Scaling Random Walk with Restart over
Dynamic Networks

Weiren Yu Julie A. McCann
Department of Computing Department of Computing
Imperial College London Imperial College London

weiren.yu@imperial.ac.uk j-mccann@imperial.ac.uk

Abstract—Random Walk with Restart (RWR) is an appealing
measure of proximity between nodes based on network topologs.
As real graphs are becoming larger and subject to minor changs,
it is rather cost-inhibitive to recompute proximities from scratch.
Existing method utilizes LU decomposition and degree reordring
heuristics. As a result, it yieldsO(|V|?) time and O(|V|*) memory
to compute all (V'|?) pairs of RWR proximities on a static graph.
This paper proposes a dynamic scheme to assess all-pairs RWR
(1) For unit update, we characterize the changes to all-pag RWR
as the outer product of two vectors. Furthermore, we notice lhat Fig. 1: An Imperial’s Website Updated by 3 Types of Edge Insertions
the multiplication of an RWR proximity matrix and its transi tion

matrix, unlike traditional matrix multiplication, is comm utative. C d with oth imilarit SimRank
These can significantly reduce the computation of all-pairlRWR ompared with other similarity measuresd., SimRank),

to O(|V'|2) worst-case time for every update with no accuracy loss. RWR highlights the following features: (1) It can recurdyve

In practice, the O(|V|?) time can be reduced toO(|A|) further, capture the multi-hop neighborhood information of evergewo
where |A| (< |V[?) is the number of affected proximity elements. (2) Unlike SimRank which is a symmetric similarity measure
(2) To avoid O(|V'|*) memory for all-pairs outputs, we also devise ~ for quantifying the structural equivalence between twoesd
efficient partitioning techniques based on our incrementaimodel, RWR is an asymmetric measure over a directed graph, focusing
which can compute all pairs of proximities segment-wiselyri just on the reachability from one node to another. (3) RWR is a sta-
O(1|v]) memory with O([171]) /O costs, wherel <1 < |V|is ble measure that is resilient to noise in a graph. Conselyyent

a user-controlled trade-off between memory usage and I/0 &s. RWR has witnessed galloping attraction in fertile commiesit
(3) For bulk updates, we devise aggregation and hashing metds over recent years [4], [5], [9]-[13].

that can discard unnecessary updates further and handle chks

of unit updates simultaneously. The experiments on many dasets However, the practicability of RWR is hindered by its high
verify that our approaches can be 1-2 orders of magnitude faer computational cost. The best-of-breed methods [2], [8]Lise
than other competitors while securing exactness and scaldiby. decomposition and degree reordering heuristics. Consglgpe
it entailsO(|V|?) time andO(|V|?) memory in the worst case
I. INTRODUCTION to compute all [\V|?) pairs of proximities over a static graph.

However, due to the dynamics and increasing scale of the Web,

With the increasing scale of the Internet, many application it is rather expensive to recompute all proximities fromasci
are confronted with large and dynamically evolving netvgork when a graph is frequently updated with small changes.
For instance, the World Wide Web today embraces more than . . - . .
one trillion links, 7% — 18% of which are updated fortnightly . !N this paper, we consider efficient dynamic computation of
A common task on graph data is link-based proximity search@!l"Pairs RWR proximities on large-scale evolving network
i.e.,given a graphG = (V, E) with |V| nodes andE| edges, Given all-pairs proximities in old grapld/, and updates\G
the retrieval of all proximities between every two nodegn to G (i.e.,a collection of new edge insertions or deletions)
Recently, Random Walk with Restart (RWR) [11] has beenCompute the changes to all-pairs RWR proximities efficiently
proposed as an attractive proximity measure, with a widgean without loss of exactness.
of emerging applications, such as nearest neighbor sedBth [
named entity disambiguation [5], collaborative filtering)],[
automatic image labeling [11], and anomaly detection [9].

We are especially interested in the situation: When altspai
proximities cannot fit into memory, can our dynamic methods
compute such changes over each segment independently while

The success of RWR can be largely ascribed to its succinaecuring high efficiency? Let us take the following example.
and intuitive philosophy which revolves around random walk
Let us consider a random surfer starting from a given nade
The surfer has two options at each step: either moving to on
of its out-links, or restarting from with a certain probability.
After the stability is iteratively attainedhe RWR proximitpf
every nodey w.r.t. a given noder is the steady-state probability In this new semester, the Imperial’'s web site is updated by
that the surfer will eventually arrive at node adding 4 new pages and 6 new links (see the dashed edges,

Example 1. Figure 1 depicts a fraction of an old web gragh
taken from Imperial College, where each node denotes a web
Sage, and each edge is a hyperlink from one page to another.
The old proximity matrix of all-pairs web pages was computed

Algorithm___ Time (All Pairs) ____ Memory Error Tonget al.[11] provided a pioneering SVD-based method,
IneR (0T 1) Vos) gg{ﬁ}; 82{ = ng 88'&?'% 0 B-LIN, for RWR computationB-LIN first divides a graph into
Bear 8] oUBIV) oV 0 7 dense blocks and a sparse block, and then performs matrix
k-dash [2] o(|V]?) oV |?) 0 inverse for each dense block and a ran&VD approximation

DAP [10] O(K|E|IV]) o(vI) +**1 for the sparse block. ConsequenfylIN can well balance the
B-LIN [11] Oz IVI") OVI”+vIVl) e performance between offline precomputation and onlineyquer

TABLE I: Comparelnc-R with previous methods per update | ater, an iterative method [10] was proposed for computing
(wherer is the partition numberls is the iteration number, RWR, namelyDAP. It requiresO(K|E||V|) time andO(|V|*)

i o (V, E) for K iterations, with guaranteed iterative error.
denoted asAG). To update all-pairs proximities it U AG,

instead of using a batch method to reassess all new proesniti ~ Recently, Fujiwaraet al. [2] devised an LU decomposition
from scratch, one can incrementally retrieve only the cteng Method,k-dash, for top-K RWR searchw.r.t. a given query.
to the old proximities in response to graph update§ to G, k-dash entailsO(|V|*) time andO(|V'|*) memory to retrieve
by reusing the information of the old proximity matrix @ only the top-K proximities in one column of an RWR matrix.
However, due to memory limitations, the entire old proxim-Thus, it yieldsO([V'|") time for top-K all-pairs RWR search.
ity matrix may not fit into memory. Thus, it is highly desibl T0 Prune unlikely top-K candidates;dash can incrementally
that, in our incremental RWR method, each segment of the oldPdate only the upper bound of RWR proximities. In contrast,
proximity matrix can be updated independently (in parllel Our incremental apfroach can compute all pairs of prox@siti
This can greatly improve the efficiency for all-pairs proities ~ accurately inO(|V|”) worst-case time.

evaluation on dynamic graphs. O The existing work [1], [7] provided probabilistic methods

Nonetheless, there are 2 grand challenges to dynamic RWHR estimate proximities. Sarkat al. [7] integrated a sampling
evaluation: (1) Due to the recursive nature of RWR, it is ltard approach with branch and bound pruning to incrementally re-
exploit the relationship among proximity changas;, and old trieve near neighbors of one given query with high probgpili
proximities inG. (2) It seems hard to avoi@(|V'|2) memory Bahmanietal.[1] used a Monte Carlo method to incrementally
to update all [/|2) pairs of proximities. estimate the proximities with probabilistic accuracy.

Contributions. To address the above challenges, we propose a Zhu et al. [15] presented an incremental accuracy-aware
novel incremental scheminc-R, with three main ingredients: Wway to approximate proximities. They used a hub length-hase
(1) For unit update, we devise an efficient dynamic modefcheduling scheme to prioritize random walks. It diffeisnr
that can characterize the changes to all-pairs RWR as tlee outoUr work in that our algorithm is exact and we only use at most

product of two vectors. Moreover, we notice that the muiiipl WO “pivot proximity vectors” to describe affected regions

cation of an RWR proximity matrix and its transition matrix, The recent work of [14] proposed an incremental method to
unlike traditional matrix multiplication, is commutativehese compute RWR. However, this method would fail when either
can substantially reduce the computation of All[t) pairs of end node of an inserted edge is a new one. Worse still, there ar
proximities fromO(|V'|?) to O(|V'[*) time in the worst casleor technical bugs in [14] which cannot return correct proxiesit
every update with no loss of accuracy. In practice,&¢/[*) |n contrast, our techniques can overcome these limitationis

time can be reduced t0(|A[) further, wherg A (S.|V.|2) IS we also provide a corrigendum of [14] in Section IlI-C.
the number of affected elements in the RWR proximity matrix.

The memory consumption i8(|V|2) in the worst case, which Most recently, Shiret al. [8] have given a fresh impetus to
is necessary for am-memoryalgorithm as all [/|2) pairs of ~ fast RWR computation. Their scheni&gar, combines a block
proximities need to be maintained. (Section I11) elimination approach with a Schur complement of submatrix

(2) To reduce its memory further, we also propose efficienflerived from the LU decomposition, which can achieve 300x
partitioning techniques based on our dynamic model, in twhic speedup further. However, their method is on static graphs.
all (|V[?) pairs prOX|m|t|echan be updated segment-wisely in There has also been work [13] on reverse top-K nearest
O(I|V|) memory WithO((%]) I/O costs, wherd < < |V| neighbors search (RKNN) based on RWR proximity. Its main
is a user-controlled trade-off between memory and 1/O costddea is to terminate the computation of every top-K proxymit

(Section IV) set as early as possible via an indexing strategy.
(3) For bulk updates, we propose aggregation and hashing
techniques for pure updateise(, either insertions or deletions [I. PRELIMINARIES

are allowable) and mixture updates. These can minimize many
unnecessary updates further and handle chunks of unitespda
simultaneously. (Section V)

In this section, let us overview the background of RWR.
or graphG = (V, E), let O(j) be the out-degree of node

Let A be the backward transition matrix defined as

Related Work. Recent years have witnessed growing attention N . .

to efficient RWR computation on large-scale graphs. Exgstin i = 1/0() if 3(j,i) € E, and A, ; = 0 otherwise.

results include SVD-based RWR [11], iterative RWR [10], LU- The RWR proximity matrixP € RIVIxIV! is defined by

based RWR [2], [8], reverseA -NN RWR [13], Monte Carlo

RWR [1], [7], and hub length-based RWR [15]. P=~AP +(1-9)I 1)

Table | summarizes the complexity of the state-of-the-artvhereI € RIVI*IVI is an identity matrix, and1 —~) € (0, 1)
methods for all-pairs RWR computation for every update. is restarting probabilitythat is often set to 0.1y(= 0.9) [11].

In vector forms, Eq.(1) can also be rewritten as
P.,=7AP, .+ (1 —7)e, (VzeV) (2)

whereP, . is thez-th column of P, denoting the proximities
of all nodesw.r.t. nodez; ande, is the z-th column oflI.

Throughout this paper, the computation of the entire matrix

P is calledall-pairs RWR proximities evaluation

We mainly focus omunit insertion(Sections I11-A — I1I-E).
Similar techniques also apply tmit deletion(Section IlI-F).

UNIT UPDATE

Note that all methods in this section darememorybased,

i.e.,all-pairs old and new proximities need fit in main memory.

Notice thatE - E = 1. Th(len, by RWR definition in Eq.(1),
ie.,P'=(1—~)I—-~A’) ", we have

-1
}E) =(1-7E {I
ﬁf’, the above equation implies
P (0
0 (1—I|"
Egs.(5) and (6) imply that aftdi swaps the same rows/cols

for A’ andP’, upper-left blockA still corresponds to upper-
left block P. Hence, removing the shaded regions in Eq.(5)

A—

I= p ~ -1
~ ~ = A —~A 0
P/:(l—w)(E~E—yE{0 J 1} E.

oo

Since(I — yA)

E-P-E (6)

In Section IV, we will extend our methods to handle the case$i-€- Ed.(3)) is equivalent to removing those in Eq.(6). ®

when all-pairs proximities cannot fit in main memory.
Given graphG = (V, E), for edge(s, j) to be added td,
we consider four cases in each subsection, respectively:

(Cl)i¢ V andj € V; (C2)ieVandj ¢V,

(Cl)ieVandjeV; (C4)i¢Vandj¢V.
Example 2. Figure 1 depicts an old digraptv (in solid lines)
with a set of edge insertionSG (in dash lines) intd. In AG,

the insertion(h, b) pertains to case (Cl)e, g), (e, 1), (e, m)
to case (C2); anda,e), (e, f) to case (C3). O

A. Inserting Edge(i, j) withi ¢ V andj € V
We first consider the case (C1): the insertion of efigg)

with ¢ ¢ V andj € V. Generally, such an edge insertion may

change the old transition matriX into

|V| cols col i
A~ e
0 e; } |V| rows

A=l 0 |o]| o 3)

L O 0 0 | «rowi
For ease of representatioA; can be reduced to
~ A e
A= 0 OJ c RUVIFDx(VI+1) (4)

by removing zero rows and columns &f (in shaded areas).
Lemma 1 shows that this removal will not affect the results.

Lemma 1. Let P’ (resp. P) be the RWR proximity matrix
corresponding to the transition matriA’ in Eq(3) (resp. A

in Eq(4)). If A is the submatrix formed by excluding all zero
rows and columns with the indexc [|[V| 41,7 — 1] from A’
(i.e., excluding the shaded regions in £)), thenP can be

obtained by excluding all the rows and columns with the same

indexz € [|[V|+1,i — 1] from P’.

Proof: Let E be an elementary matrix formed by swap-
ping row (|V|+1) and rowi of thei x i identity matrix. Using
elementary row/column transformations, we obtain

E-A.E— [A 0}

0 0 ()

1In Eq.(4), though the last row ok is 0, we need not replace by ‘Vl‘%
where17 is a row vector of all 1s. This is because, unlike the existeofc
PageRank that is ensured By irreduciblity, the existence of RWR is ensured
by (I — vA) invertibility, i.e., whether(I — vA) is diagonally dominant.

Remark 1. Based on Lemma 1, for edgg j) to be inserted,
we can assume, without loss of generality, that

e in case (C1), new node¢ V is indexed by(|V]| + 1);

e in case (C2), new nodg¢ V is indexed by(|V| + 1);

e in case (C4), new nodes¢ V andj ¢ V are indexed by
(JV|+1) and (|V| + 2), respectively. O

Using A, newP can be solved in terms of oM as follows:

Theorem 1. Given a graphG = (V, E) and an old proximity
matrix P, after edge(i, j) with i ¢ V andj € V is inserted,
the new proximity matri¥? can be computed as

P ’}/P*J
0| 1—xn

} |V| rows
— row i

f) =
Proof: By RWR definition in Eqg.(1), we have

~ ~ -1
P=(1-7)I-~A) .
Plugging Eq.(4) into the above equation produces

-1
P=(-7) {I 70’VA 7161} (using block matrix inverse)
— I—7A) A —7A) e | _ [P]hPuy
_(1*7){ 0 I) = lofi=5] ™

For case (C1), Theorem 1 provides an efficient method that
can incrementally obtain new proximity mati from old P.
Specifically, newP is a(|V|+1) x (|[V|+1) matrix formed by
bordering oldP by 3 parts: (a) a column vecto®P, ;, (b) a
zero row vecto, and (c) a scalafl —v). Thus, for case (C1),
it entails onlyO(]V|) time to incrementally compute ne®,
which is dominated by the computation oP, ;.

Example 3. Recall the old graphG in Figure 1 (left). Given
= 0.9 and old proximity matrixP for G, when edgégh, b)
is inserted intoGG, newP can be updated via Theorem 1 as

old proximity matrix P Py
a b c \ d e f h /
o [[0.2000707% 0 0 0 0 0
b [10.030:0.100:_ 0 0 0 . Q... 71 0.090
B e .
P = «|[0.042i0.041;: 0 0.100 0.090 0 |||0.037
¢ |]0.014:0.045¢ 0 0 0100 0 [||0.041
s {l0.01450.0458 0 0 0 0.100J|0.041
r [0 0 0 0 0 0_J|(0.100] |
zero row vector 0 1\7 v

O

Intuitively, after edgg(i, j)Z¢VJ€V is inserted inta4, each
block of newP = [5]2F=i] has the following meaning:

e The upper-left blockP remains unchanged becauses
a new node ¢ V) with no in-links. Thus, after insertion,
i — j cannot be contained by every random walk from
y €V tox € V. Thatis, the inserted edge— j has no
impact on old walks tallied by, ,,,V(z,y) € V x V.

The upper-right blockyP, ; is a scalar multiple oP, ;
since, after insertion, random walks frano nodex € V
are a concatenation éf— j and old walks fromy; to x:

new edge

=
i=>j —>0—%---

old walks fromj to x tallied by P ;

—> s —> 0 — X

new walks froms to « tallied by P ;

Since the out-degree of nodés 1, old walks fromy to =
(tallied by P, ;) can be reused with just a multiple factor
to evaluate new walks froriito z (tallied by P, ;).

The lower-left block isD as new nodé (¢ V') has no in-
links and is not reachable by nodec V, i.e.,P, , = 0.

B. Inserting Edgg(i,j) withi € V andj ¢ V

We next consider the case (C2): the insertion of edgg)
with ¢ € V andj ¢ V. This case is more difficult than (C1) as
such an insertion will change not only the size of old traosit
matrix A, but also some entries iA, as indicated below.

Lemma 2. Given old graphG = (V, E) and its old transition
matrix A. After edge(i, j) with i € % andj ¢ V is inserted,

the new transition matriA becomeg
|V] cols col j

A ’-E)\ v
A V| rows . .
A= [el 0] — row j if O(i) = @)
|V| cols col j
A A+ Ve 0 } V| rows .)
A= [(z)+1 ;[0] +— row j if O(i) #0, (8)
wherev = — &)+1A*z c RIVIX1,

Proof: For O(i) = 0, after insertionA., ; = [0] € RIVI*?
becomesA, ; = [9] € RIVI#Dx1:and A, , is changed to
A, .:=[%"] (V& #i). Thus, Eq.(7) holds.

For O(i) # 0, after insertion, there are 2 changes&m i
(1) all the nonzeros oA, ; are updated frorrb(— to & l)+1,

(2) the last {-th) entry of A, i Is initialized to 7. Thus,
A O(w)+1A* L - {A*v”"} i R |)
A = [o | Lowm WIth v = — o1 A

For other columnsA, , becomesA, , := [Aé’x] (Va # 1).
Hence, Eq.(8) holds as well. []

Lemma 2 indicates that for case (C2), after edge insertion,

newA is a(|V|+1) x (|[V|+ 1) matrix formed by bordering
(a) old A whenO(i) = 0, or (b) a rank-one update of old,

e., (A + vel') whenO(i) # 0. More importantly, vectow
can be obtained by just scaling tiwh column of A.

2Recall thatO(i) is the out-degree of nodein old graphG.

Utilizing the structure ofA, we next propose an efficient
method that can incrementally update nBvirom old P. Our
idea is to convert the computation Bfinto solving(I —~vA)1
in terms of oldP. Indeed, when we combine Lemma 2 with
block matrix inverse formulaP takes the following form:

) (I - 7A+A*,in)
y ' (I—vA+A yT)

This structure suggests that, ongds determined, solvind®

can boil down to solvindI — 7A+A*’in)*1 in terms ofP.
Fortunately, it is unnecessary to obtdih— 7A+A“-yT)_1
from scratch as this inverse can be computed efficiently from
(I —~A)~" perturbed by a rank-one update ;y . However,
since(I — WA)’1 can be obtained by scaling oB, the main
challenge is thatCan we describe the changes(lb— 7A)’1

in response to rank-one update, ;y” in terms of oldP too?

-1

P } [V] rows

(1

— row j

To address this issue, we show a commutative lad of

Lemma 3. For any transition matrixA and its corresponding
proximity matrix P, the following property holds:

PA = AP.

Proof: It follows from Eq.(1) thatP? =
Sincel||A|

1-y)(I—~A)""
<1land0 <~ <1, we have

I—7A) ' =T+yA ++2A% +
Substituting this back int®A yields
PA=(1-7)I-7A) "A=(1-7) (A+~7A%+42A% +...)
—A(1-7)I-7A)"'=AP =

In general, multiplication of matrices is not commutative.
However, Lemma 3 shows that any RWR proximity mafifix
can commute with its corresponding transition matkix This
commutative property provides us with an efficient method to
compute the changes {a — WA) only in terms of oldP.
Precisely, the changes (b — WA) , as Theorem 2 will show,
involve the computation dPA, which requires anatrix-matrix
multiplication, entailingO(|V|*) time if carried out naively.
In contrast, by Lemma 3, computil@A can be reduced to
O(|V|?) time, requiring onlymatrix scaling and subtractian
This is because Lemma 3 enablA to be computed as

PA:AP:%(P—(l—y)I) 9)
where the last equality holds by rearranging terms in Eq.(1)
Leveraging Lemmas 2 and 3, we can characterize Rew
Theorem 2. Given old graph = (V, E') and its old proximity

matrix P, after edge(i, j) withi € V andj ¢ V is inserted,

the new proximity matri¥> can be updated as follows:

|V] cols col j

C A~

| P

1 7Pix | 1=
|V'] cols

r P
P + Z-Xi ‘

SlE

where auxiliary vector =

} V] rows
+ row j

P if O(i) =0; (10)

1
-1

)

P =

V] rows

if O@i) £0. (11)

+ row j

(o (2

1zL

L [V|x1
O(i)+1 (el 1—v €R '

Proof: We sp”t the proof into two cases: old proximity matrix P auxiliary vector z
A
A0 a b ¢ d e
(1) When~(9(i) = 0, by Lemma 2, we haveA [oF o 0l T S o | ot row vector P,
SubstitutingA into P = (1 —)(I —yA) produces 0.030 0.100. 0 0 0 o = B ed e b
<[0.030 0 0.100 0 0 L1 0 [0014004500010}
d(0.042 0.041 0 0.100 0.090 1=0a| —0.45 i) i
P (I—-~A)" |0 P | 0 FOT0T4 0,045 707070100 0
=(1-7) e (T A) 1|~ [7Pl Toota 005570700 o0 Lo
) . P+ Lz P.. (rank-one update of P)
(2) WhenO(i) # 0, by usingA in Eq.(8), we have . y e 4o . - .
X —— g N
o e o100 0 0 0 00 0] %
- < -1 M |0 b [10.030 0.100 0 0 0 0 0 8
P=(0101-7I-74) =(0-7) l_y:r 1] o]l0.030 0 0100 0 0 0 0 WE
P = 4([0.036 0.020 0 0.100 0.045 0 0 z
whereM — T — +A + A. v and v i— —2 ¢ []0.014 0.045 0 0 0100 0 0 g
AT Awiy Y= o1 ;o014 0045 0 0 0 oa100)/o J| €
. .. . o
Then, using the block matrix inversion formula, we have 40.006 0.020 0 7 0 0045 0] [0'1({?]_
Ay 1, O
_ M- lo OE Tz e
P=01-1) yIM-11 | (12) It is worth noting that the)(|V|*) time of computing® by

Eq.(11) is theworst-casecomplexity, dominated byz - P;).
Using Sherman-Morrison inverse formditm M~! yields Generally, suctO(|V|*) time can be reduced 10(|z|[P;..|)*
by updating only a nonzero subset¥fx V' elements ofP:
M7= L (P RAaE) (3)) PAng oY
K RARA {zeV:ilzl, #0} x{yeV: [Py #0} CV x V.

~ By plugging Eq.(9) into (13), the terf-+--PA.;y"P) For instance, to obtain the upper-left blockfin Example 4,
in Eq.(13) can be computed as we actually need update only| x [P, .| =1 x 3 = 3 entries
(underlined) instead of a|lV|*> = 62 = 36 entries inP.
Intuitively, when (¢, j),cy. ;¢ is inserted toG = (V, E),
each block of newP in Theorem 2 suggests the following:

LPALYP s P
p ,)
with z:= Wb(l*’ﬂ ((1 - ’7)91' - P*,i)'

Applying the above equation to Eq.(13) produces e The upper-left block oP in Eq.(10) ¢esp.Eq.(11)) keeps

(1-y)M =P 4% P1 . unchangedrésp.changed). The reason is that, after edge
: i — j (¢ V) is added, the increase of out-deg€2g) can
(1—)y™™M! = o<v)+1 (1P_—) . (resp.cannot) alter the probability of a surfer that moves

from i to any r_10de in/ when_O(z’) #0 (resp_.O(z’) =0),
Finally, substituting the above two equations into Eq.(12) ~ Which, recursively, has an impaaegp. no impacts) on
yields Eq.(11) forO(i) # 0. n random walks fronvy € V to Vo € V tallied by P, ,.

e The upper-right block oP in Egs.(10) — (11) is alway8
since new nodg (¢ V') has no out-links. Thus, any node
x € V —{j} cannot be reached from i.e., P, ; = 0.

Theorem 2 gives an efficient way to incrementally compute
new proximity matrixP when edge(s,])Ewgv is inserted.

When O(i) # 0, it requires onlyO(|V|) time to computeP

in Eq.(10), which is dominated by the computation~d?; .. e The .Iower-left blqck ofP in Egs.(10) — (11) is a scalar
When O(i) = 0, it requiresO(|V|?) time to computeP in mulnple of P; . since new random walks fromg Vv t9
Eq.(11), including: (a)0(|V|) time for vectorz; (b) O(|V |2) j are a concatenation of old walks framto i and: — j:
time for (z - P, ,); (c) O(|V|) time to scale row vectoPl . old walks froma to ¢ tallied by P; . new edge

Thus, the total time to evaluaE by Theorem 2 is |rO(|V|

as opposed to th@(|V[*) time of the LU-based approaches

[2], [8] that need evaluatt—! andU~! to getP from scratch. new walks froma to j tallied by P

P— : Since the out-degree of nodés 1, old walks fronu: to ¢
Example 4. Recall old graphG in Figure 1 (left) and its old ; L .
proxin?ity matrixP (see %xallample 3).gGiven:(0.?3, after edge (tallied by P; ;) can be reused with just a multiple factor
(e, g) is inserted toG, newP can be updated as follows: to evaluate new walks from to j (tallied by P;).

SinceO(e) =1 > 0, we first compute by Theorem 2: C. Inserting Edg€i,j) withi € V andj € V
a b ¢ d e f

_ ——L P,)=[000 —0450 0] We next investigate case (C3): the insertion of edgg)
2= 137 (% ~ =05 Pre) = |) withi € V and j € V. As newA and oldA are of the same
Then, notingz. = 0, we can obtain new? from Eq(11) size, it makes sense to denote their changAas:= A — A 5

- ———— 4|x| is the number of nonzeros in vectgt [x], is they-th entry ofx.
3The formula is(X +ab?) ™' = X1 — %. 5Note that in cases (C1), (C2), and (C4,— A makes no sense.

To characterizeA A, we have the following lemma.

Lemma 4. Given old graphG = (V, E') and its old transition
matrix A, after edge(i, j) withi € V andj € V is inserted,
the changesA A can be expressed as

it O(i)=0;

— ol wi _)&
AA =ue; withu:= { A,.)if O(i) > 0.

14
o (e — (14)
Proof: For O(i) = 0, [AA];; = 1. Thus,AA = eje].

For O(i) # 0, after insertion, there are 2 changes&m i
(1) all the nonzeros oA, ; are updated froan to 5 z)+1'

(2) thej-th entry of A, ; is changed from O te@l— Thus,

Y O(%) 1
Avi = o Avi t ouTTe

A, ;). Hence, Eqg.(14) holds. =

= A*,i + u,
Whel’eu = W(GJ —
Lemma 4 implies that all the nonzeros AfA appear only

To speed up the computation ZP in Lemma 5 further,
there are two noteworthy methods: (a) OfiBa1) is computed,
(P, +u) in Eqg.(15) can be obtained directly from th¢h row
of the resultingPu). (b) TheO(|V|*) time to computgPu)
can be significantly reduced ©(|V]) since we observe that
(Pu) can be described as a linear combination of only two
old “pivot proximity vectors"P, ; and P, ;:

Pu=0- P*yi =+ <> . P*yj.
To determine scalafd and<{}, we have the following theorem.

Theorem 3. Given old graphG = (V, E), after edge(s, j)
with i € V andj € V is inserted, proximity changeAP can
be computed as a rank-one matrix:

(P, it O®) = 0;
Y7\ o (1P — P+ (1—7)es) if O(i) #0.

in thei-th column of A A that can be represented as the scaling

of old A, ; except thej-th entry of A, ;.
Example 5. When edgéa, e) islmserted to old~ in Figure 1,

sinceO(a) =3 and A, , = [0 3 & £ 0 0]7, it follows that
a b c d e f
AA =uel withu:ﬁ(eefA*?a):[O -5 -5 -5 10]". O

The rank-one factorization dh A in Lemma 4 is exploited
to characterize the corresponding proximity changds.

Lemma 5. When edgéi, j)icv,jev is added toG = (V, E),
proximity changedAP (= newP — old P) are expressible as

AP =Puv’ with v’ = (;="p—)Pix (15)
where vectonu is defined by Lemma 4.
Proof: By RWR definition in Eq.(1), neviP satisfies
By Lemma 4, we pIugA A +ue?
=I-7A)P —uwv” =1 with v''= 2P, ..
In block matrix forms, these equations can be rewritten as

into the above equation:

l%(l—vA)‘—u Pl '11
177e? ‘—1 VT_ B 0 '
By left-multiplying both sides by{,%pi, (1)} we have
lﬁa—w =12 o 1
0 |%Pi,*u—1 VT_ o _—%Pi’* '

Applying (T—yA)™" =
P=Puvl +P with vI' = (

%P to the above equations yields
ol

YPiq)

1=y=7Pisu P o

Lemma 5 suggests that, for case (CAP is a rank-one
matrix, i.e., the product of vectofPu) and row vectorv’,
whereu can be obtained by Eq.(14), and by scalingP; ,..
Thus, it require$)(|V|*) total time to computA P, including
(@) O(|V|) time foru andv”’; (b) O(|V|?) time for (Pu); and
(c) O(]V|?) time for the product ofPu) andvZ.

Proof: By Lemmas 4 and 5, we can obtain:
(1) If O(i) =0, thenu = e;. We havePu =P, ;.
(2) If O(i) # 0, thenu = z=—(e; — A, ;). We have

(i)+1
_ 1 _ 1 1 1
Pu= W(P*J_PA*-,Z-) = W(P*J—;P*J—(l—;)ez)
The last “=" is due to Eq.(9)PA, ; = % (P — (1 —7)es).

Combining Eq.(15) with the resultinBu yields Eq.(16). =

Theorem 3 is an optimized version of Lemma 5. Although
the worst-case time to compufeP by Theorem 3 i9)(|V|?),
the computation ofPu) in Lemma 5 is dramatically reduced
from O(|V|?) to O(|V]) time.

Moreover, the rank-one structure AfP in Eq.(16) can also
reduce the computation AAP to O(|y||P;.|) time further,
by evaluating only a nonzero subsetiéfx V' entries ofAP:

{z eV ilyl #0} x{yeV [P, #0} CV x V.

Example 6. Recall old graphG in Figure 1 (left) and its old
proximity matrix P (see below). Giveny = 0.9, after edge
(a,e) is inserted toG, newP can be updated as follows:

As O(a) = 3, we first obtainy and thenAP by Eq(16).

old proximity matrix P proximity change matrix AP

old row vector Py,

a 0
o] —0.0075
5 0. ~0.0075 Peded
P=|"|" ‘T 0.100000
9=0l4] 0.0097 []
el 0.0191
[—0.0034
_._éll'l_;.)_qhary vector y
..... - EEN
P, P, €q
— [0.100 of 0 il
5(0.030 ol 0 5|0
; <[0.030 0 c[0
71 [= gl o0a2| 700 alo0s| T A=09) o
¢[0.014 [0.10 cl0
\ ~ 70.014 /L0 710
new proximity matrix P

It is worth noticing that, to efficiently compuf2, we need
update only|y| x |P,.| = 5 x 1 = 5 entries (underlined)
instead of all|V|?> = 62 = 36 entries inP. O

Algorithm 1: Unit Insertion

Algorithm 2: Unit Deletion

Input : old graphG = (V, E), edge(s, j) to be inserted,
old proximity matrixP_in G, and decay factoty.
Output: new proximity matrixP in G U {(3, j)}.

1 ifi¢ Vandj eV then /] Case (Cl)
| V| cols coli
P P } v
5 . 0l 2 rows
2 updateP := 0 T=AT « rows
3 elseifie Vandj ¢ V then /1 Case (C2)
4 if O(i) # 0 then
5 setz .= w(ez — ﬁp*’i)
|V cols col j
. [P ZPix 0 V]
6 updateP — ~ 1;)21 - ‘ -| } ‘ TOIWs
Lot)+1 (1¥zi) ‘ 1 _7J crowy
7 else _‘V‘Pf ols Cf(’;j \
B ._ | |V] rows
8 updateP := P [T 7] crow
9 elseifi e Vandj eV then /] Case (C3)

10 if O(i) =0 then

11 | sety:=AP,

12 else

13 L sety := garg (VPws — Pei + (1 —7)e:)

updateP := P + (—-

14 jo—

)sz‘,*

Yi

15 else ifi ¢ V andj ¢ V then /1 Case (C4)
|V| cols col4 col j
=~ =~
[P | o0 0 1 }virows
16 updateP ::[0 11—+ 0 J oW i
0 I—=7v)7y 1—9] «rowj

17 return P

D. Inserting Edge(i, j) withi ¢ V andj ¢ V

We next handle case (C4): the insertion of edgg) with
i ¢V andj ¢ V. After insertion, new transition matriA is®

|[V]cols coli col j
N N =
_ [A | 0 0] } |V| rows
A= [0 0 0 J — row i a7
0 1 0 — row j

Based on the block diagonal structureAf newP can be

expressed in a block diagonal form as well, as shown beIowO(

Theorem 4. Given graphG = (V, E) and its old proximity
matrix P, after edge(i, j) withi ¢ V andj ¢ V is inserted,
new proximity matrixP can be computed as

|V| cols col i col j
o~ = =
_ P 0 0] } |V| rows
P= 0 1—7v 0 J — row i
0 (I—=7v)y 1—79] «rowj
Proof: Plugging Eq.(17) t® = (1 —~)(I—~A)~! yields
~ [(I-~yA)' O } [P| 0 }
P=(1- = | = = [
S R [I I oy

Theorem 4 tells us that for case (C4), the insertion of edg
(4,)igv,¢v Will form another new component in the graph.

After insertion, the upper-left block of ne® (i.e., P) remains

Input : old graphG = (V, E), edge(s, j) to be deleted,
old proximity matrix P in G, and decay factofy.
Output: new proximity matrixP in G — {(4,)}

1 if O(i) =1 then
2 | sety:=9P,;
3 else

4

| sety == o= (7P« — Pui+ (1 —7)es)

5 Updateﬁ =P — UTlfﬂyPi’*
6 if 7 or j is an isolated node after deletichen delete: or j
return P

Note thatP; ; = (1 —~)~ is initialized by new edgéi, 7).
This value can also be used as a starting point if one wants to
run the incremental algorithm starting from a singletoneedg
(i,4) to generate a given graph.

E. Incremental Algorithm for Unit Insertion

To summarize the cases (C1)—(C4) in Sections IlI-A-III-D,
Algorithm 1 gives a complete scheme which can incrementally
compute all pairs of RWR proximities for unit insertion. Hrc
support all types of edge insertions over existing or newesod
For each type, ne#? can be efficiently computed from o
without any matrix-matrix multiplications.

The correctness of Algorithm 1 is shown by Theorems 1-4,
corresponding to 4 cases: (C1) (Lines 1-2), (C2) (Lines 3-8)
(C3) (Lines 9-14), and (C4) (Lines 15-16), respectively.

For computational cost, we have the following result.

Theorem 5. For any edge to be inserted to gragh= (V, E),
it requires O(|V|?) worst-case time and(|V|?) memory to
incrementally compute all pairs of proximities accurately

Proof: The O(|V|?) time, in the worst case, is dominated
by two products of vectorsP; , (Line 6) andyP; . (Line 14);
the rest of the operations includes vector scaling and iadlit
yielding only O(|V']) time. For memory usage€)(|V|?) space
is used to store all pairs of old and new proximities; besides
O(]V']) space is required to store intermediate veciors H

TheO(|V'|?) worst-case time, in general, can be reduced to
max{|V],|z||P;l|, |y||P:«|}) time if we skip all O entries
of z,y, P; . to computezP; , andyP; , (see Example 6).

The O(|V|?) memory is necessary for an-memoryalgo-
rithm, due to all pairs of outputs. In Section 1V, we will dsgi
partitioning techniques to reduce the memory usage further

F. Decremental Algorithm for Unit Deletion

Unlike edge insertion that is divided into cases (C1)—(C4),
we focus only on one case for edge deletion: Given old graph
G = (V, E), the removal of edgé€i, j) with i € V andj € V,
since we can first assume that the deletion of €dgg would
not remove its end nodésandj. If i or j becomes an isolated

fode (whose in- and out-degrees are all 0s) after edge aleleti

then we can removeor j later.

unchanged since there are no edges across the two components Algorithm 2 gives a decremental method to update all-pairs

Likewise, the upper-right and lower-left blocks Bf are Os.

6We can assume w.l.0.g. thaand;j are indexed by|V|+1) and(|V|+2).

proximities for unit deletion. The proofs of its correctaesd
complexity bounds are similar to those of Theorem 3, and are
omitted here for brevity.

P
ik
Before & P ' -0
P - +
Partition Az
i 5
oI ix 19
| [P], | = | +E‘/\[z P;. H—_—O
After =]
= —0
Partition | [P, | | + E\)\[Z P;. H—
= 7 + -0
B, |= |—°I_|H o, b O
SSSSS §
~ A p. 11—~
OG)FIT i Y

Fig. 2: ComputeP in Eq.(11) Segment-wisely via Egs.(18)—(19)

IV. AvoID MEMOIZING ALL-PAIRS PROXIMITIES

In the last section, th@(|V/|*) memory of our incremental
method is dominated by storing all-pairs new/old proxigsti

To avoid O(|V|*) memory, we next propose our partitioning

techniques that can update each segmem® afidependently.

Due to space limitations, we mainly focus our partitioning

methods on updatinB in case (C2) foO(i) # 0, i.e.,Eq.(11):
col j

|V cols
=~
15—[‘ 0] }\V\rows
Jy e T e o
O+ (1—2) ‘ 1—7] «rowj
as this is the most complicated case among (C1) — (C4).

with z = L P*,i)

1 1
o0l (ei T~

Our main idea of avoiding)(|V|*) memory is to partition
P € RVI*IVI andz € RVI*! into [Y1] segments of size

I x |V] andl x 1, respectively (except for the last segment,

which might be smaller), where< ! < |V| is a user-specified

integer that makes each segment small enough to fitin memor&’

After partitioning, P andz becomes

|V] cols |V| cols
N N
P], } 1 rows 2], } 1 rows
[P] I rows [z] I rows
p_ | Blf) oo |} [
L[P]y] } avi-@v-1prows [[z]y | } (VI—@ - 1)) rows

where[P] is thez-th segmentix [V]) of P (1 <z < N—-1),
and|z], is thez-th segmen(l x 1) of z.

As the upper-left blockP + of newP is a rank-one

update of oldP, it can be computed segment-wisely as
|V| cols

ZP’L*)

—_—
[P], + Alz], - P | } 1 rows
} [rows

[Pl, + Az, - Py

Ptz P, = with A = L

[Ply + Mzly - Pixl } (vI- @ — 1)) rows
This suggests that, to incrementally evaluate fewve just
need loadP; , and one segment @&, say[P]_, into memory
at one time; and each new segmént, can be updated from
old segmentP], independently as follows:
|V| cols

[Pl = [[P), + Az, - Pi.

with \ = #

o1 P

col j

’/0\} }lrows (Vz=1,---,N)

P,

18
and(z], = o5 (leil, - (18)

Vertical Partition

= —
) P | Pl
B || |Bh (], | [P || | PR,

Lw»]J

0U‘J+1[P'»’ 1

Block Partition

Py, [Pi],

R[N e MR (Y

]1 [P,

| [u]-| e E g

T B R B
[P.. P,

1R e, W {ﬂ@w NG {WA EM[Z]QTO

LKXS%
) o1] O()+1[A

=}

F

Fig. 3: ComputeP in Eq.(11) via Vertical Partitioning into 3
Segments or via Block Partitioning in®bx 3 Segments

except for the last segment being

|V cols col j
—_—
{[P]N + Azly - Pix 0] } (VI = (N = 1)l - 1) rows

[]N =
Ay
o1 Pin ‘ L—x

(19)

— row j

The advantage of our partitioning method in Egs.(18)-(19)
is that it requires only)({|V'|) memory andD ([1 ; 11) 110 costs
to incrementally updatP, with no need of)(|V|”) memory to
load the entird?. Moreover, each segmentBfcan be updated
independently (in parallel). Figure 2 pictorially depibtsw our
partitioning way of Eqs.(18)-(19) segment-wisely updd®es

The integerl <! < |V]is a user-controlled parameter that
is a trade-off to balance memory and I/O costs. For instance,
when! = 1, P can be row by row loaded and updated in
just O(|V[) memory, but require®(|V|) I/O costs in total
or |V| rows update; wheh = |V|, it requires onlyO(1) I/O
cost in total for all pairs of inputs/outputs, but entail¢|V'|*)
memory to load the entir® — this reduces to then-memory
algorithms we discussed in Section IIl.

The CPU time for updating each segmenioin Eqs.(18)—
(19) is O(I|V]) in the worst case, which in practice can be
reduced taD(|[z], ||P;,.|) further if zero entries in vectorg],
andP; , are skipped. In total, since there a{r@H segments
the CPU time to update aj&‘(|) pairs of P retainsO(|V|?)

in the worst case, an@ (>, |[z],||Pi«|) = O(|z||P;i«]) in
practice, which is the same as Algorlth 1.

In addition to the proposed horizontal partitioning method
in Egs.(18)—(19), we can similarly devise vertical paotiing
and block partitioning techniques to incrementally evedu2.
For example, as picturized in FigureB,in Eq.(11) can also be
split via vertical partitioning and block partitioning nietds.
Due to a similar bordered block structure betwdeandP7,
the performance of vertical partitioning method is simttaits
horizontal counterpart, as will be validated by our expefirs
in Section VI as well. The block partitioning method, howeve
bears an extra advantage: If the memory space is ratheetimit
(< O(|V])) so that even one row/column Bf cannot fit into it,

"Despite the same CPU time (no 1/Os), the running time (\@tﬁ%])
1/0s) of our partitioning incremental algorithm will becerslow wher! drops.

Algorithm 3: Pure Bulk Insertions (Cclise NT&TCZTSMDHCDA 5 o Ne‘wwpzsxmy Mam,xp
Input : old graphG = (V, E), decay factory, i¢Vv A | (/fdes] }ivirows (7| m] } V1 rows
a set of edge\G := {(ix, jx)} to be inserted, nev 0 0 1 oo o | 1-4 o row
old proximity matrixP _in G. jsev | with(es), = {é N ; ‘§
Output: new proximity matrixP in G U AG. U if o() = 0, thenA := U if o) = 0, thenP :=
repeat | V| cols 5 cols | V| cols § cols
1 sort all edges{(ix, jx)} of AG into |I| groups{AG,} A 0] }iviows P 0 } 1] rows
first by i, and then by whethej, is an old node inG. 2 (1/6)1sef | 01 }orows TP, | (1—I } s rows
2 setAG;,,.. := one of the groups with the maximum icv with 15 :=[1,1,---,1]7
number of edges IHAG;}. hgv — U it 0G) #0, thenP :=
3 setJ := {nodej : (i,5) € AG;,,,.} andé := |J|. O i O(i) £ 0, thenA := |V cols 5 cols
4 | update newP in GUAG;,,,, fromoldP in G, e N O R
according to the last column of Table II. T i‘;‘ww Loty | =1 3o
5 updateAG := AG — AG;,,,, andG = G U AG,,,.. ‘i:”é o N i g 4(8 _ip
until AG =g W Vv = ~ oGy s A ComEs T T
6 return P ca | A=A uel win Pi=P+ —L_yPi. wih
iev | O ifo@=o,ten L 'f_Ol(%:: 0: hen
we can utilize the block partitioning method that can setlsma 7 <V u=(1/6)ey Dy ;f Os(i) ;e(; th;;
sizel x [for each segment dP to fit into O(/2) memory. jsev Du Loé?s)io(éiinf A ¥im o5 (10 ey Pay — 6P
W+ +5(1 — v)es)
. (C4): [V]cols coli 5cols [V cols col i 5 cols
V. BULK UPDATES s I R B
We study two types of bulk updates: piire bulk updates 71 ¢V { 0 0 0 | «rows { 0 ‘ Lo 0 J rowi
only one type of updates, insertions or deletions, is péeait . 0 |31 0] Joow L R B Gk 2t B KA

b) mixed bulk updatesa mixture of insertions and deletions.

TABLE II: New A andP for Four Cases of Bulk Insertions
A. Pure Bulk Insertions

e in case (C1), new node¢ V is indexed by(|V| + 1);

e in case (C2), new nodg, ¢ V is indexed by(|V|+ k) (Vk);

e in case (C4), new nodes¢ V andj, ¢ V are indexed by
(lVI+1)and(|]V|+ 1+ k) (Vk), respectively.

Similar to unit insertion, for each case of bulk insertions,
we can obtain new transition matriX in response taAAG;,
as depicted in the second column of Table Il. We can see that,
due to the reordering df(ix, jx)} in AG, new A also exhibits
However, we observe that, for pure bulk updates, the ordes rank-one update structure. Utilizio\j, we can evaluate new
of edge insertions iMAG is irrelevant to newP in G U AG; P by generalizing Theorems 1-4 to bulk insertions. As shown
and, in practice, there are often many repeated nodésdn in the last column of Table I, ne# in response taAG; =
This gives us an opportunity to handle multiple edges in bulk{(i, z)}v.cs also bears a rank-one update structure.

Our main idea is to sort all edgd$iy, jz)} in AG by its
head node;, into several group$AG;, }. Then, all edges in
each groupAG;, are divided into at most 2 subgroupiSG}k
and AGfk, according to whether its tail nodg is in old V.

Example 7. AG = {(a,¢), (¢, 9), (¢,1), (e, f), (h,), (e,m)}
in Figure 1 can be divided into three group&G, = {(a,e)},
AGE’ = {(evg)v (67 .f)a (6, m)a (6, l)} and AGh = {(h” b)}’ -
where AG. can be partitioned into two subgroups further: Theorem 6. Let|V| be the total number of nodes in new graph
AGL ={(e, f)} and AG? = {(e, 9), (e, m), (e,1)}. O GUAG, |AG| be the number of inserted edgesA, and

The main advantage of dividingG is that, after division, Z| Pe the total number of groups iAG (LiUeQS 1-2). Then,
all the insertions in each group can be handiiultaneously ~ Algorithm 3 gthalls, in the worst case)(|1||V|* + |[AG|[V])
To elaborate on this, let us focus on one grahg;: time andO(|V'|*) memory forAG bulk insertions.

i , o fa a8 In contrast to the)(|AG||V|*) worst-case time of repeated
AGH = {2 vpey With Ji={j1, o, G} execution of Algorithm 1 forAG edge insertions to updafe,
Analogous to unit insertion in Section Ill, for every group, Theorem 6 shows that our bulk update method by Algorithm 3
we classify new insertionAG,; to G = (V, E) into 4 cases: is more efficient sincél| < |AG|, and in general/| < |AG|.
(CLIEV, LV, jseVi (CieV, i ¢V, js & V; It is W_orth noticing that, thactqalrunning time_of Al_gorithm 3
(C3)icV, j e V... js € e (Ca)i ¢ v gV s V. is typically much faster than its worst-case time illustchby
i ' T oo ' S Theorem 6, which is due to the two reasons: (a) The type of
8For notation convenience, we omit all the subscriptsere. Strictly, AG; the most time-consuming cases (C2) and (C3); (b) For each
(resp.6) should be written a\G'}|* (resp.). edge updatéi, j), the O(]V|?) worst-case time in cases (C2)

Given a set of edges to be inserted into Gld= (V, E):

AG := {(i1, 1), (iz. o), -+, (i, Ja)},

wherei;, andj, (1 < k <) can be new or old nodes i,
the traditional method to compute névin G U AG requires
repeated execution of unit insertion (Algorithm 1) fbtimes,
and may produce many unnecessary intermediate updates.

Table Il provides an incremental algorithm to compite
for pure bulk insertions, as shown in Algorithm 3. Taetual
computational cost of Algorithm 3 is hard to analyze since it
relies on input parametekG, i.e., the type of inserted edges.
However, among the 4 cases in Table Il, as the most expensive
computational cost is dominated by cases (C2) and (C3), the
worst-casecomplexity of Algorithm 3 can be analyzed below.

Algorithm 4: Pure Bulk Deletions Algorithm 5: Mixed Bulk Updates

Input : the same as Algorithm 3 except for Input : the same as Algorithm 3 except for
“a set of edgesAG := {(ix, jx)} to be deleted” “a set of edges\G := {(ix, jk, =)} to be updated”
Output: new proximity matrixP in G — AG. Output: new proximity matrixP in G & AG.
1 sort all edges{(ix, ji)} of AG by i into |I]| groups:{AG;}. 1 obtain a set of net updateSGmmin from AG via hashing
2 foreach group AG; in AG do 2 divide AGmin by update type intd\G_, and AG}.
s | setJ:={nodej: (i,j) € AG;} andé := [J]. 3 call Pure Bulk Deletions (Alg. 4) to updateP w.rt. AG.,
4 if O() =1then y:=—3> ;P 4 call Pure Bulk Insertions (Alg. 3) to updateP w.rt. AG.
6 else y = ﬁ(&P*,i — ’yzje] P.;—0(1—7v)e) s return P
8 | updateP :=P + ——=yPi..
o | ifdorjior--. orjsisan isolated nodehen where || is the maximum numbej| of groups for pure
L delete noda or j, or --- or js. bulk updatesAG;, andAG !, , and|V| is number of nodes
10 return P in GUAGY, ; and (c) its memory can be reduced®gl| V)

with O((@]) /O costs, wherd <[< |V| is tuned by users.
and (C3) is dominated by the vector produl; ., andyP; ..,
which, in practice, can be reduced @(max{|z|, |y|}|P:|) VI. EXPERIMENTS

time further, by eliminating O entries in vect ,andP;
y 9 ¥z ox The experimental evaluations on real and synthetic dataset

The O(|V|?) memory for bulk updates is necessary to anverify the high efficiency of our incremental RWR methods,
in-memoryalgorithm for all (V'|2) pairs output. Nevertheless, including its running time (with I/Os), memory, and exactse
Algorithm 3 can be integrated with our partitioning methaus

Section IV as well, which allowe ([Y1) /0 costs to reduce A+ Experimental Settings
the memory toO(1|V]), with 1 <1 < |V| tuned by users. 1) Real DatasetsWe use 4 real datasets, including 2 temporal
_ graphs DBLP'°, HepPh), and 2 static graph&\(iki, Email)**
B. Pure Bulk Deletions with synthetic updates simulating real-world evolutions.
For bulk deletions, we first sort all edgé&ix, jx)} in AG o DBLP is a co-authorship graph, where an edge exists if there
by its head node;, into || groups{AG;}. To obtain newP, is a paper collaboration between authors (nodes) in a given

unlike bulk insertions that need split edge types into 4 ase period of time. Based on the collaboration time interval, we
we just need to consider one case: the deletion of a set oedgeextracted 5 snapshots, each with 4K edges. The entire datase
AG; = {(i,j1), -, (i,js)} withi € V.j1 €V, js €V has 103K edges and 19K nodes.

from old graphG = (V, E). This is because, if or ji Or -~ pHagpp (high energy physics phenomenology) is a citation
or ji is an isolated node after deletions, we can remove it Iater'dig?aph(fr(?m the g}/prpi)ntyarXivpand COVErS gl)?the citations

Algorithm 4 depicts an efficient method for bulk deletions. within a dataset of 421,578 citations with 34,546 papers. If

Its complexity is the same as Algorithm 3 (replage by |V|). a paperi cites j, the graph contains an edge franto j.
_)) e Wiki contains voting data from the inception of Wikipedia,
C. Mixed Bulk Insertions and Deletions in which an edge is a vote from one user (node) to another.

For mixed bulk updates, we can eliminate fraty many 1 NS dataset has 103,689 edges and 8,297 nodes.
unnecessary updates that may “cancel” each other. Our mairemail is an Email network of a EU research institution, where
idea is to obtain metupdate seN\G,,i» by using hash table to a node is an email address, and an edge j denotes sent
count occurrences of entries (updatesN@'. More precisely, ~ a message tg. It has 420K edges and 265K nodes.
for each edge update (hash key)AG, we first initialize its
count (hash value) with 0, and then increases|§. decrease)
its count by 1 when an insertioneSp.deletion) occurs iAG.
Lastly, all hash keys with nonzero countshtG makeAG iy, -

2) Synthetic DatasetsWe use Boost toolkif to generate old
graphs, and devise a synthetic generator to produce up@ates
set of new insertions/deletions). Graphs are controlled)hifie
number of node$V|, and b) the number of edgég’|, which

Having obtainedAG,,;,, we sort all edges im\G,;, by follows the densification power law [6], and linkage genierat
its update type into two groups: net deletiohss,_ . and net models [3]. Updates are controlled by a) update type (irsert
insertionsAG':, . Then, we first invoké®ure Bulk Deletions or deletion), and b) the size of updatesG|.

(Algorithm 4) to update all proximities in response to chesig 3) Algorithms. We implement all the algorithms in VC++.

AG;in, and next invoke Pﬂre Bglk Insertions (Algorlthm 3) Algorthm Description
in response to changesG, . . Finally, we can obtain new Inc-RT,Inc-R—, Inc-R_|_our bulk Algorithms 3, 4, 5
iNn G® AGmin (= G®AG yet |AGmin| < |AG)). Inc-uR™, Inc-uR~ our unit Algorithms 1, 2
) . o) . Bear [8] sparse LU decomposition + block elimination

The above process implies an efficient algorithm for mixed &-dash [2] sparse LU decomposition + tree estimation
bulk updates, as illustrated in Algorithm 5. One can readily '\BACLI[I\}][ll] 'V'O”f Catr,'t‘?'bf’ise‘i :”Cfeme;‘g"\'/gWR

. . = . . - graph partitioning + low-ran
Ve”_fy that (a) 't_Can correc_tly compute nel® in G © AG, IRWR [14] column-combined RWR (disallow size change)
(b) its computational cost, in the worst case, can be boundedpap [10] direction-aware RWR (for all queries)

by O(|Imax||V > + |AGmin||V]) time andO(|V|?) memory,

10nhttp://dblp.uni-trier.de/xml/

We deal withAG ., beforeAG. because bulk deletions can minimize ~ ‘*http:/snap.stanford.edu/data/index.html
the size of the existing graph for bulk insertions. 2http://www.boost.org/

10

—~ 10% A - 10 — - -~ ‘ ‘
3] £ 15 |MEincR 1 810" F|ac] = 1000
o) g < ezt ‘ © :)/ n H=gMC 1 \q'; F
g """""""" g 103 = 10 | e k_gaSh = E E 103 L
= &= = H = 1= F
el o] H 103 = 1K B
2 2 = - 9 EERIE ! i
& 102 —y— w3 k- 6 1()2 —y— :\r/]l%R _(E|>" l?—edazl;s 2 2 ool 2 10? 3 I Inc-R
= 10 -%-DAP —A—B-LIN = -%-DAP —A—B-LIN = 10 = E E=3IRWR
90K 94K 98K 102K 103K 99K 95K 91K ™ 10! 7 | = 1ot i 3 B :
|E| + |AE| |E| — |AE| Wiki HepPh Email Wiki HepPh Email Syn
(a) Insertion orDBLP (b) Deletion onDBLP (c) Mixed Update on Real Datasets (d) Time for Inc-R vs. IRWR
10 —— ‘ _ /&\105 T T T T /g 10° E T ‘ ‘ 3
g I Inc-R*(10) E Em Horizontal Vertical & 3 zZ 102k V| =10]
= |EEHIncR*(50) 12 Hepph Email g7 g
% 103 -E=Inc-R*(100 4 & : 4, R= = B i
£ 10° [EineR70109) 1T - 210t | 210t} .
= I : 1 £ 400 3,500 I Z 3 F 0 E
2102} 1 & | 3,000 2 0.1 2 1g I Inc-R
73 F 4 = 300 2500 I = jooood| < F E=HlInc-uR*/—
L’% g 1 é 200 | 2:000 E I =.001 2 u_ 4 5 =01 1 n_ 3 4
ST : : 2 10 50 100 10 50 100 0% 10° 107 10 0% 107 10° 10
Wiki HepPh Email M # Partitions # Partitions V| |AG]|
(e) Timew.r.t. # Partitions (f) Vertical & Horizontal Partitioning (9) Varying |V'| on Syn (h) Varying |AG| on Syn

Fig. 4. Computational Speedup on Real and Synthetic Dataset

4) Parameters.We take the following parameters by default, We can see that (a) on each databet;R always outperforms
as previously used in [10], [11]: a) the decay factoe 0.9, all other methodse.g., on Wiki, Inc-R is 25.8x faster than
b) the number of partitions foB-LIN, 7 = 100, and c) the B-LIN, 11.3x faster thark-dash, 9.2x faster tharDAP, and

total number of iterations foDAP, K = 80. 6.5x faster tharBear. This high efficiency is due to 1) our

5) Accuracy Metrics. To evaluate accuracy, two measures arecharacterization of all proximity changes as the outer peod
used: average differencAD) andF-score. AD is defined as of two vectors, and 2) our aggregation and hashing strategie

- for bulk updates. (b) When the scale of dataset becomeg/arge
— 1 P 2)1/2 . . ’
AD := W(Zi,_j_|Pl=J Pi;l >_/ - It can asSess the average e speedup ofnc-R relative to MC is more pronounced,
error of proximities over all pairs by deterministic algbms. e.g.,on HepPh (resp.Email), Inc-R is ~7.5x (resp.~14.3x)
E-score is defined asE-score :— 2 x PrecisionxRecall faster tharMC. This is becaus®IC is ineffective for all-pairs
. _ Precision-fRecall computation as it cannot eliminate repeatedly samplingragmo
Since [2] has theoretically proved the exactnesk-dsh, RWR vectorsw.r.t. different query nodes. In contrashc-R
we can choose its proximity scores as the ideal baseline. can identify proximity changes as a rank-one update matrix.

All experiments are run on an Intel Core(TM) i7-4700MQ g favor IRWR that disallows new nodes created for edge
CPU @ 2.40GHz CPU and 32GB RAM, using Windows 7. pdates, we also rebuild all updates of case (C3) on real data
The running time includes both CPU time and I/O costs. and comparéRWR with Inc-R. Figure 4d depicts the results.

. It can be seen thdhc-R runs consistently faster thdRWR,
B. Experimental Results sinceInc-R optimizes bulk updates via merging and hashing
1) SpeedupWe first evaluate the running time &fc-R+ methods, wherealRWR handles these updates one by one.

andinc-R™ onDBLP. The results are shown in Figures 4a—4b. Figure 4e evaluates the effect of the number of partitions
We can discern that (a) when the number of edgasncreases on the running time ofnc-R over Wiki, HepPh, and Email.
from 90K to 102K (esp.decreases from 103K to 91Knc- By increasing the number of partitions from 10 to 100 on each
R* (resp.Inc-R™) consistently outperforms all other methods, dataset, we can see tHat-R grows slightly. This is because
e.g.,when|E| = 102K, Inc-R™ is ~54.3x faster thaB-LIN, the growing number of partitions may lead to more 1/O costs
~20x faster thaiDAP andk-dash, and~13x faster thaBear. tg load all-pairs proximities segment-wisely, therebyréasing
This is becausénc-R™ andInc-R™ can incrementally update the total running time. However, due to the rank-one update
onIy the changes to all pairs of proximities th_at can be olatdi structure of the proximity Changesy aftpri_’* is memoized,
from only the outer product of two vectors, without the need t our partitioning techniques do not require communicatiosts
perform any matrix decompositior.g.,LU, SVD) and matrix- across different segments. Thus, the increase is not signifi
matrix multiplications. (b) WhenE| decreases, all algorithms Fi 4f tests the i of diff t partitioni thod
require less running time excepic-R~— andMC. The reason '%ur.e els S d € 'm.palc ot difrerent par |h|on|ng metao

is thatinc-R— andMC update proximities by reusing previous (e.?., %rlzontah anthertlgg pal_Ttltllzonlng) ﬁndt te rutnnlng time
results, whose time mainly depends on the number of edges emcu-mboevrecr)f eaprtitioﬁg fromallb tc())rlggcan daaasel ’ r‘:\é ?i:c??t/al
be updated. In contrast, batch algorithms compute prodmit nd vertical parF;itioning respectively for’a fixedpgé)t:nitsize

from scratch, whose time relies on the total number of edge#he result shows that, given the partition size, on evergs

We next test the running time dfic-R on Wiki, HepPh, the running time ofnc-R is almost the same regardless of the
Email, by using synthetic insertions/deletions mixed togetherpartitioning methods we used. This is due to the similar bloc
Due to similar tendency, Figure 4c only reposG/| = 1000. structure ofP andP”". Hence, the performance of the vertical

11

10° I = Bear T ! B 1 F ' A IITE 1
é\ e - T~ W alO4 == M 3 1 IncR E==Bear []] 0.8
é 103 F=e—Inc-R*(10) —wy—MC = § B o 10 [Jk-dash[_]1DAP ERR)
~ | —-IncR*(50) ~Bkdash] 103 - A CCIRWR EZAB-LIN |14 = 0.6
g4 - | 1072 ; ;)
2 Y—@—Inc-R*(100) - 3 -DAP = 2 N F . : FE!
E; 10 |- €~ -Bear (100) —A—B-LIN 910 F + 7 ;:g _3 F 1 = 0-4
- Z 10t heR+ é8§) 107°F s 11 02
10} ‘ = [TTTT] Inc-R™(100) I : |’: 1
90K 94K 98K 102K N ANSNENON KiISBIN 10_4 : : L
|E| + |AE| Wiki HepPh Email Wiki HepPh Email Wiki HepPh Email
(a) Pure Update oDBLP (b) Mixed Update on Real Datasets (a) Average Difference (b) F-Score

Fig. 6: Accuracy and Exactness
VII.

Using synthetic data, we also compare the running time of In this paper, we consider efficient computation of all-pair

Inc-R for mixed bulk uPdates with that of multiple executions RWR proximities on dynamic graphs. Firstly, for unit update
of unit updatelinc-uR*/~. In Figure 4g, we fiYAG| = 1000 We characterize the proximity changes as the outer product o

and vary|V| from 102 to 10%; in Figure 4h, we fix(V/| = 10* tWo vectors, and observe the commutative property for RWR:
and vary|AG| from 10" to 10*. We notice that (a)nc-R is ~ PA = AP. These can substantially speed up the computation
2.4x—7.6x faster thamc-uR*/~, showing the effectiveness of ©Of all pairs of proximities fronO(|V|*) to O(|V) time in tge
our aggregation approaches to minimize net updai€k,;,. Worst case, with no loss of accuracy. Then, to avoidV'|")

(b) When|V| (resp.|AG|) grows, the times of both methods Memory for all-pairs outputs, we also propose efficientipart
increase, but the speedup lot-R is more apparent for large tioning methods based on our dynamic model, such that all

V| (resp.|AG]). This is because largeAG| and [V'| might ~ Pairs of proximities can t‘JS‘computed segment-wisely in only
increase the occurrence of edge updates with a repeated ed(!|V'[) memory withO([*5-1]) I/O costs, wherd <[< [V

thus enabling a huge reduction [AG| after edges are sorted. is a user-controlled trade-off between memory usage and 1/O
costs. Besides, for bulk updates, we devise aggregation and

2) Memory EfficiencyFigure 5a compares the memory of hashing methods to eliminate unnecessary updates funtider a
all the methods for pure bulk updates DBLP. When|AE| handle chunks of unit updates simultaneously. Our experime
increases from 90K to 102K, we can notice that (a) the memory| results on real and synthetic datasets demonstratethat
for Bear, MC, DAP, k-dash, andB-LIN stabilizes at~2.1G. method can be 10-100x faster than the best-known compsetitor
This is because these methods need store aII—palrs preesmit gn |arge graphs while guaranteeing exactness and Scwabi“

Fig. 5: Memory Efficiency on Real and Synthetic Datasets

partitioning is similar to that of the horizontal partitiog. CONCLUSIONS

for output. In contrastinc-R™, given the number of partitions
{10, 50,100, can incrementally update each partition without
the need to load all-pairs proximities into memory. (b) When [1]
the number of partitions increases, the size of each partitir

P becomes smaller. Thus, the memoryimd-R* dramatically [

decreases, which is consistent with our analysis in Set¥ion 3

Figure 5b shows the memory tfc-R for the mixed bulk
updates oWiki, HepPh, andEmail. Due to similar tendency, [4]
we only report the results delAG| = 1000. (a) On each graph,
given the partition numbef10,50,100, the memory ofinc-R 5]
is less than those of other methods by 1-2 orders of magnitude[e]
This is because, after partitioimc-R can update each segment
independently, with no need to load all-pairs proximitietoi 7]
memory, as opposed to other methods that need store al-pair
proximities. (b) When the number of partitions increasks, t [8]
memory ofInc-R decreases, as expected. (c) On |dEgeail,
B-LIN andDAP fail to allocate sufficient memory to maintain]
intermediate results and all-pairs outputs.

3) Exactness:Figure 6 assesses the accuracyraf-R on [10]
Wiki, HepPh, Email by two measures (average difference and
F-score). For each datasétdash is selected as the baseline
due to its exactness. We can see that (a) the average dtfferen[lz]
of DAP is ~ 1073, which is due to the iterative error. (b) The
average difference @-LIN is ~ 10~2 because of its low-rank [13]
SVD approximation. (c) In all cases, the average differesfce
Inc-R is 0, showing the exactness of our algorithm. (d) Thel14]
average difference and F-scorel®WR are large, due to the
technical bugs of [14]; anthc-R provides a full treatment. (e)
The F-score oMC with 0.95 confidence interval is0.8, due
to its probabilistic nature, whereas the F-scordnafR is 1.

[11]

[15]

12

REFERENCES

B. Bahmani, A. Chowdhury, and A. Goel. Fast incrementad a
Personalized PageRanRVLDB, 4(3):173-184, 2010.

Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. KitsuregawFast and
exact topk search for random walk with resta®®VLDB, 5(5), 2012.
S. Garg, T. Gupta, N. Carlsson, and A. Mahanti. Evolutidran online
social aggregation network: An empirical study. IMC, 2009.

I. Konstas, V. Stathopoulos, and J. M. Jose. On sociavoids and
collaborative recommendation. BIGIR pages 195-202, 2009.

N. Lao and W. W. Cohen. Relational retrieval using a camation of
path-constrained random walkislachine Learning81(1):53—-67, 2010.
J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph ¢weniuDensifi-
cation and shrinking diameter&dCM TKDD, 1(1), 2007.

P. Sarkar, A. W. Moore, and A. Prakash. Fast incrementakimity
search in large graphs. ICML, 2008.

K. Shin, J. Jung, L. Sael, and U. Kang. BEAR: Block elintioa
approach for random walk with restart on large graphs SIBMOD,
pages 1571-1585, 2015.

J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Nei
formation and anomaly detection in bipartite graphsICDM, 2005.
H. Tong, C. Faloutsos, and Y. Koren. Fast direction+@varoximity
for graph mining. InKDD, pages 747-756, 2007.

H. Tong, C. Faloutsos, and J. Pan. Fast random walk veigitart and
its applications. INCDM, pages 613-622, 2006.

G. Weikum and M. Theobald. From information to knowledg
Harvesting entities and relationships from web sourcefQDS 2010.
A. W. Yu, N. Mamoulis, and H. Su. Reverse tépsearch using random
walk with restart. PVLDB, 7(5):401-412, 2014.

W. Yu and X. Lin. IRWR: Incremental random walk with rest In
SIGIR (poster version)pages 1017-1020, 2013.

F. Zhu, Y. Fang, K. C. Chang, and J. Ying. Incremental anduracy-
aware personalized PageRank through scheduled appraodm@y/LD-
B, 6(6):481-492, 2013.

