
Scaling Random Walk with Restart over
Dynamic Networks

Weiren Yu
Department of Computing
Imperial College London

weiren.yu@imperial.ac.uk

Julie A. McCann
Department of Computing
Imperial College London

j.mccann@imperial.ac.uk

Abstract—Random Walk with Restart (RWR) is an appealing
measure of proximity between nodes based on network topologies.
As real graphs are becoming larger and subject to minor changes,
it is rather cost-inhibitive to recompute proximities from scratch.
Existing method utilizes LU decomposition and degree reordering
heuristics. As a result, it yieldsO(|V |3) time andO(|V |2) memory
to compute all (|V |2) pairs of RWR proximities on a static graph.
This paper proposes a dynamic scheme to assess all-pairs RWR:
(1) For unit update, we characterize the changes to all-pairs RWR
as the outer product of two vectors. Furthermore, we notice that
the multiplication of an RWR proximity matrix and its transi tion
matrix, unlike traditional matrix multiplication, is comm utative.
These can significantly reduce the computation of all-pairsRWR
to O(|V |2) worst-case time for every update with no accuracy loss.
In practice, the O(|V |2) time can be reduced toO(|∆|) further,
where |∆| (≤ |V |2) is the number of affected proximity elements.
(2) To avoidO(|V |2) memory for all-pairs outputs, we also devise
efficient partitioning techniques based on our incrementalmodel,
which can compute all pairs of proximities segment-wisely in just
O(l|V |) memory with O(⌈ |V |

l
⌉) I/O costs, where1 ≤ l ≤ |V | is

a user-controlled trade-off between memory usage and I/O costs.
(3) For bulk updates, we devise aggregation and hashing methods
that can discard unnecessary updates further and handle chunks
of unit updates simultaneously. The experiments on many datasets
verify that our approaches can be 1–2 orders of magnitude faster
than other competitors while securing exactness and scalability.

I. I NTRODUCTION

With the increasing scale of the Internet, many applications
are confronted with large and dynamically evolving networks.
For instance, the World Wide Web today embraces more than
one trillion links, 7% — 18% of which are updated fortnightly.
A common task on graph data is link-based proximity search,
i.e., given a graphG = (V,E) with |V | nodes and|E| edges,
the retrieval of all proximities between every two nodes inG.
Recently, Random Walk with Restart (RWR) [11] has been
proposed as an attractive proximity measure, with a wide range
of emerging applications, such as nearest neighbor search [13],
named entity disambiguation [5], collaborative filtering [4],
automatic image labeling [11], and anomaly detection [9].

The success of RWR can be largely ascribed to its succinct
and intuitive philosophy which revolves around random walks.
Let us consider a random surfer starting from a given nodex.
The surfer has two options at each step: either moving to one
of its out-links, or restarting fromx with a certain probability.
After the stability is iteratively attained,the RWR proximityof
every nodev w.r.t. a given nodex is the steady-state probability
that the surfer will eventually arrive at nodev.

a

b

e

f
c

d

m

g

h (C1)

(C2)

(C3)

(C3)

G ∪∆G

l

(C2)

(C2)

a

b

e

f
c

d
G

Fig. 1:An Imperial’s Website Updated by 3 Types of Edge Insertions

Compared with other similarity measures (e.g.,SimRank),
RWR highlights the following features: (1) It can recursively
capture the multi-hop neighborhood information of every node.
(2) Unlike SimRank which is a symmetric similarity measure
for quantifying the structural equivalence between two nodes,
RWR is an asymmetric measure over a directed graph, focusing
on the reachability from one node to another. (3) RWR is a sta-
ble measure that is resilient to noise in a graph. Consequently,
RWR has witnessed galloping attraction in fertile communities
over recent years [4], [5], [9]–[13].

However, the practicability of RWR is hindered by its high
computational cost. The best-of-breed methods [2], [8] useLU
decomposition and degree reordering heuristics. Consequently,
it entailsO(|V |3) time andO(|V |2) memory in the worst case
to compute all (|V |2) pairs of proximities over a static graph.
However, due to the dynamics and increasing scale of the Web,
it is rather expensive to recompute all proximities from scratch
when a graph is frequently updated with small changes.

In this paper, we consider efficient dynamic computation of
all-pairs RWR proximities on large-scale evolving networks.

Given all-pairs proximities in old graphG, and updates∆G
to G (i.e., a collection of new edge insertions or deletions)

Compute the changes to all-pairs RWR proximities efficiently
without loss of exactness.

We are especially interested in the situation: When all-pairs
proximities cannot fit into memory, can our dynamic methods
compute such changes over each segment independently while
securing high efficiency? Let us take the following example.

Example 1. Figure 1 depicts a fraction of an old web graphG
taken from Imperial College, where each node denotes a web
page, and each edge is a hyperlink from one page to another.
The old proximity matrix of all-pairs web pages was computed.

In this new semester, the Imperial’s web site is updated by
adding 4 new pages and 6 new links (see the dashed edges,

1

Algorithm Time (All Pairs) Memory Error

Inc-R (O(⌈ |V |
l ⌉) I/Os) O(|∆|) (|∆| ≤ |V |2) O(l|V |) 0

Inc-R O(|∆|) (|∆| ≤ |V |2) O(|V |2) 0
Bear [8] O(|E||V |) O(|V |2) 0
k-dash [2] O(|V |3) O(|V |2) 0
DAP [10] O(K|E||V |) O(|V |2) γK+1

B-LIN [11] O(1
τ2 |V |

3) O(|V |2 + ν|V |) ǫrank-ν

TABLE I: CompareInc-R with previous methods per update
(whereτ is the partition number,K is the iteration number,
ν is the target rank of SVD, andl is a memory-I/O trade-off)

denoted as∆G). To update all-pairs proximities inG ∪∆G,
instead of using a batch method to reassess all new proximities
from scratch, one can incrementally retrieve only the changes
to the old proximities in response to graph updates∆G to G,
by reusing the information of the old proximity matrix inG.

However, due to memory limitations, the entire old proxim-
ity matrix may not fit into memory. Thus, it is highly desirable
that, in our incremental RWR method, each segment of the old
proximity matrix can be updated independently (in parallel).
This can greatly improve the efficiency for all-pairs proximities
evaluation on dynamic graphs.

Nonetheless, there are 2 grand challenges to dynamic RWR
evaluation: (1) Due to the recursive nature of RWR, it is hardto
exploit the relationship among proximity changes,∆G, and old
proximities inG. (2) It seems hard to avoidO(|V |2) memory
to update all (|V |2) pairs of proximities.

Contributions. To address the above challenges, we propose a
novel incremental scheme,Inc-R, with three main ingredients:

(1) For unit update, we devise an efficient dynamic model
that can characterize the changes to all-pairs RWR as the outer
product of two vectors. Moreover, we notice that the multipli-
cation of an RWR proximity matrix and its transition matrix,
unlike traditional matrix multiplication, is commutative. These
can substantially reduce the computation of all (|V |2) pairs of
proximities fromO(|V |3) toO(|V |2) time in the worst case for
every update with no loss of accuracy. In practice, theO(|V |2)
time can be reduced toO(|∆|) further, where|∆| (≤ |V |2) is
the number of affected elements in the RWR proximity matrix.
The memory consumption isO(|V |2) in the worst case, which
is necessary for anin-memoryalgorithm as all (|V |2) pairs of
proximities need to be maintained. (Section III)

(2) To reduce its memory further, we also propose efficient
partitioning techniques based on our dynamic model, in which
all (|V |2) pairs proximities can be updated segment-wisely in
O(l|V |) memory withO(⌈ |V |l ⌉) I/O costs, where1 ≤ l ≤ |V |
is a user-controlled trade-off between memory and I/O costs.
(Section IV)

(3) For bulk updates, we propose aggregation and hashing
techniques for pure updates (i.e., either insertions or deletions
are allowable) and mixture updates. These can minimize many
unnecessary updates further and handle chunks of unit updates
simultaneously. (Section V)

Related Work. Recent years have witnessed growing attention
to efficient RWR computation on large-scale graphs. Existing
results include SVD-based RWR [11], iterative RWR [10], LU-
based RWR [2], [8], reversedK-NN RWR [13], Monte Carlo
RWR [1], [7], and hub length-based RWR [15].

Table I summarizes the complexity of the state-of-the-art
methods for all-pairs RWR computation for every update.

Tonget al. [11] provided a pioneering SVD-based method,
B-LIN, for RWR computation.B-LIN first divides a graph into
τ dense blocks and a sparse block, and then performs matrix
inverse for each dense block and a rank-ν SVD approximation
for the sparse block. Consequently,B-LIN can well balance the
performance between offline precomputation and online query.

Later, an iterative method [10] was proposed for computing
RWR, namelyDAP. It requiresO(K|E||V |) time andO(|V |

2
)

memory to compute all-pairs proximities on a digraphG =
(V,E) for K iterations, with guaranteed iterative error.

Recently, Fujiwaraet al. [2] devised an LU decomposition
method,k-dash, for top-K RWR searchw.r.t. a given query.
k-dash entailsO(|V |2) time andO(|V |2) memory to retrieve
only the top-K proximities in one column of an RWR matrix.
Thus, it yieldsO(|V |

3
) time for top-K all-pairs RWR search.

To prune unlikely top-K candidates,k-dash can incrementally
update only the upper bound of RWR proximities. In contrast,
our incremental approach can compute all pairs of proximities
accurately inO(|V |

2
) worst-case time.

The existing work [1], [7] provided probabilistic methods
to estimate proximities. Sarkaret al. [7] integrated a sampling
approach with branch and bound pruning to incrementally re-
trieve near neighbors of one given query with high probability.
Bahmaniet al. [1] used a Monte Carlo method to incrementally
estimate the proximities with probabilistic accuracy.

Zhu et al. [15] presented an incremental accuracy-aware
way to approximate proximities. They used a hub length-based
scheduling scheme to prioritize random walks. It differs from
our work in that our algorithm is exact and we only use at most
two “pivot proximity vectors” to describe affected regions.

The recent work of [14] proposed an incremental method to
compute RWR. However, this method would fail when either
end node of an inserted edge is a new one. Worse still, there are
technical bugs in [14] which cannot return correct proximities.
In contrast, our techniques can overcome these limitationsand
we also provide a corrigendum of [14] in Section III-C.

Most recently, Shinet al. [8] have given a fresh impetus to
fast RWR computation. Their scheme,Bear, combines a block
elimination approach with a Schur complement of submatrix
derived from the LU decomposition, which can achieve 300x
speedup further. However, their method is on static graphs.

There has also been work [13] on reverse top-K nearest
neighbors search (RKNN) based on RWR proximity. Its main
idea is to terminate the computation of every top-K proximity
set as early as possible via an indexing strategy.

II. PRELIMINARIES

In this section, let us overview the background of RWR.
For graphG = (V,E), let O(j) be the out-degree of nodej.
Let A be the backward transition matrix defined as

Ai,j = 1/O(j) if ∃(j, i) ∈ E, andAi,j = 0 otherwise.

The RWR proximity matrixP ∈ R
|V |×|V | is defined by

P = γAP+ (1 − γ)I (1)

whereI ∈ R
|V |×|V | is an identity matrix, and(1− γ) ∈ (0, 1)

is restarting probabilitythat is often set to 0.1 (γ = 0.9) [11].

2

In vector forms, Eq.(1) can also be rewritten as

P⋆,x = γAP⋆,x + (1− γ)ex (∀x ∈ V) (2)

whereP⋆,x is thex-th column ofP, denoting the proximities
of all nodesw.r.t. nodex; andex is thex-th column ofI.

Throughout this paper, the computation of the entire matrix
P is calledall-pairs RWR proximities evaluation.

III. U NIT UPDATE

We mainly focus onunit insertion(Sections III-A — III-E).
Similar techniques also apply tounit deletion(Section III-F).

Note that all methods in this section arein-memorybased,
i.e.,all-pairs old and new proximities need fit in main memory.
In Section IV, we will extend our methods to handle the cases
when all-pairs proximities cannot fit in main memory.

Given graphG = (V,E), for edge(i, j) to be added toG,
we consider four cases in each subsection, respectively:

(C1) i /∈ V andj ∈ V ; (C2) i ∈ V andj /∈ V ;
(C3) i ∈ V andj ∈ V ; (C4) i /∈ V andj /∈ V .

Example 2. Figure 1 depicts an old digraphG (in solid lines)
with a set of edge insertions∆G (in dash lines) intoG. In ∆G,
the insertion(h, b) pertains to case (C1);(e, g), (e, l), (e,m)
to case (C2); and(a, e), (e, f) to case (C3).

A. Inserting Edge(i, j) with i /∈ V and j ∈ V

We first consider the case (C1): the insertion of edge(i, j)
with i /∈ V andj ∈ V . Generally, such an edge insertion may
change the old transition matrixA into

Ã′ =











|V | cols
︷︸︸︷

A 0

col i
︷︸︸︷

ej
}
|V | rows

0 0 0

0 0 0 ← row i

(3)

For ease of representation,Ã′ can be reduced to1

Ã =

[
A ej
0 0

]

∈ R
(|V |+1)×(|V |+1) (4)

by removing zero rows and columns of̃A′ (in shaded areas).
Lemma 1 shows that this removal will not affect the results.

Lemma 1. Let P̃′ (resp. P̃) be the RWR proximity matrix
corresponding to the transition matrix̃A′ in Eq.(3) (resp.Ã
in Eq.(4)). If Ã is the submatrix formed by excluding all zero
rows and columns with the indexx ∈ [|V |+1, i− 1] from Ã′

(i.e., excluding the shaded regions in Eq.(3)), then P̃ can be
obtained by excluding all the rows and columns with the same
indexx ∈ [|V |+ 1, i− 1] from P̃′.

Proof: Let E be an elementary matrix formed by swap-
ping row(|V |+1) and rowi of the i×i identity matrix. Using
elementary row/column transformations, we obtain

E · Ã′ ·E =

[

Ã 0
0 0

]

. (5)

1In Eq.(4), though the last row of̃A is 0, we need not replace0 by 1T

|V |+1
,

where1T is a row vector of all 1s. This is because, unlike the existence of
PageRank that is ensured bỹA irreduciblity, the existence of RWR is ensured
by (I− γÃ) invertibility, i.e., whether(I− γÃ) is diagonally dominant.

Notice thatE ·E = I. Then, by RWR definition in Eq.(1),
i.e., P̃′ = (1− γ)(I− γÃ′)

−1
, we have

P̃′ = (1− γ)
(

I=
︷ ︸︸ ︷

E · E−γ

Ã′=
︷ ︸︸ ︷

E

[

Ã 0
0 0

]

E
)−1

= (1− γ)E

[

I− γÃ 0
0 I

]−1

E.

Since(I− γÃ)
−1

= 1
1−γ P̃, the above equation implies

E · P̃′ ·E =

[

P̃ 0
0 (1− γ)I

]

. (6)

Eqs.(5) and (6) imply that afterE swaps the same rows/cols
for Ã′ and P̃′, upper-left blockÃ still corresponds to upper-
left block P̃. Hence, removing the shaded regions in Eq.(5)
(i.e., Eq.(3)) is equivalent to removing those in Eq.(6).

Remark 1. Based on Lemma 1, for edge(i, j) to be inserted,
we can assume, without loss of generality, that

• in case (C1), new nodei /∈ V is indexed by(|V |+ 1);
• in case (C2), new nodej /∈ V is indexed by(|V |+ 1);
• in case (C4), new nodesi /∈ V and j /∈ V are indexed by

(|V |+ 1) and (|V |+ 2), respectively.

UsingÃ, newP̃ can be solved in terms of oldP as follows:

Theorem 1. Given a graphG = (V,E) and an old proximity
matrix P, after edge(i, j) with i /∈ V and j ∈ V is inserted,
the new proximity matrix̃P can be computed as

P̃ =

[]

P γP⋆,j

}
|V | rows

0 1− γ ← row i

Proof: By RWR definition in Eq.(1), we have

P̃ = (1− γ)(I− γÃ)
−1

.

Plugging Eq.(4) into the above equation produces

P̃ = (1− γ)

[
I− γA −γej

0 1

]−1

(using block matrix inverse)

= (1− γ)

[

(I− γA)
−1

γ(I− γA)
−1

ej
0 1

]

=

[
P γP⋆,j

0 1− γ

]

For case (C1), Theorem 1 provides an efficient method that
can incrementally obtain new proximity matrix̃P from oldP.
Specifically, newP̃ is a(|V |+1)×(|V |+1) matrix formed by
bordering oldP by 3 parts: (a) a column vectorγP⋆,j, (b) a
zero row vector0, and (c) a scalar(1−γ). Thus, for case (C1),
it entails onlyO(|V |) time to incrementally compute new̃P,
which is dominated by the computation ofγP⋆,j .

Example 3. Recall the old graphG in Figure 1 (left). Given
γ = 0.9 and old proximity matrixP for G, when edge(h, b)
is inserted intoG, newP̃ can be updated via Theorem 1 as

P̃ =














a b c d e f h

a 0.100 0 0 0 0 0 0

b 0.030 0.100 0 0 0 0 0.090

c 0.030 0 0.100 0 0 0 0

d 0.042 0.041 0 0.100 0.090 0 0.037

e 0.014 0.045 0 0 0.100 0 0.041

f 0.014 0.045 0 0 0 0.100 0.041

h 0 0 0 0 0 0 0.100














old proximity matrix P

1− γ

γP⋆,b

zero row vector 0

×γ

3

Intuitively, after edge(i, j)i/∈V,j∈V is inserted intoG, each
block of newP̃ =

[
P γP⋆,j
0 1−γ

]
has the following meaning:

• The upper-left blockP remains unchanged becausei is
a new node (/∈ V) with no in-links. Thus, after insertion,
i → j cannot be contained by every random walk from
y ∈ V to x ∈ V . That is, the inserted edgei→ j has no
impact on old walks tallied byPx,y, ∀(x, y) ∈ V × V .

• The upper-right blockγP⋆,j is a scalar multiple ofP⋆,j

since, after insertion, random walks fromi to nodex ∈ V
are a concatenation ofi→ j and old walks fromj to x:

new edge
︷︸︸︷

i⇒ j

old walks fromj to x tallied byPx,j
︷ ︸︸ ︷

→ ◦ → · · · → · · · → · · · ◦ → x
︸ ︷︷ ︸

new walks fromi to x tallied by P̃x,i

Since the out-degree of nodei is 1, old walks fromj to x
(tallied byPx,j) can be reused with just a multiple factor
to evaluate new walks fromi to x (tallied by P̃x,i).

• The lower-left block is0 as new nodei (/∈ V) has no in-
links and is not reachable by nodex ∈ V , i.e., P̃i,x = 0.

B. Inserting Edge(i, j) with i ∈ V and j /∈ V

We next consider the case (C2): the insertion of edge(i, j)
with i ∈ V andj /∈ V . This case is more difficult than (C1) as
such an insertion will change not only the size of old transition
matrix A, but also some entries inA, as indicated below.

Lemma 2. Given old graphG = (V,E) and its old transition
matrix A. After edge(i, j) with i ∈ V and j /∈ V is inserted,
the new transition matrix̃A becomes2

Ã =

[]
|V | cols
︷︸︸︷

A

col j
︷︸︸︷

0
}
|V | rows

eTi 0 ← row j
if O(i) = 0; (7)

Ã =

[]

|V | cols
︷ ︸︸ ︷

A+ veTi

col j
︷︸︸︷

0
}
|V | rows

1
O(i)+1e

T
i 0 ← row j

if O(i) 6= 0, (8)

wherev = − 1
O(i)+1A⋆,i ∈ R

|V |×1.

Proof: ForO(i) = 0, after insertion,A⋆,i = [0] ∈ R
|V |×1

becomesÃ⋆,i = [01] ∈ R
(|V |+1)×1; andA⋆,x is changed to

Ã⋆,x :=
[
A⋆,x

0

]
(∀x 6= i). Thus, Eq.(7) holds.

ForO(i) 6= 0, after insertion, there are 2 changes inÃ⋆,i:
(1) all the nonzeros ofA⋆,i are updated from 1

O(i) to 1
O(i)+1 ;

(2) the last (j-th) entry ofÃ⋆,i is initialized to 1
O(i)+1 . Thus,

Ã⋆,i =

[
O(i)

O(i)+1
A⋆,i

1
O(i)+1

]

=
[
A⋆,i+v

1
O(i)+1

]

with v := − 1
O(i)+1A⋆,i.

For other columns,A⋆,x becomesÃ⋆,x :=
[
A⋆,x

0

]
(∀x 6= i).

Hence, Eq.(8) holds as well.

Lemma 2 indicates that for case (C2), after edge insertion,
new Ã is a (|V |+1)× (|V |+1) matrix formed by bordering
(a) oldA whenO(i) = 0, or (b) a rank-one update of oldA,
i.e., (A + veTi) whenO(i) 6= 0. More importantly, vectorv
can be obtained by just scaling thei-th column ofA.

2Recall thatO(i) is the out-degree of nodei in old graphG.

Utilizing the structure ofÃ, we next propose an efficient
method that can incrementally update newP̃ from oldP. Our
idea is to convert the computation ofP̃ into solving(I−γÃ)−1

in terms of oldP. Indeed, when we combine Lemma 2 with
block matrix inverse formula,̃P takes the following form:

P̃ = (1 − γ)

[](
I− γA+A⋆,iy

T
)−1

0
}
|V | rows

yT
(
I− γA+A⋆,iy

T
)−1

1 ← row j

This structure suggests that, oncey is determined, solving̃P
can boil down to solving(I− γA+A⋆,iy

T)
−1

in terms ofP.
Fortunately, it is unnecessary to obtain(I− γA+A⋆,iy

T)
−1

from scratch as this inverse can be computed efficiently from
(I− γA)−1 perturbed by a rank-one updateA⋆,iy

T . However,
since(I− γA)−1 can be obtained by scaling oldP, the main
challenge is that:Can we describe the changes to(I− γA)−1

in response to rank-one updateA⋆,iy
T in terms of oldP too?

To address this issue, we show a commutative law ofP.

Lemma 3. For any transition matrixA and its corresponding
proximity matrixP, the following property holds:

PA = AP.

Proof: It follows from Eq.(1) thatP = (1−γ)(I− γA)−1.
Since‖A‖∞ ≤ 1 and0 < γ < 1, we have

(I− γA)
−1

= I+ γA+ γ2A2 + · · ·

Substituting this back intoPA yields

PA = (1− γ) (I− γA)
−1

A = (1− γ)
(
A+ γA2 + γ2A3 + · · ·

)

= A (1− γ) (I− γA)
−1

= AP

In general, multiplication of matrices is not commutative.
However, Lemma 3 shows that any RWR proximity matrixP
can commute with its corresponding transition matrixA. This
commutative property provides us with an efficient method to
compute the changes to(I− γA)

−1 only in terms of oldP.
Precisely, the changes to(I− γA)

−1, as Theorem 2 will show,
involve the computation ofPA, which requires amatrix-matrix
multiplication, entailingO(|V |3) time if carried out naively.
In contrast, by Lemma 3, computingPA can be reduced to
O(|V |

2
) time, requiring onlymatrix scaling and subtraction.

This is because Lemma 3 enablesPA to be computed as

PA = AP = 1
γ (P− (1− γ)I) (9)

where the last equality holds by rearranging terms in Eq.(1).

Leveraging Lemmas 2 and 3, we can characterize newP̃.

Theorem 2. Given old graphG = (V,E) and its old proximity
matrix P, after edge(i, j) with i ∈ V and j /∈ V is inserted,
the new proximity matrix̃P can be updated as follows:

P̃ =

[]
|V | cols
︷︸︸︷

P

col j
︷︸︸︷

0
}
|V | rows

γPi,⋆ 1− γ ← row j
if O(i) = 0; (10)

P̃ =

[]

|V | cols
︷ ︸︸ ︷

P+
z·Pi,⋆

1−zi

col j
︷︸︸︷

0
}
|V | rows

γ
O(i)+1

(
Pi,⋆

1−zi

)

1− γ ← row j
if O(i) 6= 0. (11)

where auxiliary vectorz = 1
O(i)+1

(
ei −

1
1−γP⋆,i

)
∈ R

|V |×1.

4

Proof: We split the proof into two cases:

(1) WhenO(i) = 0, by Lemma 2, we havẽA =
[A 0

eT
i 0

]
.

SubstitutingÃ into P̃ = (1− γ)(I− γÃ)
−1

produces

P̃ = (1− γ)

[

(I− γA)
−1

0

γei
T (I− γA)

−1
1

]

=

[

P 0

γPi,⋆ 1− γ

]

.

(2) WhenO(i) 6= 0, by usingÃ in Eq.(8), we have

P̃ = (1− γ)(I− γÃ)
−1

= (1− γ)

[

M 0

−yT 1

]−1

whereM := I− γA+A⋆,iy
T and y := γ

O(i)+1ei.

Then, using the block matrix inversion formula, we have

P̃ = (1− γ)

[

M−1 0

yTM−1 1

]

. (12)

Using Sherman-Morrison inverse formula3 to M−1 yields

M−1 = 1
1−γ

(

P−
PA⋆,iy

TP

1−γ+yTPA⋆,i

)

. (13)

By plugging Eq.(9) into (13), the term(− 1
1−γPA⋆,iy

TP)
in Eq.(13) can be computed as

− 1
1−γPA⋆,iy

TP = z ·Pi,⋆

with z := 1
(O(i)+1)(1−γ) ((1 − γ)ei −P⋆,i) .

Applying the above equation to Eq.(13) produces

(1− γ)M−1 = P+
z·Pi,⋆

1−zi
.

(1 − γ)yTM−1 = γ
O(i)+1

(
Pi,⋆

1−zi

)

.

Finally, substituting the above two equations into Eq.(12)
yields Eq.(11) forO(i) 6= 0.

Theorem 2 gives an efficient way to incrementally compute
new proximity matrixP̃ when edge(i, j)i∈V,j /∈V is inserted.
WhenO(i) 6= 0, it requires onlyO(|V |) time to computeP̃
in Eq.(10), which is dominated by the computation ofγPi,⋆.
WhenO(i) = 0, it requiresO(|V |2) time to computeP̃ in
Eq.(11), including: (a)O(|V |) time for vectorz; (b) O(|V |2)
time for (z · Pi,⋆); (c) O(|V |) time to scale row vectorPi,⋆.
Thus, the total time to evaluatẽP by Theorem 2 is inO(|V |2),
as opposed to theO(|V |3) time of the LU-based approaches
[2], [8] that need evaluateL−1 andU−1 to getP̃ from scratch.

Example 4. Recall old graphG in Figure 1 (left) and its old
proximity matrixP (see Example 3). Givenγ = 0.9, after edge
(e, g) is inserted toG, newP̃ can be updated as follows:

SinceO(e) = 1 > 0, we first computez by Theorem 2:

z = 1
1+1

(
ee −

1
1−0.9P⋆,e

)
= [

a b c d e f

0 0 0 −0.45 0 0]T .

Then, notingze = 0, we can obtain new̃P from Eq.(11):

3The formula is(X+ ab
T)

−1
= X

−1 − X−1abT X−1

1+bT X−1a
.

P̃ =














a b c d e f g

a 0.100 0 0 0 0 0 0

b 0.030 0.100 0 0 0 0 0

c 0.030 0 0.100 0 0 0 0

d 0.036 0.020 0 0.100 0.045 0 0

e 0.014 0.045 0 0 0.100 0 0

f 0.014 0.045 0 0 0 0.100 0

g 0.006 0.020 0 0 0.045 0 0.100














P+ 1
1−ze

z ·Pe,⋆ (rank-one update of P)

1− γγ

(O(e)+1)(1−ze)
Pe,⋆

× γ

(O(e)+1)(1−ze)












a b c d e f

a 0.100 0 0 0 0 0

b 0.030 0.100 0 0 0 0

c 0.030 0 0.100 0 0 0

d 0.042 0.041 0 0.100 0.090 0

e 0.014 0.045 0 0 0.100 0

f 0.014 0.045 0 0 0 0.100












+ 1
1−0












a 0

b 0

c 0

d −0.45

e 0

f 0












[
a b c d e f

0.014 0.045 0 0 0.1 0
]

zero
colu

m
n
vector

0

old proximity matrix P

old row vector Pe,⋆

auxiliary vector z

It is worth noting that theO(|V |
2
) time of computingP̃ by

Eq.(11) is theworst-casecomplexity, dominated by(z ·Pi,⋆).
Generally, suchO(|V |2) time can be reduced toO(|z||Pi,⋆ |)

4

by updating only a nonzero subset ofV × V elements ofP:

{x ∈ V : [z]x 6= 0} × {y ∈ V : [Pi,⋆]y 6= 0} ⊆ V × V.

For instance, to obtain the upper-left block ofP̃ in Example 4,
we actually need update only|z| × |Pe,⋆| = 1× 3 = 3 entries
(underlined) instead of all|V |2 = 62 = 36 entries inP.

Intuitively, when (i, j)i∈V,j /∈V is inserted toG = (V,E),
each block of new̃P in Theorem 2 suggests the following:

• The upper-left block of̃P in Eq.(10) (resp.Eq.(11)) keeps
unchanged (resp.changed). The reason is that, after edge
i→ j (/∈ V) is added, the increase of out-degreeO(i) can
(resp.cannot) alter the probability of a surfer that moves
from i to any node inV whenO(i) 6= 0 (resp.O(i) = 0),
which, recursively, has an impact (resp. no impacts) on
random walks from∀y ∈ V to ∀x ∈ V tallied byPx,y.

• The upper-right block of̃P in Eqs.(10) — (11) is always0
since new nodej (/∈ V) has no out-links. Thus, any node
x ∈ V − {j} cannot be reached fromj, i.e., P̃x,j = 0.

• The lower-left block ofP̃ in Eqs.(10) — (11) is a scalar
multiple of Pi,⋆ since new random walks fromx ∈ V to
j are a concatenation of old walks fromx to i andi→ j:

old walks fromx to i tallied byPi,x
︷ ︸︸ ︷

x→ ◦ → · · · → · · · → · · · ◦ → i

new edge
︷︸︸︷

⇒ j
︸ ︷︷ ︸

new walks fromx to j tallied by P̃j,x

Since the out-degree of nodei is 1, old walks fromx to i
(tallied byPi,x) can be reused with just a multiple factor
to evaluate new walks fromx to j (tallied by P̃j,x).

C. Inserting Edge(i, j) with i ∈ V and j ∈ V

We next investigate case (C3): the insertion of edge(i, j)
with i ∈ V and j ∈ V . As newÃ and oldA are of the same
size, it makes sense to denote their change as∆A := Ã−A.5

4|x| is the number of nonzeros in vectorx; [x]y is they-th entry ofx.
5Note that in cases (C1), (C2), and (C4),Ã−A makes no sense.

5

To characterize∆A, we have the following lemma.

Lemma 4. Given old graphG = (V,E) and its old transition
matrix A, after edge(i, j) with i ∈ V and j ∈ V is inserted,
the changes∆A can be expressed as

∆A = ueTi with u :=

{
ej if O(i) = 0;

1
O(i)+1 (ej −A⋆,i) if O(i) > 0. (14)

Proof: ForO(i) = 0, [∆A]j,i = 1. Thus,∆A = eje
T
i .

ForO(i) 6= 0, after insertion, there are 2 changes inÃ⋆,i:
(1) all the nonzeros ofA⋆,i are updated from 1

O(i) to 1
O(i)+1 ;

(2) thej-th entry ofA⋆,i is changed from 0 to 1
O(i)+1 . Thus,

Ã⋆,i =
O(i)
O(i)+1A⋆,i +

1
O(i)+1ej = A⋆,i + u,

whereu := 1
O(i)+1(ej −A⋆,i). Hence, Eq.(14) holds.

Lemma 4 implies that all the nonzeros of∆A appear only
in thei-th column of∆A that can be represented as the scaling
of old A⋆,i except thej-th entry ofA⋆,i.

Example 5. When edge(a, e) is inserted to oldG in Figure 1,
sinceO(a) = 3 andA⋆,a = [0 1

3
1
3

1
3 0 0]T , it follows that

∆A = ueTa with u = 1
3+1 (ee −A⋆,a) =

[
a b c d e f

0 − 1
12 −

1
12 −

1
12

1
4 0

]
T .

The rank-one factorization of∆A in Lemma 4 is exploited
to characterize the corresponding proximity changes∆P.

Lemma 5. When edge(i, j)i∈V,j∈V is added toG = (V,E),
proximity changes∆P (= newP̃−old P) are expressible as

∆P = PuvT with vT =
(

γ
1−γ−γPi,⋆u

)
Pi,⋆ (15)

where vectoru is defined by Lemma 4.

Proof: By RWR definition in Eq.(1), new̃P satisfies

1
1−γ (I− γÃ)P̃ = I,

By Lemma 4, we plug̃A := A+ueTi into the above equation:

1
1−γ (I− γA)P̃− uvT = I with vT = γ

1−γ P̃i,⋆.

In block matrix forms, these equations can be rewritten as
[

1
1−γ (I− γA) −u

γ
1−γ e

T
i −1

][

P̃

vT

]

=

[

I

0

]

.

By left-multiplying both sides by
[

I 0

−
γ

1−γPi,⋆ I

]

, we have
[

1
1−γ

(I− γA) −u

0 γ

1−γ
Pi,⋆u− 1

] [
P̃

vT

]

=

[

I

− γ

1−γ
Pi,⋆

]

.

Applying (I− γA)
−1

= 1
1−γP to the above equations yields

P̃ = PuvT +P with vT =
(γPi,q

1−γ−γPi,⋆u

)
Pi,⋆

Lemma 5 suggests that, for case (C3),∆P is a rank-one
matrix, i.e., the product of vector(Pu) and row vectorvT ,
whereu can be obtained by Eq.(14), andvT by scalingPi,⋆.
Thus, it requiresO(|V |

2
) total time to compute∆P, including

(a)O(|V |) time foru andvT ; (b) O(|V |
2
) time for (Pu); and

(c) O(|V |
2
) time for the product of(Pu) andvT .

To speed up the computation of∆P in Lemma 5 further,
there are two noteworthy methods: (a) Once(Pu) is computed,
(Pi,⋆u) in Eq.(15) can be obtained directly from thei-th row
of the resulting(Pu). (b) TheO(|V |

2
) time to compute(Pu)

can be significantly reduced toO(|V |) since we observe that
(Pu) can be described as a linear combination of only two
old “pivot proximity vectors”P⋆,i andP⋆,j :

Pu = � ·P⋆,i +♦ ·P⋆,j .

To determine scalars� and♦, we have the following theorem.

Theorem 3. Given old graphG = (V,E), after edge(i, j)
with i ∈ V and j ∈ V is inserted, proximity changes∆P can
be computed as a rank-one matrix:

∆P =
(

1
1−γ−yi

)
yPi,⋆ with (16)

y =

{
γP⋆,j if O(i) = 0;

1
O(i)+1

(γP⋆,j −P⋆,i + (1− γ)ei) if O(i) 6= 0.

Proof: By Lemmas 4 and 5, we can obtain:

(1) If O(i) = 0, thenu = ej . We havePu = P⋆,j .

(2) If O(i) 6= 0, thenu = 1
O(i)+1 (ej −A⋆,i). We have

Pu = 1
O(i)+1 (P⋆,j−PA⋆,i) =

1
O(i)+1 (P⋆,j−

1
γP⋆,i−(1−

1
γ)ei).

The last “=” is due to Eq.(9):PA⋆,i =
1
γ (P⋆,i − (1− γ)ei).

Combining Eq.(15) with the resultingPu yields Eq.(16).

Theorem 3 is an optimized version of Lemma 5. Although
the worst-case time to compute∆P by Theorem 3 isO(|V |

2
),

the computation of(Pu) in Lemma 5 is dramatically reduced
from O(|V |2) to O(|V |) time.

Moreover, the rank-one structure of∆P in Eq.(16) can also
reduce the computation of∆P to O(|y||Pi,⋆ |) time further,
by evaluating only a nonzero subset ofV ×V entries of∆P:

{x ∈ V : [y]x 6= 0} × {y ∈ V : [Pi,⋆]y 6= 0} ⊆ V × V.

Example 6. Recall old graphG in Figure 1 (left) and its old
proximity matrixP (see below). Givenγ = 0.9, after edge
(a, e) is inserted toG, newP̃ can be updated as follows:

AsO(a) = 3, we first obtainy and then∆P by Eq.(16):

=












a b c d e f

a 0.100 0 0 0 0 0

b 0.023 0.100 0 0 0 0

c 0.023 0 0.1 0 0 0

d 0.052 0.041 0 0.1 0.09 0

e 0.033 0.045 0 0 0.10 0

f 0.010 0.045 0 0 0 0.1












Pa,⋆

P̃ =












a b c d e f

a 0.100 0 0 0 0 0

b 0.030 0.100 0 0 0 0

c 0.030 0 0.1 0 0 0

d 0.042 0.041 0 0.1 0.09 0

e 0.014 0.045 0 0 0.10 0

f 0.014 0.045 0 0 0 0.1












+ 1
1−0.9−0












a 0

b −0.0075

c −0.0075

d 0.0097

e 0.0191

f −0.0034












[
a b c d e f

0.1 0 0 0 0 0
]

old proximity matrix P

old row vector Pa,⋆

auxiliary vector y

1
3+1















−











a 0.100
b 0.030
c 0.030
d 0.042
e 0.014
f 0.014











+ 0.9











a 0
b 0
c 0
d 0.09
e 0.10
f 0











+ (1− 0.9)











a 1
b 0
c 0
d 0
e 0
f 0

























new proximity matrix P̃

Pe,⋆ ea

proximity change matrix ∆P

It is worth noticing that, to efficiently computẽP, we need
update only|y| × |Pa,⋆| = 5 × 1 = 5 entries (underlined)
instead of all|V |2 = 62 = 36 entries inP.

6

Algorithm 1: Unit Insertion
Input : old graphG = (V,E), edge(i, j) to be inserted,

old proximity matrixP in G, and decay factorγ.
Output : new proximity matrixP̃ in G ∪ {(i, j)}.

1 if i /∈ V and j ∈ V then // Case (C1)

2 updateP̃ :=

[]
|V | cols
︷︸︸︷

P

col i
︷ ︸︸ ︷

γP⋆,j

}
|V | rows

0 1− γ ← row i

3 else if i ∈ V and j /∈ V then // Case (C2)
4 if O(i) 6= 0 then
5 setz := 1

O(i)+1
(ei −

1
1−γ

P⋆,i)

6 updateP̃ :=

[]

|V | cols
︷ ︸︸ ︷

P+
z·Pi,⋆

1−zi

col j
︷︸︸︷

0
}
|V | rows

γ

O(i)+1

(
Pi,⋆

1−zi

)

1− γ ← row j

7 else

8 updateP̃ :=

[]
|V | cols
︷︸︸︷

P

col j
︷︸︸︷

0
}
|V | rows

γPi,⋆ 1− γ ← row j

9 else if i ∈ V and j ∈ V then // Case (C3)
10 if O(i) = 0 then
11 sety := γP⋆,j

12 else
13 sety := 1

O(i)+1
(γP⋆,j −P⋆,i + (1− γ)ei)

14 updateP̃ := P+
(

1
1−γ−yi

)
yPi,⋆

15 else if i /∈ V and j /∈ V then // Case (C4)

16 updateP̃ :=

[]

|V | cols
︷︸︸︷

P

col i
︷︸︸︷

0

col j
︷︸︸︷

0
}
|V | rows

0 1− γ 0 ← row i

0 (1− γ)γ 1− γ ← row j

17 return P̃

D. Inserting Edge(i, j) with i /∈ V and j /∈ V

We next handle case (C4): the insertion of edge(i, j) with
i /∈ V andj /∈ V . After insertion, new transition matrix̃A is6

Ã =

[]

|V | cols
︷︸︸︷

A

col i
︷︸︸︷

0

col j
︷︸︸︷

0
}
|V | rows

0 0 0 ← row i

0 1 0 ← row j

(17)

Based on the block diagonal structure ofÃ, newP̃ can be
expressed in a block diagonal form as well, as shown below.

Theorem 4. Given graphG = (V,E) and its old proximity
matrix P, after edge(i, j) with i /∈ V and j /∈ V is inserted,
new proximity matrixP̃ can be computed as

P̃ =

[]

|V | cols
︷︸︸︷

P

col i
︷︸︸︷

0

col j
︷︸︸︷

0
}
|V | rows

0 1− γ 0 ← row i

0 (1− γ)γ 1− γ ← row j

Proof: Plugging Eq.(17) tõP = (1− γ)(I− γÃ)−1 yields

P̃ = (1− γ)

[
(I− γA)−1 0

0
[

1 0
−γ 1

]−1

]

=

[
P 0

0
[1−γ 0
(1−γ)γ 1−γ

]

]

Theorem 4 tells us that for case (C4), the insertion of edge
(i, j)i/∈V,/∈V will form another new component in the graph.
After insertion, the upper-left block of new̃P (i.e.,P) remains
unchanged since there are no edges across the two components.
Likewise, the upper-right and lower-left blocks ofP̃ are 0s.

6We can assume w.l.o.g. thati andj are indexed by(|V |+1) and(|V |+2).

Algorithm 2: Unit Deletion
Input : old graphG = (V,E), edge(i, j) to be deleted,

old proximity matrixP in G, and decay factorγ.
Output : new proximity matrixP̃ in G − {(i, j)}.

1 if O(i) = 1 then
2 sety := γP⋆,j

3 else
4 sety := 1

O(i)−1
(γP⋆,j −P⋆,i + (1− γ)ei)

5 updateP̃ := P− 1
(1−γ−yi)

yPi,⋆

6 if i or j is an isolated node after deletionthen deletei or j
7 return P̃

Note thatP̃j,i = (1−γ)γ is initialized by new edge(i, j).
This value can also be used as a starting point if one wants to
run the incremental algorithm starting from a singleton edge
(i, j) to generate a given graph.

E. Incremental Algorithm for Unit Insertion

To summarize the cases (C1)–(C4) in Sections III-A–III-D,
Algorithm 1 gives a complete scheme which can incrementally
compute all pairs of RWR proximities for unit insertion. It can
support all types of edge insertions over existing or new nodes.
For each type, new̃P can be efficiently computed from oldP
without any matrix-matrix multiplications.

The correctness of Algorithm 1 is shown by Theorems 1–4,
corresponding to 4 cases: (C1) (Lines 1–2), (C2) (Lines 3–8),
(C3) (Lines 9–14), and (C4) (Lines 15–16), respectively.

For computational cost, we have the following result.

Theorem 5. For any edge to be inserted to graphG = (V,E),
it requiresO(|V |2) worst-case time andO(|V |2) memory to
incrementally compute all pairs of proximities accurately.

Proof: TheO(|V |2) time, in the worst case, is dominated
by two products of vectorszPi,⋆ (Line 6) andyPi,⋆ (Line 14);
the rest of the operations includes vector scaling and addition,
yielding onlyO(|V |) time. For memory usage,O(|V |2) space
is used to store all pairs of old and new proximities; besides,
O(|V |) space is required to store intermediate vectorsy, z.

TheO(|V |2) worst-case time, in general, can be reduced to
O(max{|V |, |z||Pi,⋆|, |y||Pi,⋆|}) time if we skip all 0 entries
of z,y,Pi,⋆ to computezPi,⋆ andyPi,⋆ (see Example 6).

TheO(|V |2) memory is necessary for anin-memoryalgo-
rithm, due to all pairs of outputs. In Section IV, we will devise
partitioning techniques to reduce the memory usage further.

F. Decremental Algorithm for Unit Deletion

Unlike edge insertion that is divided into cases (C1)–(C4),
we focus only on one case for edge deletion: Given old graph
G = (V,E), the removal of edge(i, j) with i ∈ V andj ∈ V ,
since we can first assume that the deletion of edge(i, j) would
not remove its end nodesi andj. If i or j becomes an isolated
node (whose in- and out-degrees are all 0s) after edge deletion,
then we can removei or j later.

Algorithm 2 gives a decremental method to update all-pairs
proximities for unit deletion. The proofs of its correctness and
complexity bounds are similar to those of Theorem 3, and are
omitted here for brevity.

7

= +

= +

= +

= +

PP̃

[P]1

[P]2

[P]3

[P̃]1

[P̃]2

[P̃]3

λz

λ[z]1

λ[z]2

λ[z]3

Pi,⋆

Pi,⋆

Pi,⋆

Pi,⋆

0

0

0

0

1− γ

1− γ
λγ

O(i)+1
Pi,⋆

λγ
O(i)+1Pi,⋆

Before
Partition

After
Partition

Fig. 2: ComputeP̃ in Eq.(11) Segment-wisely via Eqs.(18)–(19)

IV. AVOID MEMOIZING ALL -PAIRS PROXIMITIES

In the last section, theO(|V |
2
) memory of our incremental

method is dominated by storing all-pairs new/old proximities.
To avoidO(|V |

2
) memory, we next propose our partitioning

techniques that can update each segment ofP independently.

Due to space limitations, we mainly focus our partitioning
methods on updatingP in case (C2) forO(i) 6= 0, i.e.,Eq.(11):

P̃ =

[]

|V | cols
︷ ︸︸ ︷

P+
z·Pi,⋆

1−zi

col j
︷︸︸︷

0
}
|V | rows

γPi,⋆

(O(i)+1)(1−zi)
1− γ ← row j

with z = 1
O(i)+1(ei −

1
1−γP⋆,i)

as this is the most complicated case among (C1) — (C4).

Our main idea of avoidingO(|V |
2
) memory is to partition

P ∈ R
|V |×|V | and z ∈ R

|V |×1 into ⌈ |V |l ⌉ segments of size
l × |V | and l × 1, respectively (except for the last segment,
which might be smaller), where1 ≤ l ≤ |V | is a user-specified
integer that makes each segment small enough to fit in memory.
After partitioning,P andz becomes

P =









|V | cols
︷︸︸︷

[P]1
[P]2

...

[P]N









}
l rows

}
l rows

...
}

(|V | − (N − 1)l) rows

z =









|V | cols
︷︸︸︷

[z]1
[z]2

...

[z]N









}
l rows

}
l rows

...
}

(|V | − (N − 1)l) rows

N =
⌈
|V |
l

⌉

where[P]x is thex-th segment(l×|V |) of P (1 ≤ x ≤ N−1),
and [z]x is thex-th segment(l × 1) of z.

As the upper-left block(P+
z·Pi,⋆

1−zi
) of newP̃ is a rank-one

update of oldP, it can be computed segment-wisely as

P+ λz ·Pi,⋆ =









|V | cols
︷ ︸︸ ︷

[P]1 + λ[z]1 ·Pi,⋆

[P]2 + λ[z]2 ·Pi,⋆

...

[P]N + λ[z]N ·Pi,⋆









}
l rows

}
l rows

...
}

(|V | − (N − 1)l) rows

with λ = 1
1−zi

.

This suggests that, to incrementally evaluate newP̃, we just
need loadPi,⋆ and one segment ofP, say[P]x, into memory
at one time; and each new segment[P̃]x can be updated from
old segment[P]x independently as follows:

[P̃]x =
[

|V | cols
︷ ︸︸ ︷

[P]x + λ[z]x ·Pi,⋆

col j
︷︸︸︷

0
] }

l rows (∀x = 1, · · · , N)

with λ = 1

1−
1

O(i)+1 (1−
1

1−γPi,i)
and [z]x = 1

O(i)+1 ([ei]x −
1

1−γ [P⋆,i]x).
(18)

= +[P]1[P̃]1
λz

[Pi,⋆]1

Vertical Partition

= +[P]1,1[P̃]1,1 λ[z]1

[Pi,⋆]1

= +[P]1,2[P̃]1,2 λ[z]1

[Pi,⋆]2

= +[P]2,1[P̃]2,1 λ[z]2

[Pi,⋆]1

= +[P]2,2[P̃]2,2 λ[z]2

[Pi,⋆]2

= +[P]3,1[P̃]3,1 λ[z]3

[Pi,⋆]1

λγ
O(i)+1

[Pi,⋆]1

= +[P]3,2[P̃]3,2 λ[z]3

[Pi,⋆]2

λγ
O(i)+1

[Pi,⋆]2

= +[P]3,3[P̃]3,3 λ[z]3

[Pi,⋆]3

λγ
O(i)+1

[Pi,⋆]3

0

1− γ

= +[P]1,3[P̃]1,3 λ[z]1

[Pi,⋆]3

= +[P]2,3[P̃]2,3 λ[z]2

[Pi,⋆]3

= +[P]2[P̃]2 = +[P]3[P̃]3

0

0

0

1− γλγ
O(i)+1

[Pi,⋆]1
λγ

O(i)+1
[Pi,⋆]2

λγ
O(i)+1

[Pi,⋆]3

[Pi,⋆]2 [Pi,⋆]3

λz λz

Block Partition

Fig. 3: ComputeP̃ in Eq.(11) via Vertical Partitioning into 3
Segments or via Block Partitioning into3× 3 Segments

except for the last segment being

[P̃]N =

[]

|V | cols
︷ ︸︸ ︷

[P]N + λ[z]N ·Pi,⋆

col j
︷︸︸︷

0
}

(
|V | − (N − 1)l− 1

)
rows

λγ
O(i)+1Pi,⋆ 1− γ ← row j

(19)

The advantage of our partitioning method in Eqs.(18)–(19)
is that it requires onlyO(l|V |) memory andO(⌈ |V |l ⌉) I/O costs
to incrementally updateP, with no need ofO(|V |2) memory to
load the entireP. Moreover, each segment ofP can be updated
independently (in parallel). Figure 2 pictorially depictshow our
partitioning way of Eqs.(18)–(19) segment-wisely updatesP.

The integer1 ≤ l ≤ |V | is a user-controlled parameter that
is a trade-off to balance memory and I/O costs. For instance,
when l = 1, P can be row by row loaded and updated in
just O(|V |) memory, but requiresO(|V |) I/O costs in total
for |V | rows update; whenl = |V |, it requires onlyO(1) I/O
cost in total for all pairs of inputs/outputs, but entailsO(|V |

2
)

memory to load the entireP — this reduces to thein-memory
algorithms we discussed in Section III.

The CPU time for updating each segment ofP in Eqs.(18)–
(19) is O(l|V |) in the worst case, which in practice can be
reduced toO(|[z]x||Pi,⋆|) further if zero entries in vectors[z]x
andPi,⋆ are skipped. In total, since there are⌈ |V |l ⌉ segments,
the CPU time to update all (|V |2) pairs ofP retainsO(|V |

2
)

in the worst case, andO(
∑N

x=1 |[z]x||Pi,⋆|) = O(|z||Pi,⋆ |) in
practice, which is the same as Algorithm 1.7

In addition to the proposed horizontal partitioning method
in Eqs.(18)–(19), we can similarly devise vertical partitioning
and block partitioning techniques to incrementally evaluateP.
For example, as picturized in Figure 3,P̃ in Eq.(11) can also be
split via vertical partitioning and block partitioning methods.
Due to a similar bordered block structure betweenP̃ andP̃T ,
the performance of vertical partitioning method is similarto its
horizontal counterpart, as will be validated by our experiments
in Section VI as well. The block partitioning method, however,
bears an extra advantage: If the memory space is rather limited
(< O(|V |)) so that even one row/column of̃P cannot fit into it,

7Despite the same CPU time (no I/Os), the running time (withO(⌈ |V |
l
⌉)

I/Os) of our partitioning incremental algorithm will become slow whenl drops.

8

Algorithm 3: Pure Bulk Insertions
Input : old graphG = (V,E), decay factorγ,

a set of edges∆G := {(ik, jk)} to be inserted,
old proximity matrixP in G.

Output : new proximity matrixP̃ in G ∪∆G.
repeat

1 sort all edges{(ik, jk)} of ∆G into |I | groups{∆Gi}
first by ik and then by whetherjk is an old node inG.

2 set∆Gimax := one of the groups with the maximum
number of edges in{∆Gi}.

3 setJ := {nodej : (i, j) ∈ ∆Gimax} andδ := |J |.
4 update newP̃ in G ∪∆Gimax from old P in G,

according to the last column of Table II.
5 update∆G := ∆G−∆Gimax andG := G ∪∆Gimax

until ∆G := ∅

6 return P̃

we can utilize the block partitioning method that can set small
size l × l for each segment of̃P to fit into O(l2) memory.

V. BULK UPDATES

We study two types of bulk updates: a)pure bulk updates:
only one type of updates, insertions or deletions, is permitted;
b) mixed bulk updates: a mixture of insertions and deletions.

A. Pure Bulk Insertions

Given a set of edges to be inserted into oldG = (V,E):

∆G := {(i1, j1), (i2, j2), · · · , (iδ, jδ)},

whereik and jk (1 ≤ k ≤ δ) can be new or old nodes inV ,
the traditional method to compute new̃P in G∪∆G requires
repeated execution of unit insertion (Algorithm 1) forδ times,
and may produce many unnecessary intermediate updates.

However, we observe that, for pure bulk updates, the order
of edge insertions in∆G is irrelevant to newP̃ in G ∪∆G;
and, in practice, there are often many repeated nodes in∆G.
This gives us an opportunity to handle multiple edges in bulk.

Our main idea is to sort all edges{(ik, jk)} in ∆G by its
head nodeik into several groups{∆Gik}. Then, all edges in
each group∆Gik are divided into at most 2 subgroups:∆G1

ik
and∆G2

ik
, according to whether its tail nodejk is in old V .

Example 7. ∆G = {(a, e), (e, g), (e, l), (e, f), (h, b), (e,m)}
in Figure 1 can be divided into three groups:∆Ga = {(a, e)},
∆Ge = {(e, g), (e, f), (e,m), (e, l)} and ∆Gh = {(h, b)},
where∆Ge can be partitioned into two subgroups further:
∆G1

e = {(e, f)} and∆G2
e = {(e, g), (e,m), (e, l)}.

The main advantage of dividing∆G is that, after division,
all the insertions in each group can be handledsimultaneously.
To elaborate on this, let us focus on one group∆Gi:

∆Gi := {(i, x)}∀x∈J with J := {j1, · · · , jδ}.
8

Analogous to unit insertion in Section III, for every group,
we classify new insertions∆Gi to G = (V,E) into 4 cases:

(C1) i /∈ V, j1 ∈ V, · · · , jδ ∈ V ; (C2) i ∈ V, j1 /∈ V, · · · , jδ /∈ V ;

(C3) i ∈ V, j1 ∈ V, · · · , jδ ∈ V ; (C4) i /∈ V, j1 /∈ V, · · · , jδ /∈ V.

Without loss of generality, it can be tacitly assumed that
8For notation convenience, we omit all the subscriptsk here. Strictly,∆Gi

(resp.δ) should be written as∆G
1|2
ik

(resp.δk).

Case New Transition MatrixÃ New Proximity MatrixP̃

(C1):

i /∈ V

j1 ∈ V

· · ·

jδ ∈ V

[]
|V | cols
︷︸︸︷

A

col i
︷ ︸︸ ︷

(1/δ)eJ

}
|V | rows

0 0 ← row i

with (eJ)x :=

{
1, x ∈ J

0, x /∈ J

[]
|V | cols
︷︸︸︷

P

col i
︷ ︸︸ ︷
γ
δ

∑

j∈J P⋆,j

}
|V | rows

0 1− γ ← row i

(C2):

i ∈ V

j1 /∈ V

· · ·

jδ /∈ V

① if O(i) = 0, thenÃ :=

[]

|V | cols
︷ ︸︸ ︷

A

δ cols
︷︸︸︷

0
}
|V | rows

(1/δ)1δe
T
i 0

}
δ rows

with 1δ := [1, 1, · · · , 1]
︸ ︷︷ ︸

δ

T

② if O(i) 6= 0, thenÃ :=

[]

|V | cols
︷ ︸︸ ︷

A + ve
T
i

δ cols
︷︸︸︷

0
}
|V | rows

1
O(i)+δ 1δe

T
i 0

}
δ rows

with v := − δ
O(i)+δ

A⋆,i

① if O(i) = 0, thenP̃ :=

[]

|V | cols
︷ ︸︸ ︷

P

δ cols
︷ ︸︸ ︷

0
}
|V | rows

γ
δ 1δPi,⋆ (1− γ)I

}
δ rows

② if O(i) 6= 0, thenP̃ :=









|V | cols
︷ ︸︸ ︷

P +
zPi,⋆
1−zi

δ cols
︷ ︸︸ ︷

0
}
|V | rows

γ1δPi,⋆

(O(i)+δ)(1−zi)
(1− γ)I

}
δ rows

with z := δ
O(i)+δ

(
ei −

1
1−γ P⋆,i

)

(C3):

i ∈ V

j1 ∈ V

· · ·

jδ ∈ V

Ã := A + ueT
i with

① if O(i) = 0, then
u := (1/δ)eJ

② if O(i) 6= 0, then
u := δ

O(i)+δ
(1
δ eJ −A⋆,i)

P̃ := P + 1
1−γ−yi

yPi,⋆ with

① if O(i) = 0, then
y := γ

δ

∑

j∈J P⋆,j

② if O(i) 6= 0, then
y := 1

O(i)+δ
(γ

∑

j∈J P⋆,j − δP⋆,i

+δ(1− γ)ei)
(C4):

i /∈ V

j1 /∈ V

· · ·

jδ /∈ V









|V | cols
︷︸︸︷

A

col i
︷︸︸︷

0

δ cols
︷︸︸︷

0
}
|V | rows

0 0 0 ← row i

0 1
δ 1δ 0

}
δ rows









|V | cols
︷︸︸︷

P

col i
︷︸︸︷

0

δ cols
︷︸︸︷

0
}
|V | rows

0 1 − γ 0 ← row i

0
(1−γ)γ

δ 1δ (1− γ)I
}

δ rows

TABLE II: New Ã and P̃ for Four Cases of Bulk Insertions

• in case (C1), new nodei /∈ V is indexed by(|V |+ 1);
• in case (C2), new nodejk /∈ V is indexed by(|V |+k) (∀k);
• in case (C4), new nodesi /∈ V and jk /∈ V are indexed by

(|V |+ 1) and (|V |+ 1 + k) (∀k), respectively.

Similar to unit insertion, for each case of bulk insertions,
we can obtain new transition matrix̃A in response to∆Gi,
as depicted in the second column of Table II. We can see that,
due to the reordering of{(ik, jk)} in ∆G, newÃ also exhibits
a rank-one update structure. Utilizing̃A, we can evaluate new
P̃ by generalizing Theorems 1–4 to bulk insertions. As shown
in the last column of Table II, new̃P in response to∆Gi =
{(i, x)}∀x∈J also bears a rank-one update structure.

Table II provides an incremental algorithm to computeP̃
for pure bulk insertions, as shown in Algorithm 3. Theactual
computational cost of Algorithm 3 is hard to analyze since it
relies on input parameter∆G, i.e., the type of inserted edges.
However, among the 4 cases in Table II, as the most expensive
computational cost is dominated by cases (C2) and (C3), the
worst-casecomplexity of Algorithm 3 can be analyzed below.

Theorem 6. Let |Ṽ | be the total number of nodes in new graph
G ∪∆G, |∆G| be the number of inserted edges in∆G, and
|I| be the total number of groups in∆G (Lines 1–2). Then,
Algorithm 3 entails, in the worst case,O(|I||Ṽ |2 + |∆G||Ṽ |)
time andO(|Ṽ |2) memory for∆G bulk insertions.

In contrast to theO(|∆G||V |
2
) worst-case time of repeated

execution of Algorithm 1 for∆G edge insertions to updatẽP,
Theorem 6 shows that our bulk update method by Algorithm 3
is more efficient since|I| ≤ |∆G|, and in general,|I| ≪ |∆G|.
It is worth noticing that, theactualrunning time of Algorithm 3
is typically much faster than its worst-case time illustrated by
Theorem 6, which is due to the two reasons: (a) The type of
edge insertions, in practice, may notalwayshappen to meet
the most time-consuming cases (C2) and (C3); (b) For each
edge update(i, j), theO(|Ṽ |2) worst-case time in cases (C2)

9

Algorithm 4: Pure Bulk Deletions
Input : the same as Algorithm 3 except for

“a set of edges∆G := {(ik, jk)} to be deleted”
Output : new proximity matrixP̃ in G−∆G.

1 sort all edges{(ik, jk)} of ∆G by ik into |I | groups:{∆Gi}.
2 foreach group∆Gi in ∆G do
3 setJ := {nodej : (i, j) ∈ ∆Gi} andδ := |J |.
4 if O(i) = 1 then y := − γ

δ

∑

j∈J P⋆,j

6 else y := 1
O(i)−δ

(δP⋆,i − γ
∑

j∈J P⋆,j − δ(1− γ)ei)

8 updateP̃ := P+ 1
(1−γ−yi)

yPi,⋆.
9 if i or j1 or · · · or jδ is an isolated nodethen

delete nodei or j1 or · · · or jδ.

10 return P̃

and (C3) is dominated by the vector productszPi,⋆ andyPi,⋆,
which, in practice, can be reduced toO(max{|z|, |y|}|Pi,⋆|)
time further, by eliminating 0 entries in vectorsy, z, andPi,⋆.

The O(|Ṽ |2) memory for bulk updates is necessary to an
in-memoryalgorithm for all (|Ṽ |2) pairs output. Nevertheless,
Algorithm 3 can be integrated with our partitioning methodsin
Section IV as well, which allowsO(⌈ |Ṽ |l ⌉) I/O costs to reduce
the memory toO(l|Ṽ |), with 1 ≤ l ≤ |Ṽ | tuned by users.

B. Pure Bulk Deletions

For bulk deletions, we first sort all edges{(ik, jk)} in ∆G
by its head nodeik into |I| groups{∆Gi}. To obtain newP̃,
unlike bulk insertions that need split edge types into 4 cases,
we just need to consider one case: the deletion of a set of edges
∆Gi := {(i, j1), · · · , (i, jδ)} with i ∈ V, j1 ∈ V, · · · , jδ ∈ V
from old graphG = (V,E). This is because, ifi or j1 or · · ·
or jk is an isolated node after deletions, we can remove it later.

Algorithm 4 depicts an efficient method for bulk deletions.
Its complexity is the same as Algorithm 3 (replace|Ṽ | by |V |).

C. Mixed Bulk Insertions and Deletions

For mixed bulk updates, we can eliminate from∆G many
unnecessary updates that may “cancel” each other. Our main
idea is to obtain anetupdate set∆Gmin by using hash table to
count occurrences of entries (updates) in∆G. More precisely,
for each edge update (hash key) in∆G, we first initialize its
count (hash value) with 0, and then increase (resp.decrease)
its count by 1 when an insertion (resp.deletion) occurs in∆G.
Lastly, all hash keys with nonzero counts in∆G make∆Gmin.

Having obtained∆Gmin, we sort all edges in∆Gmin by
its update type into two groups: net deletions∆G−min and net
insertions∆G+

min. Then, we first invokePure Bulk Deletions
(Algorithm 4) to update all proximities in response to changes
∆G−min, and next9 invokePure Bulk Insertions (Algorithm 3)
in response to changes∆G+

min. Finally, we can obtain new̃P
in G⊕∆Gmin (= G⊕∆G yet |∆Gmin| ≤ |∆G|).

The above process implies an efficient algorithm for mixed
bulk updates, as illustrated in Algorithm 5. One can readily
verify that (a) it can correctly compute new̃P in G ⊕ ∆G;
(b) its computational cost, in the worst case, can be bounded
by O(|Imax||Ṽ |

2 + |∆Gmin||Ṽ |) time andO(|Ṽ |2) memory,

9We deal with∆G−
min before∆G+

min because bulk deletions can minimize
the size of the existing graph for bulk insertions.

Algorithm 5: Mixed Bulk Updates
Input : the same as Algorithm 3 except for

“a set of edges∆G := {(ik, jk,±)} to be updated”
Output : new proximity matrixP̃ in G ⊕∆G.

1 obtain a set of net updates∆Gmin from ∆G via hashing
2 divide ∆Gmin by update type into∆G−

min and∆G+
min

3 call Pure Bulk Deletions (Alg. 4) to updateP̃ w.r.t. ∆G−
min

4 call Pure Bulk Insertions (Alg. 3) to updateP̃ w.r.t. ∆G+
min

5 return P̃

where|Imax| is the maximum number|I| of groups for pure
bulk updates∆G−min and∆G+

min, and|Ṽ | is number of nodes
in G∪∆G+

min; and (c) its memory can be reduced toO(l|Ṽ |)

with O(⌈ |Ṽ |l ⌉) I/O costs, where1 ≤ l ≤ |Ṽ | is tuned by users.

VI. EXPERIMENTS

The experimental evaluations on real and synthetic datasets
verify the high efficiency of our incremental RWR methods,
including its running time (with I/Os), memory, and exactness.

A. Experimental Settings

1) Real Datasets.We use 4 real datasets, including 2 temporal
graphs (DBLP10, HepPh), and 2 static graphs (Wiki, Email)11

with synthetic updates simulating real-world evolutions.

• DBLP is a co-authorship graph, where an edge exists if there
is a paper collaboration between authors (nodes) in a given
period of time. Based on the collaboration time interval, we
extracted 5 snapshots, each with 4K edges. The entire dataset
has 103K edges and 19K nodes.

• HepPh (high energy physics phenomenology) is a citation
digraph from the e-print arXiv and covers all the citations
within a dataset of 421,578 citations with 34,546 papers. If
a paperi citesj, the graph contains an edge fromi to j.

• Wiki contains voting data from the inception of Wikipedia,
in which an edge is a vote from one user (node) to another.
This dataset has 103,689 edges and 8,297 nodes.

• Email is an Email network of a EU research institution, where
a node is an email address, and an edgei→ j denotesi sent
a message toj. It has 420K edges and 265K nodes.

2) Synthetic Datasets.We use Boost toolkit12 to generate old
graphs, and devise a synthetic generator to produce updates(a
set of new insertions/deletions). Graphs are controlled bya) the
number of nodes|V |, and b) the number of edges|E|, which
follows the densification power law [6], and linkage generation
models [3]. Updates are controlled by a) update type (insertion
or deletion), and b) the size of updates|∆G|.

3) Algorithms. We implement all the algorithms in VC++.
Algorithm Description
Inc-R+, Inc-R−, Inc-R our bulk Algorithms 3, 4, 5
Inc-uR+, Inc-uR− our unit Algorithms 1, 2
Bear [8] sparse LU decomposition + block elimination
k-dash [2] sparse LU decomposition + tree estimation
MC [1] Monte Carlo-based incremental RWR
B-LIN [11] graph partitioning + low-rank SVD
IRWR [14] column-combined RWR (disallowA size change)
DAP [10] direction-aware RWR (for all queries)

10http://dblp.uni-trier.de/xml/
11http://snap.stanford.edu/data/index.html
12http://www.boost.org/

10

90K 94K 98K 102K

102

103

104

|E|+ |∆E|

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R+ Bear
MC k-dash
DAP B-LIN

(a) Insertion onDBLP

103K 99K 95K 91K

102

103

104

|E| − |∆E|

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R− Bear
MC k-dash
DAP B-LIN

(b) Deletion onDBLP

Wiki HepPh Email
101

102

103

104

105

|∆G| = 1000

××E
la
p
se
d
T
im

e
(s
ec
)

Inc-R
Bear
MC
k-dash
DAP
B-LIN

(c) Mixed Update on Real Datasets

Wiki HepPh Email Syn
101

102

103

104 |∆G| = 1000

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R
IRWR

(d) Time for Inc-R vs. IRWR

Wiki HepPh Email
101

102

103

104

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R+(10)
Inc-R+(50)
Inc-R+(100)

(e) Timew.r.t. # Partitions

Horizontal Vertical

10 50 100
200

300

400

500

PartitionsE
la
p
se
d
T
im

e
(s
ec
)

HepPh

10 50 100
2,000

2,500

3,000

3,500

4,000

Partitions

Email

(f) Vertical & Horizontal Partitioning

102 103 104 105
.001

0.1

101

103

105

|∆G| = 1000

|V |

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R
Inc-uR+/−

(g) Varying |V | on Syn

101 102 103 104
0.1

1

101

102

103

|V | = 104

|∆G|

E
la
p
se
d
T
im

e
(s
ec
)

Inc-R
Inc-uR+/−

(h) Varying |∆G| on Syn

Fig. 4: Computational Speedup on Real and Synthetic Datasets

4) Parameters.We take the following parameters by default,
as previously used in [10], [11]: a) the decay factorγ = 0.9,
b) the number of partitions forB-LIN, τ = 100, and c) the
total number of iterations forDAP, K = 80.

5) Accuracy Metrics. To evaluate accuracy, two measures are
used: average difference (AD) andF-score. AD is defined as
AD := 1

|V |2 (
∑

i,j |Pi,j − P̂i,j |
2)1/2. It can assess the average

error of proximities over all pairs by deterministic algorithms.

F-score is defined asF-score := 2× Precision×Recall
Precision+Recall .

Since [2] has theoretically proved the exactness ofk-dash,
we can choose its proximity scores as the ideal baseline.

All experiments are run on an Intel Core(TM) i7-4700MQ
CPU @ 2.40GHz CPU and 32GB RAM, using Windows 7.

The running time includes both CPU time and I/O costs.

B. Experimental Results

1) Speedup:We first evaluate the running time ofInc-R+

andInc-R− onDBLP. The results are shown in Figures 4a–4b.
We can discern that (a) when the number of edges|E| increases
from 90K to 102K (resp.decreases from 103K to 91K),Inc-
R+ (resp.Inc-R−) consistently outperforms all other methods,
e.g.,when |E| = 102K, Inc-R− is ∼54.3x faster thanB-LIN,
∼20x faster thanDAP andk-dash, and∼13x faster thanBear.
This is becauseInc-R+ and Inc-R− can incrementally update
only the changes to all pairs of proximities that can be obtained
from only the outer product of two vectors, without the need to
perform any matrix decomposition (e.g.,LU, SVD) and matrix-
matrix multiplications. (b) When|E| decreases, all algorithms
require less running time exceptInc-R− andMC. The reason
is thatInc-R− andMC update proximities by reusing previous
results, whose time mainly depends on the number of edges to
be updated. In contrast, batch algorithms compute proximities
from scratch, whose time relies on the total number of edges.

We next test the running time ofInc-R on Wiki, HepPh,
Email, by using synthetic insertions/deletions mixed together.
Due to similar tendency, Figure 4c only reports|∆G| = 1000.

We can see that (a) on each dataset,Inc-R always outperforms
all other methods,e.g., on Wiki, Inc-R is 25.8x faster than
B-LIN, 11.3x faster thank-dash, 9.2x faster thanDAP, and
6.5x faster thanBear. This high efficiency is due to 1) our
characterization of all proximity changes as the outer product
of two vectors, and 2) our aggregation and hashing strategies
for bulk updates. (b) When the scale of dataset becomes larger,
the speedup ofInc-R relative to MC is more pronounced,
e.g.,on HepPh (resp.Email), Inc-R is ∼7.5x (resp.∼14.3x)
faster thanMC. This is becauseMC is ineffective for all-pairs
computation as it cannot eliminate repeatedly sampling among
RWR vectorsw.r.t. different query nodes. In contrast,Inc-R
can identify proximity changes as a rank-one update matrix.

To favor IRWR that disallows new nodes created for edge
updates, we also rebuild all updates of case (C3) on real data,
and compareIRWR with Inc-R. Figure 4d depicts the results.
It can be seen thatInc-R runs consistently faster thanIRWR,
since Inc-R optimizes bulk updates via merging and hashing
methods, whereasIRWR handles these updates one by one.

Figure 4e evaluates the effect of the number of partitions
on the running time ofInc-R over Wiki, HepPh, andEmail.
By increasing the number of partitions from 10 to 100 on each
dataset, we can see thatInc-R grows slightly. This is because
the growing number of partitions may lead to more I/O costs
to load all-pairs proximities segment-wisely, thereby increasing
the total running time. However, due to the rank-one update
structure of the proximity changes, afterPi,⋆ is memoized,
our partitioning techniques do not require communication costs
across different segments. Thus, the increase is not significant.

Figure 4f tests the impact of different partitioning methods
(e.g.,horizontal and vertical partitioning) on the running time
of Inc-R over HepPh and Email. For each dataset, we vary
the number of partitions from 10 to 100, and apply horizontal
and vertical partitioning, respectively, for a fixed partition size.
The result shows that, given the partition size, on every dataset,
the running time ofInc-R is almost the same regardless of the
partitioning methods we used. This is due to the similar block
structure ofP andPT . Hence, the performance of the vertical

11

90K 94K 98K 102K
101

102

103

104

Inc-R+(10)

Inc-R+(50)

Inc-R+(100)
Bear

MC
k-dash

DAP
B-LIN

|E|+ |∆E|

M
em

o
ry

(M
B
)

(a) Pure Update onDBLP

Wiki HepPh Email
1

101

102

103

104

Inc-R+(10)
Inc-R+(50)
Inc-R+(100)

Bear
k-dash
MC
DAP
B-LIN

××

M
em

o
ry

(M
B
)

(b) Mixed Update on Real Datasets

Fig. 5: Memory Efficiency on Real and Synthetic Datasets

partitioning is similar to that of the horizontal partitioning.

Using synthetic data, we also compare the running time of
Inc-R for mixed bulk updates with that of multiple executions
of unit updateInc-uR+/−. In Figure 4g, we fix|∆G| = 1000
and vary|V | from 102 to 105; in Figure 4h, we fix|V | = 104

and vary|∆G| from 101 to 104. We notice that (a)Inc-R is
2.4x–7.6x faster thanInc-uR+/−, showing the effectiveness of
our aggregation approaches to minimize net updates∆Gmin.
(b) When|V | (resp. |∆G|) grows, the times of both methods
increase, but the speedup ofInc-R is more apparent for large
|V | (resp. |∆G|). This is because large|∆G| and |V | might
increase the occurrence of edge updates with a repeated end,
thus enabling a huge reduction in|∆G| after edges are sorted.

2) Memory Efficiency:Figure 5a compares the memory of
all the methods for pure bulk updates onDBLP. When |∆E|
increases from 90K to 102K, we can notice that (a) the memory
for Bear, MC, DAP, k-dash, andB-LIN stabilizes at∼2.1G.
This is because these methods need store all-pairs proximities
for output. In contrast,Inc-R+, given the number of partitions
{10, 50,100}, can incrementally update each partition without
the need to load all-pairs proximities into memory. (b) When
the number of partitions increases, the size of each partition for
P becomes smaller. Thus, the memory ofInc-R+ dramatically
decreases, which is consistent with our analysis in SectionIV.

Figure 5b shows the memory ofInc-R for the mixed bulk
updates onWiki, HepPh, andEmail. Due to similar tendency,
we only report the results on|∆G| = 1000. (a) On each graph,
given the partition number{10,50,100}, the memory ofInc-R
is less than those of other methods by 1–2 orders of magnitude.
This is because, after partition,Inc-R can update each segment
independently, with no need to load all-pairs proximities into
memory, as opposed to other methods that need store all-pairs
proximities. (b) When the number of partitions increases, the
memory ofInc-R decreases, as expected. (c) On largeEmail,
B-LIN andDAP fail to allocate sufficient memory to maintain
intermediate results and all-pairs outputs.

3) Exactness:Figure 6 assesses the accuracy ofInc-R on
Wiki, HepPh, Email by two measures (average difference and
F-score). For each dataset,k-dash is selected as the baseline
due to its exactness. We can see that (a) the average difference
of DAP is ∼ 10−3, which is due to the iterative error. (b) The
average difference ofB-LIN is∼ 10−2 because of its low-rank
SVD approximation. (c) In all cases, the average differenceof
Inc-R is 0, showing the exactness of our algorithm. (d) The
average difference and F-score ofIRWR are large, due to the
technical bugs of [14]; andInc-R provides a full treatment. (e)
The F-score ofMC with 0.95 confidence interval is∼0.8, due
to its probabilistic nature, whereas the F-score ofInc-R is 1.

Wiki HepPh Email
10−4

10−3

10−2

10−1

1

××

A
v
e.

D
iff
.

Inc-R Bear
k-dash DAP
IRWR B-LIN

(a) Average Difference

Wiki HepPh Email
0

0.2

0.4

0.6

0.8

1

F
S
co
re

Inc-R
MC
IRWR

(b) F-Score

Fig. 6: Accuracy and Exactness

VII. C ONCLUSIONS

In this paper, we consider efficient computation of all-pairs
RWR proximities on dynamic graphs. Firstly, for unit update,
we characterize the proximity changes as the outer product of
two vectors, and observe the commutative property for RWR:
PA = AP. These can substantially speed up the computation
of all pairs of proximities fromO(|V |3) to O(|V |2) time in the
worst case, with no loss of accuracy. Then, to avoidO(|V |2)
memory for all-pairs outputs, we also propose efficient parti-
tioning methods based on our dynamic model, such that all
pairs of proximities can be computed segment-wisely in only
O(l|V |) memory withO(⌈ |V |l ⌉) I/O costs, where1 ≤ l ≤ |V |
is a user-controlled trade-off between memory usage and I/O
costs. Besides, for bulk updates, we devise aggregation and
hashing methods to eliminate unnecessary updates further and
handle chunks of unit updates simultaneously. Our experimen-
tal results on real and synthetic datasets demonstrate thatour
method can be 10–100x faster than the best-known competitors
on large graphs while guaranteeing exactness and scalability.

REFERENCES

[1] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental and
Personalized PageRank.PVLDB, 4(3):173–184, 2010.

[2] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa. Fast and
exact top-k search for random walk with restart.PVLDB, 5(5), 2012.

[3] S. Garg, T. Gupta, N. Carlsson, and A. Mahanti. Evolutionof an online
social aggregation network: An empirical study. IMC, 2009.

[4] I. Konstas, V. Stathopoulos, and J. M. Jose. On social networks and
collaborative recommendation. InSIGIR, pages 195–202, 2009.

[5] N. Lao and W. W. Cohen. Relational retrieval using a combination of
path-constrained random walks.Machine Learning, 81(1):53–67, 2010.

[6] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densifi-
cation and shrinking diameters.ACM TKDD, 1(1), 2007.

[7] P. Sarkar, A. W. Moore, and A. Prakash. Fast incremental proximity
search in large graphs. InICML, 2008.

[8] K. Shin, J. Jung, L. Sael, and U. Kang. BEAR: Block elimination
approach for random walk with restart on large graphs. InSIGMOD,
pages 1571–1585, 2015.

[9] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood
formation and anomaly detection in bipartite graphs. InICDM, 2005.

[10] H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware proximity
for graph mining. InKDD, pages 747–756, 2007.

[11] H. Tong, C. Faloutsos, and J. Pan. Fast random walk with restart and
its applications. InICDM, pages 613–622, 2006.

[12] G. Weikum and M. Theobald. From information to knowledge:
Harvesting entities and relationships from web sources. InPODS, 2010.

[13] A. W. Yu, N. Mamoulis, and H. Su. Reverse top-k search using random
walk with restart.PVLDB, 7(5):401–412, 2014.

[14] W. Yu and X. Lin. IRWR: Incremental random walk with restart. In
SIGIR (poster version), pages 1017–1020, 2013.

[15] F. Zhu, Y. Fang, K. C. Chang, and J. Ying. Incremental andaccuracy-
aware personalized PageRank through scheduled approximation. PVLD-
B, 6(6):481–492, 2013.

12

