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Kinect-Like Depth Data Compression

Jingjing Fu, Dan Miao, Weiren Yu, Shiqi Wang, Yan Lu, and Shipeng Li

Abstract—Unlike traditional RGB video, Kinect-like depth
is characterized by its large variation range and instability. As
a result, traditional video compression algorithms cannot be
directly applied to Kinect-like depth compression with respect to
coding efficiency. In this paper, we propose a lossy Kinect-like
depth compression framework based on the existing codecs,
aiming to enhance the coding efficiency while preserving the depth
features for further applications. In the proposed framework,
the Kinect-like depth is reformed first by divisive normalized
bilateral filter (DNBL) to suppress the depth noises caused by
disparity normalization, and then block-level depth padding is
implemented for invalid depth region compensation in collabora-
tion with mask coding to eliminate the sharp variation caused by
depth measurement failures. Before the traditional video coding,
the inter-frame correlation of reformed depth is explored by
proposed 2D+T prediction, in which depth volume is developed to
simulate 3D volume to generate pseudo 3D prediction reference
for depth uniqueness detection. The unique depth region, called
active region is fed into the video encoder for traditional intra
and inter prediction with residual coding, while the inactive
region is skipped during depth coding. The experimental results
demonstrate that our compression scheme can save 55%-85% in
terms of bit cost and reduce coding complexity by 20%—65% in
comparison with the traditional video compression algorithms.
The visual quality of the 3D reconstruction is also improved after
employing our compression scheme.

Index Terms—2D+T prediction, denoising, depth volume,
Kinect-like depth, lossy compression, padding.

I. INTRODUCTION

N the past few decades, the rapid development of sensor

technology offers consumers powerful tools for perceiving
and recording the real world. This evolution is especially evident
for image sensors, which can capture 2D optical images and
represent them in the form of digital signals. As the main compo-
nent of digital multimedia data, numerous techniques have been
proposed to process the image and video data for efficient com-
pression and transmission [1], [2], and related standards [3]-[5]
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have been established by the multimedia industry. As technology
has advanced, the 2D description of the real world has become
insufficient to meet the increasing sensory requirements. Var-
ious devices have been invented as an attempt to access the 3D
information of the physical word, including time-of-light (TOF)
camera [6], stereo camera [7], laser scanner [8], and structured
light camera [9]. These sensors all measure the distance from the
camera to the target object surface, namely depth, by utilizing
light wave properties, but their working principles are distinct
from each other. For example, the TOF measures the distance by
detecting the light wave phase shift after the reflection from the
object surface, while the stereo camera generates a disparity
map by stereo matching between the left and right view images.
In general, depth sensors are not as popular as traditional image
sensors due to their high cost and bulky size.

The launch of Kinect [10] facilitates the possibility of depth
capture in real-time at a low cost for consumers and has achieves
strong commercial success through Xbox immersive gaming,
in which real-time depth information is used to assist skeletal
tracking in conjunction with the texture information from the
RGB sensor of the Kinect. Besides meeting the industry success,
Kinect has also drawn the attention of researchers for its poten-
tial to aid in a variety of applications, such as object tracking, dy-
namic 3D reconstruction, activity recognition, and so on. Some
improvements [11], [12] have already been achieved by using
Kinect. More specially, Weise [11] built up a real-time low-cost
character animation system that avoided the substantial manual
post-processing by using Kinect as the acquisition device in-
stead of the complex acquisition system. In Shotton’s work [12],
quick and accurate recognition of human pose can be realized
using the single depth image captured from Kinect.

All these depth related applications are developed locally,
since the raw depth data size is too large to be transmitted
through the network. A high computing capacity is therefore
required for the local data processing, and the depth data can
hardly be shared with other machines in real-time. In order to
transmit depth data through the network, we came up with a
remote sensor system shown in Fig. 1, in which the depth data is
captured and compressed by the local processor, then transmitted
to the server side and reconstructed for further processing. With
rich database and computing resource available at the server
side, more depth-related applications can be leveraged. Depth
compression is of great importance, because the compression’s
efficiency and complexity directly affect system latency and
the effectiveness of the reconstructed depth data.

Similar to RGB texture, depth maps are composed of tremen-
dous pixels, which are organized on a regular, 2D sampling
grid, but each depth pixel value represents the distance from
the camera to the target object surface rather than the color in-
formation. The compression techniques for the RGB texture se-
quence have been studied for years and a number of mature solu-
tions are available that achieve acceptable compression perfor-
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Fig. 1. Up: our proposed system architecture; bottom: block diagram of our system.

mance, such as JPEG [3], MPEG-2 [4], H.264/AVC [5], and so
on. However, Kinect-like depth compression has seldom been
investigated.

In this paper, we propose a novel depth compression frame-
work based on the existing codec for Kinect-like depth. Instead
of directly encoding the raw depth data, we introduce neces-
sary depth preprocessing to stabilize the depth values in the spa-
tial domain, and suppress the step-shaped artifacts with the in-
herent depth features preserved. The block-level depth padding
is then implemented for invalid depth region compensation in
collaboration with mask coding, so that considerable bits are
saved during the block-based transform. The processed depth is
fed into the depth encoding module, in which the depth is first
predicted by 2D+T depth reference and then the recognized ac-
tive regions are passed to a conventional video coding module.
In this way, more coding resource is allocated to the impor-
tant depth information, and the compression ratio is increased
without a drop in data effectiveness. The experimental results
shows that the bit rate is reduced by 55-85% of the original bi-
trate, and the complexity is reduced by 20-65%. Comparisons
of the render results show that the render view of our algorithm
is visually better than that of the original coding scheme.

The rest of paper is organized as follows. In Section II, some
related research is presented. By investigating the generation
principle of Kinect-like depth, the depth measurement error
is modeled in Section III. Section IV describes the proposed
framework for depth compression. The depth reformation
algorithm is introduced in detail in Section V, including depth
denoising and padding techniques. In Section VI, depth coding
with 2D+T prediction is explained. The experimental results
are provided to verify the performance of our coding system in
Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORK

As Kinect-like depth is a kind of range data in terms of its
physical meaning, it can be converted to point cloud for sequen-

tial predictive compression [ 13] or geometry compression based
on octree structure [14]. But these point cloud compression al-
gorithms focus on the static scanned point cloud, and cannot
handle the replicate geometry information among depth frames.
Recently, Kammerl [15] proposed point cloud compression for
the point cloud library, in which real-time spatial changes are de-
tected based on XOR comparison of octree structure to remove
the redundant 3D points and both the position information and
color information of the residue points are entropy encoded.
The physical information of a visual object can be trans-
formed to 2D or 3D meshes, and the object’s transformation
is compressed in the form of mesh animation in MPEG-4. For
specific 2D meshes (e.g., face), MPEG-4 defines a complete
set of animation parameters to describe the face animation, and
the parameters are compressed by temporal prediction [16]. In
Frame-based animated mesh compression (FAMC) [17], the
dynamic 3D mesh is compressed by combining a model-based
motion-compensation strategy with transform/predictive
coding of residual errors. The depth map can also be repre-
sented by triangular mesh for mesh compression [18], [19].
Grewatsch et al. [20] presented a mesh-based coding scheme
that compressed the 3D depth information using the MPEG-4
3DMC coder. In Chai’s work [21], an adaptation triangular
mesh generation algorithm is introduced for a depth map
coding scheme, where a complicated tree structure has to be
maintained frame by frame. In the mesh-based depth schemes,
extracting the mesh from each raw depth frame costs additional
computing and accordingly coding complexity increases.
From another point of view, a depth map can be regarded
as a grey image of high dynamic range. One straightforward
approach for compressing depth map sequences is to encode
them using conventional image/video compression algorithms
[22]. Grewatsch and Muller [23] investigate and evaluate sev-
eral depth coding algorithms, and demonstrate that the standard
H.264/AVC codec outperforms the mesh-based coding when
compressing a sequence of depth maps. Considering that depth
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data contains smooth areas partitioned by sharp edges, with very
limited texture, some depth compression algorithms [24]-[27]
are proposed as an attempt to achieve more efficient depth com-
pression based on the existing image/video coding framework,
such as platelet based coding [24], [25], edge based coding [26],
[27]. In the platelet based coding schemes, depth frame is seg-
mented into regions with different sizes, and each region is
encoded by utilizing the homogeneousness of the depth map.
For example, Marvon ef al. [24] segmented the depth using a
quadtree decomposition for depth coding, where each block is
modeled by one of three pre-defined piecewise linear functions.
Milani and Calvagno [25] partitioned the depth map based on
graph-based image segmentation. The generated regions asso-
ciated with the average depth value and the residual frame is
encoded by a standard H.264/AVC Intra coder. In an attempt to
reduce the bit cost caused by the non-zero high frequency trans-
form coefficients in the edge block, Shen et al. [26] proposed
edge-adaptive transform, which avoids filtering cross edges by
encoding edge positions explicitly. In [27], shape an adaptive
wavelets are employed to ensure that the support for the wavelet
lies in the same region separated by edges.

In recent years, the data format including the 2D multiview
videos and corresponding depth is proposed to benefit the in-
termediate view synthesis in the 3D video applications. The
color video is considered as the side information to assist the
depth compression [28]. By using the structure similarity be-
tween depth map and corresponding video, Liu introduced a
new in-loop filter to suppress the coding artifact and a new intra
coding mode to reconstruct depth map with sparse representa-
tions of depth blocks.

However, these depth compression schemes cannot be
adopted to perform Kinect-like depth compression directly
for two primary reasons. First, these schemes are designed
to generate depth data of high quality. In contrast to ideal
depth, Kinect-like depth data is characterized by its noise and
instability, causing the temporal and spatial correlation to be
destroyed to some degree. Moreover, Kinect depth data has
a high dynamic range that is different from the traditional
8-bit depth data. The coding schemes implemented based on
8-bit image/video codecs cannot be applied to Kinect-like
depth compression. In order to encode the high dynamic range
depth data in real-time, Mehrotra et al. [29] proposed a near
lossless depth compression to encode the scaling reciprocals
of the depth values pixel by pixel. Although significant data
size reduction is achieved, the strong relationships among the
neighboring frames are barely considered in the algorithms.

III. ERROR MODEL OF KINECT-LIKE DEPTH

Due to the distinct generation principle, Kinect-like depth
data possesses special characteristics distinguished from the tra-
ditional image data. In order to achieve high efficiency depth
coding, we investigate generation principle [30] of Kinect-like
depth and derive a theoretical model for depth measurement
error to assist compression framework design.

A. Depth Generation Principle

As a kind of structured light camera, Kinect depth is derived
from the distortion between the projected infrared light pattern
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Fig. 2. Schematic representation of depth-disparity relation.

and the received one. To be more specific, the infrared pro-
jector of the Kinect emits pseudo-random light pattern through
a diffractive mask, so that each speckle in the pattern can be dis-
tinguished from the others. With the observed light pattern by
infrared sensors, depth value is derived by triangulation between
the observation and the reference light pattern that is obtained
by capturing a plane at a known distance beforehand and hard
coded in the memory of the sensor. Once a speckle is projected
on an object whose distance to the sensor is different from that of
the reference plane, the speckle’s position in the received image
will be shifted along the direction of the baseline between the
projector P and the perspective center of the infrared camera
S. These shifts are measured for all speckles by a simple image
correlation procedure, which yields a disparity map.

Fig. 2 illustrates the relation between the distance D of an
object point to the IR sensor and the distance D.. of a reference
plane. To simplify the model, we assume that the origin of the
depth coordinate system is located at the perspective center of
the IR sensor. According to the similarity of the triangles, we
have

L (D, D)

b D, M
l L

7 =5 2

where f is the focal length of the IR sensor; [ is the relative shift
length (disparity); b is the base length. After combining (1) and
(2), the depth is calculated as follows

D,

D= ——" 3)
{
1+ D, 5

B. Kinect-Like Depth'’s Characteristics

Kinect-like depth is derived from the infrared light disparity
map. The ideal disparity map is characterized by continuity and
uniqueness. That is, the disparity varies continuously within ob-
ject surfaces and the disparity at a fixed coordinate has a unique
value. Unfortunately, due to the constraint of the speckle’s gran-
ularity and the instability of the received pattern, the generated
disparity map suffers from step-shaped fluctuation and incon-
sistent measurements over time. Furthermore, the disparity ab-
sence caused by imaging failure introduces depth information
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(b)

(d)

Fig. 3. Example of Kinect depth image and its corresponding RGB image (a)
depth map after calibration (b) RGB image (c) normal map of the Kinect depth
(d) neighboring depth frames difference.

loss on the mirror surfaces, occlusion regions, and out-of-range
surfaces.

A typical example is illustrated in Fig. 3. The RGB images
and the depth images are captured simultaneously from a fixed
Kinect camera by the Kinect Windows SDK [31]. The captured
Kinect depth has a large dynamic range from 0 to 4000, and
each pixel value is represented by a 12-bit integer. For display,
the depth map is scaled down to 8-bit grey level representation
(see Fig. 3(a)). Since it is difficult to observe the depth varia-
tion through a grey depth image, we generate a corresponding
normal map to simulate the 3D rendering scene of the depth
map. From the generated normal map (see Fig. 3(c)), it can be
observed that noticeable step-shaped fluctuations exist on the
roof surface, and the depth information is lost along the inter-
section between the roof and the wall. The difference between
the neighboring depth frame always has significant values (see
Fig. 3(d)), even if the distance is unchanged over time.

In order to analyze the spatial and temporal variations of the
depth numerically, we choose the depth data along a vertical
line on the roof surface. The variation is investigated using the
neighboring depth difference (see Fig. 4(a)). As the ideal depth
increases linearly, the depth difference should be uniform. How-
ever, the real depth difference fluctuates in a strange way—the
neighboring difference keeps increasing with the depth value.
Even if a static scene is captured by a fixed Kinect, the depth
values at a fixed coordinates change from time to time (see
Fig. 4(b)). The inherent spatial continuity of the depth map is de-
stroyed by the inaccurate disparity measurement and disparity
detection failure, whereas the temporal consistency is broken
by the random interference of the speckle correlation detection.
Given that the texture video codec is developed upon the spa-
tial and temporal correlation exploration, the imperfect Kinect
depth data is more difficult to compress in comparison to the
texture data.

C. Kinect Depth Error Modeling

In this subsection, the Kinect-like depth error is analyzed and
modeled to benefit depth compression. There are several pos-
sible reasons for the depth measurement error: a) Light condi-
tion interference. Under strong light, laser speckles appear in
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Fig. 4. Illustration of spatial and temporal depth characteristics. Top: plot of
the neighboring depth difference; the horizontal axis represents depth value.
Bottom: depth variation with the time; the horizontal axis represents frame
number.

low contrast in the infrared image, which may give rise to false
disparity detection and speckle recognition failure. b) Imaging
geometry. When the depth is out of the measurement range or
the surface’s tangent plane parallels the ray casting direction,
depth information is lost due to the absence of reflected light
speckle. ¢) Disparity normalization. The disparity is normal-
ized during the depth measurement, and sequentially the nor-
malization error is added to the generated depth, which results
in step-shaped depth fluctuation.

As depth is derived from disparity, we formulate an inaccu-
rate disparity in terms of the main error reasons.

f:M-(l+Td+r,L) @)

Let [ be the truth disparity map, and [ the disparity generated
for Kinect depth deviation. The disparity mask is represented
by M, indicating whether the disparity value is valid at that
position. 74 is the disparity error introduced by the light pattern
misidentification. The raw disparity length is normalized during
depth measurement, such that { can be substituted for (ml* +
n), with {* the normalized disparity and m, n the parameter of
normalized disparity. r,, is the normalization error caused by
disparity round-off and is equal to —n, with r,, € [-*, 0].

The relationship between Kinect depth D and true depth D
can be formulated as follows,

D=M-(D+e) (%)

where e is the depth measurement error caused by degradation
of the disparity. In a region with valid depth values, the error
between the true depth and the output depth is

rqd+ Tn -y
—DD
7 (6

The depth error can be decomposed to identification error eg4
and normalization error e, in terms of their origins. Assuming
D — D « D, the true depth D can be replaced by D in (6) for
approximation. Since the focal length and base length are both

e=D—-D=
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constant for Kinect, C is used to represent the constant factor

1/fb.
e=¢eq+e, @)

with e¢g = C’Oﬁzrd and ¢, = C’Oﬁ2rn. The levels of error ¢4
and e,, are proportional to the square of the corresponding depth
value. This inference is verified by the Fig. 4(a), since the neigh-
boring depth difference of the smooth region implies the upper
bound of the normalization error. The difference between neigh-
boring frames is partially introduced by the normalization, but
the underlying cause is the of time-variant identification error.

IV. OUR PROPOSED DEPTH COMPRESSION FRAMEWORK

Considering the special characteristics of Kinect depth, we
propose a novel compression framework, aiming to enhance the
coding efficiency while preserving the inherent depth features.
In our framework, the original depth is reformed under an error
bound constraint to rebuild the spatial correlation for efficient
intra coding. The accumulated depth data is used to judge the
uniqueness of the input depth content. If the content can be re-
constructed from the previous depth frames using volumetric
integration, it will be skipped during the depth coding. In con-
trast, once the content is recognized as new emerging content, it
will be compressed at a high quality to maintain as many details
as possible. In this way, the computing and bitrate resource can
be better allocated among different depth contents.

The specific implementation of our framework is depicted in
Fig. 5. First, the input depth frame D}, is filtered by a divisive
normalized bilateral filter (DNBL) in the spatial domain in an
attempt to reduce the normalization error e,,. The filtered depth
frame is divided into blocks, and the invalid depth region within
the block is padded by its spatially neighboring depth. Since
the disparity map is modified during reformation, the original
binary mask M. is encoded by JBIG [32] and transmitted to
the decoder for depth recovery. After reformation, the depth be-
comes much friendlier to block based compression.

Before normal video encoding, the reformed depth frame is
predicted following the error tolerant rule with the depth refer-
ence generated by long-term depth volumetric integration. As a
result, the input depth frame is segmented into inactive and ac-
tive regions, representing stable surfaces and unstable surfaces,
respectively. The inactive regions are skipped during coding,

while the active regions are fed into the video encoder for tra-
ditional intra and inter prediction and residual coding. Given
that the region segmentation may change according to the depth
content frame by frame, the depth reference inside the video
encoder must be completely maintained and the synchronizing
must be updated with 2D+T prediction reference in the inactive
regions. As a loop, the reconstructed depth of the video encoder
is fed back to the 2D+T prediction module for depth volume up-
dating.

The novelty of our proposed framework can be summarized
in three aspects. First, we analyze the Kinect-like depth’s char-
acteristics in-depth based on its generation principle and model
the depth measurement error. Secondly, in contrast to the con-
ventional video compression, the original depth is preprocessed
before compression to avoid unnecessary coding cost because
of the depth measurement error and all the preprocessing algo-
rithms are tailored for the Kinect-like depth. Last but not least,
by identifying the uniqueness of the input depth content through
2D+T prediction, more bitrate is allocated to the critical depth
contents, where the historical depth information is inadequate
for depth reconstruction.

V. KINECT-LIKE DEPTH REFORMATION

The Kinect-like depth is reformed in two steps to rebuild the
spatial correlation for efficient intra coding. First, depth is fil-
tered by divisive normalized bilateral filtering to eliminate depth
normalization errors; second, the depth is padded for depth hole
compensation.

A. Divisive Normalized Bilateral Filtering

To attenuate signal fluctuation and enhance spatial correla-
tion, the input depth frame is first filtered to reduce normal-
ization error. Since disparity normalization error is a random
variable with uniform distribution in a limited range, the abso-
lute value of the depth normalization error is no large than the
bound Cy/* D?. With this priori knowledge, we can distinguish
edges generated by normalization from the inherent depth edges
and then deal with normalization error reduction as a denoising
problem.

As an edge-preserving filter, the bilateral filter [33] can pro-
vide a weighted average of nearby pixels as the filtered result,
with two Gaussian kernels defining the weight: a domain filter
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kernel and a range filter kernel. The domain filter kernel is used
to describe the geometric closeness between two pixels, while
the range filter kernel is used to measure the photometric simi-
larity. The 2D Gaussian kernel is denoted as G, («) and its for-

mula is
1 z?
exp| ——=
2no? P 202

Assume p is the position of the pixel that is to be filtered and
its pixel value is 7(p). The local neighborhood set of p is denoted
as S(p), which may have influence on 7(p). The bilateral filter
can be formulated as follows:

BF Z Go.(llp — al) G+

q€9(p)

Go(x) = (8)

S (p) = (@) |NI(g)

(€))
where BF[I],, is the filtered result at the position p and W, is
the normalization factor.

= > Go.(lp—al)Go, (11 (p)

q€S(p)

Il (10

05 and o, are the filtering parameters, GG, is a spatial Gaussian
that decreases the influence of distant pixels, and (7, is a range
Gaussian that decreases the influence of pixels with a large in-
tensity difference. The weight of each pixel ¢ in the set S(p) is
determined by its position and value difference form the current
pixel, and the filtering could efficiently smooth the image while
preserving the edge. As we analyzed in the Section III, the level
of depth error is proportional to the square of the corresponding
depth values. Therefore, if the depth is directly processed by bi-
lateral filtering with a uniform range filter kernel without con-
sidering variation on error level, the region with small depth
values will be over smoothed, and the normalization error in the
region with large depth values will be preserved as depth edges.
In order to preserve the true depth edges and suppress the fake
ones, we apply an adaptive scaling technique to the pixel dif-
ference, called divisive normalized bilateral filtering (DNBL)
[34]. In DNBL, range Gaussian kernel G, in bilateral filter
is replaced by divisive normalized range Gaussian kernel G, ,
which is defined as follows:

&, (I11(p) - I(q (H H)

where ©(I(p)) is the normalization error bound of I(p) and
equals to Cq/*I(p)?. The divisive normalization is equivalent
to the operation that the difference between two pixels is nor-
malized in terms of their depth range.

Fig. 6(a) shows a typical case of a depth normalization
error. The true depth smoothly varies with the x-coordinates
value. As shown in Fig. 6(b), after disparity normalization, the
depth becomes step-shaped and its step size increases with the
depth value. The denoised results of the example are given in
Fig. 6(c). Although the denoised depth is different from the
original Kinect depth, it may approach the ground truth in com-
parison with the original one. Meanwhile, the elimination of
the stair-wise jump can greatly reduce the bit cost on non-zero
high-frequency coefficients.

The depth variation trend can be represented by its normal
map. For the plane surface (e.g., Fig. 6(d)), the normal of
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Fig. 6. Illustration of the step-sharped depth and its filtering results.

Fig. 7. Normal maps comparison between the original depth (left) and their
filtering results (right), the depth sequences from the top to bottom: “Roof” and
“Cubicle”.

different vertices should be perpendicular to the surface and
the same to each other. For Kinect depth, due to the stair-wise
variation, most of the vertex normals are perpendicular to
the axis. In Fig. 6(f), we can hardly detect the slope of the
surface by its normal. After the filtering, the vertex normal
undergoes smooth changes and approaches the ground truth,
see Fig. 6(g). To verify our inference, Fig. 7 shows the normal
maps of the original and the filtered depth for comparison. The
left window of the video is the normal map of the raw Kinect
depth sequence, while the right one shows the normal map of
the filtered depth sequence. We observed that the normal map
of the filtered depth is more reasonable compared with that of
Kinect depth. We can easily discover the surface features and
recognize different objects.

B. Depth Padding

Depth information loss occurs frequently during Kinect cap-
ture. In the depth map, the invalid depth region H is evaluated as
zero, and the corresponding mask value is designed to be zero.

il Gagn

M(L7,]) - { 07 (Z,]) E H * (12)

These irregular invalid depth regions break the continuousness
of the depth map and produce sharp variation on depth values
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at their boundaries. Considering that most of the compression
schemes are block-based, we only need to repair the invalid
depth region within a block. Therefore, we introduce block
based padding. The filtered depth frame is divided into blocks,
and the invalid depth region in the block is padded by its
spatially neighboring depth. The sharp variation within the
depth block is eliminated, and thus leading to a reduction in
the coding bits. The padding value of the pixel in the invalid
regions is calculated as follows:

~ > (i.)eBlk My (i, ) Dy (i 5)
Di(u,v) = YA ;
Z(i,j)eBlk k(%])

(uw,v) € H

(13)
Dy(u,v) is the padded depth value at position (u,v), and
Dy (i, j) denotes the filtered depth value at (¢, 7). For the depth
hole located in the smooth surface, it is possible that the padded
values are close to the true depth. But for considerable depth
holes along the object boundaries, the padded values may be
quite different from the truth. It is necessary to transmit the
mask to the decoder for correction. Therefore, the original
binary mask Mj is generated from the raw depth map and
encoded using JBIG.

VI. DEPTH CODING WITH 2D+T PREDICTION

In the traditional video coding, reconstructed depth maps are
utilized as short-term references that are sensitive to depth noise
and may lead to large-scale residuals in the unstable depth se-
quence. But they can accurately predict the moving object’s
depth. Based on this fact, we propose 2D+T prediction to ex-
ploit the long-term inter frame correlations as compensation for
conventional 2D depth prediction. The references for 2D+T pre-
diction are generated using volumetric integration.

A. Reference Generation With Volumetric Integration

A 3D surface can be generated using tremendous range data
accumulation and the random noises in the range data can be
suppressed during the surface reconstruction. As a typical rep-
resentation of range data, Kinect-like depth can be utilized to re-
construct the surface of a 3D object. Among the various surface
reconstruction techniques, volumetric integration [35] is widely
applied for surface reconstruction of range data.

The combination rules of volumetric integration can be de-
scribed with the following equation

L 2o wix)di(x)
D(z) = W(x) (14)

with W{x) =3 w;(z) - d;(x) is the assigned distance of each
point x to the ¢-th range surface along the line of sight of the
sensor, and w; () is the weight function depending on the angle
between vertex normal and the viewing direction, denoted as 6;.
The continuous implicit function D(z) is presented on a dic-
tate voxel grid, and the isosurface is extracted corresponding to
D(z) = 0. Fig. 8 illustrates the process of isosurface extraction.
The range images captured by two time slots are 12, and I?;_;.
For R, the corresponding signed distance is d;(z) = = — Ry
and the weight is w;(x) = cos f;. In terms of the combination
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Fig. 8. A simple example of volumetric integration.

rule depicted in (14), when 2 = (Ry_1 cos ;1 + Ry cos8y)/2,
the isosurface is obtained.

Although the integrated surface can provide a stable reference
for depth prediction, the volumetric representation of range im-
ages requires a large amount of memory and computation. So
we propose depth volume to simulate the 3D volume under the
assumption that the angle between the viewing direction and the
range surface is unchanged within a short period of time. In this
way, the range of isosurface can easily be generated by taking
the average of related range data. If this derivation extends to
multiple range images, the range of the isosurface should be the
average range of each range images.

1 .

Ty = - ZR“ with  D{xg) =0 (15)
where n is the number of range images. There is a strong tem-
poral correlation among the neighboring depth frames, which
offer support to the previous assumption. If the depth data varies
too much to satisfy the assumption, the data will not be loaded
to depth volume for depth reference generation.

Listing 1 Depth reference generation

1: for each pixel in the k-th reconstructed depth D}

2 if|Di(pos) — Df_,(pos)| < o - O(Di(pos)) then
3 Cni(pos) — Cnit(pos) + 1
4 DV {(pos, Cnt(pos)) — D} (pos)
5 else

6: Cnit(pos) « 1
7 DV {(pos, Cnt(pos)) — D} (pos)
8: if Cnt(pos) > Cnt_threshold(pos)

9

Dri(pos) «— Awverage of DV (pos)

The pseudocode Listing 1 illustrates the main steps of ref-
erence generation. Depth volume (DV') is a three-dimensional
depth buffer, in which each voxel represents the historical depth
value at a certain position (pos). First, a comparison is imple-
mented between the current reconstructed depth D}, and the pre-
vious reconstructed depth D} _; to evaluate the activity of each
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Fig. 9. Generation process of the depth reference.

depth pixel. If the pixel difference is smaller than the product
of the constant « and the normalization error bound G(-) men-
tioned in the Section V, the pixel of the current reconstructed
depth will be regarded as an inactive pixel, whose value will
be loaded into the depth volume and stored behind the pervious
recorded depth value. The corresponding counter Cnt(pos) is
increased by one. Otherwise, the pixel is taken as an active pixel,
whose value will be recorded as the fresh value located on the
front of the array. Meanwhile, the counter at that position is reset
to one. If the number of the similar depth values at a position is
large enough, the average of the historical depth value is load
loaded to k-th depth reference Drj.The constant « is propor-
tional to the intensity of light inference.

Fig. 9 shows an example of depth reference generation. After
checking the neighboring reconstructed depth difference, a sim-
ilarity map is produced to denote whether the pixel is compatible
with previous depth records. In the similarity map, the inactive
pixels are black, while the active pixels are white. The counter
of the active pixel is reset to zero (squares with red boundaries),
and the counters of the rest positions are increased by one. For
these positions (squares with blue boundaries), if the counter is
large or equal to the depth of the depth volume, the pixel values
at these positions in the depth reference are updated in terms of
the depth volume.

B. Video Coding With 2D+T Prediction

According to the causes of the disparity error, both the nor-
malization error and the identification error are distributed in
a random manner. These random errors tend to be eliminated
during depth accumulation, and the generated depth reference
can be regarded as a reliable reference approaching the ground
truth. Therefore, if the difference between input depth and the
reference is smaller than the disparity error bound O(-), the dif-
ference is more likely caused by measurement error rather than
a new emerging surface.

Based on the above analysis, we assign a tolerant range (see
Fig. 10) to the reliable reference surface with respect to the depth
error model deduced in Section III. If the new depth is located
in the tolerant region, the surface can be represented by the
accumulated historical depth information and will be skipped
during traditional 2D coding. If the newly coming surface is
out of range, the surface is regarded as a moving surface and
will be passed to the next step for traditional 2D prediction. The
prediction is implemented block by block, which is equivalent
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Fig. 10. Error tolerant rule during 2D+T predication.

to the motion detection of each subsurface. Therefore, our ap-
proach is more flexible than the traditional object-based seg-
mentation methods, and more than one moving object can be
distinguished during the prediction process. The coding bitrate
and complexity is greatly reduced due to the inactive region re-
moval.

Our prediction results of the depth sequence for “Roof” and
“Player” are shown in Fig. 11. In the depth sequence, a man was
playing with a Kinect, and he moved and jumped according to
the instructions from the Xbox. The depth reference grew over
time because more and more stable depth data was loaded to
the depth volume. It was observed that the 2D+T depth ref-
erence contained both the player’s earlier motion information
and static background information. The new emerging depth
could be easily recognized referring to the depth reference and
recorded as a residue of prediction. In the residue, the static
background is automatically removed from the depth except for
some unstable boundary blocks. After traditional 2D prediction
only a small range residual remain.

VII. EXPERIMENTAL RESULTS

Our compression framework can be integrated with the
start-of-the-art image/video coding schemes, and the coding
scheme can be adaptively chosen in terms of the system re-
quirements for coding efficiency and complexity. In order to
evaluate our depth compression scheme, we have carried out a
series of experiments on the depth sequences captured by the
Kinect. The objective and subjective comparisons between the
results obtained by different coding scheme are implemented
mainly based on three aspects: 1) coding efficiency; 2) com-
putational complexity; 3) 3D reconstructed results. Four depth
sequences given in Fig. 12 are used for testing, all of which
are captured at 30 fps, with a resolution of 640 x 480. The
description of testing sequences is listed in Table 1.

A. Coding Efficiency and Computation Complexity

Considering that the pixel’s bit-depth supported by HEVC
[36] is no larger than ten, we employ the H.264 reference
software (JMkta) [37] in our depth compression framework.
This software can be directly applied for high dynamic (up to



1348

Fig. 11. The intermediate prediction results of depth sequence “Roof” (left)
and “Player” (right). The depths from the top to bottom: padded depth, 2D+T
depth reference, residue of 2D+T prediction, residual after traditional inter
predication.

e

Fig. 12. The first frame of each test depth sequence used in the paper,

upleft: “Roof”, upright: “Cubicle”, bottomleft: “Player”, bottomright:
“MovCamd&People”.
TABLE I
DESCRIPTION OF TEST SEQUENCES
Sequence Discription
Roof Fixed Kinect captures simple scene
Cubicle Fixed Kinect captures complex scene
Player Fixed Kinect captures moving objects
MovCamd&People|Moving Kinect captures the multiple moving objects
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14bits) depth coding. In the experiments, the counter thresholds
in depth volume are uniformly set to five. Actually, the counter
threshold of each position can be defined respectively in accor-
dance to the sensitivity requirement of the depth content. For
simplicity, the constant c is set to one and does not change with
the coding parameters, since we do not measure the variation
of the light influence in this work.

In an attempt to evaluate the function of reformation in the
proposed coding framework, the coding performance of the
depth encoder with/without reformation is compared, where
2D+T prediction is disabled. The plots in Fig. 13 shows the
rate-distortion performance of different sequences compressed
at quantization parameters (QP) equal to [0, —5, —10,—15].
Notice that the QP in JMkta can be a negative value, when
pixel value has a dynamic range of more than 256. The peak
signal-to-noise ratio (PSNR) is utilized to measure the quality
of the reconstructed depth.

MSE (16)

2
PSNR =10-log,, <P6”’k )
where MSE denotes the mean square error of between the
reference depth and the reconstructed depth, and Peak is the
peak value equal to (2!2 — 1) due to the large dynamic data
range. The PSNR of the codec with reformation (kta_reform)
is calculated by referring the reformed depth instead of original
depth.

We can observe that the depth coding performance is dra-
matically improved after depth reformation for all the depth
sequences in Fig. 13. At the same distortion level, the bitrate
is reduced to 25%—-50% of the original bitrate. The remark-
able coding gain mainly stems from two factors: one is that the
DNBL filtering recovers the broken spatial correlation in the
depth map; the other is that the efficient padding and mask rep-
resentation greatly reduce the bit cost of the non-zero high fre-
quency transform coefficients caused by irregular depth holes.
The reformed depth sequence is friendlier for traditional video
coding than the original one.

When combining reformation and 2D+T prediction, the
rate-distortion of our approach is denoted as “proposed.”
The quality of the active region and the bitrate of the different
coding schemes are compared in Table II. The active regions are
composed of the blocks remained after 2D+T prediction, and
the corresponding PSNR value is denoted as “PSN Ry ctive”.
“Bitrate” is the whole depth frame bit cost in the coding
scheme. As seen in the table, our codec performs the best on
both depth quality and bitrate. It saves 55%—-85% of bit cost
for the Kinect depth sequence. By skipping inactive regions
during depth encoding, the coding bit cost of the whole frame
is reduced to that of the active depth region. The reduction ratio
on bitrate and complexity is determined by the depth contents.
The greater the size of inactive blocks, the larger the bitrate
and complexity reduces. To verify our analysis, the block
ratios of the inactive region are listed in Table III. The inactive
blocks ratio of the sequence “Roof” is 93.59%, the largest
among the four sequences, and over 85% bitrate reduction
is achieved at the high bitrate. In contrast, the inactive block
ratio of “MovCamd&People” is 38.11%, the smallest among the
four sequences, since the capture content keeps changing with



FU et al.: KINECT-LIKE DEPTH DATA COMPRESSION

Roof

73

70 - /

67 / A
$al/
; 61 -
Q

58

= - kia
55 -
—#— kta_Reform
0 50 100 150 200 250 300
Kbits/frame
Player

72

69 / /
__ 66
&
g 63 - -
&

60

-8 kta
57 b
4 —i— kta_reform
54 T T
0 100 200 300 400 500

Kbits/frame

1349

Cubicle
74

7

o e

wl L
./

54

PSNR (dB)

—@- kta

—a— kta_reform

50 -+ T T
0 100 200 300 400 500
Kbits/frame

MovCam&People
72
69 /
66 /
60
57 /

54

PSNR (dB)

—&- kta

—a— kta_reform

0 100 200 300 400 500
Kbits/frame

Fig. 13. Comparisons on rate-distortion performance of depth encoder with/without depth reformation.

TABLE II
RATE-DISTORTION COMPARISON OF SCHEMES BASED ON VIDEO CODECS
“Roof” “Cubicle” “Player” “MovCam&People”
Codec setting PSNRactive Bitrate PSNRactive Bitrate PSNRactive Bitrate PSNRactive Bitrate
(dB) (Mbps) (dB) (Mbps) (dB) (Mbps) (dB) (Mbps)
kta 66.47 7.64 68.25 11.61 67.35 11.21 68.61 11.47
QP =-15 |kta_reform 69.10 2.09 68.91 5.14 69.49 6.45 70.80 6.20
proposed 69.23 1.16 69.01 2.24 69.53 4.59 70.24 4.94
kta 61.66 442 62.65 8.89 62.80 791 63.49 8.11
QP =-10 |kta_reform 64.94 1.98 64.63 3.46 65.34 4.53 66.85 4.49
proposed 65.08 0.99 64.76 1.89 65.40 345 66.30 3.57
kta 57.55 235 57.80 5.71 58.96 5.20 59.26 5.00
QP =-5 |kta_reform 60.97 1.88 60.54 2.35 61.32 322 63.09 335
proposed 61.11 0.85 60.68 1.48 61.40 2.63 62.53 2.64
kta 53.65 1.01 53.43 3.12 54.81 3.16 55.80 2.90
QP =0 |kta_reform 56.74 1.75 56.05 1.48 56.99 2.17 58.95 2.44
proposed 56.78 0.74 56.22 1.20 57.07 1.96 58.41 1.88
TABLE 111 active region degrades a little in comparison with that of kta. In
BLOCK RATIO OF INACTIVE REGION DURING 2D 4 T PREDICTION general, the details of the active region are preserved as the kta
does, and the noise of the inactive region is suppressed with the
Sequence “Roof” “Cubicle” “Player” “MovCam&People” . .
. inherent depth features being preserved.
Block Ratio 93.59% 88.98% 61.44% 38.11%

Kinect’s movement. As a result, the bitrate saving is less than
60% and the encoding time saving is around 20%.

From Table II, we can observe that the quality of the recon-
structed active regions is improved in comparison to the com-
pression without 2D+T prediction for the first three sequences. It
is caused by depth quality improvement in the inactive regions,
which provide reliable reference for the intra and inter predic-
tion of active regions. For the sequence “MovCamd&People”, the
Kinect moves during the capture, it is difficult to generate reli-
able reference surface by volume integration. The quality of the

Besides the coding efficiency, our scheme also shows the
advantage for the coding complexity. The computation com-
plexity results of each scheme are tabulated in Table IV. With a
priori knowledge gained by 2D+T prediction, there is no need
to search for the optimal mode to remove inactive blocks and
then encode the remaining. As a result, a noticeable reduction
in complexity is achieved and the encoding time is reduced by
20%—65%. Similar to the bitrate, the complexity reduction ratio
is proportional to the ratio of inactive regions.

We compare the proposed scheme with near-lossless Kinect-
like depth compression scheme developed by Mehro-tra et al.
[29]. In Mehrotra’s scheme, the scaling reciprocal of each depth
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TABLE IV

s “Roof” “Cubicle” “Player” “MovCam&People”
‘odec
Enc. (ms) | AEnctime | Enc. (ms) | AEnctime | Enc. (ms) | AEnctime | Enc. (ms) | AEnctime
kta 9592 —_ 10113 —_ 10007 —_— 11209 —_—
kta_reform 9724 -1.38% 9870 2.40% 9902 1.05% 11003 1.84%
proposed 3349 65.09% 3751 62.91% 6071 39.33% 8954 20.12%
TABLE V
BITRATE COMPARISON WITH ONE KINECT DEPTH COMPRESSION SCHEME
“Roof” “Cubicle” “Player’ “MovCamd&People”
Codec setting Bitrate Compression Bitrate Compression Bitrate Compression Bitrate Compression
(Mbps) Ratio (Mbps) Ratio (Mbps) Ratio (Mbps) Ratio
Mehrotra’s 14.58 9.64 14.17 9.92 19.37 7.26 19.06 7.38
Factor=1.5
proposed 1.14 123.84 2.19 64.09 4.32 32.58 4.26 33.03
Mehrotra’s 11.58 12.15 11.76 11.95 16.36 8.59 15.87 8.86
Factor=0.8
proposed 0.81 173.31 1.32 106.77 2.24 62.81 1.81 77.86

value is encoded pixel by pixel with low complexity, and the
near-lossless compression can be achieved if the scaling factor
is large enough. Conversely, the smaller scaling factor will in-
troduce larger coding distortion and cost less bitrate correspond-
ingly. The scaling factor of the reference scheme is set as 1.5
and 0.8, respectively. For each factor, we compare the bitrate
cost of the compressed depth sequences with the similar MSE
value, which is calculated in the active regions generated by
our coding scheme. The comparison results are shown in the
Table V. Our coding scheme can save 73%—-93% bitrate com-
paring with the reference one. The significant coding gain is
achieved, because the temporal redundancy is greatly reduced
by the 2D+T prediction.

B. 3D Reconstruction Comparisons

In this subsection, we apply normal maps and rendering mesh
for 3D reconstruction results comparison. The normal maps of
the original depth, reformed depth and the reconstructed depth
of kta and our scheme are shown in Fig. 14. After reformation,
the step-shaped depth fluctuation is suppressed in the smooth re-
gion, e.g., the back of the chair and the wall, as well as player’s
arms and legs. Meanwhile, the inherent depth discontinuity is
preserved, such as the small objects on the table in the “Cubicle”,
the clothing wrinkles and the player’s cheek in “Player.” The
compression QP is set to —10 to generate high quality recon-
structed depth. In the reconstructed results of kta, the original
depth noises are retained and new noisy pixels emerge around
the boundaries adjacent with depth holes, such as the region be-
hind the player’s left shoulder and the region above the player’s
head in “Player”, as well as the wall boundary regions on the
upper-left part of “Cubicle”. The results of our scheme show that
the object boundaries are clearly reconstructed without emerging
noisy pixel. For the inactive regions where the blocks are skipped
in the 2D+T prediction, like the wall and the chair back, the sur-
face looks even smoother than that of the reformed depth due to
the temporal filtering during the depth reference generation in
depth volume. In contrast, the details of the active regions are
maintained by traditional video compression, like the wrinkles

Fig. 14. Normal maps of the final result of depth coding for the 63-th frame of
“Player”(left) and the 6-th frame of “Cubicle”(right) at Q> = —10. The images
from the top to bottom: normal map of the original depth, normal map of the
reformed depth, normal map of the reconstructed by kta, and the reconstructed
depth by our approach.

on the player’s clothes in “Player” and the surfaces of the small
items on the table in “Cubicle”.
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Fig. 15. Comparison on the 3D reconstruction mesh. (a) the clipped texture
(b) mesh rendered from the raw depth (c) mesh of the compressed depth by kta
(QP = —15) (d) mesh of the compressed depth by kta (QP = —10) (e)
mesh rendered from the reformed depth (f) mesh of the compressed depth by
our approach (QP = —15) (g) mesh of the compressed depth by our approach
(Qr = —10).

Another comparison results on 3D rendering view is give in
Fig. 15. The left RGB image is the texture of a toy that is clipped
from a Kinect texture frame, which has been calibrated with the
depth by windows Kinect SDK. The top-left image is the 3D
reconstruction result of the original depth, and the bottom is the
result of the reformed depth. The right images show the render
results of the reconstructed depth after compression by kta or
our scheme. The 3D render results of our algorithm are much
better than that of kta, especially for compression with large
QP. The blocking artifacts caused by spectral information loss
are notable in the results of kza, and the mesh boundary become
jagged after compression, see Fig. 15(c) and (d). In contrast, our
results preserve the original depth features with fewer artifacts
in Fig. 15(f) and (g).

VIII. CONCLUSIONS AND FUTURE WORK

Based on the special characteristics of Kinect-like depth data,
we propose a novel depth compression framework in which
the depth is reformed first to suppress the depth spatial noises
and then predicted using a long-term reference to detect the
uniqueness of depth contents for better bit allocation. In the
reformation technologies, the spatial DNBL filtering fully uti-
lizes the depth measurement error model to distinguish the in-
herent depth edges from the normalization error, and the depth
padding rebuild the depth continuity inner depth block for effi-
cient block-based coding. More importantly, we distinguish the
new emerging depth contents by 2D+T prediction, and accord-
ingly assign more coding resources to them. Our approach can
save more than 55% bitrate with a remarkable reduction in the
coding complexity at the same time.

As we indicated earlier, the primary goal of this paper is to
develop a depth coding framework to achieve high efficiency
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depth coding with low-complexity and better serve for the se-
quential depth-related applications. Therefore, there is a good
deal research that is still on-going or that we intend to conduct
in the near future. First of all, considering the physical meaning
of the depth, we intend to define new metrics for depth distor-
tion measurement in accordance with distinct requirements of
sequential applications, with which the designed coding frame-
work can adapt to the applications much better. Secondly, the
parameter settings of the proposed coding scheme should adjust
to time-variant light influence. Finally, we intend to reduce the
computing complexity to satisfy the requirements of real-time
depth data transmission.
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