
NSLPA:A node similarity based label propagation
algorithm for real-time community detection

Qi Song, Bo Li, Weiren Yu, Jianxin Li, Bin Shi
School of Computer Science and Engineering

Beihang University

Beijing, 100191, China

Email: {songqi, libo, yuwr, lijx, shibin}@act.buaa.edu.cn

Abstract—With the development of Internet, online social
networks and websites generate a large amount of data.
At the same time, several distributed systems, represented
by Hadoop, has been proposed to handle mass data. These
systems provide both efficient and convenient way to construct
different kinds of algorithms. Community detection, a tradi-
tional research area, is now facing the challenge of Big Data.
Draw support from a powerful distributed graph processing
system, GraphLab, we redesign and implement several classi-
cal community detection algorithms using very large real-life
datasets. Using node similarity parameter AdjPageSim, we
propose a new community detection algorithm based on label
propagation, namely NSLPA. Experiments and benchmarks
reveal that several quite powerful algorithms perform bad in
distributed environments. However, NSLPA is not only faster
but more accurate compared with other community detection
algorithms. NSLPA can process a graph with 60 million nodes
and 2 billion edges in less than 1000 seconds with a relatively
high accuracy.

Keywords—community detection, GraphLab, LPA, PageSim

I. INTRODUCTION

Recent years have seen the flourishing of Big Data,
which can be used to describe a very large scale data set
with complicated features.Existing database management
systems can not handle this kind of data very well. The
significance of Big Data has attracted the concern of gov-
ernments, companies and scientific institutions. Big data
contains online social networks and webdata like Facebook,
Twitter, Weibo, World Wide Web and Wikipedia. These
data can be represented as gragh: nodes denote persons
or pages, while edges represent the relationship between
person or page nodes. This relationship can be represented
as follow in facebook or hyperlinks in WWW. Since the
nature of the data, this kind of online graph data contains
an immense number of person nodes which are sparsely
connected, namely, they constitute several communities.

Detecting community structures from online graph data
is an important function in data analysis. It can be used to
analyze the information propagation or even devise business
strategies. Graphically, communities are characterized by a
group of nodes which are densely connected by internal
edges. From Figure 1, we can see there exist several
densely connected communities in a small Weibo dataset
1. However, no definition of community is universally ac-

1Sina Weibo: http://weibo.com

Fig. 1. Community structure of a small Weibo dataset

cepted. [1] provides several kinds of definitions like clique
and quasi-clique. Different kinds of community algorithms
have been proposed and some of them can effectively
detect the community structure. Bad usability refers to
large scale online graph data is one of the most critical
problems for community detection algorithms. On one
hand, as community detection is a NP-hard problem, some
algorithms are quite time consuming, thus its performance
in single machine is intolerant. On the other hand, it lacks
a convenient and efficient way to implement a commu-
nity detection algorithm. Since distributed data processing
model like MapReduce [24] provides a basic idea to solve
large scale data processing problems, we can intuitively
use these systems to implement such community detection
algorithms.

Efficient processing of large graph is challenging as
graph algorithms exhibit very little work per node. More-
over, traverse the graph may cause poor locality of mem-
ory access due to discontinuous node storage. Distributed
processing may exacerbate the locality issue and introduce
large amount of message passing. As the MapReduce
framework is disk-oriented and graph structure unaware,
researchers proposed several graph processing systems like
Pregel [8], GraphLab [9] and GraphX [15]. These sys-
tems provide several APIs for developers to build graph

2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing

978-1-4799-7881-6/14 $31.00 © 2014 IEEE

DOI

896

algorithms. The greatest advantage lies in liberating de-
velopers to consider bottom details, like message passing,
task allocation, resource manage and error recovery. In this
paper, we choose GraphLab as our programing platform
mostly because of its high performance brought by deeply
optimizing.

In this paper, we first implement several community
detection algorithms in GraphLab. Then, dealing with the
random allocation problem, we use node similarity to im-
prove the basic LPA algorithm. The major contributions of
this paper are three-fold:

1) Besides basic label propagation
algorithm(LPA) [18] provided by GraphLab
in its graph processing toolkits, we implement
Kernighan-Lin algorithm [3], Blondel’s
modularity based algorithm [16] and coefficient
based algorithm [17] in GraphLab. Further
experiments are performed to compare their
performance.

2) We propose a modified label propagation al-
gorithm which use node similarity to choose
labels instead of random allocate. Random
walk based PageSim is used to evaluate node
similarity which can effectively leverages the
capability of GraphLab.

3) Both accuracy and execution time are used to
compare the performance of four algorithms
and NSLPA. We use several real-world labeled
datasets as input. A statistic parameter called
community similarity is defined and used to
evaluate the detection accuracy. Furthermore,
we provide the community-size distribution of
these datasets as an intuitive method to show
the result.

The rest of this paper is organized as follows. Related
works are reviewed in Section II. An introduction of four
algorithms is given in Section III. An analysis of LPA and
the detail of NSLPA are described in Section IV. Detailed
experiment and comparison analysis are shown in Section
V. A brief conclusion is given in Section VI.

II. RELATED WORK

Detailed survey and comparison of the development
of community detection can be found in [1] [21]. As
community structure detection is known as an NP-hard
problem [2], many effective but not perfect methods have
been proposed. These methods can be divided into several
different types. Divisive methods contains calculating the
edge centrality and removing those edges possibly lying
between communities. Edge betweenness [4], current-flow
betweenness [4], random-walk betweenness [4] are pro-
posed to define edge centrality. Modularity-based methods
rely on modularity proposed by Newman [5].

In addition to the methods mentioned above, label
propagation (LPA) is one of the fastest methods for com-
munity detection. However, the basic propagation algorithm
holds some critical problems, such as the fluctuation of
results because of randomness [19]. Thus there exists some
modification to improve the efficiency and accuracy of LPA.

[20] suggests adding a score associated with the label which
decreases as it traverses from its origin and [19] use node
balancer to accessing the nodes in some predefined order
to enhance the robustness. [22] employs a multistep greedy
agglomerative algorithm that can merge multiple pairs of
communities at a time. [23] presents a semisynchronous
version of LPA which aims to combine the advantages of
both synchronous and asynchronous models.

In recent years, distributed data processing systems are
widely used to effectively process large number of data.
Hadoop is one of the most widely used systems. However,
as MapReduce is not suitable for graph processing [6],
researchers proposed different kinds of graph processing
systems. These systems aim to build a high performance and
convenient way to implement graph algorithms. Some criti-
cal aspects should be considered, includes: architecture, I/O
bottleneck, special requirements of different kinds of graph
and algorithms, and stream data. Trinity [7] is a distributed
graph storage and (SPARQL) querying system. In addition
to GraphLab [9], one of the most highly optimized systems,
Pregel [8] and GraphX [15] are also representative systems.
Pregel is a distributed graph system based on message pass-
ing and Bulk synchronous protocol (BSP). Implemented on
top of Spark, Graphx unifies graph-parallel and data-parallel
computation and is able to efficiently executing the entire
graph analytics pipeline. Even the performance is not that
good compared with GraphLab, GraphX provides an effi-
cient way to implement graph algorithms, for example, we
can implement the PowerGraph and Pregel abstractions in
less than 20 lines of code. Based on GraphLab, PowerGraph
[10] improves the parallel performance for natural graph.
Other distributed graph processing systems include Giraph
[11], GPS [12], Mizan [13], SPAR [14].

III. SELECTION OF ALGORITHMS

In this section, we’ll give a brief introduction about the
four algorithms implemented upon GraphLab.

A. Kernighan-Lin algorithm(K-L)

Kernighan-Lin algorithm [3], scaling as O(n2logn), is
one of the earliest attempt to solve the graph partitioning
problem. The original algorithm can only partition a graph
into two disjoint subsets. The algorithm starts by dividing
the nodes into two subsets in any way. Then, for each pair
(i,j) of nodes such that i and j lies in different groups, the
algorithm calculates the cut size of interchanging i and j.
Among all pairs (i,j), we swap a pair of nodes which reduces
the cut size by the largest amount or increases it by the
smallest amount. This process is then repeated until there
are no pairs left to be swapped. Each node in the network
can only be moved once.

We can divide a graph into more than two pieces by
repeating the progress. Using some other algorithms as
the starting configurations, this method can achieve better
performance thus is treated as an improvement of other
algorithms.

897

B. Blondel’s modularity-based algorithm(BA)

Blondel proposed in [16] a heuristic method based on
modularity optimization. It is a quite fast algorithm with
time complexity O(m) but is limited by storage demands.
This method consists of a sequential sweep over all nodes.
We assign a different community to each node first. Then
for each i we consider the neighbours j of i and evaluate
the gain of modularity that would take place by removing
i from its community to the community of j. The node
i is then placed in the community for which this gain is
maximum, but only if this gain is positive. If no positive
gain is possible, i stays in its original community. This
process is applied repeatedly for all nodes until no further
improvement can be achieved. This method can also detect
hierarchy using a further step.

C. coefficient-based algorithm(C-B)

Algorithm proposed by [17] leverages the clustering
coefficient, which is defined as

C̃
(g)
i,j =

z
(g)
i,j + 1

s
(g)
i,j

(1)

where i and j are the extremes of the edge, z
(g)
i,j the number

of cycles of length g(here we choose g = 3 which means
triangles). The number of actual cycles in the numerator is

augmented by 1 to avoid the coefficient C̃
(g)
i,j to be 0. At

each iteration, the edge with smallest clustering coefficient
is removed and the measure is recalculated again. The
algorithm stops when all clusters produced by the edge
removals are communities in the strong sense, and further
splits would violate this condition. A strong community, or
LS set, is a subgraph with the internal degree of any node
of the community exceeds the number of edges that the
node shares with any other community.

D. Label propagation algorithm(LPA)

Label propagation [18] is a simple and fast community
detection method. Each node is initially given a unique label
which are their node id. At each iteration, a sweep over all
nodes is performed in random sequential order: each node
takes the label shared by the majority of its neighbors. If
there is no unique majority, one of the majority labels is
picked at random or the node keeps its label unchanged.
The process reaches convergence when each node has the
majority label of its neighbors.

These four algorithms are implemented using GraphLab
API and the detailed performance comparison is shown in
section V.

IV. NODED SIMILARITY BASED LPA

Label propagation is a near linear algorithm while
accommodate to GraphLab very well. However, in order
to achieve such a linear complexity, basic LPA sacrifices
some stability, namely introduce random propagate. This
kind of randomness will cause some disaster consequence,
especially in very large networks. In this section, we’ll first
give a biref analysis of LPA and its randomness. Based on

Fig. 2. Statistics of LPA

the analysis, a node similarity based label propagation algo-
rithm is proposed which can fully leverages the computing
capability of GraphLab.

A. Analysis of label propagation algorithm

Let the network be represented by a simple undirected
graph G = (V,E), where V is the set of nodes and E is the
set of edges. The procedure of label propagation is quite
simple (III-D). Alternatively, an equivalent mathematical
formulation can be given as

l′v = argmaxl

∑
u∈σ(v)

δ(lu, l) (2)

Where lu is the label for node u, l′v is the new label for
node v, σ(v) is the set of nodes neighboring v in the graph,
and δ is the Kronecker delta. If there exists multiple labels,
the result of argmax should be taken as for the procedural
description lf LPA, i,e, take a label at random that satisfies
Eq.2.

Label propagation with asynchronous updating ran-
domly accesses the nodes and randomly chooses a label
while there exists multiple max-number labels. On one
hand, randomly access hampers the robustness of the al-
gorithm. Thus some constraints are used to predefine the
access order [19] [20]. On the other hand, random choose
may also affect the iteration time and accuracy of final
result. We have conducted several experiments to calculate
the number of random choose in LPA using five datasets
choosed from Table I.

Figure 2 shows the evaluation results. As LPA is not
a deterministic algorithm, we run each dataset ten times
and calculate the standard deviation of random propagation
frequency. Obviously, there exists a lot of random choose
in LPA , most of these random propagation is observed in
the first few iterations. Furthermore, as the size of dataset
is getting larger and larger, the stability of LPA decreases.
This phenomenon can be explained by the complexity and
magnitude of large dataset. As random propagation brings
uncertainty, LPA may produce quite different results in each
evaluation. Moreover, another disadvantage of LPA is that
it may sometimes result in a single large community.

We further use a toy example network in Figure 3 to
illustrate the consequence caused by random propagation.

898

Fig. 3. Toy example network with two communities. Dashed links rep-
resent inter-community edges and nodes colors indicate their community
labels

The network consists of two communities c1 and c2, which
can be distinguished by that each node has more intra-
community than inter-community edges. When it turns to
n2, it will adopt the label of either n1, n3 or n4 randomly.
If it choose n1 or n3 then at the end of this iteration, all
nodes in community c1 will be labeled with the same label
(that initially belongs to node n1 or n3). The outcome thus
corresponds to the natural community of the network. But if
n2 choose n4 as its label, and then n1 may also choose n4

label. As a result, it is straightforward to see that all nodes
in the network will be classified to the same community
c2. This is the reason why LPA may converges into a very
large community. One effective way to avoid this is to
accessing the nodes in some predefined(deterministic) order,
namely placing higher propagation preference to the nodes
that are updated first and lower propagation preference
to the nodes that are updated last. But considering the
computing characteristic of GraphLab, we can use a more
powerful method to avoid random propagation and make
the procedure deterministic.

B. The basic idea

Intuitively, using node similarity to choose label from
a closer node when there exists multiple nodes with the
same maximal label can avoid the random propagation. In
Figure 3, it is obviously that n1 or n3 is closer to n2 than
n4 does. Thus we can force n2 choose n1 or n3 instead of
n4 to avoid resulting in a single community.

As GraphLab provides an effective way to run random
walk algorithms like PageRank, we could use this feature to
introduce a fast method to calculate node similarity, namely
PageSim [27].Based on PageSim, a node similarity based
label propagation algorithm(NSLPA) is proposed.

The original definition of PageSim calculate the sim-
ilarity of every node pair. However, in NSLPA, we only
consider the adjacent nodes. A mutation of PageSim,
namely AdjPageSim is defined as follows :

DEFINITION 1. Let PR(v) denotes the PageRank score
of node v PR(v) = (1 − γ) + γ

∑
u∈in(v)

PR(u)
|out(v)| , for

v ∈ V . The parameter γ is a damping factor which
is usuallt setted to 0.85. For undirected graph, PR(v)
is calculated by treating the graph as a directed graph,
namely, makeing each edge bidirectional. Let PG(u, v)
denotes the PageRank score that node u propagates to node

v, as u and v are adjacent, PG(u, v) = PR(u), where
u, v ∈ V .

DEFINITION 2. Let
−→
SV (v) denotes the similarity vector

of node v , we have
−→
SV (v) = (PG(vi, v))

T ,vi ∈ δ(v)
contains all adjacent nodes of v. Let APS(u, v) denotes
the adjacent pageSim score of page u and v, APS(u, v) =∑n

j=1 min(PG(vj , u), PG(vj , v)), where u, v ∈ V and
vj ∈ δ(v) ∩ δ(u)

Based on AdjPageSim, the updating rule of the
NSLPA is thus rewritten into

l′v = argmaxl

∑
u∈σ(v)

δ(lu, l)APS(u, v) (3)

C. The design and implementation of NSLPA algorithm

The main steps of NSLPA include two steps: initializa-
tion and label propagation. In the initialization step, NSLPA
first calculate the PageRank value of each node and then
the APS value of each node with their adjacent nodes.
These APS values are then used in label propagation step
to help choosing labels. Initialization calculates APS value
for each node. As the algorithm is implemented based on
GraphLab, the GAS model must be followed. Two GAS
circles are used, the first one calculates PageRank value
for each node and the second one calculate the final APS
value for each node with their adjacnet nodes. After the
initialization, each node now owns the similarity value with
each of its adjacent node. Propagation procedure is almost
the same compared with basic LPA, the only difference is
use APS velue to select labels when there exists multiple
majority labels.

V. EXPERIMENT

We proceed by evaluating the performance of four
algorithms described in section III and NSLPA proposed
in section IV. Several large datasets are used to examine
the accuracy and execution time of these algorithms.

A. Experiment Setup

All algorithms are implemented in GraphLab2.2 which
is deployed in an 8 node cluster. Each node has two 2GHz
Intel Xeon E5-2650 CPUs and 256 Gb memory.

B. Datasets

We choose five networks with ground-truth communities
from SNAP Datasets 2 as samples. [26] gives some detailed
description of communities in these six datasets which is
briefly shown here in Table I. N means the number of nodes
while E the number of edges. C represents the number of
communities and S is average community size, these two
values are determined by the algorithm proposed in [26].

2Datasets are available at http://snap.stanford.edu

899

Dataset N E C S

Friendster 65,608,366 1,806,067,135 1.5M 26.72
Orkut 3,072,441 117,185,083 8.5M 34.86
DBLP 317,080 1,049,866 2.5k 429.79
LiveJournal 3,997,962 34,681,189 310k 40.46
Amazon 334,863 925,872 49k 99.86

TABLE I. DATASET STATISTICS

C. Evaluation metrics

We consider both execution time and accuracy of dif-
ferent algorithms. A key problem in community detection
is the termination condition of iterations. As K-L algorithm
is basically a dichotomic method, we must manually set
the iteration time if we want to detect more than two com-
munities. Using the data in Table I, we set K-L algorithm
to run several times to receive almost the same number of
communities. Coefficient based algorithm owns the ability
to converge itself by checking if all communities are strong
communities. LPA and its derivative algorithms does not
need any constraints as it can converge eventually. Each
algorithms is performed 10 times and the average value is
choosen to be the result.

• Execution Time

Performance is easy to evaluate by recording the exe-
cution time. Note that the whole execution time contains
reading files from HDFS and finalizing graph, which will
be neglected as we only care about the pure execution of
the graph engine.

• Accuracy

However, how to check the accuracy of communities
detected is a difficult question, especially for very large
datasets. With the development of visualizer, it is convenient
to see the actual community structure in small datasets. But
for large datasets, the only approximate solution is counting
the stastistics value of the result. As SNAP provides ground-
truth communities, we can use a more accurate value
instead of modularity to evaluate the accuracy of different
algorithms. We define a community similarity parameter as:

CS =

∑
m δ(ci, cj)∑
m

(
nm

2

) (4)

where m is the number of ground-truth communities Cm,
ci and cj are any pair of nodes, nm is the size of Cm. The
δ function yields 1 if ci and cj belongs to the same com-
munity which is detected by the algorithm. This parameter
enables us to check if any pair of intra-community nodes
in the result really belongs to the ground-truth community.
Larger CS value means the algorithm is more accurate.
If the result is completely overlapped then CS is equals
to 1. However, this is an approximate parameter because
we do not consider if one detected community contains
several small ground-truth communities. As there exists a
lot of small ground-truth communities which can have little
compact in whole community structure, this approximation
is acceptable.

D. Evaluation results

• Execution Time

Fig. 4. Execution time

Dataset K-L C-B BA LPA NSLPA

Amazon 0.751 0.833 0.676 0.612 0.812
DBLP 0.789 0.854 0.801 0.654 0.824
Orkut - 0.798 0.699 0.628 0.807
LiveJournal - 0.754 0.701 0.615 0.793
Friendster - 0.711 - 0.691 0.761

TABLE II. CS VALUE

Figure 4 shows the result of execution time. K-L algo-
rithm is obviously the slowest one as it has the largest time
complexity. Building upon a distributed system, checking
all pairs of nodes is quite time consuming as the system
must coordinate nodes in different workers. Even GraphLab
is able to calculate coefficient effectively, determing the
termination condition consumes most of the execution
time.However, even the time complexity of Blondel’s al-
gorithm is O(m), it performs bad in GraphLab. The reason
also results from the distribution of data. Calculating ΔQ
requires sweeping over all nodes, which introduces a great
many of inter-worker computation.

LPA remains the fastest algorithm, which can process
mora than 60 million nodes in less than 300 seconds. As
choosing a label only relies on the adjacent nodes’ labels,
LPA does not need extra computation in a distributed envi-
ronment. GraphLab places nodes (main nodes) in different
workers and keeps their adjacent nodes (ghost nodes) in
the same worker. After each iteration, different workers
exchange data for the next iteration. LPA is fairly closely
to the GraphLab model, which ensures its performance in
distributed environment. As NSLPA needs to calculate the
pagerank and APS value, it consumes more time than orig-
inal LPA. But this extra time does not cause a dramatically
increase. NSLPA is still much faster than other algorithms
and can handle Friendster in less than 1000 seconds.

• Accuracy

Table II shows the result of CS value which repre-
sents the difference between detected and ground-truth
communities. Some large datasets exceeds the capability
of some algorithms, thus the result is shown as ”-” in
the table. K-L, C-B and BA performs well in relatively
small datasets. However, with the increase of complexity
and scale, they can not ensure their accuracy. Furthermore,
from Figure 1, we can see that there exists some nodes
which are hard to define their status. They may belong
to more than one communities simultaneously, or remains

900

relatively idependent. For large social networks, these nodes
are common as they represent some zombie account or some
sociable guys belong to different communities in different
areas. This is the main deviation for detected communities.

Even performs better in execution time, the accuracy of
LPA is the worst. Because of the randomness introduced
above, LPA’s results experiences a fluctuation. Thus the CS
value is lower than that of other algorithms. Due to the
node similarity, NSLPA performs much better than LPA.
Even its result is not perfect, it achieves almost the same
or even better accuracy than other algorithms. This enables
NSLPA to be a powerful community detection method with
both high efficiency and accuracy.

VI. CONCLUSION AND FUTURE WORK

Community detection is a useful method to reveal the
structure of social network. With the development of dis-
tributed graph processing systems, we now have the ability
to detect communities in very large datasets.

In this paper, we have built several community detection
algorithms upon GraphLab and evaluated their performance.
Several classical algorithms, like Kernighan-Lin algorithm,
Blondel’s modularity based algorithm and coefficient-based
algorithm, experienced bad performance in the evaluation.
They are not quite Graphlab’s style as distribution intro-
duced large amount of extra message passing. However, one
of the fastest method, LPA, performed very fast in the dis-
tributed environment. But the randomness can result in an
inaccurate result. As calculating PageRank value is efficient
using GraphLab, we define a value called adjPageSim to
help nodes to choose labels during the propagation. NSLPA
can effectively increase the accuracy of LPA while preserve
its low time complexity.

However, NSLPA remains a very simple attempt in solv-
ing community detection problem for large datasets. Our
future work includes further algorithm improvement, how
to measure the effect of partition method in such algorithm
and how to evaluate the accuracy of CD algorithms in very
large datasets.

ACKNOWLEDGMENT

This work is supported by China MOST project (No.
2012BAH46B04), 863 project (No.2013AA01A213), and
SKLSDE-2014ZX-04.

REFERENCES

[1] Fortunato S. Community detection in graphs[J]. Physics Reports,
2010, 486(3): 75-174.

[2] Brian Karrer, Elizaveta Levina, and M. E. J. Newman. Robustness
of community structure in networks. Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics), 77(4), 2008

[3] Kernighan B W, Lin S. An efficient heuristic procedure for partition-
ing graphs[J]. Bell system technical journal, 1970, 49(2): 291-307.

[4] Girvan M, Newman M E J. Community structure in social and
biological networks[J]. Proceedings of the National Academy of
Sciences, 2002, 99(12): 7821-7826.

[5] Newman M E J, Girvan M. Finding and evaluating community
structure in networks[J]. Physical review E, 2004, 69(2): 026113.

[6] Guo Y, Biczak M, Varbanescu A L, et al. Towards benchmarking
graph-processing platforms[J]. Poster at Supercomputing, 2013.

[7] Shao, B., Wang, H., Li, Y. (2013, June). Trinity: A distributed graph
engine on a memory cloud, In SIGMOD 2013: pp. 505-516.

[8] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C.
Dehnert, Ilan Horn, Naty Leiser, Grzegorz Czajkowski. Pregel: a
system for large-scale graph processing. In: SIGMOD 2010. 135-
146.

[9] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J.
M. Hellerstein. GraphLab: A new parallel framework for machine
learning. In Proc. Conf. Uncertainty in Artificial Intelligence, UAI
’10, July 2010.

[10] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin.
PowerGraph: distributed graphparallel computation on natural graphs.
In OSDI ’12: pp 1730, 2012.

[11] https://giraph.apache.org

[12] Salihoglu S, Widom J. Gps: A graph processing
system[C]//Proceedings of the 25th International Conference
on Scientific and Statistical Database Management. ACM, 2013: 22.

[13] Khayyat Z, Awara K, Alonazi A, et al. Mizan: a system for dynamic
load balancing in large-scale graph processing[C]//Proceedings of the
8th ACM European Conference on Computer Systems. ACM, 2013:
169-182.

[14] Pujol, J. M., Erramilli, V., Siganos, G., Yang, X., Laoutaris, N.,
Chhabra, P., Rodriguez, P. (2011). The little engine (s) that could:
scaling online social networks. ACM SIGCOMM Computer Com-
munication Review, 41(4), 375-386.

[15] Xin R S, Crankshaw D, Dave A, et al. GraphX: Unify-
ing Data-Parallel and Graph-Parallel Analytics[J]. arXiv preprint
arXiv:1402.2394, 2014.

[16] Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of
communities in large networks[J]. Journal of Statistical Mechanics:
Theory and Experiment, 2008, 2008(10): P10008.

[17] Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying
communities in networks[J]. Proceedings of the National Academy of
Sciences of the United States of America, 2004, 101(9): 2658-2663.

[18] Raghavan U N, Albert R, Kumara S. Near linear time algorithm
to detect community structures in large-scale networks[J]. Physical
Review E, 2007, 76(3): 036106.

[19] ubelj L, Bajec M. Robust network community detection using bal-
anced propagation[J]. The European Physical Journal B-Condensed
Matter and Complex Systems, 2011, 81(3): 353-362.

[20] Leung I X Y, Hui P, Lio P, et al. Towards real-time community
detection in large networks[J]. Physical Review E, 2009, 79(6):
066107.

[21] Lancichinetti A, Fortunato S. Community detection algorithms:
a comparative analysis[J]. Physical review E, 2009, 80(5):
056117.MLA

[22] Liu X, Murata T. Advanced modularity-specialized label propaga-
tion algorithm for detecting communities in networks[J]. Physica A:
Statistical Mechanics and its Applications, 2010, 389(7): 1493-1500.

[23] Cordasco G, Gargano L. Community detection via semi-
synchronous label propagation algorithms[C]//Business Applications
of Social Network Analysis (BASNA), 2010 IEEE International
Workshop on. IEEE, 2010: 1-8.

[24] Jerey Dean and Sanjay Ghemawat, MapReduce: Simplied Data
Processing on Large Clusters. in Proc. 6th USENIX Symp. on
Operating Syst. Design and Impl., 2004, 137-150.

[25] Mislove A, Marcon M, Gummadi K P, et al. Measurement and
analysis of online social networks[C]//Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement. ACM, 2007: 29-42.

[26] Yang J, Leskovec J. Overlapping community detection at scale:
a nonnegative matrix factorization approach[C]//Proceedings of the
sixth ACM international conference on Web search and data mining.
ACM, 2013: 587-596.

[27] Lin, Zhenjiang; King, I.; Lyu, M.R., ”PageSim: A Novel Link-Based
Similarity Measure for the World Wide Web,” Web Intelligence, 2006.
WI 2006. IEEE/WIC/ACM International Conference on , vol., no.,
pp.687,693, 18-22 Dec. 2006

901

