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ABSTRACT
SimFusion has become a captivating measure of similarity between
objects in a web graph. It is iteratively distilled from the notion
that “the similarity between two objects is reinforced by the simi-
larity of their related objects”. The existing SimFusion model usu-
ally exploits the Unified Relationship Matrix (URM) to represent
latent relationships among heterogeneous data, and adopts an iter-
ative paradigm for SimFusion computation. However, due to the
row normalization of URM, the traditional SimFusion model may
produce the trivial solution; worse still, the iterative computation
of SimFusion may not ensure the global convergence of the solu-
tion. This paper studies the revision of this model, providing a full
treatment from complexity to algorithms. (1) We propose SimFu-
sion+ based on a notion of the Unified Adjacency Matrix (UAM), a
modification of the URM, to prevent the trivial solution and the di-
vergence issue of SimFusion. (2) We show that for any vertex-pair,
SimFusion+ can be performed in O(1) time and O(n) space with
an O(km)-time precomputation done only once, as opposed to the
O(kn3

) time and O(n2
) space of its traditional counterpart, where

n, m, and k denote the number of vertices, edges, and iterations
respectively. (3) We also devise an incremental algorithm for fur-
ther improving the computation of SimFusion+ when networks are
dynamically updated, with performance guarantees for similarity
estimation. We experimentally verify that these algorithms scale
well, and the revised notion of SimFusion is able to converge to a
non-trivial solution, and allows us to identify more sensible struc-
ture information in large real-world networks.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Storage
and Retrieval; G.2.2 [Graph Theory]: Discrete Mathematics

Keywords
Similarity Computation, SimFusion, Web Ranking Algorithm

1. INTRODUCTION
The conundrum of measuring similarity between objects based

on hyperlinks in a graph has fueled a growing interest in the field-
s of information retrieval. This problem is also known as “link-
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Figure 1: Trivial SimFusion on Heterogeneous Domain

based analysis” or “structural similarity search”, and it has been
extensively studied by different communities with a proliferation
of emerging applications. Examples include collaborative filter-
ing, hyper-text classification, graph clustering and proximity query
processing. Recently, while the scale of the Web has dramatical-
ly increased our need to produce large graphs, the study of effi-
ciently computing object similarity on such large graphs becomes
a desideratum. In practice, an effective similarity measure should
not only correlate well with human intuition but also scale well for
large amounts of data.

Among the existing metrics, SimFusion [1] can be regarded as
one of the attractive ones on account of the following reasons. (i)
Similar to PageRank [2] and SimRank [3], SimFusion is based on
hyperlinks and follows the reinforcement assumption that “the sim-
ilarity between objects is reinforced by the similarity of their relat-
ed objects”, which is fairly intuitive and conforms to our basic un-
derstandings. (ii) Unlike other measures (e.g., PageRank and Sim-
Rank) that explore the linkage patterns merely from a single data
space [2–4], SimFusion has the extra benefits of incorporating both
inter- and intra-relationships from multiple data spaces in a unified
manner to measure the similarity of heterogeneous data objects.
(iii) SimFusion offers more intuitive and flexible ways of assign-
ing weighting factors to each data space that reflects their relative
importance, as opposed to the PageRank and SimRank measures
that need to determine a damping factor. (iv) SimFusion provides
a general-purpose framework for measuring structural similarity
in a recursive fashion; other well-known measures, such as Co-
Citation [5] and Coupling [6] are just special cases of SimFusion.

However, existing work on SimFusion has the following prob-
lems. Firstly, although the basic intuition behind the SimFusion
model is appealing, it seems inappropriate to use the Unified Rela-
tionship Matrix (URM) to represent the relationships of heteroge-
neous objects. The main problem is that, according to the definition
of URM L in [1], the sum of each row of L is always equal to 1.
Since the product of L and the matrix 1 whose entries are all ones
is equal to the matrix 1 of all ones, there always exists a trivial so-
lution S = 1 to the original SimFusion formula S = L ·S ·LT [1],
as illustrated in Example 1. The same phenomena of yielding such
a trivial solution may occur in our experimental results in Section 6.
To address this issue, we shall revise the original SimFusion model.

EXAMPLE 1 (TRIVIAL SOLUTION). Figure 1 depicts a graph
G1 partly extracted from Cornell CS Department. Each vertex Pi
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SimFusion(2k)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣
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Figure 2: Divergent SimFusion on Homogeneous Domain
denotes a web page, and each edge a hyperlink. There are three
categories: D1 = {P1} (student), D2 = {P2, P3} (staff), and
D3 = {P4, P5} (faculty). We want to retrieve the top-3 similar
pairs of web pages in G1. However, the naive SimFusion fails to
correctly find them. We observe that the SimFusion solution is a
(trivial) matrix whose entries are all the same. In fact, vertices in
G1 do not have the identical neighbor structures. Hence, the trivial
solution is non-semantic in real communities.

Secondly, it is rather expensive to compute SimFusion similar-
ities. The existing approach for SimFusion computation deploys

a fixed-point iteration: S(k+1)
= L · S(k) · LT , which requires

O(kn3
) time and O(n2

) space [1]. This impedes the scalability
of SimFusion on large graphs. Worse still, the iterative computa-
tion of SimFusion do not always converge. The convergence of the
SimFusion iterations heavily depends on the choice of the initial

guess S(0), as shown in Example 2.

EXAMPLE 2 (DIVERGENCE SIMFUSION). Consider the dis-
ease transmission graph G2, where each vertex is an organism Pi

which can carry the disease, and an edge represents one organism
spreading it to another. One wants to find the three most similar
organisms to P2 in G2. However, the iterative computation of Sim-
Fusion does not work properly. We observe the following:

(i) When S(0) is set to an n×n identity matrix (according to [1])
the “even” and “odd” subsequences of {S(k)} are convergent
respectively, but they do not converge to the same limit, which
makes the full sequence {S(k)} divergent.

(ii) Choosing S(0)
= 1n (i.e., an n× n matrix of all 1s) instead,

we observe that the full SimFusion sequence {S(k)} is always
convergent to 1n regardless of the graph structure.

This suggests that the original SimFusion iterations may be di-
vergent or converge to a trivial solution, not to mention its scalabil-
ity. This highlights the need to find a feasible way to guarantee the
convergence of the SimFusion iterations, but it is hard to devise an
efficient algorithm for the revised SimFusion computation.

Thirdly, it is a big challenge to incrementally compute SimFu-
sion on dynamic graphs. The traditional method [1] has to recom-
pute the similarity from scratch when edges in a graph change over
time, which is not adaptive to many evolving networks. Fortunate-
ly, we have an observation that the size of the areas affected by
the updates is typically small in practice. To this end, we propose
an incremental algorithm that fully utilizes these affected areas to
compute SimFusion on dynamic graphs.

Contributions. This paper proposes SimFusion+, a revised no-
tion of SimFusion, to provide a full treatment of SimFusion for the
convergence issues and to improve its computational efficiency. In
summary, we make the following contributions.
1. We formalize the problem of SimFusion+ computation (Section

2). The notion of SimFusion+ revises the divergence and non-
semantic convergence worries of the traditional model [1].

2. We present optimization techniques for improving the computa-
tion of SimFusion+ to O(1) time and O(n) space for every pair
of vertices, plus an O(km)-time precomputation run only once
(Section 3).

3. We devise an efficient algorithm to compute the SimFusion+
similarity with better accuracy guarantees (Section 4). An error
estimate is also given for the SimFusion+ approximation.

4. We devise an incremental algorithm for further optimizing the
SimFusion+ computation when edges in networks are dynami-
cally updated (Section 5). We show that the update cost of the

incremental algorithm retains O(δn) time and O(n) space for
handling a sequence of δ edge insertions or deletions.

5. We experimentally verify the effectiveness and scalability of the
algorithms, using real and synthetic data (Section 6). The results
show that SimFusion+ can govern the convergence towards a
meaningful solution, and our algorithms achieve high accuracy
and significantly outperform the baseline algorithms.

Related Work. The link-based similarity has become increas-
ingly popular since the famous result of Google PageRank [2] on
ranking web pages. Since then, there has been a surge of papers
focusing on web link analysis. In particular, a growing interest has
been witnessed in the SimFusion model over the past decade [1, 7]
as it provides a useful measure of similarity that supports different
kinds of intra- and inter-node relations from multiple data spaces.

The iterative computation of SimFusion was proposed in [1] with
several problems left open there. In comparison, this work extend-
s [1] by (i) addressing the divergent and trivial solution of the orig-
inal SimFusion, (ii) optimizing the time and space complexity of
similarity computation, and (iii) supporting incremental update on
evolving graphs, none of which was considered in [1].

It is worth mentioning that Jeh and Widom have proposed a sim-
ilar structural measure called SimRank [3], predicated, as SimFu-
sion is, on the idea that vertices are similar if they have similar
neighbor structures. The essential difference between the two mod-
els is the notion of the convergence principle. SimFusion ensures
the existence of the stationary distribution and ergodicity conver-
gence to this distribution, whereas SimRank hinges on a damping
factor 0 < c < 1 to govern the convergence.

Optimization techniques have been devised for SimRank com-
putation (e.g., [8–11]). The best-known SimRank algorithm yields

O(kmin{nm, n3

logn
}) time [8]. The performance gain is mainly

achieved by a partial sum function for amortization; as for SimFu-
sion, the conventional matrix multiplication in its iterative formula
misled its complexity, which was previously considered O(kn3

)

time and O(n2
) space. The idea of the dominant eigenvector in

this work significantly improves its computation to O(km) time
and O(kn) space, which is more efficient than SimRank [8].

There has also been work on link-based similarity computation.
A unified framework of link-based analysis was addressed in [7],
which extends PageRank and HITS by (i) considering both inter-
and intra-type relationships, and (ii) bringing order to data objects
in different data spaces. It differs from this work in that the fo-
cus is on finding attribute values of a single object, rather than on
improving the complexities for similarity estimation. Extension-
s of similarity reinforcement assumption were studied in [12], by
spreading multiple relationship similarities over interrelated data
objects to enhance their mutual reinforcement effects. Neverthe-
less, neither of these deduces rigorous mathematical formulae, and
the rationales behind the integration approaches are different from
this work. Recently, a closed-form solution to P-Rank (Penetrating-
Rank) formula was addressed in [13]. Cai et al. [13] showed that
when the damping factor c = 1 and weighting factor γ = 0, P-
Rank can be reduced to SimFusion. However, this reasoning is
based on the flawed assumption that the diagonal entries diag(S)
of the P-Rank similarity matrix were not considered. We argue that
P-Rank is defined recursively, and hence, the omission of diag(S)
has an impact on the similarity of a vertex with itself, and recursive-
ly, it has an impact on the similarity of different pairs of vertices.

2. SIMFUSION ESTIMATION REVISED
In this section, we first revisit the definition of data space and da-

ta relation. We then introduce the notion of the Unified Adjacency
Matrix (UAM) to revise the SimFusion model.

2.1 Data Space and Data Relation
Graphs studies here are digraphs having no multiple edges.
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Data Space. A data space is the finite set of all data objects
(vertices) with the same data type, denoted by D = {o1, o2, · · · }.
|D| denotes the number of data objects in D. Two nonempty data
spaces D and D′ are said to be disjoint if D ∩D′

= ∅.
Throughout the paper, we shall use the following notations. (i)

The entire space D in a network is the union of N disjoint da-

ta spaces D1, · · · ,DN such that D =
⋃N

i=1 Di and Di ∩ Dj =

∅ (i �= j). (ii) The total size |D| of the entire space, denoted by
n, is the sum of the number ni of the data objects in each data space

Di, i.e., n =
∑N

i=1 ni with ni = |Di| (∀i = 1, · · · , N).
Intuitively, for heterogeneous networks, the distinct spaces Di

form a partition of D into classes. For homogenous networks, the
partition of D is itself.

Data Relation. A data relation on D is defined as R ⊆ D×D,
where (o, o′) ∈ R is a connection (a directed edge) from object
o to o′. Data objects in the same data space are related via intra-
type relations Ri,i ⊆ Di ×Di. Data objects between distinct data
spaces are related via inter-type relations Ri,j ⊆ Di×Dj (i �= j).

Intuitively, the intra-type relation carries connected information
in each data space (e.g., co-citation between web pages); the inter-
type relation represents interlinked information between different
data spaces (e.g., making user requests). As an example, in Figure
1 there are three data spaces : D = {P1} ∪ {P2, P3} ∪ {P4, P5},
where (P2, P2), (P2, P3), (P3, P2), (P4, P5), (P5, P4) are intra-
type relations; (P1, P2), (P2, P1), (P3, P1), (P1, P3), (P1, P4), (P4, P1)

are inter-type relations.

2.2 Unified Adjacency Matrix
Let us now introduce the unified adjacency matrix (UAM). Con-

sider a graph G = (D,R) with data space D and data relation R.

Unified Adjacency Matrix (UAM). The matrix A = Ã+1/n2

of size n×n is said to be a unified adjacency matrix of the relation
R whenever

Ã =

⎛
⎜⎜⎝

λ1,1A1,1 λ1,2A1,2 · · · λ1,NA1,N

λ2,1A2,1 λ2,2A2,2 · · · λ2,NA2,N

.

.

.
.
.
.

. . .
.
.
.

λN,1AN,1 λN,2AN,2 · · · λN,NAN,N

⎞
⎟⎟⎠ ,

where (i) 1 is the n × n matrix of all ones; (ii) Ai,j is the sub-
matrix of A whose (o, o′)-entry equals 1 if there is an edge from
data object o to o′, i.e., ∃ (o, o′) ∈ R, 1

nj
if data object o has no

neighbors in Dj , or 0 otherwise; and (iii) λi,j is called the weight-
ing factor between data space Di and Dj with 0 ≤ λi,j ≤ 1 and∑N

j=1 λi,j = 1 (∀i = 1, · · · , N).

Intuitively, Ai,j represents the intra- (i = j) or inter- (i �= j)
relation from data space Di to Dj . λi,j reflects the relative impor-
tance between data spaces Di and Dj .

EXAMPLE 3. In Figure 1, the relative importance between data
space Di and Dj is denoted by a weighting matrix Λ = (λi,j)3×3.
Then, the UAM A of G1 can be derived from A = Ã + 1/n2,
where Ã is computed from Λ as follows.

Λ =

D1 D2 D3

D1
⎡
⎣

1
2

1
6

1
3

⎤
⎦D2

1
6

7
12

1
4

D3
1
3

1
4

5
12

⇒ Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

[
1
]

1
6

[
1 1

]
1
3

[
1 0

]

1
6

[
1

1

]
7
12

[
1 1

1 0

]
1
4

[
1
2

1
2

1
2

1
2

]

1
3

[
1

0

]
1
4

[
1
2

1
2

1
2

1
2

]
5
12

[
0 1

1 0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
6

1
6

1
3

0

1
6

7
12

7
12

1
8

1
8

1
6

7
12

0
1
8

1
8

1
3

1
8

1
8

0
5
12

0
1
8

1
8

5
12

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

SimFusion+ Model. In light of the UAM A, we next propose
the revised model of SimFusion, termed SimFusion+, as follows:

S =
A · S ·AT

‖A · S ·AT ‖2
, (1)

where S is called the Unified Similarity Matrix (USM) whose
(i, j)-entry represents the similarity score between object i and j.

The uniqueness and existence of the SimFusion+ solution S to
Eq.(1) can be established by the power iteration [14, pp.381]. A
detailed proof will be shown in Proposition 1 (Section 3).

The revised notion of SimFusion utilizes UAM (rather than
URM) to represent data relations because UAM can effectively
avoid divergent and trivial similarity solutions while well preserv-
ing the intuitive reinforcement assumption of the original mod-
el [1]. We observe that the root cause of the flawed solution to
the original SimFusion is the “row normalization” of URM. Thus,
by using UAM, we have an opportunity to postpone the operation
of “row normalization” in a delayed fashion. To this end, we utilize
the matrix 2-norm ‖A · S ·AT ‖2 to squeeze similarity scores in
S into [0, 1]. The obtained similarity results in USM can not only
prevent the divergence issue and the trivial solution but effectively
capture the reliability of the similarity evidence between data ob-
jects. For instance, the SimFusion+ USMs in Examples 1 and 2 are
nontrivial and intuitively explainable.

3. COMPUTING SIMILARITY VIA DOMI-
NANT EIGENVECTOR

A conventional approach for finding the SimFusion+ solution S
to Eq.(1) is to employ the following fixed-point iteration: 1

S(k+1)
=

A · S(k) ·AT

‖A · S(k) ·AT ‖2
. (2)

However, as the matrix multiplication may contain O(n3
) opera-

tions, it requires O(kn3
) time and O(n2

) space to compute Eq.(2)
for k iterations, which may be quite expensive.

In this section, we study the optimization techniques to improve
the computation of SimFusion+. Our key observation is that Sim-
Fusion+ computation can be converted into finding the dominant
eigenvector of the UAM A. The idea is to calculate the dominant
eigenvector of A once, offline, for the preprocessing, and then it
can be effectively memorized to compute similarity at query time.

We first revisit the definition of the dominant eigenvector.

DEFINITION 1 ( [14, P.379]). The dominant eigenvector of
the X is an eigenvector, denoted by σmax(X), corresponding to
the eigenvalue λ of the largest absolute value of X such that

X · σmax(X) = λ · σmax(X) with ‖σmax(X)‖2 = 1.

The dominant eigenvector of the UAM can be utilized for speeding
up SimFusion+ computation based on the following proposition.

PROPOSITION 1. Let A be the UAM of network G = (D,R).
The SimFusion+ matrix S can be computed as

[S]i,j = [σmax(A)]i × [σmax(A)]j , (3)

where [�]i,j denotes the (i, j)-entry of a matrix, and [�]i denotes
the i-th entry of a vector.

PROOF. We shall use the knowledge of Kronecker product (⊗)
and vec operator (see [15, p.139] for a detailed description).

(i) We first prove that vec(S) = σmax(A⊗A).

Taking vec(�) on both sides of Eq.(2) and applying Kronecker

property vec(BCDT
) = (D⊗B) · vec(C) [15, p.147] yield

vec(S(k+1)
) =

(A⊗A) · vec(S(k)
)

‖(A⊗A) · vec(S(k))‖2
. (4)

1Note that the uniqueness of the SimFusion+ solution guarantees

that S is insensitive to the initial guess S(0). For convenience, we

choose S(0)
= 1 of all 1s, which can be interpreted as “initially, no

other vertex-pair is presumably more similar than itself”.
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Let x(k) � vec(S(k)
) and M � A ⊗ A. Then Eq.(4) having

the form x(k+1)
= Mx(k)/‖Mx(k)‖2 fits the power iteration

paradigm [14, pp.381], which follows that the sequence {x(k)}
converges to the dominant eigenvector of M. This in turn implies

vec(S) � lim
k→∞

vec(S(k)
) = σmax(A⊗A).

One caveat is that the convergence of vec(S(k)
) is ensured by the

positivity of A⊗A [16, p.508] 2. This is true because A is positive
and the self-Kronecker product of two positive matrices preserves
positivity.

(ii) We next show that σmax(A⊗A) = σmax(A)⊗ σmax(A).

Since A · σmax(A) = λ · σmax(A), it follows that

(A⊗A) · (σmax(A)⊗ σmax(A)) = (Aσmax(A))⊗ (Aσmax(A))

= (λ · σmax(A))⊗ (λ · σmax(A)) = λ2 · (σmax(A)⊗ σmax(A)).

This implies that the dominant eigenvector of A⊗A is actually the
self-Kronecker product of the dominant eigenvector of A. Hence,

vec(S) = σmax(A⊗A) = σmax(A)⊗ σmax(A).

It can be noticed that the (i, j)-entry of the matrix S (i.e., the
((i−1)×n+j)-th entry of the vector vec(S)) is exactly the product
of the i-th and j-th entries of σmax(A). Thus, Eq.(3) holds.

Proposition 1 provides the efficient technique for accelerating
SimFusion+ computation. The central point in optimizing S com-
putation is that only matrix-vector multiplication is used for com-
puting σmax(A). Once calculated, the vector σmax(A) is memo-
rized and thus will not be recomputed when subsequently required,
as opposed to the naive matrix-matrix multiplication in Eq.(2).

EXAMPLE 4. Consider the graph G1 in Fig.1 with its UAM A
already computed in Example 3. The dominant eigenvector of A is

σmax(A) = [.431 .673 .451 .322 .232]
T
.

Then using Eq.(3) for computing S yields

S =

⎡
⎢⎢⎢⎣

.186 .290 .194 .139 .100

.290 .453 .304 .217 .156

.194 .304 .203 .145 .105

.139 .217 .145 .104 .075

.100 .156 .105 .075 .054

⎤
⎥⎥⎥⎦ .

Note that σmax(A) is calculated only once for the preprocessing
and can be used for computing any entry of S at query time, e.g.,

[S]1,2 = [σmax(A)]1 × [σmax(A)]2 = .431× .673 = .290.

[S]1,3 = [σmax(A)]1 × [σmax(A)]3 = .431× .451 = .194.

Regarding computational complexity, our approach only needs
O(km) preprocessing time and O(n) space to compute σmax(A)

by using the following power iteration [14, pp.381]:

ξ(0)
= e, ξ(k+1)

=
Aξ(k)

‖Aξ(k)‖2 =
Ãξ(k)

+ γ(k)e

‖Ãξ(k) + γ(k)e‖2
, (5)

where e � (1, · · · , 1)T ∈ R
n and γ(k) � 1

n2

∑n
i=1 [ξ

(k)
]i.

3 The

existence and uniqueness of the dominant eigenvector σmax(A) is

2According to the Perron-Frobenius theorem [14, p.383], the posi-
tivity of A⊗A ensures that there exists a unique dominant eigen-
vector of A⊗A associated with its eigenvalue being strictly greater
in magnitude than its other eigenvalues.
3The correctness of Eq.(5) can be proved as follows:

Aξ(k)
= (Ã+

1
n2 ee

T
)ξ(k)

= Ãξ(k)
+γ(k)e with γ(k)

=
1
n2 e

T ξ(k).

guaranteed by the combination of Perron-Frobenius theorem [14,
p.383] and the positivity of A. Thus, by applying the power

method, the sequence {ξ(k)} converges to σmax(A). Then, with
σmax(A) being memorized, only O(1) time is required at query
stage for computing each entry of S via Eq.(3). Indeed, due to
S symmetry, only n(n + 1)/2 entries [S]i,j (i ≤ j) need to be
computed. In contrast to the O(kn3

) time and O(n2
) space of the

conventional iterations, our approach is a significant improvement
achieved by σmax(A) computation.

Our method of memorizing σmax(A) can extra accelerate Sim-
Fusion+ computation when only a small portion of similarity val-
ues of S need to be computed. Specifically, for certain applica-
tions like K-nearest neighbor (KNN) queries, given a vertex i as a
query, one needs to retrieve the top-K ( n) most similar vertices
in a graph by computing the i-th row of S. Before Proposition 1
is introduced, computing the similarity of only one vertex-pair still
requires O(kn3

) time. In contrast, using the memorized σmax(A),
we only need O(1) time for computing a single entry of S at query
time. In fact, for KNN queries, after σmax(A) is memorized with
its entries sorted in an descending order for the preprocessing, it on-
ly takes constant time to retrieve the top-K results at query stage.

Proposition 1 also gives an interesting characterization of the
SimFusion+ matrix.

COROLLARY 1. The SimFusion+ matrix S is a rank 1 matrix.

PROOF. Applying Eq.(3) to S, we obtain that for any two rows
of S, ∃ ω = [σmax(A)]x/[σmax(A)]y s.t. [S]x,∗ = ω × [S]y,∗.
Hence, the rank of S is 1.

4. ESTIMATING SIMFUSION+ WITH BET-
TER ACCURACY

After the dominant eigenvector σmax(A) has been suggested to
speed up SimFusion+ computation, the algorithm presented in this
section can guarantee more accurate similarity results.

The main idea of our approach is to leverage an orthogonal sub-
space for “upper-triangularizing” the UAM A (n × n dimension)
into a small matrix Tk (k × k dimension) with k  n. Due to Tk

small size and almost “upper-triangularity”, computing the domi-
nant eigenvector σmax(Tk) is far less costly than straightforward-
ly computing σmax(A). We show that the choice of k provides a
user-controlled accuracy over the similarity scores. The underly-
ing rationale is that the dominant eigenvector of a matrix can be
well-preserved by an orthogonal transformation.

We first use the technique of the Arnoldi decomposition [17] to
build an order-k orthogonal subspace for the UAM A.

LEMMA 1 ( [17, PP.25-33]). Let A be an n × n matrix.
Then, for every k = 1, 2, · · · , we have the following results.

(a) There exists a unique k × k almost triangular matrix Tk s.t.

VT
k AVk = Tk, (6)

where Vk = [v1 v2 · · · vk] is an n × k matrix consisting of k
orthonormal column-vectors vi ∈ R

n
(i = 1, · · · , k).

(b) The difference between AVk and VkTk is a zero matrix
except the last column. Precisely, there exist a small scalar δk and
an orthonormal vector vk+1 ∈ R

n such that

AVk −VkTk = δkvk+1e
T
k , (7)

where ek = (0, · · · , 0, 1)T ∈ R
k is a unit vector.

As depicted in Fig.3, by using the upper-triangularization pro-
cess 4, the matrix A ∈ R

n×n can be transformed into the smal-
l almost triangular Tk ∈ R

k×k by the n × k orthonormal ma-

4From the computational viewpoint, Vk,Tk,vk and δk in Eq.(7)
can be obtained by an algorithm in our later developments.

368



·V
T

k
· VkA = Tk

n k

k

k

n

k

nn

R
n×n → R

k×k

almost upper

n ≈ Vk

k

n

k·

σmax(A)

σmax(Tk)

triangular

Figure 3: Upper Triangular Process of UAM
trix Vk for every iteration. As k increases, Tk+1 can be iter-
atively obtained by bordering the matrix Tk at the last iteration
(i.e., Tk+1 = [Tk �

� � ]), and Vk+1 by augmenting the matrix Vk at
the last iteration with the vector vk+1 (i.e., Vk+1 = [Vk vk+1]).
When k = rank(A), it follows that δk = 0.

EXAMPLE 5. Consider the network G1 in Fig.1 and its UAM
A = Ã+ 1/52 in Example 3. For k = 3, ∃ V3 = [v1 v2 v3] ∈
R

5×3 mapping A ∈ R
5×5 into T3 ∈ R

3×3 s.t. T3 = VT
3 AV3,

where

Ã =

⎡
⎢⎢⎢⎢⎢⎣

1
2

1
6

1
6

1
3

0

1
6

7
12

7
12

1
8

1
8

1
6

7
12

0
1
8

1
8

1
3

1
8

1
8

0
5
12

0
1
8

1
8

5
12

0

⎤
⎥⎥⎥⎥⎥⎦
, T3 =

⎡
⎣
1.08 .298 0

.298 .190 .359

0 .359 −.083

⎤
⎦ , V3 =

⎡
⎢⎢⎢⎢⎣

.447 .125 −.089

.447 .750 .044

.447 −.125 .710

.447 −.125 −.696

.447 −.625 .032

⎤
⎥⎥⎥⎥⎦
.

∃ δ3 = .231,v4 = [−.881 .328 .137 .280 .135]T s.t. Eq.(7) holds.
(see Example 7 for a detailed iterative process)

In light of Lemma 1, we next provide an error estimate for Sim-
Fusion+ similarity when using σmax(Tk) to compute σmax(A).

Error Estimation. We define a k-approximation similarity ma-

trix Ŝk over a low-order parameter k:

[Ŝk]i,j = [Vk · σmax(Tk)]i × [Vk · σmax(Tk)]j , (8)

where Vk and Tk can be obtained from Lemma 1.
To differentiate Ŝk from S, we shall refer to S as exact similarity.

The following estimate for the approximate similarity Ŝk with
respect to the exact S can be established.

PROPOSITION 2. For every k = 1, 2, · · · , the following esti-
mate holds:

‖Ŝk − S‖2 ≤ εk, (9)

where

εk = 2× |δk × [σmax(Tk)]k|, (10)

and δk is a small scalar given in Eq.(7); [σmax(Tk)]k is the k-th
entry of the dominant eigenvector of Tk.

(Please refer to the Appendix for a detailed proof.)
The parameter εk is intended as a user control over the differ-

ence between the approximate and the exact similarity matrices,
and hence εk is generally chosen by a user. Provided that k is se-
lected to satisfy Eq.(10), Proposition 2 states that the gap between
the approximate and the exact similarity scores does not exceed εk.

EXAMPLE 6. Consider the network G1 in Fig.1 and the matrix
T3,V3, δ3 given in Example 5. For k = 3, we have

σmax(T3) = [.945 .316 .089]T .

Therefore, V3 · σmax(T3) = [.454 .663 .447 .321 .228]T . Then
applying Eq.(8) and the exact S in Example 4 yields

Ŝ3 = {Using Eq.(8)} =

⎡
⎢⎢⎢⎢⎢⎣

.206 .301 .203 .146 .103

.301 .440 .296 .213 .151

.203 .296 .199 .143 .102

.146 .213 .143 .102 .073

.103 .151 .102 .073 .051

⎤
⎥⎥⎥⎥⎥⎦

Ŝ3 − S = {Using S in Example 4} =

.01×

⎡
⎢⎢⎢⎢⎢⎣

2.02 1.09 .83 .67 .34

1.09 −1.33 −.75 −.41 −.51

.83 −.75 −.40 −.21 −.30

.67 −.41 −.21 −.09 −.17

.34 −.51 −.30 −.17 −.20

⎤
⎥⎥⎥⎥⎥⎦

Algorithm 1: SimFusion+ (G, ε, (u, v))
Input : Network G = (D,R), accuracy ε, vertex pair (u, v).
Output: Similarity score s(u, v).

1 compute the matrix Ã ∈ R
n×n of the UAM A in G ;

2 initialize e ← (1, 1, · · · , 1)T ∈ R
n, and v1 ← 1√

n
e ;

3 foreach iteration k = 1, 2, · · · do
4 initialize the auxiliary vector w ← Ãvk +

1
n2

(eTvk)e ;

5 for i = 1, 2, · · · , k − 1 do
6 compute the almost upper triangular matrix Tk ∈ R

k×k :

[Tk]i,k−1 ← vT
k ·w ;

7 orthogonalize w s.t. w⊥span{v1, · · · ,vk} :
w ← w − [Tk]i,k−1 · vk−1 ;

8 compute the residual scalar δk ← ‖w‖2 ;
9 find the dominant eigenvector σmax(Tk) ;

10 estimate the error εk ← 2× |δk × [σmax(Tk)]k|;
11 if εk ≤ ε then exit for ;
12 compute the residual vector vk+1 :

w ← w/δk and vk+1 ← w ;
13 free δk, σmax(Tk) ;

14 free w,Tk,vk+1, δk ;
15 compute the approximate dominant eigenvector σ̂max(A)

σ̂max(A) ← [v1|v2| · · · |vk] · σmax(Tk) ;
16 free v1, · · · ,vk, σmax(Tk) ;
17 compute the approximate similarity score of (u, v)

ŝ(u, v) ← [σ̂max(A)]u × [σ̂max(A)]v ;
18 return ŝ(u, v) ;

We note that the gap between S and Ŝk for k = 3 is actually

‖Ŝ3 − S‖2 = .0257,

which is smaller than εk (using Eq.(10) with δ3 = .231)

εk = 2× |.231× .089| = .0411.

Notice that if k = rank(A) ( n), 5 then εk = 0 and the k-

approximation similarity matrix Ŝk becomes the conventional ex-
act USM S. From this perspective, the k-approximation similarity
can be regarded as a generalization for the conventional similarity.

One of the possible ways of choosing an appropriate low order
k for achieving the desired accuracy ε is to calculate the estimation
error εk from Eq.(10) in an a-posteriori fashion after each iteration
k = 1, 2, · · · . 6 The iterative process stops once εk ≤ ε. Due
to εk decreasing monotonicity, such k is the minimum low order

s.t. ‖Ŝk − S‖2 ≤ ε. More concretely, the residual δk in Eq.(7)
(Lemma 1) approaches 0 as k is increased to n, which implies

εk = 2× |δk| × |[σmax(Tk)]k| ≤ 2× |δk|.
Hence, the condition εk ≤ ε (with εk being obtained from Eq.(10))
can be used as a stopping criterion for determining the minimum
low order k needed for the desired accuracy ε.

Capitalizing on Eq.(8) and Proposition 2, below we provide an
algorithm for SimFusion+ computation with accuracy guarantee.

Algorithm. SimFusion+ is shown in Algorithm 1. It takes as
input a network G = (D,R), a desired accuracy ε, and a vertex
pair (u, v); it returns the approximate similarity ŝ(u, v) such that
|ŝ(u, v)− s(u, v)| ≤ ε with s(u, v) being the exact value.

Before illustrating the algorithm, we first present the notation-
s it uses. (a) [Tk]i,j is the (i, j)-entry of the matrix Tk, and
[σmax(Tk)]i is the i-th entry of the eigenvector σmax(Tk). (b)

5When k is set to argmink{δk = 0} (which is practically much
smaller than rank(A)), εk = εk+1 = · · · = εn = 0.
6As increased by 1 per iteration, the low order parameter k equals
the iteration number.
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#-line time memory operation

4 O(m) O(n) sparse matrix-vector multiplication

6 O(n) O(n) vector dot product

7 O(n) O(n) vector addition and scalar multiplication

8 O(n) O(n) computing the 2-norm of a vector

9 O(k) O(k) using the power iteration

10 O(1) O(k) getting the vector component

12 O(n) O(n) scaling the vector

Table 1: Running Time & Memory Space Required per Itera-
tion for Algorithm SimFusion+ in Lines 4-12

span{v1, · · · ,vk} is the set of all linear combinations of vectors
v1, · · · ,vk. (c) σ̂max(A) denotes the approximation of σmax(A).

The algorithm SimFusion+ works as follows. It first computes
A and initializes v1 (lines 1-2). Using A, it then computes Tk

(lines 4-6), δk (lines 7-8) and vk+1 (line 12) by orthonormaliz-
ing the vector Avk with respect to v1, · · · ,vk for every itera-
tion; SimFusion+ also calculates σmax(Tk) (line 9), and utilizes
δk and σmax(Tk) to estimate the error εk (line 10). The process
(lines 3-13) iterates until εk ≤ ε, i.e., the minimum low order k
is found s.t. εk meets the desired accuracy ε (line 11). For such
k, the matrix-vector product [v1|v2| · · · |vk] · σmax(Tk) is used
to approximate the dominant eigenvector of A, and is memorized
to compute σ̂max(A) (line 15). The product of the u-th and v-th
entries of σ̂max(A) is collected in ŝ(u, v), which is returned as the
estimated similarity between vertex u and v (lines 17-18).

EXAMPLE 7. We show how SimFusion+ estimates the simi-
larity in G1 of Example 1. Given the desired accuracy ε = 0.05,
SimFusion+ first initializes the UAM A (in Example 3). It then
iteratively computes Tk,vk+1, δk, σmax(Tk) and εk as follows:

k Tk vk+1 δk σmax(Tk) εk

0 − [.447 .447 .447 .447 .447]T − − −
1 [1.08] [.125 .750 −.125 −.125 −.625]

T
.298 [1] .596

2
[
1.08 .298

.298 .190

]
[−.089 .044 .710 −.697 .032]

T
.359

[
.957

.290

]
.208

3

⎡
⎣
1.08 .298 0

.298 .190 .359

0 .359 −.083

⎤
⎦ [−.881 .329 .137 .280 .135 .231]

T
.231

⎡
⎢⎣
.945

.316

.090

⎤
⎥⎦ .041

The iteration terminates at k = 3 because the estimation error
ε3 = .041 ≤ ε (= .05). SimFusion+ then memorizes σ̂max(A) =

[v1|v2|v3] · σmax(T3) and returns the similarity ŝ(u, v), i.e., the
(u, v) entry of Ŝ3, as shown in Example 6.

We next analyze the time and space complexity of SimFusion+ .

Running Time. The algorithm consists of two phases: prepro-
cessing (lines 1-16), and on-line query (lines 17-18).

(i) For the preprocessing, (a) it takes O(m) time to compute Ã
(line 1) and O(n) time to initialize v1 (line 2). (b) The total time
of the for loop is analyzed in Table 1 (line 3-13), which is bounded
by O(m+ 4n+ k + 1) for each iteration. (c) It takes O(kn) time
to compute σ̂max(A) (line 15). Hence, the total time in this phase
is O(m+k(m+4n+k+1)+kn), which is bounded by O(km).

(ii) The on-line query phase (lines 17-18) can be done in constant
time for each query by virtue of σ̂max(A) memorization.

Combining (i) and (ii), the query time of SimFusion+ is in
O(1), plus an O(km)-time precomputation.

Memory Space. (i) In the precomputation, (a) initializing Ã and

v1 takes O(n) space (lines 1-2). (b) For each iteration k, the s-
pace complexity is analyzed in Table 1, which is bounded by O(n)
(line 3-13). (c) As the for loop terminates, only v1, · · · ,vk and
σmax(Tk) are kept in memory, yielding O(kn + k) space; the
other intermediate results can be freed (line 14). (d) Computing
σ̂max(A) takes O(k) space (line 15). Once computed, σ̂max(A) is

memorized, yielding O(n) space; v1, · · · ,vk and σmax(Tk) are
not used subsequently and thus can be freed (line 16).

(ii) For the on-line query (lines 17-18), ŝ(u, v) can be computed
in O(n) space with σ̂max(A) memorized.

Taking (i) and (ii) together, the total space is bounded by O(kn).

5. INCREMENTAL SIMFUSION+
For certain applications like social networks, graphs are fre-

quently modified [9]. It is too costly to recalculate similarities ev-
ery time when edges in the graphs are updated. This motivates us to
study the following incremental SimFusion+ estimating problem.

Given a network G, the eigen-information in G, and a list Ḡ of
updates (edge deletions and insertions) to G, it is to compute the
new USM S′ in G′. Here G′ is the updated G, denoted by G + Ḡ.

The idea is to maximally reuse the eigen-information in G when
computing S′. The observation is that Ḡ is often small in practice;
hence, S′

(= S+ S̄) is slightly different from S. It is far less costly
to find the change S̄ to the old S than to recalculate the new S′ from
scratch. The main result in this section is the following.

THEOREM 1. The incremental SimFusion+ estimating problem
is solvable in O(δn) time and O(n) space for every vertex pair,
where δ is the number of edges affected by the update Ḡ.

As we shall see later, δ captures the size of areas in a graph G that
is affected by updates Ḡ; hence δ is much smaller than n when Ḡ is
small. That is, the incremental SimFusion+ can be performed more
efficiently than computing similarities in G′. This suggests that we
compute the eigenvector of A in G once, and then incrementally
compute SimFusion+ when G is updated.

To prove Theorem 1, we first introduce a notion of incremental
UAM. We then devise an incremental algorithm for handling batch
edge updates with the desired bound.

5.1 Incremental Unified Adjacency Matrix
Consider an old network G = (D,R) and a new G′

= (D,R′
).

Incremental UAM. The matrix Ā is said to be the incremental
UAM of the update Ḡ (= G′ − G, i.e., a list of edge insertions and
deletions) iff Ā = A′ −A, where A and A′ are the UAMs of the
old network G and the new G′, respectively.

Intuitively, the nonzero entries of Ā can identify the edges in
G that is affected by updates Ḡ. Typically, Ā is a sparse matrix
when δ is small. Indeed, the number of nonzero entries in Ā is
bounded by O(δn), which represents the costs that are inherent to
the incremental problem itself, i.e., the amount of work absolutely
necessary to be performed for the problem.

Using Ā, we next provide a strategy for incrementally comput-
ing SimFusion+ similarity.

PROPOSITION 3. Given a network G and an update Ḡ to G, let
A be the UAM of G, and Ā the incremental UAM of Ḡ. Then the
new USM S′ of the new network G′

(= G+ Ḡ) can be computed as

[S′
]i,j = [ξ′

]i · [ξ′
]j with [ξ′

]i = [ξ1]i +
∑n

p=2 cp × [ξp]i

cp =
ξT
p ·η

αp−α1
and η = Ā · ξ1. (11)

where ξp is the eigenvector of A corresponding to the eigenvalue
αp with ‖ξp‖2 = 1, and ξ1 is the dominant eigenvector of A.

(Please refer to the Appendix for a detailed proof.)
The main idea in incrementally computing S′ is to reuse Ā and

the eigen-pair (αp, ξp) of the original A. From the computation-
al perspective, memorization techniques can be applied to Eq.(11)
for an extra speed-up in computing [ξ′

]i. Once η is computed, it
can be memorized for computing c2, · · · , cn. When c2, · · · , cn are
calculated, they can be memorized for computing [ξ′

]i and [ξ′
]j .
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Algorithm 2: IncSimFusion+ (G,A, (αp, ξp), Ḡ, (u, v))
Input : Network G = (D,R), the old UAM A of G,

eigen-pairs (αp, ξp) of A, the update Ḡ to G, query (u, v).
Output: New similarity score s′(u, v).

1 compute the incremental UAM Ā for the update Ḡ :

Ā ← UpdateA (G,A, Ḡ) ;
2 initialize a ← [ξ1]u, b ← [ξ1]v ;

3 compute η ← Ā · ξ1 ;

4 free Ā, ξ1;
5 for p ← 2, · · · , n do
6 compute t ← ξTp · η, cp ← t/(αp − α1) ;

7 compute a ← a+ cp × [ξp]u, b ← b+ cp × [ξp]v ;
8 free αp, ξp ;

9 free η, t ;
10 compute s′(u, v) ← a× b ;
11 return s′(u, v) ;

5.2 An Incremental Algorithm for SimFusion+
We next prove Theorem 1 by providing an incremental algorith-

m, referred to as IncSimFusion+, for handling δ edge updates.
Algorithm. The algorithm accepts as input a network G, the

UAM A of G, the eigen-pairs (αp, ξp) of A, an update Ḡ (a list of
edge insertions and deletions) to G, and a vertex pair (u, v).

It works as follows. (a) IncSimFusion+ first computes the incre-
mental UAM Ā for the update Ḡ by using procedure UpdateA (line
1). UpdateA incrementally finds all the changes to the old UAM
A in the presence of a list of edge updates to G. (b) For the given
vertex pair (u, v), IncSimFusion+ initializes a and b based on the
dominant eigenvector ξ1 of A (line 2) ; it computes η once and
memorizes η for computing c2, · · · , cn (line 3). (c) Once com-
puted, c2, · · · , cn are memorized for calculating the u-th and v-th
entries of the dominant eigenvector ξ′ of the new UAM,which is
collected in a and b, respectively (lines 4-9). IncSimFusion+ re-
turns a× b as the similarity ŝ(u, v) (lines 10-11).

Edge Update. The procedure UpdateA is used for incremental-
ly updating the UAM A by virtue of Ḡ. An update Ḡ is represented
as a sequence of 2-tuples (D × D, op) that records every single
action of the edge update, in which D × D is a set of δ edges to
be inserted or deleted, and op is either “+” (edge insertion) or “−”
(edge deletion). For instance, after the edge (P3, P5) is added and
(P1, P2) is removed from G1 in Fig.1, the update Ḡ is denoted by

Ḡ = {(P3, P5,+), (P1, P2,−)}.
UpdateA identifies the incremental Ā in two phases. (i) It first

finds the affected nodes and the data spaces for each edge update in
Ḡ using a breadth-first search. (ii) It then updates the corresponding
entries of Ā based on the following. We abuse the notation ND(u)
to denote all the neighbors of object u in the data space D, i.e.,

ND(u) = {v ∈ D| (u, v) ∈ R}.
Based on the partition of the entire data space D =

⋃N
i=1 Di with

ni = |Di|, the incremental UAM Ā can be accordingly partitioned
into N2 submatrices Āi,j .

• For each edge insertion (u, v,+) ∈ Ḡ with u ∈ Di and

v ∈ Dj , (i) we set all entries of [Āi,j ]u,� to −λi,j

nj
except

for their v-th entries to 0 if NDj (u) = ∅; (ii) we set all

entries of [Āj,i]�,v to −λj,i

ni
except for their u-th entries to 0

if NDi(v) = ∅; (iii) we set [Āi,j ]u,v = λi,j otherwise.

• For each edge deletion (u, v,−) ∈ Ḡ with u ∈ Di and

v ∈ Dj , (i) we set all entries of [Āi,j ]u,� to
λi,j

nj
except

for their v-th entries to 0 if |NDj (u)| = 1; (ii) we set all

entries of [Āj,i]�,v to
λj,i

ni
except for their u-th entries to 0 if

|NDi(v)| = 1; (iii) we set [Āi,j ]u,v = −λi,j otherwise.

Complexity. The algorithm IncSimFusion+ is in O(δn) time
and O(n) space for handling δ edge updates in Ḡ. (i) The pro-
cedure UpdateA can be bounded by O(δn) time and O(n) space
(line 1). For each edge update in Ḡ, it is in at most O(n) time
and O(n) intermediate space to update the corresponding entries
of Ā. (ii) Computing η requires an O(δ)-time and O(n)-space
sparse matrix-vector multiplication Ā · ξ1 (line 3). (iii) For every
cp, it takes O(δ) time and O(n) space to calculate ξT

p · η (line 6)
since η is a sparse vector with only O(δ) nonzeros; and c2, · · · , cp
are memorized for computing [ξ′

]i, which requires O(δn) time and
O(n) space in total. (iv) Computing a, b and s′(u, v) needs con-
stant time and space (lines 7 and 10). Thus, combining (i)-(iv) ,
the total complexity is bounded by O(δn) time and O(n) space.

EXAMPLE 8. We show how IncSimFusion+ works. Consider
the graph G1 in Fig.1 with its UAM A in Example 3. Suppose two
edges (P1, P2) and (P2, P1) are removed from G1. The new USM
S′ is updated as follows.

First, UpdateA is invoked for precomputing the incremental Ā
and the eigen-pairs (αp, ξp) of A in an off-line fashion:

Ā =

⎡
⎢⎢⎢⎢⎢⎣

0 − 1
6
0 0 0

− 1
6

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

p αp ξp cp

1 1.184 [.431 .673 .451 .322 .232]
T −

2 .503 [.708 −.522 −.242 .388 .132]
T

.062

3 -.480 [−.256 −.020 .095 .716 −.641]
T

-.018

4 -.366 [−.021 −.507 .853 −.119 .017]
T

-.025

5 .242 [.497 .127 .037 −.467 −.719]
T

.069

IncSimFusion+ next computes η from Ā and ξ1 (line 3):

η = Ā · ξ1 = [−.112 −.072 0 0 0]
T
.

Then, cp can be derived from the memorized η and (αp, ξp), e.g.,

c2 = ξT
2 · η/(α2 − α1) = −.0419/(.503− 1.184) = .062,

c3 = ξT
3 · η/(α3 − α1) = .030/(−.480− 1.184) = −.018.

Once computed, c2, · · · , c5 are memorized for calculating [ξ′
]� :

ξ′
= ξ1 +

∑5

p=2
cp × ξp = [.327 .703 .485 .326 .266]

T
.

Hence, applying [ξ′
]� to the new USM S′ (line 10) yields

S′
=

⎡
⎢⎢⎣

.107 .230 .159 .107 .087

.230 .494 .341 .230 .187

.159 .341 .235 .158 .129

.107 .230 .158 .107 .087

.087 .187 .129 .087 .071

⎤
⎥⎥⎦ .

6. EXPERIMENTAL EVALUATION
In this section, a comprehensive empirical study of the proposed

similarity estimating methods is presented.

6.1 Experimental Setting
Datasets. We used three real-life datasets and a synthetic

dataset.
(1) MSN Data. 7 The MSN search log data were taken from

“Microsoft Live Labs: Accelerating Search in Academic Re-
search”. This dataset was also used in the prior work [1]. It contains
about 15M user queries from the United States in May 2006 and the
corresponding clickthrough URLs. The dataset was formatted by
showing each query, the URLs of the associated web pages, and the
number of clickthroughs by query, as depicted below.

7
http://research.microsoft.com/ur/us/fundingopps/RFPs/Search_2006_RFP.aspx

371



Query URL Clicks URL Clicks
Shopping shopping.yahoo.com 2,375 www.ebay.com 1,859

The 15K most common queries in the search log were chosen, and
the hyperlinks from the contents of the top 32K popular web pages
were parsed. We built a network G = (D,R), which consists of a
web page space Dw and a query space Dq .

(2) DBLP Data. 8 This dataset was derived from a snapshot of
the computer science bibliography (from 2001 to 2010). We select-
ed the research papers published in the following conference pro-
ceedings: “SIGIR”, “KDD”, “VLDB”, “ICDE”, “SIGMOD” and
“WWW”. Choosing a time step of two years, we built 5 DBLP web
graphs Gi (i = 1, · · · , 5) with the sizes listed below:

G1: 01-02 G2: 01-04 G3: 01-06 G4: 01-08 G5: 01-10
|D| 1,838 3,723 5,772 9,567 12,276
|R| 7,103 14,419 29,054 45,310 64,208

For each graph Gi = (Di,Ri), two data spaces were used: paper

space Di
p and author space Di

a.

(3) WEBKB Data. 9 This dataset collects web pages from the
computer science departments of four universities: Cornell (CO),
Texas (TE), Washington (WA) and Wisconsin (WI). It was also
used in the previous work [13] for link-based similarity estima-
tion. For each university, a network GUi = (Di,Ri) was built, in
which (a) the web pages in Di were classified into 7 categories (da-
ta spaces): student, faculty, staff, department, course, project and
others, and (b) the UAM of Ri represented the hyperlink adjacency
matrix. The sizes of these networks are as follows:

U1: CO U2: TE U3: WA U4: WI

|D| 867 827 1,263 1,205

|R| 1,496 1,428 2,969 1,805

(4) Synthetic Data. The data were produced by the C++ boost
graph generator, with 2 parameters: the number of vertices and
the number of edges. Varying the graph parameters, we used this
dataset to represent homogenous networks for an in-depth analysis.

Compared Algorithms. The following algorithms were imple-
mented in C++: (1) SimFusion+ and IncSimFusion+ ; (2) SF,
a SimFusion algorithm via matrix iteration [1]; (3) CSF, a variant
of SF, which leverages PageRank stationary distribution [13]; (4)
SR, a SimRank algorithm via partial sums function [8]; (5) PR, a
Penetrating-Rank algorithm encoding both in- and out-links [4].

Evaluation Metrics. For evaluating the performance of the
algorithms, we used Normalized Discounted Cumulative Gain
(NDCG) metrics [13]. The NDCG at a rank position p is defined as

NDCGp =
1

IDCGp

∑p
i=1

2ranki−1
log2 (1+i)

, where ranki is the graded rele-

vance of the similarity result at rank position i, and IDCGp is the
normalization factor to guarantee that NDCG of a perfect ranking
at position p equals 1.

Twelve IT experts were hired to judge the similarity of the five
algorithms. The final judgment was rendered by a majority vote.

All experiments were run on a machine with a Pentium(R) Dual-
Core (2.00GHz) CPU and 4GB RAM, using Windows Vista. The
algorithms were implemented in Visual C++. Each experiment was
repeated over 5 times, and the average is reported here.

6.2 Experimental Results

6.2.1 Accuracy
We first evaluated the accuracy of SimFusion+ vs. SF, CSF,

SR and PR in estimating the similarity, using real-life data.
We randomly chose 50 queries and 40 pages from the MSN query

log, and compared the average NDCG10 (and NDCG30) of the five

8http://www.informatik.uni-trier.de/˜ley/db/
9http://www.cs.cmu.edu/afs/cs/project/theo-20/www/data/

SF+ SF CSF SR PR

Query Webpage
0

0.2

0.4

0.6

0.8

A
V
G

N
D
C
G

1
0

Query Webpage
0

0.2

0.4

0.6

0.8

A
V
G

N
D
C
G

3
0

Figure 4: Comparing SimFusion+ with other ranking algo-
rithms for the average NDCG10 and NDCG30 on MSN data
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Figure 5: The detailed query-by-query and page-by-page com-
parisons for NDCG10 on MSN data

algorithms. The results are shown in Figure 4, in which the x-axis
categorizes the objects according to query and web page. We find
the following. (i) In most cases, SF seems hardly to get sensible
similarities because with the increasing number of iterations, all
the similarities of SF will asymptotically approach the same val-
ue. This verifies the convergence issue of the original model [1].
(ii) When SF did not fail, SimFusion+ always gave more accurate
estimation on average than the other algorithms. For instance, for
the top 10 queries, the average NDCG10 of SimFusion+ (0.79) is
10x better than SF (0.07), 39% better than CSF (0.57), 58% bet-
ter than SR (0.50), and 15% better than PR (0.69), whereas for
the top 30 web pages, the average NDCG30 of SimFusion+ (0.64)
is 12x better than SF (0.05), 45% better than CSF (0.44), 33%
better than SR (0.48), and 21% better than PR (0.53). This is be-
cause substituting UAM for URM effectively avoids divergent or
trivial solutions, thus improving the quality and reliability of Sim-
Fusion+ similarity, as expected.

To further verify the accuracy, we randomly selected another 15
queries and 15 web pages from MSN data. In Figure 5, the query-
by-query and page-by-page comparisons are shown for NDCG10

of the five algorithms. We observe that (i) for 12 out of 15 queries,
SimFusion+ achieved highest accuracy of the five algorithms;for
13 out of 15 web pages, SimFusion+ outperformed the other al-
gorithms in its accuracy, and was slightly less accurate than PR for
only 2 pages. (ii) For all the queries and web pages, SimFu-
sion+ showed the best accuracy performance on average, PR the
second, and SF the worst. This is because SimFusion+ uses UAM
to encode the intra- and inter-relations in a comprehensive way,
thus making the results unbiased.

We also evaluated the performance of SimFusion+ on D-
BLP and WEBKB datasets. In DBLP experiments, 20 authors
were randomly chosen from G1:01-02, G3:01-06 and G5:01-10 da-
ta, respectively. We compared the similarity of the top 10 authors
in Gi (i = 1, 3, 5) estimated by the five algorithms. The results
of the average NDCG10 are depicted in Figure 6. It can be seen
that SimFusion+ again achieved better accuracy on DBLP data.
For instance, SimFusion+ (0.88) on G3:01-06 was 13x better than
SF (0.06), 95% better than CSF (0.45), 26% better than SR (0.7),
and 19% better than PR (0.74). In WEBKB experiments, we com-
puted NDCG within 10 web pages for each object in each universi-
ty data (CO,TE,WI,WA) and evaluated the average scores. Figure
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Figure 6: Comparing SimFusion+ with other ranking algo-
rithms for the average NDCG10 on DBLP and WEBKB data
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Figure 7: Comparing the CPU time and memory of the ranking
algorithms on DBLP data

6 shows that SimFusion+ outperformed the other 4 algorithms on
CO, WI and WA data, except that PR (0.8) did 6% better than
SimFusion+ (0.75) on TX data. This tells that SimFusion+ ac-
curacy performance is consistently stable on different experimental
datasets.

6.2.2 CPU Time & Memory Space
We then evaluated the running time and memory space efficiency

of SimFusion+ , SF, CSF, SR and PR using real datasets.
Figure 7 shows the CPU time and memory consumption for the

five algorithms on DBLP. The total time and memory for each al-
gorithm showed an increasing tendency with the growing size of
DBLP. It can be noted that the time for SimFusion+ was at least
one order of magnitude faster than CSF and SR on average, and
more than 20x faster than PR and SF, whereas the space for Sim-
Fusion+ and SR increased linearly with the size of DBLP, in con-
trast with the quadratic increase in memory for SF, CSF, PR, as
expected. This drastic speedup and decrease in RAM is due to the
memorization of σmax(Tk) for computing USM, thus saving much
time and space for repetitive matrix multiplications.

To further evaluate the efficiency, we compare the time and mem-
ory of the five ranking algorithms on WEBKB. In Figure 8, the
results indicate that SimFusion+ took about 10x less time than
SF and PR, and 6x less time than CSF and SR on average. The
memory space for SimFusion+ was also efficient and scaled well
with the size of WEBKB. It can be seen that SF also took small
memory space (approx. 1M) when the data size was small (e.g., CO
and TX). However, when the data size increased (e.g., WI and WA),
SF was less useful since large memory storage (about 2.5M) was
required to keep the intermediate result of the k-th iterative USM.
In all the cases, SimFusion+ performed the best.

On large datasets, the effect of SimFusion+ is even more pro-
nounced. Figure 9 reports the average time and memory of the
five algorithms on MSN data, in which the y-axis is log-scale. We
chose 50 queries and 40 web pages from Dq and Dw, respectively.
For each oq ∈ Dq (resp. ow ∈ Dw), we estimated the similarity
between oq (resp. ow) and other object o ∈ Dq ∪ Dw. We see that
SimFusion+ was highly efficient on large datasets (nearly 2 order-
s of magnitude than SF and PR, and 1 order of magnitude than
CSF in both time and space). This validates that the performance
of SimFusion+ is fairly stable among different datasets.

6.2.3 Incremental Performance
We next evaluated the incremental performance of IncSimFu-
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Figure 8: Comparing the CPU time and memory of the ranking
algorithms on WEBKB data
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Figure 9: Comparing the CPU time and memory of the ranking
algorithms for the given query and web page on MSN data

sion+ on real datasets. Given a sequence of edge updates (δ edge
insertions and deletions in Ḡ), we compared the running time of
IncSimFusion+ with that of SimFusion+ ; the latter had to recal-
culate the UAM when edges were updated, and the computation-
al cost was counted. In these experiments, the eigen information
of the old UAM can be preconditioned in an off-line fashion and
shared by all the updated graphs for incremental computation, and
hence their costs were not counted at the query stage. Due to space
limitations, below we only reported the results on MSN dataset.

Varying δ (the number of the edges to be updated) from 600 to
3000, we first evaluated the running time of IncSimFusion+ and
SimFusion+ over MSN data, respectively, for estimating all the
similarities between the query objects in Dq . Figure 10 shows that
IncSimFusion+ outperformed SimFusion+ when δ < 2800, but
SimFusion+ performed better for larger δ, as expected. This is
because the small value of δ often preserves the sparseness of the
incremental UAM, and hence reduces the computational cost of η
when the USM was incrementally updated.

To further validate the performance of IncSimFusion+ , we es-
timated the similarity among the web page in Dw and tested its
CPU time on MSN data. In Figure 10, the result shows that Inc-
SimFusion+ was highly efficient for the small number of edge
updates. When δ > 7700, SimFusion+ did better than IncSim-
Fusion+ . This tells that increasing the number of updated edges
induces more nonzeros in Ā, thus increasing the difficulty of incre-
mental computation. We also noticed that the SimFusion+ time
was less sensitive to the small number of updated edges, whereas
the IncSimFusion+ time was linearly increased with δ, as expect-
ed. This is because once the edges are changed, SimFusion+ has
to recompute all the similarities from scratch. In contrast, IncSim-
Fusion+ only computes the similarities from the affected area of
edge updates. In light of this, IncSimFusion+ scales well with δ.

6.2.4 Effect of ε
We used 9 web graphs with the number of vertices increased

from 600K to 1.4M. We varied ε from 0.01 to 0.0001 and ran Sim-
Fusion+ on each graph. The results are reported in Figure 11. It
can be seen that the computational time and memory consumption
for SimFusion+ was sensitive to ε. The smaller the ε is, the larg-
er amounts of the CPU time and memory space are, as expected.
These confirmed our observation in Section 4, where we envisage
that the small choice of ε imposes more iterations on computing
Tk and vk, and hence increases the estimation costs.
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Figure 11: Effect of ε for SimFusion+ on synthetic data

7. CONCLUSIONS
We present SimFusion+, a revision of SimFusion, for preventing

the trivial solution and the divergence issue of the SimFusion mod-
el. We propose efficient techniques to improve the time and space
complexity of SimFusion+ computation with accuracy guarantees.
We also devise an incremental algorithm to compute SimFusion+
similarity on dynamic graphs when edges are frequently updated.
The empirical results on both real and synthetic datasets show that
our methods achieve high performance and result quality.

We are currently studying the vertex-updating methods for incre-
mentally computing SimFusion+. We are also to extend our tech-
niques to parallel SimFusion+ computing on GPU.
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Appendix: Proofs
Proof of Proposition 2.

PROOF. Let ψ(x) = Ax−α(x) ·x be a vector function of x ∈
R

n, with α (x) being a real function of x. To simplify notations,
we shall denote by αk the dominant eigenvalue of Tk, and

ηk = σmax(Tk), ξk = Vk · σmax(Tk), ξ = σmax(A).

Using Tkηk = αkηk and Eq.(7) in Lemma 1, we have

ψ (ξk) =VkTkηk + δkvk+1e
T
k ηk − αkVkηk

= δkvk+1(e
T
k ηk) = δk[ηk]kvk+1,

where [ηk]k denotes the k-th entry of ηk. Hence,

‖ξk − ξ‖2 ≤ ‖ψ (ξk) ‖2 =
∣∣δk[ηk]k

∣∣‖vk+1‖2 =
∣∣δk[ηk]k

∣∣.
Since vec(Sk) = ξk ⊗ ξk and vec(S) = ξ ⊗ ξ, we have

‖Sk − S‖2 = ‖vec(Sk)− vec(S)‖2 = ‖ξk ⊗ ξk − ξ ⊗ ξ‖2
= ‖ξk ⊗ (ξk − ξ) + (ξk − ξ)⊗ ξ‖2
≤ ‖ξk‖2︸ ︷︷ ︸

≤1

·‖ξk − ξ‖2 + ‖ξk − ξ‖2 · ‖ξ‖2︸︷︷︸
≤1

= 2× ‖ξk − ξ‖2 ≤ 2× |δk × [ηk]k|,
which completes the proof.

Proof of Proposition 3.
PROOF. For the new graph G′, let ξ′ be the dominant eigen-

vector of A′ with its eigenvalue α′, and ξ̄1 = ξ′ − ξ1, ᾱ1 =

α′ − α1, Ā = A′ −A. Then, A′ξ′
= α′ξ′ can be rewritten as

(A+ Ā)(ξ1 + ξ̄1) = (α1 + ᾱ)(ξ1 + ξ̄1).

Expanding the above equation, eliminating Āξ̄1 and ᾱ1ξ̄1 (the
high-order infinitesimals of ξ̄1), and using Aξ1 = α1ξ1, we have

Aξ̄1 + η = α1ξ̄1 + ᾱ1ξ1 with η = Āξ1. (12)

Since ξ1, · · · , ξn of A constitute a basis for Rn, there exist scalars
c1, · · · , cn s.t. ξ̄1 = c1ξ1 + · · · + cnξn. Substituting this into
Eq.(12) and pre-multiplying both sides by ξT

j produce

ξT
j

n∑
i=1

ciαiξi+ξT
j η = α1ξ

T
j

n∑
i=1

ciξi+ᾱ1ξ
T
j ξ1. (j = 2, · · · , n)

Due to ξi orthonormality (i = 1, · · · , n), we have

cjαjξ
T
j ξj︸ ︷︷ ︸

=cjαj

+ξT
j η = cjα1ξ

T
j ξj︸ ︷︷ ︸

=cjα1

+ ᾱ1ξ
T
j ξ1︸ ︷︷ ︸

=0

.

Hence, cj = (ξT
j η)/(αj − α1) with η = Āξ1 (j = 2, · · · , n).

To determine c1, we use the identity (ξ1 + ξ̄1)
T
(ξ1 + ξ̄1) = 1.

Expanding the left-hand side, eliminating the high-order infinitesi-
mal ξ̄T

1 ξ̄1, and replacing ξ̄1 with c1ξ1 + · · ·+ cnξn, we have

ξT
1 ξ1︸ ︷︷ ︸
=1

+ ξT
1

n∑
i=1

ciξi

︸ ︷︷ ︸
=c1

+

n∑
i=1

ciξ
T
i ξ1

︸ ︷︷ ︸
=c1

= 1.

Due to ξ1, · · · , ξn orthonormality, it follows that c1 = 0. Thus,

vec(S′
) = ξ′ ⊗ ξ′

with ξ′
= ξ1 + ξ̄1 = ξ1 +

n∑
p=2

cp · ξp,

cp =
ξT
p η

αp − α1
, and η = Āξ1.

374




