
Noname manuscript No.
(will be inserted by the editor)

A Partition-Based Approach to Web Hyperlink Analysis

Weiren Yu · Xuemin Lin · Wenjie Zhang · Julie A. McCann

Received: date / Accepted: date

Abstract SimRank is an attractive pair-wise similar-
ity measure based on graph structure. It iteratively fol-

lows the intuition that two nodes are assessed as similar

if they are referenced by similar nodes. Real networks

are often large, and links are constantly subject to mi-

nor changes. In this article, we focus on efficient dynam-
ical computation of SimRanks on time-varying graphs.

The prior approach to this problem factorizes the net-

work via a singular value decomposition (SVD) first,

and then incrementally maintains such a factorization
in response to link updates at the expense of exactness.

As a result, all pairs of SimRanks are updated approxi-

mately, yielding O(r4n2) time and O(r2n2) memory in

a graph with n nodes, where r is the target rank of the

low-rank SVD, but r is not negligibly small in practice.

Our solution to dynamical computation of SimRank

comprises of five ingredients: (1) We first consider edge

update that does not accompany new nodes insertion.

We show that the SimRank update ∆S in response to
every link update is expressible as a rank-one Sylvester

matrix equation. This provides an incremental method

requiring O(Kn2) time and O(n2) memory in the worst

case to update n2 pairs of similarities for K iterations.

(2) To speed up the computation further, we propose a
lossless pruning strategy that captures “affected areas”

of ∆S to eliminate unnecessary retrieval. This reduces

W. Yu · J. A. McCann
Department of Computing,
Imperial College London,
180 Queens Gate, London, UK
E-mail: weiren.yu@imperial.ac.uk

X. Lin · Wenjie Zhang
School of Computer Science and Engineering,
The University of New South Wales,
Kensington, NSW, AU
E-mail: lxue@cs.unsw.edu.au

the time of incremental SimRank to O(K(nd+ |AFF|)),
where d is the average in-degree of the old graph, and

|AFF| (≤ n2) is the size of “affected areas” in∆S, and in

practice, |AFF| ≪ n2. (3) We also consider edge updates

that accompany node insertions, and categorize them

into three cases, according to which end of the inserted
edge is a new node. For each case, we devise an efficient

incremental algorithm that can support new nodes in-

sertion and accurately update affected SimRanks. (4)

To achieve high memory efficiency, we formulate the
SimRank changes as the sum of the outer products

of two vectors, and devise a partitioning strategy that

can dynamically update all pairs of SimRanks column

by column in just O(dn) memory. (5) We also investi-

gate batch updates for dynamical SimRank computa-
tion, and design an efficient batch incremental method

that can handle “similar sink edges” simultaneously and

eliminate redundant edge updates. The experiments on

various datasets demonstrate that our solution can sub-
stantially outperform the existing incremental SimRank

methods, and is much faster and more memory-efficient

than its competitors.

Keywords similarity search · SimRank computation ·

dynamical networks · optimization

1 Introduction

Recent rapid advances in web data management reveal
that link analysis is becoming an important tool for sim-

ilarity assessment. Due to the proliferative applications

in e.g., social networks, recommender systems, citation

analysis, and link prediction [9], a surge of graph-based
similarity measures have surfaced over the past decade.

For instance, Brin and Page [2] proposed a very success-

ful relevance measure, called Google PageRank, to rank

2 Weiren Yu et al.

a

b

c

d

e

fg

h

i
j

k

l

m

n

o

G (excluding

edge(i, j))

inserted edge
(i, j)

Node-Pair
in G in G ∪∆G

sim simtrue simLi et al.

(a, b) 0.075 0.062 0.073
(a, d) 0.000 0.006 0.002
(i, f) 0.246 0.246 0.246
(k, g) 0.128 0.128 0.128
(k, h) 0.288 0.288 0.288
(j, f) 0.206 0.138 0.206
(m, l) 0.160 0.160 0.160
(j, b) 0.000 0.030 0.001

Fig. 1: Incrementally update SimRanks when a new edge (i, j) (with {i, j} ⊆ V) is inserted into G = (V,E)

web pages. Jeh and Widom [9] devised SimRank, an

appealing pair-wise similarity measure that quantifies

the structural equivalence of two nodes based on link

structure. Recently, Sun et al. [18] invented PathSim

to retrieve nodes proximities in a heterogeneous graph.
Among these emerging link based measures, SimRank

has stood out as an attractive one in recent years, due

to its simple and iterative philosophy that “two nodes

are similar if they are in-linked by similar nodes”, cou-
pled with the base case that “every node is most sim-

ilar to itself”. This recursion not only allows SimRank

to capture the global structure of a graph, but also

equips SimRank with appealing mathematical insights

that can inspire research in recent years. For example,
Fogaras and Rácz [5] interpreted SimRank as the first

meeting time of the coalescing pair-wise random walks.

Li et al. [12] harnessed an elegant matrix equation to

formulate the closed form of SimRank.
Nevertheless, the batch computation of SimRank is

costly: O(Kd′n2) time for all node-pairs [20], where K

is the total number of iterations, and d′ ≤ d (d is the

average in-degree of a graph). Generally, real graphs are

often large, with links constantly evolving with minor
changes. This is especially apparent in e.g., co-citation

networks, web graphs, and social networks. As a sta-

tistical example [15], there are 5%–10% links updated

every week in a web graph. It is rather expensive to re-
compute similarities for all pairs of nodes from scratch

when a graph is updated. Fortunately, we observe that

when link updates are small, the affected areas for Sim-

Rank updates are often small as well. With this comes

the need for incremental algorithms computing changes
to SimRank in response to link updates, to discard un-

necessary recomputations. Therefore, we investigate the

following problem in this article.

Problem (Incremental SimRank Computation)

Given an (old) directed graph G, a small fraction of

old similarities S in G, link changes ∆G 1 to G, and

a damping factor C ∈ (0, 1).
Retrieve the changes to the SimRank scores S.

1 ∆G consists of a sequence of edges to be inserted/deleted.

In comparison to the batch SimRank computation,

the work on incremental SimRank updates is limited.

Indeed, because of the recursive definition of SimRank,

it is a big challenge to identify “affected areas” for ef-

ficiently updating SimRank in an incremental manner.
To the best of our knowledge, there is only a paucity of

research on incremental SimRank search. Regarding de-

terministic methods, Li et al. [12] proposed a pioneering

strategy that can incrementally retrieve changes to Sim-
Rank in response to link updates. Precisely, their cen-

tral idea is to factorize the backward transition matrix2

Q of the original graph into U ·Σ ·VT 3 via a singular

value decomposition (SVD) first, and then incremen-

tally estimate the updated matrices of U, Σ, VT for
link changes at the expense of exactness. Consequently,

updating all pairs of similarities entails O(r4n2) time

and O(r2n2) memory yet without guaranteed accuracy,

where r (≤ n) is the target rank of the low-rank SVD
approximation4, which seems not always negligibly small

in practice, as illustrated in the following example.

Example 1 Figure 1 depicts a citation graph G, a tiny

fraction of DBLP, where each node is a paper, and an

edge represents a reference from one paper to another.
Suppose G is updated by adding an edge (i, j), denoted

by ∆G (see the dash arrow). Using the damping factor

C = 0.8 5, we would like to compute SimRank scores

in the new graph G ∪∆G.

The results are compared in the table of Figure 1,

where Column ‘simLi et al.’ denotes the approximation of

SimRank scores returned by Li et al.’s Algorithm 3 [12],

and Column ‘simtrue’ denotes the “true” SimRank scores

returned by a batch algorithm [6] that runs in G∪∆G
from scratch. It can be noticed that for some node-pairs

2 In the notation of [12], the backward transition matrix Q
is denoted as W̃, which is the row-normalized transpose of
the adjacency matrix.
3 Throughout this article, we use XT (instead of X̃ in [12])

to denote the transpose of matrix X.
4 According to [12], using our notations, r ≤ rank(Σ+UT ·

∆Q ·V), where ∆Q is the changes to Q for link updates.
5 According to [9], C is empirically set around 0.6–0.8, in-

dicating the rate of decay as similarity flows across edges.

A Partition-Based Approach to Web Hyperlink Analysis 3

(not highlighted in gray), the similarities obtained by

Li et al. ’s incremental method are different from the

“true” SimRank scores even if the lossless SVD is used 6

during the process of updating U,Σ,VT . This suggests

that Li et al.’s incremental approach [12] is inherently
approximate. In fact, as will be rigorously explained

in Section 3, their incremental strategy would neglect

some useful eigen-information whenever rank(Q) < n.

We also notice that the target rank r for the SVD of
the matrix C 7 is not always negligibly smaller than n.

For example, in Column ‘simLi et al.’ of Figure 1, r is

chosen to be rank(C) = 9 to get a lossless SVD of C.

Although r = 9 is not negligibly smaller than n = 15,
the accuracy of ‘simLi et al.’ is still undesirable as com-

pared with ‘simtrue’, not to mention using r < 9. ⊓⊔

Example 1 implies that Li et al.’s incremental way [12]

is approximate and may produce high computational

cost since r is not always much smaller than n. Inspired
by this, this article proposes an efficient and accurate8

scheme for incrementally computing SimRank on link-

evolving graphs. Instead of incrementally retrieving the

changes to the SVD of Q for evaluating new similarities,

our method can cope with the dynamic nature of a real
network, by maximally reusing only a small fraction of

SimRanks in an old graph and dynamically retrieving

SimRank changes ∆S w.r.t. link updates. Moreover, as

graphs are often updated with small changes, not all
pairs of similarities need recomputing. For example, in

the table of Figure 1, many pairs of similarities (high-

lighted in gray) remain unchanged when the edge (i, j)

is added. To efficiently identify “affected areas”, we can

express ∆S as an aggregate of similarities with respect
to the pairs of incoming paths, and detect the changes

in these paths.

Besides, it is difficult to achieve high memory ef-

ficiency when all pairs of SimRanks are incrementally
updated. This is because conventional approaches typi-

cally evaluate all pairs of similarities at the same time,

and thus at least O(n2) memory is required for output.

The existing work of Li et al. [12] entails even O(r2n2)
memory to store the intermediate results of the Kro-

6 A rank-α SVD of the matrix X ∈ Rn×n is a factorization
of the form Xα = U ·Σ ·VT , where U,V ∈ Rn×α are column-
orthonormal matrices, and Σ ∈ Rα×α is a diagonal matrix, α
is called the target rank of the SVD, as specified by the user.
If α = rank(X), then Xα = X, and we call it the lossless SVD.
If α < rank(X), then ‖X−Xα‖2 gives the least square esti-
mate error, and we call it the low-rank SVD.
7 As defined in [12], r is the target rank for the SVD of

the auxiliary matrix C , Σ+UT ·∆Q ·V, where ∆Q is the
changes to Q for link updates.
8 Herein, the “accurate” algorithm means that its iterative

result will converge to the exact SimRank solution when the
number of iterations increases.

necker product of two n×r matrices, which may become

cost-inhibitive for large scale networks. Fortunately, we

notice that our characterization of ∆S exhibits an ele-

gant structure, which allows all pairs of SimRanks being

updated column by column. This enables a significant
reduction in memory usage from quadratic to linear in

the number of nodes even though all pairs of SimRanks

are incrementally updated.

1.1 Main Contributions

The main contributions of this article consist of the

following five ingredients:

– We first focus on unit edge update that does not
accompany new nodes insertion. By characterizing

the SimRank update matrix ∆S w.r.t. every link

update as a rank-one Sylvester matrix equation, we

devise a fast incremental SimRank algorithm, which

entails O(Kn2) time in the worst case to update n2

pairs of similarities for K iterations.

– To speed up the computation further, we also pro-

pose an effective pruning strategy that captures “af-

fected areas” of∆S to discard unnecessary retrieval,
without loss of accuracy. This reduces the time of

incremental SimRank to O(K(nd + |AFF|)), where

d is the average in-degree of the old graph, and

|AFF| (≤ n2) is the size of “affected areas” in ∆S,
and in practice, |AFF| ≪ n2.

– We also consider edge updates that accompany new

nodes insertion, and distinguish them into three cat-

egories, according to which end of the inserted edge
is a new node. For each case, we devise an efficient

incremental SimRank algorithm that can support

new nodes insertion and accurately update affected

SimRank scores.

– To achieve high memory efficiency, we next express

∆S as the sum of many rank-one tensor products,

and devise a novel partitioning technique that can

update all pairs of SimRanks in a column-by-column

style in O(dn) memory, without loss of exactness.

– We also investigate the batch updates of dynamical

SimRank computation. Instead of dealing with each

edge update one by one, we devise an efficient algo-

rithm that can handle a sequence of edge insertions
and deletions simultaneously, by merging “similar

sink edges” and minimizing unnecessary updates.

– We conduct extensive experiments on real and syn-

thetic datasets to demonstrate that our algorithm
(a) is consistently faster than the existing incremen-

tal methods from several times to over one order of

magnitude; (b) is faster than its batch counterparts

4 Weiren Yu et al.

especially when link updates are small; (c) entails

linear memory and scales well on large graphs even

if all pairs of SimRanks are computed incrementally;

(d) for batch updates, runs even faster than the re-

peated running of unit update algorithms.

This article is a substantial extension of our previous

work [21]. We have made the following major updates:

(1) In Section 6, we study three types of edge updates
that accompany new nodes insertion. This solidly ex-

tends [21] and Li et al. ’s incremental method [12] whose

edge updates disallow node changes. (2) In Section 7,

we propose a novel partitioning strategy that can sig-

nificantly reduce the memory from O(n2) [21] to O(dn)
space for incrementally updating all pairs of SimRanks,

with no compromise in running time and accuracy. (3)

In Section 8, we also investigate batch updates for dy-

namic SimRank computation, and devise an efficient al-
gorithm that can handle “similar sink edges” simultane-

ously and discard unnecessary unit updates further. (4)

In Section 9, we also conduct additional experiments on

real and synthetic datasets to verify the high memory

efficiency and fast computational time of our extension
methods. (5) In Section 10, we update the related work

section by incorporating some state-of-the-art SimRank

research that has popped up most recently.

1.2 Organization

The remainder of this article is structured as follows:

Section 2 recaps the SimRank background. Section 3 ex-
plains the limitation of Li et al.’s incremental way [12].

Section 4 presents our dynamical method to deal with

edge update that does not accompany nodes insertion.

Section 5 provides our pruning strategy to reduce the

running time further. Section 6 extends our method to
deal with three different types of edge updates that ac-

company nodes insertion. Section 7 reduces the memory

space. Section 8 considers batch updates for dynamical

SimRank computation. Section 9 demonstrates the ex-
perimental results. The related work is in Section 10,

followed by conclusions and future work in Section 11.

2 Background of SimRank

In this section, we give a broad overview of SimRank.

Intuitively, the central theme behind SimRank is that

“two nodes are considered as similar if their incoming

neighbors are themselves similar”. Based on this idea,
there have emerged two widely-used SimRank models:

(1) Li et al. ’s model (e.g., [6, 8, 12, 23]) and (2) Jeh

and Widom’s model (e.g., [4,9,10,14,20]). Throughout

this article, our focus is on Li et al.’s SimRank model

since its semantics have proved in recent work [23] more

meaningful than Jeh and Widom’s original model.

(Please refer to Remark 1 for the detailed reasons.)

2.1 Li et al.’s SimRank model

Given a directed graph G = (V,E) with a node set
V and an edge set E, let Q be its backward transition

matrix (that is, the transpose of the column-normalized

adjacency matrix), whose entry [Q]i,j = 1/in-degree(i)

if there is an edge from j to i, and 0 otherwise. Then,

Li et al.’s SimRank matrix, denoted by S, is defined as

S = C · (Q · S ·QT) + (1 − C) · In, (1)

where C ∈ (0, 1) is a damping factor, which is generally

taken to be 0.6–0.8, and In is an n× n identity matrix

(n = |V |). The notation (⋆)
T
is the matrix transpose.

2.2 Jeh and Widom’s SimRank model

Jeh and Widom’s SimRank model, in matrix notations,

can be formulated as

S′ = max{C · (Q · S′ ·QT), In}, (2)

where S′ is called Jeh and Widom’s SimRank similar-

ity matrix, and max{X,Y} is the matrix element-wise

maximum, that is, [max{X,Y}]i,j := max{[X]i,j , [Y]i,j}.

Remark 1 The recent work by Kusumoto et al. [10] has

showed that S and S′ do not produce the same results,

implying that it is ill-advised to use these two models

interchangeably. Most recently, Yu and McCann [23]
have showed the subtle difference of the two SimRank

models from a semantic perspective further, and justi-

fied Li et al.’s SimRank model to be more semantically

meaningful than Jeh and Widom’s model in that (a)
S can capture more pairs of self-intersecting paths that

are neglected by S′, and (b) the diagonal entries of S not

only can guarantee that each node is maximally similar

to itself, but also distinguish the relative importance of

each node, unlike S′ whose diagonals are always 1s.

3 A Fly in the Ointment in [12]

Despite the rich semantics of Li et al.’s SimRank model,

the existing incremental approach by Li et al. [12] for
updating SimRank does not always obtain the correct

solution S to Eq.(1). In this section, we rigorously ex-

plain the reason — their incremental method may lose

A Partition-Based Approach to Web Hyperlink Analysis 5

Q

=

U

n

n

· ·

Σ VT

nr r

r r

n

U

r

n 6=

In

n

n

1
1

1
1

1
1

·

U

n

UT

r

n

U

r

n

=

Ir

1
1

1
·

U

n

UT

r

n r

r

U is not row-orthonormal. U is column-orthonormal.

Fig. 2: U ·UT 6= In whenever rank(Q) = r < n

some eigen-information even if a lossless SVD is utilized
for SimRank computation.

Let us first revisit the main idea of Li et al.’s incre-

mental method [12]. Briefly, [12] characterizes SimRank

matrix S in Eq.(1) in terms of three matrices U,Σ,V,
where U,Σ,V are derived by the SVD of Q, i.e.,

Q = U ·Σ ·VT . (3)

Then, when links are changed, [12] incrementally com-

putes the new SimRank matrix S̃ by updating the old
matrices U,Σ,V respectively as

Ũ = U ·UC, Σ̃ = ΣC, Ṽ = V ·VC,
9 (4)

where UC,ΣC,VC are derived from the SVD of the

auxiliary matrix C , Σ+UT ·∆Q ·V, i.e.,

C = UC ·ΣC ·VC
T , (5)

and∆Q is the changes toQ in response to link updates.

However, the main problem is that the derivation of
Eq.(4) rests on the assumption that

U ·UT = V ·VT = In. (6)

Unfortunately, Eq.(6) does not hold (unless Q is a full-

rank matrix, i.e., rank(Q) = n) because in the case of
rank(Q) < n, even a “perfect” (lossless) SVD of Q via

Eq.(3) would produce n×α rectangular matricesU and

V with α = rank(Q) < n. Thus,

rank(U ·UT) = α < n = rank(In),

which implies that U ·UT 6= In. Similarly, V ·VT 6= In
when rank(Q) < n. Hence, Eq.(6) is not always true,

as visualized in Fig. 2.

Example 2 Consider a graph with the matrixQ = [0 1
0 0],

and its lossless SVD:

Q = U ·Σ ·VT with U = [10] , Σ = [1], V = [01] .

One can readily verify that

U ·UT = [10] · [1 0] = [1 0
0 0] 6= [1 0

0 1] = In (n = 2),

whereas

UT ·U = [1 0] · [10] = 1 = Iα
10 (α = rank(Q) = 1).

Thus, Eq.(6) does not hold when Q is not full-rank. ⊓⊔

To clarify why Eq.(6) gets involved in the derivation

of Eq.(4), let us briefly recall from [12] the four steps of

obtaining Eq.(4), and the problem lies in the last step.

Step 1. Initially, when links are changed, the old
Q is updated to new Q̃ = Q + ∆Q. By replacing Q

with Eq.(3), it follows that

Q̃ = U ·Σ ·VT +∆Q. (7)

Step 2. Premultiply by UT and postmultiply by

V on both sides of Eq.(7), and then apply the property

UT ·U = VT ·V = Iα. It follows that

UT · Q̃ ·V = Σ+UT ·∆Q ·V. (8)

Step 3. Let C be the right-hand side of Eq.(8).

Applying Eq.(5) to Eq.(8) yields

UT · Q̃ ·V = UC ·ΣC ·VC
T . (9)

Step 4. Li et al. [12] attempted to premultiply by

U and postmultiply by VT on both sides of Eq.(9) first,

and then rested on the assumption of Eq.(6) to obtain

U ·UT
︸ ︷︷ ︸

?= In

·Q̃ ·V ·VT
︸ ︷︷ ︸

?= In

= (U ·UC)
︸ ︷︷ ︸

,Ũ

· ΣC
︸︷︷︸

,Σ̃

· (VC ·V)T
︸ ︷︷ ︸

,ṼT

, (10)

which is the result of Eq.(4).

However, the problem lies in Step 4. As mentioned
before, Eq.(6) does not hold when rank(Q) < n, which

means that Q̃ 6= Ũ · Σ̃ · ṼT in Eq.(10). Consequently,

updating the old U,Σ,V via Eq.(4) may produce an

error (up to ‖In−U·U
T ‖2 = 1, which is not practically

small) for incrementally “approximating” S.

Example 3 Recall the old Q and its SVD in Example 2.

Suppose there is a new edge insertion, associated with

∆Q = [0 0
1 0]. [12] first computes auxiliary matrix C as

C , Σ+UT ·∆Q ·V = [1] + [1 0] · [0 0
1 0] · [

0
1] = [1].

Then, the matrix C is decomposed via Eq.(5) into

C = UC ·ΣC ·VC
T with UC = ΣC = VC = [1].

Finally, [12] updates the new SVD of Q̃ via Eq.(4) as

Ũ = U·UC = [10] , Σ̃ = ΣC = [1], Ṽ = V·VC = [01] .

6 Weiren Yu et al.

Symbol Description

n the number of nodes in old graph G
di in-degree of node i in old graph G
d average in-degree of graph G
C damping factor (0 < C < 1)
k iteration number
ei n × 1 unit vector with a 1 in the i-th entry

and 0s elsewhere
Q/Q̃ old/new (backward) transition matrix
S/S̃ old/new SimRank matrix
In n× n identity matrix
XT transpose of matrix X
[X]i,⋆ i-th row of matrix X

[X]⋆,j j-th column of matrix X

[X]i,j (i, j)-th entry of matrix X

Table 1: Symbol and Description

However, one can readily verify that

Ũ · Σ̃ · ṼT = [0 1
0 0] 6= [0 1

1 0] = Q+∆Q = Q̃.

In comparison, a “true” SVD of Q̃ should be

Q̃ = Û · Σ̂ · V̂T with Û = [0 1
1 0] , Σ̂ = V̂ = [1 0

0 1] .

Besides, the approximation error is not small in practice

‖Q̃− Ũ · Σ̃ · ṼT ‖2 = ‖ [0 1
1 0]− [0 1

0 0] ‖2 = 1. ⊓⊔

Our analysis suggests that, only when (i) Q is full-rank,

and (ii) the SVD of Q is lossless (n = rank(Q) = α),

Li et al.’s incremental way [12] can produce the exact

S, but the time complexity of [12], O(r4n2), would be-
come O(n6), which is prohibitively expensive. In prac-

tice, as evidenced by our statistical experiments in Fig.8

on Stanford Large Network Datasets (SNAP), most real

graphs are not full-rank, highlighting our need to devise

an efficient method for dynamic SimRank computation.

4 Edge Update without Nodes Insertions

In this section, we consider edge update that does not

accompany new nodes insertions, i.e., the insertion11 of

new edge (i, j) into G = (V,E) with i ∈ V and j ∈ V .

In this case, the new SimRank matrix S̃ and the old
one S are of the same size. As such, it makes sense to

denote the SimRank change ∆S as S̃− S. 12

Table 1 lists the notations often used in this article.
Below we first present the big picture of our main idea,

and then get down to rigorous justifications and proofs.

11 Due to many commonalities of “insertion” and “deletion”,
we will mainly focus on “insertion” here, and briefly summa-
rize “deletion” in Subsection 4.4.
12 As will be seen in Section 6, the inserted edge (i, j) that
accompany nodes insertion cannot keep the same size of the
new S̃ and old S. Thus, S̃− S makes no sense in such cases.

4.1 The main idea

For each edge (i, j) insertion, we can show that ∆Q is
a rank-one matrix, i.e., there exist two column vectors

u,v ∈ R
n×1 such that ∆Q ∈ R

n×n can be decomposed

into the outer product13 of u and v as follows:

∆Q = u · vT .14 (11)

Based on Eq.(11), we then have an opportunity to

efficiently compute ∆S, by characterizing it as

∆S = M+MT , (12)

where the auxiliary matrix M ∈ R
n×n satisfies the fol-

lowing rank-one Sylvester equation:

M = C · Q̃ ·M · Q̃T + C · u ·wT . (13)

Here, u,w are two obtainable column vectors: u can be

derived from Eq.(11), and w can be described by the

old Q and S (we will provide their exact expressions
later after some discussions); and Q̃ = Q+∆Q.

Thus, computing ∆S boils down to solving M in

Eq.(13). The main advantage of solving M via Eq.(13),

as compared to directly computing the new scores S̃ via
SimRank formula

S̃ = C · Q̃ · S̃ · Q̃T + (1− C) · In, (14)

is the high computational efficiency. More specifically,

solving S̃ via Eq.(14) needs expensive matrix-matrix

multiplications, whereas solvingM via Eq.(13) involves
only matrix-vector and vector-vector multiplications,

which is a substantial improvement achieved by our

observation that (C · uwT) ∈ R
n×n in Eq.(13) is a

rank-one matrix, as opposed to the (full) rank-n ma-
trix (1−C) ·In in Eq.(14). To further elaborate on this,

we can readily convert the recursive forms of Eqs.(13)

and (14), respectively, into the series forms: 15

M =
∑∞

k=0
Ck+1 · Q̃k · u ·wT · (Q̃T)

k
, (15)

S̃ = (1− C) ·
∑∞

k=0
Ck · Q̃k · In · (Q̃

T)
k
. (16)

To compute the sums in Eq.(15) for M, a conven-
tional way is to memoize M0 ← C · u ·wT first (where

the intermediate result M0 is an n × n matrix), and

then iterate as

Mk+1 ←M0 + C · Q̃ ·Mk · Q̃
T , (k = 0, 1, 2, · · ·)

13 The outer product of the vectors x,y ∈ Rn×1 is an n × n
rank-1 matrix x ·yT , in contrast with the inner product xT ·y,
which is a scalar.
15 One can readily verify that if X =

∑∞
k=0 Ak ·C ·Bk is

a convergent matrix series, it is the solution of the Sylvester
equation X = A ·X ·B+C.

A Partition-Based Approach to Web Hyperlink Analysis 7

which involves expensive matrix-matrix multiplications

(e.g., Q̃ ·Mk). In contrast, our trick takes advantage of

the rank-one structure of u·wT to compute the sums in

Eq.(15) for M, by converting the conventional matrix-

matrix multiplications Q̃ · (uwT) ·Q̃T into only matrix-
vector and vector-vector multiplications (Q̃u) · (Q̃w)T .

To be specific, we leverage two auxiliary vectors ξk,ηk,

and iteratively compute Eq.(15) as follows:

initialize ξ0 ← C · u, η0 ← w, M0 ← C · u ·wT

for k = 0, 1, 2, · · ·

ξk+1 ← C · Q̃ · ξk, ηk+1 ← Q̃ · ηk

Mk+1 ← ξk+1 · η
T
k+1 +Mk

so thatmatrix-matrix multiplications are safely avoided.

Remark 2 It is worth mentioning that our above trick

is solely suitable for efficiently computingM in Eq.(15),
but not applicable to accelerating S̃ computation in

Eq.(16). This is because In is a (full) rank-nmatrix that

cannot be decomposed into the outer product of two

vectors. Thus, our trick is particularly tailored for im-
proving the incremental computation of∆S via Eq.(13),

rather than the batch computation of S̃ via Eq.(14).

4.2 Describing u,v,w in Eqs.(11) and (13)

To compute ∆S, we are going to address two problems:

One is to obtain the vectors u,v in Eq.(11) from the

rank-one decomposition of ∆Q. The other task is the

description of the vectorw in Eq.(13) in terms of the old
matrices Q and S, in order to guarantee that Eq.(13)

is a rank-one Sylvester equation.

To obtain u and v in Eq.(11) with fairly cheap cost,
we have the following theorem.

Theorem 1 Given an old digraph G = (V,E), if there

is a new edge (i, j) with i ∈ V and j ∈ V to be added to

G, then the change to Q is an n × n rank-one matrix,

i.e., ∆Q = u · vT , where

u =

{
ej (dj = 0)
1

dj+1
ej (dj > 0) , v =

{
ei (dj = 0)

ei − [Q]Tj,⋆ (dj > 0)
(17)

Proof We show this by considering the two cases below:

(i) If dj = 0, then [Q]j,⋆ = 0, and the inserted edge

(i, j) will update [Q]j,i from 0 to 1, i.e., ∆Q = eje
T
i .

(ii) If dj > 0, then all nonzeros in old [Q]j,⋆ are 1
dj
.

The inserted edge (i, j) will update [Q]j,⋆ via 2 steps:

first, all nonzeros in [Q]j,⋆ are changed from 1
dj

to 1
dj+1 ;

then, the entry [Q]j,i is changed from 0 to 1
dj+1 .

[Q̃]j,⋆ =
dj

dj+1 [Q]j,⋆+
1

dj+1e
T
i = [Q]j,⋆+

1
dj+1 (e

T
i −[Q]j,⋆)

Since only the j-th row of Q is affected, it follows that

Q̃−Q = 1
dj+1ej
︸ ︷︷ ︸

:=u

(eTi − [Q]j,⋆)
︸ ︷︷ ︸

:=vT

= u · vT

Finally, combining (i) and (ii), Eq.(17) holds. ⊓⊔

Example 4 Recall the digraph G in Fig. 1, and the edge

(i, j) to be inserted into G. Notice that, in the old G,

dj = 2 > 0 and

[Q]j,⋆ =
[

(h) (k)

0 · · · 0 1
2 0 0 1

2 0 · · · 0
]
∈ R

1×15.

According to Theorem 1, the change ∆Q is a 15 × 15

rank-one matrix, and can be decomposed as u ·vT with

u = 1
dj+1ej =

1
3ej =

[
(j)

0 · · · 0 1
3 0 · · · 0

]
T ∈ R

15×1,

v = ei − [Q]
T
j,⋆ =

[
(h) (i) (j) (k)

0 · · · 0 − 1
2 1 0 − 1

2 0 · · · 0
]
T ∈ R

15×1. ⊓⊔

Theorem 1 suggests that the change ∆Q is an n×n

rank-one matrix, which can be obtain in only constant

time from dj and [Q]
T
j,⋆. In light of this, we next describe

w in Eq.(13) in terms of the old Q and S such that
Eq.(13) is a rank-one Sylvester equation.

Theorem 2 Suppose there is a new edge (i, j) with i ∈

V and j ∈ V to be inserted to G. Let u and v be the
rank-one decomposition of ∆Q via Theorem 1. Then,

(i) there exists a vector w = y + λ
2u with

y = Q · z, λ = vT · z, z = S · v (18)

such that Eq.(13) is the rank-one Sylvester equation.

(ii) Utilizing the solution M to Eq.(13), the Sim-

Rank update matrix ∆S can be represented by Eq.(12).

Proof We show this by following the two steps:

(a) We first formulate ∆S in a recursive style. To

describe ∆S in terms of the old Q and S, we subtract

Eq.(1) from Eq.(14), and apply ∆S = S̃− S, yielding

∆S = C · Q̃ · S · Q̃T + C · Q̃ ·∆S · Q̃T − C ·Q · S ·QT . (19)

By Theorem 1, there are two vectors u and v such that

Q̃ = Q+∆Q = Q+ u · vT . (20)

Then, we plug Eq.(20) into the term C · Q̃ · S · Q̃T of

Eq.(19), and simplify the result into

∆S = C · Q̃ ·∆S · Q̃T + C ·T (21)

with T = u(QSv)
T
+ (QSv)uT + (vTSv)uuT . (22)

We can verify that T is a symmetric matrix (T = TT).

Moreover, we note that T is the sum of two rank-one
matrices. This can be verified by letting

z , S · v, y , Q · z, λ , vT · z.

8 Weiren Yu et al.

Then, using the auxiliary vectors z,y and the scalar λ,

we can simplify Eq.(22) into

T = u ·wT +w · uT , with w = y + λ
2u. (23)

(b) We next convert the recursive form of ∆S into

the series form. One can readily verify that

X = A ·X ·B+C ⇔ X =
∑∞

k=0
Ak ·C ·Bk (24)

Thus, based on Eq.(24), the recursive definition of ∆S

in Eq.(21) naturally leads itself to the series form:

∆S =
∑∞

k=0
Ck+1 · Q̃k ·T · (Q̃T)

k
.

Combining this with Eq.(23) yields

∆S =
∑∞

k=0
Ck+1 · Q̃k ·

(
u ·wT +w · uT

)
· (Q̃T)

k

= M+MT with M being defined in Eq.(15).

By Eq.(24), the series form of M in Eq.(15) satisfies the

rank-one Sylvester recursive form of Eq.(13). ⊓⊔

Theorem 2 provides an elegant expression of w in

Eq.(13). To be precise, given Q and S in the old graph

G, and an edge (i, j) inserted to G, one can find u and
v via Theorem 1 first, and then resort to Theorem 2

to compute w from u,v,Q,S. Due to the existence of

the vector w, it can be guaranteed that the Sylvester

equation (13) is rank-one. Henceforth, our aforemen-
tioned trick can be employed to iteratively compute M

in Eq.(15), needing no matrix-matrix multiplications.

4.3 Characterizing ∆S

Obtaining w from Theorem 2 is intended to speed up

the computation of∆S. Indeed, when edge (i, j)i∈V,j∈V

is added, the whole process of computing∆S in Eq.(12),

given Q and S, needs no matrix-matrix multiplications.
Precisely, the computation of∆S consists of two phases:

(i) Given Q and S, we compute w from Theorems 1

and 2. This phase includes only the matrix-vector mul-

tiplications (e.g., Qz,Sv), the inner product of vec-
tors (e.g., vT z), and the vector scaling and additions,

i.e., SAXPY (e.g., y + λ
2u). (ii) Given w, we compute

M via Eq.(15). In this phase, our novel iterative model

for Eq.(15) can circumvent the matrix-matrix multipli-

cations. Thus, taking (i) and (ii) together, it suffices to
use only the matrix-vector and vector-vector operations

in the whole process of ∆S computation.

Leveraging Theorems 1 and 2, we next characterize

the SimRank change ∆S.

Theorem 3 If there is a new edge (i, j) with i ∈ V and

j ∈ V to be inserted to G, then the SimRank change ∆S

can be characterized as

∆S = M+MT with

M =
∑∞

k=0
Ck+1 · Q̃k · ej · γ

T · (Q̃T)
k
, (25)

where the auxiliary vector γ is obtained as follows:

(i) when dj = 0,

γ = Q · [S]⋆,i +
1
2 [S]i,i · ej (26)

(ii) when dj > 0,

γ = 1
(dj+1)

(

Q[S]⋆,i −
1
C [S]⋆,j + (λ

2(dj+1) +
1
C − 1)ej

)

(27)

and the scalar λ can be derived from

λ = [S]i,i +
1
C · [S]j,j − 2 · [Q]j,⋆ · [S]⋆,i −

1
C + 1. (28)

Proof We divide the proof into the following two cases:
(i) When dj = 0, according to Eq.(17) in Theorem 1,

v = ei, u = ej. Plugging them into Eq.(18) gets

z = [S]⋆,i, y = Q · [S]⋆,i, λ = [S]i,i.

Thus, applying w = y + λ
2u in Theorem 2, we have

w = Q · [S]⋆,i +
1
2 [S]i,i · ej .

Coupling this with Eq.(15), u = ej, and Theorem 2

completes the proof of the case dj = 0 for Eq.(26).

(ii) When dj > 0, Eq.(17) in Theorem 1 implies that

v = ei − [Q]Tj,⋆, u = 1
dj+1 · ej . (29)

Substituting these back into Eq.(18) yields

z = [S]⋆,i − S · [Q]Tj,⋆, y = Q · [S]⋆,i −Q · S · [Q]Tj,⋆,

λ = [S]i,i − 2 · [Q]j,⋆ · [S]⋆,i + [Q]j,⋆ · S · [Q]Tj,⋆.

To simplify Q ·S · [Q]Tj,⋆ in y, and [Q]j,⋆ ·S · [Q]Tj,⋆ in λ,

we postmultiply both sides of Eq.(1) by ej to obtain

Q · S · [Q]Tj,⋆ = 1
C · ([S]⋆,j − (1− C) · ej). (30)

We also premultiply both sides of Eq.(30) by eTj to get

[Q]j,⋆ · S · [Q]Tj,⋆ = 1
C · ([S]j,j − 1) + 1. (31)

Plugging Eqs.(30) and (31) into y and λ, respectively,

and then putting y and λ into w = y + λ
2u produce

w = Q · [S]⋆,i −
1
C · [S]⋆,j + (1

C + λ
2(dj+1) − 1) · ej ,

where λ = [S]i,i +
1
C · [S]j,j − 2 · [Q]j,⋆ · [S]⋆,i −

1
C + 1.

Combining this with Eqs.(15) and (29) shows the
case dj > 0 for Eq.(27).

Finally, taking (i) and (ii) together with Theorem 2

completes the entire proof. ⊓⊔

A Partition-Based Approach to Web Hyperlink Analysis 9

Theorem 3 provides an efficient method to compute

the incremental SimRank matrix ∆S, by utilizing the

previous information of Q and S, as opposed to [12]

that needs to maintain the incremental SVD.

To achieve even higher efficiency for computing ∆S
by Theorem 3, two extra tricks are worth mentioning:

(i) Note that, by viewing the matrix Q as a stack of row

vectors, the j-th row of the term (Q · [S]⋆,i) in Eqs.(26)

and (27) is the inner product [Q]j,⋆ · [S]⋆,i, which is the
term in Eq.(28). Thus, the resulting [Q · [S]⋆,i]j,⋆, once

computed, can be reused to compute [Q]j,⋆ · [S]⋆,i in λ.
(ii) As suggested earlier, computing the matrix series

for M needs no matrix-matrix multiplications, but in-

volves the matrix-vector multiplications (e.g., ηk+1 ←

Q̃ ·ηk). Since Q̃ = Q+u ·vT via Theorem 1, we notice

that Q̃ · ηk can be computed more efficiently, with no
need to memoize Q̃ in extra memory space, as follows:

Q̃ · ηk = Q · ηk + (vT · ηk) · u.

4.4 Deleting an edge (i, j)i∈V, j∈V from G = (V,E)

For an edge deletion, we next propose a Theorem 3-like

technique that can efficiently update SimRanks.

Theorem 4 When an edge (i, j)i∈V, j∈V is deleted from

G = (V,E), the changes to Q is a rank-one matrix,

which can be described as ∆Q = u · vT , where

u =

{

ej (dj = 1)
1

dj−1ej (dj > 1)
, v =

{

−ei (dj = 1)

[Q]Tj,⋆ − ei (dj > 1)

The changes ∆S to SimRank can be characterized as

∆S = M+MT with M =
∑∞

k=0
Ck+1Q̃kejγ

T (Q̃T)
k
,

where the auxiliary vector γ :=
{
−Q · [S]⋆,i +

1
2 [S]i,i · ej (dj = 1)

1
(dj−1)

(
1
C · [S]⋆,j −Q · [S]⋆,i + (λ

2(dj−1) −
1
C + 1) · ej

)

(dj > 1)

and λ := [S]i,i +
1
C · [S]j,j − 2 · [Q]j,⋆ · [S]⋆,i−

1
C +1. ⊓⊔

(The proof is similar to those of Theorems 1–3, and

is omitted due to space limitations.)

4.5 Algorithm

We next present an efficient incremental SimRank al-

gorithm, denoted as Inc-uSR, that supports the edge

insertion without accompanying new nodes insertion.

Given an old graph G = (V,E), a new edge (i, j)
with i ∈ V and j ∈ V to be inserted to G, the old

similarities S in G, and the damping factor C, Inc-uSR

incrementally computes S̃ in G ∪ {(i, j)} as follows:

Algorithm 1: Inc-uSR (G, (i, j),S,K,C)

Input : a directed graph G = (V,E),
a new edge (i, j)i∈V, j∈V inserted to G,
the old similarities S in G,
the number of iterations K,
the damping factor C.

Output: the new similarities S̃ in G ∪ {(i, j)}.
1 initialize the transition matrix Q in G ;
2 dj := in-degree of node j in G ;
3 memoize w := Q · [S]⋆,i ;

4 compute λ := [S]i,i +
1
C

· [S]j,j − 2 · [w]j − 1
C

+ 1 ;

5 if dj = 0 then

6 u := ej , v := ei, γ := w + 1
2
[S]i,i · ej ;

7 else

8 u := 1
dj+1

ej , v := ei − [Q]Tj,⋆ ;

9 γ := 1
(dj+1)

(
w − 1

C
[S]⋆,j + (λ

2(dj+1)
+ 1

C
− 1)ej

)
;

10 initialize ξ0 := C · ej , η0 := γ, M0 := C · ej · γT ;
11 for k = 0, 1, · · · ,K − 1 do
12 ξk+1 := C ·Q · ξk + C · (vT · ξk) · u ;
13 ηk+1 := Q · ηk + (vT · ηk) · u ;
14 Mk+1 := ξk+1 · ηT

k+1 +Mk ;

15 return S̃ := S+MK +MT
K ;

First, it initializes the transition matrix Q and in-

degree dj of node j in G (lines 1–2). Using Q and S, it

precomputes the auxiliary vector w and scalar λ (lines
3–4). Once computed, both w and λ are memoized for

precomputing (i) the vectors u and v for a rank-one

factorization of ∆Q, and (ii) the initial vector γ for

subsequent Mk iterations (lines 5–9). Then, the algo-
rithm maintains two auxiliary vectors ξk and ηk to iter-

atively compute matrix Mk (lines 10–14). The process

continues until the number of iterations reaches a given

K. Finally, the new S̃ is obtained by MK
16 (line 15).

Example 5 Consider the old digraph G and S in Fig. 1.

When the new edge (i, j) is inserted to G, Inc-uSR com-

putes the new S̃ as follows, whose results are partially

depicted in Column ‘simtrue’ of Fig. 1.
Given the following information from the old S: 17

[S]⋆,i =
[

(f) (g) (h) (i) (j)

0, · · · , 0, 0.246, 0, 0, 0.590, 0.310, 0, · · · , 0
]
T ∈ R

15×1,

[S]⋆,j =
[

(f) (g) (h) (i) (j)

0, · · · , 0, 0.246, 0, 0, 0.310, 0.510, 0, · · · , 0
]
T ∈ R

15×1,

Inc-uSR first computes w and λ via lines 3–4:

w =
[

(a) (b)

0.104, 0.139, 0, · · · , 0
]
T ∈ R

15×1,

λ = 0.590 + 1
0.8 × 0.510− 2× 0− 1

0.8 + 1 = 0.978.

Since dj = 2, the vectors u and v for the rank-one
decomposition of∆Q can be computed via line 8. Their

results are depicted in Example 4.

16 We can show ‖MK −M‖max ≤ CK+1 with M in Eq.(25).
17 Due to space limitations, only the i-th and j-th columns
of S are displayed here, which is sufficient to compute S̃.

10 Weiren Yu et al.

Next, γ can be obtained from w and λ via line 9:

γ = 1
(2+1)

(
w − 1

0.8 [S]⋆,j + (λ
2×(2+1) +

1
0.8 − 1)ej

)

=
[

(a) (b) (f) (i) (j)

0.035, 0.046, 0, 0, 0, −0.086 0, 0, −0.129, −0.075, 0, · · · , 0
]
T ∈ R

15×1

In light of γ, Mk can be computed via lines 10–14.

After K = 10 iterations, MK can be derived as follows:

(a) (b) (c) (d) (e) (f) · · · (i) (j) (k) · · · (o)

(a) −0.005 −0.009 0 0.009 −0.009

(b) −0.004 −0.006 0 0.006 0 −0.007 0
(c) 0 0 0 0 0

(d) −0.002 −0.002 0 −0.005 0
... 0 0 0 0
(i)

(j) 0.028 0.037 0 0 −0.068 −0.104 −0.060
... 0 0 0 0
(o)

Finally, using MK and the old S, the new S̃ is ob-

tained via line 15, as partly shown in Column ‘simtrue’

of Fig. 1. ⊓⊔

Correctness. Inc-uSR can correctly compute new Sim-

Ranks for edge update that does not accompany new

nodes insertion, as verified by Theorems 1–3.
Complexity. The total complexity of Inc-uSR is bounded

by O(Kn2) time and O(n2) memory18in the worst case

for updating all similarities of n2 node-pairs. Precisely,

Inc-uSR runs in two phases: preprocessing (lines 1–9),

and incremental iterations (lines 10–15):

(a) For the preprocessing, it requires O(m) time in
total (m is the number of edges in the old G), which

is dominated by computing w (lines 3), involving the

matrix-vector multiplication Q · [S]⋆,i. The time for

computing vectors u,v,γ is bounded by O(n), which in-
cludes only vector scaling and additions, i.e., SAXPY.

(b) For the incremental iterative phase, computing

ξk+1 and ηk+1 needs O(m + n) time for each iteration

(lines 12–13). Computing Mk+1 entails O(n2) time for

performing one outer product of two vectors and one

matrix addition (lines 14). Thus, the cost of this phase
is O(Kn2) time for K iterations.

Collecting (a) and (b), all n2 node-pair similarities

can be incrementally computed in O(Kn2) total time,

as opposed to the O(r4n2) time of its counterpart [12]

via incremental SVD.

5 Pruning Unnecessary Node-Pairs in ∆S

After the SimRank update matrix ∆S has been char-

acterized as a rank-one Sylvester equation, the pruning
techniques in this section can further skip node-pairs

with unchanged SimRanks in ∆S (“unaffected areas”),

to avoid unnecessary recomputation.

18 In the next sections, we shall substantially reduce its time
and memory complexity further.

In practice, we observe that when link updates are

small, affected areas in similarity updates ∆S are often

small as well. As demonstrated in Example 5, many

entries in matrix MK are 0s, implying that ∆S (=

MK + MT
K) is a sparse matrix. However, it is a big

challenge to identify such “affected areas” in ∆S in

response to link updates. To address this problem, we

first introduce a nice property of the adjacency matrix:

Lemma 1 Let A be an adjacency matrix. Then [Ak]i,j
counts the number of length-k paths from node i to j.

For example, [A4]i,j counts the number of paths ρ :
i→ ◦ → ◦ → ◦ → j in G, with ◦ denoting any node.

Lemma 1 can be extended to count the number of

“specific paths” whose edges are not necessarily in the

same direction. For example, we can use [AATAAT]i,j
to count the paths ρ : i→ ◦ ← ◦ → ◦ ← j in G, where

A (resp. AT) appears at the positions 1,3 (resp. 2,4),

corresponding to the positions of → (resp. ←) in ρ.

As Q is the row-normalized matrix of AT , we can

prove that [Qk · (QT)
k
]i,j = 0 ⇔ [(AT)

k
·Ak]i,j = 0.

The following corollary is immediate.

Corollary 1 Given k = 0, 1, · · · , the entry [Qk · (QT)
k
]i,j

counts the weights of the specific paths whose left k edges

in “←” direction and right k edges in “→” direction:

i← ◦ ← · · · ←
︸ ︷︷ ︸

length k

•→ · · · → ◦ → j
︸ ︷︷ ︸

length k

. (32)

Definition 1 We call the paths in Eq.(32) the sym-
metric in-link paths of length 2k for node-pair (i, j).

By virtue of Eq.(24), the recursive form of SimRank

Eq.(1) naturally leads itself to the following series form:

[S]a,b = (1− C) ·
∑∞

k=0
Ck · [Qk · (QT)

k
]a,b. (33)

Capitalizing on Corollary 1, Eq.(33) provides a rein-

terpretation of SimRank: [S]a,b is the weighted sum of
all in-link paths of length 2k (k = 0, 1, 2, · · ·) for node-

pair (a, b). The weight Ck in Eq.(33) is to reduce the

contributions of in-link paths with long lengths relative

to those with short ones. The factor (1 − C) aims at
normalizing [S]a,b into [0, 1] since

∥
∥
∑∞

k=0
Ck ·Qk · (QT)

k∥
∥

max
≤

∑∞

k=0
Ck ≤ 1

1−C .

5.1 Affected Areas in ∆S

In light of our interpretation for S via Eq.(33), we next

reinterpret the series M in Theorem 3, aiming to iden-

tify “affected areas” in ∆S. Due to space limitations,

A Partition-Based Approach to Web Hyperlink Analysis 11

we mainly focus on the edge insertion case of dj > 0.

Other cases have the similar results.

By substituting Eq.(27) back into Eq.(25), we can

readily split the series form of M into three parts:

[M]a,b =
1

dj+1

(
∑∞

k=0
Ck+1 · [Q̃k]a,j [S]i,⋆Q

T · [(Q̃T)
k
]⋆,b

︸ ︷︷ ︸
Part 1

−

−
∑∞

k=0
Ck[Q̃k]a,j [S]j,⋆[(Q̃

T)
k
]⋆,b

︸ ︷︷ ︸
Part 2

+

+µ
∑∞

k=0
Ck+1[Q̃k]a,j [(Q̃

T)
k
]j,b

︸ ︷︷ ︸
Part 3

)

with the scalar µ := λ
2(dj+1) +

1
C − 1.

By Lemma 1 and Corollary 1, when edge (i, j) is

inserted and dj > 0, Part 1 of [M]a,b tallies the weighted
sum of the following new paths for node-pair (a, b):

[Q̃k]
a,j

︷ ︸︸ ︷

a← ◦ · · · ◦ ← j
︸ ︷︷ ︸

length k

⇐

[S]
i,⋆

︷ ︸︸ ︷

i← ◦ · · · ◦ ← • → ◦ · · · ◦ → ⋆
︸ ︷︷ ︸

all symmetric in-link paths for node-pair (i,⋆)

QT

︷︸︸︷
→

[(Q̃T)
k
]
N,b

︷ ︸︸ ︷

N→ · · · ◦ → b
︸ ︷︷ ︸

length k

(34)

Such paths are the concatenation of four types of

sub-paths (as depicted above) associated with four ma-

trices, respectively, [Q̃k]a,j, [S]i,⋆,Q
T , [(Q̃T)

k
]N,b, plus

the inserted edge j ⇐ i. When such entire concatenated

paths exist in the new graph, they should be accommo-

dated for assessing the new SimRank [S̃]a,b in response

to the edge insertion (i, j) because our reinterpretation
of SimRank indicates that SimRank counts all the sym-

metric in-link paths, and the entire concatenated paths

can prove to be symmetric in-link paths.

Likewise, Parts 2 and 3 of [M]a,b, respectively, tally

the weighted sum of the following paths for pair (a, b):

[Q̃k]
a,j

︷ ︸︸ ︷
a← ◦ · · · ◦ ←
︸ ︷︷ ︸

length k

j

[S]
j,⋆

︷ ︸︸ ︷
← ◦ · · · ◦ ← • → ◦ · · · ◦ →
︸ ︷︷ ︸

all symmetric in-link paths for (j,⋆)

⋆

[(Q̃T)
k
]
⋆,b

︷ ︸︸ ︷

→ · · · ◦ → b
︸ ︷︷ ︸

length k

(35)

[Q̃k]a,j
︷ ︸︸ ︷
a← ◦ · · · ◦ ←
︸ ︷︷ ︸

length k

j

[(Q̃T)
k
]
j,b

︷ ︸︸ ︷

→ ◦ · · · ◦ → b
︸ ︷︷ ︸

length k

(36)

Indeed, when edge (i, j) is inserted, only these three

kinds of paths have extra contributions forM (therefore
for ∆S). As incremental updates in SimRank merely

tally these paths, node-pairs without having such paths

could be safely pruned. In other words, for those pruned

node-pairs, the three kinds of paths will have “zero con-

tributions” to the changes in M in response to edge in-
sertion. Thus, after pruning, the remaining node-pairs

in G constitute the “affected areas” of M.

We next identify “affected areas” of M, by pruning

redundant node-pairs in G, based on the following.

Theorem 5 For the edge (i, j) insertion, let O(a) and

Õ(a) be the out-neighbors of node a in old G and new

G ∪ {(i, j)}, respectively. Let Mk be the k-th iterative

matrix in Line 14 of Algorithm 1, and let

F1 := {b | b ∈ O(y), ∃y, s.t. [S]i,y 6= 0} (37)

F2 :=

{
∅ (dj = 0)
{y | [S]j,y 6= 0} (dj > 0)

(38)

Ak × Bk := (39)
{
{j} × (F1 ∪ F2 ∪ {j}) (k = 0)

{(a, b)| a ∈ Õ(x), b ∈ Õ(y), ∃x, ∃y, s.t. [Mk−1]x,y 6= 0} (k > 0)

Then, for every iteration k = 0, 1, · · · , the matrix

Mk has the following sparse property:

[Mk]a,b = 0 for all (a, b) /∈ (Ak × Bk) ∪ (A0 × B0).

For the edge (i, j) deletion case, all the above results

hold except that, in Eq.(38), the conditions dj = 0 and

dj > 0 are, respectively, replaced by dj = 1 and dj > 1.

Proof We only show the edge insertion case dj > 0, due

to space limits. The proofs of other cases are similar.

For k = 0, it follows from Eq.(25) that [M0]a,b =

[ej]a[γ]b. Thus, ∀(a, b) /∈ A0 × B0, there are two cases:

(i) a 6= j, or (ii) a = j, b ∈ F1
C ∩ F2

C , and b 6= j.

For case (i), [ej]a = 0 for a 6= j. Thus, [M0]a,b = 0.

For case (ii), [ej]a = 1 for a = j. Thus, [M0]a,b = [γ]b,
where [γ]b is the linear combinations of the 3 terms:

[Q]b,⋆ · [S]⋆,i, [S]b,j, and [ej]b, according to the case of

dj > 0 in Eq.(27).

Next, our goal is to show the 3 terms are all 0s. (a)

For b /∈ F1, by definition in Eq.(37), b ∈ O(y) for ∀y, we
have [S]i,y = 0. Due to symmetry, b ∈ O(y)⇔ y ∈ I(b),

which implies that [S]i,y = 0 for ∀y ∈ I(b). 19 Thus,

[Q]b,⋆ · [S]⋆,i =
1

I(b)

∑

x∈I(b) [S]x,i = 0. (b) For b /∈ F2,

it follows from the case dj > 0 in Eq.(38) that [S]j,b = 0.

Hence, by S symmetry, [S]b,j = [S]j,b = 0. (c) [ej]b = 0
since b 6= j.

Taking (a)–(c) together, it follows that [M0]a,b = 0,

which completes the proof for the case k = 0.

For k > 0, one can readily prove that the k-th it-
erative Mk in Line 14 of Algorithm 1 is the first k-th

partial sum of M in Eq.(25). Thus, Mk+1 can be de-

rived from Mk as follows:

Mk = C · Q̃ ·Mk−1 · Q̃
T + C · ej · γ

T .

Thus, the (a, b)-entry form of the above equation is

[Mk]a,b =
C

|Ĩ(a)||Ĩ(b)|

∑

x∈Ĩ(a)

∑

y∈Ĩ(b) [Mk−1]x,y + C · [ej]a · [γ]b.

19 Herein, we denote by I(a) the in-neighbor set of node a.

12 Weiren Yu et al.

To show that [Mk]a,b = 0 for (a, b) /∈ A0×B0∪Ak×Bk,

we follow the 2 steps: (i) For (a, b) /∈ A0×B0, as proved

in the case k = 0, the term C · [ej]a[γ]b in the above

equation is obviously 0. (ii) For (a, b) /∈ Ak × Bk, by

virtue of Eq.(39), a ∈ Õ(x), b ∈ Õ(y), for ∀x, y, we
have [Mk−1]x,y = 0. Hence, by symmetry, it follows

that x ∈ Ĩ(a), y ∈ Ĩ(b), [Mk−1]x,y = 0.

Taking (i) and (ii) together, we can conclude that

[Mk]a,b = 0 for (a, b) /∈ A0 × B0 ∪ Ak × Bk. ⊓⊔

Theorem 5 provides a pruning strategy to iteratively

eliminate node-pairs with a-priori zero values in Mk

(thus in ∆S). Hence, by Theorem 5, when edge (i, j) is

updated, we just need to consider node-pairs in (Ak ×
Bk) ∪ (A0 × B0) for incrementally updating ∆S.

Intuitively, F1 in Eq.(37) captures the nodes “N” in

(34). To be specific, F1 can be obtained via 2 phases: (i)

For the given node i, we first build an intermediate set

T := {y|[S]i,y 6= 0}, which consists of nodes “⋆” in (34).
(ii) For each node x ∈ T , we then find all out-neighbors

of x in G, which produces F1, i.e., F1 =
⋃

x∈T O(x).

Analogously, the set F2 in Eq.(38), in the case of dj > 0,

consists of the nodes “⋆” depicted in (35). When dj = 0,
F2 = ∅ as the term [S]⋆,i is not in the expression of γ

in Eq.(26), in contrast to the case dj > 0.

After obtaining F1 and F2, we can readily find A0×

B0, according to Eq.(39). For k > 0, to iteratively de-

rive the node-pair set Ak × Bk, we take the follow-
ing two steps: (i) we first construct a node-pair set

T1 × T2 := {(x, y)|[Mk−1]x,y 6= 0}. (ii) For every node

x ∈ T1 (resp. y ∈ T2), we then find all out-neighbors of

x (resp. y) in G ∪ {(i, j)}, which yields Ak (resp. Bk),
i.e., Ak =

⋃

x∈T1
Õ(x) and Bk =

⋃

y∈T2
Õ(y).

The node selectivity of Theorem 5 hinges on ∆S

sparsity. Since real graphs are constantly updated with

minor changes, ∆S is often sparse in general. Hence,

many node-pairs with zero scores in ∆S can be dis-
carded. As demonstrated by our experiments in Fig.10,

76.3% paper-pairs on DBLP can be pruned, signifi-

cantly reducing unnecessary similarity recomputations.

Example 6 Recall Example 5 and the old graph G in

Fig. 1. When edge (i, j) is inserted to G, according to

Theorem 5, F1 = {a, b}, F2 = {f, i, j}, A0 × B0 =

{j}×{a, b, f, i, j}. Hence, instead of computing the en-
tire vector γ in Eqs.(26) and (27), we only need to com-

pute part of its entries [γ]x for ∀x ∈ B0.

For the first iteration, since A1 × B1 = {a, b} ×

{a, b, d, j}, then we only need to compute 18 (= 3 × 6)

entries [M1]x,y for ∀(x, y) ∈ {a, b, j} × {a, b, d, f, i, j},

skipping the computations of 207 (= 152− 18) remain-

ing entries in M1. After K = 10 iterations, many un-

necessary node-pairs are pruned, as in part highlighted

in the gray rows of the table in Fig. 1. ⊓⊔

Algorithm 2: Inc-SR (G,S,K, (i, j), C)

Input / Output: the same as Algorithm 1.
1-2 the same as Algorithm 1 ;

3 find B0 via Eq.(39) ;
memoize [w]b := [Q]b,⋆ · [S]⋆,i, for all b ∈ B0 ;

4-12 almost the same as Algorithm 1 except that the
computations of the entire vector γ in Lines 6, 8, 10, 12
are replaced by the computations of only parts of
entries in γ, respectively, e.g., in Line 6 of
Algorithm 1, “γ := w+ 1

2
[S]i,i · ej” are replaced by

“[γ]b := [w]b +
1
2
[S]i,i · [ej]b, for all b ∈ B0” ;

13 [ξ0]j := C, [η0]b := [γ]b, [M0]j,b := C · [γ]b,∀b ∈ B0;

14 for k = 1, · · · ,K do
15 find Ak × Bk via Eq.(39) ;
16 memoize σ1 := C · (vT · ξk−1), σ2 := vT · ηk−1 ;
17 [ξk]a := C · [Q]a,⋆ · ξk−1 + σ1 · [u]a, for all a ∈ Ak ;

18 [ηk]b := [Q]b,⋆ · ηk−1 + σ2 · [u]b, for all b ∈ Bk ;

19 [Mk]a,b := [ξk]a · [ηk]b + [Mk−1]a,b, ∀(a, b) ∈ Ak × Bk;

20 [S̃]a,b := [S]a,b + [MK]a,b + [MK]b,a, ∀(a, b) ∈ AK × BK ;

21 return S̃ ;

5.2 Algorithm

We provide a complete incremental algorithm for com-

puting SimRank, referred to as Inc-SR (in Algorithm 2),
by incorporating our pruning strategy into Inc-uSR.

Correctness. The algorithm Inc-SR can correctly prune
the node-pairs with a-priori zero scores in ∆S, which

is verified by Theorem 5. It also correctly returns the

new similarities, as evidenced by Theorems 1–3.

Complexity. The total time of Inc-SR is O(K(nd +

|AFF|)) for K iterations, where d is the average in-

degree of G, and |AFF| := avgk∈[0,K](|Ak| · |Bk|) with

Ak,Bk in Eq.(39), being the average size of “affected

areas” in Mk for K iterations. More concretely, (a)
for the preprocessing, finding B0 (line 3) needs O(dn)

time. Utilizing B0, computing [w]b reduces from O(m)

to O(d|B0|) time, with |B0| ≪ n. Analogously, γ in

lines 6,8,10,12 of Algorithm 1 needs only O(|B0|) time.
(b) For each iteration, finding Ak × Bk (line 15) en-

tails O(dn) time. Memoizing σ1, σ2 needs O(n) time

(line 16). Computing ξ (resp. η) reduces from O(m)

to O(d|Ak|) (resp. O(d|Bk|)) time (lines 17–18). Com-

puting [Mk]a,b reduces from O(n2) to O(|Ak||Bk|) time
(line 19). Thus, the total time complexity can be bounded

by O(K(nd+ |AFF|)) for K iterations.

It is worth mentioning that Inc-SR, in the worst case,
has the same complexity bound of Inc-uSR. However, in

practice, |AFF| ≪ n2, as demonstrated by our experi-

mental study in Fig.11, since real graphs are constantly

updated with small changes. Hence, O(K(nd+ |AFF|))
is generally much smaller than O(Kn2). In the next sec-

tion, we shall further confirm the efficiency of Inc-SR by

conducting extensive experiments.

A Partition-Based Approach to Web Hyperlink Analysis 13

a

b

c

d

e

fg

h

i
j

k

l

m

n

o

G (excluding
edge(i, p)

inserted edge(i, p)
with new nodep

p

nodep)

Node-Pair
in G in G ∪∆G

simold simnew

(a, b) 0.0745 0.0745
(a, p) — 0.0828
(b, p) — 0.1114
(f, i) 0.2464 0.2464
(f, j) 0.2064 0.2064
(g, h) 0.128 0.128
(g, k) 0.128 0.128
(h, k) 0.288 0.288
(i, j) 0.3104 0.3104
(l,m) 0.16 0.16
(l, n) 0.16 0.16
(m,n) 0.16 0.16

Fig. 3: Incrementally update SimRank when a new edge (i, p) with i ∈ V and p /∈ V is inserted into G = (V,E)

6 Edge Update with Nodes Insertion

In this section, we focus on the edge update that accom-

panies new node(s) insertion. Specifically, given a new

edge (i, j) to be inserted into the old graph G = (V,E),
we consider the following cases when

(C1) i ∈ V and j /∈ V ; (in Subsection 6.1)

(C2) i /∈ V and j ∈ V ; (in Subsection 6.2)
(C3) i /∈ V and j /∈ V . (in Subsection 6.3)

For each case, we devise an efficient incremental al-

gorithm that can support new nodes insertion and can

accurately update only “affected areas” of SimRanks.

Remark 3 Let n = |V |, without loss of generality, it can

be tacitly assumed that

a) in case (C1), new node j /∈ V is indexed by (n+ 1);

b) in case (C2), new node i /∈ V is indexed by (n+ 1);
c) in case (C3), new nodes i /∈ V and j /∈ V are indexed

by (n+ 1) and (n+ 2), respectively.

6.1 Inserting an edge (i, j) with i ∈ V and j /∈ V

In this case, the inserted new edge (i, j) accompanies

the insertion of a new node j. Thus, the size of the new

SimRank matrix S̃ is different from that of the old S.

As a result, we cannot simply evaluate the changes to

S by adopting S̃− S as we did in Section 4.
To resolve this problem, we introduce the block ma-

trix representation of new matrices for edge insertion.

Firstly, when a new edge (i, j)i∈V,j /∈V is inserted to G,

the new transition matrix Q̃ can be described as

Q̃ =

[

Q 0

eTi 0

]

} n rows

→ row j
∈ R

(n+1)×(n+1) (40)

Intuitively, Q̃ is formed by bordering the old Q by 0s
except [Q̃]j,i = 1. Utilizing this block structure of Q̃,

we can obtain the new SimRank matrix, which exhibits

a similar block structure, as shown below:

Theorem 6 Given an old digraph G = (V,E), if there

is a new edge (i, j) with i ∈ V and j /∈ V to be inserted,

then the new SimRank matrix becomes

S̃ =

[

S y

yT C[S]i,i + (1− C)

]

} n rows

→ row j
with y = CQ[S]⋆,i (41)

where S ∈ R
n×n is the old SimRank matrix of G.

Proof We substitute the new Q̃ in Eq.(40) back into the

SimRank equation S̃ = C · Q̃ · S̃ · Q̃T + (1−C) · In+1:

S :=

[

S̃11 S̃12

S̃21 S̃22

]

= C

[

Q 0

eTi 0

][

S̃11 S̃12

S̃21 S̃22

] [

QT ei

0 0

]

+(1− C)

[

In 0

0 1

]

By expanding the right-hand side, we can obtain
[

S̃11 S̃12

S̃21 S̃22

]

=

[

CQS̃11Q
T + (1− C)In CQS̃11ei

Cei
T S̃11Q

T Cei
T S̃11ei + (1− C)

]

The above block matrix equation implies that

S̃11 = CQS̃11Q
T + (1− C)In

Due to the uniqueness of S in Eq.(1), it follows that

S̃11 = S

Thus, we have

S̃12 = S̃T
21 = CQS̃11ei = CQ[S]⋆,i

S̃22 = Cei
T S̃11ei + (1− C) = C[S]i,i + (1− C)

Combining all blocks of S̃ together yields Eq.(41). ⊓⊔

Theorem 6 provides an efficient incremental way of

computing the new SimRank matrix S̃ for unit inser-

tion of the case (C1). Precisely, the new S̃ is formed by
bordering the old S by the auxiliary vector y. To obtain

y (and thereby S̃), we just need use the i-th column of S

with one matrix-vector multiplication (Q[S]⋆,i). Thus,

the total cost of computing new S̃ requires O(m) time,

as illustrated in Algorithm 3.

14 Weiren Yu et al.

Algorithm 3: Inc-uSR-C1 (G, (i, j),S, C)

Input : a directed graph G = (V, E),
a new edge (i, j)i∈V, j /∈V inserted to G,
the old similarities S in G,
the damping factor C.

Output: the new similarities S̃ in G ∪ {(i, j)}.
1 initialize the transition matrix Q in G ;
2 compute y := C ·Q · [S]⋆,i ;

3 compute z := C · [S]i,i + (1 − C) ;

4 return S̃ :=

[

S y

yT z

]

;

Example 7 Consider the citation digraph G in Fig. 3.

If the new edge (i, p) with new node p is inserted to G,

the new S̃ can be updated from the old S as follows:

According to Theorem 6, since C = 0.8 and

[S]⋆,i =
[
(a) ··· (e) (f) (g) (h) (i) (j) (k) ··· (o)

0, · · · , 0, 0.2464, 0, 0, 0.5904, 0.3104, 0, · · · , 0
]
T

it follows that

S̃ =

[

S y

yT z

]

with z = 0.8[S]i,i + (1− 0.8) = 0.6723

y = 0.8Q[S]⋆,i =
[

(a) (b) (c) ··· (o)

0.0828, 0.1114, 0, · · · , 0
]
T ∈ R

15×1 ⊓⊔

6.2 Inserting an edge (i, j) with i /∈ V and j ∈ V

We now focus on the case (C2), the insertion of an edge

(i, j) with i /∈ V and j ∈ V . Similar to the case (C1),

the new edge accompanies the insertion of a new node
i. Hence, S̃− S makes no sense.

However, in this case, the dynamic computation of

SimRank is far more complicated than that of the case

(C1), in that such an edge insertion not only increases
the dimension of the old transition matrixQ by one, but

also changes several original elements of Q, which may

recursively influence SimRank similarities. Specifically,

the following theorem shows, in the case (C2), how Q

changes with the insertion of an edge (i, j)i/∈V,j∈V .

Theorem 7 Given an old digraph G = (V,E), if there

is a new edge (i, j) with i /∈ V and j ∈ V to be added to
G, then the new transition matrix can be expressed as

Q̃ =

[

Q̂ 1
dj+1ej

0 0

]

} n rows

→ row i
with Q̂ := Q− 1

dj+1ej[Q]j,⋆ (42)

where Q is the old transition matrix of G.

Proof When edge (i, j) with i /∈ V and j ∈ V is added,

there will be two changes to the old Q:

(i) All nonzeros in [Q]j,⋆ are updated from 1
dj

to 1
dj+1 :

[Q̂]j,⋆ =
dj

dj+1 [Q]j,⋆ = [Q]j,⋆ −
1

dj+1 [Q]j,⋆ (43)

(ii) The size of the old Q̃ is added by 1, with new entry

[Q]j,i =
1

dj+1 in the bordered areas and 0s elsewhere:

Q̃ =

[

Q̂ 1
dj+1ej

0 0

]

(44)

Combining Eqs.(43) and (44) yields (42). ⊓⊔

Theorem 7 exhibits a special structure of the new Q̃:
it is formed by bordering Q̂ by 0s except [Q̃]j,i =

1
dj+1 ,

where Q̂ is a rank-one update of the old Q. The block

structure of Q̃ inspires us to partition the new SimRank

matrix S̃ conformably into the similar block structure:

S̃ =

[

S̃11 S̃12

S̃21 S̃22

]

where
S̃11 ∈ R

n×n, S̃12 ∈ R
n×1,

S̃21 ∈ R
1×n, S̃22 ∈ R.

To determine each block of S̃ with respect to the old S,
we next present the following theorem.

Theorem 8 If there is a new edge (i, j) with i /∈ V

and j ∈ V to be added to the old digraph G = (V,E),
then there exists a vector

z = αej−y with y := QS[Q]
T
j,⋆ and α :=

yj+1−C
2(dj+1) (45)

such that the new SimRank matrix S̃ is expressible as

S̃ =

[
S+∆S̃11 0

0 1− C

]
} n rows

→ row i
(46)

where S is the old SimRank of G, and ∆S̃11 satisfies

the rank-two Sylvester equation:

∆S̃11 = CQ̂∆S̃11Q̂
T + C

dj+1

(
ejz

T + zej
T
)

(47)

with Q̂ being defined by Theorem 7.

Proof We plug Q̃ of Eq.(42) into the SimRank formula:

S̃ = C · Q̃ · S̃ · Q̃T + (1− C) · In+1,

which produces

S̃ =

[

S̃11 S̃12

S̃21 S̃22

]

=C

[

Q̂ 1
dj+1

ej

0 0

][

S̃11 S̃12

S̃21 S̃22

][

Q̂T 0
1

dj+1
eTj 0

]

+ (1− C)

[

In 0

0 1

]

By using block matrix multiplications, the above equa-
tion can be simplified as

[
S̃11 S̃12

S̃21 S̃22

]

= C

[
P 0

0 0

]

+ (1 − C)

[
In 0

0 1

]

(48)

with P =Q̂S̃11Q̂
T + 1

(dj+1)2
ejS̃22ej

T

+ 1
dj+1ejS̃21Q̂

T + 1
dj+1Q̂S̃12ej

T
(49)

A Partition-Based Approach to Web Hyperlink Analysis 15

Block-wise comparison of both sides of Eq.(48) yields

S̃12 = S̃21 = 0

S̃22 = 1− C

S̃11 = C ·P+ (1 − C) · In

Combing the above equations with Eq.(49) produces

S̃11 = CQ̂S̃11Q̂
T + (1−C)C

(dj+1)2
ejej

T + (1 − C)In (50)

Applying S̃11 = S+∆S̃11 and S = CQSQT+(1−C)In
to Eq.(50) and rearranging the terms, we have

∆S̃11 = CQ̂∆S̃11Q̂
T+ C

dj+1

(
2αejej

T − ejy
T − yej

T
)

with α and y being defined by Eq.(45). ⊓⊔

Theorem 8 implies that, in the case (C2), after a new

edge (i, j) is inserted, the new SimRank matrix S̃ takes

an elegant diagonal block structure: the upper-left block
of S̃ is perturbed by ∆S̃11 which is the solution to the

rank-two Sylvester equation (47); the lower-right block

of S̃ is a constant (1−C). This structure of S̃ suggests

that the inserted edge (i, j)i/∈V,j∈V only has a recursive

impact on the SimRanks with pairs (x, y) ∈ V ×V , but
with no impacts on pairs (x, y) ∈ (V ×{i})∪ ({i}×V).

Thus, our incremental way of computing the new S̃

will focus on the efficiency of obtaining ∆S̃11 from

Eq.(47). Fortunately, we notice that ∆S̃11 satisfies the
rank-two Sylvester equation, whose algebraic structure

is similar to that of ∆S in Eqs.(12) and (13) (in Sec-

tion 4). Hence, our previous techniques to compute ∆S

in Eq.(13) can be analogously applied to compute∆S̃11

in Eq.(47), thus eliminating costly matrix-matrix mul-
tiplications, as will be illustrated in Algorithm 4.

One disadvantage of Theorem 8 is that, in order to

get the auxiliary vector z for evaluating S̃, one has to

memorize the entire old matrix S in Eq.(45). In fact,
we can utilize the technique of rearranging the terms of

the SimRank equation (1) to characterize QS[Q]
T
j,⋆ in

terms of only one vector [S]⋆,j so as to avoid memorizing

the entire S, as shown below.

Theorem 9 The auxiliary matrix ∆S̃11 in Theorem 8

can be represented as

∆S̃11 = C
dj+1

(
M+MT

)
with

M =
∑∞

k=0
CkQ̂kejz

T
(

Q̂T
)k (51)

where Q̂ is defined by Theorem 7 and

z :=
(

1
2C(dj+1)

(

[S]j,j − (1− C)
2
)

+ 1−C
C

)

ej −
1
C [S]⋆,j (52)

and S is the old SimRank matrix of G.

Algorithm 4: Inc-uSR-C2 (G, (i, j),S,K,C)

Input : a directed graph G = (V,E),
a new edge (i, j)i/∈V, j∈V inserted to G,
the old similarities S in G,
the number of iterations K,
the damping factor C.

Output: the new similarities S̃ in G ∪ {(i, j)}.
1 initialize the transition matrix Q in G ;
2 dj := in-degree of node j in G ;

3 z :=
(

1
2C(dj+1)

(
[S]j,j − (1− C)2

)
+ 1−C

C

)
ej −

1
C
[S]⋆,j ;

4 initialize ξ0 := ej , η0 := z, M0 := ejzT ;
5 for k = 0, 1, · · · ,K − 1 do

6 ξk+1 := C ·Q · ξk − C
dj+1

([Q]j,⋆ · ξk) · ej ;

7 ηk+1 := Q · ηk − 1
dj+1

([Q]j,⋆ · ηk) · ej ;

8 Mk+1 := ξk+1 · ηT
k+1 +Mk ;

9 compute ∆S̃11 := C
dj+1

(
MK +MT

K

)
;

10 return S̃ :=

[
S+∆S̃11 0

0 1− C

]

;

Proof We multiply the SimRank equation by ej to get

[S]⋆,j = C ·QS[Q]
T
j,⋆ + (1− C) · ej .

Combining this with y = QS[Q]Tj,⋆ in Eq.(45) produces

y = 1
C [S]⋆,j −

1−C
C ej and yj =

1
C [S]j,j −

1−C
C .

Plugging these results into Eq.(45), we can get Eq.(52).
Also, the recursive form of ∆S̃11 in Eq.(47) can be

converted into the following series:

∆S̃11 = C
dj+1

∑∞

k=0
CkQ̂k

(
ejz

T + zej
T
) (

Q̂T
)k

= M+MT

with M being defined by Eq.(51). ⊓⊔

For edge insertion of the case (C2), Theorem 9 gives
an efficient method to compute the update matrix∆S̃11.

We note that the form of ∆S̃11 in Eq.(51) is similar to

that of ∆S̃ in Eq.(25). Thus, similar to Theorem 3, the

follow trick can be applied to compute the series of M:

initialize ξ0 ← ej , η0 ← z, M0 ← ej · z
T

for k = 0, 1, 2, · · ·

ξk+1 ← C · Q̂ · ξk, ηk+1 ← Q̂ · ηk

Mk+1 ← ξk+1 · η
T
k+1 +Mk

so as to avoid matrix-matrix multiplications.

Note that, in the above formulas, to avoid memoriz-
ing the auxiliary Q̂, we can compute Q̂ · ξk as follows:

Q̂ · ξk = Q · ξk −
1

dj+1 ([Q]j,⋆ · ξk) · ej .

In Algorithm 4, we present the edge insertion of our

method for the case (C2) to incrementally update new

16 Weiren Yu et al.

a

b

c

d

e

fg

h

i
j

k

l

m

n

o

G (excluding
edge(p, j)

inserted edge(p, j)
with new nodep

p

nodep)

Node-Pair
in G in G ∪∆G

simold simnew

(a, b) 0.0745 0.0596
(f, i) 0.2464 0.2464
(f, j) 0.2064 0.1376
(g, h) 0.128 0.128
(g, k) 0.128 0.128
(h, k) 0.288 0.288
(i, j) 0.3104 0.2069
(l,m) 0.16 0.16
(l, n) 0.16 0.16
(m,n) 0.16 0.16

Fig. 4: Incrementally update SimRank when a new edge (p, j) with p /∈ V and j ∈ V is inserted into G = (V,E)

SimRank scores. The total complexity of Algorithm 4 is

O(Kn2) time and O(n2) memory in the worst case for
retrieving all n2 pairs of scores, which is dominated by

Line 8. To reduce its computational time further, the

similar pruning techniques in Section 5 can be applied

to Algorithm 4. This can speed up the computational
time to O(K(nd + |AFF|)), where d is the average in-

degree of the old graph, and |AFF| is the size of “affected

areas” in ∆S11. In the next section, we shall also sub-

stantially reduce its memory from O(n2) to O(nd).

Example 8 Consider the citation digraph G in Fig.4. If

the new edge (j, p) with new node p is inserted to G,
the new S̃ can be incrementally derived from the old S

as follows:

First, we obtain∆S̃11 according to Theorem 9. Note

that C = 0.8, dj = 2, and the old SimRank scores

[S]⋆,j =
[
(a) ··· (e) (f) (g) (h) (i) (j) (k) ··· (o)

0, · · · , 0, 0.2064, 0, 0, 0.3104, 0.5104, 0, · · · , 0
]
T

It follows from Eq.(52) that the auxiliary vector

z =
(

1
2×0.8(2+1)

(

0.5104− (1 − 0.8)2
)

+ 1−0.8
0.8

)

ej −
1
0.8 [S]⋆,j

=
[
(a) ··· (e) (f) (g) (h) (i) (j) (k) ··· (o)

0, · · · , 0, −0.258, 0, 0, −0.388, −0.29, 0, · · · , 0
]
T

Utilizing z, we can obtainM from Eq.(51). Thus, ∆S̃11

can be computed from M as

∆S̃11 = 0.8
2+1

(
M+MT

)
=

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) · · · (o)

(a) −0.0137 −0.0149 0 0

(b) −0.0149 −0.0146 0 0 0 0 0
(c) 0 0 0 0
(d) 0 0 0 −0.0116

(e) 0

(f) −0.0688

(g) 0 0 0 0
(h) 0
(i) −0.1035

(j) 0 0 −0.0688 0 0 −0.1035 −0.1547 0
... 0 0 0 0
(o)

Next, by Theorem 8, we obtain the new SimRank

S̃ =

[
S+∆S̃11 0

0 0.2

]

which is partially illustrated in Fig.4. ⊓⊔

6.3 Inserting an edge (i, j) with i /∈ V and j /∈ V

We next focus on the case (C3), the insertion of an edge

(i, j) with i /∈ V and j /∈ V . Without loss of generality,

it can be tacitly assumed that nodes i and j are indexed

by n+1 and n+2, respectively. In this case, the inserted
edge (i, j) accompanies the insertion of two new nodes,

which can form another independent component in the

new graph.

In this case, the new transition matrix Q̃ can be

characterized as a block diagonal matrix

Q̃ =

[
Q 0

0 N

]
} n rows

} 2 rows
with N :=

[
0 0

1 0

]

.

With this structure, we can infer that the new SimRank

matrix S̃ takes the block diagonal form as

S̃ =

[

S 0

0 Ŝ

]

} n rows

} 2 rows
with Ŝ ∈ R

2×2.

This is because, after a new edge (i, j)i/∈V,j /∈V is added,

all node-pairs (x, y) ∈ (V ×{i, j}∪{i, j}×V) have zero

SimRank scores since there are no connections between

nodes x and y. Besides, the inserted edge (i, j) is an

independent component that has no impact on s(x, y)
for ∀(x, y) ∈ V ×V . Hence, the submatrix Ŝ of the new

SimRank matrix can be derived by solving the equation:

Ŝ = C ·N·Ŝ·NT +(1−C)·I2 ⇒ Ŝ =

[
1− C 0

0 1− C2

]

This suggests that, for unit insertion of the case (C3),
the new SimRank matrix becomes

S̃ =

[

S 0

0 Ŝ

]

∈ R
(n+2)×(n+2) with Ŝ =

[

1− C 0

0 1− C2

]

.

Algorithm 5 presents our incremental method to ob-

tain the new SimRank matrix S̃ for edge insertion of the

case (C3), which requires just O(1) time.

A Partition-Based Approach to Web Hyperlink Analysis 17

Algorithm 5: Inc-uSR-C3 (G, (i, j),S, C)

Input : a directed graph G = (V, E),
a new edge (i, j)i/∈V, j /∈V inserted to G,
the old similarities S in G,
the damping factor C.

Output: the new similarities S̃ in G ∪ {(i, j)}.

1 compute Ŝ :=

[
1 − C 0

0 1− C2

]

;

2 return S̃ :=

[

S 0

0 Ŝ

]

;

7 Memory Efficiency

In previous sections, our main focus is devoted to speed-
ing up the computational time of incremental SimRank.

However, for evaluating all pairs of SimRank scores, the

memory requirement for Algorithms 1–5 is still O(n2)

in the worst case because all pairs scores are computed

and stored at the same time. In this section, we propose
a novel partitioning technique that can update all pairs

of SimRanks column by column in just O(dn) memory,

without any loss of accuracy and extra running time.

Let us first analyze the O(n2) memory requirement
for Algorithms 1–5 in Sections 4–6. We notice that there

are two factors dominating the original O(n2) memory:

(1) the storage of the entire n×n old SimRank matrix S,

and (2) the computation of Mk from one outer product

(in Line 14 of Algorithm 1, and Line 8 of Algorithm 4).
Apart from the storage of the old S and Mk, the space

required for the rest of steps is dominated by O(dn),

including (a) the storage of the sparse matrix Q and

(b) the sparse matrix-vector multiplications.
To overcome the bottleneck of the O(n2) memory,

our central idea is to update all pairs of new SimRank

scores in a column-by-column fashion, without the need

to load the entire matrices of S and Mk into memory.

Precisely, we can first partition the new entire SimRank
matrix S̃ into column vectors [S̃]⋆,1, [S̃]⋆,2, · · · , and then

update every column [S̃]⋆,x separately.

For example, for insertion case (C1) in Subsection 6.1,

it is not necessary to compute all columns of new S̃ si-
multaneously by storing the entire old S in Algorithm 3.

Instead, we can compute S̃ (Line 4) column by column:

S̃ :=

[
n cols
︷︸︸︷

S

col j
︷︸︸︷

y

yT z

]

⇒

memoize y and z

for each x← 1, · · · , n

set [S̃]⋆,x ←

[

[S]⋆,x

[y]x

]

set [S̃]⋆,n+1 ←

[

y

z

]

Similarly, one can modify Lines 15, 10, 2, respectively,

in Algorithms 1, 4, 5 into a column-by-column style.

·

=MK =
K∑

k=1

[ηk]3

[ξk]2

[ξk]2[ηk]3

K∑

k=1

·

=[MK]∗,x =
K∑

k=1
[ηk]x

ξk

K∑

k=1
=

=

[ηk]xξk
column-wise
computation

Fig. 5: Memory usage reduction by partitioning MK in
a column-by-column style

In this way, although Algorithms 3 and 5 can achieve

O(dn) memory, Algorithms 1 and 4 still require O(n2).

The reason is that the computation of Mk in Line 14

(resp. 8) dominates the memory of Algorithm 1 (resp. 4).

To resolve this problem, we also need split the compu-
tation of the entire Mk in a column-by-column fashion.

Note thatMk in Line 14, Algorithm 1 andMk in Line 8,

Algorithm 4 exhibit a similar structure, i.e., Mk is the

summation of the outer product of two vectors:

for k ← 0, · · · ,K − 1

set Mk+1 ← ξk+1 · η
T
k+1 +Mk

update S̃← S+MK +MT
K

Thus, we can split the above computation column-wisely:

for x← 1, · · · , n

initialize [S̃]⋆,x ← [S]⋆,x, y← 0, z← 0

for k ← 0, · · · ,K − 1

set y← [ηk+1]x · ξk+1 + y

set z← [ξk+1]x · ηk+1 + z

update [S̃]⋆,x ← [S̃]⋆,x + y + z

The main advantage of our revision is that, throughout

the entire updating process, we need not store the entire

matrix Mk and S, and thereby, significantly reduce the

memory usage from O(n2) to O(dn).

Correctness. By applying successive substitution to

the for-loop, we can verify that, in our above methods,

every new score [S̃]u,v has the consistent result20:

[S̃]u,v = [S]u,v +

K∑

k=1

[ξk]u · [ηk]v +

K∑

k=1

[ξk]v · [ηk]u

Thus, our partitioning approach does not compromise

accuracy for high memory efficiency, which is achieved
by the separable structure of MK described as the sum

of rank-one matrices, as pictorially depicted in Fig. 5.

20 Here, our main focus is devoted to S̃ in Algorithm 1. Note
that similar techniques can be applied to S̃11 in Algorithm 4.

18 Weiren Yu et al.

a

b

c

d

e

fg

h

i
j

k

l

m

n

o

G (solid line)

insertion of edges in∆G

q

p
r

deletion of edges in∆G

∆G = {(q, i,+), (b, h,+),

(f, b,−), (l, f,+),

(p, f,+), (l, f,−),

(j, i,+), (r, f,+),

(b, h,−), (k, i,+)}

Node-Pair
in G in G⊕∆G

simold simnew

(a, b) 0.0745 0.0809
(a, i) 0 0.0340
(b, i) 0 0.0340
(f, i) 0.2464 0.0516
(f, j) 0.2064 0.1032
(g, h) 0.128 0.128
(g, k) 0.128 0.128
(h, k) 0.2880 0.2880
(i, j) 0.3104 0.1552
(l,m) 0.16 0.16
(l, n) 0.16 0.16
(m,n) 0.16 0.16

Fig. 6: Batch updates for incremental SimRank when a sequence of edges ∆G are updated to G = (V,E)

8 Batch Updates

In this section, we consider the batch updates problem

for incremental SimRank, i.e., given an old graph G =

(V,E) and a sequence of edges ∆G to be updated to G,

the retrieval of new SimRank scores in G⊕∆G. Here,
the set ∆G can be mixed with insertions and deletions:

∆G := {(i1, j1, op1), (i2, j2, op2), · · · , (i|∆G|, j|∆G|, op|∆G|)}

where (iq, jq) is the q-th edge in ∆G to be inserted into
(if opq =“+”) or deleted from (if opq =“−”) G.

The straightforward approach to this problem is to

update each edge of ∆G one by one, by running a unit

update algorithm for |∆G| times. However, this would

produce many unnecessary intermediate results and re-
dundant updates that may cancel out each other.

Example 9 Consider the old citation graph G in Fig. 6,

and a sequence of edge updates ∆G to G:

∆G = {(q, i,+), (b, h,+), (f, b,−), (l, f,+), (p, f,+),

(l, f,−), (j, i,+), (r, f,+), (b, h,−), (k, i,+)}

We notice that, in ∆G, the edge insertion (b, h,+) can
cancel out the edge deletion (b, h,−). Similarly, (l, f,+)

can cancel out (l, f,−). Thus, after edges cancellation,

the net update of ∆G, denoted as ∆Gnet, is

∆Gnet = {(q, i,+), (f, b,−), (p, f,+),

(j, i,+), (r, f,+), (k, i,+)} ⊓⊔

Example 9 suggests that a portion of redundancy in

∆G arises from the insertion and deletion of the same
edge that may cancel out each other. After cancellation,

it is easy to verify that

|∆Gnet| ≤ |∆G| yet G⊕∆Gnet = G⊕∆G.

To obtain ∆Gnet from ∆G, we can readily use hash-

ing techniques to count occurrences of updates in ∆G.

More specifically, we use each edge of∆G as a hash key,

and initialize each key with zero count. Then, we scan

each edge of ∆G once, and increment (resp. decrement)

its count by one each time an edge insertion (resp. dele-
tion) appears in ∆G. After all edges in ∆G are scanned,

the edges whose counts are nonzeros make a net update

∆Gnet. All edges in ∆Gnet with +1 (resp. −1) counts

make a net insertion update ∆G+
net (resp. a net deletion

update ∆G−
net). Clearly, we have

∆Gnet = ∆G+
net ∪∆G−

net.

Having reduced ∆G to the net edge updates ∆Gnet,

we next merge the updates of “similar sink edges” in

∆Gnet to speedup the batch updates further.

We first introduce the notion of “similar sink edges”.

Definition 2 Two distinct edges (a, c) and (b, c) are

called “similar sink edges” w.r.t. node c if they have a

common end node c that both a and b point to.

“Similar sink edges” is introduced to partition∆Gnet.

To be specific, we first sort all the edges {(ip, jp)} of

∆G+
net (resp. ∆G−

net) according to its end node jp. Then,

the “similar sink edges” w.r.t. node jp form a parti-

tion of ∆G+
net (resp. ∆G−

net). For each block {(ipk
, jp)}

in ∆G+
net, we next split it further into two sub-blocks

according to whether its end node ipk
is in the old V .

Thus, after partitioning, each block in∆G+
net (resp. ∆G−

net),

denoted as

{(i1, j), (i2, j), · · · , (iδ, j)},

falls into one of the following cases:

(C0) i1 ∈ V, i2 ∈ V, · · · , iδ ∈ V and j ∈ V ;
(C1) i1 ∈ V, i2 ∈ V, · · · , iδ ∈ V and j /∈ V ;

(C2) i1 /∈ V, i2 /∈ V, · · · , iδ /∈ V and j ∈ V ;

(C3) i1 /∈ V, i2 /∈ V, · · · , iδ /∈ V and j /∈ V .

Example 10 Let us recall ∆Gnet derived by Example 9,
in which ∆Gnet = ∆G+

net ∪∆G−
net with

∆G+
net = {(q, i,+), (p, f,+), (j, i,+), (r, f,+), (k, i,+)}

∆G−
net = {(f, b,−)}.

A Partition-Based Approach to Web Hyperlink Analysis 19

when new transition matrix Q̃ new SimRank matrix S̃

w
it
h
o
u
t
n
ew

n
o
d
es

in
se
rt
io
n

(C0)

insert

i1 ∈ V

· · ·

iδ ∈ V

j ∈ V

Q̃ = Q+ u · vT with

u :=

{

ej (dj = 0)
δ

dj+δ
ej (dj > 0)

,

v :=

{
1
δ
eI (dj = 0)

1
δ
eI − [Q]Tj,⋆ (dj > 0)

∆S = M+MT with

M :=
∑∞

k=0 Ck+1Q̃kejγT (Q̃T)
k
,

γ :=

1
δ
Q · [S]⋆,I + 1

2δ2 [S]I,I · ej (dj = 0)

δ
(dj+δ)

(

1
δ
Q · [S]⋆,I − 1

C
· [S]⋆,j + (λδ

2(dj+δ)
+ 1

C
− 1) · ej

)

(dj > 0)

λ := 1
δ2 [S]I,I + 1

C
· [S]j,j − 2

δ
· [Q]j,⋆ · [S]⋆,I − 1

C
+ 1

(C0)

delete

i1 ∈ V

· · ·

iδ ∈ V

j ∈ V

Q̃ = Q+ u · vT with

u :=

{

ej (dj = 1)
δ

dj−δ
ej (dj > 1)

,

v :=

{

− 1
δ
eI (dj = 1)

[Q]Tj,⋆ − 1
δ
eI (dj > 1)

∆S = M+MT with

M :=
∑∞

k=0 Ck+1Q̃kejγT (Q̃T)
k
,

γ :=

− 1
δ
Q · [S]⋆,I +

1
2δ2 [S]I,I · ej (dj = 1)

δ
(dj−δ)

(

1
C

· [S]⋆,j − 1
δ
Q · [S]⋆,I + (λδ

2(dj−δ)
− 1

C
+ 1) · ej

)

(dj > 1)

λ := 1
δ2 [S]I,I + 1

C
· [S]j,j − 2

δ
· [Q]j,⋆ · [S]⋆,I − 1

C
+ 1

w
it
h
n
ew

n
o
d
es

in
se
rt
io
n

(C1)

insert

i1 ∈ V

· · ·

iδ ∈ V

j /∈ V

Q̃ =

[

Q 0
1
δ
eTI 0

]

} n rows

→ row j

S̃ =

[

S y

yT C
δ2 [S]I,I + (1− C)

]

} n rows

→ row j
with

y := C
δ
Q[S]⋆,I

(C2)

insert

i1 /∈ V

· · ·

iδ /∈ V

j ∈ V

Q̃ =

[

Q̂ 1
dj+δ

ej1T
δ

0 0

]

} n rows

} δ rows

with Q̂ := Q− δ
dj+δ

ej [Q]j,⋆

S̃ =

[

S+ Cδ
dj+δ

(
M+MT

)
0

0 (1 − C)Iδ

]

} n rows

} δ rows
with

M :=
∑∞

k=0 CkQ̂kejzT
(
Q̂T

)k
,

z :=

(

1

2C(dj+δ)

(

δ[S]j,j − (δ − C)(1 − C)
)

+ 1−C
C

)

ej − 1
C
[S]⋆,j

(C3)

insert

i1 /∈ V

· · ·

iδ /∈ V

j /∈ V

Q̃ =

[

Q 0

0 N

]

} n rows

} δ + 1 rows

with N :=

[

0 0
1
δ
1T
δ 0

]

} δ rows

→ row j

S̃ =

[

S 0

0 Ŝ

]

} n rows

} δ + 1 rows

with Ŝ :=

[

(1 − C)Iδ 0

0 (1 − C)(1 + C
δ
)

]

.
} δ rows

→ row j

Table 2: Batch updates for a sequence of edges {(i1, j), · · · , (iδ, j)} to the old graph G = (V,E),

where [S]⋆,I :=
∑

i∈I [S]⋆,i, [S]I,I :=
∑

i∈I [S]i,I , 1δ := (1, 1, · · · , 1)T ∈ R
δ×1

We first partition ∆G+
net by “similar sink edges” into

∆G+
net = {(q, i,+), (j, i,+), (k, i,+)} ∪ {(p, f,+), (r, f,+)}

In the first block of ∆G+
net, since the nodes q /∈ V ,

j ∈ V , and k ∈ V , we will partition this block further

into {(q, i,+)} ∪ {(j, i,+), (k, i,+)}. Eventually,

∆G+
net = {(q, i,+)} ∪ {(j, i,+), (k, i,+)} ∪ {(p, f,+), (r, f,+)} ⊓⊔

The main advantage of our partitioning approach is

that, after partition, all the edge updates in each block

can be processed simultaneously, instead of one by one.

To elaborate on this, we use case (C0) as an example,
i.e., the insertion of δ edges {(i1, j), (i2, j), · · · , (iδ, j)}

into G = (V,E) when i1 ∈ V, · · · , iδ ∈ V , and j ∈ V .

Analogous to Theorem 1, one can readily prove that,

after such δ edges are inserted, the changes ∆Q to the

old transition matrix is still a rank-one matrix that can

be decomposed as

Q̃ = Q+ u · vT with

u :=

{

ej (dj = 0)
δ

dj+δej (dj > 0)
, v :=

{
1
δeI (dj = 0)

1
δeI − [Q]

T
j,⋆ (dj > 0)

where eI is an n×1 vector with its entry [eI]x = 1 if x ∈
I , {i1, i2, · · · , iδ}, and [eI]x = 0 if x /∈ V . Since the

rank-one structure of ∆Q is preserved for updating δ

edges, Theorem 2 still holds under the new settings of u

and v for batch updates. Therefore, the changes ∆S to
the SimRank matrix in response to δ edges insertion can

be represented as a similar formulation to Theorem 3,

as illustrated in the first row of Table 2. Similarly, we

20 Weiren Yu et al.

Algorithm 6: Inc-bSR (G, (i, j),S, C)

Input : a directed graph G = (V, E),
a sequence of edge updates ∆G = {(i, j, op)},
the old similarities S in G,
the damping factor C.

Output: the new similarities S̃ in G⊕∆G.
1 obtain the net update ∆Gnet from ∆G via hashing ;

2 split ∆Gnet = ∆G+
net ∪∆G−

net according to op ;

3 partition ∆G+
net and ∆G−

net by “similar sink edges” ;

4 for each block of ∆G+
net do

5 split all edges {(i, j)} of each block further into
(at most) two sub-blocks based on whether i ∈ V

6 for each block of ∆G−
net do

7 delete all edges of each block and update S̃ via
Table 2 ;

8 remove all singleton nodes in the graph;

9 for each sub-block of ∆G+
net do

10 insert all edges of each sub-block and update S̃
via Table 2 ;

11 return S̃ ;

can also extend Theorems 6–9 in Section 6 to support

batch updates of δ edges for other cases (C1)–(C3) that
accompany new node(s) insertion. Table 2 summarizes

the newQ and S in response to such batch edge updates

of all the cases. When δ = 1, these batch update results

in Table 2 can be reduced to the unit update results of
Theorems 1–9.

Algorithm 6 presents an efficient batch updates al-
gorithm, Inc-bSR, for dynamical SimRank computation.

The actual computational time of Inc-bSR depends on

the input parameter ∆G since different update types in

Table 2 would result in different computational time.

However, we can readily show that Inc-bSR is superior
to the |∆G| executions of the unit update algorithm,

because Inc-bSR can process the “similar sink updates”

of each block simultaneously and can cancel out redun-

dant updates. To clarify this, let us assume that |∆Gnet|
can be partitioned into |B| blocks, with δt denoting the

number of edge updates in t-th block. In the worst case,

we assume that all edge updates happen to be the most

time-consuming case (C0) or (C2). Then, the total time

for handling |∆G| updates is bounded by

O

(
∑|B|

t=1

(
nδt + δ2t +K(nd+ δt + |AFF|)

)
)

≤O

(

n|∆Gnet|+ |∆Gnet|
∑|B|

t=1
δt +K

∑|B|

t=1
(nd+ δt + |AFF|)

)

≤O
(
(n+ |∆Gnet|)|∆Gnet|+K(|B|nd+ |∆Gnet|+ |B||AFF|)

)

Note that |B| ≤ |∆Gnet|, in general |B| ≪ |∆Gnet|.
Thus, Inc-bSR is typically much faster than the |∆G|

executions of the unit update algorithm that is bounded

by O
(
|∆G|K(nd+∆G+ |AFF|)

)
.

The memory usage of Inc-bSR, if we incorporate the

column-wise technique of Section 7, can be bounded by

O(n(max
|B|
t=1 δt)+nd) in the worst case, because O(nδt)

memory is needed to store δt columns of S when [S]⋆,I
is required for the t-th block.

Example 11 Recall from Example 9 that a sequence of

edge updates ∆G to the graph G = (V,E) in Fig. 6.

We want to compute new SimRank scores in G⊕∆G.

First, we can use hashing method to obtain the net
update ∆Gnet from ∆G, as shown in Example 9.

Next, by Example 10, we can partition ∆Gnet into

∆G+
net = {(q, i,+)} ∪ {(j, i,+), (k, i,+)} ∪ {(p, f,+), (r, f,+)}

∆G−
net = {(f, b,−)}

Then, for each block, we can apply the formulae in

Table 2 to update all edges simultaneously in a batch
fashion. The results are partially depicted as follows:

Node simold (f, b,−) (q, i,+)
(j, i,+) (p, f,+)

Pairs in G (k, i,+) (r, f,+)

(a, b) 0.0745 0.0809 0.0809 0.0809 0.0809
(a, i) 0 0 0 0.0340 0.0340

(b, i) 0 0 0 0.0340 0.0340

(f, i) 0.2464 0.2464 0.1232 0.1032 0.0516

(f, j) 0.2064 0.2064 0.2064 0.2064 0.1032

(g, h) 0.128 0.128 0.128 0.128 0.128
(g, k) 0.128 0.128 0.128 0.128 0.128

(h, k) 0.288 0.288 0.288 0.288 0.288

(i, j) 0.3104 0.3104 0.1552 0.1552 0.1552

(l,m) 0.16 0.16 0.16 0.16 0.16
(l, n) 0.16 0.16 0.16 0.16 0.16

(m,n) 0.16 0.16 0.16 0.16 0.16

The column ‘(q, i,+)’ represents the updated SimRank

scores after the edge (q, i) is added to G ⊕ {(f, b,−)}.

The last column is the new SimRanks in G⊕∆G. ⊓⊔

9 Experimental Evaluation

In this section, we present a comprehensive experimen-

tal study on real and synthetic datasets, to demonstrate
(i) the fast computational time of Inc-SR to incremen-

tally update SimRanks on large time-varying networks,

(ii) the pruning power of Inc-SR that can discard un-

necessary incremental updates outside “affected areas”;

(iii) the exactness of Inc-SR, as compared with Inc-SVD;
(iv) the high efficiency of our complete scheme that inte-

grates Inc-SR with Inc-uSR-C1, Inc-uSR-C2, Inc-uSR-C3

to support link updates that allow new nodes insertion;

(v) the small memory usage of our improved version in
Section 7 to incrementally evaluate all pairs of scores;

(vi) the fast computation time of our batch update algo-

rithm Inc-bSR against the unit update method Inc-SR.

A Partition-Based Approach to Web Hyperlink Analysis 21

Inc-SR Inc-uSR Inc-SVD Batch

75K 79K 83K 87K 91K
0

300

600

900

|E|+ |∆E| (DBLP)

E
la
p
se
d
T
im

e
(s
ec
)

395K 401K 407K 413K 419K
0

1K

3K

5K

|E|+ |∆E| (CitH)

E
la
p
se
d
T
im

e
(s
ec
)

889K 895K 901K 907K 913K
0

0.5

1

1.5

2
·104

|E|+ |∆E| (YouTu)

E
la
p
se
d
T
im

e
(s
ec
)

Fig. 7: Time Efficiency on Real Data (∆E does not accompany new nodes)

DBLP CitH
70

80

90

100

%
o
f
L
o
ss
le
ss

S
V
D

R
a
n
k

|∆E| = 6K

|∆E| = 12K

|∆E| = 18K

Fig. 8: % of Lossless SVD Rank

9.1 Experimental Settings

Datasets. We adopt both real and synthetic datasets.

The real datasets include DBLP,CitH, and YouTu.

(1) DBLP
21 is a co-citation graph, where each node

is a paper with attributes (e.g., publication year), and

edges are citations. By virtue of the publication year,

we extract several snapshots, each consisting of 93,560

edges and 13,634 nodes.

(2) CitH
22 is a reference network (cit-HepPh) from

e-Arxiv. If a paper u references v, there is one link from

u to v. The dataset has 421,578 edges and 34,546 nodes.

(3) YouTu23 is a YouTube network, where a video

u (node) is linked to v if v is in the relevant video list

of u. We extract snapshots according to the age of the
videos, and each has 953,534 edges and 178,470 nodes.

To generate synthetic graphs and updates, we adopt

GraphGen24 generation engine. The graphs are controlled

by (a) the number of nodes |V |, and (b) the number of

edges |E|. We produce a sequence of graphs that follow
the linkage generation model [7]. To control graph up-

dates, we use two parameters simulating real evolution:

(a) update type (edge/node insertion or deletion), and

(b) the size of updates |∆G|.

Algorithms. We implement the following algorithms:
(a) Inc-SVD, the SVD-based link-update algorithm [12];

(b) Inc-uSR, our incremental method without pruning;

(c) Batch, the batch SimRank method via fine-grained

memoization [20]; (d) Inc-SR, our incremental method

with pruning power but not supporting nodes insertion;
(e) Inc-SR-All, our complete enhanced version of Inc-SR

that allows nodes insertion by incorporating Inc-uSR-C1,

Inc-uSR-C2, and Inc-uSR-C3; (f) Inc-bSR, our batch in-

cremental update version of Inc-SR.

Parameters. We set the decay factor C = 0.6, as used
by the prior work [9]. The default iteration number is

set toK = 15, with which a high accuracy CK ≤ 0.0005

21 http://dblp.uni-trier.de/˜ley/db/
22 http://snap.stanford.edu/data/
23 http://netsg.cs.sfu.ca/youtubedata/
24 http://www.cse.ust.hk/graphgen/

is guaranteed [14]; on big CitH and YouTu, we choose
K = 10, as previously used by [9]. The target rank r

for Inc-SVD is a speed-accuracy trade-off — as shown in

the experiments of [12], the highest speedup is achieved

when r = 5. Thus, in the time evaluation, r = 5 is used.
In the exactness evaluation, we shall tune this value.

All the algorithms are implemented in Visual C++.

Each experiment is run 5 times; the average is reported.
We use a machine with an Intel Core 2.80 GHz CPU

and 8GB RAM, running Windows 7.

9.2 Experimental Results

9.2.1 Time Efficiency of Inc-SR and Inc-uSR

We first evaluate the computational time of Inc-SR and

Inc-uSR against Inc-SVD and Batch on real datasets.

Note that, to favor Inc-SVD that only works on small

graphs (due to memory crash for high-dimension SVD

n > 105), we just use Inc-SVD on DBLP and CitH.

Fig.7 depicts the results when edges are added to

DBLP, CitH, YouTu, respectively. For each dataset,

we fix |V | and increase |E| by |∆E|, as shown in the

x-axis. Here, the edge updates are the differences be-

tween snapshots w.r.t. the “year” (resp. “video age”)
attribute of DBLP, CitH (resp. YouTu), reflecting

their real-world evolution. We observe the following. (1)

Inc-SR always outperforms Inc-SVD and Inc-uSR when

edges are increased. For example, on DBLP, when the
edge changes are 10.7%, the time for Inc-SR (83.7s) is

11.2x faster than Inc-SVD (937.4s), and 4.2x faster than

Inc-uSR (348.7s). This is because Inc-SR deploys a rank-

one matrix trick to update the similarities, with an ef-

fective pruning strategy to skip unnecessary recompu-
tations, as opposed to Inc-SVD that entails rather ex-

pensive costs to incrementally update the SVD. The re-

sults on CitH are more pronounced, e.g., Inc-SR is 30x

better than Inc-SVD when |E| is increased to 401K. (2)
Inc-SR is consistently better than Batch when the edge

changes are fewer than 19.7% on DBLP, and 7.2% on

CitH. When link updates are 5.3% onDBLP (resp. 3.9%

22 Weiren Yu et al.

Inc-SR Inc-uSR Inc-SVD Batch

485K 500K 515K 530K 545K 560K
0

1K

2K

3K

Edge Insertion (Syn)

E
la
p
se
d
T
im

e
(s
ec
)

560K 545K 530K 515K 500K 485K
0

1K

2K

3K

Edge Deletion (Syn)

E
la
p
se
d
T
im

e
(s
ec
)

Fig. 9: Time Efficiency on Synthetic Data

DBLP CitH YouTu101

102

103

104

% of Pruned

Node-Pairs

76.3%

82.1%

79.4%

E
la
p
se
d
T
im

e
(s
ec
)

Inc-uSR

Inc-SR

Fig. 10: Pruning Power

DBLP CitH YouTu
0

20

40

60

80

100

%
o
f
|A
F
F
|

|∆E| = 6K

|∆E| = 12K

|∆E| = 18K

Fig. 11: % of Affected Areas

Inc-SR-All Inc-SVD Batch

75K 79K 83K 87K 91K
0

300

600

900

|E|+ |∆E| (DBLP)

E
la
p
se
d
T
im

e
(s
ec
)

395K 401K 407K 413K 419K
0

1K

3K

5K

|E|+ |∆E| (CitH)

E
la
p
se
d
T
im

e
(s
ec
)

889K 895K 901K 907K 913K
0

0.5

1

1.5

2
·104

|E|+ |∆E| (YouTu)

E
la
p
se
d
T
im

e
(s
ec
)

Fig. 12: Time Efficiency on Real Data (∆E accompanies new nodes insertion)

Data (|E|) Inc-bSR Inc-SR-All (%)

D
B
L
P 75K 14.9 16.3 8.8

83K 70.5 82.0 14.0

91K 315.9 363.8 13.1

C
it
H

395K 50.5 54.5 7.3

407K 241.9 283.5 14.6

419K 1869.1 2357.4 20.7

Y
o
u
T
u 889K 876.6 921.9 4.9

901K 2756.8 3297.4 16.4

913K 10256.1 12109.2 15.3

Fig. 13: Time for Batch Updates

on CitH), Inc-SR improves Batch by 10.2x (resp. 4.9x).

This is because (i) Inc-SR can exploit the sparse struc-

ture of ∆S for incremental update, and (ii) small link

perturbations may keep ∆S sparsity. Hence, Inc-SR is
highly efficient when link updates are small. (3) The

computational time of Inc-SR, Inc-uSR, Inc-SVD, unlike

Batch, is sensitive to the edge updates |∆E|. The rea-

son is that Batch needs to reassess all similarities from

scratch in response to link updates, whereas Inc-SR and
Inc-uSR can reuse the old information in SimRank for

incremental updates. In addition, Inc-SVD is too sensi-

tive to |∆E|, as it entails expensive tensor products to

compute SimRank from the updated SVD matrices.

Fig.8 shows the target rank r required for the loss-
less SVD of Eq.(5) w.r.t. the edge changes |∆E| on

DBLP and CitH. The y-axis is r
n × 100%, where n =

|V |, and r is the rank of lossless SVD for C in Eq.(5).

On each dataset, when increasing |∆E| from 6K to 18K,
we see that r

n is 95% on DBLP (resp. 80% on CitH),

Thus, r is not negligibly smaller than n in real graphs.

Due to the quartic time w.r.t. r, Inc-SVD may be slow

in practice to get a high accuracy.

On synthetic data, we fix |V | = 79, 483 and vary

|E| from 485K to 560K (resp. 560K to 485K) in 15K
increments (resp. decrements). The results are shown in

Fig.9. We can see that, when 6.4% edges are increased,

Inc-SR runs 8.4x faster than Inc-SVD, 4.7x faster than

Batch, and 2.7x faster than Inc-uSR. When 8.8% edges
are deleted, Inc-SR outperforms Inc-SVD by 10.4x, Batch

by 5.5x, and Inc-uSR by 2.9x. This justifies our complex-

ity analysis of Inc-SR and Inc-uSR.

9.2.2 Effectiveness of Pruning

Fig.10 shows the pruning power of Inc-SR as compared

with Inc-uSR on DBLP, CitH, and YouTu, in which

the percentage of the pruned node-pairs of each graph
is depicted on the black bar. The y-axis is in a log scale.

It can be discerned that, on every dataset, Inc-SR con-

stantly outperforms Inc-uSR by nearly 0.5 order of mag-

nitude. For instance, the running time of Inc-SR (64.9s)

improves that of Inc-uSR (314.2s) by 4.8x onCitH, with
approximately 82.1% node-pairs being pruned. That is,

our pruning strategy is powerful to discard unnecessary

node-pairs on graphs with different link distributions.

Since our pruning strategy hinges mainly on the size

of the “affected areas” of the SimRank update matrix,

Fig.11 illustrates the percentage of the “affected areas”
of SimRank scores w.r.t. link updates |∆E| on DBLP,

CitH, and YouTu. We find the following. (1) When

|∆E| is varied from 6K to 18K on every real dataset, the

“affected areas” of SimRank scores are fairly small. For
instance, when |∆E| = 12K, the percentage of the “af-

fected areas” is only 23.9% on DBLP, 27.5% on CitH,

and 24.8% on YouTu, respectively. This highlights the

effectiveness of our pruning method in real applications,

where a larger number of elements of the SimRank up-
date matrix with a-priori zero scores can be discarded.

(2) For each dataset, the size of “affect areas” mildly

grows when |∆E| is increased. For example, onYouTu,

the percentage of |AFF| increases from 19.0% to 24.8%
when |∆E| is changed from 6K to 12K. This agrees

with our time efficiency analysis, where the speedup of

Inc-SR is more obvious for smaller |∆E|.

A Partition-Based Approach to Web Hyperlink Analysis 23

Datasets

Inc-SR-All Inc-bSR Inc-SVD

No

Optimization

Turn on

Pruning

Turn on Column-

wise Partitioning

Turn on Pruning

& Column-wise

Partitioning

r = 5 r = 15 r = 25

DBLP 722.5M 163.1M 1.3M 15.0M 1.36G 1.97G 3.86G

CitH 1.64G 413.9M 4.2M 34.8M 4.83G — —

YouTu — — 12.7M 186.2M — — —

Fig. 14: Total Memory Efficiency on Real Data (“—” means memory explosion)

DBLP CitH YouTu
0

0.2

0.4

0.6

0.8

1

N
D
C
G

1
0
0

Inc-SR-All
(Partitioning)
Inc-SR-All
(Pruning)
Inc-bSR
Inc-SVD (5)
Inc-SVD (15)
Inc-SVD (25)

Fig. 15: Exactness

9.2.3 Time Efficiency of Inc-SR-All and Inc-bSR

We next compare the computational time of Inc-SR-All

with Inc-SVD and Batch onDBLP, CitH, andYouTu.

For each dataset, we increase |E| by |∆E| that might

accompany new nodes insertion. Note that Inc-SR can-

not deal with such incremental updates as ∆S does not
make any sense in such situations. To enable Inc-SVD to

handle new nodes insertion, we view new inserted nodes

as singleton nodes in the old graph G. Fig. 12 depicts

the results. We can discern that (1) on every dataset,
Inc-SR-All runs substantially faster than Inc-SVD and

Batch when |∆E| is small. For example, as |∆E| = 6K

on CitH, Inc-SR-All (186s) is 30.6x faster than Inc-SVD

(5692s) and 15.1x faster than Batch (2809s). The reason
is that Inc-SR-All can integrate the merits of Inc-SR with

Inc-uSR-C1, Inc-uSR-C2, Inc-uSR-C3 to dynamically up-

date SimRank scores in a rank-one style with no need

to do costly matrix-matrix multiplications. Moreover,

the complete framework of Inc-SR-All allows itself to
support link updates that enables new nodes insertion.

(2) When |∆E| grows larger on each dataset, the time

of Inc-SVD increases significantly faster than Inc-SR-All.

This larger increase is due to the SVD tensor products
used by Inc-SVD.In contrast, Inc-SR-All can effectively

reuse the old SimRank scores to compute changes even

if such changes may accompany new nodes insertion.

Fig. 13 compares the computational time of Inc-bSR

with Inc-SR-All. From the results, we can notice that, on
each graph, Inc-bSR is consistently faster than Inc-SR-All.

The last column “(%)” denotes the percentage of Inc-bSR

improvement on speedup. On each dataset, the speedup

of Inc-bSR is more apparent when |∆E| grows larger.
For example, on DBLP, the improvement of Inc-bSR

over Inc-SR-All is 8.8% when |E| = 75K, and 14.0%

when |E| = 83K. This is because the large size of |∆E|

may increase the number of the new inserted edges with

one endpoint overlapped. Hence, more such edges can
be handled simultaneously by Inc-bSR, highlighting its

high efficiency over the one-by-one update of Inc-SR-All.

9.2.4 Total Memory Usage

Fig. 14 evaluates the total memory usage of Inc-SR-All

and Inc-bSR against Inc-SVD on real datasets. Note that

the total memory usage includes the storage of the old

SimRanks required for all-pairs dynamical evaluation.

For Inc-SR-All, we test its three versions: (a) We first

switch off our methods of “pruning” and “column-wise

partitioning”, denoted as “No Optimization”; (b) next
turn on “pruning” only; and (c) finally turn on both.

For Inc-SVD, we also tune the default target rank r = 5

larger to see how the memory space is affected by r.

The results tells us that (1) on each dataset when

the memory of Inc-SVD and Inc-bSR does not explode,
the total spaces of Inc-SR-All and Inc-bSR are consis-

tently much smaller Inc-SVD whatever target rank r is.

This is because, unlike Inc-SVD, Inc-SR-All and Inc-bSR

need not memorize the results of SVD tensor products.

(2) When the “pruning” switch is open, the space of
Inc-SR-All can be reduced by ∼ 4x further on real data,

due to our pruning method that discards many zeros

in auxiliary vectors and final SimRanks. (3) When the

“column-wise partitioning” switch is open, the space of
Inc-SR-All can be saved by ∼ 100x further. The reason

is that, as all pairs of SimRanks can be computed in a

column-by-column style, there is no need to memorize

the entire old SimRank S and auxiliary M. This im-

provement agrees with our space analysis in Section 7.
(4) The space of Inc-bSR is 8-11x larger than Inc-SR-All,

but is still acceptable. This is because batch updates re-

quire more space to memoize several columns from the

old S to handle a subset of edge updates simultaneously.
(5) For Inc-SVD, when the target rank r is varied from

5 to 25, its total space increases from 1.36G to 3.86G

on DBLP, but crashes on CitH and YouTu. This im-

plies that r has a huge impact on the space of Inc-SVD,

and is not negligible in the big-O analysis of [12].

9.2.5 Exactness

Finally, we evaluate the exactness of Inc-SR-All, Inc-bSR,
and Inc-SVD on real datasets. We leverage the NDCG

metrics [12] to assess the top-100 most similar pairs.

We adopt the results of the batch algorithm [6] on each

dataset as the NDCG100 baselines, due to its exactness.
For Inc-SR-All, we evaluate its two enhanced versions:

“with column-wise partitioning” and “with pruning”;

for Inc-SVD, we tune its target rank r from 5 to 25.

24 Weiren Yu et al.

Fig. 15 depicts the results, telling us the following.

(1) On each dataset, the NDCG100s of Inc-SR-All and

Inc-bSR are 1, much better than Inc-SVD (< 0.62). This

agrees with our observation in Section 3 that Inc-SVD

may loss eigen-information in real graphs. In contrast,
Inc-SR-All and Inc-bSR can guarantee the exactness.

(2) The NDCG100s for the two versions of Inc-SR-All

are exactly the same, implying that both our pruning

and column-wise partitioning methods are lossless while
achieving high speedup.

10 Related Work

Recent results on SimRank computation can be distin-

guished into two broad categories: (i) incremental Sim-

Rank on dynamic graphs (e.g., [8,12,21]), and (ii) batch

SimRank on static graphs (e.g., [5, 6, 10, 11, 13, 14, 20]).

10.1 Incremental SimRank

Generally, there are two types of dynamical algorithms:

(i) deterministic method [8, 12], and (ii) probabilistic
method [17]. Regarding deterministic approaches, the

pioneering work of Li et al. [12] devised an excellent

matrix representation of SimRank, and was the first

to show a SVD method for incrementally updating all

pairs of SimRanks, which requires O(r4n2) time and
O(r2n2) memory, where r (≤ n) is the target rank of the

low-rank approximation. However, (i) their incremental

way is inherently inexact, with no guaranteed accuracy.

It may miss some eigen-information (as we explained in
Section 3) even though r is chosen to be exactly the full

rank (instead of low rank) of the target matrix for the

lossless SVD. (ii) In practice, r seems not much smaller

than n for attaining a desired accuracy, but this may

lead to prohibitively expensive updating costs for [12]
because its time complexity O(r4n2) is quartic w.r.t. r.

In comparison, our work adopts a completely different

framework from [12]. Instead of incrementally updat-

ing SVD, we first describe the changes to SimRank in
response to every link update as a rank-one Sylvester

equation, and then use graph topology to discard “un-

affected areas” for speeding up the incremental compu-

tation of SimRank, without a compromise in accuracy.

Our methods yield only linear time and memory w.r.t. n
(independent of r) to incrementally compute all pairs

of SimRanks for every link update. Moreover, for some

types of link updates, e.g., the insertion of edge (i, j)

with i or j being a new node, the existing method by Li
et al. [12] does not work effectively since their compu-

tational framework tacitly implies an assumption that

new and old SimRank matrices must keep the same size.

In contrast, our solution in this work can efficiently deal

with such types of link updates, allowing new node in-

sertions and deletions.

Another appealing piece of work is due to He et al. [8],

who proposed the parallel computation of SimRank on

digraphs, by leveraging an iterative aggregationmethod.

Indeed, the parallel computing technique in [8] can be

regarded as an efficient way to dynamically update new
SimRank blocks. It differs from this work in that [8]

is based on GPU to improve the parallel efficiency by

reordering and splitting the first-order Markov chain,

whereas our methods eliminate unnecessary recompu-
tations in “unaffected areas” in terms of graph updates

on CPU via a rank-one Sylvestor equation.

Most recently, Shao et al. [17] provided a picturesque
exposition of a two-stage random walk sampling frame-

work for SimRank search. In the preprocessing stage,

they sampled a collection of one-way graphs to index

random walks in a scalable manner. In the query stage,

they retrieved similar nodes by pruning unqualified nodes
based on the connectivity of one-way graph. The major

advantage of their method is that one-way graph can

be updated efficiently when the original graph changes.

However, their methods deliver probabilistic results as
they are based on a random walk sampling method.

There has also been a body of work on incremental

computation of other graph-based relevance measures.
Banhmani et al. [1] utilized the Monte Carlo method

for incrementally computing Personalized PageRank.

Desikan et al. [3] proposed an excellent incremental

PageRank algorithm for node updating. Their central

idea revolves around the first-orderMarkov chain. Sarma
et al. [16] presented an excellent exposition of randomly

sampling random walks of short length, and merging

them together to estimate PageRank on graph streams.

All these incremental methods are designed only for a
specific measure, and may not be applied to SimRank.

10.2 Batch SimRank

In comparison to incremental algorithms, the batch Sim-

Rank computation has been well-studied on static graphs.

For deterministic methods, Jeh and Widom [9] were

the first to propose an iterative paradigm for SimRank,

entailing O(Kd2n2) time for K iterations, where d is
the average in-degree. Later, Lizorkin et al. [14] uti-

lized the partial sums memoization to speed up Sim-

Rank computation to O(Kdn2). Recently, Yu et al. [20]

have also improved SimRank computation to O(Kd′n2)
time (with d′ ≤ d) via a fine-grained memoization to

share the common parts among different partial sums.

Fujiwara et al. [6] exploited the matrix form of [12] to

A Partition-Based Approach to Web Hyperlink Analysis 25

find the top-k similar nodes in O(n) time w.r.t. a given

query node. All these methods requireO(n2) memory to

output all pairs of SimRanks. Very recently, Kusumoto

et al. [10] proposed an excellent linearized method that

requires only O(dn) memory and O(K2dn2) time to
compute all pairs of SimRanks. The recent work of [22]

proposes an efficient aggregate method for computing

partial pairs of SimRank scores. As a special case, the

algorithm of [22] can evaluate all pairs of SimRanks in
O(Kdn2) time and O(Kdn) memory.

For probabilistic approaches, Fogaras and Rácz [5]

proposed P-SimRank in linear time to estimate s(a, b)

from the probability that two random surfers, starting

from a and b, will finally meet at a node. Li et al. [13]
harnessed the random walks to compute local SimRank

for a single node-pair. Later, Lee et al. [11] deployed the

Monte Carlo method to find top-k SimRank node-pairs.

Recently, Tao et al. [19] proposed an excellent two-stage
way for the top-k SimRank-based similarity join.

11 Conclusions

In this article, we study the problem of incrementally
updating SimRank scores on time-varying graphs. Our

complete scheme, Inc-SR-All, consists of five ingredients:

(1) For edge updates that do not accompany new nodes

insertion, we characterize the SimRank update matrix

∆S via a rank-one Sylvester equation. Based on this, a
novel efficient algorithm is devised, which reduces the

incremental computation of SimRank from O(r4n2) to

O(Kn2) for each link update. (2) To eliminate unneces-

sary SimRank updates further, we also devise an effec-
tive pruning strategy that can improve the incremental

computation of SimRank to O(K(nd + |AFF|)), where

|AFF| (≪ n2) is the size of “affected areas” in SimRank

update matrix. (3) For edge updates that accompany

new nodes insertion, we consider three insertion cases,
according to which end of the inserted edge is a new

node. For each case, we devise an efficient incremental

SimRank algorithm that can support new nodes inser-

tion and accurately update affected similarities. (4) To
optimize the memory usage for all-pairs SimRank up-

dates, we also devise a column-wise partitioning tech-

nique that significantly reduces the storage from O(n2)

to O(dn), without the need to memorize the entire old

SimRank matrix. (5) For batch updates, we also pro-
pose efficient batch incremental methods that can han-

dle “similar sink edges” simultaneously and eliminate

redundant edge updates. The experimental evaluations

on real and synthetic datasets demonstrate that (a) our
incremental scheme is consistently 5-10x faster than Li

et al.’s SVD based method; (b) our pruning strategy can

speed up the incremental SimRank further by 3-6x; (c)

the column-wise partitioning technique can reduce all

pairs of SimRank computation by 100x memory usage;

(d) the batch update algorithm enables an extra 5-15%

speedup, with just a little compromise in memory.

References

1. B. Bahmani, A. Chowdhury, and A. Goel. Fast incremen-
tal and personalized PageRank. PVLDB, 4(3), 2010.

2. P. Berkhin. Survey: A survey on PageRank computing.
Internet Mathematics, 2, 2005.

3. P. K. Desikan, N. Pathak, J. Srivastava, and V. Kumar.
Incremental PageRank computation on evolving graphs.
In WWW, 2005.

4. D. Fogaras and B. Rácz. Scaling link-based similarity
search. In WWW, 2005.

5. D. Fogaras and B. Rácz. Practical algorithms and lower
bounds for similarity search in massive graphs. IEEE

Trans. Knowl. Data Eng., 19, 2007.
6. Y. Fujiwara, M. Nakatsuji, H. Shiokawa, and M. Onizuka.

Efficient search algorithm for SimRank. In ICDE, 2013.
7. S. Garg, T. Gupta, N. Carlsson, and A. Mahanti. Evolu-

tion of an online social aggregation network: An empirical
study. In Internet Measurement Conference, 2009.

8. G. He, H. Feng, C. Li, and H. Chen. Parallel SimRank
computation on large graphs with iterative aggregation.
In KDD, 2010.

9. G. Jeh and J. Widom. SimRank: A measure of structural-
context similarity. In KDD, 2002.

10. M. Kusumoto, T. Maehara, and K. Kawarabayashi. Scal-
able similarity search for SimRank. In SIGMOD, 2014.

11. P. Lee, L. V. Lakshmanan, and J. X. Yu. On top-k struc-
tural similarity search. In ICDE, 2012.

12. C. Li, J. Han, G. He, X. Jin, Y. Sun, Y. Yu, and T. Wu.
Fast computation of SimRank for static and dynamic in-
formation networks. In EDBT, 2010.

13. P. Li, H. Liu, J. X. Yu, J. He, and X. Du. Fast single-pair
SimRank computation. In SDM, 2010.

14. D. Lizorkin, P. Velikhov, M. N. Grinev, and D. Turdakov.
Accuracy estimate and optimization techniques for Sim-
Rank computation. PVLDB, 1, 2008.

15. A. Ntoulas, J. Cho, and C. Olston. What’s new on the
web?: The evolution of the web from a search engine per-
spective. In WWW, 2004.

16. A. D. Sarma, S. Gollapudi, and R. Panigrahy. Estimating
PageRank on graph streams. J. ACM, 58:13, 2011.

17. Y. Shao, B. Cui, L. Chen, M. Liu, and X. Xie. An effi-
cient similarity search framework for SimRank over large
dynamic graphs. PVLDB, 8(8):838–849, 2015.

18. Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. PathSim:
Meta path-based top-k similarity search in heterogeneous
information networks. PVLDB, 4, 2011.

19. W. Tao, M. Yu, and G. Li. Efficient top-k SimRank-based
similarity join. PVLDB, 8(3):317–328, 2014.

20. W. Yu, X. Lin, and W. Zhang. Towards efficient SimRank
computation on large networks. In ICDE, 2013.

21. W. Yu, X. Lin, and W. Zhang. Fast incremental SimRank
on link-evolving graphs. In ICDE, pages 304–315, 2014.

22. W. Yu and J. A. McCann. Efficient partial-pairs Sim-
Rank search for large networks. PVLDB, 8(5):569–580,
2015.

23. W. Yu and J. A. McCann. High quality graph-based
similarity retrieval. In SIGIR, 2015.

