlike the prior method maintaining updates to singular value decomposition,

we first characterize the SimRank update matrix, in response to every link update, as a

rank-one Sylvester equation. We then leverage an effective pruning technique capturing



iv

the “affected areas” of the SimRank update matrix to skip unnecessary computations.

(3) We provide efficient techniques for Penetrating-Rank (P-Rank) assessment on

large networks. First, we estimate the accuracy for P-Rank iterations. Then, we analyze

the stability of P-Rank by obtaining a tight bound on its condition number. Finally, we

propose efficient algorithms for P-Rank assessment on digraphs and undirected networks.

(4) We investigate the incremental assessment of Random Walk with Restart (RWR)

proximities in dynamic networks. The prior attempt of RWR deploys k-dash to find top-k

highest proximity nodes for a given query, involving an approximate strategy to incre-

mentally estimate upper proximity bounds. In contrast, we propose a fast incremental

paradigm for assessing RWR via linear combinations of vectors without loss of exactness.

(5) We extend SimFusion model towards efficient relevance assessment on large and

dynamic networks. As opposed to the original SimFusion that utilizes a Unified Rela-

tionship Matrix (URM) to represent latent relationships among heterogeneous data, we

present SimFusion+ based on a notion of the Unified Adjacency Matrix (UAM), to re-

solve the trivial solution and the divergence issues of SimFusion. We also develop fast

algorithms to speed up the assessment of SimFusion+ on large and dynamical networks.

(6) We present a novel link-based model, SimRank*, for improving the semantic

richness of SimRank and RWR. First, we justify that SimRank* can resolve an undesirable

“zero-similarity” property in SimRank and RWR. Then, we propose a closed form of

SimRank*, to enrich relevance semantics without suffering from increased computational

cost. Finally, we devise a heuristic to speed up SimRank* assessment on large networks.

We conduct comprehensive experiments on both real and synthetic datasets to demon-

strate the superiority of our techniques against the state-of-the-art competitors.
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Chapter 1

Introduction

The advent and increasing importance of many proliferative application areas — link

analysis, structural information search, recommender systems, and graph databases —

have led to a growing need to assess node-to-node relevance based on link structure. Ex-

isting techniques for link-based relevance assessment do not support large and dynamic

network data. Thus, applications are left to either: (1) Limit the similarity computation

in small networks with no more than thousands of nodes; or (2) Reassess all pairs of rele-

vance from scratch when a network is frequently updated with changes. While the former

method imposes a significant restriction on many large-scale real applications, the latter

results in considerable amounts of duplicate recomputational efforts and prohibitively

high time complexity to deal with real evolving networks.

This thesis develops innovative techniques for efficient node-to-node relevance assess-

ment on large and dynamic network data. Such techniques mainly involve (1) taming the

computational complexity for similarity assessment over large networks, (2) supporting

incremental updates when a network is constantly updated, as well as (3) enriching the

semantics of relevance scoring functions in a systematic fashion. Section 1.1 highlights

the importance of link-based relevance assessment that arises in modern-day applications.

Section 1.2 describes fundamentals of relevance assessment used in the rest of the thesis.

Section 1.3 introduces technical challenges involved in efficient relevance assessment on

1
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large and dynamic networks, and outlines the main contributions made by this thesis.

Section 1.4 provides a broad overview of related work in the general area of relevance

assessment. (More detailed comparisons between prior work and specific contributions

of this thesis will appear in later chapters.)

1.1 Real Applications

Below are several examples of relevance assessment arising in real-world applications,

motivating the need for efficient techniques to deal with such assessment on large and

dynamic network data.

• Recommender Systems. Recommender systems are based on analyzing a large

amount of information on users’ preferences and providing personalized recommen-

dations of items to a user. A recent recommendation technique in [KSJ09] is based

on relevance assessment on a graph that links users to tags and tags to items.

Some additional information, e.g., friendship and social tagging embedded in social

knowledge, is also incorporated to improve the accuracy of item recommendations.

• Bibliometrics. Bibliometrics studies often require a relevance assessment for

measuring documents based on citation relationship. The methods of co-citation

[Sma73] and bibliographic coupling [Kes63a] are two most noteworthy metrics.

Both measures, however, only use the information of common immediate neighbors

to assess relevance between two documents. Recently, co-citation and bibliographic

coupling have been generalized by using the entire graph structure to assess the

relevance between documents [JW02].

• Automated Image Annotation. Automated image annotation aims to auto-

matically assign caption keywords to a query image. A graph-based automatic

captioning method was introduced by [PYFD04], where images and caption key-

words are regarded as nodes in a mixed media graph. Then, link-based relevance
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assessment can be applied to measure the correlations between the query image

and the caption keywords.

• Graph Clustering. Graph clustering aims to partition nodes in a network into

several different densely connected components based on node connectivity and/or

neighborhood similarity. Many graph clustering methods focus on the topological

structure of a graph partition with the aim to achieve a cohesive internal structure.

The link-based relevance assessment between two nodes can be regarded as the node

distance in a graph. One recent work in [SHZ+09] proposes RankClus to integrate

relevance assessment with clustering in large network analysis.

• Social Networks. A fundamental task in social networks is to answer the question

“which new interactions among social network members are more likely to occur

in the near future?” A recent work in [LNK03] has investigated this question by

assessing the relevance between two members. A key observation underlying this

approach is that the topological structure of the social network may suggest many

new collaborations. For instance, two members who are close in the network will

have many friends in common, and thus are more likely to collaborate in the future.

1.2 Fundamentals of Relevance Assessment

We revisit and define the basic formal concepts needed in the remainder of the thesis.

Definition 1.1. A directed graph (or digraph) is an ordered pair G = (V,E) with

• V – a set whose elements are called nodes or vertices, and

• E – a set of ordered pairs of nodes, called directed edges.

|V | and |E| denote the number (cardinality) of nodes and edges, respectively, in G.

Definition 1.2. Given a graph G = (V,E), for any node a ∈ V , we define
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• I (a) – the in-neighbor set of node a, i.e., all nodes that have a link to a :

I(a) = {u ∈ V |(u, a) ∈ E}.

• O (a) – the out-neighbor set of node a, i.e., all nodes that node v has a link to :

O(a) = {w ∈ V |(a,w) ∈ E}.

• |I(a)| – the in-degree of node a, i.e., the cardinality of I (a).

• |O(a)| – the out-degree of node a, i.e., the cardinality of O (a).

Using the aforementioned notations, the famous Google PageRank [Ber05] can be

formulated as follows.

Definition 1.3 (PageRank). Given a graph G = (V,E), the PageRank value for any

page u is defined as:

Pr(u) = C ·
∑

v∈I(u)

Pr(v)

|O(v)|
+ (1− C) · 1

|V |
,

where C ∈ (0, 1) is a constant decay factor (or a damping factor). Empirically, C is

usually set to 0.85.

PageRank was proposed by Larry Page [Ber05] to rank web pages based on hyperlinks

in the search engine results. It is an effective approach of measuring the importance of

web pages (nodes), by assigning a relevance score to each node.

In contrast to PageRank which is query-independent, Random walk with restart

(RWR) [TFP06] has emerged recently as an appealing ranking algorithm relying on user

queries. The formulation of RWR is a slight modification of PageRank as follows.

Definition 1.4 (Random Walk with Restart). Given a graph G = (V,E), the RWR

proximity for any page u with respect to query q is defined as:

Pq(u) = C ·
∑

v∈I(u)

Pq(v)

|O(v)|
+ (1− C) ·

 0, q ̸= u;

1, q = u.
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Figure 1.1: SimRank on each pair of G vs. SimRank on each node in G⊗G

Definition 1.5. A tensor product graph G⊗G = (V ⊗V,E⊗E) of a graph G with itself

is a graph such that

• ∀(a, b) ∈ V ⊗ V if a, b ∈ V ;

• ∀ ((a1, b1), (a2, b2)) ∈ E ⊗ E if (a1, a2) ∈ E, and (b1, b2) ∈ E.

Example 1.6. Figure 1.1 depicts a digraph G (with nodes indexed by integers, denoting

web pages, and edges hyperlinks) and its induced tensor graph G ⊗ G. It can be seen

that, in G⊗G, edge ((3, 6), (2, 4)) corresponds to two edges (3, 2) and (6, 4) in G.

Based on the definition of the tensor product graph, we next formulate SimRank

similarity, which was introduced by Jeh and Widom in [JW02].

Definition 1.7 (SimRank). Given a graph G = (V,E), let s : V ⊗ V → [0, 1] ⊂ R be a

real-valued scoring function on G⊗G defined as

s (a, b) =


1, a = b;

C
|I(a)||I(b)|

∑
j∈I(b)

∑
i∈I(a)

s (i, j), I (a) , I (b) ̸= ∅;

0, otherwise.

(1.1)

where C ∈ (0, 1) is a constant decay factor (or a damping factor). We call s (a, b) the

SimRank similarity score between nodes a and b.
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Figure 1.1 illustrates that SimRank propagates similarities from pair to pair in G

associated with the propagation from node to node in G⊗G with a decay factor C = 0.8

Definition 1.8. A bipartite graph (or bigraph) is a graph B = (U ∪ V,E), whose nodes

can be divided into two disjoint sets U and V , such that every edge in E connects a node

in U to one in V .

A bipartite version of SimRank, called Minimax SimRank [JW02], is defined below.

Definition 1.9 (Minimax SimRank variation). Given a bipartite graph B = (U ∪V,E),

for every two distinct vertices A and B in V , the similarity of the Minimax SimRank

variation, denoted as s(A,B), is defined as follows:

sA(A,B) = C
|O(A)|

∑
i∈O(A)

max
j∈O(B)

s(i, j),

sB(A,B) = C
|O(B)|

∑
j∈O(B)

max
i∈O(A)

s(i, j),

s(A,B) = min{sA(A,B), sB(A,B)}.

To make the thesis self-contained, we also revisit some mathematical definitions that

will be useful throughout the thesis.

We shall use the bold symbol X = (xi,j) ∈ Rn×m to denote a matrix of size n ×m.

Based on this, we define the following notations:

• [X]i,j (or xi,j) – the (i, j)-entry of matrix X;

• [X]i,⋆ – the i-th row of matrix X;

• [X]⋆,j – the j-th column of matrix X;

• XT – the transpose of matrix X, i.e., [X]i,j = [XT ]j,i.

Definition 1.10 (tensor product). The tensor product (or Kroneckor product) of two

matrices X ∈ Rp×q and Y ∈ Rr×s is the pr × qs matrix

X⊗Y
def
=


x1,1Y · · · x1,qY

...
. . .

...

xp,1Y · · · xp,qY

 .
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Definition 1.11 (vectorization). The vec operator vectorizes a matrixX = (xi,j) ∈ Rp×q

by stacking its columns as follows:

vec(X)
def
= [x1,1, · · · , xp,1, · · · , x1,q, · · · , xp,q]T .

Tensor product (⊗) and vectorization operator (vec) have the following relationship.

(BT ⊗A) · vec(X) = vec(AXB). (1.2)

Definition 1.12 (matrix norm). For a given n× n matrix X, some matrix norms of X

are defined as follows:

• max-norm: ∥X∥max
def
= maxni,j=1 |xi,j | ;

• Frobenius norm: ∥X∥F
def
=
√∑n

i=1

∑n
j=1 |xi,j |2 ;

• 1-norm: ∥X∥1
def
= maxnj=1

∑n
i=1 |xi,j | ;

• ∞-norm: ∥X∥∞
def
= maxni=1

∑n
j=1 |xi,j | .

Definition 1.13 (spectral radius). The spectral radius of matrix X, denoted by ρ(X),

is the maximum of the absolute values of the eigenvalues of X.

1.3 Challenges and Contributions

The goal of this thesis is to develop innovative techniques and novel link-based similarity

models for efficiently managing relevance assessment on large and dynamic network data.

In other words, we are not only interested in new techniques to tame the computational

complexity for relevance assessment in a scalable fashion, but also propose novel effective

models to enrich the semantics for relevance assessment, without suffering from increased

computational costs. Next we enumerate the main challenges involved in the thesis.

1.3.1 All-Pairs and Bipartite SimRank

SimRank is a widely-accepted link-based similarity model, which was initially introduced

by Jeh and Widom [JW02]. It is based on the philosophy that “two objects are similar if
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they are referenced by similar objects”. Due to its self-referentiality, fast SimRank search

on large and dynamic networks poses significant challenges.

The most efficient existing approach [LVGT10] exploits partial sums memoization for

computing SimRank in O(K|V ||E|) time on a graph G = (V,E), where K is the number

of iterations. However, it implies the following the limitations: (1) Although partial sums

memoizing can reduce repeated calculations by caching part of similarity summations

for later reuse, we observed that computations among different partial sums may have

duplicate efforts. (2) For a desired accuracy ϵ, the existing SimRank model [LVGT10]

requires K = ⌈logC ϵ⌉ iterations [LVGT10], where C is a damping factor. Nevertheless,

such a geometric rate of convergence is slow in practice if a high accuracy is desirable.

In Chapter 2, we address the above issues. (1) We propose adaptive clustering strate-

gies to eliminate partial sums redundancy, and devised novel efficient methods for speed-

ing up the computation of SimRank to O(Kd′|V |2) time, where d′ is typically much

smaller than the average degree of a graph. (2) We present a new notion of SimRank

that is based on a differential equation and can be represented as an exponential sum

of transition matrices, as opposed to the geometric sum of the conventional counterpart.

This leads to a further exponential speedup in the convergence rate of SimRank itera-

tions. (3) In bipartite domains, we also develop a novel finer-grained partial max clus-

tering method to speed up the computation of the Minimax SimRank variation [JW02]

from O(K|E||V |) to O(K|E′||V |) time, where |E′| (≤ |E|) is the number of edges in a

reduced graph after edge clustering, which can be typically much smaller than |E|.

Using real and synthetic data, we empirically verify that (1) our approach of partial

sums sharing outperforms the best known algorithm by up to one order of magnitude.

(2) The revised notion of SimRank further achieves a 5X speedup on large graphs while

also fairly preserving the relative order of original SimRank scores. (3) Our finer-grained

partial max memoization for the Minimax SimRank variation in bipartite domains is

0.5–1.2 orders of magnitude faster than the baselines.
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1.3.2 Incremental SimRank

Real graphs are often large, and links constantly evolve with small changes over time. It

is rather costly to reassess similarities of all pairs of nodes when the graph is updated.

Inspired by this, we next considers fast incremental computations of SimRank on link-

evolving networks.

The prior approach [LHH+10] to this issue factorizes the graph via a singular value

decomposition (SVD) first, and then incrementally maintains this factorization for link

updates at the expense of exactness. Consequently, all node-pair similarities are estimated

in O(r4n2) time on a graph of n nodes without guaranteed accuracy, where r is the target

rank of the low-rank approximation, which is not negligibly small in practice.

In Chapter 3, we propose a novel fast incremental paradigm. (1) We characterize the

SimRank update matrix ∆S, in response to every link update, via a rank-one Sylvester

matrix equation. By virtue of this, we devise a fast incremental algorithm computing

similarities of n2 node-pairs in O(Kn2) time for K iterations. (2) We also propose an

effective pruning technique capturing the “affected areas” of ∆S to skip unnecessary

computations, without loss of exactness. This can further accelerate the incremental

SimRank computation to O(K(nd + |AFF|)) time, where d is the average in-degree of

the old graph, and |AFF| (≤ n2) is the size of “affected areas” in ∆S, and in practice,

|AFF| ≪ n2.

Our empirical evaluations verify that our algorithm (a) outperforms the best known

link-update algorithm [LHH+10], and (b) runs much faster than its batch counterpart

when link updates are small.

1.3.3 Fast Penetrating-Rank

With the striking success of PageRank [Ber05] and SimRank [JW02], Penetrating-Rank

(P-Rank) [ZHS09] has been recently proposed as another effective link-based similarity

measure, since it provides a comprehensive way of encoding both incoming and outgoing

links into assessment, as opposed to SimRank that considers only incoming edges for
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relevance assessment. However, the existing P-Rank algorithm is iterative in nature and

rather expensive to compute. Besides, accuracy estimation and stability issue for P-Rank

computation have not been studied yet.

In Chapter 3, optimization techniques encompassing P-Rank accuracy, stability and

computational efficiency are investigated. (1) The accuracy estimation is provided for

P-Rank iterations, with the aim to find out the total number K of iterations required

for achieving a desired accuracy ϵ > 0. (2) A rigorous bound on the condition number

of P-Rank is obtained for stability analysis. Based on this bound, it can be shown that

P-Rank is stable and well-conditioned, providing that the damping factors are chosen to

be suitably small. (3) Two matrix-based algorithms, applicable to digraphs and undi-

rected graphs, are respectively devised for efficient P-Rank computation, which improves

the time complexity from O(K|V |3) to O(r4|V |2 + r2|V |) for digraphs, and to O(r|V |2)

for undirected graphs, with |V | being the number of vertices in a graph, and r (≪ |V |)

the rank of adjacency matrix. Both real and synthetic datasets are used for conduct-

ing extensive experiments to demonstrate the usefulness and efficiency of the proposed

techniques for P-Rank assessment on networks.

1.3.4 Incremental Random Walk with Restart

Random Walk with Restart (RWR) is a PageRank-like object proximity model proposed

by Tong and Faloutsos [TFP06]. The existing RWR model utilized a SVD method to

measure object-to-object proximity in a static graph. We noticed that in practice, while

edges in a graph often arrive over time, it is often cost-inhibitive to recompute proximities

from scratch via batch algorithms when the graph is updated. This highlights the need

for incremental algorithms to compute changes to the proximities in response to updates,

to avoid unnecessary recomputation.

Motivated by this, in Chapter 4, we propose a fast exact incremental RWR search

model over graph streams, whose edges often change over time. The most efficient method

for measuring RWR proximity [FNOK12] deploys k-dash to find top-k highest proximity
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nodes for a given query, which involves a strategy to incrementally estimate upper prox-

imity bounds. However, due to its aim to prune needless calculation, such an incremental

strategy is approximate: in O(1) time for each node. Our main contribution for RWR is

to devise an exact and fast incremental algorithm for edge updates. Our solution, IRWR,

can incrementally compute any node proximity in O(1) time for each edge update with-

out loss of exactness. The empirical evaluations show the high efficiency and exactness of

IRWR for computing proximities on dynamic networks against its batch counterparts by

up to one order of magnitude. The proposed framework for assessing RWR proximities

also can readily be extended to Google Personalized PageRank.

1.3.5 Fast and Incremental SimFusion

SimFusion is a very popular relevance model proposed in [XFF+05]. It has become a

captivating measure of similarity between objects in a web graph. The basic concept

behind SimFusion is iteratively distilled from the notion that “the similarity between two

objects is reinforced by the similarity of their related objects”. The existing SimFusion

model [XFF+05] often leverages the Unified Relationship Matrix (URM) to represent

latent relationships among heterogeneous data, and adopts an iterative paradigm for

SimFusion computation. However, due to the row normalization of URM, we noticed

that the traditional SimFusion model may produce the trivial solution, and worse still,

the iterative computation of SimFusion sometimes cannot ensure the global convergence

of the solution.

In Chapter 5, we propose a full treatment of SimFusion model from complexity to

algorithms, aiming to support fast SimFusion search on large networks and (dynamic)

graph streams. To be specific, (1) we propose SimFusion+ based on a notion of the Uni-

fied Adjacency Matrix (UAM), a modification of the URM, to prevent the trivial solution

and the divergence issue of SimFusion. (2) We show that for any vertex-pair, SimFusion+

can be performed in O(1) time and O(|V |) space with an O(K|E|)-time precomputation

done only once, as opposed to the O(K|V |3) time and O(|V |2) space of its traditional
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counterpart on a graph G = (V,E) for K iterations. (3) We also devise an incremen-

tal algorithm for further improving the computation of SimFusion+ when networks are

dynamically updated, with performance guarantees for similarity estimation.

The experimental results on real and synthetic datasets (1) verified the scalability of

the proposed SimFusion+ model, and (2) demonstrated that the proposed SimFusion+

model not only can converge to a non-trivial solution, but also allows us to identify more

sensible structure information in large real-world networks.

1.3.6 Semantics Enrichment

Similarity semantics is an importance property in relevance assessment. Most recently,

despite its popularity of SimRank [JW02], we observe that SimRank has an undesirable

property, i.e., “zero-similarity”: It only accommodates paths with equal length from a

common “center” node. Thus, a large portion of other paths are fully ignored. Similarly,

RWR [TFP06] also implies a SimRank-like “zero-proximity” problem.

In Chapter 6, we attempt to remedy such issues. (1) We propose and rigorously jus-

tify SimRank*, a revised version of SimRank, which resolves such counter-intuitive “zero-

similarity” problems while inheriting merits of the basic philosophy of SimRank. (2) We

show that the series form of SimRank* can be reduced to a fairly succinct and elegant

closed form, which looks even simpler than SimRank, yet enriches semantics without suf-

fering from increased computational cost. This leads to a fixed-point iterative paradigm

of SimRank* in O(K|V ||E|) time on a network G = (V,E) for K iterations, which is

comparable to SimRank. (3) To further optimize SimRank* computation, we leverage a

novel clustering strategy via edge concentration. Due to its NP-hardness, we devise an

efficient and effective heuristic to speed up SimRank* computation to O(K|V ||Ẽ|) time,

where |Ẽ| is generally much smaller than |E|.

The experimental evaluations, along with theoretical proofs, show that (1) SimRank*

has richer semantics on real-life graphs than SimRank and RWR. This demonstrates the

semantic completeness of SimRank* for similarity assessment. (2) SimRank* has higher
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computational efficiency. The speedup of SimRank* on real datasets can be 5X-10X

faster than SimRank and RWR.

1.4 Related Work

In this section, we briefly overview prior work in relevance assessment and related areas.

Detailed comparison of previous work with specific techniques developed in this thesis

will appear in the relevant chapters.

Link-based Relevance. The study of link-based relevance assessment has a long

history, dating back to a series of initial papers from the early 1960’s, e.g., co-citation

analysis [Sma73,Col74], bibliographic coupling [Kes63a,Kes63b,Kes63c], Amsler measure

[Ams72], author co-citation analysis (ACA) [WG81,Eom96,McC90], co-citation proxim-

ity analysis (CPA) [GB09,Gip10], and a great deal of follow-on work, Google PageRank

[Ber05,Hav03,LM03], Hyperlink-Induced Topic Search (HITS) [Kle99], SimRank [FR05,

HLC+12,JW02,LLY12,LHH+10,LLY+10,LVGT10], RWR [TFP06,TFP08,TKF09], Sim-

Rank++ [AMC08], SimFusion [XFF+05], P-Rank [ZHS09] and others. Many of these

previous works, especially earlier papers, focus on theoretical foundations, and not on

practical considerations such as efficient relevance assessment on large networks, and in-

cremental updates on dynamic networks, which are the important subjects of this thesis.

SimRank. SimRank is arguably one of the most successful link-based similarity mea-

sures in recent years. It was initially proposed by Jeh and Widom [JW02], who adopted

an iterative paradigm to compute SimRank scores of all-pairs. Since then, there has

been a surge of papers looking at various problems in efficient SimRank computing as

the naive algorithm [JW02] has high time complexity. Recent results include matrix-

based methods [FNSO13, LHH+10], iterative optimization [LVGT10, ZZF+13], random

walk sampling [FR04, FR05, LLY12], and parallel computing [HFLC10,HLC+12]. This

thesis makes a further step towards this goal by devising novel fast optimization tech-

niques for SimRank assessment on large and dynamic networks.
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RWR. RWR is another popular measure of node-to-node proximity, which is first pro-

posed by Tong et al. [TFP06]. Recently, it has a board range of emerging applications,

such as automatic image captioning [KSJ09], recommendation system [PYFD04,TJ13],

and social networks [SBC+10, LNK03]. In addition, several other measures build upon

RWR, including Personalized PageRank [Hav03], ObjectRank [HHP06], Escape Prob-

ability [TKF09], and PathSim [SHY+11]. The straightforward approach [TFP06] for

computing RWR implies a matrix inversion, which is rather expensive. Recent years

have witnessed growing interests in developing novel techniques to speed up RWR assess-

ment, (e.g., [FNOK12,TFP08,TKF09,SHY+11,YMS14]). While previous works mainly

focus on static networks, this thesis proposes efficient incremental techniques for RWR

assessment on dynamic networks.

Other Work. There has also been a large body of work for various relevance measures

to serve different assessment purposes.

Personalized PageRank (PPR) [Hav03] is one of the most well-known proximity

measure for ranking the importance of web pages. It is almost the same as PageR-

ank [Ber05], except that all the random jumps are done back to the same node (not

random nodes), called the “source” or “seed” node, for which we are personalizing the

PageRank. Over the last decade, there are many algorithms designed to assess PPR val-

ues in different computational models, including power iteration [Hav03], approximation

methods [ZFCY13,PCD+08,SBC+06], MapReduce [BCX11], and top-k search [FNS+13].

Recently, SimFusion [XFF+05] and P-Rank [ZHS09] are two appealing relevance as-

sessment models. SimFusion is a PageRank-like relevance measure based on similarity

reinforcement assumption that “the similarity between two data objects is reinforced by

the similarity of their related objects from homogenous and heterogeneous data spaces”.

P-Rank [ZHS09] is a SimRank-like measure by jointly taking account of both in- and

out-links for relevance assessment. The relationship between SimFusion and P-Rank was

shown in [CZDC10]. Other graph relevance measure [BGH+04], role similarity [JLH11],

and network clustering metric [ZCY09] are variants of SimRank and PageRank.



Chapter 2

Fast SimRank on Large Networks

and Bipartite Domains

2.1 Introduction

Identifying similar objects based on link structure is a fundamental operation for many

web mining tasks. Examples include web page ranking [Ber05], hypertext classification

(KNN) [LLY12], graph clustering (K-means) [BC08b], and collaborative filtering [JW02].

In the last decade, with the overwhelming number of objects on the Web, there is a

growing need to be able to automatically and efficiently assess their similarities on large

graphs. Indeed, the Web has huge dimensions and continues to grow rapidly — more than

5% of new objects are created weekly [CR04]. As a result, similarity assessment on web

objects tends to be obsolete so quickly. Thus, it is imperative to get a fast computational

speed for similarity assessment on large graphs.

Amid the existing similarity metrics, SimRank [JW02] has emerged as a powerful

tool for assessing structural similarities between two objects. Similar to the well-known

PageRank [Ber05], SimRank scores depend merely on theWeb link structure, independent

of the textual content of objects. The major difference between the two models is the

scoring mechanism. PageRank assigns an authority weight for each object, whereas

15
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SimRank assigns a similarity score between two objects. SimRank was first proposed by

Jeh and Widom [JW02], and has gained increasing popularity for its success in many

areas such as bibliometrics [LHH+10], top-K search [LLY12], and recommender systems

[AMC08]. The intuition behind SimRank is a subtle recursion that “two vertices are

similar if their incoming neighbors are similar”, together with the base case that “each

vertex is most similar to itself” [JW02]. Due to this self-referentiality, conventional

algorithms for computing SimRank have an iterative nature. The sheer size of the Web

has presented striking challenges to fast SimRank computing. The best known algorithm

proposed by Lizorkin et al. [LVGT10] (hereafter referred to as psum-SR) requires O(Kmn)

time (O(Kn3) in the worst case) for K iterations, where n and m denote the number of

vertices and edges, respectively, in a graph.

The beauty of psum-SR algorithm [LVGT10] resides in the following three obser-

vations. (1) Essential nodes selection may eliminate the computation of a fraction of

node pairs with a-priori zero scores. (2) Partial sums memoizing can effectively reduce

repeated calculations of the similarity among different node pairs by caching part of sim-

ilarity summations for later reuse. (3) A threshold setting on the similarity enables a

further reduction in the number of node pairs to be computed. Particularly, the second

observation of partial sums memoizing plays a paramount role in greatly speeding up the

computation of SimRank from the naive O(Kd2n2) [JW02] to O(Kdn2), 1 where d is the

number of average in-degrees in a graph.

In this chapter, we make a further step towards this goal, by proposing efficient

methods for accelerating SimRank assessment on large networks and bipartite domains.

2.1.1 Motivation

Before shedding light on the blemish of psum-SR [LVGT10], let us first revisit the central

idea of partial sums memoizing in Example 2.1, motivating our need to develop more

efficient techniques for SimRank assessment.

1As n · d = m, O(Kmn) time in [LVGT10] is equivalent to O(Kdn2).
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Figure 2.1: Merits and demerits of partial sums memoization for SimRank assessment on
a paper citation network

Example 2.1. Consider a paper citation network G in Figure 2.1a, where each vertex

represents a paper, and an edge a citation. For any vertex a, we denote by I(a) the

set of in-neighbors of a. Individual element in I(a) is denoted as Ii(a). Let s(a, b) be

the SimRank similarity between vertices a and b. In what follows, we want to compute

s(a, b) and s(a, d) in G.

Before partial sums memoizing is introduced, a naive way is to sum up the similar-

ities of all in-neighbors (Ii(a), Ij(b)) of (a, b) for computing s(a, b), and to sum up the

similarities of all in-neighbors (Ii(a), Ij(d)) of (a, d) for computing s(a, d), independently,

as depicted in Figure 2.1b. In contrast, psum-SR is based on the observation that I(b)
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and I(d) have three vertices {e, f, i} in common. Thus, the three partial sums over

I(a) (i.e., PartialskI(a)(y)
2 with y ∈ {e, f, i}) can be computed only once, and reused

for both s(a, b) and s(a, d) computation (see left part of Figure 2.1c). Similarly, for

computing s(c, b) and s(c, d), since I(b) ∩ I(d) = {e, f, i}, the partial sums over I(c)

(i.e., PartialskI(c)(x) with x ∈ {e, f, i}) can be cached for later reuse (see right part of

Figure 2.1c).

Despite the aforementioned merits of psum-SR, the existing work [LVGT10] on Sim-

Rank has the following limitations.

Firstly, we observe from Example 2.1 that computing partial sums [LVGT10] over

different in-neighbor sets may have duplicate redundancy. For instance, I(a) and I(c)

in Figure 2.1c have two vertices {b, g} in common, implying that the sub-summation

Partialsk{b,g}(⋆) is the common part shared between the partial sums PartialskI(a)(⋆) and

PartialskI(c)(⋆). Thus, there is an opportunity to speed up the computation of SimRank

by preprocessing the common sub-summation Partialsk{b,g}(⋆) once, and caching it for

both PartialskI(a)(⋆) and PartialskI(c)(⋆) computation. However, it is a big challenge to

identify the well-tailored common parts for maximal sharing among the partial sums over

different in-neighbor sets since there could be many irregularly and arbitrarily overlapped

in-neighbor sets in a real graph. To address this issue, we propose optimization techniques

to have such common parts memoized in a hierarchical clustering manner, and devise an

efficient algorithm to eliminate such redundancy.

Secondly, the existing iterative paradigm [LVGT10] for computing SimRank has a

geometric rate of convergence, which might be, in practice, rather slow when a high

accuracy is attained. This is especially evident in e.g., citation networks and web graphs

[KNT06]. For instance, our experiments on DBLP citation network shows that a desired

accuracy of ϵ = 0.001 may lead to more than 30 iterations of SimRank, for the damping

2Recall from [LVGT10] that a partial sum for a binary function f : X × Y → R over a set D =
{x1, · · · , xn} ⊆ X , denoted by PartialfD(⋆), is defined as

PartialfD(y) =
∑
xi∈D

f(xi, y), (y ∈ Y).



Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 19

factor C = 0.8. Lizorkin et al. has proved theoretically in [LVGT10] that, for a desired

accuracy ϵ, the number of iterations required for the conventional SimRank is K =

⌈logC ϵ⌉, which is mainly due to the geometric sum of the traditional representation

of SimRank. This highlights the need for a revised SimRank model to speed up the

geometric rate of convergence.

Moreover, for bipartite domains, a variant model of SimRank proposed by Jeh and

Widom in [JW02, Section 4.3.2], called the Minimax Variation SimRank, may also have

duplicate computational efforts in computing the partial max over every out-neighbor

set for all vertex-pair similarities. However, we observe that the choices of granularity for

partial max memoization is different from those for partial sums memoization. This is

because, in the context of partial sums sharing, “subtraction” is allowed to compute one

partial sum from another, whereas, in the context of partial max sharing, “subtraction”

is disallowed. We will provide a detailed discussion in Section 2.5.

2.1.2 Chapter Outlines

In this chapter, our main contributions are summarized as follow.

• We propose an adaptive clustering strategy based on a minimum spanning tree to

eliminate duplicate computations in partial sums [LVGT10] in a hierarchical fashion

(Section 2.3). By optimizing the sub-summations sharing among different partial

sums, an efficient algorithm is devised for speeding up the computation of SimRank

from O(Kdn2) [LVGT10] to O(Kd′n2) time, where d′ (≤ d) can, in general, be much

smaller than the average in-degree d.

• We introduce a new notion of SimRank by using a matrix differential equation to

further accelerate the convergence of SimRank iterations from the original geomet-

ric to exponential rate (Section 2.4). We show that the new notion of SimRank

can be characterized as an exponential sum in terms of the transition matrix while

fairly preserving the relative order of SimRank, as opposed to the conventional
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counterpart [LVGT10] as a geometric sum. We also devise a space-efficient itera-

tive paradigm for computing the differential SimRank matrix equation, which can

integrate our previous techniques of sub-summations sharing without sacrificing

extra memory space.

• We investigate the partial max sharing problem for speeding up the computation

of the Minimax SimRank variation in bipartite graphs, a variant model proposed

in [JW02, Section 4.3.2]. We show that the partial max sharing problem is different

from the partial sums sharing problem, due to “subtraction” curse in the context

of max operator. To resolve this issue, we devise a novel finer-grained partial max

clustering strategy via edge concentration, improving the computation of Minimax

SimRank variation from O(Kmn) to O(Km′n) time, wherem′ (≤ m) is the number

of edges in a reduced graph after edge clustering, which is practically smaller than

m (Section 2.5).

• We conduct extensive experiments on real and synthetic datasets (Section 2.6),

demonstrating that (1) our approach of partial sum sharing on large graphs can

be one order of magnitude faster than psum-SR; (2) our revised notion of SimRank

achieves up to a 5X further speedup against the conventional counterpart; and (3)

for the Minimax SimRank variation in bipartite domains, our finer-grained partial

max sharing method outperforms the baselines by 0.5–1.2 orders of magnitude in

computational time.

2.2 Preliminaries

We revisit the two forms of SimRank, To our knowledge, there are two representations of

SimRank, i.e., the iterative form [JW02,LVGT10], and matrix form [LHH+10,HFLC10].

The consistency of two forms was pointed out in [LHH+10].
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2.2.1 Iterative Form

Recall from Definition 1.7 of SimRank in Chapter 1. The SimRank formula (1.1) naturally

leads to the following iterative method [JW02]:

Start with s0(a, b) =
{

1, a=b;
0, a̸=b. , and for k = 0, 1, · · · , set

(i) sk+1(a, a) = 1;

(ii) sk+1(a, b) = 0, if I (a) = ∅ or I (b) = ∅;

(iii) otherwise,

sk+1(a, b) =
C

|I(a)||I(b)|
∑

j∈I(b)

∑
i∈I(a)

sk(i, j). (2.1)

The resultant sequence {sk(a, b)}∞k=0 converges to s(a, b), the exact solution of Eq.(1.1).

2.2.2 Matrix Form

In matrix notations [LHH+10], SimRank can be formulated as

S = C · (Q · S ·QT ) + (1− C) · In, (2.2)

where S is the similarity matrix whose entry [S]a,b is the similarity score s(a, b), Q is the

backward transition matrix whose entry [Q]a,b = 1
|I(a)| if there is an edge from b to a,

and 0 otherwise, and In is an n× n identity matrix.

2.3 Eliminating Partial Sums Duplicate Computations

The existing method, psum-SR [LVGT10], of performing Eq.(2.1) is to memoize the partial

sums over I(a) first:

PartialskI(a)(j) =
∑

i∈I(a)

sk(i, j), (∀j ∈ I(b)) (2.3)

and then iteratively compute sk+1(a, b) as follows:

sk+1(a, b) =
C

|I(a)||I(b)|
∑

j∈I(b)

PartialskI(a)(j). (2.4)
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Consequently, the results of PartialskI(a)(j), ∀j ∈ I(b), can be reused later when we

compute the similarities sk+1(a, ⋆) for a given vertex a as the first argument. How-

ever, we observe that the partial sums over different in-neighbor sets may share com-

mon sub-summations. For example in Figure 2.1c, the partial sums PartialskI(a)(⋆) and

PartialskI(c)(⋆) have the sub-summation Partialsk{b,g}(⋆) in common. By virtue of this, we

next show how to optimize sub-summations sharing among different partial sums.

2.3.1 Partition In-neighbor Sets for Inner Partial Sums Sharing

We first introduce the notion of a set partition.

Definition 2.2. A partition of a set D, denoted by P(D), is a family of disjoint subsets

Di of D whose union is D:

P(D) = {D1,D2, · · · ,Dp}, with p = |P(D)|,

where Di ∩ Dj = ∅ for i ̸= j, and
∪p

i=1Di = D.

For instance, P(I(b)) = {{f, g}, {e, i}} is a partition of the in-neighbor set I(b) =

{f, g, e, i} in Figure 2.1a.

The set partition is deployed for speeding up SimRank computation, based on the

proposition below.

Proposition 2.3. For two distinct vertices a and b with I(a) ̸= ∅ and I(b) ̸= ∅,

sk+1(a, b) can be iteratively computed as

sk+1(a, b) =
C

|I(a)||I(b)|
∑

j∈I(b)

∑
∆∈P(I(a))

Partialsk∆ (j). (2.5)

Here, Partialsk∆ (j) is defined as Eq.(2.3) with I(a) replaced by ∆.

Sketch of Proof. The proof follows immediately from the following two facts:

(i) For two disjoint sets A and B, PartialskA (j) + PartialskB (j) = PartialskA∪B(j), ∀j.

(ii)
∪

∆∈P(I(a)) = I(a), ∀a ∈ V .
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The main idea in our approach is to share the common sub-summations among differ-

ent partial sums, by precomputing the sub-summations Partialsk∆ (⋆) over ∆ ∈P(I(a))

once, and caching them in a block fashion for later reuse, which can effectively avoid

repeating duplicate sub-summations. As an example in Figure 2.1c, when I(c) is parti-

tioned as P(I(c)) = {I(a), {d}} with I(a) = {b, g}, once computed, the sub-summations

PartialskI(a)(⋆) can be memoized and reused for computing PartialskI(c)(⋆). In contrast, the

existing method psum-SR [LVGT10] has to start from scratch to compute PartialskI(a)(⋆)

and PartialskI(c)(⋆), independently, which is due to no reuse of common sub-summations.

The selection of a partition P(I(a)) for an in-neighbor set I(a) has a great impact

on the performance of our approach. Troubles could be expected when a selected par-

tition P(I(a)) is too coarse or too fine. For instance, if I(a) is taken to be a trivial

partition of itself, i.e., P(I(a)) = {I(a)} for every vertex a, Eq.(2.5) can be simplified

to the conventional psum-SR iteration in Eq.(2.4). From this perspective, our approach

is a generalization of psum-SR. On the other hand, if the partitions of I(a) become finer

(i.e., the size of ∆ ∈P(I(a)) becomes smaller), there is a more likelihood of Partialsk∆ (⋆)

with a high density of common sub-summations, but with a low cardinality on the simi-

larity values to be clustered. An extreme example would be a discrete partition of I(a),

i.e., P(I(a)) = {{x}|x ∈ I(a)}, where every block is a singleton vertex. In such a case,

Eq.(2.5) would deteriorate to the naive iteration [JW02] in Eq.(2.1), which may be even

worse than psum-SR. Thus, it is desirable to find the best partition P(I(a)) for each

I(a) that has the largest and densest clumps of common vertices.

The problem of finding such optimal partitions to minimize the total cost of partial

sums over different in-neighbor sets, referred to as Optimal In-neighbors Partitioning and

denoted as OIP, can be formulated as follows:

Given a graph G = (V, E), OIP is to find the optimal partition P(I(a)) = {∆i
a | i =

1, · · · , |P(I(a))|} of each in-neighbor set I(a), a ∈ V, for creating chunks ∆i
a such that

the total number of additions required for computing all the partial sums PartialskI(a)(⋆)

over every in-neighbor set I(a), a ∈ V, is minimized by reusing the sub-summation results
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Partialsk
∆i

a
(⋆) over chunks ∆i

a.

Proposition 2.4. The OIP problem is NP-hard.

Proof. We verify this by reducing the NP-complete Ensemble Computation (EC) problem

[GJ79, p.66] to a special case of the decision problem of OIP.

The EC problem is defined as follows: Given a collection C of subsets of a finite set A

and a positive integer J , EC is to decide whether there is a sequence (z1 = x1∪y1, · · · , zj =

xj ∪ yj) of j ≤ J union operations, where each xi and yi is either {a} for some a ∈ A or

zp for some p < i, such that xi and yi are disjoint for 1 ≤ i ≤ j and such that for every

subset C ∈ C there is some zi, 1 ≤ i ≤ j, that is identical to C.

For each instance of EC, we construct the corresponding instance of the OIP decision

problem by setting A = {sk(a, ⋆) | a ∈ V}, C = {PartialskI(a)(⋆) | a ∈ V}, and an

integer J to be the maximum number of required additions. Clearly, by converting union

operations (∪) of EC into additions (+), it follows that the OIP decision problem has a

solution, i.e., ∃ a sequence (z1 = x1+y1, · · · , zj = xj+yj) of j ≤ J additions, if and only

if there exists a sequence (z1 = x1 ∪ y1, · · · , zj = xj ∪ yj) of j ≤ J union operations for

EC. Thus, the NP-completeness of the OIP decision problem follows immediately from

the NP-completeness of EC.

Also, the decision problem of OIP can be naturally converted into its corresponding

optimization problem by imposing a bound on the number of additions to be optimized,

namely, turning “whether there exists such a solution that can be done in fewer than

J additions” into “minimize the number of additions”. Hence, the OIP optimization

problem is NP-hard due to the NP-completeness of its decision problem.

We next seek for a good heuristic method for OIP.

The basic idea is as follows. Consider a directed graph G = (V, E). For every two

in-neighbor sets I(a) and I(b) of vertices a, b ∈ V, we first calculate the transition cost
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from I(a) to I(b), denoted by T CI(a)→I(b), as follows:
3

T CI(a)→I(b) , min{|I(a)⊖ I(b)|, |I(b)| − 1}, (2.6)

where ⊖ is the symmetric difference of two sets. 4 Thus, the value of T CI(a)→I(b) is

actually the number of additions required to compute the partial sum PartialskI(b)(⋆),

given the partial sum PartialskI(a)(⋆). Then, we construct a weighted digraph G = (V ,E )

whose vertices correspond to the non-empty in-neighbor sets of G, with an extra vertex

corresponding to an empty set ∅, i.e., V = {I(a) | a ∈ V} ∪ {∅}. There is an edge

from I(a) to I(b) in G if |I(a)| ≤ |I(b)|. The weight of an edge (I(a), I(b)) ∈ E

represents the transition cost T CI(a)→I(b). Finally, we find a minimum spanning tree

of G , denoted by T , whose total transition cost is minimum. Henceforth, every edge

(I(a), I(b)) in T implies the following: (i) PartialskI(a)(⋆) should be computed prior to

PartialskI(b)(⋆) computation, which provides an optimized topological sort for efficiently

computing all the partial sums. (ii) I(b) needs to be partitioned as I(b) ∩ I(a) and

I(b)\I(a), meaning that the result of PartialskI(a)(⋆) can be cached and shared with

PartialskI(b)(⋆) computation.

The following example depicts how this idea works.

Example 2.5. Consider the network G in Figure 2.1a, with the vertices and the corre-

sponding non-empty in-neighbor sets depicted in Figure 2.2a. We show how to find a

decent ordering for partial sums computing and sharing in G.

Firstly, we compute the transition cost of each pair of in-neighbor sets (along with

an empty set ∅) in G, by using Eq.(2.6). The results are shown in Figure 2.2b, where

each cell describes the transition cost from the in-neighbor set in the left most column

3Without loss of generality, only in the case of |I(a)| ≤ |I(b)|, we need to compute T CI(a)→I(b). This is
because we are interested only in the cost of computing Partial

sk
I(b)(⋆) by using the given Partial

sk
I(a)(⋆).

Conversely, if utilizing the result of PartialskI(b)(⋆) to compute PartialskI(a)(⋆), for |I(a)| ≤ |I(b)|, then we
have to introduce the “subtraction” to undo the summation that we have already done, which is often
an extra operation.

4The symmetric difference of two sets A and B, denoted by A⊖ B, is the set of all elements of A or
B which are not in both A and B. Symbolically,

A⊖ B = (A\B) ∪ (B\A).

As an example in Fig 2.1c, given I(b) = {g, e, f, i} and I(d) = {e, f, i, a}, we have I(b)⊖ I(d) = {g, a}.
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vertex I(⋆)
a {b, g}
e {f, g}
h {b, d}
c {b, d, g}
b {f, g, e, i}
d {f, a, e, i}

(a) In-neighbors in G

I(a) I(e) I(h) I(c) I(b) I(d)
∅ 1 1 1 2 3 3

I(a) 1 1 1# 3 3

I(e) 1 2 2# 3

I(h) 1# 3 3

I(c) 3 3

I(b) 2#

(b) Transition Costs (Edge Weights) in G
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(d) Topological Sort

Figure 2.2: Constructing a minimum spanning tree T to find an optimized topological
sort for partial sums sharing

to the in-neighbor set in the top line. For instance, the cell ‘2#’ at row ‘I(e)’ column

‘I(b)’ shows that T CI(e)→I(b) = 2. This cell is tagged with #, indicating that the partial

sum PartialskI(b)(⋆) can be computed from the memoized result of PartialskI(e)(⋆) (rather

than from scratch). This is because the transition cost 2 is, in essence, obtained from

the 2 operations of symmetric difference (i.e., |I(e)⊖I(b)| = |{e, i}| = 2) in lieu of the 3

additions (i.e., |I(b)| − 1 = 3) w.r.t. Eq.(2.6). Note that the lower triangular part of the

table in Figure 2.2b remains empty since we are interested only in the cost T CI(x)→I(y)

when |I(x)| ≤ |I(y)|.

Next, we build a weighted digraph G in Figure 2.2c, with vertices corresponding to

the non-empty in-neighbor sets (plus ∅) of G (which are in column ‘I(⋆)’ of Figure 2.2a),

and edge weights to the transition costs. For instance, the weight of the edge (I(e), I(b))
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in G is associated with the cell ‘2#’ at row ‘I(e)’ column ‘I(b)’ in Figure 2.2b. Thus,

every path in G yields a linear ordering of partial sums computation. More importantly,

partial sums sharing may occur in the edges tagged with #. As an example, the path

∅ 1−→ I(e) 2#−−→ I(b) in G shows that (i) PartialskI(e)(⋆) is computed from scratch (from ∅)

with 1 operation, and (ii) PartialskI(b)(⋆) is obtained by reusing the result of PartialskI(e)(⋆),

involving 2 operations.

Finally, we find a directed minimum spanning tree T of G , by starting from the

vertex ∅, and choosing the cheapest path for partial sums computing and sharing, as

depicted in bold edges in Figure 2.2c. Consequently, using depth-first search (DFS), we

can obtain 3 paths from T for partial sums optimization, as shown in Figure 2.2d.

Using this idea, we can identify the moderate partitions of each in-neighbor set in G,

with large and dense chunks for sub-summations sharing. Such partitions are not optimal,

but can, in practice, achieve better performances than psum-SR. Proposition 2.6 shows

the correctness.

Proposition 2.6. Given two distinct non-empty in-neighbor sets I(a) and I(b), and a

partial sum PartialskI(a)(⋆), if |I(a)⊖ I(b)| < |I(b)| − 1, then we have the following:

(i) I(b) can be partitioned as

I(b) = (I(b) ∩ I(a)) ∪ (I(b)\I(a)). (2.7)

(ii) The partial sum PartialskI(b)(⋆) can be computed from the cached result of PartialskI(a)(⋆)

as follows:

PartialskI(b)(y) = PartialskI(a)(y)−
∑

x∈I(a)\I(b)

sk(x, y)

+
∑

x∈I(b)\I(a)

sk(x, y), (y ∈ V) (2.8)

with |I(a)⊖ I(b)| operations being performed.

Sketch of Proof. The proof of Eq.(2.7) is trivial, whereas the proof of Eq.(2.8) is based

on two facts :
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P(⋆)

I(a) {{b, g}}

I(e) {{f, g}}

I(h) {{b, d}}

I(c) {I(a), {d}}

I(b) {I(e), {e, i}}

I(d) {I(b)\{g}, {a}}
(a) Partitions of I(⋆) in G

d

b

g

f

i

e

a

+

+

+

+

+

−

+

+

I(c) = {b, d, g}

I(h) = {b, d}

I(a) = {b, g}

I(d) = {f, a, i, e}

I(e) = {f, g}

I(b) = {f, g, i, e}

(b) Hierarchical Clustering

Figure 2.3: In-neighbor sets partitioning dendrogram

(i) B = (A\(A\B)) ∪ (B\A) ;

(ii) PartialskA\B(j) = PartialskA (j)− PartialskB∩A(j), ∀j.

In the sequel, we give an illustrative example to show how to find all the partitions

of in-neighbor sets for partial sums sharing via Proposition 2.6.

Example 2.7 (Find all the partitions of in-neighbor sets for partial sums sharing).

Recall the network G in Figure 2.1a, along with the optimized ordering of partial sums

in Figure 2.2d. We show how to identify the partition of each in-neighbor set in G for

partial sums sharing. For instance, consider the path ∅ 1−→ I(a) 1#−−→ I(c) in Figure 2.2d.

We have the following.

(i) The first edge ∅ 1−→ I(a) implies that PartialskI(a)(⋆) need to be computed from

scratch since the starting point of this edge is ∅. Thus, I(a) has only one partition of

itself.

(ii) The second edge I(a) 1#−−→ I(c) suggests that I(c) can be partitioned, by using

Eq.(2.7), as

I(c) = (I(c) ∩ I(a)) ∪ (I(c)\I(a)) = I(a) ∪ {d}.

Hence, PartialskI(c)(⋆) can be obtained from the memoized result of PartialskI(a)(⋆) via
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Eq.(2.8) as follows:

PartialskI(c)(x) = PartialskI(a)(x) + sk(d, x). (x ∈ V)

We repeat these steps for the rest of two paths in Figure 2.2d. Finally, we get all the

partitions of in-neighbor sets in G, as shown in Figure 2.3a. Accordingly, the resultant

accumulation of reusable partial sums is visualized in Figure 2.3b, in which a letter

with a box denotes a vertex, and a symbol with a circle an operator. For example,

‘ d ⊕ b · · · I(h)’ means that sk(d, ⋆) and sk(b, ⋆) are added to yield PartialskI(h)(⋆).

2.3.2 Use In-neighbor Set Partitions for Outer Sums Sharing

After the partitions of in-neighbor sets have been identified for (inner) partial sums

sharing, optimization approaches in this subsection allow outer partial sums sharing for

further speeding up the computation of SimRank.

To avoid ambiguity, we refer to the sums w.r.t. the index i in Eq.(2.3) as (inner)

partial sums, and the sums w.r.t. the index j in Eq.(2.4) as outer partial sums.

Our key observation is as follows. Recall from Eq.(2.4) that, given the memoized

results of partial sums PartialskI(a)(⋆), the existing algorithm psum-SR for computing

sk(a, b) is to sum up PartialskI(a)(y), one by one, over all y ∈ I(b). Such a process can be

pictorially depicted in the left part of Figure 2.1c, in which each horizontal bar represents

a partial sum over I(a). In order to compute s(a, b), we need to add up the horizontal bars

(i.e., the partial sums) in the first four rows. However, while computing s(a, c) by adding

up the horizontal bars in the last four rows, we observe that the three horizontal bars at

rows ‘e’,‘f ’,‘i’ may suffer from repetitive additions. As another example in the right part

of Figure 2.1c, for computing s(b, c) and s(d, c), the sum of the three horizontal bars at

rows ‘e’,‘f ’,‘i’ is again a repeated operation. As such, the major problem of Eq.(2.4) is

the one-by-one fashion in which the partial sums PartialskI(a)(y) for y ∈ I(b) are added

together.

Our main idea in optimizing Eq.(2.4) is to split I(b) into several chunks ∆i
b first, such
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that

P(I(b)) = {∆i
b | i = 1, · · · , |P(I(b))|},

and then add up the cached results of partial sums in a chunk-by-chunk fashion to

compute sk+1(a, b) as

sk+1(a, b) =
C

|I(a)||I(b)|
∑

∆i
b∈P(I(b))

OuterPartial
I(a),sk
∆i

b

(2.9)

with

OuterPartial
I(a),sk
∆i

b

,
∑
j∈∆i

b

PartialskI(a)(j).

In contrast with Eq.(2.4), our method in Eq.(2.9) can eliminate the redundancy among

different outer partial sums. Once computed, the outer partial sum OuterPartial
I(a),sk
∆i

b

is memoized and can be reused later without recalculation again. As an example in

Figure 2.1c, suppose I(b) and I(d) are split into

I(b) = {g} ∪ {e, f, i}, I(d) = {e, f, i} ∪ {a},

the outer partial sum OuterPartial
I(a),sk
{e,f,i} is computed only once and can be reused in

both sk+1(a, b) and sk+1(a, d) computation.

The problem of finding an ideal partition P(I(b)) of I(b) for maximal sharing outer

partial sums is still NP-hard, and its proof is the same as that of OIP in Proposition 2.4.

Thus, the partitioning techniques for (inner) partial sums sharing in Subsection 2.3.1 can

be applied in a similar way to optimize outer partial sums sharing. In other words, the

partitions of in-neighbor sets in Eq.(2.7) for (inner) partial sums sharing, once identi-

fied, can be reused later for outer partial sums sharing. The correctness is verified in

Proposition 2.8.

Proposition 2.8. Given two non-empty in-neighbor sets I(b) and I(d), an outer par-

tial sum OuterPartial
I(a),sk
I(b) , and (inner) partial sums PartialskI(a)(⋆), if |I(b)⊖ I(d)| <

|I(d)| − 1, then we have the following:
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vertex PartialskI(x)(y) OuterPartial
I(x),sk
I(z) sk+1(x, z)

x y = b y = g y = d z = a z = c z = a z = c

a 1 1 0.11 2 2.11 1 0.21

e 0 1 0 1 1 0.15 0.1

h 1.11 0 1.11 1.11 2.22 0.17 0.22

c 1.11 1 1.11 2.11 3.22 0.21 1

b 0.15 1 0.08 1.15 1.23 0.09 0.06

d 0.23 0 0.08 0.23 0.31 0.02 0.02

Figure 2.4: Computing sk+1(x, a) and sk+1(x, c), ∀x ∈ V, by using outer sums sharing
(k = 2 and C = 0.6)

(i)OuterPartial
I(a),sk
I(d) can be computed from the memoized results ofOuterPartial

I(a),sk
I(b) ,

∀a ∈ V , as follows:

OuterPartial
I(a),sk
I(d) = OuterPartial

I(a),sk
I(b) −

−
∑

x∈I(b)\I(d)

PartialskI(a)(x) +
∑

x∈I(d)\I(b)

PartialskI(a)(x), ∀a ∈ V

with |I(b)⊖ I(d)| operations being performed.

(ii) sk+1(a, d), ∀a ∈ V\{d}, can be computed as

sk+1(a, d) =
C

|I(a)||I(d)|
OuterPartial

I(a),sk
I(d) , ∀a ∈ V\{d}. (2.10)

(The proof is similar to Proposition 2.6. We omit it here.)

We next provide an example to illustrate how to use outer partial sums sharing for

further speeding up the computation of SimRank.

Example 2.9 (Use outer partial sums sharing for speeding up SimRank computation).

Recall the graph G in Figure 2.1a, with the (inner) partial sums sharing dendrogram in

Figure 2.3b. Suppose PartialskI(x)(⋆), ∀x ∈ V, have been pre-computed via Example 2.7,

as depicted in part in the first four columns of Figure 2.4. We show how to compute

sk+1(x, a) and sk+1(x, c), ∀x ∈ V, by using outer partial sums sharing.

Firstly, for each non-empty in-neighbor set I(x), we compute OuterPartial
I(x),sk
I(a)

and OuterPartial
I(x),sk
I(c) , ∀x ∈ V, from the cached results of PartialskI(x)(⋆). In light
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of the clustering dendrogram in Figure 2.3b, we notice that the item ‘ b ⊕ g · · · I(a)’,

which, in the context of outer partial sums, can be reinterpreted as “adding up the

(inner) partial sums PartialskI(x)(b) and PartialskI(x)(g) to yield the outer partial sums

OuterPartial
I(x),sk
I(a) , for all x ∈ V”. Thus, we have

OuterPartial
I(x),sk
I(a) =

∑
y∈{b,g}

PartialskI(x)(y). (∀x ∈ V)

For instance, OuterPartial
I(b),sk
I(a) = 0.15 + 1 = 1.15, for x = b, as illustrated in row ‘b’ of

Figure 2.4.

Similarly, the item ‘I(a)⊕ d · · · I(c)’ in Figure 2.3b implies that OuterPartial
I(x),sk
I(c) ,

∀x ∈ V, can be calculated from the cached results of OuterPartial
I(x),sk
I(a) via Eq.(2.9) as

OuterPartial
I(x),sk
I(c) = OuterPartial

I(x),sk
I(a)

+PartialskI(x)(d), (∀x ∈ V)

e.g., OuterPartial
I(b),sk
I(c) = 1.15 + 0.08 = 1.23, for x = b.

The rest of the results are shown in Cols 5-6 of Figure 2.4.

Then, using Eq.(2.10), we can obtain sk+1(x, a) and sk+1(x, c), ∀x ∈ V, from the

memoized results of OuterPartial
I(x),sk
I(a) and OuterPartial

I(x),sk
I(c) . For example, in row

‘b’ of Figure 2.4,

sk+1(b, a) =
0.6

2× 4
× 1.15 = 0.09, (x = b)

sk+1(b, c) =
0.6

3× 4
× 1.23 = 0.06. (x = b)

The remainder of the similarities are depicted in the last two columns of Figure 2.4.

2.3.3 A SimRank Algorithm

We next present a complete algorithm to efficiently compute SimRank, by integrating

the aforementioned techniques of inner and outer partial sums sharing.

The main result of this subsection is the following.
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Algorithm 2.1: OIP-SR (G, C,K)

Input : graph G = (V, E), damping factor C,

iteration number K.

Output: SimRank scores sK(⋆, ⋆).

1 construct a transitional MST T ← DMST-Reduce (G);

2 initialize s0(x, y)←
{

1, x=y
0, x ̸=y ∀x, y ∈ V

3 for k ← 0, 1, · · · ,K − 1 do

4 foreach vertex u ∈ O(#) in the MST T do

5 foreach vertex y ∈ V in G do

6 PartialskI(u)(y)←
∑

x∈I(u) sk(x, y) ;

7 sk+1(u, ⋆)← OP (T ,G, u, C, k, PartialskI(u)(⋆));

8 while O(u) ̸= ∅ do

9 v ← O(u) ;

10 foreach vertex y ∈ V in G do

11 PartialskI(v)(y)← PartialskI(u)(y)

−
∑

x∈I(u)\I(v)
sk(x, y) +

∑
x∈I(v)\I(u)

sk(x, y);

12 sk+1(v, ⋆)← OP(T ,G, v, C, k, PartialskI(v)(⋆));

13 u← v ;

14 foreach vertex y ∈ V in G do

15 free PartialskI(u)(y) ;

16 while O(u) ̸= ∅ do

17 v ← O(u), free PartialskI(v)(y), u← v;

18 return sK(⋆, ⋆) ;

Proposition 2.10. For any graph G, it is in O(dn2+Kd′n2) time and O(n) intermediate

memory to compute SimRank similarities of all pairs of vertices for K iterations, where

d is the average vertex in-degree of G, and d′ ≤ d.



Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 34

Note that d′ is affected by the overlapped area size among different in-neighbor sets in

G. Typically, d′ is much smaller than d as in-neighbor sets in G may have many vertices

in common in real networks. That is, our approach of partial sums sharing can compute

SimRank more efficiently than psum-SR in practice, as opposed to the O(Kdn2)-time of

the conventional counterpart via separate partial sums over each in-neighbour set in G.

Even in the extreme case when all in-neighbor sets in G are pair-wise disjoint, our method

can retain the same complexity bound of psum-SR in the worst case.

We next prove Proposition 2.10 by providing an algorithm for SimRank computation,

with the desired complexity bound.

Algorithm. The algorithm, referred to as OIP-SR, is shown in Algorithm 2.1. Given

G, a damping factor C, and the total iteration number K, it returns sK(⋆, ⋆) of all pairs

of vertices.

In the sequel, we shall abuse the notation O(v) to denote the out-neighbor set of

vertex v.

The algorithm OIP-SR works as follows. (1) It first invokes procedure DMST-Reduce to

identify the topological sort based on a minimum spanning tree T for computing partial

sums (line 1). (2) For each iteration k, OIP-SR checks each path in T , starting from

the root node # as follows. (a) For the first edge (#, u) in each path, OIP-SR com-

putes PartialskI(u)(⋆) from scratch (lines 5-6), and then invokes procedure OP to compute

sk+1(u, ⋆) by outer partial sums sharing (line 7). (b) For other edges (u, v) in each

path, OIP-SR computes PartialskI(v)(⋆) from the result of PartialskI(u)(⋆) memoized earlier

(lines 10-11), and gets sk+1(v, ⋆) by invoking procedure OP of outer partial sums sharing

(line 12). This process repeats until all edges in every path have been traversed, and

OIP-SR frees the memoized results of the partial sums generated from each path (lines

14-17). (3) The loop will continue to iterate until k reaches K, and OIP-SR returns all

the similarities sK(⋆, ⋆) (line 18).

The procedures of OP and DMST-Reduce are described below.
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Procedure DMST-Reduce(G)
Input : graph G = (V, E).

Output: transitional MST T .

1 initialize V ← V ∪ {#}, E ← ∅ ;

2 sort the vertices of G into non-decreasing order by in-degree ;

3 initialize U ← V ;

4 foreach vertex a ∈ V in G, taken in sorted order do

5 U ← U\{a} ;

6 foreach vertex b ∈ U in G, taken in sorted order do

7 E ← E ∪ {(a, b)} ;

8 assign a weight w to the edge (a, b) of E :

w(a, b)← min{|I(a)⊖ I(b)|, |I(b)| − 1} ;

9 find the MST T of the graph G = (V ,E , w) :

T ← Directed-MST (G ,#, w) ;

10 return T ;

Procedure DMST-Reduce. Given a graph G, the procedure returns a minimum span-

ning tree T as a topological sort for computing partial sums. First, it builds a weighed

graph G , whose edge weights are the transition costs of all pairs of vertices (plus a special

# denoting ‘the root node’) in G (lines 1-8). Then, it runs an algorithm [GGST86] to find

a directed MST T of G (starting from vertex #), which is returned as the final result

(lines 9-10).

Procedure OP. This procedure adopts a similar paradigm of OIP-SR for outer partial

sums sharing. The procedure OP takes as input a topological sort T , a graph G, a vertex

u, a damping factor C, iteration k, and the cached partial sums PartialskI(u)(⋆). It returns

the similarities sk+1(u, ⋆).

The procedure OP runs in three phases for each path that starts from the root # of
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Procedure OP(T ,G, u, C, k, PartialskI(u)(⋆))

Input : transitional MST T , graph G = (V, E),

vertex u, damping factor C,

iteration k, partial sums PartialskI(u)(⋆).

Output: SimRank scores sk+1(u, ⋆).

1 foreach vertex w ∈ O(#) in the MST T do

2 OuterPartial
I(u),sk
I(w) ←

∑
y∈I(w) Partial

sk
I(u)(y) ;

3 if u = w then sk+1(u,w)← 1 ;

4 else if I(u) = ∅ or I(w) = ∅ then sk+1(u,w)← 0;

5 else sk+1(u,w)← C
|I(u)||I(w)|OuterPartial

I(u),sk
I(w) ;

6 while O(w) ̸= ∅ do

7 z ← O(w) ;

8 OuterPartial
I(u),sk
I(z) ← OuterPartial

I(u),sk
I(w)

−
∑

y∈I(w)\I(z)
PartialskI(u)(y) +

∑
y∈I(z)\I(w)

PartialskI(u)(y) ;

9 if u = z then sk+1(u, z)← 1 ;

10 else if I(u) = ∅ or I(z) = ∅ then sk+1(u, z)← 0;

11 else sk+1(u, z)← C
|I(u)||I(z)|OuterPartial

I(u),sk
I(z) ;

12 w ← z ;

13 free OuterPartial
I(u),sk
I(w) ;

14 while O(w) ̸= ∅ do

15 z ← O(w) , free OuterPartial
I(u),sk
I(z) , w ← z ;

16 return sk+1(u, ⋆) ;

the tree T . (a) For the first edge (#, w) of each path, OP needs to start from scratch

to calculate OuterPartial
I(u),sk
I(w) (line 2) and sk+1(u,w) (lines 3-5) from the memoized

PartialskI(u)(⋆). (b) For other edges (w, z) in each path, OP obtains OuterPartial
I(u),sk
I(z)

from the cached result of OuterPartial
I(u),sk
I(w) (line 8), and then computes sk+1(u, z) (lines
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9-11). The loop continues until all edges in the path have been visited. (c) OP releases

the memoized results of all the outer partial sums which are generated by each path

(lines 13-15). The whole process repeats until all the paths in T have been processed,

and returns sk+1(u, ⋆) (line 16).

Correctness & Complexity. OIP-SR consists of two phases: (i) building an MST

T (line 1), and (ii) computing similarities (lines 2-18). One can readily verify that (1)

OIP-SR correctly computes the similarities sk(u, v) in G for each vertex pair (u, v); and

(2) the total time of OIP-SR is bounded by O(Kd′n2), with d′ ≤ d.

(1) Correctness. (i) Algorithm OIP-SR correctly computes the similarities sk(u, v) in G for

each vertex pair (u, v). One can verify that after the foreach loops (lines 5-6 and lines 10-

11), for every vertex u ∈ T , PartialskI(u)(⋆) and OuterPartial
I(u),sk
I(⋆) are memoized, and

the similarities sk+1(u, ⋆) are computed. (ii) The partial sums computed by our algorithm

are indeed optimized because while computing PartialskI(u)(⋆) and OuterPartial
I(u),sk
I(⋆) for

each vertex u, we allow the common parts of partial sums to be recomputed as fewer

as possible by virtue of a minimum spanning tree T ; in particular, the partial sums

sharing would definitely happen in every path of T for a graph with |
∪

v∈V I(v)| less

than
∑

v∈V |I(v)|.

(2) Complexity. OIP-SR consists of two phases: (i) building an MST T (line 1), and (ii)

computing similarities (lines 2-18). We analyze the time for each phase below.

(i) The procedure DMST-Reduce is used for finding a directed MST T , which is

bounded by O(dn2) time and O(n) space. It includes (a) O(n log n) time and O(n)

space for sorting vertices in G by in-degree (line 2), (b) O(d) time and O(2d) space for

computing the transitional cost for a single edge (a, b) in E , being O(dn
2

2 ) time for all

edges in E (lines 4-8), and (c) O(n2 logn) time and O(n) space for finding the MST T

of G [GGST86].

(ii) For each iteration, OIP-SR uses T rooted at # to compute similarities in G. Note

that |O(#)| paths in T are used for calculating partial sums over all in-neighbour sets
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of G. Therefore, for completing a single path of average length n
|O(#)| , the complexity

required for computing the partial sums, for the first edge of the path, is O(nd) time and

O(n) space (lines 5-6); the complexity required, apart from the first edge of the path, is

O( n
|O(#)| ·n · d⊖) time and O(n) space, with d⊖ , avg(u,v)∈T |I(u)⊖I(v)| (lines 8-13). It

follows that the total complexity bound in this phase is O(K(|O(#)| ·nd+n2 · d⊖)) time

and O(n) space for K iterations. Since d⊖ ≪ d and |O(#)| ≪ n, such a time complexity

bound is far less than O(Kdn2).

Combining (i) and (ii), the total complexity of OIP-SR is O(dn2 +K(|O(#)| · nd +

n2 · d⊖)) time and O(n) space.

2.4 Exponential Rate of Convergence

For a desired accuracy ϵ, the existing paradigm (via Eq.(2.1)) for computing SimRank

needs K = ⌈logC ϵ⌉ iterations [LVGT10]. In this section, we introduce a new notion of

SimRank that is based on a matrix differential equation, which can significantly reduce

the number of iterations for attaining the accuracy ϵ while fairly preserving the relative

order of SimRank.

The main idea in our approach is to replace the geometric sum of the conventional

SimRank by an exponential sum that provides more rapid rate of convergence. We start

by expanding the conventional SimRank matrix form (in Eq.(2.2))

S = C · (Q · S ·QT ) + (1− C) · In,

as a power series:

S = (1− C) ·
∞∑
i=0

Ci ·Qi · (QT )
i
, (2.11)

where we notice that the coefficient for each term in the summation makes a geometric

sequence {1, C, C2, · · · }. For this expansion form, the effect of damping factor Ci in the

summation is to reduce the contribution of long paths relative to short ones. That is,

the conventional SimRank measure considers two vertices to be more similar if they have

more paths of short length between them. Following this intuition, we observe that there
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is an opportunity to speed up the asymptotic rate of convergence for SimRank iterations,

if we allow a slight (and with hindsight sensible) modification of Eq.(2.11) as follows:

Ŝ = e−C ·
∞∑
i=0

Ci

i!
·Qi · (QT )

i
, (2.12)

Comparing Eq.(2.11) with Eq.(2.12), we notice that Ŝ is just an exponential sum rather

than S that is a geometric sum. Since the exponential sum converges more rapidly, such

a modification can speed up the computation of SimRank. In addition, the modified co-

efficient for each term in the summation of Eq.(2.12) that yields the exponential sequence

{1, C1! ,
C2

2! , · · · } still obeys the intuition of the conventional counterpart, i.e., the efficacy

of damping factor Ci

i! is to reduce the contribution of long paths relative to short ones.

2.4.1 Closed Form of Exponential SimRank

With the modified notion of SimRank in Eq.(2.12), we now need to define an Eq.(2.2)-like

recurrence for Ŝ.

Definition 2.11. Let Ŝ(t) be a matrix function w.r.t. a scalar t. The matrix differential

form of SimRank is defined to be Ŝ , Ŝ(t)|t=C such that Ŝ(t) satisfies the following

matrix differential equation:

dŜ(t)

dt
= Q · Ŝ(t) ·QT , Ŝ(0) = e−C · In. (2.13)

Note that the solution of Eq.(2.13) is unique since the initial condition Ŝ(0) = e−C ·In

is specified. Based on Definition 2.11, it is crucial to verify that Ŝ (in Eq.(2.12)) is the

solution to Eq.(2.13). Proposition 2.12 shows the correctness.

Proposition 2.12. The matrix differential form of SimRank in Eq.(2.13) has an exact

solution Ŝ given in Eq.(2.12).

Proof. We shall prove this by plugging

Ŝ(t) = A · (In +
∞∑
i=1

ti

i!
·Qi · (QT )

i
),
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with an arbitrary constant A, into the SimRank differential formula Eq.(2.13):

dŜ(t)

dt
=A ·

∞∑
i=1

d

dt

(
ti

i!
·Qi · (QT )

i
)

=A ·
∞∑
i=1

ti−1

(i− 1)!
·Qi · (QT )

i
= Q · Ŝ(t) ·QT ,

where the first equality holds because we notice that
∥∥ ti

i! ·Q
i · (QT )

i∥∥
max
≤ ti

i! , and the

series
∑∞

i=1
ti

i! converges uniformly on t ∈ [0, C].

Thus, we have verified that the solution to Eq.(2.13) takes the form

Ŝ(t) = A ·

(
In +

∞∑
i=1

ti

i!
·Qi · (QT )

i

)
.

To find A, let t = 0 and Ŝ(0) = e−C · In. Then we have A · In = e−C · In, which

implies that A = e−C . Therefore,

Ŝ(t) = e−C ·
∞∑
i=0

ti

i!
·Qi · (QT )

i
.

Setting t = C, we obtain Ŝ , Ŝ(C), the solution to Eq.(2.13).

To iteratively compute Ŝ, the conventional way is to use the Euler method [AP98] for

approximating Ŝ(t) at time t = C. Precisely, by choosing a value h for the step size, and

setting tk = k · h, one step of the Euler method from tk to tk+1 is

Ŝk+1 = Ŝk + h ·Q · Ŝk ·QT , Ŝ0 = Ŝ(0) = e−C · In.

Subsequently, the value of Ŝk is an approximation of the solution to Eq.(2.13) at time

t = tk, i.e., Ŝk ≈ Ŝ(tk). However, the approximation error of the Euler method hinges

heavily on the choice of step size h, which is hard to determine since the small choice

of h would entail huge computational cost for attaining high accuracy. To address this

issue, we adopt the following iterative paradigm for computing Ŝ as Tk+1 = Q ·Tk ·QT

Ŝk+1 = Ŝk + e−C · Ck+1

(k+1)! ·Tk+1

with

 T0 = In

Ŝ0 = e−C · In
(2.14)
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Note that the main difference in our approach, as compared to the Euler method, is

that there is no need for the choice of a particular step size h to iteratively compute Ŝ.

The correctness of our approach can be easily verified, by induction on k, that the value

of Ŝk in our iteration Eq.(2.14) equals the sum of the first k terms of the infinite series

Ŝ in Eq.(2.12).

2.4.2 A Space-Efficient Iterative Paradigm

Although the paradigm of Eq.(2.14) can iteratively compute Ŝk that converges to the

exponential SimRank Ŝ, we observe that Eq.(2.14) requires additional memory space

to store the intermediate result Tk per iteration. In this subsection, we provide an

improved version of Eq.(2.14) that can produce the same result without using extra

space for caching Tk.

Proposition 2.13. Given any total iteration number K, the following paradigm can be

used to iteratively compute S̃K : S̃0 = e−C · In,

S̃k+1 =
C

K−k ·Q · S̃k ·QT + e−C · In. (k = 0, · · · ,K − 1)
(2.15)

The result of S̃K at the last iteration is exactly the same as ŜK in Eq.(2.14).

The main idea of our improved paradigm Eq.(2.15) is based on two observations: (1)

For every iteration k = 0, 1, · · · ,K, the result of Ŝk in Eq.(2.14) is actually the sum of

the first k terms of the infinite series Ŝ in Eq.(2.12). (2) For any total iteration number

K, the result of S̃K at the last iteration in Eq.(2.15) equals the sum of the first K terms

of the infinite series Ŝ in Eq.(2.12). Both of these observations can be readily verified

by direct inductive manipulations. As an example for K = 3, our improved paradigm

Eq.(2.15) iteratively computes Ŝ3 = e−C ·
∑3

i=0
Ci

i! ·Q
i · (QT )

i
as follows:

S̃3 = e−CIn + CQ
(
e−CIn + C

2 Q

S̃1︷ ︸︸ ︷
(e−CIn + C

3 Q ·Q
T )QT

)
︸ ︷︷ ︸

S̃2

QT .
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The merit of Eq.(2.15) over Eq.(2.14) is the space efficiency — in Eq.(2.15), we do not

need to use an auxiliary matrix Tk to store the temporary results. Moreover, since

Eq.(2.15) has a very similar form to the SimRank matrix form in Eq.(2.2), our partial

sums sharing techniques in Section 2.3 can be directly applied to the iterative form of

Eq.(2.15), i.e., when a ̸= b, for k = 0, 1, · · · ,K − 1,

[S̃k+1]a,b =
C

(K − k)|I(a)||I(b)|
∑

j∈I(b)

∑
i∈I(a)

[S̃k]i,j .

It is worth noticing that in Eq.(2.14), we can iteratively compute Ŝk+1 from Ŝk for

any k = 0, 1, · · · , whereas, in Eq.(2.15), for any given K, we can only iteratively compute

S̃k+1 from S̃k for k = 0, 1, · · · ,K − 1, but we cannot compute S̃K+1 from S̃K . This

means that, to guarantee a given accuracy ϵ, we have to determine the total number of

iterationsK in an a-priori fashion for Eq.(2.15), in contrast with Eq.(2.14) in whichK can

be determined in an either a-priori or a-posteriori style. Fortunately, this requirement

is not an obstacle to Eq.(2.15), since in the next subsection we will show a nice a-priori

bound of the total iteration number K for Eq.(2.15) to attain a given accuracy ϵ.

2.4.3 Error Estimate

In the SimRank matrix differential model, the following estimate for the k-th iterative

similarity matrix Ŝk with respect to the exact one Ŝ can be established.

Proposition 2.14. For each iteration k = 0, 1, 2, · · · , the difference between the k-th

iterative and the exact similarity matrix in Eqs.(2.12) and (2.14) can be bounded as

follows:

∥Ŝk − Ŝ∥max ≤
Ck+1

(k + 1)!
, (2.16)

where ∥X∥max , maxi,j |xi,j | is the max norm.

Proof. Subtracting Eq.(2.12) from Eq.(2.14), we obtain

Ŝk − Ŝ = e−C ·
∞∑

i=k+1

Ci

i!
·Qi · (QT )

i
.
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Taking the matrix-to-vector operator vec(⋆) [LHH+10] on both sides, and then ap-

plying the Kronecker product property that vec(AXB) = (BT ⊗ A) · vec(X) to the

right-hand side gives

vec(Ŝk − Ŝ) = e−C ·
∞∑

i=k+1

Ci

i!
· (Q⊗Q)i · vec(In),

Notice that Q is a transitional matrix, i.e., the sum of each row in Q is less than 1,

which implies that ∥Q⊗Q∥∞ ≤ 1.

Take the matrix ∞-norm ∥ ⋆ ∥∞ on both sides, and apply ∥vec(⋆)∥∞ = ∥ ⋆ ∥max to

the left-hand side:

∥Ŝk − Ŝ∥max≤ e
−C ·

∞∑
i=k+1

Ci

i!
· ∥(Q⊗Q)∥i∞ · ∥vec(In)∥∞

≤ e−C ·
∞∑

i=k+1

Ci

i!
≤ Ck+1

(k + 1)!
,

where the last inequality holds because using the Lagrange remainder f (k+1)(ξ)
(k+1)! C

k+1,

ξ ∈ (0, C), of Maclaurin series for f(C) = eC yields

∞∑
i=k+1

Ci

i!
=

eξ

(k + 1)!
Ck+1 ≤ eC

(k + 1)!
Ck+1,

which completes the proof.

For the SimRank differential model Eq.(2.12), Proposition 2.14 allows finding out the

exact number of iterations needed for attaining a desired accuracy, based on the following

corollary.

Corollary 2.15. For a desired accuracy ϵ > 0, the number of iterations required to

perform Eq.(2.14) is

K ′ ≥
⌈ ln ϵ′

W ( 1
e·C · ln ϵ′)

⌉
, with ϵ′ = (

√
2π · ϵ)−1

.

Here, W (⋆) is the Lambert W function [Has05].

Proof. Based on Eq.(2.16), ∀ϵ > 0, we need to find an integer K ′ > 0 such that CK′+1

(K′+1)! ≤

ϵ.
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We first use the Stirling’s formula

(K ′ + 1)! ≥
√
2π · (K

′ + 1

e
)
K′+1

to obtain ( e·C
K′+1)

K′+1 ≤
√
2π · ϵ.

Let x = K′+1
e·C . It follows that xx ≥ (

√
2π · ϵ)−

1
e·C . Using the Lambert W function,

we have

x ≥ ln (
√
2π · ϵ)−

1
e·C

W (ln (
√
2π · ϵ)−

1
e·C )

.

By substituting x = K′+1
e·C back into the inequality, we get the final result.

Noting that ln(x)− ln(ln(x)) ≤W (x) ≤ ln(x), ∀x > e [Has05], we have the following

improved version of Corollary 2.15, which may avoid computing the LambertW function.

Corollary 2.16. For a desired accuracy 0 < ϵ < 1√
2π
e−C·e2 , the number of iterations

needed to perform Eq.(2.14) is

K ′ ≥
⌈
tfrac− ln(

√
2π · ϵ)η − ln(η)

⌉
with η = ln(− 1

e·C · ln(
√
2π · ϵ)).

Comparing this with the conventional SimRank model that requires K = ⌈logC ϵ⌉

iterations [LVGT10] for a given accuracy ϵ, we see that our revision of the differential

SimRank model in Eq.(2.13) can greatly speed up the convergence of SimRank iterations

from the original geometric to exponential rate.

As an example, setting C = 0.8 and ϵ = 0.0001, since 1√
2π
e−0.8·e2 = 0.0011 > 0.0001,

we can use Corollary 2.16 to find out the number of iterations K ′ in Eq.(2.14) necessary

to our differential SimRank model Eq.(2.13) as follows:

η = ln(− 1

e · 0.8
· ln(
√
2π · 0.0001)) = 1.3384,

K ′ ≥
⌈ − ln(

√
2π · 0.0001)

1.3384− ln(1.3384)

⌉
=
⌈8.2914
1.0469

⌉
= 7.

In contrast, the conventional SimRank model Eq.(2.1) needs K = ⌈log0.8 0.0001⌉ = 41

iterations.
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For ranking purpose, our experimental results in Section 2.6 further show that the

revised notion of SimRank in Eq.(2.13) not only drastically reduces the number of iter-

ations for a desired accuracy, but can fairly maintain the relative order of vertices with

respect to the conventional SimRank in [LVGT10].

2.5 Partial Max Sharing for Minimax SimRank Variation

in Bipartite Graphs

Having investigated the partial sums sharing problem for optimizing SimRank compu-

tation in Section 2.4, we now focus on the partial max sharing problem for optimizing

the computation of the Minimax SimRank variation, a model proposed in [JW02, Sec-

tion 4.3.2] (see Definition 1.9).

To compute s(A,B) for bipartite SimRank, the conventional method is to perform

the following iterations:

s0(A,B) =

1, A = B;

0, A ̸= B.

For k ≥ 0, we define (i) sAk+1(A,B) = 0 if O(A) = ∅; (ii) sBk+1(A,B) = 0 if O(B) = ∅;

(iii) otherwise,

sAk+1(A,B) =
C

|O(A)|
∑

i∈O(A)

max
j∈O(B)

sk(i, j), (2.17)

sBk+1(A,B) =
C

|O(B)|
∑

j∈O(B)

max
i∈O(A)

sk(i, j), (2.18)

sk+1(A,B) = min{sAk+1(A,B), sBk+1(A,B)}. (2.19)

We can readily prove that

lim
k→∞

sk(A,B) = s(A,B).

To speed up the computation of sk(⋆, ⋆) for all pairs of vertices, we can first memoize
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the partial max in Eq.(2.17) 5 as follows:

Partial MaxskO(B)(i) = max
j∈O(B)

sk(i, j), (2.20)

and then compute sAk+1(A,B) as

sAk+1(A,B) =
C

|O(A)|
∑

i∈O(A)

Partial MaxskO(B)(i). (2.21)

Thus, the memoized results of Partial MaxskO(B)(⋆) can be reused in all sXk+1(X,B) com-

putations, ∀X ∈ V.

It should be pointed out that, although Eqs.(2.20) and (2.21) have a very similar form

to Eqs.(2.3) and (2.4), we only can apply the (outer) partial sums sharing technique of

Section 2.3.2 to further speed up the summations in Eq.(2.21), but may not always employ

the (inner) partial sums sharing technique of Section 2.3.1 to accelerate the partial max

computation in Eq.(2.20). The reason is that, for partial sums sharing, “subtraction”

is allowed to compute one partial sum from another (see Eq.(2.8) in Proposition 2.6),

whereas, for partial max sharing, “subtraction” is disallowed in the context of “max”

operator since the maximum value of a set X may be unequal to the maximum value of

a subset of X. We call this the “subtraction” curse of max operation.

Example 2.17. Suppose O(B) = {c, d, e, f, j} and O(D) = {d, e, f, g, h, i}, with three

vertices {d, e, f} in common. Since O(D) = O(B) − {c, j} ∪ {g, h, i}, according to

Proposition 2.6, the partial sums PartialskO(D)(⋆) can be computed from the memoized

PartialskO(B)(⋆) as

PartialskO(D)(⋆) = PartialskO(B)(⋆) + Partialsk{g,h,i}(⋆)

−Partialsk{c,j}(⋆). (2.22)

However, in the context of partial max sharing, we may not obtain the partial max

Partial MaxskO(D)(⋆) directly from the memoized Partial MaxskO(B)(⋆) via an Eq.(2.22)-

like approach. This is because “subtraction” is involved in Eq.(2.22) — although we

5In the following, we shall focus solely on optimizing Eq.(2.17). A similar method can be applied to
Eq.(2.18).
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know

Partial MaxskO(B)∪{g,h,i}(⋆)

=max{Partial MaxskO(B)(⋆), Partial Maxsk{g,h,i}(⋆)},

we do not know how to derive Partial MaxskO(D)(⋆) from Partial MaxskO(B)∪{g,h,i}(⋆)

and Partial Maxsk{c,j}(⋆), which is due to the “subtraction” curse in the context of max

operator.

This example tells that, for every two out-neighbor sets O(X) and O(Y ), only when

O(X) ⊆ O(Y ), then the partial max Partial MaxskO(X)(⋆) can be reused for computing

Partial MaxskO(Y )(⋆) as

Partial MaxskO(Y )(⋆)

=max{Partial MaxskO(X)(⋆), Partial MaxskO(Y )\O(X)(⋆)}.

Unfortunately, the condition O(X) ⊆ O(Y ) is too restrictive in real-life networks for

partial max sharing. In practice, out-neighbors are often overlapped irregularly in many

real-world graphs, i.e., O(X) ∩ O(Y ) ̸= ∅. It is imperative for us to find a new differ-

ent way of partial max sharing, which can effectively avoid the “subtraction” curse for

computing the Minimax SimRank variation.

Partial Max Sharing. The main idea of our approach is based on a finer-grained partial

max sharing. Given two out-neighbor sets O(X) and O(Y ), if O(X) ∩ O(Y ) ̸= ∅, then

we first memoize the finer-grained partial max over the common subset O(X) ∩ O(Y ):

z(⋆) = Partial MaxskO(X)∩O(Y )(⋆), (2.23)

then reuse z(⋆) to compute both Partial MaxskO(X)(⋆) and Partial MaxO(Y )(⋆) as

Partial MaxskO(X)(⋆) =max{Partial MaxskO(X)\O(Y )(⋆), z(⋆)},

Partial MaxskO(Y )(⋆) =max{Partial MaxskO(Y )\O(X)(⋆), z(⋆)}.

In comparison, the partial sums sharing approach in Section 2.3, if ported to the partial

max sharing, only allows Partial MaxskO(Y )(⋆) being computed from another memoized
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Figure 2.5: Edge Concentration

partial sums Partial MaxskO(X)(⋆) or from scratch (depending on the transition costs);

since “subtraction” is not allowed in the context of max operator, Partial MaxskO(Y )(⋆)

have to be calculated from scratch if O(X) * O(Y ). Fortunately, our approach can share

the common subparts for both Partial MaxskO(X)(⋆) and Partial MaxskO(Y )(⋆) computa-

tion while preventing the “subtraction” curse.

Edge Concentration. To find out the common subparts z(⋆) in Eq.(2.23) for all out-

neighbor sets sharing, we first introduce the notion of biclique.

Definition 2.18. Given a bipartite digraph G = (V∪W, E), a pair of two disjoint subsets

(V ′,W ′), with V ′ ⊆ V and W ′ ⊆ W, is called a biclique if (v′, w′) ∈ E for all v′ ∈ V ′ and

w′ ∈ W ′.

Clearly, a biclique (V ′,W ′) is a complete subgraph in the bipartite digraph G =

(V ∪W, E), denoting the densest parts in G. For example in the left part of Figure 2.5,

({B,D}, {c, d, e, f}) (dashed arrows) and ({A,D,E}, {g, h}) (dotted arrows) are two bi-

cliques.

Bicliques are utilized for finding out the common subparts for partial max sharing. A

biclique, say ({B,D}, {c, d, e, f}), in G means that the out-neighbor sets O(B) and O(D)

have common vertices {c, d, e, f}. Thus, Partial Maxsk{c,d,e,f}(⋆) can be reused for both

Partial MaxskO(B)(⋆) and Partial MaxskO(D)(⋆) computation. Pictorially, such a partial

max sharing optimization process can be depicted by the edge concentration [Lin00] of

a biclique in G. As shown in the right part of Figure 2.5, after edge concentration, a
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biclique, say ({B,D}, {c, d, e, f}), can be simplified into a triple ({B,D}, z1, {c, d, e, f}),

where we call z1 ∈ Z a concentration vertex. Each triple, say ({B,D}, z1, {c, d, e, f}), tells

us the following: (1) First, all the out-neighbors of vertex z1 can be clustered together

to produce the memoized results z1(⋆), i.e.,

z1(⋆) = Partial Maxsk{c,d,e,f}(⋆).

(2) Then, each in-neighbor of vertex z1, say B, indicates that the memoized z1(⋆) can be

reused in partial max computation Partial MaxskO(B)(⋆), i.e.,

Partial MaxskO(B)(⋆) = max{Partial Maxsk{b}(⋆), z1(⋆)}.

Therefore, applying edge concentration to every biclique of G provides a very efficient

way for partial max sharing. The main advantage is that, after edge concentration, the

number of edges in every biclique (V ′,W ′) can be reduced from |V ′|×|W ′| to |V ′|+|W ′|. It

is worth mentioning that for every fixed vertex x, the total cost of performing the partial

max Partial MaxskO(⋆)(x) over all out-neighbor sets O(⋆) is equal to the number |E| of

edges in G. Hence, our goal of minimizing the total cost of the partial max is equivalent

to the problem of minimizing the number of edges in G via edge concentration. However,

this problem is NP-hard, as proved in our early work [LHH+10]. Thus, to find bicliques

in G, we invoke a heuristic [BC08b].

Algorithm. We next present an algorithm for computing Minimax SimRank variation

in a bipartite graph.

The algorithm, max-MSR, is shown in Algorithm 2.2. It takes as input the bipartite

graph G = (V ∪W, E), a damping factor C, and the number of iterations K, and returns

all pairs of Minimax SimRank similarities.

The algorithm max-MSR runs in three phases.

(1) Precomputing (lines 1–5). The algorithm first finds bicliques in bipartite graph G

by invoking the algorithm in [BC08b] (line 1). It then replaces all the bicliques (densest

parts) in G via edge concentration (lines 2–5).
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Algorithm 2.2: max-MSR (G, C,K)

Input : bipartite graph G = (V ∪W, E), damping factor C, the number of

iterations K.

Output: all the similarities of Minimax SimRank variation sK(⋆, ⋆).

1 find all the bicliques {(V ′i,W ′
i)} in G ;

2 foreach biclique (V ′i,W ′
i) in G do

3 Delete all the edges (v′, w′) ∈ V ′i ×W ′
i ;

4 Insert a dummy vertex zi into Z;
5 Add edges (v′, zi), (zi, w

′), ∀v′ ∈ V ′, w′ ∈ W ′;

6 initialize s0(A,B)←
{

1, A=B
0, A ̸=B ∀A,B ∈ V ;

7 for k ← 0, 1, · · · ,K − 1 do

8 foreach vertex i ∈ V in G do

9 foreach dummy vertex zj ∈ Z do

10 sk(i, zj)← maxx∈O(zj) sk(i, x) ;

11 foreach vertex B ∈ V in G do

12 Partial MaxskO(B)(i)← max
x∈O(B)

sk(i, x) ;

13 foreach dummy vertex zj ∈ Z do

14 foreach vertex B ∈ V in G do

15 Partial MaxskO(B)(zj)←
∑

x∈O(zj)

Partial MaxskO(B)(x);

16 foreach vertex B ∈ V in G do

17 foreach vertex A ∈ V in G do

18 if A=B then sk+1(A,B) = 1; continue;

19 if O(A) = ∅ then sAk+1(A,B)← 0;

else sAk+1(A,B)← C
|O(A)|

∑
i∈O(A)

Partial MaxskO(B)(i);

20 if O(B) = ∅ then sBk+1(A,B)← 0;

else sBk+1(A,B)← C
|O(B)|

∑
i∈O(B)

Partial MaxskO(A)(i);

21 sk+1(A,B)← min{sAk+1(A,B), sBk+1(A,B)};

22 free Partial MaxskO(⋆)(⋆) ;

23 return sK(⋆, ⋆) ;
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(2) Inner Partial Max Sharing (lines 8–12). The algorithm then iteratively computes the

common subparts among the different Partial MaxskO(⋆)(⋆) (lines 9–10). Once computed,

the finer-gained inner partial max results are memoized for computing all the partial max

over different out-neighbor sets (lines 11–12).

(3) Outer Partial Sums Sharing (lines 13–22). The algorithm next computes the common

subparts among the different outer partial sums (lines 13–15). Once computed, the finer-

gained outer partial sums results are memoized for computing all the similarities of

Minimax SimRank sk+1(⋆, ⋆) (lines 16–21). After every iteration, the partial max results

can be removed from memory (line 22).

Correctness & Complexity. One can readily verify that the algorithm correctly com-

putes sK(⋆, ⋆), which satisfies Eqs.(2.17)–(2.19).

The time of max-MSR is bounded by O(Km′n), where

m′ = |E| −
N∑
i=1

(|V ′i| × |W ′
i| − |V ′i| − |W ′

i|),

with N being the total number of bicliques (V ′i,W ′
i) in the bipartite graph G = (V∪W, E).

Here, m′ ≤ |E|, and in practice, m′ is much smaller than |E| since there could be many

small dense parts in real bipartite graphs.

We analyze the time complexity in detail below. The total time of max-MSR consists

of three phases: precomputing, inner partial max sharing, and outer partial sums sharing.

(1) For the precomputing (lines 1–5), a heuristic algorithm in [BC08b] is leveraged

for finding bicliques in G, which requires O(|E| log(|V|+ |W|)) time.

(2) In the inner partial max sharing phase (lines 8–12), for every iteration k and each

fixed vertex i, the total cost of computing Partial MaxskO(⋆)(i) is equal to the number of

edges in the reduced graph of G via edge concentration, which is O(m′). This is because

replacing each biclique can reduce the cost of max operations from |V ′i|×|W ′
i| to |V ′i|+|W ′

i|.

Thus, for N bicliques in G, O(
∑N

i=1 (|V ′i| × |W ′
i| − |V ′i| − |W ′

i|)) time is reduced. Hence,

for K iterations, computing all the partial max over all the out-neighbor sets requires

O(Km′n) time.
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Dataset Vertices Edges Avg Deg.

BerkStan 685,230 7,600,595 11.1 (in)

Patent 3,774,768 16,518,948 4.4 (in)

Course 8,470+1,873 46,825 5.53 (out)

IMDB 320.1K+785.6K 3,871,636 12.09 (out)

DBLP

d02 9,942 27,849 2.8 (in)

d05 15,976 38,356 2.4 (in)

d08 23,471 63,723 2.7 (in)

d11 39,965 104,468 2.6 (in)

Figure 2.6: Real-life Dataset Details

(3) For the outer partial sums sharing (lines 13–22), similar to the partial max sharing

phase, the cost of computing all similarities sK(⋆, ⋆) from the memoized Partial MaxskO(⋆)(⋆)

is equal to the number of of edges in the reduced graph of G, entailing O(Km′) time for

K iterations.

Taking the three phases together, the total cost of max-MSR is dominated by the

second phase, which is in O(Km′n) time.

2.6 Empirical Evaluation

We present an experimental study on real and synthetic data to evaluate the efficacy of

our methods.

2.6.1 Experimental Setting

Datasets. For the basic SimRank model, we use three real datasets (BerkStan,

Patent, DBLP) to evaluate the efficiency of our approaches, and one synthetic dataset

(Syn) to vary graph characteristics. For the Minimax SimRank variation model in bipar-

tite domains, we use two real datasets (Course and IMDB) and one syntectic bipartite

dataset (SynBI).

The sizes of the datasets are illustrated in Figure 2.6. In the following, we provide a

detailed description of these datasets.
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(1) BerkStan. The first network is a Berkeley-Stanford web graph of 7.4M links

between 680K web pages (from berkely.edu and stanford.edu domains), downloaded

from the Stanford Network Analysis Project (SNAP).6

(2) Patent. This is a citation network among U.S. Patents, obtained from the Na-

tional Bureau of Economic Research. 7 It is our largest dataset consisting of 3.2M U.S.

patents (vertices) and 16.1M citations (edges), with a low average degree of 4.4.

(3) DBLP. This is a scientific publication network, derived from DBLP Computer

Science Bibliography.8 We selected the recent 12-year publications (from 2000 to 2011) in

8 major conferences (ICDE, VLDB, SIGMOD, PODS, CIKM, ICDM, SIGIR, SIGKDD),

and then built 4 co-authorship graphs by choosing every 3 years as a time step.

(4) Course. This dataset is obtained from the transcripts of 8,470 students in the

University of New South Wales. Every transcript lists the courses that the student has

taken. There are 1,873 courses in total, with an average of about 25 courses for each

student.

(5) IMDB. The IMDB network9 is a bipartite graph, with two types of vertices:

20.1K movies and 785.6K actors. Each edge from a movie to an actor means that the

actor name movies has appeared in the movie. There are 3.8M edges in this dataset,

among with 8,695 edges are multiple edges. For our Minimax SimRank analysis, we

treated multiple edges as single ones.

(6) Syn. The synthetic data were produced by the graph generator GTGraph 10,

varying two parameters: the number of vertices, and the number of edges. We generated

the graphs following the power laws.

(7) SynBI. The synthetic bipartite graphs were also generated by GTGraph, denoted

as SynBI, with vertex sets of two sides having one half of the vertices, and edges being

randomly generated.

6http://snap.stanford.edu/data/web-BerkStan.html
7http://data.nber.org/patents/
8http://dblp.uni-trier.de/˜ley/db/
9http://www.imdb.com

10http://www.cse.psu.edu/˜madduri/software/GTgraph/
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Compared Algorithms. We implement 7 algorithms via Visual C++ 8.0. (1) OIP-DSR,

our differential SimRank of Eq.(2.15)11 in conjunction with partial sums sharing. (2)

OIP-SR, our basic SimRank using partial sums sharing. (3) psum-SR [LVGT10], without

partial sums sharing. (4) mtx-SR [LHH+10], a matrix-based SimRank via SVD factoriza-

tion. (5) max-MSR, our bipartite Minimax SimRank variation using finer-grained partial

max sharing. (6) psum-MSR, the baseline bipartite Minimax SimRank variation, with

partial max sharing via Eq.(2.20). (7) MSR [JW02, Section 4.3.1], the original iterative

bipartite Minimax SimRank variation.

We set the following default parameters as used in [LVGT10]: C = 0.6, ϵ = 0.001

(unless otherwise mentioned). For all the methods, we clip similarity values at 0.001, to

discard far-apart nodes with scores less than 0.001 for storage. It can significantly reduce

space cost with minimal impact on accuracy, as shown in [LVGT10].

Evaluation Metrics. To evaluate ranking results on DBLP, we used Normalized Dis-

counted Cumulative Gain (NDCG) [LHH+10]. The NDCG at rank position p is defined

as follows

NDCGp =
1

IDCGp

p∑
i=1

(2ranki − 1)/log2 (1 + i),

where ranki is the graded relevance at position i, and IDCGp is a normalization factor,

ensuring the NDCG of an ideal ranking at position p is 1.

For ground truth, we invited twelve independent evaluators from the database com-

munity, and used their final judgment, rendered by a majority vote, as the standard. To

validate the relative order of co-authors for different algorithms on DBLP, these experts

may assess the “true” relevance of each retrieved co-authorship, by referring to Co-Author

Path in Microsoft Academic Search12 to see “separations” between collaborators.

We used a machine powered by a Quad-Core Intel i5 CPU (3.10GHz) with 16GB

RAM, using Windows 7. Each experiment was run 5 times, and the average performance

is reported here.

11In the previous conference version [YLZ+13b], OIP-DSR is our differential SimRank of Eq.(2.14),
which requires more memory space for storing the intermediate results.

12http://academic.research.microsoft.com/VisualExplorer
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Figure 2.7: Time Efficiency on Real Datasets

2.6.2 Experimental Results

Exp-1: Time Efficiency.

We first evaluate (1) the CPU time of OIP-SR and OIP-DSR on real data, and (2) the

impact of graph density on CPU time, using synthetic data. To favor mtx-SR that only

works on low-rank graphs (i.e., graph with a small rank of the adjacency matrix), DBLP

data are used although OIP-SR and OIP-DSR work pretty well on various graphs.

Fixing the accuracy ϵ = .001 for DBLP, varying K for BerkStan and Patent, Fig-

ure 2.7 compare the CPU time of the four algorithms. (1) In all the cases, OIP-SR consis-

tently outperforms mtx-SR and psum-SR, i.e., our partial sums sharing approach is effec-

tive. On BerkStan and Patent, the speedups of OIP-SR are on average 4.6X and 2.7X,

respectively, better than psum-SR. On the large Patent, when K ≥ 8, psum-SR takes

too long to finish the computation in two days, which is practically unacceptable. In

contrast, OIP-SR and OIP-DSR just need about 18.6 hours for K = 10. (2) OIP-DSR al-

ways runs up to 5.2X faster than psum-SR, and 3X faster than OIP-SR on DBLP,

for the desired ϵ = .001. This is because the differential matrix form of OIP-DSR in-

creases the rate of convergence, which enables fewer iterations for attaining the given ϵ.

(3) The speedups of OIP-SR and OIP-DSR on BerkStan (4.6X) are more pronounced

than those on DBLP (1.8X) and Patent (2.7X), which is due to the high degree of

BerkStan (d = 11.1) that may potentially increase the overlapped area for common

in-neighbor sets, and thus provides more opportunities for partial sums sharing.
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Figure 2.8: Amortized Time on Real Data
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Figure 2.9: Effect of Density

Figure 2.8 further shows the amortized time for each phase of OIP-SR and OIP-DSR on

BerkStan and Patent data (given ϵ = .001), in which x-axis represents different stages.

From the results, we can discern that (1) for OIP-SR, the time taken for “Building

MST” is far less than the time taken for “Share Sums”. This confirms our complexity

analysis in Proposition 2.10. (2) “Building MST” always takes up larger portions (34%

on BerkStan, and 24% on Patent) in the total time of OIP-DSR, than those (6%

on BerkStan, and 12% on Patent) in the total time of OIP-SR. This becomes more

evident on various datasets because OIP-SR and OIP-DSR takes (almost) the same time

for “Building MST”, whereas, for “Sharing Sums”, OIP-DSR enables less time (4.5X on

BerkStan, and 2.5X on Patent) than OIP-SR, due to the speedup in the convergence

rate of OIP-DSR.

Fixing n = 300K and varying m from 3M to 15M on the synthetic data, Figure

2.9 reports the impact of graph density (ave. in-degree) on CPU time, where y-axis

is in the log scale. The results show that (1) for ϵ = .001, OIP-DSR significantly out-

performs psum-SR by at least one order of magnitude as m increases. In all the cases,

OIP-SR achieves 0.5 order of magnitude speedups on average. (2) Interestingly, the

speedups of OIP-DSR are sensitive to graph density (ave. in-degree d) The larger the d

is, the higher the likelihood of overlapping in-neighbors is for partial sums sharing, as

expected. The biggest speedups are observed for larger d (higher density) — with nearly

2 orders of magnitude speedup for d = 50.
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Figure 2.10: Memory Space on Real Datasets

Exp-2: Memory Space.

We next evaluate the memory space efficiency of OIP-DSR and OIP-SR on real data. Note

that we only use mtx-SR on small DBLP as a baseline; for large BerkStan and Patent,

the memory space of mtx-SR will explode as the SVD method of mtx-SR destroys the

graph sparsity.

Figure 2.10 shows the results on space. We observe that (1) on DBLP, OIP-DSR and

OIP-SR have much less space thanmtx-SR by at least one order of magnitude, as expected.

(2) In all the cases, the space cost of OIP-DSR and OIP-SR fairly retains the same order

of magnitude as psum-SR. Indeed, both OIP-DSR and OIP-DSR merely need about 1.8X,

1.9X, 1.6X space of psum-SR on DBLP, BerkStan, Patent, respectively, for outer

partial sums sharing. This confirms our complexity analysis in Section 2.3, suggesting

that OIP-DSR and OIP-DSR do not require too much extra space for caching outer partial

sums. Moreover, OIP-DSR has almost the same space as OIP-SR since Eq.(2.15) does not

need to memoize the auxiliary Tk in Eq.(2.14). (3) On BerkStan and Patent, the

space costs of OIP-DSR and OIP-SR are stabilized as K increases. This is because the

memoized partial sums are released immediately after each iteration, thus maintaining

the same space during the iterations.
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Figure 2.11: Convergence Rate

Exp-2: Memory Space.

We next compare the convergence rate of OIP-DSR and OIP-SR, using real and synthetic

data. For the interest of space, below we only report the results on DBLP d11 (C = 0.8).

The trends on other datasets are similar.

By varying ϵ from 10−2 to 10−6, Figs. 2.11a and 2.12 show that (1) OIP-DSR needs

far fewer iterations than OIP-SR (also psum-SR), for a given accuracy. Even for a small

ϵ = 10−6, OIP-DSR only requires 8 iterations, whereas the convergence of OIP-SR in

this case becomes sluggish, yielding over 60 iterations. This confirms our observation

in Proposition 2.14 that OIP-DSR has an exponential rate of convergence. (2) The two

curves labeled “Lambert W Est.” and “Log Est.” (dashed line) visualize our apriori

estimates of K ′ derived from Corollaries 2.15 and 2.16, respectively. We can see that

these dashed curves are close to the actual number iterations of OIP-DSR, suggesting

that our estimates of K ′ for OIP-DSR are fairly precise.

Exp-4: Relative Order.

To analyze the relative order of the similarities from OIP-DSR and OIP-SR, we use DBLP

d11, a co-authorship graph with ground truth. Fixing a vertex a as a given query

(author), we compute the NDCGp of OIP-DSR and OIP-SR via the similarities s(a, ⋆)
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Figure 2.12: Relative Ordering

# Co-authors # Co-authors # Co-authors
1 Hongjun Lu 11 James Cheng 21 Wenfei Fan
2 Lu Qin 12 Weifa Liang 22 Rong-Hua Li
3 Xuemin Lin 13 Ying Zhang 23 Hong Cheng H
4 Wei Wang 14 Bolin Ding 24 Jun Gao N
5 Lei Chen 15 Haixun Wang 25 Xiaofang Zhou
6 Lijun Chang 16 Aoying Zhou 26 Ke Yi
7 Yiping Ke 17 Xiang Lian 27 Yufei Tao
8 Haifeng Jiang 18 Cheqing Jin 28 Nan Tang
9 Philip S. Yu 19 Baichen Chen 29 Jinsoo Lee
10 Gabriel Pui Cheong Fung 20 Byron Choi 30 Kam-Fai Wong

Figure 2.13: Case Study: Co-authors of “Jeffrey Xu Yu”

from the top-p query perspective. For query selection, we sort all the vertices in order

of their degree into 4 groups, and then randomly choose 100 vertices from each group,

in order to ensure that the selected vertices can systematically cover a broad range of

all possible queries. For each query, Figure 2.12 compares the average NDCGp values

of OIP-DSR with its counterparts of OIP-SR, for p = 10, 30, 50. The result shows that

OIP-DSR can perfectly maintain the relative order of the similarity scores produced by

OIP-DSR with only 1% loss of NDCG30 and NDCG50. For p = 10 (i.e., top-10 query),

OIP-DSR produces exactly the same result of OIP-SR, as expected. Thus, we can gain a

lot in speedup from OIP-DSR while suffering little loss in quality.

For case study, Figure 2.13 shows the top-30 co-authors of “Prof. Jeffrey Xu Yu”

via OIP-DSR on DBLP d11. The results of OIP-DSR, as compared as with OIP-SR,
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only differ in one inversion at two adjacent positions (#23, #24), which is practically

acceptable. This confirms our intuitions in Section 2.4, where we envisage that slightly

modifying the damping factor in OIP-DSR never incurs high quality loss.

Exp-5: Minimax SimRank Variation.

Finally, we evaluate the computational time and memory space of max-MSR against

the baseline psum-MSR and MSR on bipartite real networks (Course and IMDB) and

synthetic dataset (SynBI).

To compare the CPU time of the three Minimax SimRank variations, on Course

and IMDB, we vary K from 5 to 25; on SynBI, we fix n = 200K with each side of the

bipartite graph having 100K vertices, and vary the average out-degree from 5 to 35. The

results are reported in Figure 2.14. (1) In all the cases, max-MSR is always the fastest,

and psum-MSR the second, both of which significantly outperform MSR by several times

on Course and by one order of magnitude on IMDB. This is because partial max

memoization can achieve high speedups for Minimax SimRank computation. Moreover,

the finer-grained partial max memoization of max-MSR can share much more common

subparts that are neglected by psum-MSR. Thus, max-MSR is consistently better than

psum-MSR. On large IMDB, the speedup is more apparent, e.g., for K = 5, the time

of max-MSR (0.6hr) is 5.15X faster than psum-MSR (3.2hr); however, it takes too long

time for MSR to finish the computation within one day. Hence, we stop iterating after

K ≥ 5 iterations on psum-MSR and K ≥ 15 on SynBI, respectively. (2) The graph

density has a huge impact on the speedup of max-MSR. The denser the graph, the more

likely the common out-neighbors (bicliques) can be shared for partial max memoization.

This explains why the reduced amount of time for max-MSR relative to psum-MSR is

far more pronounced on IMDB than on Course, as IMDB has a higher average out-

degree (12.09) than Course (5.53). The results on SynBI have also confirmed this

observation, where we notice that the share ratio tends to increase w.r.t. the growing

average out-degree of the synthetic graph.



Chapter 2. Fast SimRank on Large Networks and Bipartite Domains 61

max-MSR psum-MSR MSR

5 10 15 20 25
0

1K

2K

3K

4K

5K
m = 46, 825

d = 5.53

# Iter. K (Course)

E
la
p
se
d
T
im

e
(s
ec
)

5 10 15 20
0

5

10

15

20
m = 3.87M

d = 12.09

0.6 1.3 1.9 2.3
3.2

6.7

10.6

13.8

# Iter. K (IMDB)

E
la
p
se
d
T
im

e
(h
r)

5 15 25 35
0

2K

4K

6K

8K

10K

share ratio

0.47

0.48
0.58 0.67

Ave Deg. d (SynBI 200K)

E
la
p
se
d
T
im

e
(s
ec
)

Figure 2.14: Time Efficiency on Bipartite Networks
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Figure 2.15: Memory Space on Bipartite Networks

The memory space of these Minimax SimRank variations on real and synthetic

datasets is evaluated in Figure 2.15. Due to space limitations, we merely report the

results on SynBI with the average out-degree of 25. We notice that in all the cases,

the memory space of max-MSR is a bit higher than that of psum-MSR, both of which

are a bit higher than MSR, yet maintain the same order of magnitude during the it-

erations. For instance on IMDB, the space cost for max-MSR (0.2M) is slightly higher

than psum-MSR (0.14M) and MSR (0.10M). This is because the partial max memoization

requires extra space to cache similarities of all dummy vertices. The finer the granularity

for memoization, the more space it requires, as expected.

2.7 Related Work

The development of efficient methods to compute SimRank is a vibrant research area

[YZL+12,LVGT10,LHH+10] that is fundamental to e.g., web mining and object ranking.
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Recent results on SimRank can be summarized as follows.

The earliest mention of SimRank dates back to Jeh and Widom [JW02] who suggested

(i) an iterative approach to compute SimRank, which is in O(Kd2n2) time, along with

(ii) a heuristic pruning rule to set the similarity between far-apart vertices to be zero.

Unfortunately, the naive iterative SimRank is rather costly to compute, and there is no

provable guarantee on the accuracy of the pruning results. To overcome the limitations,

a very appealing attempt was made by Lizorkin et al. [LVGT10] who (i) provided accu-

racy guarantees for SimRank iterations, i.e., the number of iterations needed for a given

accuracy ϵ is K = ⌈logC ϵ⌉, and (ii) proposed three excellent optimization approaches,

i.e., essential node-pair selection, partial sums memoization, and threshold-sieved simi-

larities. Especially, partial sums memoizing serves as the cornerstone of their strategies,

which significantly reduces the computation of SimRank to O(Kdn2) time. Our work

differs from [LVGT10] in the following. (i) We put forward the phenomenon of partial

sums redundancy in [LVGT10] that typically exists in real graphs. (ii) We accelerate the

convergence of SimRank iterations from geometric [LVGT10] to exponential growth, by

revising the existing SimRank model. (iii) In bipartite domains, we also devise a partial

max sharing for the Minimax SimRank variation model.

There has also been a flurry of research interests (e.g., [LHH+10, HFLC10, ZHS09,

AMC08,FR07,LHH+10,LLY12]) in the SimRank optimization problems. Li et al. [LHH+10]

first based SimRank computation on the matrix representation. They developed very in-

teresting SimRank approximation techniques on a low-rank graph, by leveraging the

singular value decomposition and tensor product. However, (i) for digraphs, the up-

per bound of approximation error still remains unknown. (ii) The computational time

in [LHH+10] would become O(n4) even when the rank of an adjacency matrix is rela-

tively small, e.g., ⌈
√
n⌉ (≪ n). The pioneering work of He et al. [HFLC10] utilized the

node-updating method on GPU for parallel SimRank computing. They deployed itera-

tive aggregation techniques to accelerate the global convergence of parallel SimRank, in

which the speed-up in the global convergence of SimRank is due mainly to the different
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local convergence rates on small matrix partitions. Recently, the new notions of weight-

and evidence-based SimRank have been suggested in [AMC08] to address the issue of

query rewriting for sponsored search. Fogaras et al. [FR07] adopted a scalable Monte

Carlo sampling approach to estimate SimRank by using the first meeting time of two ran-

dom surfers. However, their algorithms are probabilistic in nature. Li et al. [LHH+10]

employed an effective method for locally computing single-pair SimRank by breaking the

holistic nature of the SimRank recursion. Zhao et al. [ZHS09] proposed a new ranking

model, termed Penetrating Rank (P-Rank), by taking account of both in- and out-links.

Since the iterative paradigms of SimRank and P-Rank are almost similar, our techniques

for SimRank can be easily extended to P-Rank computation. Lee et al. [LLY12] devised

a top-K SimRank algorithm needing to access only a small fraction of vertices in a graph.

Most recently, Fujiwara et al. [FNSO13] proposed an excellent SVD-based SimRank for

efficiently finding the top-k similar nodes w.r.t. a query.

2.8 Conclusions

In this chapter, we have proposed three efficient methods to speed up the computation

of SimRank on large networks and bipartite domains. Firstly, we leveraged a novel

clustering approach to optimize partial sums sharing. By eliminating the duplicates of

computational efforts among the partial summations, an efficient algorithm was devised

to greatly reduce the time complexity of SimRank. Secondly, we proposed a revised

SimRank model based on the matrix differential representation, achieving an exponential

speedup in the convergence rate of SimRank, as opposed to its conventional counterpart

of a geometric speedup. Thirdly, in bipartite domains, we developed a novel finer-grained

partial max clustering method for greatly accelerating the computation of the Minimax

SimRank variation, and showed that the partial max sharing approach is different from

the partial sums sharing method in that the “subtraction” is disallowed in the context

of max operation. Our empirical experiments on both real and synthetic datasets have

shown that the integration of our proposed methods for the basic SimRank equation
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can significantly outperform the best known algorithm by about one order of magnitude,

and that the computational time of our finer-grained partial max sharing method for the

Minimax SimRank variation in bipartite domains outperforms the baselines by 0.5–1.2

orders of magnitude.



Chapter 3

Incremental SimRank on

Link-Evolving Graphs

3.1 Introduction

With many recent eye-catching advances of the Internet, link analysis has become a com-

mon and important tool for web data management. Due to the proliferative applications

(e.g., link prediction, recommender systems, citation analysis), SimRank has stood out

as an arresting one over the last decade, due to its succinct and iterative philosophy that

“two nodes are similar if they are referenced by similar nodes”, coupled with the base case

that “every node is maximally similar to itself”. In Chapter 2, the batch computation

of SimRank on static networks has been investigated, which requires O(Kd′n2) time for

all node-pairs, where K is the number of iterations, and d′ ≤ d (d is the average graph

in-degree).

In general, real graphs are often large, with links constantly evolving with minor

changes. This is particularly evident in e.g., co-citation networks, web graphs, and social

networks. As a statistical example [NCO04], there are 5%–10% links updated every week

in a web graph. It is rather expensive to reassess similarities for all pairs of nodes from

scratch when the graph is updated. Fortunately, we observe that when link updates are

65
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small, the affected areas for SimRank updates are often small as well. With this comes

the need for incremental algorithms computing changes to SimRank in response to link

updates, to skip unnecessary recomputations.

3.1.1 Problem Statement

Motivated by this, in this chapter we investigate the following problem for SimRank

assessment.

Problem (Incremental SimRank Computation)

Given a network G, the similarities S for G, the link changes ∆G 1 to G, and the

damping factor C ∈ (0, 1).

Compute the changes ∆S to the similarities S.

In contrast with the work on batch SimRank computation, the study on incremental

SimRank for link updates is limited. Indeed, due to the recursive nature of SimRank,

it is hard to identify “affected areas” for incrementally updating SimRank. To the best

of our knowledge, there is only one work [LHH+10] by Li et al. who gave a pioneering

method for finding the SimRank changes in response to link updates. Their idea is to

factorize the backward transition matrix Q 2 of the original graph into U·Σ·VT 3 via the

singular value decomposition (SVD) first, and then incrementally estimate the updated

matrices of U, Σ, VT for link changes at the expense of exactness. As a result, updating

the similarities of all node-pairs entails O(r4n2) time without guaranteed accuracy, where

r (≤ n) is the target rank of the low-rank approximation4, which is not always negligibly

small in practice, as illustrated in the following example.

Example 3.1. Figure 3.1 is a citation graph G (a fraction of DBLP) where each edge

depicts a reference from one paper to another. Assume G is updated by adding an edge

1∆G consists of a sequence of edges to be inserted/deleted.
2In the notation of [LHH+10], the backward transition matrix Q is denoted as W̃, which is the

row-normalized transpose of the adjacency matrix.
3We use XT (instead of X̃ in [LHH+10]) to denote the transpose of matrix X.
4According to [LHH+10], using our notations, r ≤ rank(Σ+UT ·∆Q ·V), where ∆Q is the changes

to Q for link updates.
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sim simtrue simLi et al.

(a, b) 0.075 0.062 0.073
(a, d) 0.000 0.006 0.002
(i, f) 0.246 0.246 0.246
(k, g) 0.128 0.128 0.128
(k, h) 0.288 0.288 0.288
(j, f) 0.206 0.138 0.206
(m, l) 0.160 0.160 0.160
(j, b) 0.000 0.030 0.001

Figure 3.1: Compute SimRank incrementally as edge (i, j) is added

(i, j), denoted by ∆G (see the dash arrow). Using the damping factor C = 0.8 5, we

want to compute SimRank scores in the new graph G ∪∆G. The existing method by Li

et al. (see Algorithm 3 in [LHH+10]) first decomposes the old Q = U·Σ·VT as a precom-

putation step, then, when edge (i, j) is added, it incrementally updates the old U,Σ,VT ,

and utilizes their updated versions to obtain the new SimRank scores in G ∪∆G. The

results are shown in Column ‘simLi et al.’ of the table. For comparison, we also use a batch

algorithm [YLZ+13b] to compute the “true” SimRank scores in G∪∆G from scratch, as

illustrated in Column ‘simtrue’. It can be noticed that for several node-pairs (not high-

lighted in gray), the similarities obtained by Li et al. ’s incremental method [LHH+10]

are different from the “true” SimRank scores even if the lossless SVD is used 6 during

the process of updating U,Σ,VT , that is, Li et al. ’s incremental approach [LHH+10]

is inherently approximate. In fact, as will be rigorously explained in Section 3.2, their

incremental strategy may miss some eigen-information whenever rank(Q) < n.

We also observe that the target rank r for the SVD of the matrix C 7 may not

be chosen to be negligibly smaller than n. As an example, in Column ‘simLi et al.’ of

5According to [JW02], the damping factor C is empirically set around 0.6–0.8, which indicates the
rate of decay as similarity flows across edges.

6A rank-α SVD of the matrix X ∈ Rn×n is a factorization of the form Xα = U · Σ · VT , where
U,V ∈ Rn×α are column-orthonormal matrices, and Σ ∈ Rα×α is a diagonal matrix, α is called the
target rank of the SVD, which is given by the user.

If α = rank(X), then Xα = X, and we call it the lossless SVD of X.
If α < rank(X), then ∥X−Xα∥2 gives the least square estimate error, and we call it the low-rank SVD

of X.
7As defined in [LHH+10], r is the target rank for the SVD of the auxiliary matrix C , Σ+UT ·∆Q·V,

where ∆Q is the changes to Q for link updates.
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Figure 3.1, r is chosen to be rank(C) = 9 for the lossless SVD of C. Although r = 9

is not negligibly smaller than n = 15, the accuracy of ‘simLi et al.’ is still undesirable as

compared with ‘simtrue’, not to mention choosing r < 9.

Example 3.1 tells that Li et al.’s incremental method [LHH+10] is approximate, and

the O(r4n2) time for updating all node-pair scores might be costly, as r is not always

much smaller than n. Inspired by this, we propose a novel fast (exact8) algorithm for

incrementally computing SimRank on link-evolving graphs. Instead of incrementally

finding the changes to the SVD of Q for computing new similarities, our method can cope

with the dynamic nature of link updates, by precomputing SimRank on the old entire

graph once via a batch algorithm first, and then incrementally finding SimRank updates

∆S w.r.t. link updates. Moreover, as links are often updated with small changes, not

all node-pair similarities need to be updated. As an example in the table of Figure 3.1,

many node-pair similarities (highlighted in gray) remain unchanged when edge (i, j)

is added. However, it is a grand challenge to identify the “affected areas” of ∆S, as

SimRank is defined in a recursive fashion. To resolve this problem, we formulate ∆S as

an aggregation of similarities based on incoming paths. There are opportunities to find

its “affected areas” by detecting the changes in these paths.

3.1.2 Chapter Outlines

In this chapter, our main contributions are summarized below.

• We characterize the SimRank update matrix ∆S w.r.t. every link update via a

rank-one Sylvester matrix equation. In light of this, we devise a fast incremental

algorithm that can update similarities of all n2 node-pairs in O(Kn2) time for K

iterations. (Section 3.3.1)

• We also propose an effective pruning strategy to identify the “affected areas” of

∆S to skip unnecessary similarity recomputations, without loss of exactness. This

8Here, the “exactness” of our iterative algorithm means that it can converge to the exact SimRank
solution as the number of iterations increases.
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enables a further speedup in the incremental SimRank computation, which is in

O(K(nd + |AFF|)) time, where d is the average in-degree of the old graph, and

|AFF| (≤ n2) is the size of “affected areas”, in practice, |AFF| ≪ n2. (Section 3.3.2)

• We conduct extensive experiments on real and synthetic datasets to demonstrate

that our algorithm (a) consistently outperforms the best known link-incremental

algorithm [LHH+10], from several times to over one order of magnitude, and (b)

runs much faster than the batch counterpart [YLZ+13b] when link updates are

small. (Section 3.4)

The rest of the chapter is structured as follows. Section 3.2 analyzes the limitations

in Li et al.’s incremental SimRank approach [LHH+10]. Section 3.3 introduces our incre-

mental method for SimRank assessment. Section 3.4 presents our experimental results.

Section 3.5 revisits the related work, followed by the chapter conclusion in Section 3.6.

3.2 A Fly in the Ointment in [LHH+10]

In this section, we provide theoretical analysis to show that Li et al.’s incremental ap-

proach [LHH+10] is approximate in nature, which might miss some eigen-information

even if the lossless SVD is utilized for computing SimRank.

The existing incremental method [LHH+10] computes SimRank by expressing simi-

larity matrix S in terms of matrices U,Σ,V, where U,Σ,V are the decomposed matrices

of Q via SVD:

Q = U ·Σ ·VT . (3.1)

Then, when links are changed, [LHH+10] incrementally computes the new SimRank ma-

trix S̃ by updating the old U,Σ,V as

Ũ = U ·UC, Σ̃ = ΣC, Ṽ = V ·VC,
9 (3.2)

9In the sequel, we abuse a tilde to denote the updated version of a matrix, e.g., Ũ is the updated
matrix of old U after link updates.
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where UC,ΣC,VC in Eq.(3.2) are the decomposed matrices of the auxiliary matrix

C , Σ+UT ·∆Q ·V via SVD, i.e.,

C = UC ·ΣC ·VC
T , (3.3)

and ∆Q is the changes to Q in response to link updates.

However, in the above process, we observe that using Eq.(3.2) to update the old

U,Σ,V may miss some eigen-information. The main problem in [LHH+10] is that the

derivation of Eq.(3.2) rests on the assumption that

U ·UT = V ·VT = In. (3.4)

Unfortunately, Eq.(3.4) does not hold (unless Q is a full-rank matrix, i.e., rank(Q) = n)

because in the case of rank(Q) < n, even a “perfect” (lossless) SVD of Q via Eq.(3.1)

would produce n × α rectangular matrices U and V with α = rank(Q) < n. Thus,

rank(U·UT ) = α < n = rank(In), which implies that U·UT ̸= In. Similarly, V ·VT ̸= In

when rank(Q) < n. Hence, Eq.(3.4) is not always true.

Example 3.2. Consider the matrix Q = [ 0 1
0 0 ], and its lossless SVD: Q = U · Σ · VT

with U = [ 10 ] , Σ = [1], V = [ 01 ]. One can readily verify that

U ·UT = [ 10 ] · [ 1 0 ] = [ 1 0
0 0 ] ̸= [ 1 0

0 1 ] = In (n = 2),

whereas

UT ·U = [ 1 0 ] · [ 10 ] = 1 = Iα
10 (α = rank(Q) = 1).

Hence, when Q is not full-rank, Eq.(3.4) does not always hold, but one can prove that

the following identity always holds:

UT ·U = VT ·V = Iα

since the SVD ensures that U and V are column-orthonormal matrices, i.e., every two

column-vectors, say xi and xj of U (resp.V) satisfy xi
T · xj =

{
1, i=j;
0, i ̸=j.

10The notation Iα denotes the α× α identity matrix.
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To clarify that Eq.(3.4) is involved in the derivation of Eq.(3.2), let us briefly recall

from [LHH+10] the 4 steps for obtaining Eq.(3.2), and the problem lies in the last step.

Step 1. Initially, when links are changed, the old Q is updated to new Q̃ = Q+∆Q.

Replacing Q by Eq.(3.1) yields

Q̃ = U ·Σ ·VT +∆Q. (3.5)

Step 2. Premultiply by UT and postmultiply by V on both sides of Eq.(3.5), and

use the property UT ·U = VT ·V = Iα.
11 It follows that

UT · Q̃ ·V = Σ+UT ·∆Q ·V. (3.6)

Step 3. Let C be the right-hand side of Eq.(3.6). Applying Eq.(3.3) to Eq.(3.6)

yields

UT · Q̃ ·V = UC ·ΣC ·VC
T . (3.7)

Step 4. Li et al. [LHH+10] attempted to premultiply by U and postmultiply by VT

on both sides of Eq.(3.7) first, and then rested on the assumption of Eq.(3.4) to obtain

U ·UT︸ ︷︷ ︸
?= In

·Q̃ ·V ·VT︸ ︷︷ ︸
?= In

= (U ·UC)︸ ︷︷ ︸
,Ũ

· ΣC︸︷︷︸
,Σ̃

· (VC
T ·VT )︸ ︷︷ ︸
,ṼT

, (3.8)

which is the result of Eq.(3.2).

However, the problem lies in Step 4. As mentioned before, Eq.(3.4) does not hold

when rank(Q) < n. That is, for Eq.(3.8), Q̃ ̸= Ũ · Σ̃ · ṼT . Consequently, updating the

old U,Σ,V via Eq.(3.2) may produce an error (up to ∥In −U ·UT ∥2 = 1, which is not

practically small) in incrementally “approximating” S̃.

Example 3.3. Consider the old Q and its SVD in Example 3.2. Suppose there is an

added edge, associated with ∆Q = [ 0 0
1 0 ].

Li et al. [LHH+10] first computes the auxiliary matrix C as

C , Σ+UT ·∆Q ·V = [1] + [ 1 0 ] · [ 0 0
1 0 ] · [ 01 ] = [1].

11As mentioned in Example 3.2, since U ∈ Rn×α is column-orthonormal (not row -orthonormal), it
follows that UT ·U = Iα, whereas U ·UT ̸= In.
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Then, the matrix C is decomposed via Eq.(3.3) into

C = UC ·ΣC ·VC
T with UC = ΣC = VC = [1].

Finally, Li et al. [LHH+10] update the new SVD of Q̃ via Eq.(3.2) as

Ũ = U ·UC = [ 10 ] , Σ̃ = ΣC = [1], Ṽ = V ·VC = [ 01 ] .

However, one can readily verify that

Ũ · Σ̃ · ṼT = [ 0 1
0 0 ] ̸= [ 0 1

1 0 ] = Q+∆Q = Q̃.

In comparison, a “true” SVD of Q̃ should be

Q̃ = Û · Σ̂ · V̂T with Û = [ 0 1
1 0 ] , Σ̂ = V̂ = [ 1 0

0 1 ] .

This suggests that Li et al. ’s incremental way [LHH+10] of updating U,Σ,V is

approximate (e.g., Ũ = [ 10 ], as compared with its “true” version Û = [ 0 1
1 0 ], misses

the eigenvector [ 01 ]). Worse still, the approximation error is not small in practice as

∥Q̃− Ũ · Σ̃ · ṼT ∥2 = ∥ [ 0 1
1 0 ]− [ 0 1

0 0 ] ∥2 = 1.

Our analysis tells that Eq.(3.4) holds only when (i) Q is full-rank, and (ii) the

SVD of Q is lossless (n = rank(Q) = α). Only in this case, Li et al. ’s incremental

method [LHH+10] produces exact SimRank, which does not miss any eigen-information.

However, the time complexity O(r4n2) of [LHH+10] would become O(n6), which is rather

expensive. In practice, as evidenced by our statistical experiments on Stanford Large Net-

work Dataset Collection (SNAP) 12, most real-life graphs are not full-rank, which is also

in part demonstrated by our evaluations in Figure 3.3. Thus, [LHH+10] produces the

approximate solution in most cases.

3.3 Our Incremental Solution

We now propose our incremental techniques for computing SimRank, with the focus on

handling unit update (i.e., a single edge insertion or deletion). Since batch update (i.e., a

12http://snap.stanford.edu/data/
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list of link insertions and deletions mixed together) can be decomposed into a sequence

of unit updates, unit update plays a vital role in our incremental method.

The main idea of our solution is based on two methods.

(i) We first show that SimRank update matrix ∆S ∈ Rn×n can be characterized

as a rank-one Sylvester matrix equation13. By leveraging the rank-one structure of the

matrix, we provide a novel efficient paradigm for incrementally computing∆S, which only

involves matrix-vector and vector-vector multiplications, as opposed to matrix-matrix

multiplications to directly compute the new SimRank matrix S̃.

(ii) In light of our representation of∆S, we then identify the “affected areas” of∆S in

response to link update ∆Q, and devise an effective pruning strategy to skip unnecessary

similarity recomputations for link updates.

Before detailing our two methods in the subsections below, we introduce the following

notations. (i) ei denotes the n× 1 unit vector with a 1 in the i-th entry and 0s in other

entries. (ii) di denotes the in-degree of the node i in the old graph G.

3.3.1 Characterizing ∆S via Rank-One Sylvester Equation

We first give the big picture, followed by rigorous proofs.

Main Idea. For every edge (i, j) update, we observe that ∆Q is a rank-one matrix,

i.e., there exist two column vectors u,v ∈ Rn×1 such that∆Q ∈ Rn×n can be decomposed

into the outer product14 of u and v as follows:

∆Q = u · vT .15 (3.9)

Based on Eq.(3.9), we then have an opportunity to efficiently compute ∆S, by char-

acterizing it as

∆S = M+MT , (3.10)

13Given the matrices A,B,C ∈ Rn×n, the Sylvester matrix equation in terms of X ∈ Rn×n takes the
form: X = A ·X ·B+C. When C is a rank-α (≤ n) matrix, we call it the rank-α Sylvester equation.

14The outer product of the column vectors x,y ∈ Rn×1 is an n × n rank-1 matrix x · yT , in contrast
with the inner product xT · y, which is a scalar.

15The explict expression of u and v will be given after a few discussions.
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where the auxiliary matrix M ∈ Rn×n satisfies the following rank-one Sylvester equation:

M = C · Q̃ ·M · Q̃T + C · u ·wT . (3.11)

Here, u,w are two column vectors: u is derived from Eq.(3.9), and w can be represented

in terms of the old Q and S (we will provide their exact expressions later after some

discussions); and Q̃ = Q+∆Q.

Thus, computing ∆S boils down to solving M in Eq.(3.11). The main advantage

of solving M via Eq.(3.11), as compared to directly computing the new scores S̃ via

SimRank formula

S̃ = C · Q̃ · S̃ · Q̃T + (1− C) · In, (3.12)

is the high computational efficiency. More specifically, solving S̃ via Eq.(3.12) needs

expensive matrix-matrix multiplications, whereas computing M via Eq.(3.11) involves

only matrix-vector and vector-vector multiplications, which is a substantial improvement

achieved by our observation that (C · uwT ) ∈ Rn×n in Eq.(3.11) is a rank-1 matrix, as

opposed to the (full) rank-n matrix (1 − C) · In in Eq.(3.12). To further elaborate on

this, we readily convert the recursive forms of Eqs.(3.11) and (3.12), respectively, into

the following series forms: 16

M =

∞∑
k=0

Ck+1 · Q̃k · u ·wT · (Q̃T )
k
, (3.13)

S̃ = (1− C) ·
∞∑
k=0

Ck · Q̃k · In · (Q̃T )
k
. (3.14)

To compute the sums in Eq.(3.13) for M, a conventional way is to memoize M0 ←

C · u ·wT first (where the intermediate result M0 is an n× n matrix), and then iterate

as follows:

Mk+1 ←M0 + C · Q̃ ·Mk · Q̃T , (k = 0, 1, 2, · · · )

involving costly matrix-matrix multiplications (e.g., Q̃ ·Mk). In contrast, our trick takes

advantage of the rank-one structure of u ·wT to compute the sums in Eq.(3.13) for M,

16One can readily verify that if X =
∑∞

k=0 A
k ·C ·Bk is a convergent matrix series, it is the solution

of the Sylvester equation X = A ·X ·B+C.
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by converting the conventional matrix-matrix multiplications Q̃ · (uwT ) ·Q̃T into matrix-

vector and vector-vector operations (Q̃u) · (Q̃w)
T
. More specifically, by leveraging two

auxiliary vectors ξk,ηk, we adopt the following iterative paradigm to compute Eq.(3.13):

1. initialize ξ0 ← C · u, η0 ← w, M0 ← C · u ·wT

2. for k = 0, 1, 2, · · ·

3. ξk+1 ← C · Q̃ · ξk, ηk+1 ← Q̃ · ηk

4. Mk+1 ← ξk+1 · ηTk+1 +Mk

which only requires matrix-vector multiplications (e.g., Q̃ · ξk) and vector-vector multi-

plications (e.g., ξk+1 ·ηTk+1), without the need to perform matrix-matrix multiplications.

It is worth mentioning that our above trick is solely suitable for efficiently computing

M in Eq.(3.13), but not applicable to accelerating S̃ computation in Eq.(3.14). This is

because In is a (full) rank-n matrix that cannot be decomposed into the outer product

of two vectors. Thus, our trick is particularly tailored for improving the incremental

computation of ∆S via Eq.(3.11), rather than the batch computation of S̃ via Eq.(3.12).

Finding u,v,w for Eqs.(3.9) and (3.11). The challenging tasks in characterizing ∆S

for our incremental method are (i) to find the vectors u,v in Eq.(3.9) for the rank-one

decomposition of ∆Q, and (ii) to express the vector w in Eq.(3.11) in terms of the old

matrices Q and S for guaranteeing that Eq.(3.11) is a rank-one Sylvester equation.

To find u and v in Eq.(3.9), we show the following theorem.

Theorem 3.4. If there is an edge (i, j) inserted into G, then the change in Q is an n×n

rank-one matrix, i.e., ∆Q = u · vT , where

u =

 ej (dj = 0)

1
dj+1ej (dj > 0)

, v =

 ei (dj = 0)

ei − [Q]Tj,⋆ (dj > 0)
(3.15)

If there is an edge (i, j) deleted from G, then the change in Q can be decomposed as

∆Q = u · vT , where

u =

 ej (dj = 1)

1
dj−1ej (dj > 1)

, v =

 −ei (dj = 1)

[Q]Tj,⋆ − ei (dj > 1)
(3.16)
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Proof. Due to space limitations, we shall only prove the insertion case. A similar proof

holds for the deletion case.

(i) If dj = 0, [Q]j,⋆ = 0. Thus, for the inserted edge (i, j), [Q]j,i will be updated from

0 to 1, i.e., ∆Q = eje
T
i .

(ii) If dj > 0, all the nonzero entries in [Q]j,⋆ are
1
dj
. Thus, for the inserted edge (i, j),

the old Q can be converted into the new Q̃ via 2 steps, as depicted below:

Q =

(i-th col)


· · · · · · · · · · · ·

· · · 1
dj
· · · 0 · · · 1

dj
· · · (j-th row)

· · · · · · · · · · · ·

dj
dj+1×(j-th row)

−−−−−−−−−−−→


· · · · · · · · · · · ·

· · · 1
dj+1 · · · 0 · · ·

1
dj+1 · · ·

· · · · · · · · · · · ·

 (j-th row)

1
dj+1+(j,i)-entry

−−−−−−−−−−−→


· · · · · · · · · · · ·

· · · 1
dj+1 · · ·

1
dj+1 · · ·

1
dj+1 · · ·

· · · · · · · · · · · ·

 = Q̃

(a) We change all nonzero entries of [Q]j,⋆ from 1
dj

to 1
dj+1 , by multiplying

dj
dj+1 on the

j-th row of Q. Recall from the elementary matrix property that multiplying the j-th

row of a matrix by α ̸= 0 can be accomplished by using I − (1 − α)ejeTj as a left-hand

multiplier on the matrix. Hence, after this step, Q is converted into the matrix Q′, i.e.,

Q′ = (I− (1− dj
dj+1)eje

T
j ) ·Q = Q− 1

dj+1ej · [Q]j,⋆.

(b) We next update the (j, i)-entry of Q′ from 0 to 1
dj+1 , which yields the new Q̃,

i.e.,

Q̃ = Q′ + 1
dj+1eje

T
i = Q− 1

dj+1ej · ([Q]j,⋆ − eTi ).
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Since ∆Q = Q̃−Q, it follows that

∆Q = u · vT , with u := 1
dj+1ej , vT := (eTi − [Q]j,⋆).

which proves the case dj > 0 in Eq.(3.15).

Example 3.5. Consider the graph G in Figure 3.1. Suppose there is an edge (i, j)

inserted into G. As in the old G, dj = 2 > 0 and

[Q]j,⋆ =

[ (h) (k)

0 · · · 0 1
2 0 0 1

2 0 · · · 0
]
∈ R1×15,

according to Theorem 3.4, the change in Q is a 15 × 15 rank-one matrix, which can be

decomposed as ∆Q = u · vT with u = 1
dj+1ej =

1
3ej =

[ (j)

0 · · · 0 1
3 0 · · · 0

]
T ∈ R15×1,

v = ei − [Q]Tj,⋆ =

[ (h) (i) (j) (k)

0 · · · 0 −1
2 1 0 −1

2 0 · · · 0
]
T ∈ R15×1.

For every link update, Theorem 3.4 suggests that the change ∆Q has a very special

structure — the n×n rank-one matrix. More importantly, it finds a rank-one decompo-

sition for ∆Q, by expressing the vectors u and v in terms of dj and [Q]Tj,⋆. It should be

noted that such a rank-one decomposition is not unique, since for any scalar λ ̸= 0, the

vectors u′ , λ ·u and v′ , v
λ can be another rank-one decomposition for ∆Q. However,

for any u and v that satisfy Eq.(3.9), there exists a vector w such that Eq.(3.11) is a

rank-one Sylvester equation.

Capitalizing on Theorem 3.4, we are now ready to determine the expression of w in

Eq.(3.11) in terms of the old Q and S.

Theorem 3.6. Suppose there is an edge (i, j) updated in G. Let u and v be the rank-one

decomposition of ∆Q in Theorem 3.4. Then, (i) there exists a vector w = y + λ
2u with

y = Q · z, λ = vT · z, z = S · v (3.17)

such that Eq.(3.11) is the rank-one Sylvester equation.
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(ii) Utilizing the solution M to Eq.(3.11), the SimRank update matrix ∆S can be

represented by Eq.(3.10).

Proof. We show this by following the two steps:

(a) We find a recursion for the SimRank update matrix ∆S.

To characterize ∆S in terms of the old Q and S, we subtract Eq.(2.2) from Eq.(3.12),

and apply ∆S = S̃− S, yielding

∆S = C · Q̃ · S · Q̃T + C · Q̃ ·∆S · Q̃T − C ·Q · S ·QT . (3.18)

By Theorem 3.4, there exist two vectors u and v such that

Q̃ = Q+∆Q = Q+ u · vT . (3.19)

Then, we plug Eq.(3.19) into the term C · Q̃ · S · Q̃T of Eq.(3.18), and simplify the

result into

∆S = C · Q̃ ·∆S · Q̃T + C ·T (3.20)

with T = u(QSv)T + (QSv)uT + (vTSv)uuT . (3.21)

We can readily verify that matrix T is symmetric (T = TT ). Moreover, we note that

T is the sum of two rank-one matrices. This can be verified by letting z , S · v, y ,

Q · z, λ , vT · z.

Then, utilizing the auxiliary vectors z,y and the scalar λ, Eq.(3.21) can be simplified

into the following form:

T = u ·wT +w · uT , with w = y + λ
2u. (3.22)

(b) We next convert the recursion of ∆S into the series form.

One can readily verify that the solution X to the matrix equation X = A ·X ·B+C

has the following closed form:

X = A ·X ·B+C ⇔ X =

∞∑
k=0

Ak ·C ·Bk (3.23)
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Thus, based on Eq.(3.23), the recursive definition of ∆S in Eq.(3.20) naturally leads

itself to the following series form:

∆S =

∞∑
k=0

Ck+1 · Q̃k ·T · (Q̃T )
k
.

Combining this with Eq.(3.22) yields

∆S =

∞∑
k=0

Ck+1 · Q̃k ·
(
u ·wT +w · uT

)
· (Q̃T )

k

= M+MT with M being defined in Eq.(3.13).

In light of Eq.(3.23), the series form of M in Eq.(3.13) satisfies the rank-one Sylvester

recursive form of Eq.(3.11).

Theorem 3.6 obtains an exact expression for w in Eq.(3.11). To be precise, given

Q and S in the old graph G, and an edge (i, j) updated to G, one can find u and v

via Theorem 3.4 first, and then resort to Theorem 3.6 to compute w from u,v,Q,S.

Because of the existence of the vector w, the Sylvester form of Eq.(3.11) being rank-one

can be guaranteed. Henceforth, our aforementioned trick can be deployed to iteratively

compute M in Eq.(3.13), needing no matrix-matrix multiplications.

Computing ∆S. Determining w via Theorem 3.6 is intended to speed up the incre-

mental computation of ∆S. Indeed, for each link update, the whole process of computing

∆S in Eq.(3.10), given Q and S, needs no matrix-matrix multiplications at all. Specifi-

cally, the computation of ∆S consists of two phases: (i) Given Q and S, we compute w

via Theorems 3.4 and 3.6. This phase merely includes the matrix-vector multiplications

(e.g., Qz,Sv), the inner product of vectors (e.g., vTz), and the vector scaling and addi-

tions, i.e., SAXPY (e.g., y + λ
2u). (ii) Given w, we compute M via Eq.(3.13). In this

phase, our novel iterative paradigm for Eq.(3.13), as mentioned earlier, can circumvent

the matrix-matrix multiplications. Thus, taking (i) and (ii) together, it suffices to harness

only matrix-vector and vector-vector operations in whole process of computing ∆S.

Leveraging Theorems 3.4 and 3.6, we are able to characterize the SimRank change

∆S, based on the following theorem.
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Theorem 3.7. When there is an edge (i, j) updated in G, then the SimRank change ∆S

can be characterized as

∆S = M+MT with

M =
∞∑
k=0

Ck+1 · Q̃k · ej · γT · (Q̃T )
k
, (3.24)

where the auxiliary vector γ is obtained as follows:

(i) For the edge insertion, γ =Q · [S]⋆,i +
1
2 [S]i,i · ej (dj = 0)

1
(dj+1)

(
Q · [S]⋆,i −

1
C · [S]⋆,j + ( λ

2(dj+1) +
1
C − 1) · ej

)
(dj > 0)

(3.25)

(ii) For the edge deletion, γ =−Q · [S]⋆,i +
1
2 [S]i,i · ej (dj = 1)

1
(dj−1)

(
1
C · [S]⋆,j −Q · [S]⋆,i + ( λ

2(dj−1) −
1
C + 1) · ej

)
(dj > 1)

(3.26)

and the scalar λ can be derived from

λ = [S]i,i +
1
C · [S]j,j − 2 · [Q]j,⋆ · [S]⋆,i −

1
C + 1. (3.27)

Proof. For space interests, we merely show insertion case.

(i) When dj = 0, by Eq.(3.15) in Theorem 3.4, v = ei, u = ej . Plugging them into

Eq.(3.17) gets z = [S]⋆,i, y = Q · [S]⋆,i, λ = [S]i,i. Thus, by virtue of w = y + λ
2u in

Theorem 3.6, we have w = Q · [S]⋆,i +
1
2 [S]i,i · ej . Coupling this with Eq.(3.13), u = ej ,

and Theorem 3.6 proves the case dj = 0 in Eq.(3.25).

(ii) When dj > 0, Eq.(3.15) in Theorem 3.4 indicates that

v = ei − [Q]Tj,⋆, u = 1
dj+1 · ej . (3.28)

Substituting these back into Eq.(3.17) yields

z = [S]⋆,i − S · [Q]Tj,⋆, y = Q · [S]⋆,i −Q · S · [Q]Tj,⋆,

λ = [S]i,i − 2 · [Q]j,⋆ · [S]⋆,i + [Q]j,⋆ · S · [Q]Tj,⋆.
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To simplify Q · S · [Q]Tj,⋆ in y, and [Q]j,⋆ · S · [Q]Tj,⋆ in λ, we postmultiply both sides

of Eq.(2.2) by ej to obtain

Q · S · [Q]Tj,⋆ =
1
C · ([S]⋆,j − (1− C) · ej). (3.29)

We also premultiply both sides of Eq.(3.29) by eTj to get

[Q]j,⋆ · S · [Q]Tj,⋆ =
1
C · ([S]j,j − 1) + 1. (3.30)

Plugging Eqs.(3.29) and (3.30) into y and λ, respectively, and then plugging the resulting

y and λ into w = y + λ
2u produce

w = Q · [S]⋆,i −
1
C · [S]⋆,j + ( 1

C + λ
2(dj+1) − 1) · ej ,

with λ = [S]i,i +
1
C · [S]j,j − 2 · [Q]j,⋆ · [S]⋆,i −

1
C + 1.

Combining this with Eqs.(3.13), (3.28) shows the case dj > 0 for Eq.(3.25). Finally,

taking (i) and (ii) together with Theorem 3.6 completes the proof for the link insertion

case.

For each link update, Theorem 3.7 provides a novel method to compute the incremen-

tal SimRank matrix ∆S, by utilizing the previous information of Q and S in the original

graph G, as opposed to [LHH+10] that entails the incremental SVD maintenance. To

efficiently compute ∆S via Theorem 3.7, two tricks are worth mentioning. (i) We ob-

serve that, by viewing the matrix Q as a stack of row vectors, the j-th row of the term

(Q · [S]⋆,i) in Eqs.(3.25) and (3.26) is actually the inner product [Q]j,⋆ · [S]⋆,i, being the

term in Eq.(3.27). Thus, the resulting [Q · [S]⋆,i]j,⋆, once computed, can be reused to

compute [Q]j,⋆ · [S]⋆,i in λ. (ii) As suggested earlier, computing the matrix series for M

needs no matrix-matrix multiplications at all, but involves the matrix-vector multipli-

cations iteratively (e.g., ηk+1 ← Q̃ · ηk). Since Q̃ = Q + u · vT via Theorem 3.4, we

notice that Q̃ ·ηk can be computed more efficiently, with no need to memoize Q̃ in extra

memory space, as follows: Q̃ · ηk = Q · ηk + (vT · ηk) · u.

Algorithm. Based on Theorem 3.7, we provide an incremental SimRank algorithm,

denoted as Inc-uSR, for each link update.
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Algorithm 3.1: Inc-uSR (G,S,K, (i, j), C)

Input : a graph G, old similarities S for G, #-iteration K,

the edge (i, j) updated to G, and damping factor C.

Output: the new similarities S̃ for G ∪ {(i, j)}.

1 initialize the transition matrix Q in G ;

2 dj := in-degree of node j in G ;

3 memoize w := Q · [S]⋆,i ;

4 compute λ := [S]i,i +
1
C · [S]j,j − 2 · [w]j −

1
C + 1 ;

5 if edge (i, j) is to be inserted then

6 if dj = 0 then u := ej , v := ei, γ := w + 1
2 [S]i,i · ej ;

7 else u := 1
dj+1ej , v := ei − [Q]Tj,⋆ ;

8 γ := 1
(dj+1)

(
w − 1

C [S]⋆,j + ( λ
2(dj+1) +

1
C − 1)ej

)
;

9 else if edge (i, j) is to be deleted then

10 if dj = 1 then u := ej , v := −ei, γ := 1
2 [S]i,i · ej −w;

11 else u := 1
dj−1ej , v := [Q]Tj,⋆ − ei;

12 γ := 1
(dj−1)

(
1
C [S]⋆,j −w + ( λ

2(dj−1) −
1
C + 1)ej

)
;

13 initialize ξ0 := C · ej , η0 := γ, M0 := C · ej · γT ;

14 for k = 0, 1, · · · ,K − 1 do

15 ξk+1 := C ·Q · ξk + C · (vT · ξk) · u ;

16 ηk+1 := Q · ηk + (vT · ηk) · u ;

17 Mk+1 := ξk+1 · ηTk+1 +Mk ;

18 S̃ := S+MK +MT
K ;

19 return S̃ ;

Given the old graph G, the old similarities S in G, the edge (i, j) updated to G,

and the damping factor C, the algorithm incrementally computes the new similarities

S̃ in G ∪ {(i, j)}. It works as follows. First, it initializes the transition matrix Q and

in-degree dj of node j in G (lines 1–2). Using Q and S, it precomputes the auxiliary
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vector w and scalar λ (lines 3–4). Once computed, both w and λ are memoized for

precomputing (i) vectors u and v for a rank-one factorization of ∆Q, and (ii) initial

vector γ for subsequent Mk iterations (lines 5–12). Then, the algorithm maintains two

auxiliary vectors ξk and ηk to iteratively compute matrix Mk (lines 13–17). The process

continues until the number of iterations reaches a given K. Finally, the new scores S̃ are

obtained by MK
17 (line 18).

Example 3.8. Recall the old graph G and S of G from Figure 3.1. When edge (i, j) is

added, we show how Inc-uSR computes the new S̃, which is in part depicted in Column

‘simtrue’.

Given the following information from the old S below: 18

[S]⋆,i =

[ (f) (g) (h) (i) (j)

0, · · · , 0, 0.246, 0, 0, 0.590, 0.310, 0, · · · , 0
]
T ∈ R15×1,

[S]⋆,j =

[ (f) (g) (h) (i) (j)

0, · · · , 0, 0.246, 0, 0, 0.310, 0.510, 0, · · · , 0
]
T ∈ R15×1,

as dj = 2, Inc-uSR first precomputes w and λ via lines 3–4:

w =

[ (a) (b)

0.104, 0.139, 0, · · · , 0
]
T ∈ R15×1,

λ = 0.590 +
1

0.8
× 0.510− 2× 0− 1

0.8
+ 1 = 0.978.

As an “edge insertion” operation, the vectors u and v for a rank-one decomposition of

∆Q can be computed via line 7. Their results are depicted in Example 3.5.

Utilizing w and λ, the vector γ can be obtained via line 8:

γ =
1

(2 + 1)
×
(
w − 1

0.8
[S]⋆,j + (

λ

2× (2 + 1)
+

1

0.8
− 1)ej

)

=

[ (a) (b) (f) (i) (j)

0.035, 0.046, 0, 0, 0, −0.086 0, 0, −0.129, −0.075, 0, · · · , 0
]
T ∈ R15×1

17It can be proved that ∥MK −M∥max ≤ CK+1, with M in Eq.(3.24).
18Due to space limitations, we only show the i-th and j-th columns of S here, which is sufficient for

computing the new S̃ in G ∪ {(i, j)}.
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Then, in light of γ, Inc-uSR iteratively computes Mk via lines 13–17. After K = 10

iterations, MK is derived as

(a) (b) (c) (d) (e) (f) · · · (i) (j) (k) · · · (o)



(a) −0.005 −0.009 0 0.009 −0.009

(b) −0.004 −0.006 0 0.006 0 −0.007 0
(c) 0 0 0 0 0

(d) −0.002 −0.002 0 −0.005 0

... 0 0 0 0
(i)

(j) 0.028 0.037 0 0 −0.068 −0.104 −0.060
... 0 0 0 0
(o)

Finally, using MK and the old S, the new S̃ is obtained via line 18, as partly shown

in Column ‘simtrue’ of Figure 3.1.

Correctness & Complexity. (i) Algorithm Inc-uSR correctly updates the SimRank

scores, which can be readily verified by Theorems 3.4–3.7. (ii) The total time of

Inc-uSR can be bounded by O(Kn2) for updating all similarities of n2 node-pairs.19

To be specific, Inc-uSR runs in two phases: preprocessing (lines 1–12), and incremental

iterations (lines 13–19). (a) For the preprocessing, it requires O(m) time in total (m is

the number of edges in the old G), which is dominated by computing w (lines 3), involv-

ing the matrix-vector multiplication Q · [S]⋆,i. The time for computing vectors u,v,γ is

bounded by O(n), which only includes vector scaling and additions, i.e., SAXPY. (b) For

the incremental iterative phase, computing ξk+1 and ηk+1 needs O(m+ n) time for each

iteration (lines 15–16). Computing Mk+1 entails O(n2) time for performing one outer

product of two vectors and one matrix addition (lines 17). Thus, the cost of this phase

is O(Kn2) time for K iterations. Collecting (a) and (b), all n2 node-pair similarities can

19In the next subsection, we shall further reduce the time complexity via a pruning strategy to eliminate
node-pairs with unchanged similarities in ∆S.
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be incrementally computed in O(Kn2) total time, as opposed to the O(r4n2) time of its

counterpart [LHH+10] via SVD.

3.3.2 Pruning Unnecessary Node-Pairs in ∆S

After the SimRank update matrix ∆S has been characterized in terms of a rank-one

Sylvester equation, the pruning techniques in this subsection can further skip the node-

pairs with unchanged similarities in ∆S (i.e., “unaffected areas”), avoiding unnecessary

score recomputations for link update.

In practice, we observe that when link updates are small, affected areas in similarity

updates ∆S are often small as well. As demonstrated in Example 3.8, many entries in

matrix MK are 0s, implying that ∆S (= MK +MT
K) is a sparse matrix. However, it is

a big challenge to identify such “affected areas” in ∆S in response to link updates. To

address this problem, we first introduce a nice property of the adjacency matrix:

Lemma 3.9. Let A be the adjacency matrix. The entry [Ak]i,j counts the number of

length-k paths from node i to j.

For example, [A4]i,j counts the number of specific paths ρ : i → ◦ → ◦ → ◦ → j in

G, with ◦ denoting any node.

Lemma 3.9 can be extended to count the number of “specific paths” whose edges are

not necessarily in the same direction. For example, we can use [AATAAT ]i,j to count

the paths ρ : i→ ◦ ← ◦ → ◦ ← j in G, where A (resp.AT ) appears at the positions 1,3

(resp.2,4), corresponding to the positions of → (resp.←) in ρ.

AsQ is the weighted (i.e., row-normalized) matrix ofAT , we can verify [Qk · (QT )
k
]i,j =

0⇔ [(AT )
k ·Ak]i,j = 0. The following corollary is immediate.

Corollary 3.10. Given k = 0, 1, · · · , the entry [Qk · (QT )
k
]i,j counts the weights of the

specific paths whose left k edges in “←” direction and right k edges in “→” direction as

follows:

i← ◦ ← · · · ←︸ ︷︷ ︸
length k

•→ · · · → ◦ → j︸ ︷︷ ︸
length k

. (3.31)
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Definition 3.11. We call the paths in Eq.(3.31) the symmetric in-link paths of length

2k for node-pair (i, j).

By virtue of Eq.(3.23), the recursive form of SimRank Eq.(2.2) naturally leads itself

to the following series form:

[S]a,b = (1− C) ·
∞∑
k=0

Ck · [Qk · (QT )
k
]a,b. (3.32)

Capitalizing on Corollary 3.10, Eq.(3.32) provides a reinterpretation of SimRank:

[S]a,b is the weighted sum of all in-link paths of length 2k (k = 0, 1, 2, · · · ) for node-pair

(a, b). The weight Ck in Eq.(3.32) is to reduce the contributions of in-link paths with

long lengths relative to those with short ones. The factor (1 − C) aims at normalizing

[S]a,b into [0, 1] since ∥
∑∞

k=0C
k ·Qk · (QT )

k∥max ≤
∑∞

k=0C
k ≤ 1

1−C .

Affected Areas in ∆S. In light of our interpretation for S via Eq.(3.32), we next

reinterpret the series M in Theorem 3.7, with the aim to identify the “affected areas” in

∆S.

Due to space limitations, we shall mainly focus on the edge insertion case of dj > 0.

Other cases have the similar results.

By substituting Eq.(3.25) (the case dj > 0) back into Eq.(3.24), we can readily split

the series form of M into three parts:

[M]a,b =
1

dj + 1

( ∞∑
k=0

Ck+1 · [Q̃k]a,j [S]i,⋆Q
T · [(Q̃T )

k
]⋆,b︸ ︷︷ ︸

Part 1

−

−
∞∑
k=0

Ck[Q̃k]a,j [S]j,⋆[(Q̃
T )

k
]⋆,b︸ ︷︷ ︸

Part 2

+µ
∞∑
k=0

Ck+1[Q̃k]a,j [(Q̃
T )

k
]j,b︸ ︷︷ ︸

Part 3

)

with the scalar µ := λ
2(dj+1) +

1
C − 1.

By Lemma 3.9 and Corollary 3.10, when edge (i, j) is inserted and dj > 0, Part 1 of

[M]a,b tallies the weighted sum of the following new paths for node-pair (a, b) in graph
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G ∪ {(i, j)}:

[Q̃k]a,j︷ ︸︸ ︷
a← ◦ · · · ◦ ← j︸ ︷︷ ︸

length k

⇐

[S]i,⋆︷ ︸︸ ︷
i← ◦ · · · ◦ ← • → ◦ · · · ◦ → ⋆︸ ︷︷ ︸

all symmetric in-link paths for node-pair (i,⋆)

QT︷︸︸︷→ [(Q̃T )
k
]N,b︷ ︸︸ ︷

N→ · · · ◦ → b︸ ︷︷ ︸
length k

(3.33)

Such paths are the concatenation of four types of sub-paths (as depicted above)

associated with four matrices, respectively, [Q̃k]a,j , [S]i,⋆,Q
T , [(Q̃T )

k
]N,b, plus the inserted

edge j ⇐ i. When such entire concatenated paths exist in the new graph, they should

be accommodated for assessing the new SimRank [S̃]a,b in response to the edge insertion

(i, j) because our reinterpretation of SimRank indicates that SimRank counts all the

symmetric in-link paths, and the entire concatenated paths can prove to be symmetric

in-link paths.

Likewise, Parts 2 and 3 of [M]a,b, respectively, tally the weighted sum of the following

new paths for node-pair (a, b):

[Q̃k]a,j︷ ︸︸ ︷
a← ◦ · · · ◦ ←︸ ︷︷ ︸

length k

j

[S]j,⋆︷ ︸︸ ︷
← ◦ · · · ◦ ← • → ◦ · · · ◦ →︸ ︷︷ ︸

all symmetric in-link paths for node-pair (j,⋆)

⋆

[(Q̃T )
k
]⋆,b︷ ︸︸ ︷

→ · · · ◦ → b︸ ︷︷ ︸
length k

(3.34)

[Q̃k]a,j︷ ︸︸ ︷
a← ◦ · · · ◦ ←︸ ︷︷ ︸

length k

j

[(Q̃T )
k
]j,b︷ ︸︸ ︷

→ ◦ · · · ◦ → b︸ ︷︷ ︸
length k

(3.35)

Indeed, when edge (i, j) is inserted, only these three kinds of paths have extra contri-

butions for M (therefore for ∆S). As incremental updates in SimRank merely tally these

paths, node-pairs without having such paths could be safely pruned. In other words, for

those pruned node-pairs, the three kinds of paths will have “zero contributions” to the

changes inM in response to edge insertion. Thus, after pruning, the remaining node-pairs

in G constitute the “affected areas” of M.

To find the “affected areas” of M, we prune the redundant node-pairs in G, based on

the following theorem.

Theorem 3.12. For the edge (i, j) insertion, let O(a) and Õ(a) be the out-neighbors of

node a in old G and new G ∪ {(i, j)}, respectively. Let Mk be the k-th iterative matrix
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in Line 17 of Algorithm 3.1, and let

F1 := {b | b ∈ O(y), ∃y, s.t. [S]i,y ̸= 0} (3.36)

F2 :=

∅ (dj = 0)

{y | [S]j,y ̸= 0} (dj > 0)
(3.37)

Ak × Bk := {j} × (F1 ∪ F2 ∪ {j}) (k = 0)

{(a, b)| a ∈ Õ(x), b ∈ Õ(y), ∃x, ∃y, s.t. [Mk−1]x,y ̸= 0} (k > 0)

(3.38)

Then, for every iteration k = 0, 1, · · · , the matrix Mk has the following sparse prop-

erty:

[Mk]a,b = 0 for all (a, b) /∈ (Ak × Bk) ∪ (A0 × B0).

For the edge (i, j) deletion case, all the above results hold except that, in Eq.(3.37),

the conditions dj = 0 and dj > 0 are, respectively, replaced by dj = 1 and dj > 1.

Proof. We only show the edge insertion case for dj > 0, due to space limitations. The

proofs of other cases are similar.

For k = 0, it follows from Eq.(3.24) that [M0]a,b = [ej ]a[γ]b. Thus, ∀(a, b) /∈ A0×B0,

there are two cases: (i) a ̸= j, or (ii) a = j, b ∈ F1
C ∩ F2

C , and b ̸= j.

For case (i), [ej ]a = 0 since a ̸= j. Thus, [M0]a,b = 0. For case (ii), [ej ]a = 1

since a = j. Thus, [M0]a,b = [γ]b, where [γ]b is the linear combinations of the 3 terms:

[Q]b,⋆ · [S]⋆,i, [S]b,j , and [ej ]b, according to the case of dj > 0 in Eq.(3.25).

In the sequel, our goal is to show the 3 terms are all 0s. (a) For b /∈ F1, by definition in

Eq.(3.36), b ∈ O(y) for ∀y, we have [S]i,y = 0. Due to symmetry, b ∈ O(y)⇔ y ∈ I(b) 20,

which implies that [S]i,y = 0 for ∀y ∈ I(b). Thus, [Q]b,⋆ · [S]⋆,i =
1

I(b)
∑

x∈I(b) [S]x,i = 0.

(b) For b /∈ F2, it follows from the case dj > 0 in Eq.(3.37) that [S]j,b = 0. Hence, by S

symmetry, [S]b,j = [S]j,b = 0. (c) [ej ]b = 0 since b ̸= j.

Taking (a)–(c) together, it follows that [M0]a,b = 0, which completes the proof for

the case k = 0.
20Recall that, as mentioned before, I(a) is the in-neighbor set of node a.
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For k > 0, one can readily prove that the k-th iterativeMk in Line 17 of Algorithm 3.1

is the first k-th partial sum of M in Eq.(3.24). Thus, Mk+1 can be derived from Mk as

follows:

Mk = C · Q̃ ·Mk−1 · Q̃T + C · ej · γT .

Thus, the (a, b)-component form of the above equation is

[Mk]a,b =
C

|Ĩ(a)||Ĩ(b)|

∑
x∈Ĩ(a)

∑
y∈Ĩ(b)

[Mk−1]x,y + C · [ej ]a · [γ]b.

To show that [Mk]a,b = 0 for (a, b) /∈ A0 × B0 ∪ Ak × Bk, we follow the 2 steps: (i) For

(a, b) /∈ A0×B0, as proved in the case k = 0, the term C · [ej ]a[γ]b in the above equation

is obviously 0. (ii) For (a, b) /∈ Ak × Bk, by virtue of Eq.(3.38), a ∈ Õ(x), b ∈ Õ(y), for

∀x, y, we have [Mk−1]x,y = 0. Hence, by symmetry, it follows that x ∈ Ĩ(a), y ∈ Ĩ(b),

[Mk−1]x,y = 0.

Taking (i) and (ii) together, we conclude that

[Mk]a,b = 0 for (a, b) /∈ A0 × B0 ∪ Ak × Bk,

which completes the proof.

Theorem 3.12 provides a pruning strategy to iteratively eliminate node-pairs with

a-priori zero values in Mk (thus in ∆S). Hence, by leveraging Theorem 3.12, when

edge (i, j) is updated, we just need to consider node-pairs in (Ak × Bk) ∪ (A0 × B0) for

incrementally updating ∆S.

Intuitively, F1 in Eq.(3.36) captures the nodes “N” in (3.33). To be specific, F1 can

be obtained via 2 phases: (i) For the given node i, we first build an intermediate set

T := {y|[S]i,y ̸= 0}, which consists of nodes “⋆” in (3.33). (ii) For each node x ∈ T ,

we then find all out-neighbors of x in G, which produces F1, i.e., , F1 =
∪

x∈T O(x).

Analogously, the set F2 in Eq.(3.37), in the case of dj > 0, consists of the nodes “⋆”

depicted in (3.34). When dj = 0, F2 = ∅ since the term [S]⋆,i does not appear in the

expression of γ in Eq.(3.25) for the case when dj = 0, in contrast with the case dj > 0.
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After obtaining F1 and F2, we can readily find A0 × B0, according to Eq.(3.38). For

k > 0, to iteratively derive the node-pair set Ak×Bk, we take the following two steps: (i)

we first construct a node-pair set T1 × T2 := {(x, y)|[Mk−1]x,y ̸= 0}. (ii) For every node

x ∈ T1 (resp.y ∈ T2), we then find all out-neighbors of x (resp.y) in G ∪ {(i, j)}, which

yields Ak (resp.Bk), i.e., Ak =
∪

x∈T1 Õ(x) and Bk =
∪

y∈T2 Õ(y).

The node selectivity of Theorem 3.12 hinges on ∆S sparsity. Since real graphs are

constantly updated with minor changes, ∆S is often sparse in general. Hence, a huge

body of node-pairs with zero scores in ∆S can be eliminated in practice. As demon-

strated by our experiments in Figure 3.5, 76.3% paper-pairs on DBLP can be pruned,

significantly reducing unnecessary similarity recomputations in response to link updates.

Example 3.13. Recall Example 3.8 and the old graph G in Figure 3.1. When edge (i, j)

is inserted to G, according to Theorem 3.12, F1 = {a, b}, F2 = {f, i, j}, A0 × B0 =

{j}×{a, b, f, i, j}. Hence, instead of computing the entire vector γ in Eq.(3.25), we only

need to compute part of its entries [γ]x for ∀x ∈ B0.

For the first iteration, since A1 × B1 = {a, b} × {a, b, d, j}, then we only need to

compute 18 (= 3× 6) entries [M1]x,y for ∀(x, y) ∈ {a, b, j} × {a, b, d, f, i, j}, skipping the

computations of 207 (= 152 − 18) remaining entries in M1. After K = 10 iterations,

many unnecessary node-pairs are pruned, as in part highlighted in the gray rows of the

table in Figure 3.1.

Algorithm. We provide a complete incremental algorithm for computing SimRank,

referred to as Inc-SR (in Algorithm 3.2), by incorporating our pruning strategy into

Inc-uSR.

Correctness. The algorithm Inc-SR can correctly prune the node-pairs with a-priori

zero scores in ∆S, which is verified by Theorem 3.12. It also correctly returns the new

similarities, as evidenced by Theorems 3.4–3.7.

Complexity. The total time of Inc-SR is O(K(nd+ |AFF|)) for K iterations, where d is
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Algorithm 3.2: Inc-SR (G,S,K, (i, j), C)

Input / Output: the same as Algorithm 3.1.

1-2 the same as Algorithm 3.1 ;

3 find B0 via Eq.(3.38) ;

memoize [w]b := [Q]b,⋆ · [S]⋆,i, for all b ∈ B0 ;

4-12 almost the same as Algorithm 3.1 except that the computations of the entire

vector γ in Lines 6, 8, 10, 12 are replaced by the computations of only parts of

entries in γ, respectively, e.g., in Line 6 of Algorithm 3.1, “γ := w + 1
2 [S]i,i · ej”

are replaced by “[γ]b := [w]b +
1
2 [S]i,i · [ej ]b, for all b ∈ B0” ;

13 set [ξ0]j := C, [η0]b := [γ]b, [M0]j,b := C · [γ]b, ∀b ∈ B0;

14 for k = 1, · · · ,K do

15 find Ak × Bk via Eq.(3.38) ;

16 memoize σ1 := C · (vT · ξk−1), σ2 := vT · ηk−1 ;

17 [ξk]a := C · [Q]a,⋆ · ξk−1 + σ1 · [u]a, for all a ∈ Ak ;

18 [ηk]b := [Q]b,⋆ · ηk−1 + σ2 · [u]b, for all b ∈ Bk ;

19 [Mk]a,b := [ξk]a · [ηk]b + [Mk−1]a,b, ∀(a, b) ∈ Ak × Bk;

20 [S̃]a,b := [S]a,b + [MK ]a,b + [MK ]b,a, ∀(a, b) ∈ AK × BK ;

21 return S̃ ;

the average in-degree of G, and |AFF| := avgk∈[0,K](|Ak| · |Bk|) with Ak,Bk in Eq.(3.38),

being the average size of “affected areas” in Mk for K iterations. More concretely, (a)

for the preprocessing, finding B0 (line 3) needs O(dn) time. Utilizing B0, computing [w]b

reduces from O(m) to O(d|B0|) time, with |B0| ≪ n. Analogously, γ in lines 6,8,10,12 of

Algorithm 3.1 needs only O(|B0|) time. (b) For each iteration, finding Ak ×Bk (line 15)

entails O(dn) time. Memoizing σ1, σ2 needs O(n) time (line 16). Computing ξ (resp.η)

reduces from O(m) to O(d|Ak|) (resp.O(d|Bk|)) time (lines 17–18). Computing [Mk]a,b

reduces from O(n2) to O(|Ak||Bk|) time (line 19). Thus, the total time complexity can

be bounded by O(K(nd+ |AFF|)) for K iterations.
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It is worth mentioning that Inc-SR, in the worst case, has the same complexity bound

of Inc-uSR. However, in practice, |AFF| ≪ n2, as demonstrated by our experimental

study in Figure 3.6, since real graphs are constantly updated with small changes. Hence,

O(K(nd+ |AFF|)) is generally much smaller than O(Kn2). In the next section, we shall

further confirm the efficiency of Inc-SR by conducting extensive experiments.

3.4 Experimental Evaluation

We present an empirical study, using real and synthetic data, to show (i) the efficiency

of Inc-SR for incremental computation in terms of time and space, as compared with

(a) Inc-SVD, the best known link-update algorithm [LHH+10], (b) Inc-uSR, our incre-

mental algorithm without pruning, and (c) Batch, the batch algorithm [YLZ+13b] via

fine-grained memoization; (ii) the effectiveness of our pruning technique for identifying

“affected areas” to speed up Inc-SR computation; and (iii) the exactness of Inc-SR and

Inc-uSR, in contrast with Inc-SVD.

3.4.1 Experimental Setting

Datasets. We use both real and synthetic datasets.

(1)DBLP21, a co-citation graph, where each node is a paper with attributes (e.g., pub-

lication year), and edges are citations. By virtue of the year of the papers, we extract

dense snapshots, each consisting of 93,560 edges and 13,634 nodes.

(2) CitH22, a reference network (cit-HepPh) from e-Arxiv. If a paper u references v,

the graph has one link from u to v. The dataset has 421,578 edges and 34,546 nodes.

(3) YouTu23, a YouTube graph, where each node is a video. A video u is linked to

v if v is in the related video list of u. We extract snapshots according to the age of the

videos, and each has 953,534 edges and 178,470 nodes.

21http://dblp.uni-trier.de/˜ley/db/
22http://snap.stanford.edu/data/
23http://netsg.cs.sfu.ca/youtubedata/
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We use GraphGen24 to build synthetic graphs and updates. The graphs are controlled

by (a) the number of nodes |V |, and (b) the number of edges |E|. We produce the

sequence of graphs following the linkage generation model [GGCM09]. Two parameters

are utilized to control the updates: (a) update type (edge insertion/deletion), and (b)

the size of updates |∆G|.

All the algorithms are implemented in Visual C++ v10.0. Each experiment is run 5

times; we report the average here. We use a machine with an Intel Core(TM) 2.80 GHz

CPU and 8GB RAM, running Windows 7.

We set the decay factor C = 0.6, as in the prior work [JW02]. Our default iteration

number is set toK = 15, with which a high accuracy CK ≤ 0.0005 is attainable, according

to [LVGT08]; on large dataset YouTu, K is set to 5, the same value as [JW02]. For

Inc-SVD, the target rank r is a time-accuracy trade-off; as shown in the experiments

[LHH+10], the highest speedup is achieved when r = 5. Thus, in our time evaluations,

r = 5 is adopted, whereas in the exactness evaluations, we shall tune this value.

3.4.2 Experimental Results

Exp-1: Time Efficiency.

We first evaluate the running time of Inc-SR, Inc-uSR against Inc-SVD and Batch on real

data.

To favor Inc-SVD that only works on graphs of small sizes (due to memory crash for

high-dimension SVD, e.g., n > 105), DBLP and CitH are used, though Inc-SR works

well on a variety of graphs (e.g., YouTu, Syn).

Figure 3.2 depicts the results for edges inserted into DBLP, CitH, YouTu, respec-

tively. For each dataset, we fix |V |, and increase |E| by |∆E|, as shown in the x-axis. Here,

the edge updates are the differences between snapshots w.r.t. the “year” (resp.“video

age”) attribute of DBLP, CitH (resp.YouTu), reflecting their real-world evolution. We

observe the following. (1) Inc-SR always outperforms Inc-SVD and Inc-uSR when edges

24http://www.cse.ust.hk/graphgen/
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Figure 3.2: Time Efficiency of Incremental SimRank on Real Data
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Figure 3.3: % of Lossless SVD Rank w.r.t. |∆E|

are increased. For example, on DBLP, when the edge changes are 10.7%, the time for

Inc-SR (83.7s) is 11.2x faster than Inc-SVD (937.4s), and 4.2x faster than Inc-uSR (348.7s).

This is because Inc-SR deploys a rank-one matrix trick to update the similarities, with an

effective pruning strategy to skip unnecessary recomputations, as opposed to Inc-SVD that

entails rather expensive costs to incrementally update the SVD. The results on CitH are

more pronounced, e.g., Inc-SR is about 30x better than Inc-SVD when |E| is increased

to 401K. On YouTu, Inc-SVD fails due to the memory crash for SVD. (2) Inc-SR is

consistently better than Batch when the edge changes are fewer than 19.7% on DBLP,

and 7.2% on CitH. When the link updates are 5.3% on DBLP (resp.3.9% on CitH),

Inc-SR improves Batch by 10.2x (resp.4.9x). This is because (i) Inc-SR exploits the sparse

structure of ∆S for incremental update, and (ii) small link perturbations may keep ∆S

sparsity. Hence, Inc-SR is highly efficient when link updates are small. (3) The running

time of Inc-SR, Inc-uSR, Inc-SVD, unlike Batch, is sensitive to the edge updates |∆E|,
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Figure 3.4: Time Efficiency of Incremental SimRank on Synthetic Data

as expected. The reason is that Batch needs to reassess all similarities from scratch in

response to link updates, whereas Inc-SR and Inc-uSR can reuse the old information in

SimRank for incremental updates. In addition, Inc-SVD is too sensitive to |∆E|, as it

needs costly tensor products to compute SimRank from the updated SVD matrices. In

contrast, Inc-SR is less sensitive than Inc-SVD as it directly computes SimRank changes

w.r.t. link updates, without the need of computing SVD.

Figure 3.3 shows the target rank r required for the lossless SVD of Eq.(3.3) w.r.t. the

edge changes |∆E| on DBLP and CitH. The y-axis is r
n × 100%, where n = |V |, and r

is the rank of the lossless SVD for C in Eq.(3.3). On each dataset, when increasing |∆E|

from 6K to 18K, we see that r
n is 95% on DBLP (resp.80% on CitH), Thus, r is not

negligibly smaller than n in real graphs. Due to the quartic time w.r.t. r, Inc-SVD may

be slow in practice to get a high accuracy.

Fixing |V | = 79, 483 on synthetic data, we vary |E| from 485K to 560K (resp.560K

to 485K) edges in 15K increments (resp.decrements). The results are reported in Fig-

ure 3.4, confirming our observations on real datasets. For example, when 6.4% edges

are increased, Inc-SR runs 8.4x faster than Inc-SVD, 4.7x faster than Batch, and 2.7x

faster than Inc-uSR. When 8.8% edges are deleted, Inc-SR outperforms Inc-SVD by 10.4x,

Batch by 5.5x, and Inc-uSR by 2.9x. This justifies the complexity analysis of our algo-

rithms Inc-SR and Inc-uSR.
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Exp-2: Effects of Pruning.

As mentioned in Subsection 3.3.2, Inc-SR skips needless computations for incremental

updates. To show the effectiveness of our pruning strategy in Inc-SR, we compare its time

with that of Inc-uSR, i.e., original version of Inc-SR without pruning rules, on DBLP,

CitH, YouTu. The results are shown in Figure 3.5, where the percentage of the pruned

node-pairs in each graph is depicted on the black bar. The y-axis is in a logarithmic scale.

It can be discerned that, on every dataset, Inc-SR constantly outperforms Inc-uSR by

nearly 0.5 order of magnitude. For instance, the running time of Inc-SR (64.9s) improves

that of Inc-uSR (314.2s) by 4.8x on CitH, with approximately 82.1% node-pairs being

pruned. That is, our pruning technique is effective in finding unnecessary node-pairs on

real graphs with various link distributions.

As our pruning strategy hinges on the size of the “affected areas” in SimRank update

matrix, it is imperative to evaluate, on real graphs, that how large these “affected areas”

are when links are evolved. The results are visualized in Figure 3.6, showing that the

percentage of the “affected areas” in similarity changes w.r.t. link updates |∆E| on real

DBLP, CitH, and YouTu. We find the following. (1) When |∆E| is varied from 6K to

18K on every real dataset, the “affected areas” in similarity changes are relatively small.

For instance, when |∆E| = 12K, the percentage of the “affected areas” is only 23.9%

on DBLP, 27.5% on CitH, and 24.8% on YouTu, respectively. This demonstrates the

potential benefits of our pruning technique in real applications, where a larger number



Chapter 3. Incremental SimRank on Link-Evolving Graphs 97

of elements in ∆S with a-priori zero scores can be pruned. (2) For each dataset, the

size of “affect areas” mildly grows when |∆E| is increased. For example, on YouTu, the

percentage of |AFF| increases from 19.0% to 24.8% when |∆E| is changed from 6K to

12K. This confirms our observation in the time efficiency analysis, where Inc-SR speedup

is more obvious for smaller |∆E|.

Exp-3: Memory Space.

We next evaluate the memory requirements of Inc-SR, Inc-uSR, against Inc-SVD on real

datasets. Here, the memory space means “intermediate space”, where the last step of

writing n2 node-pairs of the similarity outputs is not accommodated. We also tune the

default target rank r = 5 larger for Inc-SVD to see how memory increases w.r.t. r.

The results are depicted in Figure 3.7, where, for Inc-SVD, we report r = 15, 25 on only

small DBLP, as its memory space will explode on larger networks when r and |V | grow.

We notice that (1) Inc-SR and Inc-uSR consume far smaller space than Inc-SVD by at least

1.5 orders of magnitude onDBLP andCitH no matter what target rank r might be. This

is because Inc-SR and Inc-uSR use the rank-one trick to convert ∆S computations into the

sequence of vector operations, whereas Inc-SVD needs to memoize the decomposed SVD

matrices and to perform costly matrix tensor products. (2) Inc-SR has 4.1x (resp.4.5x)

smaller space than Inc-uSR onDBLP (resp.YouTu), due to our pruning method reducing

the memoization of many entries in auxiliary vectors, e.g., w. (3) When r is varied from

5 to 25, the space of Inc-SVD is increased from 637.9M to 3.15G on DBLP, but crashes on

CitH and YouTu. This tells that r has a large impact on the performance of Inc-SVD,

which cannot be ignored in the big-O notation of the complexity analysis [LHH+10].

Thus, to get Inc-SVD feasible on CitH, we set r = 5 in the evaluations.

Exp-4: Exactness.

Finally, we evaluate the exactness of Inc-SR and Inc-uSR against Inc-SVD. We adopt

the NDCG metrics [LHH+10] to assess top-30 most similar node-pairs on DBLP, CitH,
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YouTu. For baselines of NDCG30, we use the results of Batch on each dataset for

35 iterations.25 For Inc-SR and Inc-uSR, we perform K = 5, 15 iterations on each

graph; for Inc-SVD, due to its non-iterative paradigm, we tune the rank r from 5 to

15. The results are depicted in Figure 3.8, telling us the following. (1) In all the cases,

Inc-SR and Inc-uSR have much better accuracy than Inc-SVD. For example, the NDCG30

of Inc-SR and Inc-uSR are both 0.88 at K = 5, much better than Inc-SVD (0.36) at r = 25.

This confirms our observations in Section 3.2, where we envision that Inc-SVD may miss

some eigen-information in many real graphs. When K = 10, the NDCG30 of Inc-SR and

Inc-uSR are 1s, indicating that their top-30 node-pairs are perfectly accurate. This justi-

fies the correctness of our algorithms. (2) For each dataset and the fixed iteration K, the

NDCG30 of Inc-SR and Inc-uSR are exactly the same. This indicates that our pruning

strategy is lossless, i.e., it does not sacrifice any exactness for speedup.

3.5 Related Work

SimRank is arguably one of the most appealing link-based similarity measures in a graph.

Recent results on SimRank computation can be distinguished into two broad categories:

(i) incremental SimRank on dynamic graphs (e.g., [HFLC10, LHH+10]), and (ii) batch

SimRank on static graphs (e.g., [FNSO13,LLY+10,FR07,LLY12,LVGT08,YLZ+13b]).

25As the diameters (i.e., the longest paths) of DBLP, CitH, YouTu are 16,11,7, respectively, it suffices
to perform K = 35 iterations to accommodate all path-pairs between two nodes for assessing SimRank.
Thus, the resulting scores of Batch for K = 35 can be viewed as the exact baseline solutions.
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3.5.1 Incremental Update

Incremental computation is useful as real graphs are often updated with small changes.

However, few results are known about incremental SimRank computation, much less

than their batch counterparts (e.g., [YMS14, AMC08, FR07, LLY12, LLY+10, LVGT08,

YLZ+13b,FNSO13]). Generally, there are two types of updates for dynamic graphs: (i)

link updates, and (ii) node updates. About link-incremental SimRank algorithms, we are

merely aware of [LHH+10] by Li et al. who gave an excellent matrix representation of

SimRank, and was the first to show a SVD method for incrementally updating similarities

of all node-pairs in O(r4n2) time 26, where r (≤ n) is the target rank of the low-rank

approximation. However, (i) their incremental approach is inherently inexact, without

guaranteed accuracy. It may miss some eigen-information (as proved in Section 3.2) even

though r is chosen to be exactly the rank (instead of low-rank) of the target matrix for

the lossless SVD. (ii) In practice, r is not much smaller than n for attaining the desirable

accuracy. This may lead to prohibitively expensive updating costs for [LHH+10] since its

time complexity O(r4n2) is quartic w.r.t. r. In comparison, our work adopts a completely

different framework from [LHH+10]. Instead of incrementally updating SVD [LHH+10],

we characterize the changes to SimRank in response to each link update as a rank-one

Sylvester equation first, and then exploit the link structure to prune “unaffected areas” for

speeding up the incremental computation of SimRank, without loss of exactness, which

only needs constant time (independent of r) to incrementally compute every node-pair

similarity for each link update.

Another interesting piece of work is due to He et al. [HFLC10], who devised the

parallel computation of SimRank on digraphs, by leveraging the iterative aggregation

strategy. Indeed, the parallel computing technique in [HFLC10] can be regarded as an

efficient node-incremental updating framework for SimRank. It differs from this work

in that [HFLC10] improves the efficiency by reordering and parallelizing the first-order

26According to the proof of Lemma 2 in [LHH+10], the time is actually O(r4n2), though, the statement
of Lemma 2 says “it is bounded by O(n2)”. Observing that r ≪ n is not often the case, we do not explicitly
omit r4 in O(⋆) here.



Chapter 3. Incremental SimRank on Link-Evolving Graphs 100

Markov chain for node updates on GPU, instead of capturing the “unaffected areas”

of SimRank w.r.t. link updates, whereas our methods utilize pruning rules to eliminate

unnecessary recomputations for links updates on CPU via a rank-one Sylvestor equation.

There has also been work on the incremental computations for other hyperlink-based

relevance measures (e.g., [DPSK05, BCG10, SGP11, FNOK12, YLZ+12, YLZ13a]). De-

sikan et al. [DPSK05] proposed an efficient incremental PageRank algorithm for node

updating. Their underlying principle is based on the first-order Markov model. Banhmani

et al. [BCG10] utilized the Monte Carlo method for incrementally computing Personalized

PageRank. Yu et al. [YLZ+12] provided an incremental eigenvector update algorithm for

SimFusion+ computation. Sarma et al. [SGP11] gave an excellent exposition of concate-

nating the short random walks for estimating PageRank with provable accuracy on graph

streams. All of these incremental methods are probabilistic in nature, with the focus on

node ranking, and hence cannot be directly applied in SimRank node-pair scoring. Fu-

jiwara et al. [FNOK12] proposed K-dash for finding top-k highest Random Walk with

Restart (RWR) proximity nodes for a given query, which involves a strategy to incre-

mentally estimate proximity bounds. However, their incremental process is approximate.

Later, Yu et al. [YLZ13a] proposed an incremental strategy for RWR link updates.

3.5.2 Batch Computation

In contrast to the incremental algorithm, the batch SimRank computation has been well-

studied on static graphs. Recent results on batch SimRank can be mainly categorized into

(i) deterministic computation (e.g., [JW02,FNSO13,LHH+10,LVGT08,YLZ+13b]), and

(ii) probabilistic estimation (e.g., [FR07, LLY12, LLY+10]). The deterministic methods

may obtain similarities of high accuracy, but the time complexity is less desirable than

the probabilistic approaches.

For deterministic methods, Jeh andWidom [JW02] are the first to propose an iterative

paradigm for SimRank, entailing O(Kd2n2) time for K iterations, where d is the average

in-degree. Later, Lizorkin et al. [LVGT08] utilized the partial sums memoization to
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speed up SimRank computation to O(Kdn2). Li et al. [LHH+10] proposed a novel non-

iterative matrix formula for SimRank. Apart from the incremental SimRank requiring

O(r4n2) time, they also used a SVD method for computing batch SimRank in O(α4n2)

time, where α is the target rank of matrix Q. Most recently, Yu et al. [YLZ+13b] have

further improved SimRank computation to O(Kd′n2) time (with d′ ≤ d) via a fine-

grained memoization to share the common parts among different partial sums. Fujiwara

et al. [FNSO13] exploited the matrix form of [LHH+10] to find the top-k similar nodes

in O(n) time.

For probabilistic approaches, Fogaras and Rácz [FR07] proposed P-SimRank in linear

time to estimate s(a, b) from the probability that two random surfers, starting from a

and b, will finally meet at a node. Li et al. [LLY+10] harnessed the random walks to

compute local SimRank for a single node-pair. Lee et al. [LLY12] deployed the Monte

Carlo method to find top-k SimRank node-pairs.

3.6 Conclusions

In this chapter, we have proposed an efficient algorithm for incrementally computing Sim-

Rank on link-evolving graphs. Our algorithm, Inc-SR, is based on two key ideas: (1) The

SimRank update matrix ∆S is characterized via a rank-one Sylvester equation. Based on

this, a novel efficient paradigm is devised, which improves the incremental computation of

SimRank from O(r4n2) to O(Kn2) for every link update. (2) An effective pruning strat-

egy is proposed to skip unnecessary similarity recomputations for link updates, further

reducing the computation time of SimRank to O(K(nd+ |AFF|)), where |AFF| (≤ n2) is

the size of “affected areas” in SimRank update matrix, which can be practically much

smaller than n2 in real evolution. Our empirical evaluations show that (1) Inc-SR consis-

tently outperforms the best known link-update algorithm [LHH+10], from several times

to over one order of magnitude, without loss of exactness. (2) Inc-SR runs substantially

faster than its batch counterpart when link updates are small.



Chapter 4

Efficient Penetrating-Rank on

Large Networks

4.1 Introduction

The problem of quantifying relevance between entities based has witnessed growing in-

terests over the last decades. There are various circumstances in which it would be useful

to answer the questions such as “How similar are every two entities (vertices)?”, and

“Which other entities (vertices) are most similar to a specific query (a given query ver-

tex)?”. Unlike SimRank [JW02] that considers in-link relationships alone for relevance

assessment, Penetrating-Rank (P-Rank) has been recently proposed as another promising

similarity measure, which was invented by Zhao et al. [ZHS09]. It encodes both incoming

and outgoing links of entities into similarity assessment. P-Rank similarities flowing from

in-link neighbors of entities are penetrated through their out-link neighbors in a recursive

fashion. In contrast to other similarity measures, P-Rank has the following advantages:

• Semantic Completeness. P-Rank provides a comprehensive way of jointly con-

sidering both in- and out-link relationships with semantic completeness. In compar-

ison, other similarity measures (e.g., SimRank and SimFusion) have the “limited

information problem” [JW02], in which only in-links are partially exploited, whereas

102
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out-links are totally ignored.

• Adaptivity. P-Rank can be easily combined with other textual domain-specific

similarity metrics to produce an overall similarity measure, which is fairly adaptive

to any domains with entity-to-entity relationships.

• Generality. P-Rank formula has a general form that makes itself transcend other

existing similarity measures. For instance, SimRank [JW02] and Amsler [Ams72]

are just special cases of P-Rank, by setting specific weight factors for P-Rank, as

illustrated in [ZHS09].

Therefore, P-Rank has long been recognized as an important and common similarity

measure, which has a wide range of applications in any fields where other similarity

measures (e.g., SimRank, SimFusion, and Amsler) are applicable, such as collaborative

filtering, graph clustering, link prediction, and web document ranking (e.g., [LVGT10,

ZCY09,AMC08] and references therein).

4.1.1 Motivation

Previous work on P-Rank, however, leaves several challenging issues unaddressed, moti-

vating us to systematically develop efficient techniques for P-Rank assessment.

Firstly, it is not straightforward to estimate the accuracy for P-Rank iterations. Al-

though the convergence of P-Rank iterations has been proved in [ZHS09], it is still

difficult to determine the total number of iterations needed for guaranteeing a given ac-

curacy. To the best of our knowledge, there is only one work [LVGT10] that estimates

the accuracy for SimRank iterations, which is a special case of P-Rank (only in-links are

considered). That work provides an upper bound Ck+1 for the difference between the

k-th iterative SimRank and the exact one. However, there is extra difficulty in porting

this bound to P-Rank accuracy estimation since we observe that the simple linear com-

bination of the weighted bound λ · Cin
k+1 + (1 − λ) · Cout

k+1 is not always suitable for

P-Rank (unless in-link damping factor Cin equals out-link damping factor Cout). The
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reason is that the recursive nature of P-Rank makes both in- and out-links have a recur-

sive impact on similarities of all pairs of vertices. Thus, it is imperative to derive a new

bound for estimating the accuracy of P-Rank.

Secondly, no prior work has studied the stability of P-Rank. In the iterative compu-

tation, analyzing P-Rank stability plays a paramount role because it not only can gauge

the sensitivity of similarity results to slight perturbations in the link structure (e.g., by

adding or removing edges) but also implies whether large amounts of accumulated round-

off errors in the P-Rank iterations will run the risk of producing nonsensical similarity

results. To address this issue, we provide an upper bound for the P-Rank condition

number that is defined over the closed-form of P-Rank. One complicated problem is to

calculate the norm of a large matrix inversion in the closed-form of P-Rank since the

straightforward computation is prohibitively expensive. Motivated by this, we propose a

new approach to obtain a neat tight bound for the P-Rank condition number, which can

avoid the computation of such a large matrix inversion.

Thirdly, it is a big challenge to improve the computational complexity of P-Rank.

The naive method computing P-Rank via the fixed-point iteration requires O(Kn4) time

for K iterations, which is inapplicable to large networks. The most efficient existing

technique using partial sum memoization for SimRank computation [LVGT10] can be

applied to P-Rank in a similar way, but this still needs O(Kn3) time to compute P-Rank.

For approximating P-Rank, Zhao et al. [ZHS09] have proposed the radius- or category-

based pruning techniques to improve the estimation of P-Rank to O(Kd2n2) worst-case

time, with d being the average degree in a graph. However, this method is inherently

heuristic, and even worse no theoretical guarantee is provided for the approximation

error of the pruning results. Fortunately, we have an observation that a large body of

vertices in a real network usually share some similar neighborhood structures (e.g., similar

user preference in a recommender system). Thus, we have an opportunity to “merge”

these similar vertices, and devise fast algorithms to speed up P-Rank computation with

accuracy guarantees.
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4.1.2 Chapter Outlines

In this chapter, we consider the aforementioned P-Rank problems, encompassing the

accuracy, stability and computational efficiency. The main results are the following.

• We provide an accuracy estimation for P-Rank iteration (Section 4.3). We show

that K = ⌈ln ϵ/ln (λ · Cin + (1− λ) · Cout)⌉ iterations suffices to guarantee a desired

accuracy ϵ, where λ is the weight factor and Cin and Cout are in- and out-link

damping factors, respectively.

• We introduce the notion of P-Rank condition number κ∞ to analyze the stability

of P-Rank (Section 4.4). We deploy a new eigenvector-based approach to obtain

a tight bound for κ∞, and provide the conditions under which P-Rank is stable,

that is, slight perturbations in the link structure will not cause large changes in the

P-Rank similarity.

• We propose two novel matrix-based algorithms (DE P-Rank and UN P-Rank) for effi-

ciently computing P-Rank in O(r4n2+r2n) and O(rn2) time (r ≪ n), respectively,

over digraphs and undirected graphs (Section 4.5), as opposed to the conventional

counterpart of O(Kn3) time. An error estimation is also provided as a by-product

when a target low-rank υ (υ ≪ r) approximation is used for P-Rank.

• We empirically verify the efficiency of our methods on real and synthetic data

(Section 4.6). The experimental results show that (1) P-Rank converges expo-

nentially w.r.t. the iteration number; (2) the stability of P-Rank is sensitive to

different choices of the damping factors and the weighted factor; (3) the proposed

DE P-Rank and UN P-Rank outperform its competitors by almost one order of

magnitude.
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Symbol Definition Symbol Definition

G network r rank of graph adjacency matrix (r ≪ n)
I (a) in-neighbors of vertex a υ low rank of P-Rank approximation (υ ≤ r)
O (a) out-neighbors of vertex a s(a, b) P-Rank score between vertices a and b
n number of vertices in G Cin / Cout in-link / out-link damping factor
m number of edges in G A adjacency matrix of G
K number of iterations S P-Rank similarity matrix of G
λ weighting factor I identity matrix

Table 4.1: Glossary of Symbols

4.2 Preliminaries

In accordance with [ZHS09], we assume that graphs studied in this paper have no multiple

edges (corresponding to a 0-1 adjacency matrix). Table 4.1 lists the notations used

throughout this chapter.

The basic essence underlying the P-Rank model [ZHS09] involves the following three

facets:

1) Two distinct entities are similar if they are referenced by similar entities. (In-link

Recursion)

2) Two distinct entities are similar if they reference similar entities. (Out-link Recursion)

3) Every entity is maximally similar to itself. (Base Case)

P-Rank Similarity. More formally, we revisit the formulation of P-Rank [ZHS09].

Given a network G = (V, E) with a vertex set V and an edge set E . the P-Rank model

can be formulated as follows:

For every two distinct vertices u, v ∈ V , the similarity s(u, v) ∈ [0, 1] defined as

s(u, u) = 1; (4.1)

s (u, v) =

in-link part︷ ︸︸ ︷
λ · Cin

|I (u)| |I (v)|

|I(u)|∑
i=1

|I(v)|∑
j=1

s (Ii (u) , Ij (v))

+
(1− λ) · Cout

|O (u)| |O (v)|

|O(u)|∑
i=1

|O(v)|∑
j=1

s (Oi (u) ,Oj (v))︸ ︷︷ ︸
out-link part

, (4.2)
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is called the P-Rank similarity between u and v, where (i) λ ∈ [0, 1] is a weight factor,

balancing the importance between in-links and out-links; (ii) Cin and Cout ∈ (0, 1) are the

damping factors for in- and out-link directions, respectively; (iii) I (u) and O (u) are the

in- and out-neighbor set of vertex u, respectively, with Ii (u) and Oi (u) being the i-th

elements of I (u) and O (u), respectively; and (iv) |I (u)| and |O (u)| are the cardinalities

of I (u) and O (u), respectively.

To avoid s(u, v) =∞ in Eq.(4.2), we assume that

1) in-link part of Eq.(4.2)= 0 if I (u) = ∅ or I (v) = ∅;

2) out-link part of Eq.(4.2)= 0 if O (u) = ∅ or O (v) = ∅.

P-Rank Iterative Paradigm. The conventional method iteratively computes s(u, v)

as follows:

s(0)(u, v) =

0, if u ̸= v;

1, if u = v.
(4.3)

For each iteration k = 1, 2, · · · , the k-th iterative P-Rank similarity s(k)(u, v) is iteratively

computed as

s(k) (u, u) = 1;

s(k) (u, v) =
λ · Cin

|I (u)| |I (v)|

|I(u)|∑
i=1

|I(v)|∑
j=1

s(k−1) (Ii (u) , Ij (v))

+
(1− λ) · Cout

|O (u)| |O (v)|

|O(u)|∑
i=1

|O(v)|∑
j=1

s(k−1) (Oi (u) ,Oj (v)); (4.4)

s(k) (u, v) =Eq.(4.4)’s in-link part, if O (u) = ∅ or O (v) = ∅;

s(k) (u, v) =Eq.(4.4)’s out-link part, if I (u) = ∅ or I (v) = ∅.

It was proved in [ZHS09] that the sequence {s(k) (u, v)} non-decreasingly converges

to the exact similarity s (u, v), i.e.,

lim
k→∞

s(k) (u, v) = s (u, v) (∀u, v ∈ V). (4.5)
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4.3 P-Rank Accuracy Estimate

Despite the convergence of the sequence {s(k) (u, v)}∞k=0, the gap between the k-th itera-

tive similarity s(k) (u, v) and the exact one s (u, v) still remains unknown. This motivates

us to study the P-Rank accuracy estimate problem:

Given a network G, for each iteration number k = 1, 2, · · · , it is to find a tight bound

ϵk for the difference between the k-th iterative similarity s(k) (u, v) and the exact one

s (u, v) for ∀u, v ∈ G.

The main result of this section is the following.

Theorem 4.1. The P-Rank accuracy estimate problem has a tight upper bound

ϵk = (λCin + (1− λ)Cout)
k+1

such that ∀k = 0, 1, · · · , ∀u, v ∈ V,

|s (u, v)− s(k) (u, v) | ≤ ϵk. (4.6)

Proof. (i) For u = v, Eq.(4.6) obviously holds since

s(u, u)− s(k)(u, u) = 1− 1 = 0. (∀k ≥ 0, ∀u ∈ V)

(ii) For u ̸= v, we use induction on k to prove Eq.(4.6) as follows:

Inductive Basis. We show that Eq.(4.6) holds for k = 0. Using Eq.(4.2) and s(0)(u, v) =

0, we have

s(u, v)− s(0)(u, v) = s(u, v)

=
λ · Cin

|I (u)| |I (v)|

|I(u)|∑
i=1

|I(v)|∑
j=1

s (Ii (u) , Ij (v))︸ ︷︷ ︸
≤1

+
(1− λ) · Cout

|O (u)| |O (v)|

|O(u)|∑
i=1

|O(v)|∑
j=1

s (Oi (u) ,Oj (v))︸ ︷︷ ︸
≤1

≤ λ · Cin

|I (u)| |I (v)|

|I(u)|∑
i=1

|I(v)|∑
j=1

1 +
(1− λ) · Cout

|O (u)| |O (v)|

|O(u)|∑
i=1

|O(v)|∑
j=1

1

= λ · Cin + (1− λ) · Cout.

Inductive Step. Assume that Eq.(4.6) holds for a fixed k as the inductive hypothesis.

We need to prove that Eq.(4.6) holds for k + 1 as well. Combing Eqs.(4.2) and (4.4)
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yields

s(u, v)− s(k+1)(u, v)

=
λCin

|I (u)| |I (v)|

|I(u)|∑
i=1

|I(v)|∑
j=1

using inductive hypothesis ≤(λCin+(1−λ)Cout)
k+1︷ ︸︸ ︷(

s (Ii (u) , Ij (v))− s(k) (Ii (u) , Ij (v))
)

+
(1− λ)Cout

|O (u)| |O (v)|

|O(u)|∑
i=1

|O(v)|∑
j=1

(
s (Oi (u) ,Oj (v))− s(k) (Oi (u) ,Oj (v))

)
︸ ︷︷ ︸
using inductive hypothesis ≤(λCin+(1−λ)Cout)

k+1

≤ λCin

|I (u)| |I (v)|

|I(u)|∑
i=1

|I(v)|∑
j=1

(λCin + (1− λ)Cout)
k+1

+
(1− λ)Cout

|O (u)| |O (v)|

|O(u)|∑
i=1

|O(v)|∑
j=1

(λCin + (1− λ)Cout)
k+1

= λCin(λCin + (1− λ)Cout)
k+1

+(1− λ)Cout(λCin + (1− λ)Cout)
k+1

= (λCin + (1− λ)Cout)
k+2.

This completes the induction.

Theorem 4.1 provides an a-priori estimate for the gap between the iterative and exact

P-Rank. For each iteration, this gap merely hinges on the λ, Cin and Cout. To be precise,

for guaranteeing high accuracy at each iteration, it follows from

ϵk = (λ(Cin − Cout) + Cout)
k+1

that smaller choices of Cin and Cout (i) with a smaller λ if Cin > Cout, or (ii) with a

larger λ if Cin < Cout, will result in a smaller ϵk, and are thus more preferable.

Example 4.2. Setting Cin = 0.6, Cout = 0.4, λ = 0.3, k = 5 produces the following high

accuracy for P-Rank:

ϵk = (0.3× 0.6 + (1− 0.3)× 0.4)5+1 = 0.0095.

Note that the upper bound in Eq.(4.6) can be attainable. Consider the network G0 in

Figure 4.1. It is apparent that s(0)(u, v) = 0. For k = 1, 2, · · · , it can be easily obtained
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a

b

...u v ......
G0

Figure 4.1: The equality of Eq.(4.6) is attainable for G0

that s(k)(u, v) = λCin + (1 − λ)Cout, which implies that s(u, v) = λCin + (1 − λ)Cout.

Hence, in the case of k = 0,

|s(u, v)− s(k)(u, v)| = (λCin + (1− λ)Cout)
0+1,

which gives the precise upper bound in Eq.(4.6).

As a special case when λ = 1, Eq.(4.6) reduces to the SimRank accuracy estimate

problem [LVGT10]. From this perspective, P-Rank accuracy estimate problem is an

extension of Proposition 1 in [LVGT10] by jointly considering both in- and out-links for

similarity assessment.

Conversely, the exponential P-Rank convergence rate in Theorem 4.1 implies that the

total iteration number K of iterations needed for attaining a desired accuracy ϵ is

K = ⌈ln ϵ/ ln (λ · Cin + (1− λ) · Cout)⌉ .

4.4 Stability Analysis

In this section, the stability issue of P-Rank is investigated for analyzing the sensitivity

of P-Rank similarity to the perturbations on a graph. First, a closed-form of P-Rank

solution is represented as a matrix formula (Subsect. 4.4.1). Then, a rigorous bound of

the P-Rank condition number based on this matrix formula is provided (Subsect. 4.4.2).

4.4.1 Closed-form of P-Rank

Let us first introduce some notations. For a network G with n = |V| vertices, we denote

by (i) A = (ai,j) ∈ Rn×n the adjacency matrix of G whose entry ai,j is 1 if there exists
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an edge from vertex i to j, and 0 otherwise; (ii) S = (si,j) ∈ Rn×n the P-Rank similarity

matrix whose entry si,j equals the P-Rank score s(i, j) between vertices i and j; and (iii)

Q = (qi,j) ∈ Rn×n and P = (pi,j) ∈ Rn×n the one-step backward and forward transition

probability matrix of G, respectively, whose entries defined as follows:

qi,j ,

aj,i/
∑n

j=1 aj,i, if I(i) ̸= ∅;

0, if I(i) = ∅.
pi,j ,

ai,j/
∑n

j=1 ai,j , if O(i) ̸= ∅;

0, if O(i) = ∅.
(4.7)

With the above notations, the P-Rank formulae (4.1) and (4.2) can be rewritten as 1

S = λCin ·Q · S ·QT + (1− λ)Cout ·P · S ·PT + (1− λCin − (1− λ)Cout) · In. (4.8)

Dividing both sides of Eq.(4.8) by (1− λCin − (1− λ)Cout) results in

S = (1− λCin − (1− λ)Cout) · S′, with

S′ = λCin ·Q · S′ ·QT + (1− λ)Cout ·P · S′ ·PT + In. (4.9)

Comparing Eq.(4.8) with Eq.(4.9), we see that the coefficient (1−λCin− (1−λ)Cout)

of In in Eq.(4.8) merely contributes an overall multiplicative factor to P-Rank similarity.

Hence, setting this coefficient to 1 in Eq.(4.8) still preserves the relative magnitude of

the P-Rank score even though the diagonal entries of S in this scenario may not be equal

to 1. 2

We also introduce two useful operators [GL96, p.180]: (i) vec(X) ∈ Rn2
is defined to

be the vectorization of the matrix X ∈ Rn×n formed by stacking the columns of X into

a single column vector. (ii) A⊗B is the Kronecker product of the matrices A and B.

To represent the closed-form of S, we now take vec on both sides of Eq.(4.9), and then

apply the Kronecker property vec(AXB) = (BT ⊗A) · vec(X) [GL96, p.180] to obtain

vec(S′) = (1− λ)Cout(P⊗P) · vec(S′) + λCin(Q⊗Q) · vec(S′) + vec(In).

1Although in this case the diagonal entries of S may not equal 1, S still remains diagonally dominant,
which ensures that “every vertex is maximally similar to itself”.

2In what follows, we shall base our techniques on the P-Rank matrix form of Eq.(4.9).



Chapter 4. Efficient Penetrating-Rank on Large Networks 112

Rearranging the terms in the above equation produces

M · vec(S′) = vec(In) with

M = In2 − λCin(Q⊗Q)− (1− λ)Cout(P⊗P), (4.10)

which is a linear matrix equation in nature.

To show the existence of M−1, the following lemma is introduced.

Lemma 4.3. The matrices Q⊗Q and P⊗P are both row sub-stochastic matrices.3

Proof. It follows from Eq.(4.7) that for each row i = 1, · · · , n, the sum of each row in Q

and P is no greater than 1. Then, for each row i′ of Q⊗Q, we have

n∑
k=1

(qi′,k

n∑
j=1

qi,j) ≤
n∑

k=1

(qi′,k × 1) ≤ 1,

which indicates that Q ⊗ Q is a row sub-stochastic matrix. A similar proof holds for

P⊗P.

Based on Lemma 4.3, it can be easily proved that M in Eq.(4.10) is a diagonally

dominant matrix, implying that M is invertible. Hence, by pre-multiplying M−1 on

both sides of Eq.(4.10), the closed-form solution of P-Rank can be represented as

vec(S) = (1− λCin − (1− λ)Cout) ·M−1 · vec(In). (4.11)

4.4.2 Condition Number of P-Rank

Based on the closed-form of P-Rank solution in Eq.(4.11), we next analyze the P-Rank

stability. One complicated factor in P-Rank stability issue is to precisely bound its

condition number κ∞, which has important implications for the sensitivity of P-Rank

computation.

Let us first formally define the P-Rank condition number.

3A row sub-stochastic matrix is a non-negative matrix with each row sum being no greater than 1.
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Definition 4.4 (P-Rank condition number). For a network G, let Q and P be the one-

step backward and forward transition matrix defined by Eq.(4.7), respectively, and let

M be defined by Eq.(4.10). Then, the quantity

κ∞(G) , ∥M∥∞ · ∥M−1∥∞ (4.12)

is called the P-Rank condition number of G.

Here, ∥⋆∥∞ denotes the ∞-norm that returns the maximum absolute row sum of the

matrix.

The condition number is introduced for analyzing P-Rank stability. More specifically,

we show the following result.

Theorem 4.5. For any graph G, the P-Rank condition number has the following tight

bound

κ∞ (G) ≤ 1 + λ · Cin + (1− λ) · Cout

1− λ · Cin − (1− λ) · Cout
. (4.13)

To prove Theorem 4.5, the following lemmas are necessary.

Lemma 4.6. ∥M∥∞ has the following upper bound:

∥M∥∞ ≤ 1 + λ · Cin + (1− λ) · Cout. (4.14)

Proof. By definition, the diagonal (i, i)-entry of Q⊗Q equals qi′,i′ × qi′′,i′′ , where

i′ = ⌈i/n⌉ and i′′ = [(i− 1) mod n] + 1.

Then, taking ∞-norm on both sides of Eq.(4.10) yields

∥M∥∞ =

=1︷ ︸︸ ︷
∥In2∥∞+λ · Cin ·

≤1︷ ︸︸ ︷
∥Q⊗Q∥∞+(1− λ) · Cout ·

≤1︷ ︸︸ ︷
∥P⊗P∥∞

≤ 1 + λ · Cin + (1− λ) · Cout. (4.15)

Lemma 4.7.
∥∥M−1

∥∥
∞ has the following upper bound:

∥∥M−1
∥∥
∞ ≤

1

1 + λ · Cin + (1− λ) · Cout
. (4.16)
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Proof. Let 1n2 be a vector of length n2 with entries of all 1s, and ei a unit vector of

length n2 with a 1 in the i-th entry and 0s in all others.

Since Q ⊗ Q and P ⊗ P are row sub-stochastic matrices, it follows from Eq.(4.10)

that ∀i = 1, 2, · · · , n2,

∥In2 −M+ [1− λ · Cin − (1− λ) · Cout] · 1n2 · eTi ∥∞

= ∥λCin(Q⊗Q) + (1− λ)Cout(P⊗P)+ [1− λ · Cin − (1− λ) · Cout] · 1n2 · eTi ∥∞ ≤ 1.

Hence, In2 −M + [1− λ · Cin − (1− λ) · Cout] · 1n2 · eTi is a row sub-stochastic matrix.

Due to the spectral radius property ρ(⋆) ≤ ∥ ⋆ ∥∞, it follows that

ρ(In2 −M+ [1− λ · Cin − (1− λ) · Cout] · 1n2 · eTi ) ≤ 1.

Notice that In2 −M + [1− λ · Cin − (1− λ) · Cout] · 1n2 · eTi is nonnegative. According

to the eigen-pair property for the nonnegative matrix 4, there exists some row-vector xT
i

with ∥xT
i ∥∞ = 1 such that ∀i = 1, 2, · · · , n2,

xT
i · (In2 −M+ [1− λ · Cin − (1− λ) · Cout] · 1n2 · eTi ) ≤ xT

i .

Rearranging the terms in the above inequality produces

xT
i ·M ≥ [1− λ · Cin − (1− λ) · Cout] · xT

i · 1n2 · eTi . (4.17)

Note that ∥xT
i ∥∞ = 1, which implies that xT

i · 1n2 = 1. Post-multiplying by M−1 on

both sides of Eq.(4.17) produces ∀i = 1, 2 · · · , n2,

eTi ·M−1 ≤ 1/(1− λ · Cin − (1− λ) · Cout) · xT
i .

Also, notice that ∥M−1∥∞ = max1≤i≤n2 ∥eTi ·M−1∥∞ and ∥xT
i ∥∞ = 1. Taking ∞-norm

on both sides of the above inequality yields Eq.(4.16).

From Lemmas 4.6 and 4.7, Theorem 4.5 follows directly, which provides a tight bound

for κ∞(G). Intuitively, κ∞(G) has two important implications. Foremost, it can evaluate

4According to [Mey01, p.670], for a nonnegative matrix A ∈ Rn×n, there exists a vector x ∈ {z|z ≥
0 with z ̸= 0} such that Ax = ρ(A)x.
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how stable the P-Rank similarity is to the perturbations in the link structure of graph

G (by inserting or deleting vertices or edges, or by changing the value of weighted factor

λ and damping factors Cin and Cout). Moreover, it can estimate the error of P-Rank

ranking results invoked by the roundoff error in P-Rank iterations.

To get a feel for how κ∞(G) affects P-Rank stability, we denote by ∆M the updates to

the original matrix M defined in Eq.(4.10), and ∆S the updates to the original similarity

matrix S. From the closed-form solution of P-Rank, it is known that

∥∆S∥max

∥S∥max

=
∥vec(∆S)∥∞
∥vec(S)∥∞

≤ κ∞ (G) ·
∥∆M∥∞
∥M∥∞

≤ 1 + λ · Cin + (1− λ) · Cout

1− λ · Cin − (1− λ) · Cout
·
∥∆M∥∞
∥M∥∞

,

where ∥X∥max = max1≤i,j≤n{xi,j} is a maximum elementwise matrix norm. This tells

that smaller κ∞ (G) (i.e., smaller choices of Cin and Cout) makes P-Rank more stable,

implying that a small change ∆M in the link structure to M may not cause a large

change ∆S in P-Rank similarity scores. Conversely, the larger value of κ∞ (G) makes

P-Rank ill-conditioned. 5

The P-Rank condition number κ∞ (G) can vary with the choice of weighting factor

λ. To see this, let us compute the partial derivatives w.r.t. λ in Eq.(4.13) :

∂

∂λ

(
1 + λ · Cin + (1− λ) · Cout

1− λ · Cin − (1− λ) · Cout

)
=

2 (Cin − Cout)

(1− λ · Cin − (1− λ) · Cout)
2 . (4.18)

This implies that when Cin > Cout (resp.Cin < Cout), for the increased λ, a small change

in G may result in a large (resp.small) change in P-Rank, which makes P-Rank an ill-

conditioned (resp.a well-conditioned) problem; when Cin = Cout, the value of κ∞ (G) is

independent of λ.

It is worth noting that the upper bound of κ∞(G) in Eq.(4.13) is attainable if and

only if each vertex in network G has at least one in-degree and one out-degree because

in this case each row sum and each column sum of A are strictly greater than 0, which

5A detailed discussion will be given in Subsection 4.5.1 for measuring the effectiveness of P-Rank
approximate algorithm to further appreciate the utility of P-Rank condition number κ∞ (G).
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a b
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Figure 4.2: The equality of Eq.(4.13) is attainable for G1

ensures that Q and P are exactly row stochastic matrices 6 rather than sub-stochastic

ones, and hence ∥Q⊗Q∥∞ = ∥P⊗P∥∞ = 1.

Example 4.8. Consider a directed cycle network of length 4, depicted as G1 in Figure

4.2, in which each vertex has one in-link and one out-link. Setting λ = 0.5, Cin = 0.8,

and Cout = 0.6, one can verify that the equality of Eq.(4.13) is attained for G1 as follows.

On one hand, since A = Q = P for G1,M and M−1 can be solved naively from

Eq.(4.10), which follows that

κ∞(G) = ∥M∥∞ · ∥M
−1∥∞

.
= 1.7× 3.333 = 5.667;

on the other, computing the right-hand side of (4.13) produces

1 + λ · Cin + (1− λ) · Cout

1− λ · Cin − (1− λ) · Cout
=

1 + 0.5× 0.8 + (1− 0.5)× 0.6

1− 0.5× 0.8− (1− 0.5)× 0.6

.
= 5.667.

Both results are exactly the same, and hence the equality of Eq.(4.13) holds.

4.5 Optimization Techniques

In this section, optimization techniques for P-Rank computation are suggested. (i) For di-

rected networks, an efficient algorithm based on low rank approximation of the transition

matrices is proposed for reducing the calculations of trivial similarity values associated

with the small singular values (Subsection 4.5.1). (ii) For undirected networks, a P-

Rank solution in terms of eigenfunctions is introduced for further optimizing similarity

computations (Subsection 4.5.2).

6A matrix having row sums equal to 1 is called a row stochastic matrix.
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Figure 4.3: Low-rank update of matrix inversion

4.5.1 P-Rank on Digraphs

We next devise an algorithm for speeding up the computation of P-Rank toO
(
r4n2 + r2n

)
from O(Kn4) [ZHS09] time in the worst case, where r (≪ n) is the rank of graph adja-

cency matrix, and K is the total iteration number.

The main idea in optimizing P-Rank computation is to “merge” the vertices having

similar neighbor structures by utilizing a singular value decomposition of a graph that is

represented as a matrix inversion. To effectively decompose the graph, a low-rank update

formula is also proposed to compute this matrix inversion in the r × r dimension rather

than its conventional counterpart in n × n dimension. We observe that vertices in a

real-world graph (e.g., bibliographic networks [JW02], who-trusts-whom social networks

[LHK10]) are often sparse and may share the similar structure of the neighborhood.

Thus, the rank r of the adjacency matrix is typically much smaller than n, and the

computational efficiency can be highly achieved.

For an elaborate discussion, we first establish the following low-rank update of the

matrix inversion identity, which is useful to subsequent P-Rank optimization.

Lemma 4.9. Let I be an n× n identity matrix, Ui and Vi be n× r matrices , and Ci

be r × r matrices (i = 1, 2). Then the following matrix inversion identity holds.

(
I−U1Σ1V

T
1 −U2Σ2V

T
2

)−1
= I+

(
U1 U2

)Σ1
−1 −VT

1 U1 −VT
1 U2

−VT
2 U1 Σ2

−1 −VT
2 U2

−1VT
1

VT
2


Proof. Let U = (U1 U2), V = (V1 V2) and Σ =

(
Σ1 0
0 Σ2

)
. Substituting in both sides of
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the Woodbury formula [GL96]
(
I−UCVT

)−1
= I−1 + I−1U

(
Σ−1 −VT I−1U

)−1
VT I−1

gives

LHS=

I−
(
U1 U2

)Σ1 0

0 Σ2


VT

1

VT
2




−1

=
(
I−U1Σ1V

T
1 −U2Σ2V

T
2

)−1
,

RHS= I+

(
U1 U2

)
Σ1 0

0 Σ2


−1

−

VT
1

VT
2

(U1 U2

)
−1VT

1

VT
2


= I+

(
U1 U2

)Σ1
−1 −VT

1 U1 −VT
1 U2

−VT
2 U1 Σ2

−1 −VT
2 U2


−1VT

1

VT
2

 .

Since LHS=RHS, this yields the desired results.

A consequence of Lemma 4.9 is to convert an n × n matrix inversion into an r ×

r matrix inversion with r ≪ n, thus greatly improving the time complexity. More

precisely, as depicted in Figure 4.3, when one wishes to compute the matrix inversion

(I−U1Σ1V
T
1 −U2Σ2V

T
2 )

−1
, it is only necessary to calculate the RHS of Eq.(4.19),

which is in O(n2r + r2n+ r3) (r ≪ n) due to the low-rank of U1Σ1V
T
1 and U2Σ2V

T
2 ,

as opposed to the naive O
(
n3
)
time of matrix inversion [HJ90].

Lemma 4.9 is established in conjunction with singular value decomposition for op-

timizing P-Rank computation. The key observation is that Q and P may have small

matrix rank r(≪ n) as most real graphs are often sparse. 7 Comparing the LHS of

Eq.(4.19) with the closed-form of P-Rank solution (Eq.(4.11)), it can be noticed that

once the matrix λCin (Q⊗Q) and (1− λ)Cout (P⊗P) are decomposed into the form

of U1Σ1V
T
1 and U2Σ2V

T
2 , respectively, Lemma 4.9 can be used for speeding up the

computation of M−1 in Eq.(4.11) .

More specifically, we show the following main result in this subsection.

Theorem 4.10. Let r be the rank of the graph adjacency matrix. Given a low rank

7A sparse graph G = (V, E) is a graph with |E| = O(|V|).
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O(rn2)
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=
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υ
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(υ ≪ r)

r
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υ

≈

⇒ ‖Qυ −Q‖
2
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Figure 4.4: Low rank υ approximation truncating the smallest r−υ singular values of Q

υ (≤ r), it is in O
(
υ4n2 + υ2n

)
time to estimate P-Rank up to an additive error

ϵυ ≤
λCinσ1συ+1r + (1− λ)Coutσ̄1σ̄υ+1r

1− λCin − (1− λ)Cout
,

where σi and σ̄i (i = 1, υ+1) are the i-th largest singular values of Q and P respectively.

(A detailed proof will be provided after some discussions.)

In particular, setting the low-order υ to r (the rank of adjacency matrix) gives the

following corollary.

Corollary 4.11. For digraphs, the exact P-Rank similarity S in Eq.(4.8) is solvable in

O(r4n2 + r2n) time.

As remarked earlier, it takes O
(
n2r + r2n

)
time to perform the matrix inversion

in Lemma 4.9. This tells us that P-Rank estimation does not make our lives much

harder since υ(≤ r) is typically much smaller than n in practice. In contrast with the

quartic time of its traditional counterpart via an iterative paradigm [ZHS09], the low-

rank υ (≪ r) approximation of P-Rank allows us to estimate similarities in quadratic

time in the number of vertices.

The a-posteriori error ϵυ in Theorem 4.10 is acceptable in practice (e.g., Wikiand

DBLP) since the (υ + 1)-th largest singular values συ+1 and σ̄υ+1 are reasonably small.

As depicted in Figure 4.4, the low-rank υ (≤ r) decomposition procedure truncates the
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smallest r−υ almost zero singular values of the adjacency matrix which (1) contain little

practical information for computing the resultant similarity, and (2) require considerable

amounts of space for subsequent computations. For instance, setting Cin = Cout = 0.8

and λ = 0.5 (as suggested in [ZHS09]) implies a high accuracy

ϵυ ≤
0.5× 0.8× 1.12 + 0.5× 0.8× 1.08

1− 0.5× 0.8− 0.5× 0.8
× 10−7 × 15K ≈ 0.006,

for an English Wikigraph of 1.2M vertices (υ = r/2 ≈ 15K, σ1 = 1.12, σ̄1 = 1.08) with

max(συ+1, σ̄υ+1) < 10−7 being truncated.

The choice of low rank υ (≤ r) has a user-controlled effect over the approximation

error, which is a time-accuracy trade-off. As an extreme case of υ = r (≪ n), we notice

that σr+1 = σ̄r+1 = 0 and the approximate P-Rank similarity becomes the exact P-

Rank similarity. From this perspective, the approximate P-Rank is an extension of the

conventional exact approach.

We next prove Theorem 4.10 by providing an algorithm for the low-rank υ P-Rank

approximation on digraphs.

Algorithm. The algorithm, referred to as DE P-Rank, is shown in Algorithm 4.1. It

accepts as input a web graph G, a weighted factor λ, two damping factors Cin and Cout,

and a low rank υ (an optional parameter). If υ is omitted, the default value is the rank

r of adjacency matrix in G. The algorithm returns the approximate P-Rank similarity

matrix S for G and an accuracy ϵυ if υ ≤ r; otherwise it returns the exact similarity S

for ϵυ = 0.

Before illustrating the algorithm, we first present the notations it uses. (1) RowNorm

(A) returns a row-stochastic matrix by normalizing each nonzero row of A; Rank (A)

returns the rank of A. (2) Given a matrix Q and a positive integer υ, RSVD (Q, υ)

returns the low-rank υ singular matrix decomposition Qυ = UQΣQVT
Q that minimizes

∥Qυ −Q∥2 = συ+1, where UQ and VQ are n × υ orthogonal matrices, and ΣQ is a

υ × υ diagonal matrix. (3) We use ŨQ, Σ̃Q, Ṽ
T
Q to denote the self-Kronecker products
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Algorithm 4.1: DE P-Rank (G, λ, Cin, Cout, υ)

Input : web graph G = (V, E), weight factor λ,

damping factors Cin and Cout, low rank υ.

Output: similarity matrix S, and accuracy ϵυ.

1 initialize the adjacency matrix A of G.

2 compute the transition matrices Q and P in G :

Q← RowNorm
(
AT
)
, P← RowNorm (A).

3 if υ is empty then υ ← Rank (A)

4 do low rank SVD approximation for Q and P :

[UQ,ΣQ,VQ;σ1, συ+1]← RSVD (Q, υ),

[UP,ΣP,VP; σ̄1, σ̄υ+1]← RSVD (P, υ).

5 compute the self-Kronecker products :

ŨQ ← UQ ⊗UQ, Σ̃Q ← ΣQ ⊗ΣQ, ṼQ ← VQ ⊗VQ,

ŨP ← UP ⊗UP, Σ̃P ← ΣP ⊗ΣP, ṼP ← VP ⊗VP.

6 compute the matrix Σ :

Σ11 ← 1
λCin

Σ̃−1
Q − ṼT

QŨQ, Σ12 ← ṼT
QŨP,

Σ22 ← 1
(1−λ)Cout

Σ̃−1
P − ṼT

PŨP, Σ21 ← −ṼT
PŨQ.

7 compute the P-Rank similarity vector s :

v1 ← ( ṼQ ṼP )T vec (In) , v2 ←
(

Σ11 Σ12
Σ21 Σ22

)−1
v1

s← vec (In) + ( ŨQ ŨP )v2.

8 if υ < Rank (A) then estimate accuracy

ϵυ ←
λCinσ1συ+1 + (1− λ)Coutσ̄1σ̄υ+1

1− λCin − (1− λ)Cout
Rank (A)

else ϵυ ← 0.

9 reshape the n× n similarity matrix S s.t. s = vec (S).

10 return S and ϵυ.
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Figure 4.5: Heterogenous Shopping Graph G2

of UQ,ΣQ,V
T
Q, respectively.

The algorithm DE P-Rank works as follows. It first initializes the adjacency matrix

A of G (line 1). Using A, it then computes Q and P by normalizing each nonzero row

of A and AT , respectively (line 2). When the optional argument υ is not supplied, DE

P-Rank also provides a default value Rank (A) for υ (line 3).

For the matrix Q (resp.P) and the rank υ, DE P-Rank then uses RSVD () to decompose

the largeQ (resp.P) into the product of small matrices, i.e., UQΣQVT
Q (resp.UPΣPV

T
P),

which results in a more compact representation of G (line 5). In the case when υ <

Rank (A), RSVD () provides the best low-rank υ approximation of Q (resp.P) in the least

square error sense; otherwise, it yields exact factorizations for Q and P. Moreover,

DE P-Rank utilizes the matrices UQ,ΣQ,V
T
Q,UP,ΣP,V

T
P to obtain the P-Rank sim-

ilarity matrix S based on Lemma 4.9 (lines 5-7). More concretely, the block matrices

( ŨQ ŨP ),
(

Σ11 Σ12
Σ21 Σ22

)
and ( ṼQ ṼP )T can be derived from the self-Kronecker products

of UQ,ΣQ,V
T
Q,UP,ΣP,V

T
P respectively when applied to compute vec(S) via matrix-

vector multiplication.
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1 2

G3

54

3

6

➀
=⇒

A =




















1 0 0 1 0 0

0 1 1 0 1 1

0 1 1 0 1 1

1 0 0 1 0 0

1 0 0 1 0 0

0 1 1 0 1 1





















➁
=⇒

Q =




















1

3
0 0

1

3

1

3
0

0
1

3

1

3
0 0

1

3

0
1

3

1

3
0 0

1

3

1

3
0 0

1

3

1

3
0

0
1

3

1

3
0 0

1

3

0
1

3

1

3
0 0

1

3





















P =




















1

2
0 0

1

2
0 0

0
1

4

1

4
0

1

4

1

4

0
1

4

1

4
0

1

4

1

4

1

2
0 0

1

2
0 0

1

2
0 0

1

2
0 0

0
1

4

1

4
0

1

4

1

4





















➂
=⇒

UQ =
















0 .707

.5 0

.5 0

0 .707

.5 0

.5 0

















ΣQ =
(

1.155 0

0 .817

)

VT

Q =
(

0 .577 .577 0 0 .577

.577 0 0 .577 .577 0

)

VT

P =
(

.707 0 0 .707 0 0

0 −.5 −.5 0 −.5 −.5

)

ΣP =
(

1.225 0

0 .866

)

UP =
















.577 0

0 −.577

0 −.577

.577 0

.577 0

0 −.577

















➃
=⇒

Σ11 =







3 0 0 0

−.250 4.596 0 0

−.250 0 4.596 0

−.083 .236 −.236 6.833






Σ12 =







0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0







Σ21 =







0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0






Σ22 =







1.556 0 0 0

.236 2.436 0 0

.236 0 2.436 0

−.083 .250 .250 3.694







➄
=⇒

v1 =
























1

0

0

1

1

0

0

1

























v2 =
























1.358

−.640

−.640

1.363

1.202

−.620

−.620

1.518

























➅
=⇒ S =

















.705 .025 .025 .206 .145 .025

.025 .632 .132 .025 .076 .132

.025 .132 .632 .025 .076 .132

.206 .025 .025 .706 .145 .025

.145 .076 .076 .145 .696 .076

.025 .132 .132 .025 .076 .632

















Figure 4.6: Homogeneous Scientific Paper Network G3

When s (i.e., vec(S)) is derived, DE P-Rank compares the low rank υ with Rank(A).

If υ < Rank(A), the accuracy ϵυ also needs to be estimated for the best low-rank υ

approximation (line 8). The entries of s are the desired P-Rank similarities reshaped in

the matrix S, which is returned as the final result (lines 9-10).

Example 4.12 (Heterogenous Graph). Figure 4.5 depicts how DE P-Rank calculates

similarity scores (using Cin = 0.4, Cout = 0.6, λ = 0.5) in a bipartite shopping graph

G2 consisting of two types of entities: persons (A) and (B) purchased the same items

sugar, egg, flour.

DE P-Rank first computes Q and P from the adjacency matrix A of G2. It then

decomposes Q and P into UQΣQVT
Q and UPΣPV

T
P, respectively, as illustrated in Fig-
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ure 4.5. Using these factorized small matrices, DE P-Rank calculates the block matrix(
Σ11 Σ12
Σ21 Σ22

)
and two auxiliary vectors v1,v2, and it returns the similarity matrix S as the

final P-Rank result with no extra approximation errors, due to the choice of low rank

υ = Rank(A) = 1 when Q and P are completely decomposed.

Example 4.13 (Homogeneous Graph). DE P-Rank can also be applied to homogeneous

domains, such as the web graph G3 in Figure 4.6. Each vertex in G3 represents a web page,

and each edge corresponds to a hyperlink from one page to another. A similar process

for DE P-Rank computing similarity scores for vertices of G3 (setting Cin = 0.4, Cout =

0.6, λ = 0.5) is shown in Figure 4.6. No additional approximation errors arise as the low

rank υ = Rank(A) = 2 is selected.

To complete the proof of Theorem 4.10, we next show that (1) the algorithm DE P-

Rank correctly estimates the similarity values; and (2) it has the time complexity bound

stated in Theorem 4.10.

(1) Correctness. (i) We first verify that the algorithm returns exactly the same simi-

larity results as Eq.(4.11) when υ = Rank (A).

Let Q = UQΣQVT
Q and P = UPΣPV

T
P be two reduced singular value decomposi-

tions. Using the Kronecker product property [HJ90] that (A ·B)⊗ (C ·D) = (A⊗C) ·

(B⊗D) yields

Q⊗Q = ŨQ · Σ̃Q · ṼT
Q, P⊗P = ŨP · Σ̃P · ṼT

P,

where

ŨQ = UQ ⊗UQ, Σ̃Q = ΣQ ⊗ΣQ, ṼQ = VQ ⊗VQ,

ŨP = UP ⊗UP, Σ̃P = ΣP ⊗ΣP, ṼP = VP ⊗VP.

Substituting these into Eq.(4.11) and combining Lemma 4.9 produces

vec (S) = (In2 − λCin (Q⊗Q)− (1− λ)Cout (P⊗P))−1 · vec (In)
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= (In2 − λCinŨQΣ̃QṼT
Q − (1− λ)CoutŨPΣ̃PṼ

T
P)

−1︸ ︷︷ ︸
={using Lemma 4.9}=(In2+( ŨQ ŨP )Σ( ṼQ ṼP )

T
)vec(In)

·vec (In)

= vec (In) +

(
ŨQ ŨP

)
Σ

(
ṼQ ṼP

)T

vec (In) ,

where

Σ =

 1
λCin

Σ̃−1
Q − ṼT

QŨQ −ṼT
QŨP

−ṼT
PŨQ

1
(1−λ)Cout

Σ̃−1
P − ṼT

PŨP


−1

.

(ii) We next verify that in the case of υ < Rank (A), the algorithm returns the low-

rank υ approximate P-Rank similarity with an error bound of ϵυ stated in Theorem

4.10.

To simplify the notations, let

Mυ = In2 − λCin (Qυ ⊗Qυ)− (1− λ)Cout (Pυ ⊗Pυ) , (4.19)

where Qυ and Pυ are the rank υ approximation of Q and P) respectively, as depicted

in Figure 4.4. Recall that the exact closed-form solution of P-Rank similarity Eq.(4.11),

which can be equivalently rewritten as

M · vec (S) = (1− λCin − (1− λ)Cout) · vec (In) ,

but due to the low-rank υ approximation, one actually solve

Mυ · vec(Ŝυ) = (1− λCin − (1− λ)Cout) · vec(In).

To estimate the error ϵυ, combining the above two equations yields

M · (vec(S)− vec(Ŝυ)) = (Mυ −M) · vec(Ŝυ).

Let

ϵυ =
∥S− Ŝυ∥max

∥Ŝυ∥max

=
∥vec(S− Ŝυ)∥∞
∥vec(Ŝυ)∥∞

.

Since M was proved in Subsection 4.4.1 to be invertible, pre-multiplying by M−1 and

taking ∞-norm on both sides of the above equation produces

ϵυ ≤ ∥M−1∥∞ · ∥Mυ −M∥∞.
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According to Lemma 4.7, we have

∥M−1∥∞ ≤ 1/(1− λCin − (1− λ)Cout). (4.20)

By the equivalence of norms, it follows that

∥Mυ −M∥∞ ≤ r∥Mυ −M∥2.

We are now ready to find the bound of ∥Mυ −M∥2.

Lemma 4.14. Let M and Mυ be the matrices defined by Eqs.(4.10) and (4.19). Then

the following equality holds:

∥Mυ −M∥2 ≤ λCinσ1συ+1 + (1− λ)Coutσ̄1σ̄υ+1, (4.21)

where σi and σ̄i (i = 1, υ + 1) are the i-th largest singular values ofQ andP, respectively.

Proof. Subtracting Eq.(4.19) from Eq.(4.10) and taking 2-norms of both sides yield

∥Mυ −M∥2≤ λ · Cin∥Q⊗Q−Qυ ⊗Qυ∥2 + (1− λ) · Cout∥P⊗P−Pυ ⊗Pυ∥2.

To find an upper bound for ∥Q⊗Q−Qυ ⊗Qυ∥2, let Q = UQΣQVT
Q be a truncated

SVD with

ΣQ = diag (σ1, σ2, · · · , σr) ,

and Qυ = UQΣQυV
T
Q be a truncated SVD with

ΣQυ = diag(σ1, · · · , συ, 0, · · · , 0︸ ︷︷ ︸
r−υ

).

Then it follows that

ΣQ ⊗ΣQ −ΣQυ ⊗ΣQυ

= diag (

υ︷ ︸︸ ︷
0, · · · , 0, σ1συ+1, · · · , σ1σr,

· · · ,
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0, · · · , 0︸ ︷︷ ︸
υ

, συσυ+1, · · · , συσr,

συ+1σ1, συ+1σ2, · · · , συ+1σr,

· · · ,

σrσ1, σrσ2, · · · , σrσr).

Since σ1 ≥ σ2 ≥ · · · ≥ σr are the nonzero singular values of Q, arranged in non-increasing

order, we know by SVD property that

∥ΣQ ⊗ΣQ −ΣQυ ⊗ΣQυ∥2 = σ1συ+1. (4.22)

From the truncated SVDs of Q and Qυ, it follows that

Q⊗Q−Qυ ⊗Qυ = (UQ ⊗UQ) (ΣQ ⊗ΣQ −ΣQυ ⊗ΣQυ) (VQ ⊗VQ)T .

Due to the property that the Kronecker product of two orthogonal matrices is orthogonal

[HJ90], it follows that UQ ⊗ UQ and VQ ⊗ VQ are orthogonal. Hence, by SVD and

Eq.(4.22) we have

∥Q⊗Q−Qυ ⊗Qυ∥2 = ∥ΣQ ⊗ΣQ −ΣQυ ⊗ΣQυ∥2 = σ1συ+1. (4.23)

Similarly, we can obtain

∥P⊗P−Pυ ⊗Pυ∥2 = σ̄1σ̄υ+1 (4.24)

with σ̄i (i = 1, υ + 1) being the i-th largest singular values of P. Substituting Eqs.(4.23)

and (4.24) into Eq.(4.21) yields

∥Mυ −M∥2≤ λ · Cin ·
=σ1συ+1︷ ︸︸ ︷

∥Q⊗Q−Qυ ⊗Qυ∥2+(1− λ) · Cout ·
=σ̄1σ̄υ+1︷ ︸︸ ︷

∥P⊗P−Pυ ⊗Pυ∥2

= λCinσ1συ+1 + (1− λ)Coutσ̄1σ̄υ+1,

which completes the proof.

Based on Lemma 4.14, combining Eqs.(4.20) and (4.21) yields

ϵυ ≤
λCinσ1συ+1r + (1− λ)Coutσ̄1σ̄υ+1r

1− λCin − (1− λ)Cout
.
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(2) Complexity. We next show that the algorithm DE P-Rank is in O
(
υ4n2 + υ2n

)
time.

(i) For pre-processing (lines 1-4), (a) it takes O
(
n2
)
time to compute Q and P by

normalizing A (lines 1 and 2); (b) calculating Rank () takes O
(
n2
)
(line 3); (c)

RSVD () is computed in O
(
υn2 + υ2n

)
time (line 4). In particular, the diagonal

matrices ΣQ and ΣP can be stored in two υ-dimensional vectors with the entries

σi and σ̄i (i = 1, · · · , υ) sorted in descending order, respectively. The total cost in

this phase is thus O
(
υn2 + υ2n

)
.

(ii) For the similarity computation phase (lines 5-7), we analyze the time complexity as

follows. (a) The self-Kronecker product for each matrix requires at most O
(
υ2n2

)
(line 5). Moreover, since ΣQ and ΣP are diagonal, Σ̃−1

Q and Σ̃−1
P can be generated

in O
(
υ2
)
time. (b) Computing all the submatrices Σi,j (i, j = 1, 2) from the ma-

trix Σ takes O
(
υ4n2

)
time (line 6), particularly involving 4 matrix multiplications

and 2 diagonal matrix inversions altogether. (c) s can be computed at most in

O
(
υ2n2 + υ6

)
time (line 7). One can verify that calculating vectors v1,v2 and s

takes O
(
υ2n

)
, O
(
υ6
)
and O

(
υ2n2

)
worst-case time, respectively.

(iii) The last phase (lines 9-10) is in O (n) time.

Taking (i), (ii) and (iii) together, the algorithm DE P-Rank is in O
(
υ4n2 + υ2n

)
total

time.

4.5.2 P-Rank on Undirected Graphs

After low-rank techniques are devised for P-Rank computation on digraphs, optimiza-

tion methods in this subsection allow further reducing the computation of P-Rank on

undirected graphs.

The key idea behind the optimization is to diagonalize the adjacency matrix A into

Λ and utilize Λ for computing the similarity S based on a power series representation of

P-Rank solution, i.e., S =
∑+∞

k=0 f(Λ
k). Due to A symmetry for undirected networks, A
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is diagonalizable to Λ. As a matrix product is associative, the power of diagonal matrix

Λ is much easier to calculate than that of A, and thus improves the efficiency of P-Rank

computation on undirected graphs.

The main result in this subsection is the following.

Theorem 4.15. For undirected graphs, the P-Rank similarity S in Eq.(4.8) can be solv-

able in O(rn2) worst-case time, with r (≪ n) being the rank of graph adjacency ma-

trix.

(A proof will be provided after some discussions.)

Note that SimRank formula over undirected graphs is a special form of P-Rank sim-

ilarity when λ = 1 and Cin = Cout. In contrast to the O(n3 + Kn2)-time of SimRank

optimization over undirected graphs in our early work [YLL10], Theorem 4.15 further

optimizes P-Rank computational time in O(rn2) (r ≪ n) with no need for extra itera-

tions.

One challenging problem underlying the optimization is to characterize P-Rank sim-

ilarity S as the eigenvectors of the adjacency matrix over undirected graphs. To address

this issue, we propose the following theorem.

Theorem 4.16. For an undirected graph G, let A = (ai,j) ∈ Rn×n be the adjacency

matrix, and D a diagonal matrix 8

D = diag((

n∑
j=1

a1,j)
−1, · · · , (

n∑
j=1

an,j)
−1) ∈ Rn×n. (4.25)

Then, the P-Rank similarity matrix S′ in Eq.(4.9) can be explicitly represented as 9

S′ = D1/2U ·Ψ ·UTD1/2, (4.26)

where Ψ = (Ψi,j)r×r with the (i, j)-entry being

Ψi,j =
[UTD−1U]i,j

1− (λ · Cin + (1− λ) · Cout) Λi,iΛj,j
, (4.27)

8We define 1
0
, 0, thereby avoiding division by zero when the column/row sum of A equals 0.

9D1/2 is a diagonal matrix whose diagonal entries are the principal square root of those of D.
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and U and Λ are the eigen-decomposition of D1/2AD1/2 such that U ∈ Rn×r is an

orthogonal matrix with its columns being all eigenvectors of D1/2AD1/2, and Λ = (Λi,j) ∈

Rr×r is an diagonal matrix with its diagonal entries being all eigenvalues of D1/2AD1/2;

and [UTD−1U]i,j denotes the (i, j)-entry of UTD−1U.

Proof. (i) We first give a power series form of S′ in Eq.(4.9). Since the network G is

undirected, its adjacency matrix is symmetric. Therefore, we can easily verify

Q = P = D ·A. (4.28)

Using Eq.(4.28) to simplify Eq.(4.9) yields

S′ = (λCin + (1− λ)Cout) (DA)S′(DA)T + In. (4.29)

The recursive definition of S′ in Eq.(4.29) naturally leads itself to have the following

power series representation:

S′ =
+∞∑
k=0

(λCin + (1− λ)Cout)
k(DA)k((DA)k)

T
. (4.30)

(ii) We next need to compute (DA)k in Eq.(4.30). Observe that D · A = D1/2 ·

(D1/2AD1/2) ·D−1/2. Then we have

(D ·A)k =D1/2(D1/2AD1/2)

=I︷ ︸︸ ︷
D−1/2 ·D1/2(D1/2AD1/2)

D−1/2 ·D1/2︸ ︷︷ ︸
=I

(D1/2AD1/2)D−1/2 · · · ·

=D1/2 · (D1/2AD1/2)
k ·D−1/2. (4.31)

Since D1/2AD1/2 is symmetric, it can be factorized as U·Λ·UT via eigen-decomposition,

whereU ∈ Rn×r is an orthogonal matrix whose columns are all eigenvectors ofD1/2AD1/2,

and Λ = (Λi,j) ∈ Rr×r is diagonal with its diagonal entries being all eigenvalues of

D1/2AD1/2.

Therefore, it follows from UT ·U = I that

(D1/2AD1/2)
k
= (UΛUT )

k
= UΛkUT . (4.32)
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Substituting Eq.(4.32) back into Eq.(4.31) yields

(D ·A)k = D1/2 ·UΛkUT ·D−1/2. (4.33)

(iii) We finally provide a concise expression for the matrix series form of S′ in

Eq.(4.30).

To simplify the equation, let

C , λ · Cin + (1− λ) · Cout,

Γ = (Γi,j)r×r , UTD−1U.

Applying Eq.(4.33) to Eq.(4.30) produces

S′ =

+∞∑
k=0

Ck·D
1
2U ·Λk ·UTD−1

2 ·
(
D

1
2U ·Λk ·UTD−1

2

)T

=D
1
2U ·

(
+∞∑
k=0

Ck ·Λk · Γ ·Λk

)
·UTD

1
2

=D1/2U ·Ψ ·UTD1/2,

where

Ψ=

+∞∑
k=0

Ck ·


(Λ1,1Λ1,1)

kΓ1,1 · · · (Λ1,1Λr,r)
kΓ1,r

...
. . .

...

(Λr,rΛ1,1)
kΓr,1 · · · (Λr,rΛr,r)

kΓr,r

 =


Γ1,1

1−CΛ1,1Λ1,1
· · · Γ1,r

1−CΛ1,1Λr,r

...
. . .

...

Γr,1

1−CΛr,rΛ1,1
· · · Γr,r

1−CΛr,rΛr,r

 .

Based on Theorem 4.16, we next prove Theorem 4.15 by providing an algorithm for

P-Rank computation over undirected networks.

Algorithm. The algorithm, referred to as UN P-Rank , is shown in Algorithm 4.2. It

takes as input a labeled undirected network G, a weighting factor λ, and in- and out-link

damping factors Cin and Cout; and it returns the P-Rank similarity matrix S = (si,j)n×n

of all vertex-pairs in G.

The algorithm UN P-Rank works as follows. It first initializes the adjacency matrix

A of the network G (line 1). Utilizing A, it then computes the auxiliary diagonal matrix
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Algorithm 4.2: UN P-Rank (G, λ, Cin, Cout)

Input : undirected web graph G = (V, E),

damping factors Cin and Cout, weight factor λ.

Output: similarity matrix S.

1 initialize the adjacency matrix A of G .

2 compute the diagonal matrix D = diag(d1,1, · · · , dn,n):

for i← 1, 2, · · · , n do

if
∑n

j=1 ai,j ̸= 0 then di,i ← (
∑n

j=1 ai,j)
−1

else di,i ← 0 .

3 compute the auxiliary matrix T← D1/2 ·A ·D1/2 .

4 decompose T into the diagonal Λ = diag(Λ1,1, · · · ,Λr,r) and the orthogonal U

s.t. T = U ·Λ ·UT .

5 compute the auxiliary matrix Γ = (Γi,j)n×n ← UT ·D−1 ·U and V← D1/2 ·U

and the scalar C ← λCin + (1− λ)Cout .

6 compute the matrix Ψ = (ψi,j)n×n whose entry ψi,j ← Γi,j/(1− C · Λi,i · Λj,j) .

7 compute the P-Rank similarity matrix S← (1− C) ·V ·Ψ ·VT .

8 return S .

D whose (i, i)-entry equals the reciprocal of the i-th column sum of A if this reciprocal

exists, and 0 otherwise (line 2). UN P-Rank then uses QR eigen-decomposition [GL96]

to factorize D1/2AD1/2 as UΛUT , in which all columns of U are the eigenvectors of

D1/2AD1/2, and all diagonal entries ofΛ are the corresponding eigenvalues ofD1/2AD1/2

(lines 3-4). Utilizing U and Λ, it calculates Ψ (lines 5-6) to obtain the similarity matrix

S (lines 7-8), which can be justified by Eqs.(4.26) and (4.27).

Example 4.17. Consider an undirected friendship graph G4. Each vertex corresponds

to a person, and there is an edge between two people whenever they are friends. The

detailed process of computing S is depicted in Figure 4.7 step by step without the need

for extra iterations. UN P-Rank returns S as the final similarity result, which is exactly
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Figure 4.7: How UN P-Rank works on undirected G4

the solution to Eq.(4.8).

To complete the proof of Theorem 4.15, we next show that algorithm UN P-Rank re-

quires quadratic time in the number of vertices.

Complexity. (i) In lines 2-3, computing the diagonal D and T = D1/2AD1/2 needs

O(m) and O(n2) time, respectively, with n and m being the number of vertices and

edges in G respectively. (ii) In line 4, QR factorization of T into the orthogonal U and

the diagonal Λ requires O(rn2) worse-case time, with r (≪ n) being the rank of A. (iii)

In lines 5-7, computing the auxiliary matrices Γ,V,Ψ and the similarity matrix S yields

O(r3), O(rn), O(r2) and O(r2n + rn2), respectively, which can be further bounded by

O(rn2). Combining (i), (ii) and (iii), the total time of UN P-Rank is in O(rn2) (r ≪ n).
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4.6 Experimental Evaluation

In this section, a comprehensive empirical study of our P-Rank methods is presented.

By using real and synthetic data, four sets of experiments are conducted to evaluate the

effectiveness and efficiency of our approaches.

4.6.1 Experimental Setting

We used real-life data and synthetic data.

(1) Real-life data. The real data were taken from DBLP10. We extracted the 10-

year (from 1998 to 2007) author-paper information and picked up papers published on

6 major conferences (“ICDE”, “VLDB”, “SIGMOD”, “WWW”, “SIGIR” and “KDD”).

Every two years made a time step. For each time step, we built a co-authorship network

incrementally from the one of previous time step. We chose the relationship that there

is an edge between authors if one author wrote a paper with another. The sizes of these

DBLPnetworks are as follows:

DBLP 98-99 98-01 98-03 98-05 98-07

m 5,929 13,441 24,762 39,399 54,844

n 1,525 3,208 5,307 7,984 10,682

(2) Synthetic data. We also used a C++ boost generator to produce graphs, controlled

by two parameters: the number n of vertices, and the number m of edges. We then

produced five web graphs (Randdata) by varying the vertex size n from 100K to 1M

with edges randomly chosen.

(3) Algorithms. We have implemented the following algorithms in C++: (a) our

algorithms DE P-Rank and UN P-Rank ; (b) the conventional P-Rank iterative algorithm

Naive [ZHS09] with the radius-based pruning technique; (c) the memoization-based al-

gorithm Memo [LVGT10] applied to P-Rank computation; (d) SimRank optimized algo-

rithm AUG [YLL10] over undirected graphs.

10http://www.informatik.uni-trier.de/˜ley/db/
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The experiments were run on a machine with a Pentium(R) Dual-Core (2.0GHz) CPU

and 4GB RAM, using Windows Vista. Each experiment was repeated 5 times and the

average is reported.

For fairness of comparison, the following parameters were used as default values (un-

less otherwise specified).

Notation Description Default Value

λ weighting factor 0.5

Cin in-link damping factor 0.8

Cout out-link damping factor 0.6

υ low approximation rank 50%× Rank(G)

ϵ desired accuracy 0.001

4.6.2 Experimental Results

Exp-1: Accuracy

We first investigate the impacts of weighting factor λ and damping factors Cin and Cout

on P-Rank accuracy, using Randdata. Here, the accuracy is measured by the absolute

difference between the iterative and exact P-Rank 11.

Using Randwith 1M vertices, we considered various λ from 0 to 1. For each vertex-

pair, we varied the number of iterations k from 2 to 20. The results are reported in Figure

4.8, in which the logarithmic scale is chosen across the y-axis to provide an illustrative

11To select the P-Rank “exact” solution s(·, ·), we used the Cauchy’s criterion for convergence and
regarded the 100th iterative s(100)(·, ·) score as the “exact” one s.t. |s(100)(·, ·)− s(101)(·, ·)| ≪ 1× 10−10.
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Figure 4.10: ϵ w.r.t. Cin and Cout on Real Data (DBLP)

look for the asymptotic rate of P-Rank convergence. For each fixed λ, the downward

lines for P-Rank iterations reveal an exponential accuracy as k increases, as expected in

Theorem 4.1. We also observe that the larger λ dramatically increases the slope of a

line, which tells that increasing the weighting factor may decrease the convergence rate

for P-Rank iteration, as expected.

Figure 4.9 shows the effects of damping factors w.r.t. the number of P-Rank iterations

required for attaining the fixed accuracy. Fixing ϵ = 0.001 and Cout = 0.6, we varied Cin

from 0.1 to 0.9. (For space constraints, a similar result of varying Cout is omitted.) It

can be noticed that when λ = 0, the curve in Figure 4.9 approaches a horizontal line.

This is because in this case P-Rank boils down to the reversed SimRank with no in-links

considered, which makes Cin insensitive to the final P-Rank score. When 0 < λ ≤ 1,

the iteration number k shows a general increasing tendency as Cin grows. This tells that

small choices of damping factors may reduce the number of iterations required for a fixed

accuracy, and hence, improves the efficiency of P-Rank.

To evaluate the impact of both Cin and Cout w.r.t. the accuracy, we used the real

DBLPdata. We only report the result on DBLP1998-2007 data in Figure 4.10, which

shows a 3D shaded surface from the average of accuracy value for all vertex-pairs on
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z-axis when we fixed k = 10 and λ = 0.5, and varied Cin and Cout in x-axis and y-axis,

respectively. It can be seen that the residual becomes huge only when Cin and Cout are

both increasing to 1; and the iterative P-Rank is accurate when Cin and Cout < 0.6. This

explains why small choices of damping factors are suggested in P-Rank iteration.

Exp-2: Stability

To evaluate P-Rank stability, we investigate the effects of the weighting factors λ and

the damping factors Cin and Cout upon the P-Rank condition number κ∞.

We fixed Cout = 0.6 and varied Cin from 0.2 to 0.8. The result over 1M Randdata is

reported in Figure 4.11, in which x-axis denotes λ ranging from 0 to 1. Accordingly, by

fixing Cout = 0.6 and varying λ from 0 and 1, Figure 4.12 visualizes the impact of Cin on

P-Rank stability.

Both results in Figures 4.11 and 4.12 show that increasing λ induces a large P-Rank

condition number when Cin > 0.6. Notice that for different Cin, there is one common

point (λ, κ∞) = (0, 4) of intersection of all curves in Figure 4.11; correspondingly, in the

extreme case of λ = 0, the curve in Figure 4.12 approaches to a horizontal line. These

indicate that varying Cin when λ = 0 has no effect on the stability κ∞ of P-Rank, for in

this case only the contribution of out-links is considered for computing P-Rank. When

Cin < 0.6, however, κ∞(G) is decreased as λ grows. This tells that small weighting factor

and damping factors yield small P-Rank condition numbers, and thus make the P-Rank

well-conditioned, as expected in Theorem 4.10.
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Figure 4.13: κ∞ w.r.t. Cin and Cout on Real Data (DBLP)

For real-life datasets, Figure 4.13 depicts in 3D view the impacts of both Cin and Cout

on P-Rank stability over 1M DBLPdata, in which x- and y-axis represent in- and out-

link damping factors respectively, and z-axis stands for the P-Rank condition number.

The result demonstrates that P-Rank is comparatively stable when both Cin and Cout are

small (less than 0.6). However, when Cin and Cout are approaching to 1, P-Rank becomes

ill-conditioned and less useful since small perturbations in similarity computation may

cause P-Rank scores drastically altered, which carries the risk of producing nonsensical

similarity results. In light of this, small choices of damping factors are preferable.

Exp-3: Time Efficiency

We evaluated the time efficiency of DE P-Rank and UN P-Rank and their scalability using

synthetic and real data.

Figure 4.14 compares the running time of DE P-Rank and UN P-Rank with those of

Memo and Naive on synthetic (directed and undirected) Randand real DBLPdata. We

use the logarithmic scale on the CPU time (y-axis). The iteration number for Naive and

Memo is set to 10. Note that different time unit is chosen across the vertical axis in

the two plots of Fig.4.14 to provide a clear look for each bar shape. (i) By varying the
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Figure 4.14: Scalability & Computational Time

number of vertices from 200K to 1M, the result on Randindicates that DE P-Rank and

UN P-Rank outperformed Memo and Naive ; the computational time of UN P-Rank has

almost 0.5 and 1 order of magnitude faster than Naive , respectively, i.e., utilizing the

non-iterative paradigms for P-Rank estimation is highly efficient. In most cases, there

are a great number of repeated iterations for Naive and Memo to reach a fixed-point

of P-Rank scores, which impedes their scalability in similarity computation. (ii) The

result on DBLPdemonstrates the CPU time with respect to the number of nodes for

P-Rank estimation when the sizes of DBLPare increased from 1.5K to 10K. In all cases,

UN P-Rank performed the best, DE P-Rank the second, by taking advantage of their

non-iterative paradigms.

To compare the performances of UN P-Rank and AUG , we applied them to compute

SimRank similarities over synthetic Randdata, by setting λ = 1 for UN P-Rank (a special
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Rank DE (υ/r = 0.5) DE (υ/r = 0.8) Naive

1 Shivnath Babu Shivnath Babu Shivnath Babu
2 Yingwei Cui Yingwei Cui Yingwei Cui
3 Jun Yang Chris Olston Chris Olston
4 Chris Olston Jun Yang Jun Yang
5 David J. DeWitt Arvind Arasu Rajeev Motwani
6 Arvind Arasu Rajeev Motwani Arvind Arasu
7 Rajeev Motwani Anish Das Sarma Utkarsh Srivastava
8 Utkarsh Srivastava Alon Y. Halevy David J. DeWitt
9 Glen Jeh Omar Benjelloun Omar Benjelloun
10 Alon Y. Halevy David J. DeWitt Alon Y. Halevy

Figure 4.16: Top-10 Similar Authors of “Jennifer Widom” on DBLP

case of P-Rank without out-links consideration). Figure 4.15 reports the result over

synthetic Randdata. It can be seen that UN P-Rank runs approx. 3 times faster than

AUG though the CPU time of the UN P-Rank and AUG are of the same order of magnitude.

The reason is that after eigen-decomposition, AUG still requires extra iterations to be

performed in the small eigen-subspace, which takes a significant amount of time, whereas

UN P-Rank can straightforwardly compute similarities in terms of eigenvectors with no

need for iterations.

We further evaluate the ground truth calculated by DE P-Rank when varying the

approximation ratio υ/r on DBLP(98-07) dataset to retrieve the top-k most similar

authors for a given query u. Figure 4.16 depicts the top-10 ranked results for the query
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“Jennifer Widom” according to the similarity scores returned by DE P-Rank and Naive ,

respectively. These members were frequent co-authors of the 6 major conference papers

with “Jennifer Widom” from 1998 to 2007. It can be noticed that the ranked results for

different algorithms on DBLP(98-07) are practically acceptable and obey our common

sense pretty well. When υ/r increases from 0.5 to 0.8, the similarities calculated by DE

P-Rank tend to preserve the relative order of Naive . Hence, DE P-Rank can be effectively

used for P-Rank top-k nearest neighbor search on real networks.

Exp-4: Effects of υ

For DE P-Rank algorithm, we next investigate the impact of approximation rank υ and

graph adjacency matrix rank r on similarity estimation, using synthetic data.

We use 4 graphs with the size |V| ranging from 0.5M to 3.5M, 2×|V| edges, and 128K

different vertex attributes. Fixing |V|, we vary υ from 10%×r to 90%×r. The results are
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reported in Figures 4.17 and 4.18, which visualizes the low-rank υ as a speed-accuracy

trade-off. When υ becomes increasingly close to r (i.e., the radio υ
r approaches 1), high

accuracy (NDCG30) could be expected (Figure 4.18), but more running time needs to

be consumed (Figure 4.17). This tells that adding approximation rank υ induces smaller

errors for similarity estimation while increasing the computational time, up to a point of

r when no extra approximation errors can be reduced.

We also use the following mean absolute error (MAE) to evaluate the effects of υ on

the DE P-Rank accuracy.

MAE =
1

n2

∑
u,v∈V

|s (u, v)− ŝ (u, v)|,

where s (u, v) is the exact similarity from Naive, and ŝ (u, v) the estimate one from DE

P-Rank .

Fixing |V| and |E|, we generate 5 graphs with the rank r growing geometrically from

64K to 1M. Figure 4.19 compares the accuracy (MAE) of estimation when we vary υ

for each graph, in which the x-axis represents the approximation rank used, the y-axis

gives the rank r of adjacency matrix for a given graph. The number enclosed in a circle

◦ corresponds to the mean absolute error incurred by low-rank approximation, and the

circles are scaled proportionally to this number. Observe that (1) in all the cases, the

circle becomes smaller as υ approaches r, and (2) the sizes of the circles in the diagonal

direction (↗) remain almost the same, where the ratio υ
r is a constant. This reveals that

the choice of approximation ratio υ
r is pivotal to the accuracy of DE P-Rank algorithm.

4.7 Related Work

There has been a surge of studies on link-based analysis (e.g., [YLZ+13b,Kle99,CZDC10,

Sma73,ZCY09,XFF+05, JW02,YZL+12,PBMW99]) in recent years. PageRank became

popular since the famous result of Page et al. [PBMW99] was used by the Google for

ranking web pages. Since then, a host of new ranking algorithms for web pages have

been developed. The famous results include HITS [Kle99] proposed by Jon et al. (now
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used in www.ask.com), SimRank [AMC08,YLZ13a,FNSO13,JW02], SimFusion [CZDC10,

YLZ+12,XFF+05] and P-Rank [ZHS09].

SimRank [JW02] is a recursive structural similarity measure based on the intuition

that “two objects are similar if they are related to similar objects ”, which extends the

bibliographic coupling and co-citation [Sma73, Ams72] beyond the local neighborhood

to the entire graph. Several optimization problems were studied for SimRank estima-

tion, including iterative amortization-based methods [LVGT10, YLZ13a], probabilistic

methods [FR05], matrix-based methods [YLL10, FNSO13], dynamic and parallel meth-

ods [LHH+10,HFLC10].

More recently, Zhao et al. [ZHS09] presented a new P-Rank model when noticing the

limited information problem of SimRank—the similarity scores are only determined by

their in-link relationships. P-Rank refines SimRank by jointly considering both in- and

out-links of entity pairs. The conventional algorithm for computing P-Rank is based on

the fixed-point iteration, yielding O(kn4) time. To optimize the computational time, a

similar memoization approach for SimRank [LVGT10] can be applied to P-Rank, which

improves the time to O(kn3). Zhao et al. [ZHS09] also proposed a radius- or category-

based pruning technique that can further reduce the computation of P-Rank to O(kd2n2).

However, this approach is heuristic in nature, and the accuracy of the pruning result is

not explainable. In comparison, we focus on the problems of P-Rank accuracy, stability

and computational efficiency.

Closer to this work are [YLL10, LVGT10]. For undirected graphs, a time-efficient

algorithm AUG for SimRank computation was proposed in [YLL10], which is in O(n3 +

kn2) time. In contrast, we further improve [YLL10] (i) by providing a non-iterative

O(rn2)-time algorithm that can explicitly characterize the similarity solution, and (ii)

by extending SimRank to the general P-Rank measure. An accuracy estimation for

SimRank was addressed in [LVGT10]. However, by directly port the SimRank bound

[LVGT10] to P-Rank, we observed that the simple linear combination of the weighted

bound in [LVGT10] (i.e., λ · Cin
k+1 + (1− λ) · Cout

k+1) is not adaptive to P-Rank since
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the out-links of P-Rank also have a recursive impact on the similarity of different pairs

of vertices. It is challenging to find a new bound for P-Rank accuracy estimation.

4.8 Conclusions

In this chapter, we have studied the problems of P-Rank assessment on large networks.

Firstly, we have proposed an accuracy estimate for the P-Rank iteration, by finding out

the exact number of iterations needed to attain a given accuracy. Secondly, we have

obtained a tight bound for the P-Rank condition number to analyze the stability of P-

Rank to show how the weighting factor and the damping factors affect the stability of

P-Rank. Finally, we have also devised efficient algorithms to compute P-Rank similarity

in O(r4n2 + r2n) time for digraphs, and O(rn2) time for undirected graphs. The em-

pirical results on both synthetic and real datasets show that our methods achieve high

performance and result quality.



Chapter 5

Incremental Random Walk with

Restart

5.1 Introduction

Measuring node proximities in a network is one of the key tasks of web search. Due

to various applications in recommender systems and social networks, many proximity

metrics have come into play. For instance, Brin and Page [PBMW99] invented PageRank

to determine the ranking of web pages. Jeh and Widom [JW02] proposed SimRank to

assess node-to-node proximities.

Random Walk with Restart (RWR) [TFP06] is one of such useful proximity metrics

for ranking nodes in order of relevance to a query node. In RWR, the proximity of node

u w.r.t. query node q is defined as the limiting probability that a random surfer, starting

from q, and then iteratively either moving to one of its out-neighbors with probability

weighted by the edge weights, or restarting from q with probability c, will eventually

arrive at node u. Recently, RWR has received increasing attention (e.g., for collaborative

filtering [FNOK12] and image labeling [WJZZ06]) since it can fairly capture the global

structure of graphs, and relations in interlinked networks [TFP08].

Previous RWR computing methods, however, are based on static networks, which is

145
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costly: Given a graph G(V,E), and a query q ∈ V , k-dash [FNOK12] yields, in the worse

case, O(|V |2) time and space, which, in practice, can be bounded by O(|E| + |V |), to

find top-k highest proximity nodes. B LIN and NB LIN [TFP06] need O(|V |2) time and

space for computing all node proximities. In general, real graphs are often constantly

updated with small changes. This calls for the need for incremental algorithms to compute

proximities.

5.1.1 Problem Statement

In this chapter, we study the following problem for incremental RWR assessment:

Problem (Incremental Update for RWR)

Given a graphG, proximitiesP forG, changes ∆G toG, a query node q, and a restarting

probability c ∈ (0, 1).

Compute changes to the proximities w.r.t. q exactly.

Here, P is a proximity matrix whose entry [P]i,j denotes the proximity of node i w.r.t. query

j, and ∆G is comprised of a set of edges to be inserted into or deleted from G.

In contrast with the existing batch algorithms [FNOK12,TFP06] that recompute the

updated proximities from scratch, our incremental algorithm can exploit the dynamic

nature of graphs by pre-computing proximities only once on the entire graph via a batch

algorithm, and then incrementally computing their changes in response to updates. The

response time of RWR can be greatly improved by maximal use of previous computation,

as shown in Example 5.1.

Example 5.1. Figure 5.1 depicts a graph G, taken from [FNOK12]. Given the query u2,

the old proximities P for G, and c = 0.2, we want to compute new proximities w.r.t. u2

when there is an edge (u1, u5) inserted into G, denoted by ∆G. The existing methods,

k-dash and B LIN, have to recompute the new proximities in G∪∆G from scratch, without

using the previously computed proximities in G, which is costly. However, we observe

that the increment [∆P]⋆,u2

1 to the old [P]⋆,u2
is the linear combination of [P]⋆,u1

and

1[X]⋆,j denotes the j-th column vector of matrix X.
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Figure 5.1: Computing RWR Incrementally

[P]⋆,u5
, that is,

[∆P]⋆,u2
= α · [P]⋆,u1

+ β · [P]⋆,u5
+ λ · e5 2 (5.1)

with α = 0.25, β = −0.32, λ = 0.06. Hence, there are opportunities to incremen-

tally compute the changes [∆P]⋆,u2
by fully utilizing the old proximities of P. As op-

posed to k-dash and B LIN involving matrix-vector multiplications, computing [∆P]⋆,u2

via Eq.(5.1) only needs vector scaling and additions, thus greatly improving the response

time.

As suggested by Example 5.1, when the graph G is updated, it is imperative to incre-

mentally compute new proximities by leveraging information from the old proximities.

However, it is a grand challenge to characterize the changes [∆P]⋆,q in terms of a linear

combination of the columns in old P, since it seems hard to determine the scalars α, β, λ

for Eq.(5.1). Worse still, much less is known about how to extract a subset of columns

from the old P (e.g., why [P]⋆,u1
and [P]⋆,u5

are chosen from P in Eq.(5.1)), to express

the changes [∆P]⋆,q.

5.1.2 Chapter Outlines

This chapter aims to tackle these problems. To the best of our knowledge, this makes

the first effort to study incremental RWR computing in evolving graphs, with no loss of

exactness.

2ei is the |V | × 1 unit vector with a 1 in the i-th entry.
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• We first consider unit update, i.e., a single-edge insertion or deletion, and derive an

elegant formula that characterizes the proximity changes as a linear combination

of the columns from the old proximity matrix.

• We then devise an incremental algorithm for batch update, i.e., a list of edge dele-

tions and insertions mixed together, and show that any node proximity can be

computed in O(1) time for every edge update, with no sacrifice in accuracy.

• Our empirical study demonstrates that the incremental approach greatly outper-

forms k-dash [FNOK12], a batch algorithm that is reported as the best for RWR

proximity computing, when networks are constantly updated.

The remainder of the chapter is organized as follows. Section 5.2 overviews the back-

ground of RWR. The incremental RWR method is investigated in Section 5.3. Section 5.4

presents experimental results, followed by related work in Section 5.5. Section 5.6 con-

cludes this chapter.

5.2 Preliminaries

We formally overview the background of this chapter. Graphs studies here are directed

graphs with no multiple edges.

RWR Formula [FNOK12]. In a graph G = (V,E), let A be the transition matrix

(i.e., column normalized adjacency matrix) of G, whose entry [A]u,v = 1
dv

if (u, v) ∈ E,

and 0 otherwise. Here, dv denotes the in-degree of v.

Given query node q ∈ V , and restart probability c ∈ (0, 1), the proximity of node u

w.r.t. q, denoted by [P]u,q, is recursively defined as follows:

[P]⋆,q = (1− c) ·A · [P]⋆,q + c · eq (5.2)

where [P]⋆,q is the |V | × 1 proximity vector w.r.t. q (i.e., the q-th column of matrix P),

whose u-th entry equals to [P]u,q, and eq is the |V | × 1 unit query vector, whose q-th

entry is 1, and 0 otherwise.
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Intuitively, [P]u,q is the limiting probability, denoting the long-term visit rate of node

u, given a bias toward query q.

The RWR proximity defined in Eq.(5.2) can be rewritten as

[P]⋆,q = c(I− (1− c) ·A)−1 · eq (5.3)

where I is the |V | × |V | identity matrix.

Existing methods of computing RWR are in a batch style, with the aim to accelerate

the matrix inversion in Eq.(5.3). For instance, k-dash [FNOK12] uses LU decomposition

and an incremental pruning strategy to speed up the matrix inversion.

5.3 Incremental RWR Computing

We now study the incremental RWR computation.

Given the old P for G, changes ∆G to G, query q, and c ∈ (0, 1), the goal is to

compute [∆P]⋆,q for ∆G. The key idea of our approach is to maximally reuse the

previous computation, by characterizing [∆P]⋆,q as a linear combination of the columns

from the old P.

The main result in this chapter is as follows.

Theorem 5.2. Any node proximity of a given query can be incrementally computed in

O(1) time for each edge update.

To prove Theorem 5.2, we first consider unit edge update, and then devise an incre-

mental algorithm for batch updates, with the desired complexity bound.

5.3.1 Unit Update

The update (insertion/deletion) of an edge from G may lead to the changes [∆P]⋆,q of

the proximity. We incrementally compute [∆P]⋆,q based on the following.

Proposition 5.3. Given a query q, and the old proximity matrix P for G, if there is an

edge insertion (i, j) into G, then the changes [∆P]⋆,q w.r.t. q can be computed as

[∆P]⋆,q =
(1− c)[P]j,q

1− (1− c)[y]j
· y with (5.4)
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y =


1
c [P]⋆,i (dj = 0)

1
c(dj+1)([P]⋆,i −

1
1−c [P]⋆,j) +

1
(1−c)(dj+1)ej (dj > 0)

where dj is the in-degree of node j in the old G, and [y]j is the j-th entry of vector y.

If there is an edge deletion (i, j) from G, then [∆P]⋆,q can also be computed via

Eq.(5.4) with y being replaced by

y =

−
1
c [P]⋆,i (dj = 1)

1
c(dj−1)(

1
1−c [P]⋆,j − [P]⋆,i)−

1
(1−c)(dj−1)ej (dj > 1)

As opposed to the traditional methods, e.g., k-dash and B LIN, that requires matrix-

vector multiplications to compute new proximities via Eq.(5.2), Proposition 5.3 allows

merely vector scaling and additions for efficiently computing [∆P]⋆,q.

The proof of Proposition 5.3 is attained by combining the three following lemmas.

Lemma 5.4. Let A be the old transition matrix of G. If there is an edge insertion (i, j)

into G, then the new transition matrix Ã is updated by

Ã = A+ aeTj with a =

 ei (dj = 0)

1
dj+1(ei − [A]⋆,j) (dj > 0)

(5.5)

If there is an edge deletion (i, j) from G, then the new Ã is also updated as Eq.(5.5)

with a being replaced by

a =

 ei (dj = 1)

1
dj−1([A]⋆,j − ei) (dj > 1)

(5.6)

Proof. Due to space limits, we shall merely prove the insertion case. A similar proof

holds for the deletion case.

(i) When dj = 0, [A]⋆,j = 0. Thus, for an inserted edge (i, j), [A]i,j will be updated

from 0 to 1, i.e., Ã = A+ eie
T
j .

(ii) When dj > 0, all the nonzero entries of [A]⋆,j are 1
dj
. Thus, for an inserted

edge (i, j), we first update [A]i,j from 0 to 1
dj
, i.e., A ⇒ A + 1

dj
eie

T
j , and then change
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all nonzero entries of [A+ 1
dj
eie

T
j ]⋆,j

from 1
dj

to 1
dj+1 . Recall from the elementary ma-

trix property that multiplying the j-th column of a matrix by α ̸= 0 can be accom-

plished by using I− (1−α)ejeTj as a right-hand multiplier on the matrix. Hence, scaling

[A+ 1
dj
eie

T
j ]⋆,j

by α =
dj

dj+1 yields

Ã =
(
A+ 1

dj
eie

T
j

)(
I− (1− dj

dj+1)eje
T
j

)
= A+ 1

dj
eie

T
j − 1

dj+1(A+ 1
dj
eie

T
j )eje

T
j

= A+ 1
dj+1(ei − [A]⋆,j)e

T
j

Combining (i) and (ii), Eq.(5.5) is derived.

Lemma 5.4 suggests that each edge change will incur a rank-one update of A. To see

how the update of A affects the changes to P, we have the following lemma.

Lemma 5.5. Let P be the old proximity matrix for G. If there is an edge update (i, j)

to G, then the new proximity P̃ w.r.t. a given query q is updated as

[P̃]⋆,q = [P]⋆,q + (1− c)γ · z (5.7)

with γ =
[P]j,q

1−(1−c)·[z]j
and z = (I− (1− c)A)−1a,

where the vector a is defined by Lemma 5.4.

Proof. By RWR definition in Eq.(5.3), [P̃]⋆,q satisfies

(I− (1− c)Ã) · [P̃]⋆,q = ceq (5.8)

where Ã is the new transition matrix that is expressed as Ã = A+ aeTj by Lemma 5.4.

Thus, Eq.(5.8) is rewritten asI− (1− c)A−(1− c)a

eTj −1


[P̃]⋆,q

γ

 =

ceq
0

 (5.9)

To solve [P̃]⋆,q and γ in Eq.(5.9), we apply block elimination, by using block elementary

row operations, and starting with the associated augmented matrix:I− (1− c)A−(1− c)a ceq

eTj −1 0

 Row2−eTj (I−(1−c)A)−1·Row1
−−−−−−−−−−−−−−−−−−−→
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→

I− (1− c)A −(1− c)a ceq

0 (1− c)eTj (I− (1− c)A)−1a− 1−ceTj [P]⋆,q


The final array represents the following equations:(I− (1− c)A) [P̃]⋆,q − γ(1− c)a = ceq(

(1− c)eTj (I− (1− c)A)−1a− 1
)
γ = −c[P]j,q

Back substitution, along with Eq.(5.3), yields Eq.(5.7).

Lemma 5.5 tells that for each edge update, the changes to P are just associated with

the scaling operation of vector z. However, it is costly to compute z via Eq.(5.7) as it

involves the inversion of a matrix. Lemma 5.6 provides an efficient way of computing

(I− (1− c)A)−1a from a few columns of P.

Lemma 5.6. Suppose there is an edge update (i, j) to G, and a is defined by Lemma

5.4. Then, (I− (1− c)A)−1a = y with y being defined in Proposition 5.3.

Proof. Due to space limits, we shall only prove the edge insertion case. A similar proof

holds for the deletion case.

(i) When dj = 0, a = ei. Then, Eq.(5.3) implies that

(I− (1− c)A)−1ei =
1
c [P]⋆,i

(ii) When dj > 0, a = 1
dj+1(ei − [A]∗,j). Then,

(I− (1− c)A)−1a = 1
dj+1(I− (1− c)A)−1(ei − [A]⋆,j)

= 1
dj+1(

1
c [P]⋆,i − (I− (1− c)A)−1[A]⋆,j)

To solve (I− (1− c)A)−1[A]⋆,j , we apply the property that (I−X)−1 =
∑∞

k=0X
k

(for ∥X∥1 < 1) and obtain

(I− (1− c)A)−1A =
∞∑
k=0

(1− c)kAk+1

= 1
1−c

∞∑
k=1

(1− c)kAk

= 1
1−c((I− (1− c)A)−1 − I)
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= 1
1−c(

1
cP− I)

Thus, we have (I− (1− c)A)−1[A]⋆,j = 1
1−c(

1
c [P]⋆,j − ej). Substituting this back

produces the final results.

Combining Lemmas 5.4–5.6 together proves Proposition 5.3.

5.3.2 Batch Update

Based on Proposition 5.3, we devise IRWR, an incremental RWR algorithm to handle a

set ∆G of edge insertions and deletions (batch update).

IRWR is shown in Algorithm 5.1. Given the old P for G w.r.t. query q, and the

batch edge updates ∆G, it computes new proximities w.r.t. q in G ∪ ∆G without loss

of exactness. It works as follows. For each edge (i, j) to be updated, it first computes

the auxiliary vector y from a linear combination of only a few columns in P (lines 2–10).

Using y, it then (i) removes (i, j) from ∆G (line 11) and (ii) updates the proximities

w.r.t. each remaining node in ∆G (lines 12–14). After all the edges are eliminated from

∆G, IRWR finally calculates the new proximities [P̃]⋆,q from y (line 15).

Example 5.7. Recall P and G of Figure 5.1. Consider batch updates ∆G, which insert

edge (u1, u5) and delete (u4, u6), where (u1, u5) is given in Example 5.1. IRWR computes

the new proximities [P]⋆,u2
w.r.t. query u2 in G+∆G as follows:

For the edge insertion (u1, u5), since du5 = 3 and c = 0.2, y = 1.25× [P]⋆,u1
− 1.56×

[P]⋆,u5
+ 0.31× e5 (via line 5).

Before proceeding with the edge deletion, let us look at the changes [∆P]⋆,u2
(via

line 14) for the inserted (u1, u5):

[∆P]⋆,u2
= (1− c)γ · y with γ =

[P]u5,u2
1−(1−c)[y]5

= 0.254

= 0.25× [P]⋆,u1
− 0.32× [P]⋆,u5

+ 0.06× e5,

which explains why the values of α, β, λ are chosen for Eq.(5.1).

IRWR then removes (u1, u5) from ∆G (line 11). Using y, it updates proximities

w.r.t. u4, u6 ∈ ∆G (lines 12–14). Thus, [P]⋆,u4
= (.17, .05, .23, .28, .23, .05, 0)T , and
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Algorithm 5.1: IRWR (G,P, q,∆G, c)

Input : graph G, old proximities P for G, query node q,

updates ∆G to G, and restarting probability c.

Output: new proximities [P̃]⋆,q w.r.t. q.

1 foreach edge (i, j) ∈ ∆G to be updated do

2 dj := in-degree of node j in G ;

3 if edge (i, j) is to be inserted then

4 if dj = 0 then y := 1
c [P]⋆,i ;

5 else y := 1
dj+1

(
1
c ([P]⋆,i −

1
1−c [P]⋆,j) +

1
(1−c)ej

)
;

6 G := G ∪ {(i, j)} ;

7 else if edge (i, j) is to be deleted then

8 if dj = 1 then y := −1
c [P]⋆,i ;

9 else y := 1
dj−1

(
1
c (

1
1−c [P]⋆,j − [P]⋆,i)−

1
(1−c)ej

)
;

10 G := G\{(i, j)} ;

11 ∆G := ∆G\{(i, j)} ;

12 if ∆G ̸= ∅ then

13 foreach v ∈ {vertices in ∆G} ∪ {q} do

14 γ :=
[P]j,v

1−(1−c)[y]j
, [P]⋆,v := [P]⋆,v + (1− c)γy ;

15 else γ :=
[P]j,q

1−(1−c)[y]j
, [P̃]⋆,q := [P]⋆,q + (1− c)γy ;

16 return [P̃]⋆,q ;

[P]⋆,u6
= (.14, .04, .18, .23, .18, .24, 0)T after (u1, u5) is added to G.

Likewise, for the edge deletion (u4, u6), du6 = 1 implies y = − 1
0.2 × [P]⋆,u4

(line 8).

Then, (u4, u6) is removed from ∆G (line 11). Since ∆G = ∅, the changes [∆P]⋆,u2
for

the deleted (u4, u6) is obtained (via line 15):

[∆P]⋆,u2
= 0.8γ · y = −0.17× [P]⋆,u4

with γ =
[P]u6,u2

1−(1−c)[y]6
= 0.04

⇒ [P̃]⋆,u2
= [P]⋆,u2

+ [∆P]⋆,u2
= (.25, .24, .04, .04, .22, .04, 0)T .
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Correctness & Complexity. To complete the proof of Theorem 5.2, we notice that

(i) IRWR can correctly compute RWR proximities, which is verified by Proposition 5.3.

Moreover, IRWR always terminates, since the size of ∆G is monotonically decreasing. (ii)

One can readily verify that for each edge update, IRWR involves only vector scaling and

additions, which is in O(1) time for each node proximity.

5.4 Experimental Evaluation

We present an empirical study on real and synthetic data to evaluate the efficiency of

IRWR for incremental computation, as compared with (a) its batch counterpart B LIN [TFP06],

(b) k-dash [FNOK12], the best known algorithm for top-k search, and (c) IncPPR [BCG10],

the incremental personalized PageRank.

5.4.1 Experimental Setting

We use both real and synthetic datasets.

Two real datasets are adopted: (a) p2p-Gnutella, a Gnutella P2P digraph, in which

nodes represent hosts, and edges host connections. The dataset has 62.5K nodes and

147.9K edges. (b) cit-HepPh, a citation network from Arxiv, where nodes denote papers,

and edges paper citations. We extracted a snapshot with 27.7K nodes and 352.8K edges.

GraphGen3 is used to build synthetic graphs and updates. Graphs are controlled by

(a) the number of nodes |V |, and (b) the number of edges |E|; updates by (a) update

type (edge insertion or deletion), and (b) the size of updates |∆G|.

All the algorithms are implemented in Visual C++ 10.0. We used a machine with an

Intel Core(TM) 3.10GHz CPU and 8GB RAM, running Windows 7. Each experiment is

run 5 times. We report the average here.

We set the restarting probability c = 0.2 in our experiments.

3http://www.cse.ust.hk/graphgen/



Chapter 5. Incremental Random Walk with Restart 156

91K 107K 123K 139K
102

103

104
E
la
p
se
d
T
im

e
(s
ec
)

IRWR

k-dash

B LIN

IncPPR

Figure 5.2: IRWR on p2p-Gnutella
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Figure 5.3: IRWR on cit-HepPh
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Figure 5.4: Edge insertions
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Figure 5.5: Edge deletions

5.4.2 Experimental Results

We next present our evaluation results.

Exp-1: Incremental Efficiency

We first evaluate the computational time of IRWR on both real and synthetic data.

Figures 5.2 and 5.3 depict the results for edges inserted to p2p-Gnutella (|V |=62.5K)

and cit-HepPh (|V |=27.7K), respectively. Fixing |V |, we vary |E| as shown in the x-

axis. Here, the updates are the difference of snapshots w.r.t. the collection time of

datasets, reflecting their real-life evolution. We find that (a) IRWR outperforms k-dash on

p2p-Gnutella for 92.7% (resp.cit-HepPh for 97.5%) of edge updates. When the changes

are 61.9% on p2p-Gnutella (83.8% on cit-HepPh), IRWR improves k-dash by over 5.1x

(resp.4.4x). This is because IRWR reuses the old information in G for incrementally
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Figure 5.6: Exactness on p2p-Gnutella
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Figure 5.7: Exactness on cit-HepPh

updating proximities via vector scaling and additions, without the need for expensive

LU decomposition of k-dash. (b) IRWR always is better than B LIN by nearly one order

of magnitude as B LIN requires costly block matrix inversions. (c) IRWR outperforms

IncPPR for over 95% of insertions, due to the extra cost of IncPPR for doing short random

walks. (d) IRWR is sensitive to |∆G| as the larger |∆G| is, the larger the affected area

is, so is the computation cost, as expected.

Fixing |V |=50K on synthetic data, we varied |E| from 280K to 350K (resp.from 350K

to 280K) in 10K increments (resp.decrements). The results are shown in Figures 5.4 and

5.5, respectively, analogous to those on real datasets.

Exp-2: Exactness

To measure IRWR accuracy, we adopted NDCGl (Normalized Discounted Cumulative

Gain) for ranking top-l node proximities with l = 20, 40, 60, and chose the ranking re-

sults of k-dash as the benchmark, due to its exactness. The results on p2p-Gnutella and

cit-HepPh are reported in Figures 5.6 and 5.7, indicating that IRWR never scarifies accu-

racy for achieving high efficiency, superior to other approaches.

5.5 Related Work

Incremental algorithms have proved useful in various node proximity computations on

evolving graphs, such as the personalized PageRank [BCG10] and SimRank [LHH+10].
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However, very few results are known on incremental RWR computing, far less than their

batch counterparts [TFP06,ZCY09,FNOK12]. k-dash [FNOK12] is the best known ap-

proach to finding top-k highest RWR proximity nodes for a given query, which involves

a strategy to incrementally estimate upper proximity bounds. Nevertheless, such an

incremental strategy is approximate: in O(1) time for each node, which is mainly de-

veloped for pruning unnecessary computation. In contrast, our incremental algorithm

can, without loss of exactness, compute any node proximity in O(1) time for every edge

update. Moore et al. [SMP08] leveraged a sampling approach with branch and bound

pruning to find near neighbors of a query w.h.p.. However, their incremental algorithm is

probabilistic. Later, Zhou et al. [ZCY09] generalized the original RWR by incorporating

node attributes into link structure for graph clustering. Based on this, an incremental

version of [ZCY09] was proposed by Cheng et al. [CZHY12], with the focus to support

attribute update. It differs from this work in that our incremental algorithm is designed

for structure update. Thus, [CZHY12] cannot cope with hyperlink changes incrementally

in dynamic graphs.

5.6 Conclusions

In the chapter, we showed how RWR proximities can be computed very efficiently in an

incremental update model, where the edges of a graph are constantly changed. First,

we focused on unit update by obtaining an elegant formula that characterizes the RWR

proximity changes as a linear combination of the columns from the old proximity matrix.

Then, we proposed an incremental algorithm for batch update, by showing that any

node proximity can be computed in O(1) time for every edge update, with no sacrifice in

accuracy. Finally, we also empirically verified that IRWR greatly outperforms the other

approaches on both real and synthetic graphs without loss of exactness. As a future

avenue, we will further predict up to what fraction of updated edges IRWR is faster than

its batch counterparts.



Chapter 6

Fast SimFusion+ on Large and

Dynamic Networks

6.1 Introduction

The conundrum of measuring similarity between objects based on hyperlinks in a graph

has fueled a growing interest in the fields of information retrieval. Recently, while the

scale of the Web has dramatically increased our need to produce large graphs, the study

of efficiently computing object similarity on such large graphs becomes a desideratum.

Among the existing metrics, SimFusion [XFF+05] can be regarded as one of the

attractive ones on account of the following reasons.

(1) Similar to PageRank [PBMW99] and SimRank [JW02], SimFusion is based on hyper-

links and follows the reinforcement assumption that “the similarity between objects

is reinforced by the similarity of their related objects”, which is fairly intuitive and

conforms to our basic understandings.

(2) Unlike other measures (e.g., PageRank and SimRank) that explore the linkage pat-

terns merely from a single data space [PBMW99,ZHS09, JW02], SimFusion has the

extra benefits of incorporating both inter- and intra-relationships from multiple data

spaces in a unified manner to measure the similarity of heterogeneous data objects.

159
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Figure 6.1: Trivial SimFusion on Heterogeneous Domain

(3) SimFusion offers more intuitive and flexible ways of assigning weighting factors to

each data space that reflects their relative importance, as opposed to the PageRank

and SimRank measures that need to determine a damping factor.

(4) SimFusion provides a general-purpose framework for measuring structural similarity

in a recursive fashion; other well-known measures, such as Co-Citation [Sma73] and

Coupling [Jar07] are just special cases of SimFusion.

6.1.1 Motivation

Despite the aforementioned merits, existing work on SimFusion has the following prob-

lems, motivating us for an in-depth investigation.

Firstly, although the basic intuition behind the SimFusion model is appealing, it

seems inappropriate to use the Unified Relationship Matrix (URM) to represent the rela-

tionships of heterogeneous objects. The main problem is that, according to the definition

of URM L in [XFF+05], the sum of each row of L is always equal to 1. Since the

product of L and the matrix 1 whose entries are all ones is equal to the matrix 1 of

all ones, there always exists a trivial solution S = 1 to the original SimFusion formula

S = L ·S ·LT [XFF+05], as illustrated in Example 6.1. The same phenomena of yielding

such a trivial solution may occur in our experimental results in Section 6.6. To address

this issue, we shall revise the original SimFusion model.

Example 6.1 (Trivial Solution). Figure 6.1 depicts a graph G1 partly extracted from

Cornell CS Department. Each vertex Pi denotes a web page, and each edge a hyperlink.
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Figure 6.2: Divergent SimFusion on Homogeneous Domain

There are three categories: D1 = {P1} (student), D2 = {P2, P3} (staff), and D3 =

{P4, P5} (faculty). We want to retrieve the top-3 similar pairs of web pages in G1.

However, the naive SimFusion fails to correctly find them. We observe that the SimFusion

solution is a (trivial) matrix whose entries are all the same. In fact, vertices in G1 do not

have the identical neighbor structures. Hence, the trivial solution is non-semantic in real

communities.

Secondly, it is rather expensive to compute SimFusion similarities. The existing

approach for SimFusion computation deploys a fixed-point iteration: S(k+1) = L·S(k) ·LT ,

which requires O(kn3) time and O(n2) space [XFF+05]. This impedes the scalability of

SimFusion on large graphs. Worse still, the iterative computation of SimFusion do not

always converge. The convergence of the SimFusion iterations heavily depends on the

choice of the initial guess S(0), as shown in Example 6.2.

Example 6.2 (Divergence SimFusion). Consider the disease transmission graph G2,

where each vertex is an organism Pi which can carry the disease, and an edge repre-

sents one organism spreading it to another. One wants to find the three most similar

organisms to P2 in G2. However, the iterative computation of SimFusion does not work

properly. We observe the following:

(i) When S(0) is set to an n×n identity matrix (according to [XFF+05]) the “even” and

“odd” subsequences of {S(k)} are convergent respectively, but they do not converge

to the same limit, which makes the full sequence {S(k)} divergent.

(ii) Choosing S(0) = 1n (i.e., an n × n matrix of all 1s) instead, we observe that the

full SimFusion sequence {S(k)} is always convergent to 1n regardless of the graph
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structure.

This suggests that the original SimFusion iterations may be divergent or converge to

a trivial solution, not to mention its scalability. This highlights the need to find a feasible

way to guarantee the convergence of the SimFusion iterations, but it is hard to devise an

efficient algorithm for the revised SimFusion computation.

Thirdly, it is a big challenge to incrementally compute SimFusion on dynamic graphs.

The traditional method [XFF+05] has to recompute the similarity from scratch when

edges in a graph change over time, which is not adaptive to many evolving networks.

Fortunately, we have an observation that the size of the areas affected by the updates is

typically small in practice. To this end, we propose an incremental algorithm that fully

utilizes these affected areas to compute SimFusion on dynamic graphs.

6.1.2 Chapter Outlines

In this chapter, we propose SimFusion+, a revised notion of SimFusion, to provide a

full treatment of SimFusion for the convergence issues and to improve its computational

efficiency. In summary, we make the following contributions.

• We formalize the problem of SimFusion+ computation (Section 6.2). The notion

of SimFusion+ revises the divergence and non-semantic convergence worries of the

traditional model [XFF+05].

• We present optimization techniques for improving the computation of SimFusion+

to O(1) time and O(n) space for every pair of vertices, plus an O(km)-time pre-

computation run only once (Section 6.3).

• We devise an efficient algorithm to compute the SimFusion+ similarity with better

accuracy guarantees (Section 6.4). An error estimate is also given for the SimFu-

sion+ approximation.

• We devise an incremental algorithm for further optimizing the SimFusion+ com-

putation when edges in networks are dynamically updated (Section 6.5). We show
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that the update cost of the incremental algorithm retains O(δn) time and O(n)

space for handling a sequence of δ edge insertions or deletions.

• We experimentally verify the effectiveness and scalability of the algorithms, using

real and synthetic data (Section 6.6). The results show that SimFusion+ can govern

the convergence towards a meaningful solution, and our algorithms achieve high

accuracy and significantly outperform the baseline algorithms.

6.2 SimFusion Estimation Revised

In this section, we first revisit the definition of data space and data relation. We then

introduce the notion of the Unified Adjacency Matrix (UAM) to revise the SimFusion

model.

6.2.1 Data Space and Data Relation

Graphs studies here are directed graphs having no multiple edges.

Data Space. A data space is the finite set of all data objects (vertices) with the same

data type, denoted by D = {o1, o2, · · · }. |D| denotes the number of data objects in D.

Two nonempty data spaces D and D′ are said to be disjoint if D ∩D′ = ∅.

Throughout the paper, we shall use the following notations. (i) The entire space D

in a network is the union of N disjoint data spaces D1, · · · ,DN such that D =
∪N

i=1Di

and Di ∩Dj = ∅ (i ̸= j). (ii) The total size |D| of the entire space, denoted by n, is the

sum of the number ni of the data objects in each data space Di, i.e., n =
∑N

i=1 ni with

ni = |Di| (∀i = 1, · · · , N).

Intuitively, for heterogeneous networks, the distinct spaces Di form a partition of D

into classes. For homogenous networks, the partition of D is itself.

Data Relation. A data relation on D is defined as R ⊆ D × D, where (o, o′) ∈ R is a

connection (a directed edge) from object o to o′. Data objects in the same data space

are related via intra-type relations Ri,i ⊆ Di × Di. Data objects between distinct data
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spaces are related via inter-type relations Ri,j ⊆ Di ×Dj (i ̸= j).

Intuitively, the intra-type relation carries connected information in each data space

(e.g., co-citation between web pages); the inter-type relation represents interlinked in-

formation between different data spaces (e.g., making user requests). As an example, in

Figure 6.1 there are three data spaces : D = {P1} ∪ {P2, P3} ∪ {P4, P5}, where

(a) (P2, P2), (P2, P3), (P3, P2), (P4, P5), (P5, P4) are intra-relations;

(b) (P1, P2), (P2, P1), (P3, P1), (P1, P3), (P1, P4), (P4, P1) are inter-relations.

6.2.2 Unified Adjacency Matrix

Let us now introduce the unified adjacency matrix (UAM). Consider a graph G = (D,R)

with data space D and data relation R.

Unified Adjacency Matrix (UAM). The matrix A = Ã+ 1/n2 of size n× n is said

to be a unified adjacency matrix of the relation R whenever

Ã =



λ1,1A1,1 λ1,2A1,2 · · · λ1,NA1,N

λ2,1A2,1 λ2,2A2,2 · · · λ2,NA2,N

...
...

. . .
...

λN,1AN,1 λN,2AN,2 · · · λN,NAN,N


,

where (i) 1 is the n× n matrix of all ones; (ii) Ai,j is the submatrix of A whose (o, o′)-

entry equals 1 if there is an edge from data object o to o′, i.e., ∃ (o, o′) ∈ R, 1
nj

if data

object o has no neighbors in Dj , or 0 otherwise; and (iii) λi,j is called the weighting factor

between data space Di and Dj with 0 ≤ λi,j ≤ 1 and
∑N

j=1 λi,j = 1 (∀i = 1, · · · , N).

Intuitively, Ai,j represents the intra- (i = j) or inter- (i ̸= j) relation from data space

Di to Dj . λi,j reflects the relative importance between data spaces Di and Dj .

Example 6.3. In Figure 6.1, the relative importance between data space Di and Dj is

denoted by a weighting matrix Λ = (λi,j)3×3. Then, the UAM A of G1 can be derived
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from A = Ã+ 1/n2, where Ã is computed from Λ as follows.

Λ =

D1 D2 D3
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⇒ Ã =
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
SimFusion+ Model. In light of the UAM A, we next propose the revised model of

SimFusion, termed SimFusion+, as follows:

S =
A · S ·AT

∥A · S ·AT ∥2
, (6.1)

where S is called the Unified Similarity Matrix (USM) whose (i, j)-entry represents the

similarity score between object i and j.

The uniqueness and existence of the SimFusion+ solution S to Eq.(6.1) can be es-

tablished by the power iteration [Wil07, pp.381]. A detailed proof will be shown in

Proposition 6.5 (Section 6.3).

The revised notion of SimFusion utilizes UAM (rather than URM) to represent

data relations because UAM can effectively avoid divergent and trivial similarity solu-

tions while well preserving the intuitive reinforcement assumption of the original model

[XFF+05]. We observe that the root cause of the flawed solution to the original SimFu-

sion is the “row normalization” of URM. Thus, by using UAM, we have an opportunity

to postpone the operation of “row normalization” in a delayed fashion. To this end, we

utilize the matrix 2-norm ∥A · S ·AT ∥2 to squeeze similarity scores in S into [0, 1]. The

obtained similarity results in USM can not only prevent the divergence issue and the

trivial solution but effectively capture the reliability of the similarity evidence between

data objects. For instance, the SimFusion+ USMs in Examples 6.1 and 6.2 are nontrivial

and intuitively explainable.
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6.3 Computing Similarity Via Dominant Eigenvector

A conventional approach for finding the SimFusion+ solution S to Eq.(6.1) is to employ

the following fixed-point iteration: 1

S(k+1) =
A · S(k) ·AT∥∥A · S(k) ·AT

∥∥
2

. (6.2)

However, as the matrix multiplication may contain O(n3) operations, it requires O(kn3)

time and O(n2) space to compute Eq.(6.2) for k iterations, which may be quite expensive.

In this section, we study the optimization techniques to improve the computation of

SimFusion+. Our key observation is that SimFusion+ computation can be converted

into finding the dominant eigenvector of the UAM A. The idea is to calculate the domi-

nant eigenvector of A once, offline, for the preprocessing, and then it can be effectively

memorized to compute similarity at query time.

We first revisit the definition of the dominant eigenvector.

Definition 6.4 ( [Wil07, p.379]). The dominant eigenvector of the X is an eigenvector,

denoted by σmax(X), corresponding to the eigenvalue λ of the largest absolute value of

X such that

X · σmax(X) = λ · σmax(X) with ∥σmax(X)∥2 = 1.

The dominant eigenvector of the UAM can be utilized for speeding up SimFusion+

computation based on the following proposition.

Proposition 6.5. Let A be the UAM of network G = (D,R). The SimFusion+ matrix

S can be computed as

[S]i,j = [σmax(A)]i × [σmax(A)]j , (6.3)

where [⋆]i,j denotes the (i, j)-entry of a matrix, and [⋆]i denotes the i-th entry of a

vector.

1Note that the uniqueness of the SimFusion+ solution guarantees that S is insensitive to the initial
guess S(0). For convenience, we choose S(0) = 1 of all 1s, which can be interpreted as “initially, no other
vertex-pair is presumably more similar than itself”.
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Proof. We shall use the knowledge of Kronecker product (⊗) and vec operator (see

[Lau04, p.139] for a detailed description).

(i) We first prove that vec(S) = σmax(A⊗A).

Taking vec(⋆) on both sides of Eq.(6.2) and applying Kronecker property vec(BCDT ) =

(D⊗B) · vec(C) [Lau04, p.147] yield

vec(S(k+1)) =
(A⊗A) · vec(S(k))∥∥(A⊗A) · vec(S(k))

∥∥
2

. (6.4)

Let x(k) , vec(S(k)) and M , A ⊗ A. Then Eq.(6.4) having the form x(k+1) =

Mx(k)/∥Mx(k)∥2 fits the power iteration paradigm [Wil07, pp.381], which follows that

the sequence {x(k)} converges to the dominant eigenvector of M. This in turn implies

vec(S) , lim
k→∞

vec(S(k)) = σmax(A⊗A).

One caveat is that the convergence of vec(S(k)) is ensured by the positivity of A⊗A. 2

This is true because A is positive and the self-Kronecker product of two positive matrices

preserves positivity.

(ii) We next show that σmax(A⊗A) = σmax(A)⊗ σmax(A).

Since A · σmax(A) = λ · σmax(A), it follows that

(A⊗A) · (σmax(A)⊗ σmax(A)) = (Aσmax(A))⊗ (Aσmax(A))

= (λ · σmax(A))⊗ (λ · σmax(A)) = λ2 · (σmax(A)⊗ σmax(A)).

This implies that the dominant eigenvector ofA⊗A is actually the self-Kronecker product

of the dominant eigenvector of A. Hence,

vec(S) = σmax(A⊗A) = σmax(A)⊗ σmax(A).

It can be noticed that the (i, j)-entry of the matrix S (i.e., the ((i − 1) × n + j)-th

entry of the vector vec(S)) is exactly the product of the i-th and j-th entries of σmax(A).

Thus, Eq.(6.3) holds.

2According to the Perron-Frobenius theorem [Wil07, p.383], the positivity of A⊗A ensures that there
exists a unique dominant eigenvector of A ⊗ A associated with its eigenvalue being strictly greater in
magnitude than its other eigenvalues.
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Proposition 6.5 provides the efficient technique for accelerating SimFusion+ com-

putation. The central point in optimizing S computation is that only matrix-vector

multiplication is used for computing σmax(A). Once calculated, the vector σmax(A) is

memorized and thus will not be recomputed when subsequently required, as opposed to

the naive matrix-matrix multiplication in Eq.(6.2).

Example 6.6. Consider the graph G1 in Fig.6.1 with its UAM A already computed in

Example 6.3. The dominant eigenvector of A is

σmax(A) = [.431 .673 .451 .322 .232]
T

.

Then using Eq.(6.3) for computing S yields

S =



.186 .290 .194 .139 .100

.290 .453 .304 .217 .156

.194 .304 .203 .145 .105

.139 .217 .145 .104 .075

.100 .156 .105 .075 .054


.

Note that σmax(A) is calculated only once for the preprocessing and can be used for

computing any entry of S at query time, e.g.,

[S]1,2 = [σmax(A)]1 × [σmax(A)]2 = .431× .673 = .290.

[S]1,3 = [σmax(A)]1 × [σmax(A)]3 = .431× .451 = .194.

Regarding computational complexity, our approach only needs O(km) preprocessing

time and O(n) space to compute σmax(A) by using the following power iteration [Wil07,

pp.381]:

ξ(0) = e, ξ(k+1) =
Aξ(k)

∥Aξ(k)∥2
=

Ãξ(k) + γ(k)e

∥Ãξ(k) + γ(k)e∥2
, (6.5)

where e , (1, · · · , 1)T ∈ Rn and γ(k) , 1
n2

∑n
i=1 [ξ

(k)]i.
3 The existence and uniqueness of

the dominant eigenvector σmax(A) is guaranteed by the combination of Perron-Frobenius

3The correctness of Eq.(6.5) can be proved as follows:

Aξ(k) = (Ã+ 1
n2 ee

T )ξ(k) = Ãξ(k) + γ(k)e with γ(k) = 1
n2 e

T ξ(k).
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theorem [Wil07, p.383] and the positivity of A. Thus, by applying the power method, the

sequence {ξ(k)} converges to σmax(A). Then, with σmax(A) being memorized, only O(1)

time is required at query stage for computing each entry of S via Eq.(6.3). Indeed, due

to S symmetry, only n(n + 1)/2 entries [S]i,j (i ≤ j) need to be computed. In contrast

to the O(kn3) time and O(n2) space of the conventional iterations, our approach is a

significant improvement achieved by σmax(A) computation.

Our method of memorizing σmax(A) can extra accelerate SimFusion+ computation

when only a small portion of similarity values of S need to be computed. Specifically, for

certain applications like K-nearest neighbor (KNN) queries, given a vertex i as a query,

one needs to retrieve the top-K (≪ n) most similar vertices in a graph by computing

the i-th row of S. Before Proposition 6.5 is introduced, computing the similarity of only

one vertex-pair still requires O(kn3) time. In contrast, using the memorized σmax(A), we

only need O(1) time for computing a single entry of S at query time. In fact, for KNN

queries, after σmax(A) is memorized with its entries sorted in an descending order for the

preprocessing, it only takes constant time to retrieve the top-K results at query stage.

Proposition 6.5 also gives an interesting characterization of the SimFusion+ matrix.

Corollary 6.7. The SimFusion+ matrix S is a rank 1 matrix, that is, for any two rows

of S, say [S]x,∗ and [S]y,∗, there exists a scalar ω such that [S]x,∗ = ω × [S]y,∗.

Proof. Applying Eq.(6.3) to S, we obtain that for any two rows of S, there exists ω =

[σmax(A)]x/[σmax(A)]y s.t. [S]x,∗ = ω × [S]y,∗. This implies that any row of S can be

expressed in terms of any other row of S. Hence, the rank of S is 1.

6.4 Estimating SimFusion+ With Better Accuracy

After the dominant eigenvector σmax(A) has been suggested to speed up SimFusion+

computation, the algorithm presented in this section can guarantee more accurate simi-

larity results.

The main idea of our approach is to leverage an orthogonal subspace for “upper-

triangularizing” the UAM A (n×n dimension) into a small matrix Tk (k×k dimension)
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with k ≪ n. Due to Tk small size and almost “upper-triangularity”, computing the dom-

inant eigenvector σmax(Tk) is far less costly than straightforwardly computing σmax(A).

We show that the choice of k provides a user-controlled accuracy over the similarity

scores. The underlying rationale is that the dominant eigenvector of a matrix can be

well-preserved by an orthogonal transformation.

We first use the technique of the Arnoldi decomposition [Saa03] to build an order-k

orthogonal subspace for the UAM A.

Lemma 6.8 ( [Saa03, pp.25-33]). Let A be an n×n matrix. Then, for every k = 1, 2, · · · ,

we have the following results.

(a) There exists a unique k × k almost triangular matrix Tk s.t.

VT
k AVk = Tk, (6.6)

whereVk = [v1 v2 · · · vk] is an n×k matrix consisting of k orthonormal column-vectors

vi ∈ Rn (i = 1, · · · , k).

(b) The difference between AVk and VkTk is a zero matrix except the last column.

Precisely, there exist a small scalar δk and an orthonormal vector vk+1 ∈ Rn such that

AVk −VkTk = δkvk+1e
T
k , (6.7)

where ek = (0, · · · , 0, 1)T ∈ Rk is a unit vector.

As depicted in Fig.6.3, by using the upper-triangularization process 4, the matrix

A ∈ Rn×n can be transformed into the small almost triangular Tk ∈ Rk×k by the

n× k orthonormal matrix Vk for every iteration. As k increases, Tk+1 can be iteratively

obtained by bordering the matrix Tk at the last iteration (i.e., Tk+1 =
[
Tk ⋆
⋆ ⋆

]
), andVk+1

by augmenting the matrix Vk at the last iteration with the vector vk+1 (i.e., Vk+1 =

[Vk vk+1]). When k = rank(A), it follows that δk = 0.

Example 6.9. Consider the network G1 in Fig.6.1 and its UAM A = Ã + 1/52 in

Example 6.3. For k = 3, ∃ V3 = [v1 v2 v3] ∈ R5×3 mapping A ∈ R5×5 into T3 ∈ R3×3

4From the computational viewpoint, Vk,Tk,vk and δk in Eq.(6.7) can be obtained by an algorithm
in our later developments.
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s.t. T3 = VT
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
, T3 =


1.08 .298 0

.298 .190 .359

0 .359−.083

 , V3 =



.447 .125 −.089

.447 .750 .044

.447 −.125 .710

.447 −.125 −.696

.447 −.625 .032


.

∃ δ3 = .231,v4 = [−.881 .328 .137 .280 .135]T s.t. Eq.(6.7) holds.

(Please refer to Example 6.12 for a detailed iterative process)

In light of Lemma 6.8, we next provide an error estimate for SimFusion+ similarity

when using σmax(Tk) to compute σmax(A).

Error Estimation. We define a k-approximation similarity matrix Ŝk over a low-order

parameter k:

[Ŝk]i,j = [Vk · σmax(Tk)]i × [Vk · σmax(Tk)]j , (6.8)

where Vk and Tk can be obtained from Lemma 6.8.

To differentiate Ŝk from S, we shall refer to S as exact similarity.

The following estimate for the approximate similarity Ŝk with respect to the exact S

can be established.

Proposition 6.10. For every k = 1, 2, · · · , the following estimate holds:

∥Ŝk − S∥2 ≤ ϵk, (6.9)

where

ϵk = 2× |δk × [σmax(Tk)]k|, (6.10)
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and δk is a small scalar given in Eq.(6.7); [σmax(Tk)]k is the k-th entry of the dominant

eigenvector of Tk.

Proof. Let ψ(x) = Ax− α(x) · x be a vector function of x ∈ Rn, with α (x) being a real

function of x. To simplify notations, we shall denote by αk the dominant eigenvalue of

Tk, and

ηk = σmax(Tk), ξk = Vk · σmax(Tk), ξ = σmax(A).

Using Tkηk = αkηk and Eq.(6.7) in Lemma 6.8, we have

ψ (ξk) =VkTkηk + δkvk+1e
T
k ηk − αkVkηk

= δkvk+1(e
T
k ηk) = δk[ηk]kvk+1,

where [ηk]k denotes the k-th entry of ηk. Hence,

∥ξk − ξ∥2 ≤ ∥ψ (ξk) ∥2 =
∣∣δk[ηk]k∣∣∥vk+1∥2 =

∣∣δk[ηk]k∣∣.
Since vec(Sk) = ξk ⊗ ξk and vec(S) = ξ ⊗ ξ, we have

∥Sk − S∥2 = ∥vec(Sk)− vec(S)∥2 = ∥ξk ⊗ ξk − ξ ⊗ ξ∥2

= ∥ξk ⊗ (ξk − ξ) + (ξk − ξ)⊗ ξ∥2

≤∥ξk∥2︸ ︷︷ ︸
≤1

·∥ξk − ξ∥2 + ∥ξk − ξ∥2 · ∥ξ∥2︸︷︷︸
≤1

=2× ∥ξk − ξ∥2 ≤ 2× |δk × [ηk]k|,

which completes the proof.

The parameter ϵk is intended as a user control over the difference between the ap-

proximate and the exact similarity matrices, and hence ϵk is generally chosen by a user.

Provided that k is selected to satisfy Eq.(6.10), Proposition 6.10 states that the gap

between the approximate and the exact similarity scores does not exceed ϵk.

Example 6.11. Consider the network G1 in Fig.6.1 and the matrix T3,V3, δ3 given in

Example 6.9. For k = 3, we have

σmax(T3) = [.945 .316 .089]T .
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Therefore, V3 · σmax(T3) = [.454 .663 .447 .321 .228]T . Then applying Eq.(6.8) and the

exact S in Example 6.6 yields

Ŝ3 = {Using Eq.(6.8)} =

.206 .301 .203 .146 .103

.301 .440 .296 .213 .151

.203 .296 .199 .143 .102

.146 .213 .143 .102 .073

.103 .151 .102 .073 .051



Ŝ3 − S = {Using S in Example 6.6} =

.01×



2.02 1.09 .83 .67 .34

1.09 −1.33 −.75 −.41 −.51
.83 −.75 −.40 −.21 −.30
.67 −.41 −.21 −.09 −.17
.34 −.51 −.30 −.17 −.20


We note that the gap between S and Ŝk for k = 3 is actually

∥Ŝ3 − S∥2 = .0257,

which is smaller than ϵk (using Eq.(6.10) with δ3 = .231)

ϵk = 2× |.231× .089| = .0411.

Notice that if k = rank(A) (≪ n), 5 then ϵk = 0 and the k-approximation sim-

ilarity matrix Ŝk becomes the conventional exact USM S. From this perspective, the

k-approximation similarity can be regarded as a generalization for the conventional sim-

ilarity.

One of the possible ways of choosing an appropriate low order k for achieving the

desired accuracy ϵ is to calculate the estimation error ϵk from Eq.(6.10) in an a-posteriori

fashion after each iteration k = 1, 2, · · · . 6 The iterative process stops once ϵk ≤ ϵ. Due

to ϵk decreasing monotonicity, such k is the minimum low order s.t. ∥Ŝk − S∥2 ≤ ϵ. More

concretely, the residual δk in Eq.(6.7) (Lemma 6.8) approaches 0 as k is increased to n,

which implies

ϵk = 2× |δk| × |[σmax(Tk)]k| ≤ 2× |δk|.

Hence, the condition ϵk ≤ ϵ (with ϵk being obtained from Eq.(6.10)) can be used as

a stopping criterion for determining the minimum low order k needed for the desired

accuracy ϵ.

5When k is set to argmink{δk = 0} (which is practically much smaller than rank(A)), ϵk = ϵk+1 =
· · · = ϵn = 0.

6As increased by 1 per iteration, the low order parameter k equals the iteration number.
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Capitalizing on Eq.(6.8) and Proposition 6.10, below we provide an algorithm for

SimFusion+ computation with accuracy guarantee.

Algorithm. SimFusion+ is shown in Algorithm 6.1. It takes as input a network G =

(D,R), a desired accuracy ϵ, and a vertex pair (u, v); it returns the approximate similarity

ŝ(u, v) such that |ŝ(u, v)− s(u, v)| ≤ ϵ with s(u, v) being the exact value.

Before illustrating the algorithm, we first present the notations it uses. (a) [Tk]i,j

is the (i, j)-entry of the matrix Tk, and [σmax(Tk)]i is the i-th entry of the eigenvector

σmax(Tk). (b) span{v1, · · · ,vk} is the set of all linear combinations of vectors v1, · · · ,vk.

(c) σ̂max(A) denotes the approximation of σmax(A).

The algorithm SimFusion+ works as follows. It first computes A and initializes v1

(lines 1-2). Using A, it then computes Tk (lines 4-6), δk (lines 7-8) and vk+1 (line

12) by orthonormalizing the vector Avk with respect to v1, · · · ,vk for every iteration;

SimFusion+ also calculates σmax(Tk) (line 9), and utilizes δk and σmax(Tk) to estimate

the error ϵk (line 10). The process (lines 3-13) iterates until ϵk ≤ ϵ, i.e., the minimum

low order k is found s.t. ϵk meets the desired accuracy ϵ (line 11). For such k, the matrix-

vector product [v1|v2| · · · |vk] ·σmax(Tk) is used to approximate the dominant eigenvector

of A, and is memorized to compute σ̂max(A) (line 15). The product of the u-th and v-th

entries of σ̂max(A) is collected in ŝ(u, v), which is returned as the estimated similarity

between vertex u and v (lines 17-18).

Example 6.12. We show how SimFusion+ estimates the similarity in G1 of Example 6.1.

Given the desired accuracy ϵ = 0.05, SimFusion+ first initializes the UAM A (in Example

6.3). It then iteratively computes Tk,vk+1, δk, σmax(Tk) and ϵk as follows:
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Algorithm 6.1: SimFusion+ (G, ϵ, (u, v))
Input : Network G = (D,R), accuracy ϵ, vertex pair (u, v).

Output: Similarity score s(u, v).

1 compute the matrix Ã ∈ Rn×n of the UAM A in G ;

2 initialize e← (1, 1, · · · , 1)T ∈ Rn, and v1 ← 1√
n
e ;

3 foreach iteration k = 1, 2, · · · do

4 initialize the auxiliary vector w← Ãvk +
1
n2 (e

Tvk)e ;

5 for i = 1, 2, · · · , k − 1 do

6 compute the almost upper triangular matrix Tk ∈ Rk×k :

[Tk]i,k−1 ← vT
k ·w ;

7 orthogonalize w s.t. w⊥span{v1, · · · ,vk} :

w← w − [Tk]i,k−1 · vk−1 ;

8 compute the residual scalar δk ← ∥w∥2 ;

9 find the dominant eigenvector σmax(Tk) ;

10 estimate the error ϵk ← 2× |δk × [σmax(Tk)]k|;

11 if ϵk ≤ ϵ then exit for ;

12 compute the residual vector vk+1 :

w← w/δk and vk+1 ← w ;

13 free δk, σmax(Tk) ;

14 free w,Tk,vk+1, δk ;

15 compute the approximate dominant eigenvector σ̂max(A)

σ̂max(A)← [v1|v2| · · · |vk] · σmax(Tk) ;

16 free v1, · · · ,vk, σmax(Tk) ;

17 compute the approximate similarity score of (u, v)

ŝ(u, v)← [σ̂max(A)]u × [σ̂max(A)]v ;

18 return ŝ(u, v) ;
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#-line time memory operation

4 O(m) O(n) sparse matrix-vector multiplication

6 O(n) O(n) vector dot product

7 O(n) O(n) vector addition and scalar multiplication

8 O(n) O(n) computing the 2-norm of a vector

9 O(k) O(k) using the power iteration

10 O(1) O(k) getting the vector component

12 O(n) O(n) scaling the vector

Table 6.1: Running Time & Memory Space Required per Iteration for Algorithm SimFu-
sion+ in Lines 4-12

k Tk vk+1 δk σmax(Tk) ϵk

0 − [.447 .447 .447 .447 .447]T − − −

1 [1.08] [.125 .750−.125−.125−.625]
T

.298 [1] .596

2

1.08 .298
.298 .190

 [−.089 .044 .710−.697 .032]
T

.359

[
.957

.290

]
.208

3


1.08 .298 0

.298 .190 .359

0 .359 −.083

 [−.881 .329 .137 .280 .135 .231]
T

.231


.945

.316

.090

 .041

The iteration terminates at k = 3 because the estimation error ϵ3 = .041 ≤ ϵ (= .05).

SimFusion+ then memorizes σ̂max(A) = [v1|v2|v3] · σmax(T3) and returns the similarity

ŝ(u, v), i.e., the (u, v) entry of Ŝ3, as shown in Example 6.11.

We next analyze the time and space complexity of SimFusion+ .

Running Time. The algorithm consists of two phases: preprocessing (lines 1-16), and

on-line query (lines 17-18).

(i) For the preprocessing, (a) it takes O(m) time to compute Ã (line 1) and O(n)

time to initialize v1 (line 2). (b) The total time of the for loop is analyzed in Table 6.1

(line 3-13), which is bounded by O(m+4n+ k+1) for each iteration. (c) It takes O(kn)

time to compute σ̂max(A) (line 15). Hence, the total time in this phase is O(m+ k(m+

4n+ k + 1) + kn), which is bounded by O(km).
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(ii) The on-line query phase (lines 17-18) can be done in constant time for each query

by virtue of σ̂max(A) memorization.

Combining (i) and (ii), the query time of SimFusion+ is in O(1), plus an O(km)-time

precomputation.

Memory Space. (i) In the precomputation, (a) initializing Ã and v1 takes O(n) space

(lines 1-2). (b) For each iteration k, the space complexity is analyzed in Table 6.1,

which is bounded by O(n) (line 3-13). (c) As the for loop terminates, only v1, · · · ,vk

and σmax(Tk) are kept in memory, yielding O(kn + k) space; the other intermediate

results can be freed (line 14). (d) Computing σ̂max(A) takes O(k) space (line 15). Once

computed, σ̂max(A) is memorized, yielding O(n) space; v1, · · · ,vk and σmax(Tk) are not

used subsequently and thus can be freed (line 16).

(ii) For the on-line query (lines 17-18), ŝ(u, v) can be computed in O(n) space with

σ̂max(A) memorized.

Taking (i) and (ii) together, the total space is bounded by O(kn).

6.5 Incremental SimFusion+

For certain applications like social networks, graphs are frequently modified [LHH+10]. It

is too costly to recalculate similarities every time when edges in the graphs are updated.

This motivates us to study the following incremental SimFusion+ estimating problem.

Given a network G, the eigen-information in G, and a list Ḡ of updates (edge deletions

and insertions) to G, it is to compute the new USM S′ in G′. Here G′ is the updated G,

denoted by G + Ḡ.

The idea is to maximally reuse the eigen-information in G when computing S′. The

observation is that Ḡ is often small in practice; hence, S′(= S + S̄) is slightly different

from S. It is far less costly to find the change S̄ to the old S than to recalculate the new

S′ from scratch. The main result in this section is the following.

Theorem 6.13. The incremental SimFusion+ estimating problem is solvable in O(δn)

time and O(n) space for every vertex pair, where δ is the number of edges affected by the
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update Ḡ.

As we shall see later, δ captures the size of areas in a graph G that is affected by

updates Ḡ; hence δ is much smaller than n when Ḡ is small. That is, the incremental

SimFusion+ can be performed more efficiently than computing similarities in G′. This

suggests that we compute the eigenvector ofA in G once, and then incrementally compute

SimFusion+ when G is updated.

To prove Theorem 6.13, we first introduce a notion of incremental UAM. We then

devise an incremental algorithm for handling batch edge updates with the desired bound.

6.5.1 Incremental Unified Adjacency Matrix

Consider an old network G = (D,R) and a new G′ = (D,R′).

Incremental UAM. The matrix Ā is said to be the incremental UAM of the update

Ḡ (= G′ − G, i.e., a list of edge insertions and deletions) iff Ā = A′ −A, where A and

A′ are the UAMs of the old network G and the new G′, respectively.

Intuitively, the nonzero entries of Ā can identify the edges in G that is affected by

updates Ḡ. Typically, Ā is a sparse matrix when δ is small. Indeed, the number of

nonzero entries in Ā is bounded by O(δn), which represents the costs that are inherent

to the incremental problem itself, i.e., the amount of work absolutely necessary to be

performed for the problem.

Using Ā, we next provide a strategy for incrementally computing SimFusion+ simi-

larity.

Proposition 6.14. Given a network G and an update Ḡ to G, let A be the UAM of G,

and Ā the incremental UAM of Ḡ. Then the new USM S′ of the new network G′ (= G+Ḡ)

can be computed as

[S′]i,j = [ξ′]i · [ξ′]j with [ξ′]i = [ξ1]i +
∑n

p=2 cp × [ξp]i

cp =
ξTp ·η
αp−α1

and η = Ā · ξ1. (6.11)
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where ξp is the eigenvector of A corresponding to the eigenvalue αp with ∥ξp∥2 = 1, and

ξ1 is the dominant eigenvector of A.

Proof. For the new graph G′, let ξ′ be the dominant eigenvector of A′ with its eigenvalue

α′, and ξ̄1 = ξ
′ − ξ1, ᾱ1 = α′ − α1, Ā = A′ −A. Then, A′ξ′ = α′ξ′ can be rewritten as

(A+ Ā)(ξ1 + ξ̄1) = (α1 + ᾱ)(ξ1 + ξ̄1).

Expanding the above equation, eliminating Āξ̄1 and ᾱ1ξ̄1 (the high-order infinitesimals

of ξ̄1), and using Aξ1 = α1ξ1, we have

Aξ̄1 + η = α1ξ̄1 + ᾱ1ξ1 with η = Āξ1. (6.12)

Since ξ1, · · · , ξn of A constitute a basis for Rn, there exist scalars c1, · · · , cn s.t. ξ̄1 =

c1ξ1 + · · ·+ cnξn. Substituting this into Eq.(6.12) and pre-multiplying both sides by ξTj

produce

ξTj

n∑
i=1

ciαiξi + ξ
T
j η = α1ξ

T
j

n∑
i=1

ciξi + ᾱ1ξ
T
j ξ1. (j = 2, · · · , n)

Due to ξi orthonormality (i = 1, · · · , n), we have

cjαjξ
T
j ξj︸ ︷︷ ︸

=cjαj

+ξTj η = cjα1ξ
T
j ξj︸ ︷︷ ︸

=cjα1

+ ᾱ1ξ
T
j ξ1︸ ︷︷ ︸

=0

.

Hence, cj = (ξTj η)/(αj − α1) with η = Āξ1 (j = 2, · · · , n).

To determine c1, we use the identity (ξ1 + ξ̄1)
T
(ξ1+ ξ̄1) = 1. Expanding the left-hand

side, eliminating the high-order infinitesimal ξ̄T1 ξ̄1, and replacing ξ̄1 with c1ξ1+· · ·+cnξn,

we have

ξT1 ξ1︸ ︷︷ ︸
=1

+ ξT1

n∑
i=1

ciξi︸ ︷︷ ︸
=c1

+

n∑
i=1

ciξ
T
i ξ1︸ ︷︷ ︸

=c1

= 1.

Due to ξ1, · · · , ξn orthonormality, it follows that c1 = 0. Thus,

vec(S′) = ξ′ ⊗ ξ′ with ξ′ = ξ1 + ξ̄1 = ξ1 +
n∑

p=2

cp · ξp,

cp =
ξTp η

αp − α1
, and η = Āξ1.
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Algorithm 6.2: IncSimFusion+ (G,A, (αp, ξp), Ḡ, (u, v))
Input : Network G = (D,R), the old UAM A of G,

eigen-pairs (αp, ξp) of A, the update Ḡ to G, query (u, v).

Output: New similarity score s′(u, v).

1 compute the incremental UAM Ā for the update Ḡ :

Ā← UpdateA (G,A, Ḡ) ;

2 initialize a← [ξ1]u, b← [ξ1]v ;

3 compute η ← Ā · ξ1 ;

4 free Ā, ξ1;

5 for p← 2, · · · , n do

6 compute t← ξTp · η, cp ← t/(αp − α1) ;

7 compute a← a+ cp × [ξp]u, b← b+ cp × [ξp]v ;

8 free αp, ξp ;

9 free η, t ;

10 compute s′(u, v)← a× b ;

11 return s′(u, v) ;

The main idea in incrementally computing S′ is to reuse Ā and the eigen-pair (αp, ξp)

of the original A. From the computational perspective, memorization techniques can be

applied to Eq.(6.11) for an extra speed-up in computing [ξ′]i. Once η is computed, it

can be memorized for computing c2, · · · , cn. When c2, · · · , cn are calculated, they can be

memorized for computing [ξ′]i and [ξ′]j .

6.5.2 An Incremental Algorithm for SimFusion+

We next prove Theorem 6.13 by providing an incremental algorithm, referred to as Inc-

SimFusion+, for handling δ edge updates.

Algorithm. The algorithm accepts as input a network G, the UAM A of G, the eigen-

pairs (αp, ξp) of A, an update Ḡ (a list of edge insertions and deletions) to G, and a vertex
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pair (u, v).

It works as follows. (a) IncSimFusion+ first computes the incremental UAM Ā for

the update Ḡ by using procedure UpdateA (line 1). UpdateA incrementally finds all the

changes to the old UAM A in the presence of a list of edge updates to G. (b) For the given

vertex pair (u, v), IncSimFusion+ initializes a and b based on the dominant eigenvector

ξ1 of A (line 2) ; it computes η once and memorizes η for computing c2, · · · , cn (line 3).

(c) Once computed, c2, · · · , cn are memorized for calculating the u-th and v-th entries of

the dominant eigenvector ξ′ of the new UAM,which is collected in a and b, respectively

(lines 4-9). IncSimFusion+ returns a× b as the similarity ŝ(u, v) (lines 10-11).

Edge Update. The procedure UpdateA is used for incrementally updating the UAM

A by virtue of Ḡ. An update Ḡ is represented as a sequence of 2-tuples (D×D, op) that

records every single action of the edge update, in which D × D is a set of δ edges to be

inserted or deleted, and op is either “+” (edge insertion) or “−” (edge deletion). For

instance, after the edge (P3, P5) is added and (P1, P2) is removed from G1 in Fig.6.1, the

update Ḡ is denoted by

Ḡ = {(P3, P5,+), (P1, P2,−)}.

UpdateA identifies the incremental Ā in two phases. (i) It first finds the affected

nodes and the data spaces for each edge update in Ḡ using a breadth-first search. (ii)

It then updates the corresponding entries of Ā based on the following. We abuse the

notation ND(u) to denote all the neighbors of object u in the data space D, i.e.,

ND(u) = {v ∈ D| (u, v) ∈ R}.

Based on the partition of the entire data space D =
∪N

i=1Di with ni = |Di|, the incre-

mental UAM Ā can be accordingly partitioned into N2 submatrices Āi,j .

• For each edge insertion (u, v,+) ∈ Ḡ with u ∈ Di and v ∈ Dj , (i) we set all entries

of [Āi,j ]u,⋆ to −λi,j

nj
except for their v-th entries to 0 if NDj (u) = ∅; (ii) we set all

entries of [Āj,i]⋆,v to −λj,i

ni
except for their u-th entries to 0 if NDi(v) = ∅; (iii) we

set [Āi,j ]u,v = λi,j otherwise.
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• For each edge deletion (u, v,−) ∈ Ḡ with u ∈ Di and v ∈ Dj , (i) we set all entries

of [Āi,j ]u,⋆ to
λi,j

nj
except for their v-th entries to 0 if |NDj (u)| = 1; (ii) we set all

entries of [Āj,i]⋆,v to
λj,i

ni
except for their u-th entries to 0 if |NDi(v)| = 1; (iii) we

set [Āi,j ]u,v = −λi,j otherwise.

Complexity. The algorithm IncSimFusion+ is in O(δn) time and O(n) space for han-

dling δ edge updates in Ḡ. (i) The procedure UpdateA can be bounded by O(δn) time

and O(n) space (line 1). For each edge update in Ḡ, it is in at most O(n) time and O(n)

intermediate space to update the corresponding entries of Ā. (ii) Computing η requires

an O(δ)-time and O(n)-space sparse matrix-vector multiplication Ā · ξ1 (line 3). (iii)

For every cp, it takes O(δ) time and O(n) space to calculate ξTp · η (line 6) since η is a

sparse vector with only O(δ) nonzeros; and c2, · · · , cp are memorized for computing [ξ′]i,

which requires O(δn) time and O(n) space in total. (iv) Computing a, b and s′(u, v)

needs constant time and space (lines 7 and 10). Thus, combining (i)-(iv) , the total

complexity is bounded by O(δn) time and O(n) space.

Example 6.15. We show how IncSimFusion+ works. Consider the graph G1 in Fig.6.1

with its UAM A in Example 6.3. Suppose two edges (P1, P2) and (P2, P1) are removed

from G1. The new USM S′ is updated as follows.

First, UpdateA is invoked for precomputing the incremental Ā and the eigen-pairs

(αp, ξp) of A in an off-line fashion:

Ā =



0 −1
6 0 0 0

−1
6 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



p αp ξp cp

1 1.184 [.431 .673 .451 .322 .232]
T

−

2 .503 [.708−.522−.242 .388 .132]
T

.062

3 -.480 [−.256−.020 .095 .716−.641]
T

-.018

4 -.366 [−.021−.507 .853−.119 .017]
T

-.025

5 .242 [.497 .127 .037−.467−.719]
T

.069

IncSimFusion+ next computes η from Ā and ξ1 (line 3):

η = Ā · ξ1 = [−.112−.072 0 0 0]
T

.
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Then, cp can be derived from the memorized η and (αp, ξp), e.g.,

c2 = ξ
T
2 · η/(α2 − α1) = −.0419/(.503− 1.184) = .062,

c3 = ξ
T
3 · η/(α3 − α1) = .030/(−.480− 1.184) = −.018.

Once computed, c2, · · · , c5 are memorized for calculating [ξ′]⋆ :

ξ′ = ξ1 +

5∑
p=2

cp × ξp = [.327 .703 .485 .326 .266]
T

.

Hence, applying [ξ′]⋆ to the new USM S′ (line 10) yields

S′ =



.107 .230 .159 .107 .087

.230 .494 .341 .230 .187

.159 .341 .235 .158 .129

.107 .230 .158 .107 .087

.087 .187 .129 .087 .071


.

6.6 Experimental Evaluation

In this section, a comprehensive empirical study of the proposed similarity estimating

methods is presented.

6.6.1 Experimental Setting

Datasets. We used three real-life datasets and a synthetic dataset.

(1) MSN Data. 7 The MSN search log data were taken from “Microsoft Live Labs:

Accelerating Search in Academic Research”. This dataset was also used in the prior

work [XFF+05]. It contains about 15M user queries from the United States in May 2006

and the corresponding clickthrough URLs. The dataset was formatted by showing each

query, the URLs of the associated web pages, and the number of clickthroughs by query,

as depicted below.

Query URL Clicks URL Clicks

Shopping shopping.yahoo.com 2,375 www.ebay.com 1,859

7http://research.microsoft.com/ur/us/fundingopps/RFPs/Search 2006 RFP.aspx



Chapter 6. Fast SimFusion+ on Large and Dynamic Networks 184

The 15K most common queries in the search log were chosen, and the hyperlinks from the

contents of the top 32K popular web pages were parsed. We built a network G = (D,R),

which consists of a web page space Dw and a query space Dq.

(2) DBLP Data. 8 This dataset was derived from a snapshot of the computer science

bibliography (from 2001 to 2010). We selected the research papers published in the

following conference proceedings: “SIGIR”, “KDD”, “VLDB”, “ICDE”, “SIGMOD” and

“WWW”. Choosing a time step of two years, we built 5 DBLP web graphs Gi (i =

1, · · · , 5) with the sizes listed below:

G1: 01-02 G2: 01-04 G3: 01-06 G4: 01-08 G5: 01-10

|D| 1,838 3,723 5,772 9,567 12,276

|R| 7,103 14,419 29,054 45,310 64,208

For each graph Gi = (Di,Ri), two data spaces were used: paper space Di
p and author

space Di
a.

(3) WebKB Data. 9 This dataset collects web pages from the computer science de-

partments of four universities: Cornell (CO), Texas (TE), Washington (WA) and Wis-

consin (WI). It was also used in the previous work [CZDC10] for link-based similarity

estimation. For each university, a network GUi = (Di,Ri) was built, in which (a) the

web pages in Di were classified into 7 categories (data spaces): student, faculty, staff,

department, course, project and others, and (b) the UAM ofRi represented the hyperlink

adjacency matrix. The sizes of these networks are as follows:

U1: CO U2: TE U3: WA U4: WI

|D| 867 827 1,263 1,205

|R| 1,496 1,428 2,969 1,805

(4) Synthetic Data. The data were produced by the C++ boost graph generator,

with 2 parameters: the number of vertices and the number of edges. Varying the graph

parameters, we used this dataset to represent homogenous networks for an in-depth

analysis.

8http://www.informatik.uni-trier.de/˜ley/db/
9http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/
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Compared Algorithms. The following algorithms were implemented in C++: (1)

SimFusion+ and IncSimFusion+ ; (2) SF, a SimFusion algorithm via matrix iteration

[XFF+05]; (3) CSF, a variant of SF, which leverages PageRank stationary distribution

[CZDC10]; (4) SR, a SimRank algorithm via partial sums function [LVGT10]; (5) PR, a

Penetrating-Rank algorithm encoding both in- and out-links [ZHS09].

Evaluation Metrics. For evaluating the performance of the algorithms, we used Nor-

malized Discounted Cumulative Gain (NDCG) metrics [CZDC10]. The NDCG at a rank

position p is defined as

NDCGp =
1

IDCGp

p∑
i=1

2ranki − 1

log2 (1 + i)
,

where ranki is the graded relevance of the similarity result at rank position i, and IDCGp

is the normalization factor to guarantee that NDCG of a perfect ranking at position p

equals 1.

Twelve IT experts were hired to judge the similarity of the five algorithms. The final

judgment was rendered by a majority vote.

All experiments were run on a machine with a Pentium(R) Dual-Core (2.00GHz)

CPU and 4GB RAM, using Windows Vista. The algorithms were implemented in Visual

C++. Each experiment was repeated over 5 times, and the average is reported here.

6.6.2 Experimental Results

Exp-1: Accuracy

We first evaluated the accuracy of SimFusion+ vs. SF, CSF, SR and PR in estimating the

similarity, using real-life data.

We randomly chose 50 queries and 40 pages from the MSN query log, and compared

the average NDCG10 (and NDCG30) of the five algorithms. The results are shown in

Figure 6.4, in which the x-axis categorizes the objects according to query and web page.

We find the following. (i) In most cases, SF seems hardly to get sensible similarities

because with the increasing number of iterations, all the similarities of SF will asymp-

totically approach the same value. This verifies the convergence issue of the original
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Figure 6.4: NDCG10 and NDCG30 on MSN

model [XFF+05]. (ii) When SF did not fail, SimFusion+ always gave more accurate es-

timation on average than the other algorithms. For instance, for the top 10 queries, the

average NDCG10 of SimFusion+ (0.79) is 10x better than SF (0.07), 39% better than

CSF (0.57), 58% better than SR (0.50), and 15% better than PR (0.69), whereas for

the top 30 web pages, the average NDCG30 of SimFusion+ (0.64) is 12x better than

SF (0.05), 45% better than CSF (0.44), 33% better than SR (0.48), and 21% better than

PR (0.53). This is because substituting UAM for URM effectively avoids divergent or

trivial solutions, thus improving the quality and reliability of SimFusion+ similarity.

To further verify the accuracy, we randomly selected another 15 queries and 15 web

pages from MSN data. In Figure 6.5, the query-by-query and page-by-page comparisons

are shown for NDCG10 of the five algorithms. We observe that (i) for 12 out of 15 queries,

SimFusion+ achieved highest accuracy of the five algorithms;for 13 out of 15 web pages,

SimFusion+ outperformed the other algorithms in its accuracy, and was slightly less accu-

rate than PR for only 2 pages. (ii) For all the queries and web pages, SimFusion+ showed

the best accuracy performance on average, PR the second, and SF the worst. This is be-

cause SimFusion+ uses UAM to encode the intra- and inter-relations in a comprehensive

way, thus making the results unbiased.

We also evaluated the performance of SimFusion+ on DBLP and WebKB datasets.

In DBLP experiments, 20 authors were randomly chosen from G1:01-02, G3:01-06 and

G5:01-10 data, respectively. We compared the similarity of the top 10 authors in Gi (i =
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Figure 6.5: Query-by-query and page-by-page comparisons for NDCG10 on MSN
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Figure 6.6: NDCG10 on DBLP and WebKB

1, 3, 5) estimated by the five algorithms. The results of the average NDCG10 are de-

picted in Figure 6.6. It can be seen that SimFusion+ again achieved better accuracy on

DBLP data. For instance, SimFusion+ (0.88) on G3:01-06 was 13x better than SF (0.06),

95% better than CSF (0.45), 26% better than SR (0.7), and 19% better than PR (0.74).

In WebKB experiments, we computed NDCG within 10 web pages for each object in

each university data (CO,TE,WI,WA) and evaluated the average scores. Figure 6.6 shows

that SimFusion+ outperformed the other 4 algorithms on CO, WI and WA data, except

that PR (0.8) did 6% better than SimFusion+ (0.75) on TX data. This tells that SimFu-

sion+ accuracy performance is consistently stable on different experimental datasets.
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Figure 6.10: Memory Space on WebKB

Exp-2: CPU Time & Memory Space

We then evaluated the running time and memory space efficiency of SimFusion+ , SF,

CSF, SR and PR using real datasets.

Figures 6.7 and 6.8 show the CPU time and memory consumption for the five algo-

rithms on DBLP. The total time and memory for each algorithm showed an increasing

tendency with the growing size of DBLP. It can be noted that the time for SimFu-

sion+ was at least one order of magnitude faster than CSF and SR on average, and more

than 20x faster than PR and SF, whereas the space for SimFusion+ and SR increased

linearly with the size of DBLP, in contrast with the quadratic increase in memory for

SF, CSF, PR, as expected. This drastic speedup and decrease in RAM is due to the

memorization of σmax(Tk) for computing USM, thus saving much time and space for

repetitive matrix multiplications.

To further evaluate the efficiency, we compare the time and memory of the five ranking
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Figure 6.11: CPU time and memory for the given query and web page on MSN

algorithms onWebKB. In Figures 6.9 and 6.10, the results indicate that SimFusion+ took

about 10x less time than SF and PR, and 6x less time than CSF and SR on average. For

instance, the CPU time for SimFusion+ (14.2s) on WI data is 9.7x faster than SF (151.6s),

7x faster than CSF (111.6s) and SR (114.2s), and 19x faster than PR (289.1s). The

memory space for SimFusion+ was also efficient and scaled well with the size of WebKB.

It can be seen that SF also took small memory space (approx. 1M) when the data size

was small (e.g., CO and TX). However, when the data size increased (e.g., WI and WA),

SF was less useful since large memory storage (about 2.5M) was required to keep the

intermediate result of the k-th iterative USM. In all the cases, SimFusion+ performed the

best.

On large datasets, the effect of SimFusion+ is even more pronounced. Figure 6.11

reports the average time and memory of the five algorithms on MSN data, in which the

y-axis is log-scale. We chose 50 queries and 40 web pages from Dq and Dw, respectively.

For each oq ∈ Dq (resp.ow ∈ Dw), we estimated the similarity between oq (resp.ow) and

other object o ∈ Dq ∪Dw. We see that SimFusion+ was highly efficient on large datasets

(nearly 2 orders of magnitude than SF and PR, and 1 order of magnitude than CSF in

both time and space). This validates that the performance of SimFusion+ is fairly stable

among different datasets.
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Figure 6.12: IncSimFusion+ for query
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Figure 6.13: IncSimFusion+ for web page

Exp-3: Incremental Performance

We next evaluated the incremental performance of IncSimFusion+ on real datasets. Given

a sequence of edge updates (δ edge insertions and deletions in Ḡ), we compared the

running time of IncSimFusion+ with that of SimFusion+ ; the latter had to recalculate

the UAM when edges were updated, and the computational cost was counted. In these

experiments, the eigen information of the old UAM can be preconditioned in an off-line

fashion and shared by all the updated graphs for incremental computation, and hence

their costs were not counted at the query stage. Due to space limitations, below we only

reported the results on MSN dataset.

Varying δ (the number of the edges to be updated) from 600 to 3000, we first evaluated

the running time of IncSimFusion+ and SimFusion+ over MSN data, respectively, for

estimating all the similarities between the query objects in Dq. Figure 6.12 shows that

IncSimFusion+ outperformed SimFusion+ when δ < 2800, but SimFusion+ performed

better for larger δ, as expected. This is because the small value of δ often preserves the

sparseness of the incremental UAM, and hence reduces the computational cost of η when

the USM was incrementally updated.

To further validate the performance of IncSimFusion+ , we estimated the similarity

among the web page in Dw and tested its CPU time on MSN data. In Figure 6.13,

the result shows that IncSimFusion+ was highly efficient for the small number of edge

updates. When δ > 7700, SimFusion+ did better than IncSimFusion+ . This tells that
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increasing the number of updated edges induces more nonzeros in Ā, thus increasing the

difficulty of incremental computation. We also noticed that the SimFusion+ time was

less sensitive to the small number of updated edges, whereas the IncSimFusion+ time

was linearly increased with δ, as expected. This is because once the edges are changed,

SimFusion+ has to recompute all the similarities from scratch. In contrast, IncSimFu-

sion+ only computes the similarities from the affected area of edge updates. In light of

this, IncSimFusion+ scales well with δ.

Exp-4: Effect of ϵ

We used 9 web graphs with the number of vertices increased from 600K to 1.4M. We

varied ϵ from 0.01 to 0.0001 and ran SimFusion+ on each graph. The results are reported

in Figures 6.14 and 6.15. which visualizes the time and space of SimFusion+ needed for

estimating similarities. The x-axis gives the number of vertices for each graph. It can be

seen that the computational time and memory consumption for SimFusion+ was sensitive

to ϵ. The smaller the ϵ is, the larger amounts of the CPU time and memory space are,

as expected. These confirmed our observation in Section 6.4, where we envisage that the

small choice of ϵ imposes more iterations on computing Tk and vk, and hence increases

the estimation costs.
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6.7 Related Work

The link-based similarity has become increasingly popular since the famous result of

Google PageRank [PBMW99] on ranking web pages. Since then, there has been a surge of

papers focusing on web link analysis. In particular, a growing interest has been witnessed

in the SimFusion model over the past decade [XZC+04a,XFF+05] as it provides a useful

measure of similarity that supports different kinds of intra- and inter-node relations from

multiple data spaces.

The iterative computation of SimFusion was proposed in [XFF+05] with several prob-

lems left open there. In comparison, this work extends [XFF+05] by (i) addressing the

divergent and trivial solution of the original SimFusion, (ii) optimizing the time and

space complexity of similarity computation, and (iii) supporting incremental update on

evolving graphs, none of which was considered in [XFF+05].

It is worth mentioning that Jeh and Widom have proposed a similar structural mea-

sure called SimRank [JW02], predicated, as SimFusion is, on the idea that vertices are

similar if they have similar neighbor structures. The essential difference between the two

models is the notion of the convergence principle. SimFusion ensures the existence of the

stationary distribution and ergodicity convergence to this distribution, whereas SimRank

hinges on a damping factor 0 < c < 1 to govern the convergence.

Optimization techniques have been devised for SimRank computation (e.g., [LVGT10,

LHH+10,HLC+12,YZL+12]). The best-known SimRank algorithm yieldsO(kmin{nm, n3

logn})

time [LVGT10]. The performance gain is mainly achieved by a partial sum function for

amortization; as for SimFusion, the conventional matrix multiplication in its iterative

formula misled its complexity, which was previously considered O(kn3) time and O(n2)

space. The idea of the dominant eigenvector in this work significantly improves its compu-

tation to O(km) time and O(kn) space, which is more efficient than SimRank [LVGT10].

There has also been work on link-based similarity computation. A unified framework

of link-based analysis was addressed in [XZC+04a], which extends PageRank and HITS

by (i) considering both inter- and intra-type relationships, and (ii) bringing order to
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data objects in different data spaces. It differs from this work in that the focus is on

finding attribute values of a single object, rather than on improving the complexities for

similarity estimation. Extensions of similarity reinforcement assumption were studied in

[XZC+04b], by spreading multiple relationship similarities over interrelated data objects

to enhance their mutual reinforcement effects. Nevertheless, neither of these deduces

rigorous mathematical formulae, and the rationales behind the integration approaches

are different from this work. Recently, a closed-form solution to P-Rank (Penetrating-

Rank) formula was addressed in [CZDC10]. Cai et al. [CZDC10] showed that when the

damping factor c = 1 and weighting factor γ = 0, P-Rank can be reduced to SimFusion.

However, this reasoning is based on the flawed assumption that the diagonal entries

diag(S) of the P-Rank similarity matrix were not considered. We argue that P-Rank is

defined recursively, and hence, the omission of diag(S) has an impact on the similarity of

a vertex with itself, and recursively, it has an impact on the similarity of different pairs

of vertices.

6.8 Conclusions

In this chapter, we have presented SimFusion+, a revision of SimFusion, for preventing

the trivial solution and the divergence issue of the SimFusion model. We proposed effi-

cient techniques to improve the time and space complexity of SimFusion+ computation

with accuracy guarantees. We also devised an incremental algorithm to compute SimFu-

sion+ similarity on dynamic graphs when edges are frequently updated. The empirical

results on both real and synthetic datasets showed that our methods can achieve high

performance and result quality. We are currently studying the vertex-updating meth-

ods for incrementally computing SimFusion+. We are also to extend our techniques to

parallel SimFusion+ computing on GPU.



Chapter 7

A Novel Model for Node-Pair

Relevance Assessment

7.1 Introduction

The task of assessing similarity between two nodes based on hyperlinks is a long-standing

problem in information search. However, it is a complex challenge to find an appropri-

ate link-based scoring function since a satisfactory general-purpose similarity measure

should better simulate human judgement behavior, with simple and elegant formula-

tions [LVGT08].

7.1.1 Motivation

Recently, SimRank [JW02] has received growing interest as a widely-accepted measure of

similarity between two nodes. While significant efforts have been devoted to optimizing

SimRank computation (e.g., [FR05,HLC+12,LHH+10,LVGT08]), the semantic issues of

SimRank have attracted little attention. We observe that SimRank has an undesirable

property, namely, “zero-similarity”: SimRank score s(i, j) only accommodates the paths

with equal length from a common “source” node to both i and j. Thus, other paths for

node-pair (i, j) are fully ignored by SimRank. as shown in Example 7.1.

194
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c

e

b

d

i

h

g

a

f

j

k

Node-Pairs SR PR SR* RWR

(h, d) 0 .049 .010 0

(a, f) 0 .075 .032 .032

(a, c) 0 0 .025 .024

(g, a) 0 0 .025 0

(g, b) 0 0 .075 0

(i, a) 0 0 .015 0

(i, h) .044 .041 .031 0

Figure 7.1: Similarities on Citation Graph

Example 7.1. Consider a citation network G in Figure 7.1, where each node represents

a paper, and an edge a citation. Using the damping factor C = 0.8 1, we compute

SimRank similarity of node-pairs in G. It can be noticed that many node-pairs in G

have zero SimRank when they have no in-coming paths of equal length from a common

“source” node, as partly depicted in Column ‘SR’ of the table. For instance, s(h, d) = 0

as the in-link “source” a is not in the center of the paths: h ← e ← a → d 2, h ←

e ← a → b → f → d, meaning that when we recursively compute the similarity of the

in-neighbors prior to computing the similarity of the two nodes themselves, there is no

likelihood for this recursion to reach the base case (a common in-link “source”) that a

node is maximally similar to itself. Similarly, s(a, g) = 0 as a has no in-neighbors, not

to mention the fact that there is no such in-link “source” with equal distance to both a

and g. In contrast, s(g, i) > 0 as there is an in-link “source” b (resp.d) in the center of

g ← b → i (resp.g ← d → i).

The “zero-SimRank” phenomenon in Example 7.1 is rather counter-intuitive. An

evident example is s(h, d) = 0. We note in Figure 7.1 that h and d do have a common

in-link “source” a, just except for the equal-length distance from a to both h and d.

Hence, h and d should have some relevance. Another example is a path graph of length

2n as follows: a−n ← · · · ← a−1 ← a0 → a1 → · · · → an, where each ai (i =

1As suggested in [JW02], C is empirically set around 0.6–0.8, which gives the rate of decay as similarity
flows across edges.

2We abuse the notation h ← e ← a → d to denote the path of length 3, starting from h, taking 2
steps against the edge direction and 1 step along it, and finally arriving at d.
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0,±1, · · · ,±n) denotes a node. We notice that the SimRank s(ai, aj) = 0, for all |i| ≠

|j|, which is quite against intuition since a0 is the common root of all nodes ai (i =

±1, · · · ,±n). As will be shown in Section 7.2, SimRank does neglect all contributions

of in-link paths without a “source” node in the center, and the “zero-similarity” issue

refers not only to the problem that SimRank may produce “completely zero scores”

(i.e., “completely dissimilar” issue), but also to the problem that SimRank may miss the

contributions of a large class of in-link paths (even though their scores are not zero) due

to the “zero contributions” of such paths to SimRank scores (i.e., “partially missing”

issue). Indeed, as demonstrated by our experiments in Figure 7.11, both scenarios of

“zero-similarity” commonly exist in real graphs, e.g., on CitHepTh, 95+% node-pairs

have “zero-SimRank” issues, among which 40+% are assessed as “completely dissimilar”,

and 55+% (though SimRank ̸=0) “partially miss” contributions of many paths, adversely

affecting assessment quality. These motivate us to revise the existing SimRank model.

A pioneering piece of work by Zhao et al. [ZHS09] proposes rudiments of a novel

approach to refining the SimRank model. Observing that SimRank may incur some

unwanted “zero-similarities”, they suggested P-Rank, an extension of SimRank, by taking

both in- and out-links into consideration for similarity assessment, as opposed to SimRank

that merely considers in-links. Although P-Rank, to some degree, might reduce “zero-

similarity” occurrences in practice, we argue that such a “zero-similarity” issue arises,

not because of a biased overlook of SimRank against out-links, but because of the blemish

in SimRank philosophy that may miss the contribution of a certain kind of paths (whose

in-link “source” is not in the center). In other words, P-Rank can not, in essence, resolve

the “zero-similarity” issue of SimRank. For instance, nodes h and d are similar in the

context of P-Rank, as depicted in Col. ‘PR’ of Figure 7.1, since there is an out-link

“source” i in the center of the outgoing path h → i ← d. However, if the edge h → i

is replaced by h → l → i with l being an inserted node, then the P-Rank of (h, d) is

still zero, since in this case neither in- nor out-link “source” exists in the center of any

incoming or outgoing paths of (h, d).

Our goal in this work is to propose an alternative model that can remedy SimRank
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“zero-similarity” issues in nature, while inheriting merits of the basic SimRank philoso-

phy. Keeping with an elegant form and to support fast clustering strategies, our model

is intended to be a refinement of SimRank for semantic richness, and takes into account

contributions of many incoming paths (whose common “source” is not strictly in the cen-

ter) that are neglected by SimRank. The major challenge with establishing this model is

that it is notoriously difficult to effectively assess s(a, b) by finding out all the possible

incoming paths between a and b, regardless of whether there exists a common “source”

with equal distance to both a and b. This problem is hard because such a task often

requires traversing far more possible incoming paths to fetch the similarity information,

which might not only destroy the simplicity of the original SimRank formulation, but

also increase the computational difficulty of the model. Fortunately, we observe that our

model can be “purified” as a fairly elegant closed form, and there are opportunities for

the new model to assess similarities without suffering from high computational costs.

7.1.2 Chapter Outlines

In the chapter, our main contributions are as follows.

• We propose SimRank*, a revision of SimRank, and justify its semantic richness.

Our model provides a natural way of traversing more incoming paths that are

largely ignored by SimRank for each node-pair, and thus enables counter-intuitive

“zero-SimRank” nodes to be similar while inheriting the beauty of the SimRank

philosophy. (Section 7.2)

• We show that the series form of SimRank* can be simplified into an elegant closed

form, which looks more succinct yet has richer semantics than SimRank, without

suffering from increased computational cost. This provides an iterative paradigm

for computing SimRank* in O(Knm) time on a graph of n nodes and m edges for

K iterations, which is comparable to SimRank. (Subsects. 7.3.1–7.3.2)

• To further speed up SimRank* computation, as the existing technique [LVGT08] of

partial sums memoization for SimRank optimization no longer applies, we leverage
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a novel clustering approach for SimRank* via edge concentration. Due to its NP-

hardness, an efficient algorithm is devised to improve SimRank* computation to

O(Knm̃) time, where m̃ is generally much smaller than m. (Subsect. 7.3.3)

We evaluate the performance of SimRank* on real and synthetic data. The results

show that (i) SimRank* achieves higher quality of similarity assessment, as compared

with the state-of-the-art SimRank [LVGT08], P-Rank [ZHS09] and RWR [TFP06]; (ii)

Regarding computational efficiency, our algorithms are consistently faster than the base-

lines by several times.

7.2 SimRank*: A Revision of SimRank

We first show that the “zero-similarity” issue (Example 7.1) is rooted in both SimRank

and non-SimRank based metrics. We then propose our treatment, SimRank*, for this

semantic problem.

7.2.1 “Zero-SimRank” Issue

We shall abuse the following notions. (i) An in-link path ρ of node-pair (a, b) in G is a walk

of length (l1 + l2), denoted as a = v0 ← v1 ← · · · ← vl1 → vl1+1 → · · · → vl1+l2 = b,3

starting from a, taking l1 steps against the directions of the edges vi−1 ← vi for every

i ∈ [1, l1], and l2 steps along the directions of vi−1 → vi for every i ∈ [l1 + 1, l1 + l2], and

finally arriving at b. (ii) The node vl1 is called the in-link “source” of ρ. (iii) The length

of in-link path ρ, denoted by len(ρ), is (l1 + l2), i.e., the number of edges in ρ.

Definition 7.2. An in-link path ρ is symmetric if l1 = l2.

Definition 7.3. An in-link path ρ is unidirectional if l1 = 0 or l2 = 0.

For example in Figure 7.1, ρ : h ← e ← a → d is an in-link path of node-pair

(h, d), with a being its in-link “source”. len(ρ) = 2 + 1 = 3. ρ is not symmetric since

l1 = 2 ̸= 1 = l2.

3We allow a path from the “source” node to one end with repeated nodes to suit the existence of
cycles in a graph.
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Clearly, in-link path ρ is symmetric if and only if there is an in-link “source” in the

center of ρ. Any in-link path of odd length (i.e., l1 + l2 is odd) is dissymmetric.

“Zero-SimRank” Issue. Based on the notion of in-link paths, we next show the “zero-

SimRank” issue as follows:

Theorem 7.4. For any two distinct nodes a and b in G, the SimRank score s(a, b) = 0

if there does not exist any symmetric in-link path of node-pair (a, b). More importantly,

even if s(a, b) ̸= 0, SimRank s(a, b) may still “partially miss” all the contributions of

dissymmetric in-link paths for (a, b).

As a proof of the theorem, we first extend the power property of an adjacency matrix.

We then reinterpret SimRank based on its power series representation.

Extension of Al. Let A be the adjacency matrix of G. There is an interesting property

of Al [BC08a]: The entry [Al]i,j
4 counts the number of paths of length l from node i to

j. Such a property can be readily generalized as follows:

Lemma 7.5. Let ρ be a “specific path” of length l, consisting of a sequence of nodes

i = v0, v1, · · · , vl = j with each edge being directed (1) from vk−1 to vk, or (2) from vk

to vk−1. Let Ā =
∏l

k=1Ak with (1) Ak = A if ∃ vk−1 → vk in ρ, or (2) Ak = AT if

∃ vk−1 ← vk in ρ, for each k ∈ [1, l]. Then, the entry [Ā]i,j counts the number of specific

paths ρ in G.

Lemma 7.5 can be proved by induction on l, which is similar to the proof of the power

property of the adjacency matrix [BC08a, pp.51]. We omit it here due to space limits.

Lemma 7.5 allows counting the number of “specific paths” whose edges are not all

necessarily in the same direction. For instance, for the path ρ : i→ ◦ ← ◦ → ◦ → ◦ ← j

with ◦ denoting any node in G, we can build Ā = AATAAAT , in which A (resp.AT ) is

at the positions 1,3,4 (resp.2,5), corresponding to the positions of→ (resp.←) in ρ. Then,

[Ā]i,j tallies the number of paths ρ in G. If no such paths, [Ā]i,j = 0. As another example,

[(AT )
l1 ·Al2 ]i,j tallies the number of in-link paths of length (l1 + l2) for node-pair (i, j).

4In the sequel, [X]i,j denotes the (i, j)-entry of matrix X.
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When all Ak (∀k ∈ [1, l]) are set to A, Lemma 7.5 reduces to the conventional power

property of an adjacency matrix.

One immediate consequence of Lemma 7.5 is as follows:

Corollary 7.6.
∑∞

k=1 [(A
T )

k ·Ak]i,j counts the total number of all symmetric in-link

paths of node-pair (i, j) in G.

Corollary 7.6 implies that if there are no nodes with equal distance to both i and j

(i.e., if no symmetric in-link paths for node-pair (i, j)), then [(AT )
k ·Ak]i,j = 0, ∀k ∈

[1,∞).

SimRank Reinterpretation. Leveraging Corollary 7.6, we show why SimRank has

“zero-similarity” issue: s(i, j) = 0 if there are no nodes with equal distance to both i and

j.

We first rewrite SimRank matrix S as a power series.

Lemma 7.7. The SimRank S in Eq.(2.2) can be rewritten as

S = (1− C) ·
∞∑
l=0

C l ·Ql · (QT )
l
. (7.1)

Proof. According to [LHH+10, Eq.(4)], S has the closed form:

vec(S) = (1− C) · (In − C(Q⊗Q))−1vec(In),

where vec(⋆) is a vectorization operator, ⊗ a tensor product.

Since ∥Q⊗Q∥∞ ≤ 1, the identity (In −X)−1 =
∑∞

k=0X
k implies that

vec(S) = (1− C) ·
∞∑
k=0

Ck(Q⊗Q)k · vec(In).

Then, using tensor product properties (Q⊗Q)k = Qk ⊗ Qk and (Y ⊗ Z) · vec(In) =

vec(Z · In ·YT ) with Y = Z = Qk, plus the linearity of vec(⋆), we can derive Eq.(7.1).

The term (1− C) in Eq.(7.1) aims to normalize similarities in [0, 1] as∥∥∥∥ ∞∑
l=0

C l ·Ql · (QT )
l
∥∥∥∥
max

≤
∞∑
l=0

C l =
1

1− C
.5

5The matrix norm ∥X∥max = maxi,j |[X]i,j | is the maximum absolute entry of X.
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Lemma 7.7 reformulates SimRank in the form of weight sum of all symmetric in-link

paths of length 2l for node-pair (i, j). To clarify this, as Q is the weighted (i.e., row-

normalized) matrix of AT , Lemma 7.7 implies that [Ql · (QT )
l
]i,j can tally the weight

sum (instead of the number) of 6 in-link paths of length 2l for node-pair (i, j). Formally,

we state this below:

Corollary 7.8. [Ql · (QT )
l
]i,j = 0⇔ [(AT )

l ·Al]i,j = 0.

This, together with the component form of Eq.(7.1), i.e.,

[S]i,j = (1− C) ·
∞∑
l=0

C l · [Ql · (QT )
l
]i,j , (∀i, j ∈ [1, n]) (7.2)

implies that [S]i,j considers only contributions of symmetric in-link paths for (i, j), ne-

glecting all dissymmetric ones. Consequently, [S]i,j = 0 if (i, j) has no symmetric paths.

This proves the “zero-similarity” problem for SimRank.

Non-SimRank Based Metrics. Other measures, e.g., Random Walk with Restart

(RWR) and Personalized PageRank (PPR), also imply a SimRank-like “zero-similarity”

issue.

As PPR is just a special vector form of RWR, our following discussion will mainly

focus on RWR, which also suites PPR.

The “zero-similarity” issue for RWR, similar to SimRank, is that “nodes i and j are

assessed as dissimilar srwr(i, j) = 0 if there are no paths with one direction from i to j”.

For example in Figure 7.1, h and d are still dissimilar for RWR, as both h← e← a → d

and h ← e ← a → b → f → d have two directions. However, srwr(a, f) ̸= 0 as there

exists a path a → b → f with one direction (→) from a to f . Thus, both RWR and

SimRank may encounter “zero-similarity” issues. Indeed, in the language of in-link paths,

while SimRank considers only symmetric in-link paths (whose “source” node is in the

center), RWR merely tallies unidirectional in-link paths (whose “source” node is at one

end), both of which are in a biased way to assess similarity.

6Note that [Ql · (QT )
l
]i,j ̸= 0⇔ [(AT )

l ·Al]i,j ̸= 0, thus [Ql · (QT )
l
]i,j still characterizes the existence

(but not the number) of in-link paths of length 2l for (i, j).
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To further clarify the “zero-similarity” issue for RWR, we can convert its closed form

S = (1− C) · (In − C ·W)−1 [TFP06] into the power series form

[S]i,j = (1− C) ·
∞∑
k=0

Ck · [Wk]i,j . (7.3)

As W is a weighted (i.e., row-normalized) matrix of A, we have

[Wk]i,j = 0 ⇔ [Ak]i,j = 0.

Thus, by Lemma 7.5, the drawback of RWR is clear: [S]i,j only tallies the weight sum

of paths with one direction from i to j, yet totally ignores in-link paths whose “source”

node is not at node i.

In a nutshell, RWR may not resolve “zero-similarity” issues for SimRank, and vice

versa. As will be seen in Figure 7.3, all nodes in the family tree G should have some

relevances. Although RWR considers “Father and Me being similar” that is neglected by

SimRank, it ignores “Me and Cousin being similar” that is accommodated by SimRank.

Besides, both RWR and SimRank neglect “Me and Uncle being similar”. Worse still,

RWR fails to produce symmetric similarity (s(i, j) ̸= s(j, i)). Since there is no path

directed from Me to Father, RWR alleges “Me and Father being dissimilar”. These call

for a unified measure for similarity assessment.

7.2.2 SimRank*: A Remedy for SimRank

The reinterpretation of SimRank provides a new possible remedy to its “zero-similarity”

problem.

SimRank* (Geometric Series Form). Since SimRank (resp.RWR) loses all dissym-

metric (resp.non-unidirectional) in-link paths for node-pair (i, j), our treatment aims

to compensate s(i, j) for such a loss, by accommodating all dissymmetric (resp.non-

unidirectional) in-link paths. Precisely, by adding the terms [Ql1 · (QT )
l2 ]i,j , ∀l1 ̸= l2

(resp.∀l1 ̸= 0), with appropriate weights, into the series form of SimRank (resp.RWR),

we can derive a new treatment as follows:

Ŝ = (1− C) ·
∞∑
l=0

C l

2l
·

l∑
α=0

(
l

α

)
·Qα · (QT )

l−α
. (7.4)
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Here,
(
l
α

)
is the binomial coefficient defined as

(
l
α

)
= l!

α!(l−α)! . We call Eq.(7.4) the

geometric 7 series form of SimRank*.

To see how the geometric form of SimRank* Eq.(7.4) is derived and why it can per-

fectly resolve the “zero-similarity” problem for SimRank and RWR, we rewrite Eq.(7.4)

as

[Ŝ]i,j = (1− C) ·
∞∑
l=0

C l · [T̂l]i,j with (7.5)

[T̂l]i,j =
1

2l
·

l∑
α=0

(
l

α

)
· [Qα · (QT )

l−α
]i,j . (∀i, j ∈ [1, n])

Below, to avoid ambiguity, we use Ŝ to denote the exact SimRank* in Eq.(7.4), and

S the exact SimRank in Eq.(7.1).

Comparing Eq.(7.5) with Eq.(7.2), we see that for a fixed l, SimRank* ŝ(i, j) uses∑l
α=0

(
l
α

)
· [Qα · (QT )

l−α
]i,j in [T̂l]i,j to consider all in-link paths of length l for node-

pair (i, j) in a comprehensive way, as opposed to SimRank s(i, j) using [Ql · (QT )
l
]i,j in

Eq.(7.2) to accommodate only symmetric in-link paths of length 2l for node-pair (i, j)

in a biased manner. As a result, SimRank* may find all (dissymmetric) in-link paths of

two kinds, both of which are ignored by SimRank: (1) in-link paths of odd length; (2)

in-link paths of even length whose in-link “source” is not in the center.

Though RWR via Eq.(7.3) using [Wl]i,j may consider part of in-link paths of odd

length that are missed by SimRank, they ignore (non-unidirectional) in-link paths of two

kinds: (1) all symmetric ones that are accommodated by SimRank; (2) dissymmetric

ones whose in-link “source” is not at an end, both of which can be found by SimRank*.

For instance, given a node-pair (i, j), Figure 7.2 compares all in-link paths of length

l ∈ [1, 4] considered by SimRank, RWR, and SimRank*. It can be seen from ‘SimRank*

Column’ that only a small number of in-link paths can be accommodated by SimRank

(in dark gray cells) and RWR (in light gray cells), relative to those of SimRank*.

Weighted Factors of Two Types. We next elaborate on two kinds of weighted fac-

tors adopted by SimRank* Eq.(7.5): (1) length weights {C l}∞l=0, (2) symmetry weights

7Since {Cl} in Eq.(7.4) is a geometric sequence, we abuse the term “geometric” for this series form,
to distinguish Eq.(7.8).
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Length SimRank RWR / PPR α SimRank*

1 N/A i → j
0 i → j

1 i← j

2 i← • → j i → ◦ → j

0 i → ◦ → j

1 i← • → j

2 i← ◦ ← j

3 N/A i → ◦ → ◦ → j

0 i → ◦ → ◦ → j

1 i← • → ◦ → j

2 i← ◦ ← • → j

3 i← ◦ ← ◦ ← j

4 i← ◦ ← • → ◦ → j i → ◦ → ◦ → ◦ → j

0 i → ◦ → ◦ → ◦ → j

1 i← • → ◦ → ◦ → j

2 i← ◦ ← • → ◦ → j

3 i← ◦ ← ◦ ← • → j

4 i← ◦ ← ◦ ← ◦ ← j

◦ – any node in G i , • , j – in-link “source”

Figure 7.2: In-link Paths of (i, j) for Length l ∈ [1, 4] Counted by SimRank, RWR/PPR,
and SimRank*

{
(
l
α

)
}lα=0.

Intuitively, the length weight C l (0 < C < 1) measures the importance of in-link paths

of different lengths. Similar to the original SimRank (Eq.(7.2)), the outer summation over

l in SimRank* (Eq.(7.5)) is to add up the contributions of in-paths of different length

l. The length weight C l aims at reducing the contributions of in-paths of long lengths

relative to short ones, as {C l}l∈[0,∞) is a deceasing sequence w.r.t. length l.

The symmetry weight uses binomial
(
l
α

)
(0 ≤ α ≤ l) to assess the importance of

in-link paths of a fixed length l, with α edges in one direction (from the “source” node

to one end of the path) and l − α edges in the opposite direction. Here, α reflects the

symmetry of in-link paths of length l. As depicted in Figure 7.2, when α = 0 or l, in-link

paths are totally dissymmetric, reducing to one single direction; when α is close to ⌊l/2⌋,

the “source” node is near the center of in-link paths, being almost symmetric. To show

the use of binomial
(
l
α

)
is reasonable, we consider the following issues.

(a) Why
(
l
α

)
is assigned only to l+1 kinds of in-link paths, for a fixed l? Say, for l = 4 in

Figure 7.2, why neglect paths ρ1 : i→ ◦ ← ◦ → ◦ ← j and ρ2 : i← ⋆→ ◦ ← ⋄ → j ?
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(b) Why use
(
l
α

)
, instead of others, to weigh in-link paths?

(c) Why symmetric in-link paths are considered to be more important than less sym-

metric ones, for a fixed length?

For (a), as our SimRank* framework is in-link oriented,8 the impact of out-links on

similarity is not accommodated. Thus, for l = 4, the path ρ1 is not considered since

there are no in-links to nodes i and j in ρ1. Even if i or j has in-links yet without

one common in-link “source”, e.g., ρ2, this path also has no contributions to similarity

ŝ(i, j). This is because in ρ2 there are no in-links to nodes ⋆ and ⋄, thus the sub-path

⋆ → ◦ ← ⋄ of ρ2 has no contributions to ŝ(⋆, ⋄), which, iteratively, has no contributions

to ŝ(i, j). Hence, due to our in-link oriented framework for similarity assessment, for a

fixed l, there are at most l + 1 kinds of in-link paths (where binomial weights
(
l
α

)
are

assigned) having contributions to ŝ(i, j), with α ∈ [0, l] edges in one direction and l − α

edges in the opposite one, as shown in Figure 7.2.

For (b), there are 2 reasons for using
(
l
α

)
instead of others: (i) The binomial

(
l
α

)
can reduce the contributions of less symmetric in-link paths, relative to symmetric ones.

Indeed, a larger (resp.smaller) weight is expected for an in-link path whose “source”

is closer to the center (resp.either of ends).
(
l
α

)
happens to have this monotonicity:

For a fixed l, when α increases from 0 to l,
(
l
α

)
first increases from 1 to a maximum

value (α =
⌊
l
2

⌋
, “source” at the center), and then “symmetrically” decreases back to

1 (α = l, “source” at one end). (ii) The binomial
(
l
α

)
is an easy-to-compute math

function, which enables the infinite series (Eq.(7.4)) to be simplified, as will be seen

shortly, into the very succinct and elegant recurrence form (Eq.(7.10)). To our best

knowledge, although some functions, like e−(l−α
2
)2 , have the similar monotonicity of

(
l
α

)
,

they would adversely complicate the form of Eq.(7.4) since it is even hard to compute∑l
α=0 e

−(l−α
2
)2 to determine the normalized weight factors, not to mention being able to

simplify Eq.(7.4) into the elegant recurrence form. In contrast,
∑l

α=0

(
l
α

)
= 2l enjoys a

neat form. Inspired by these, we use
(
l
α

)
, instead of others, as the preferred symmetric

weight.

8In order to highlight the essence of “zero-SimRank” issue, our SimRank* model, just like SimRank,
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Figure 7.3: The more symmetric the in-link paths are, the larger contributions they will
have to similarity

For (c), the example below can explain, for a fixed length, why larger weights are

assigned to more symmetric paths. Consider paths ρA, ρB and ρC of a family tree in

Figure 7.3. Most people might feel ρA (Me and Cousin being similar) is more reliable than

ρB (Uncle and Son being similar), which is more reliable than ρC (Grandpa and Grandson

being similar). Thus, the more symmetric the in-link path is, the larger contribution it

has to similarity assessment. In Figure 7.3, ρA should have the largest weight, ρB the

second, ρC the third.

The efficacy of (1−C) and 1
2l

in Eq.(7.5) is to normalize [Ŝ]i,j and [T̂l]i,j , respectively,

into [0, 1]. More specifically, one can readily verify that ∥Ql1 · (QT )
l2∥max ≤ 1, for ∀l1, l2.

Thus, (i) ∥
∑l

α=0

(
l
α

)
·Qα · (QT )

l−α∥
max
≤
∑l

α=0

(
l
α

)
= 2l, which implies ∥T̂l∥max ≤ 1.

(ii) Since ∥
∑∞

l=0C
l · T̂l∥max ≤

∑∞
l=0C

l = 1
1−C , it follows that ∥S∥max ≤ 1.

Combining these two kinds of weights, the contribution of any in-link path for a

given node-pair can be easily assessed. For example in Figure 7.1, h ← e ← a → d

has a contribution rate of (1 − 0.8) · 0.83 1
23

(
3
2

)
= 0.0384 for node-pair (h, d), Similarly,

h ← e ← a → b → f → d has a contribution rate of (1 − 0.8) · 0.85 1
25

(
5
2

)
= 0.0205.

As opposed to SimRank only using length weight C l, SimRank* considers both C l and

symmetry weight
(
l
α

)
. Thus, our revision resolves “zero-SimRank” issues, as well as

inherits SimRank philosophy.

Convergence of SimRank*. As SimRank* in Eq.(7.4) is an infinite series, it is unclear

whether this series is convergent. This motivates us to study its convergence issue.

PageRank, and RWR, is based on incoming edges for assessing similarity.
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Let us first define the k-th partial sum of Eq.(7.4) as

Ŝk = (1− C) ·
k∑

l=0

C l

2l
·

l∑
α=0

(
l

α

)
·Qα · (QT )

l−α
. (7.6)

Leveraging Ŝk, we next show the convergence of Eq.(7.4).

Lemma 7.9. Let Ŝ and Ŝk be defined by Eqs.(7.4) and (7.6), respectively. Then, the

gap between Ŝ and Ŝk is bounded by

∥Ŝ− Ŝk∥max ≤ C
k+1. (∀k = 0, 1, · · · ) (7.7)

Proof. For each k = 0, 1, · · · , we subtract Eq.(7.6) from Eq.(7.4), and then take

∥ ⋆ ∥max norms on both sides to get

∥Ŝ− Ŝk∥max≤ (1− C)
∞∑

l=k+1

C l

2l
·

l∑
α=0

(
l

α

)
︸ ︷︷ ︸

=2l

· ∥Qα · (QT )
l−α∥max︸ ︷︷ ︸

≤1

≤ (1− C)
∞∑

l=k+1

C l = (1− C) · Ck+1

(1− C)
= Ck+1.

The convergence of SimRank* (Eq.(7.4)) follows immediately from Lemma 7.9 and

limk→∞Ck+1 = 0 (0 < C < 1).

SimRank* (Exponential Series Form). In the geometric series form of SimRank*

(Eq.(7.4)), Lemma 7.9 implies that, to guarantee the accuracy ϵ, the K-th partial sum

ŜK with K = ⌈logC ϵ⌉ can be used to approximate the exact solution. However, there is

a variant of SimRank* that can use only the K ′-th partial sum with K ′ ≤ K to ensure

the same ϵ:

Ŝ′ = e−C ·
∞∑
l=0

C l

l!
· 1
2l

l∑
α=0

(
l

α

)
·Qα · (QT )

l−α
. (7.8)

We call Eq.(7.8) the exponential series form of SimRank*. It differs from Eq.(7.4) in

the length weight Cl

l! (which is an exponential sequence w.r.t. l) and its normalized factor

e−C .

The exponential series form of SimRank* is introduced to improve the rate of conver-

gence for similarity computation. To clarify this, we define Ŝ′
k as the k-th partial sum of
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Ŝ′ in Eq.(7.8). Analogous to Lemma 7.9, one can readily prove

∥Ŝ′ − Ŝ′
k∥max ≤

Ck+1

(k+1)! . (∀k = 0, 1, · · · ) (7.9)

Comparing Eq.(7.9) with Eq.(7.7), we see that for any fixed k, as Ck+1

(k+1)! ≤ Ck+1, the

convergence rate of Ŝ′
k is always faster than that of Ŝk. Hence, to guarantee the same

accuracy, the exponential SimRank* only needs to compute a tiny fraction of the partial

sums of the geometric SimRank*.

The choice of length weight Cl

l! for the exponential SimRank* (Eq.(7.8)) plays a key

role in accelerating convergence. As suggested by the proof of Lemma 7.9, the bound

Ck+1 in Eq.(7.7) (resp. Ck+1

(k+1)! in Eq.(7.9)) is actually derived from our choice of length

weight C l (resp.C
l

l! ) for the geometric (resp.exponential) SimRank*. Thus, there might

exist other length weights for speeding up the convergence of SimRank*, as there is no

sanctity of the earlier choices of length weight. That is, apart from C l and Cl

l! , other

sequence, e.g., Cl

l , that satisfies decreasing monotonicity w.r.t. length l can be regarded

as another possible candidate for length weight, since the efficacy of the length weight is

to reduce the contributions of in-link paths of long lengths relative to short ones. The

reasons why we select C l and Cl

l! , instead of others, are two-fold: (1) The normalized

factor of length weight should have a simple form, e.g.,
∑∞

l=0
Cl

l! = eC . (2) Once selected,

the length weight should enable the series form of SimRank* to be simplified into a very

elegant form, e.g., using Cl

l! allows Eq.(7.8) being simplified, as will be seen in Eq.(7.12),

into a neat closed form. In contrast, Cl

l is not a preferred length weight as its series

version may not be simplified into a neat recursive (or closed) form, though the form∑∞
l=0

Cl

l = ln 1
(1−C) is simple for normalized factor.

7.3 Efficiently Computing SimRank*

At first glance, the series form of SimRank* (Eq.(7.4)) is more complicated than that

of SimRank (Eq.(7.1)). A brute-force way of computing the first k-th partial sums of

Eq.(7.4) requires O(k · l2 · n3) time, involving l2 matrix multiplications in the inner
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summation for each fixed l in the outer summation, which seems much more expensive

than SimRank.

In this section, we first reformulate the series forms of SimRank* into elegant recursive

and closed forms. We then propose efficient techniques for computing SimRank*.

7.3.1 Recursive & Closed Forms of SimRank*

The series forms of SimRank* (Eqs.(7.4) and (7.8)) are tedious, and suffer from high

complexity if calculated directly.

The main result of this subsection is to derive an elegant recursive form for Eq.(7.4)

and a closed form for Eq.(7.8), which will be useful for efficient SimRank* computation.

Recursive Form of Geometric SimRank*. We first show a recursive form for the

geometric SimRank* of Eq.(7.4).

Theorem 7.10. The SimRank* geometric series Ŝ in Eq.(7.4) takes the following elegant

recursive form:

Ŝ = C
2 · (Q · Ŝ+ Ŝ ·QT ) + (1− C) · In. (7.10)

To prove Theorem 7.10, the following lemma is needed.

Lemma 7.11. For each k = 0, 1, · · · , the k-th partial sum Ŝk defined by Eq.(7.6) satisfies

the following iteration:Ŝ0 = (1− C) · In,

Ŝk+1 =
C
2 · (Q · Ŝk + Ŝk ·QT ) + (1− C) · In.

(7.11)

Proof. For k = 0, it is obvious from Eq.(7.6) that Ŝ0 = (1 − C) · In, which satisfies

Eq.(7.11). For k = 1, 2, · · · , substituting Eq.(7.6) into the right-hand side of Eq.(7.11)

yields

Ŝk+1 =
C

2
·

(
(1− C)

k∑
l=0

C l

2l

=
l+1∑
α=1

( l
α−1)·Q

α·(QT )
l−α+1︷ ︸︸ ︷

l∑
α=0

(
l

α

)
·Qα+1 · (QT )

l−α
+

+(1− C)
k∑

l=0

C l

2l

l∑
α=0

(
l

α

)
·Qα · (QT )

l−α+1

)
+ (1− C) · In
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=
C

2
(1− C)

(
k∑

l=0

C l

2l

(
l∑

α=1

((
l

α− 1

)
+

(
l

α

))
Qα(QT )

l−α+1

)
+

+Ql+1 + (QT )
l+1

)
+ (1− C) · In

=
C

2
· (1− C)

(
k∑

l=0

C l

2l
·
l+1∑
α=0

(
l + 1

α

)
·Qα(QT )

l−α+1

)
+ (1− C)In

= (1− C) ·
k+1∑
l=0

C l

2l
·

l∑
α=0

(
l

α

)
·Qα · (QT )

l−α
.

Thus, Ŝk+1 in Eq.(7.11) also takes the form of Eq.(7.6).

One consequence of Lemma 7.11 is the proof of Theorem 7.10.

Proof of Theorem 7.10. Lemma 7.9 implies the convergence of SimRank*, i.e., the ex-

istence of limk→∞ Ŝk. Thus, taking limits on both sides of Eq.(7.11) as k → ∞ yields

Eq.(7.10).

Closed Form of Exponential SimRank*. We next present a closed formula for the

exponential SimRank* of Eq.(7.8).

Theorem 7.12. The exponential series form of SimRank* in Eq.(7.8) neatly takes the

following closed form:

Ŝ′ = e−C · e
C
2 Q · e

C
2 QT

. 9 (7.12)

Proof. We utilize the factorial formula
(
l
α

)
= l!

α!(l−α)! to simplify the series form of Eq.(7.8)

into the closed form:

Ŝ′ = e−C ·
∞∑
l=0

l∑
α=0

1

2l
· C

α

α!
Qα · C l−α

(l − α)!
(QT )

l−α

= e−C ·
∞∑
α=0

Cα

α!
Qα ·

∞∑
l=α

1

2l
· C l−α

(l − α)!
(QT )

l−α

︸ ︷︷ ︸
=

∞∑
l=0

1

2l+α · tl
l!
(QT )l

= e−C ·

( ∞∑
α=0

1

2α
· C

α

α!
Qα

)
·

( ∞∑
l=0

1

2l
· C

l

l!
(QT )

l

)
9eX , I+X+ X2

2!
+ · · · =

∑∞
k=0

Xk

k!
, for a square matrix X.
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= e−C · e
C
2 Q · e

C
2 QT

,

where the second equality is obtained by interchanging the order of double summation
∞∑
l=0

l∑
α=0

f(l, α) =
∞∑
α=0

∞∑
l=α

f(l, α).

The utility of Theorem 7.12 will be appreciated in Subsect. 7.3.3 for optimizing the

exponential SimRank* computation.

7.3.2 SimRank* Computation

Having formulated SimRank* into the very elegant forms, we next develop efficient tech-

niques to speed up the computation of SimRank*.

Due to high commonalities between the geometric SimRank* Ŝ (in Eq.(7.4)) and

its exponential variant Ŝ′ (in Eq.(7.8)), we shall mainly focus on geometric SimRank*

computation, which is readily applicable to its exponential variant as well.

Algorithm. To compute the SimRank* series Ŝ in Eq.(7.4), the closed form Eq.(7.10)

provides an easy yet effective way: One can use the iterative paradigm Eq.(7.11) to

compute Ŝk, with accuracy guaranteed by Lemma 7.9.

Complexity. The computational time of performing Eq.(7.11) is O(Knm) for K iter-

ations on a graph of n nodes and m edges, which is dominated by the cost of matrix

multiplication Q · Ŝk per iteration. Due to Ŝk symmetry, the result of Ŝk · QT can be

obtained from the transpose of the calculated matrix Q · Ŝk. Thus, for each iteration,

Eq.(7.11) requires only one matrix multiplication (corresponding to performing only a

single summation of Eq.(7.11)), as opposed to its counterpart of computing SimRank

via Eq.(2.2) that needs two matrix multiplications for Q ·Sk ·QT (corresponding to per-

forming a double summation of Eq.(2.1) regardless of whether memoization [LVGT08] is

used). From this perspective, despite the traversal of more in-link paths, SimRank* runs

even faster (up to a constant factor) than SimRank, which is a substantial improvement

achieved by Theorem 7.10.
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7.3.3 Optimizations

To accelerate SimRank* iterations in Eq.(7.11), the conventional optimization tech-

niques [LVGT08] for SimRank cannot be effectively applied to SimRank*. Indeed, Li-

zorkin et al. [LVGT08] proposed three appealing approaches for optimizing SimRank

computation, i.e., essential node-pair selection, partial sums memoization, and threshold-

sieved similarities, among which only the threshold-sieved similarities method can be

ported to SimRank* that allows eliminating node-pairs of small similarities in the com-

putation. Essential node-pair selection no longer applies because SimRank utilizes a

“zero-similarity” set as a pruning rule to speed up its computation, whereas SimRank*

regards the existence of such a set as an issue of the SimRank philosophy and attempts to

fix it. Partial sums memoization plays a vital role in significantly speeding up the com-

putation of SimRank to O(Knm) time. To see why it does not work in SimRank*, let

us compare the component forms of SimRank and SimRank*, respectively, in Eqs.(7.13)

and (7.14):

sk+1(a, b) =
C

|I(a)||I(b)|
∑

x∈I(a)

=Partial
sk
I(b)

(x)︷ ︸︸ ︷∑
y∈I(b)

sk(x, y) . (7.13)

ŝk+1(a, b) =
C

2 |I(b)|
∑

y∈I(b)
ŝk(a, y)︸ ︷︷ ︸

=Partial
ŝk
I(b)

(a)

+
C

2 |I(a)|
∑

x∈I(a)

ŝk(x, b). (7.14)

For SimRank, if I(a) and I(⋆) have some node, say i, in common, then the partial sum

PartialskI(b)(i) in Eq.(7.13), once memoized, can be reused in both ŝk+1(a, b) and ŝk+1(⋆, b)

computation. In contrast, for SimRank*, no matter whether I(a)∩I(⋆) ̸= ∅, the partial

sum PartialŝkI(b)(a) in Eq.(7.14) for computing ŝk+1(a, b), if memoized, has no chance to

be reused again in computing other similarities ŝk+1(⋆, b), with ⋆ denoting any node in

G except a.

Fine-grained Memoization. Instead of memoizing the results of
∑

y∈I(b) ŝk(a, y) over

the whole set I(b) in Eq.(7.14), we use fine-grained memoization for optimizing SimRank*



Chapter 7. A Novel Model for Node-Pair Relevance Assessment 213

by caching a partial sum, in part, over a subset as follows:

Partialŝk∆ (a) ,
∑
y∈∆

ŝk(a, y) with ∆ ⊆ I(⋆).

Our observation is that there may be duplicate additions among
∑

y∈I(⋆) ŝk(a, y) over

different in-neighbor sets I(⋆). Thus, once memoized, the result of Partialŝk∆ (a) can

be shared among many sums
∑

y∈I(⋆) ŝk(a, y) for computing ŝk+1(a, ⋆). As an exam-

ple in Figure 7.1, I(h) and I(i) have three nodes {e, j, k} in common, and thus, once

memoized, the resulting fine-grained partial sum Partialŝk{e,j,k}(a) can be shared between∑
y∈I(h) ŝk(a, y) and

∑
y∈I(i) ŝk(a, y) for computing both ŝk+1(a, h) and ŝk+1(a, i) via

Eq.(7.14), for any fixed a. However, it seems hard to find perfect fine-grained subsets

∆ ⊆ I(⋆) for maximal computation sharing, since there may be many arbitrarily over-

lapped in-neighbor sets in a graph. To overcome this difficulty, we shall deploy efficient

techniques of bipartite graph compression via edge concentration for finding such fine-

grained subsets.

Induced Bigraph. We first construct an induced bipartite graph (bigraph) from G,

which is defined as follows.

Definition 7.13. An induced bipartite graph (bigraph) from a given graph G = (V, E) is

a bipartite graph G̃ = (T ∪B, Ẽ), such that its two disjoint node sets T = {x ∈ V | O(x) ̸=

∅}, B = {x ∈ V | I(x) ̸= ∅}, 10 and for each u ∈ T and v ∈ B, (u, v) ∈ Ẽ if and only if

there is an edge from u to v in G.

Intuitively, an induced bigraph G̃ = (T ∪ B, Ẽ) visualizes the neighborhood structure

of G from a different perspective. For any x ∈ B, the nodes in T that are connected

with x correspond to the in-neighbors of x in G. Note that when node x has both in-

and out-neighbors in G, label x that appears in both T and B will be regarded as two

distinct nodes despite the same label. To avoid ambiguity, we shall use x ∈ T and x ∈ B

to distinguish them. Each directed edge in G is mapped to one edge in G̃, and thus,

|E| = |Ẽ |. For instance, the left part of Figure 7.4 shows the induced bigraph G̃ from G
10The notation O(x) denotes the out-neighbor set of node x.
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a b d e f h j k

b c d e f g h i

T

B

a b d e f h j k

b c d e f g h i

T

B

v1 v2

G̃ = (T ∪ B, Ẽ) Ĝ = (T ∪ B ∪ V̂ , Ê)

Figure 7.4: Compression of Induced Bigraph G̃ into Ĝ via Edge Concentration

of Figure 7.1. From G̃, we can clearly see that b and d in B are both connected with a in

T , meaning that, in G, b and d both have an in-neighbor a.

Biclique Compression via Edge Concentration. Based on the induced bigraph G̃,

we next introduce the notion of bipartite cliques (bicliques).

Definition 7.14. Given an induced bigraph G̃ = (T ∪B, Ẽ), a pair of two disjoint subsets

X ⊆ T and Y ⊆ B is called a biclique if (x, y) ∈ Ẽ for all x ∈ X and y ∈ Y.

Intuitively, a biclique (X ,Y) is a complete bipartite subgraph of G̃, which has |X |+|Y|

nodes and |X | × |Y| edges. Each biclique (X ,Y) in G̃ tells us that in G, all nodes

y ∈ Y have the common in-neighbor set X . For example, there are two bicliques in

Figure 7.4: ({b, d}, {c, g, i}) in dashed line, and ({e, j, k}, {h, i}) in dotted line. Biclique

({b, d}, {c, g, i}) in G̃ implies that in G, three nodes c, g, i all have two in-neighbors {b, d}

in common.

Bicliques are introduced to compress bigraph G̃ for optimizing SimRank* computa-

tion. It is important to notice that for any fixed node a, the total cost 11 of performing

the sums
∑

y∈I(⋆) ŝk(a, y) over all in-neighbor sets I(⋆) (via Eq.(7.14)) is equal to the

11Here, the total cost refers to the number of additions plus assignment operations. For example,
the cost of performing

∑
y∈I(h) ŝk(a, y) = ŝk(a, e) + ŝk(a, j) + ŝk(a, k) is 3, including 2 additions and 1

assignment operation to store the result, which is equal to the number of edges that are connected with
node h ∈ B in the left part of Figure 7.4.
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number |Ẽ | of edges of bigraph G̃. Therefore, our goal of minimizing the cost of summa-

tions for SimRank* is equivalent to the problem of minimizing the number of edges in the

compressed graph of G̃. Unfortunately, this bigraph compression problem, also known as

edge concentration (EC), has been proved to be NP-hard [Lin00]. The main ingredient

of EC is to group sets of edges in G̃ together, so that the compressed graph contains

fewer edges which often implies less cost of summations for SimRank*, while retaining

the same information as G̃. To compress G̃ = (T ∪ B, Ẽ), we first leverage Buehrer and

Chellapilla’s algorithm [BC08b] for finding collections of bicliques in G̃. Their algorithm

is based on the heuristic of frequent itemset mining, and requires O(|Ẽ | log(|T | + |B|))

time to identify bicliques. We then replace edges of each biclique (X ,Y) with a special

node, called an edge concentration node, whose “fan-in” is all nodes in X and whose “fan-

out” is all nodes in Y. Finally, the compressed graph, denoted as Ĝ = (T ∪ B ∪ V̂, Ê),

can be obtained from bigraph G̃, where (i) T and B are the same as those of G̃, (ii) V̂ is

the set of edge concentration nodes, and (iii) Ê is the set of edges in Ĝ. In practice, |Ê | is

typically much smaller than |Ẽ |, since |X |× |Y| edges of each biclique in G̃ are reduced to

|X |+ |Y| edges in Ĝ, which is a substantial improvement achieved by edge concentration.

For example, the right part of Figure 7.4 depicts the resultant graph Ĝ of applying this

approach to G̃. We can see that the number of edges in Ĝ is decreased by 2 via edge

concentration, meaning that the cost of computing SimRank* in Ĝ can be reduced by 2

operations, by adding two edge concentration nodes v1 and v2.

Algorithm. Based on compressed graph Ĝ, we next present an algorithm for computing

SimRank*, by using fine-grained memoization. The algorithm, referred to as memo-gSR*,

is shown in Algorithm 7.1. It takes as input a graph G = (V, E), a damping factor C,

and the number of iterations K, and returns all-pairs of SimRank* similarities ŝ(⋆, ⋆).

To present the algorithm, we need the following notations. For a compressed graph

Ĝ = (T ∪ B ∪ V̂, Ê), we shall abuse (i) ∆(v) (v ∈ V̂) to denote all the “fan-in” nodes of

concentration node v in T , i.e., ∆(v) = {x ∈ T | ∃(x, v) ∈ Ê}; and (ii) N (x) (x ∈ B),

to denote all the nodes in T ∪ V̂ that are connected with x ∈ B, i.e., N (x) = {y ∈
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Algorithm 7.1: memo-gSR* (G, C,K)

Input : graph G = (V, E), damping factor C, iteration K.

Output: SimRank* scores ŝK(⋆, ⋆).

1 build an induced bigraph G̃ = (T ∪ B, Ẽ) from G = (V, E) ;

2 generate a compressed graph Ĝ = (T ∪ B ∪ V̂, Ê) from G̃ ;

3 initialize ŝ0(x, y)←
{

1, x=y
0, x ̸=y ∀x, y ∈ V ;

4 for k ← 0, 1, · · · ,K − 1 do

5 foreach node v ∈ V̂ in Ĝ do

6 foreach node a ∈ V in G do

7 Partialŝk∆(v)(a)←
∑

y∈∆(v) ŝk(a, y) ;

8 foreach node x ∈ B̂ in Ĝ do

9 foreach node a ∈ V in G do

10 PartialŝkI(x)(a)←
∑

y∈N (x)∩T ŝk(a, y)

+
∑

y∈N (x)∩V̂ Partialŝk∆(y)(a) ;

11 free Partialŝk∆(v)(a) ∀v ∈ V̂, a ∈ V ;

12 foreach node x ∈ V in G do

13 foreach node y ∈ V in G do

14 initialize t1 ← 0, t2 ← 0 ;

15 if I(x) ̸= ∅ then t1 ← C
2|I(x)|Partial

ŝk
I(x)(y) ;

16 if I(y) ̸= ∅ then t2 ← C
2|I(y)|Partial

ŝk
I(y)(x) ;

17 compute ŝk+1(x, y)← t1 + t2 +
{

1−C, x=y
0, x ̸=y ;

18 free PartialŝkI(x)(y) ∀x ∈ V, y ∈ V ;

19 return ŝK(⋆, ⋆) ;

T ∪ V̂ | ∃(y, x) ∈ Ê}.

The algorithm memo-gSR* runs in two phases.

(1) Preprocessing (lines 1–2). The algorithm first constructs an induced bigraph G̃
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from G (line 1). Based on G, it then compresses G̃ into Ĝ, by invoking the algorithm

[BC08b] to replace bicliques of G̃ with “stars” via edge concentration (line 2).

(2) Updating (lines 3–19). The algorithm then iteratively computes all ŝk(⋆, ⋆) based

on Ĝ. For every iteration k, (i) it first uses fine-grained memoization to add up ŝk(a, ⋆)

for each fixed a, with ⋆ being each node in the “fan-in” set ∆(v) of an edge concentration

node v in V̂ (lines 5–7). (ii) Using the memoized Partialŝk∆(⋆)(a), it then computes the

partial sums PartialŝkI(⋆)(a) over different in-neighbor set I(⋆) of G (lines 8–10). Due to

fine-grained memoization, the intermediate results Partialŝk∆(⋆)(a), for any fixed node a,

can be reused among many partial sums PartialŝkI(⋆)(a) computations. Hence, the cost of

computing SimRank* is reduced. (iii) By Eq.(7.14), these partial sums can be used for

computing ŝk(⋆, ⋆) (lines 12–17). Due to ŝk(⋆, ⋆) symmetry, the second summation in

Eq.(7.14) can be computed from Partialŝk∆(a)(x) (line 16). Once processed, the memoized

results are freed (lines 11 and 18). After K iterations, SimRank* scores ŝK(⋆, ⋆) of

all-pairs are returned (line 19).

Correctness & Complexity. One can verify that the algorithm correctly computes

ŝK(⋆, ⋆), which satisfies Eq.(7.14). Besides, memo-gSR* is in O(Knm̃) time, where m̃ is

the number of edges in the compressed graph Ĝ. Here, m̃ is always smaller than m, and

in practice, m̃ ≪ m, depending on the number of bicliques, and biclique density in G̃.

This is because edge concentration compresses bicliques (dense subgraphs) in G̃ such that

for each biclique (Xi,Yi), the number of its edges |Xi| · |Yi| can be reduced to |Xi|+ |Yi|.

Thus, m̃ ≤ m−N ·
∑N

i=1(|Xi| · |Yi|−(|Xi|+ |Yi|)), where N is the number of bicliques in G̃.

Since |Xi|, |Yi| ≥ 2, it holds that |Xi|+ |Yi| ≤ |Xi| · |Yi|. Hence, m̃ is always less than m.

Moreover, the construction of Ĝ is in O(|Ẽ | log(|T |+ |B|)) = O(m̃ log(2n)) time [BC08b]

(lines 1–2). For each iteration, PartialŝkI(⋆)(⋆) are in O(nm̃) time (lines 5–11), and ŝk(⋆, ⋆)

in O(n2) time (lines 12–18). Thus, the total time is O(Knm̃), as opposed to O(Knm) of

original iterations in Lemma 7.11.

Example 7.15. Recall the graph G of Figure 7.1. memo-gSR* computes SimRank*

scores of all-pairs in G as follows:
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First, using Definition 7.13 and the algorithm [BC08b], it builds bigraph G̃ and com-

pressed graph Ĝ, as shown in Figure 7.4.

Then, it iteratively computes SimRank* via fine-grained memoization based on Ĝ. For

example, to compute ŝk+1(a, i) and ŝk+1(a, h), it first memoizes the fine-grained partial

sums over the “fan-in” sets of v1 and v2 (lines 5–7):

Partialŝk∆(v1)
(a)← ŝ(b, a) + ŝ(d, a),

Partialŝk∆(v2)
(a)← ŝ(e, a) + ŝ(j, a) + ŝ(k, a).

Using memoized Partialŝk∆(v1)
(a) and Partialŝk∆(v2)

(a), it then computes PartialŝkI(i)(a)

and PartialŝkI(h)(a) (lines 8–10)

PartialŝkI(i)(a)←Partialŝk∆(v1)
(a) + Partialŝk∆(v2)

(a) + ŝ(h, a),

Partial
ŝk
I(h)(a)←Partialŝk∆(v2)

(a).

Finally, since I(a) = 0, ŝk+1(a, i) and ŝk+1(a, h) can be obtained as follows (lines

12–17):

ŝk+1(a, x)←
C

2|I(x)|
PartialŝkI(x)(a) (x ∈ {i, j})

The rest of the results are shown in Col. ‘SR*’ in Figure 7.1.

Exponential SimRank* Optimization. The aforementioned optimization methods

for (geometric) SimRank* computation can be readily extended to exponential Sim-

Rank*.

To shed light on this, we recall the exponential SimRank* series in Eq.(7.8) and its

closed form Eq.(7.12) in Theorem 7.12. Similar to the proof of Theorem 7.12, one can

readily show that the k-th partial sum of Ŝ′ defined by

Ŝ′
k , e−C ·

k∑
l=0

C l

l!
· 1
2l

l∑
α=0

(
l

α

)
·Qα · (QT )

l−α
(7.15)

can be represented as the product of the k-th partial sum of matrix exponential (e
C
2 Q)

and its transpose (e
C
2 Q)T , i.e.,

Ŝ′
k = e−C ·Tk ·Tk

T , with Tk ,
∑k

i=0 (
C
2 Q)

i
/i!.
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Thus, computing Ŝ′
k amounts to solving Tk that can be iteratively derived as follows:Rk+1 = Q ·Rk

Tk+1 = Tk +
Ck

2k·k! ·Rk

with

R0 = In

T0 = 0n

, (7.16)

where Rk is an auxiliary matrix used for computing Tk.

It is worth noting that the matrix equation Rk+1 = Q · Rk in Eq.(7.16) can be

rewritten, in the component form, as

[Rk+1](a,b) = [Q ·Rk](a,b) =
n∑

y=1
[Q](a,y) · [Rk](y,b)

= 1
|I(a)|

∑
y∈I(a)

[Rk](y,b),

which takes the similar form of the single summation in Eq.(7.14) except for the coefficient

C
2 . Thus, our previous optimization approach of fine-grained partial sums sharing used for

Eq.(7.14) can be applied in a similar way to Eq.(7.16), for improving the computational

efficiency. For the interest of space, we omit the detailed algorithm here.

7.4 An Alternative Look of SimRank*

Theorem 7.10 provides a nice interpretation of SimRank*: Two nodes are similar if their

non-punctured in-neighbors are similar. Here, non-punctured in-neighbor set of node

a, denoted as İ(a), refers to the in-neighbor set of a, plus node a itself, i.e., İ(a) =

I(a) ∪ {a}. As opposed to SimRank that is interpreted as “two nodes are similar if

their in-neighbors are similar”, SimRank* infers the similarity of (a, b) not only from

similarities of all their in-neighbor pairs {(i, j)}i∈I(a),j∈I(b), but also from similarities

of node-pairs {(a, j)}j∈I(b) and {(i, b)}i∈I(a). Hence, due to SimRank* recursion, the

consideration of both {(a, j)}j∈I(b) and {(i, b)}i∈I(a) makes it possible for SimRank* to

identify contributions of all dissymmetric in-link paths for (a, b).

In accordance with the SimRank philosophy, the interpretation of SimRank* leads

itself to have an informal SimRank-like representation as follows:

ŝ(a, b) =
C

|İ(a)||İ(b)|

∑
j∈İ(b)

∑
i∈İ(a)

ŝ(i, j), (7.17)
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which is the same as SimRank formula Eq.(1.1) except a substitution of İ(⋆) for I(⋆).

However, in component notations, SimRank* in Theorem 7.10 takes a slightly different

form:

ŝ(a, b) =
C

2 |I(b)|
∑

j∈I(b)

ŝ(a, j) +
C

2 |I(a)|
∑

i∈I(a)

ŝ(i, b). (7.18)

Comparing the summations in Eqs.(7.17) and (7.18), we observe that they both assess

the impact of {(a, j)}j∈I(b) and {(i, b)}i∈I(a) on ŝ(a, b), but the double summation in

Eq.(7.17) may often suffer from unnecessary “duplicate consideration”. To see this, we

expand the double summation in Eq.(7.17):

∑
j∈İ(b)

∑
i∈İ(a)

ŝ(i, j) =

Part 1︷ ︸︸ ︷∑
j∈I(b)

ŝ(a, j) +
∑

i∈I(a)

ŝ(i, b)+

+
∑

j∈I(b)

∑
i∈I(a)

ŝ(i, j) + s(a, b)

︸ ︷︷ ︸
Part 2

.

It can be noted that Part 2 is redundant relative to Part 1. This is because Eq.(7.17) is

defined recursively, and therefore, the similarities of both {(a, j)}j∈I(b) and {(i, b)}i∈I(a)
have recursively “contained” the similarities of {(i, j)}i∈I(a),j∈I(b) which are duplicates

considered in Part 2 again. In contrast, the formalization of SimRank* in Eq.(7.18) has

no such redundancy, where the two single summations retain the same efficacy as Part 1

of Eq.(7.17).

7.5 Experimental Evaluation

Our comprehensive empirical studies on real and synthetic data evaluate (i) the semantic

richness and relative order of SimRank*; (ii) the computational efficiency of SimRank*.

7.5.1 Experimental Setting

We use the following real and synthetic datasets.

(1) Real data. For semantics and relative order evaluation, we use two graphs: CitHepTh

(directed) and DBLP (undirected).
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Dataset |G| (|V|, |E|) Density (|E|/|V|)
CitHepTh 451K (33K, 418K) 12.6

DBLP 102K (15K, 87K) 5.8

D05 21K (4K, 17K) 4.3

D08 85K (13K, 72K) 5.5

D11 103K (14K, 89K) 6.3

Web-Google 5.8M (873K, 4.9M) 5.6

CitPatent 19.8M (3.6M, 16.2M) 4.5

Figure 7.5: Details of Real Datasets

(a) CitHepTh12, a citation network, where nodes are papers labeled with titles, and

an edge a citation. The data is collected from the arXiv, with papers from 1993 to 2003.

(b) DBLP13, a collaboration graph, where nodes are authors, and edges co-authorships.

The graph is derived from 6-year publications (2002–2007) in seven major conferences:

SIGMOD, PODS, VLDB, ICDE, SIGKDD, SIGIR, WWW.

For computational efficiency evaluation, we use five graphs:

(c) D05, D08, D11, three co-authorship graphs, which are constructed from 9-year

DBLP publications (2003–2011) in 7 major conferences (as remarked in the firstDBLP dataset).

Each graph is built by choosing every 3 years as a time step.

(d) Web-Google, a web graph, where nodes are pages, and edges links. The data

is from Google Programming Contest.

(e) CitPatent, a U.S. patent network, in which nodes are patents, and edges are

citations made by patents. This data is maintained by the National Bureau of Economic

Research.

The size |G|(|V|, |E|) of the graphs are shown in Figure 7.5.

(2) Synthetic data. To produce synthetic networks, we use a generator GTgraph14 that

is controlled by |V| and |E|.

(3) Baselines. We implement the following algorithms in Visual C++ 9.0. (a) our

geometric SimRank* algorithm memo-gSR* and it exponential variant memo-eSR* via

12http://snap.stanford.edu/data/index.html
13http://dblp.uni-trier.de/˜ley/db/
14http://www.cse.psu.edu/˜madduri/software/GTgraph/index.html
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fine-grained memoization (Section 7.3.3); (b) our conventional iterative SimRank* algo-

rithm iter-gSR* which, as a comparison to memo-gSR*, computes similarities without

memoization (Section 7.3.2); (c) psum-SR [LVGT08] and psum-PR [ZHS09] algorithms

that compute SimRank and P-Rank similarities via partial sums memoization, respec-

tively; (d) mtx-SR algorithm [LHH+10] that computes SimRank using singular value

decomposition. (e) RWR [TFP06] measures the node proximity w.r.t. a query.

(4) Test Queries. To serve the ranking purpose, we select 500 query nodes from each

graph, based on the following: For each graph, we first sort all nodes in order of their

in-degree into 5 groups, and then randomly choose 100 nodes from each group, aiming to

guarantee that the selected nodes can systematically cover a broad range of all possible

queries. Here, we mainly focus on single-node queries, since a multi-node query can be

fairly factorized into multiple single-node queries via Linearity Theorem [Cha07]. For

every experiment, the average performance is reported over all test queries.

(5) Parameters. We set the following default parameters: (a) C = 0.6, which is the

typical decay factor used in [JW02]. (b) K = 5, which is the total number of iterations,

being the time-accuracy trade-off. Besides, for all the methods, we clip similarity values

at 10−4, to discard far-apart nodes with scores less than 10−4 for storage. It can greatly

reduce space cost with minimal impact on accuracy, as shown in [LVGT08].

(6) Effectiveness Metrics. To evaluate semantics and relative ordering, we consider both

node and node-pair ranking. We adopt three metrics [LHH+10, Cha07]: Kendall’s τ ,

Spearman’s ρ, and Normalized Discounted Cumulative Gain (NDCG).

(a) Kendall’s τ is defined as

τ =
2

N(N − 1)

∑
{i,j}∈P

K̄i,j(τ1, τ2),

with K̄i,j(τ1, τ2) = 1 if i and j are in the same order in τ1 and τ2, and otherwise 0. Here,

τ1 and τ2 are the rankings of elements in two lists, P is the set of unordered pairs in τ1

and τ2, and N is the number of elements in a ranking list.
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(b) Spearman’s ρ is given by

ρ = 1−
6
∑N

i=1 d
2
i

N(N2 − 1)
,

where di is the ranking difference between the i-th elements in two lists.

(c) NDCG at position p w.r.t. query q is given by

NDCGp(q) =
1

IDCGp(q)

p∑
i=1

2s(i,q) − 1

log2 (1 + i)
,

where s(i, q) is the similarity score between nodes i and q, and IDCGp(q) is a normalized

factor ensuring the “true” NDCG ordering to be 1.

(7) Ground Truth. (a) To validate similar authors on DBLP, we invite 20+ experts

from database and data mining areas to assess the “true” relevance of each retrieved

co-authorship. They may also refer to Co-Author Path in Microsoft Academic Search15 to

see “separations” between collaborators. (b) To evaluate similar papers on CitHepTh,

we hire 15+ researchers from the physical department for judging the “true” relevance of

the retrieved co-citations. Their assessment may hinge on paper contents, H-index, and

#-citations in www.ScienceDirect.com. For all the ground truths, the final results are

rendered by a majority vote of feedbacks.

All experiments are run on a machine powered by an Intel Core(TM) 3.10GHz CPU

with 8GB RAM, on Windows 7.

7.5.2 Experimental Results

We next present our empirical findings.

Exp-1: Semantics & Relative Order.

We first run the algorithms on directed CitHepTh and undirected DBLP. By randomly

issuing 500+ queries, we evaluate the average semantic accuracy for each algorithm via

three metrics (Kendall, Spearman, NDCG). Figure 7.6 depicts the results. (Due to space

limits, many case studies are reported in [YLZ+13b] to further exemplify the quantitative

15http://academic.research.microsoft.com/VisualExplorer
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Figure 7.6: Semantic Effectiveness on Real Data

Q1: Prof. Jennifer Widom Q2: Prof. Alon Y. Halevy
# SR* / RWR SR # SimRank* / RWR SR

1 Chris Olston (46) David Konopnicki 1 Jun Zhang (11) Steven D. Gribble
2 Glen Jeh (47) Ying Xu 2 Ema Nemes (10) Oren Etzioni
3 Oded Shmueli (55) Nina Mishra 3 Xin Dong (13) Luke McDowell
4 David Konopnicki K. Kenthapadi 4 Deepak Verma Stani Vlasseva
5 Pedro Bizarro (19) Gagan Aggarwal 5 Stani Vlasseva Deepak Verma
6 Ying Xu Dilys Thomas 6 William Pentney William Pentney

Q3: Dr. Rakesh Agrawal Q4: Top-4 Similar Author-Pairs (SR*/RWR)
# SR* / RWR SR 1 Israel Cidon Oren Unger
1 Adina Crainiceanu Yirong Xu 2 Yuval Shavitt Xiaohua Jia
2 Byron Dom (13) Roberto J. Bayardo 3 Daniel A. Menasc Harry J. Foxwell
3 Vuk Ercegovac Vuk Ercegovac 4 Bo Li Jiangchuan Liu
4 Kristen LeFevre Kristen LeFevre
· · · · · · Q4: Top-4 Similar Author-Pairs (SR)

12 Christos Faloutsos (36) Ralf Rantzau 1 Milena Ivanova Gustav Fahl
13 S. Chakrabarti (53) Byron Dom 2 Wanhong Xu Naci Ishakbeyoglu
14 Mayank Bawa (56) Sridhar Rajagopalan 3 Shengli Sheng Jin Huang
15 R. Ramakrishnan (45) A. V. Evfimievski 4 Kar Wing Li Fu Lee Wang

Figure 7.7: Case Study: Top Co-authors on DBLP (2003–2005)

results in Figure 7.6.) (1) On CitHepTh, memo-gSR* and memo-eSR* have higher accu-

racy (e.g., Spearman’s ρ ≈ 0.91) than psum-SR (0.29), RWR (0.12) and psum-PR (0.42)

on average, i.e., the semantics of SimRank* is effective. This is because SimRank* con-

siders all in-link paths for assessing similarity, whereas SimRank and RWR, respectively,

counts only limited symmetric and unidirectional paths. (2) On DBLP, the accuracy of

RWR is the same as memo-gSR* and memo-eSR*, due to the undirectedness of DBLP.

This tells us that, regardless of edge directions, both SimRank* and RWR count the
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Figure 7.8: Role Difference of Top Ranked Node-Pairs

path of all lengths, as opposed to SimRank considering only the even-length paths.

Likewise, psum-PR and psum-SR produce the same results on undirected DBLP. (3) On

both datasets, memo-gSR* and memo-eSR* keep almost the same accuracy, implying

that the relative order of the geometric SimRank* is well maintained by its exponential

counterpart.

Figure 7.7 reveals four top-k query results on DBLP. For example, Q1 finds most

similar co-authors of Prof. Jennifer Widom via memo-gSR*, memo-eSR*, RWR , psum-

SR. We observe the following. (1) RWR and memo-gSR* have the same results on

DBLP, which is due to the undirectedness of DBLP, as expected. (2)memo-gSR* and

memo-eSR* also yield the results, showing the relative ranking preservation of memo-

eSR* w.r.t. memo-gSR* for top-k results. (3) Many closely related co-authors of Widom

with an undesirably low rank via psum-SR (as shown in brackets of gray cells) can be

well identified by memo-gSR*, memo-eSR*, RWR . This is because SimRank ignores

contributions of dissymmetric in-link paths (i.e., paths of odd lengths in undirected

graphs), whereas SimRank* considers contributions of all in-link paths. The disparity

of ranking in gray cells shows that memo-gSR*, memo-eSR*, RWR can perfectly resolve

the “zero-similarity” issue of psum-SR on undirected graphs.

Figure 7.8 further validates that node-pairs with high SimRank* scores do have similar

roles. On CitHepTh, we use #-citation as a proximity measure for co-citation role; on
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Figure 7.9: Average Similarity of Grouped Node-Pairs

DBLP, we use H-index for coauthor role, since if a paper is highly cited, it will increase

the H-index of every co-author. From the results, we see that on CitHepTh, for the

top 2% similar paper-pairs, the average difference in their #-citation is 8 for memo-

gSR* and memo-eSR*, which is lower than psum-SR (21), psum-PR (24), RWR (43), and

the random-pair difference RAN (38). A lower average difference in #-citation (resp.H-

index) indicates that papers (resp.authors) are reliably similar. As we increase the search

to top 20% similar paper-pairs on CitHepTh, SimRank* can constantly find reliable

similarity, whereas SimRank converges to random scoring. Thus, node-pairs with higher

SimRank* scores will have similar roles. A similar result is shown on DBLP.

Figure 7.9 confirms that nodes with similar roles do have high SimRank* scores. On

CitHepTh (resp.DBLP), we group the papers (resp.authors) into 10 roles based on

the #-citation (resp.H-index), from top 10% to bottom 10%. For each node-pair, if two

nodes are within the same role, we average out their similarity score for this role. We also

average out #-node-pairs not within the same role (across roles). We see that e.g., on

DBLP, the average SimRank* similarity within the same role is stable around 0.4, in

contrast with SimRank fluctuating between 0.35 and 0.45, due to many dissymmetric

paths completely neglected by SimRank. For the author-pairs across roles, the x-axis

denotes the difference of role decile for two authors in a pair. The decreasing line of

memo-eSR* and RWR indicates that role similarity correctly decreases as H-index gets
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Figure 7.11: % of “Zero-Similarity” Node-Pairs on Real Data

less similar. For psum-SR, the average across-role similarity is round 0.3, approaching

random scoring. This tells that SimRank* scores are more reliable than others to reflect

nodes with similar roles. The result is more pronounced on CitHepTh.

To further compare the difference between RWR and memo-gSR*, we use the directed

graph CitHepTh, and issue four paper queries. The search results are shown in Fig-

ure 7.10. It should be noted that for directed CitHepTh, RWR and memo-gSR* have

substantial differences: For the 1st query, RWR fails to find any results, whereas memo-

gSR* perfectly finds useful papers, better than SimRank. This is because RWR only

considers unidirectional paths between two nodes, thus limiting its utility for find sen-

sible papers, whereas SimRank* considers all in-link paths. Other results on SimRank*

and SimRank are analogous to those on DBLP. Due to space limits, we omit it here.

Figure 7.11 shows the “zero-similarity” issues for SimRank and RWR commonly exist

in real graphs. The results on e.g., CitHepTh show that more than 95% of node-

pairs have “zero-SimRank” issues, among which about 40% are assessed as “completely

dissimilar” (i.e., SimRank=0), and about 55% have “partially missing” issue (SimRank

̸=0, but miss the contributions of the dissymmetric in-links paths). It shows the necessity

for our revision of SimRank and RWR.



Chapter 7. A Novel Model for Node-Pair Relevance Assessment 229

memo-eSR* memo-gSR* iter-gSR* psum-SR mtx-SR

D05 D08 D11
0

100

200

300
1457s 1672s

edges |E|

(compressed

edges |Ê|)
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Figure 7.12: Time Efficiency on Real Datasets

Exp-2: Time Efficiency.

We next evaluate (1) the CPU time of SimRank* on real data, and (2) the impact of

graph density on CPU time on synthetic data.

Fixing accuracy ϵ = .001 on DBLP, and varying K on Web-Google and Cit-

Patent, we compare the CPU time of the five algorithms. The results are shown in

Figure 7.12, telling the following. (1) In all the cases, memo-gSR* and memo-eSR* out-

perform iter-gSR*, psum-SR and mtx-SR, i.e., our fine-grained memoization approach is

efficient. Indeed, mtx-SR is the slowest on D05, D08, D11 due to its cost-inhibitive SVD.

On Web-Google, memo-gSR* (memo-eSR*) is on average 1.6X and 2.6X faster than

iter-gSR* and psum-SR, respectively. On CitPatent, the speedup of memo-gSR* (memo-

eSR*) is on average 1.7X and 3.1X better than iter-gSR* and psum-SR, respectively. When

K ≥ 6, psum-SR takes too long to finish computations in two days on large CitPatent,

which is practically unacceptable. In contrast, memo-gSR* (memo-eSR*) just needs about

19.5 hours for K = 6. This is because SimRank* takes a simpler form than SimRank, in

which one just needs to compute one single summation per iteration, in contrast to a dou-

ble summation of psum-SR. (2) Given ϵ = .001 on DBLP, the speedup of memo-eSR* is

more pronounced, 6.8X, 4.2X, 2.7X faster than psum-SR, iter-gSR*, memo-gSR* on aver-

age, respectively. This is because the closed matrix form of memo-eSR* accelerates the

convergence of SimRank*, thus yielding less iterations for attaining the same accuracy ϵ.

Figure 7.13 further shows the amortized time for each phase of memo-eSR* and memo-
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gSR* on Web-Google and CitPatent (given ϵ = .001), with x-axis being two phases.

From the results, (1) for memo-eSR* and memo-gSR*, the time for “Compress Bigraph”

is about one order of magnitude less than the time for “Share Sums” on Web-Google,

and 2.5 orders of magnitude less on CitPatent. This tells that the preprocessing does

not incur much extra time, confirming our complexity analysis in Subsect. 7.3.3. (2)

“Compress Bigraph” takes up larger portions (13% on Web-Google, and 0.3% on

CitPatent) in the total time of memo-eSR*, than those (4% on Web-Google, and

0.1% on CitPatent) in the total time of memo-gSR*. This is because memo-eSR* and

memo-gSR* takes (almost) the same time for “Compress Bigraph”, whereas, for “Share

Sums”, memo-eSR* needs less time (3.8X on Web-Google, 3.5X on CitPatent) than

memo-gSR*, due to the convergence speedup of memo-eSR*.

Fixing n = 350K, varying m from 3.5M to 14M on synthetic data, Figure 7.14 shows

the impact of graph density d = m/n on CPU time. The results show that (1) given

ϵ = .001, memo-eSR* outperforms memo-gSR*, iter-gSR*, and psum-SR by 3.5X, 6.1X,

and 14X speedups, respectively, as m increases. (2) The speedups of memo-eSR* and

memo-gSR* are sensitive to graph density. This is because when graphs become denser,

there is a higher likelihood that in-neighbor sets will overlap one another for fine-grained

partial sums sharing. The biggest speedups are observed for higher density — with nearly

1.5 orders of magnitude speedup at d = 40, and its compression ratio is 52.7%. 16

16Here, the compression ratio is defined by (1 − m̃
m
) × 100%, where m̃ is the number of edges in the
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Figure 7.15: Memory Space on Real Datasets

Exp-3: Memory Space.

Lastly, we evaluate the space requirement of memo-eSR* and memo-gSR* against iter-

gSR*, psum-SR and mtx-SR on real data. We only use mtx-SR on small DBLP since

its memory space will explode on large Web-Google, due to its SVD destroying graph

sparsity.

The results are reported in Figure 7.15. We observe that (1) in all the cases, memo-

eSR* and memo-gSR* take almost the same space, both of which fairly retain the same

orders of magnitude as iter-gSR* and psum-SR. Indeed, both memo-eSR* and memo-

gSR* only need 28.2%, 29.3%, and 19.2% more space on average on DBLP, Web-

Google, and CitPatent, respectively, as compared with iter-gSR* and psum-SR. The

extra space of memo-eSR* and memo-gSR* is used for fine-grained SimRank* memoi-

zation. This tells that memo-eSR* and memo-gSR* do not need to sacrifice much space

for achieving high time efficiency. (2) On DBLP, memo-eSR* and memo-gSR* require

far less space than mtx-SR by at least one order of magnitude, since mtx-SR using SVD

may produce very dense matrices. (3) On Web-Google and CitPatent, the space of

memo-eSR* and memo-gSR* is stable as K grows because the memoized partial sums are

immediately released after each iteration.

compressed graph Ĝ.
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7.6 Related Work

We categorize related work as follows.

Link-based Similarity. One of the most renowned link-based similarity metrics is Sim-

Rank, invented by Jeh and Widom [JW02]. It iteratively captures the notion that “two

nodes are similar if they have similar in-neighbors”, which weakens the philosophy of the

rudimentary measures (e.g., Coupling [Kes63a], Co-citation [Sma73]) that “two nodes are

similar if they have the same neighbors in common”. The recursive nature of SimRank

allows two nodes to be similar without common in-neighbors, which resembles PageR-

ank [Ber05] assigning a relevance score for each node. SimRank implies an unsatisfactory

trait: The similarity of two nodes decreases as the number of their common in-neighbors

increases. To address this issue, Fogaras and Rácz [FR05] introduce P-SimRank. They

(1) incorporate Jaccard coefficients, and (2) interpret s(a, b) as the probability that two

random surfers, starting from a and b, will meet at a node. Antonellis et al. [AMC08]

propose SimRank++, by adding an evidence weight to compensate for the cardinality of

in-neighbor matching. MatchSim [LLK12] refines SimRank with maximum neighborhood

matching. RoleSim [JLH11] deploys generalized Jaccard coefficients to ensure automor-

phic equivalence for SimRank. However, none of them resolves the “zero-SimRank” issue.

This issue surfaces in part in the motivating Example 1.2 of Zhao et al. [ZHS09] who pro-

pose P-Rank taking both in- and out-links into account. Our work differs from [ZHS09]

in that (1) we show that the “zero-SimRank” issue is not caused by the ignorance of

out-links in SimRank, and (2) we circumvent the “zero-similarity” issue by traversing

more incoming paths of node-pairs that are neglected by the original SimRank.

There has also been work on link-based similarity (e.g., [YHY06,BGH+04,XFF+05,

TFP06, LHN06]). LinkClus [YHY06] uses a hierarchical structure, called SimTree, for

clustering multi-type objects. Blondel et al. [BGH+04] propose an appealing measure to

quantify graph similarities. SimFusion [XFF+05] utilizes a reinforcement assumption for

assessing similarities of multi-type objects in a heterogenous domain, as opposed to Sim-

Rank focusing solely on intra-type objects in a homogenous domain. Tong et al. [TFP06]
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suggest Random Walk with Restart (RWR) for assessing node proximities, which is an

excellent extension of Personalized PageRank (PPR). Leicht et al. [LHN06] extend RWR

by incorporating independent and sensible coefficients. However, RWR and its variants

(PPR and [LHN06]) also imply SimRank-like “zero-similarity” issues, as discussed in

Subsect. 7.2.1.

Similarity Computation. The computational overheads of link-based similarity often arise

from its recursive nature. To meet this challenge, Lizorkin et al. [LVGT08] propose three

excellent optimization methods to SimRank (i.e., essential node-pair selection, partial

sums memoization, and threshold-sieved similarities). These substantially speed up Sim-

Rank computation from O(Kd2n2) to O(Knm) time, with d being the average in-degree

of a graph. In contrast, our model performs even faster than SimRank, yet can enumerate

more incoming paths missed by SimRank to enrich semantics since (1) our model can

be simplified into a much simpler form than SimRank, and (2) the computation can be

further accelerated via fine-grained memoization. Li et al. [LHH+10] use graph low-rank

structure to compute SimRank via singular value decomposition (SVD), yielding O(r4n2)

time, with r (≤ n) being the rank of an adjacency matrix. However, it does not always

reduce the complexity when r is large. In contrast, SimRank* needs O(Knm̃) worst-case

time, with m̃ ≤ m. He et al. [HLC+12] study the incremental SimRank with the focus

on node updates for parallel computing on GPU.

7.7 Conclusions

In this chapter, we have proposed SimRank*, a refinement of SimRank, for effectively

assessing link-based similarities. In contrast to SimRank only considering contributions

of symmetric in-link paths, SimRank* can tally contributions of all in-link paths be-

tween two nodes, thus resolving the “zero-SimRank” issue for semantic richness. We

have also converted the series form of SimRank* into two elegant forms: the geometric

SimRank* and its exponential variant, both of which look even simpler than SimRank,

yet without suffering from increased computational cost. Finally, we have developed
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a fine-grained memoization strategy via edge concentration, with an efficient algorithm

speeding up SimRank* computation from O(Knm) to O(Knm̃) time, where m̃ is gen-

erally much smaller than m. Our experimental results on real and synthetic data show

richer semantics and higher computation efficiency of SimRank*.



Chapter 8

Conclusions and Future Work

This thesis studied several efficient techniques for assessing link-based node-to-node rel-

evance on large and dynamic networks, including fast SimRank, SimFusion and P-Rank

assessment on large networks, incremental SimRank, RWR and SimFusion+ update on

dynamic networks, and the development of novel relevance scoring mechanisms for en-

riching semantics. In the following, we summarize the main contributions of this thesis

in Section 8.1, and discuss general avenues for future research arising from this thesis in

Section 8.2.

8.1 Thesis Summary

Chapter 1 highlighted the need for efficiently assessing node-to-node relevance through

motivating applications, and presented necessary fundamentals of relevance assessment.

The main technical contributions of the thesis appeared in Chapters 2–7.

• Fast SimRank Assessment on Large Networks and Bipartite Domains.

Chapter 2 proposed efficient methods for speeding up SimRank assessment on large

networks, as well as bipartite domains. For large networks, (1) a fine-grained par-

tial sums sharing approach was presented to improve the SimRank computation per

iteration; (2) To reduce the total number of iterations, a new differential SimRank

equation was proposed, which can represent the SimRank solution as an expo-

235
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nential sum of the transition matrix, rather than the geometric counterpart. For

bipartite domains, (3) the techniques for optimizing Minimax SimRank variation

computation was also proposed by utilizing edge concentration technique.

• Incremental SimRank on Link-Evolving Networks. Chapter 3 presented an

innovative paradigm that supports incremental updates for SimRank assessment

over dynamic networks, where links frequently evolve over time. (1) The SimRank

update matrix, in response to each link update, was first represented as a rank-one

Sylvester equation. (2) By virtue of this, an effective pruning technique was also

leveraged for capturing the “affected areas” of the SimRank update matrix to skip

unnecessary computations, without loss of exactness.

• P-Rank Assessment on Large Networks. Chapter 4 provided fast approaches

for accelerating P-Rank assessment on large networks. (1) The accuracy estimate

was given for P-Rank iterations, aiming to find out the total number of iterations

needed for a given accuracy. (2) The stability of P-Rank was also analyzed to find

out the condition under which P-Rank is stable. (3) Two efficient algorithms were

devised for speeding up P-Rank assessment over directed and undirected networks.

• Incremental RWR on Dynamic Networks. Chapter 5 studied the incremental

RWR update on link-evolving networks. (1) For unit link update, a fast and exact

paradigm was devised, which characterizes the RWR vector with respect to a given

query in terms of a linear combination of other old RWR vectors. (2) For batch

link updates, an efficient algorithm was proposed for incrementally assessing RWR

proximities in response to a mix of edge insertions and deletions, without loss of

exactness.

• SimFusion+ on Large and Dynamic Networks. Chapter 6 addressed two

problems (i.e., trivial solution and divergence issue) to the existing SimFusion

model, and proposed a full treatment for SimFusion. (1) A fast and exact al-

gorithm was presented to significantly improve the time and space complexity of

SimFusion+ assessment on large networks. (2) An approximate algorithm was also
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provided for further speeding up SimFusion+ assessment with accuracy guaran-

tees. (3) An incremental eigen-based algorithm was devised to support incremental

SimFusion+ updates on dynamic graphs.

• A Novel Relevance Model for Semantic Richness. Chapter 7 proposed

a novel relevance SimRank* for enriching semantics of SimRank and RWR while

inheriting merits of their original basic philosophies. (1) An undesirable “zero-

similarity” property in SimRank and RWR was observed, and a novel SimRank*

model was proposed for fixing this issue. (2) An elegant and succinct closed-form of

SimRank* was introduced for efficient SimRank* assessment on large graphs. (3) A

heuristic approach was also presented for further accelerating SimRank* assessment

via network compression, without any loss of exactness.

8.2 Future Avenues

Aside from the specific open problems mentioned in individual chapters, there are some

general directions to extend the work presented in this thesis:

• Parallel Relevance Assessment on Distributed Systems. The entire thesis

only dealt with efficient relevance assessment on a single computer. While many

optimization techniques described in Chapters 2–7 can be implemented by a single

CPU, distributed systems are more appropriate for some concurrent computing

applications. For instance, the high memory bandwidth of graphics processing units

can be fully utilized to further speed up relevance assessment on large networks.

Moreover, parallel relevance computing paradigms can be readily generalized to

node-updating algorithms for incremental networks, where nodes constantly arrive

over time. The extension of all our results to parallel relevance computing is perhaps

the most overarching avenue of future work.

• Improving I/O costs for Disk-Resident Networks. For large disk-resident

networks, the main overhead for an external relevance algorithm to assess relevance
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might be the expensive I/O costs. Hence, another possible extension for the thesis

is to develop novel fast relevance computing paradigms that support large-scale

disk-resident graphs. Since such graphs could not be held into the main memory,

frequent random access from disk demand novel scalable algorithms to reduce I/O

costs for relevance assessment.

• Relevance Assessment on Hypergraphs and Signed Networks. Networks

considered in this thesis are assumed to be graphs whose edges are pairs of nodes,

and corresponding adjacency matrices are non-negative, representing a binary 0-1

relationship. There are two directions to extend this work: (1) One possible in-

teresting direction is to extend our results for richer graph models for relevance

assessment, e.g., hypergraphs whose (hyper) edges are arbitrary sets of nodes. (2)

Another promising avenue is to carry our proposed methodology forward to the

setting of social networks with positive and negative links. Such an extension is

non-trivial since many theories we studied in previous chapters rely on an underlying

assumption that all entries in adjacency matrices are non-negative, e.g., Proposi-

tion 6.5 in Chapter 6. This assumption is quite reasonable for standard digraphs,

yet does not hold for signed networks, which can be integrated as an interesting

direction of further work.

• Top-k Search for Ranking Purpose. Throughout the thesis, all our methods are

developed for all-pairs relevance assessment. However, in some real applications, to

serve the ranking purpose, users are more interested in top-k search results rather

than the entire ranking list. Therefore, top-k search with respect to a given query

is likely to play a key role in ranking objects on large networks. Extending our

proposed methods to top-k search is an overarching research goal for future study.
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