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Abstract SimRank has become an important similarity measure to rank web docu-
ments based on a graph model on hyperlinks. The existing approaches for conducting
SimRank computation adopt an iteration paradigm. The most efficient deterministic
technique yields O

(
n3

)
worst-case time per iteration with the space requirement

O
(
n2

)
, where n is the number of nodes (web documents). In this paper, we propose

novel optimization techniques such that each iteration takes O (min {n · m, nr}) time
and O (n + m) space, where m is the number of edges in a web-graph model
and r ≤ log2 7. In addition, we extend the similarity transition matrix to prevent
random surfers getting stuck, and devise a pruning technique to eliminate impractical
similarities for each iteration. Moreover, we also develop a reordering technique
combined with an over-relaxation method, not only speeding up the convergence
rate of the existing techniques, but achieving I/O efficiency as well. We conduct
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extensive experiments on both synthetic and real data sets to demonstrate the
efficiency and effectiveness of our iteration techniques.

Keywords graph similarity · SimRank · link-based analysis · optimal algorithms

1 Introduction

In recent years, the complex hyperlink-based similarity search has attracted consid-
erable attention in the field of Information Retrieval. One of the promising measures
is the SimRank similarity with ubiquitous applications to search engine ranking,
document corpora clustering, collaborative filtering for recommender systems, etc.
SimRank is a recursive refinement of co-citation measure that computes similarity
by common neighbours alone [12]. The intuitive model for SimRank measure is
based on random walk over a web-graph like Google PageRank [20]. The SimRank
similarity between two web pages is defined recursively as the average similarity
between their neighbours, along with the base case that one page is maximally
similar to itself. Unlike many other domain-specific measures that require human-
built hierarchies, SimRank can be used in any domain in combination with traditional
textual similarity to produce an overall similarity measure [9, 10].

Motivations For achieving high efficiency of SimRank computation, it is desirable
to develop optimization techniques that improve the time and space complexity of
the similarity algorithm. The state-of-the-art approaches for SimRank optimization
can be outlined into the following two categories: (a) deterministic techniques
[1, 3, 16, 17, 26] that estimate the exact SimRank solution s (·, ·) (i.e., a fixed point)
by utilizing an iterated similarity function. (b) stochastic techniques [9, 10] that
approximate similarities by the expected value s (a, b) = E (cτ(a,b) ), where τ(a,b) is a
random variable denoting the first hitting time for nodes a and b , and c ∈ (0, 1) is a
decay factor.

Several deterministic strategies have been studied as the iterative algorithms often
produce better accuracy than stochastic counterparts for similarity estimation. The
straightforward SimRank iterative paradigm is time-consuming, yielding O

(
Kn4

)

worst-case time and O
(
n2

)
space [12]. Recent work on structural/attribute-similarity-

based graph clustering [27] has also raised the need for developing efficient meth-
ods for similarity computation. Nonetheless, unlike content-based similarities, it is
considerably more challenging to design a deterministic and efficient algorithm that
allows significant savings in time and space for SimRank computation.

To the best of our knowledge, to the present there are three most efficient
techniques [11, 14, 17] for deterministic SimRank computation. Lizorkin et al. [16, 17]
deployed a partial sums function reducing the computational time from O

(
Kn4

)
to

O
(
Kn3

)
in the worst case. Li et al. [14] developed an approximation algorithm for

estimating similarities on static and dynamic information networks. He et al. [11]
proposed a parallel algorithm based on graphics processing units (GPU) for similarity
computation.

Contributions In this extended paper of the conference version [25], we present
the additional optimization techniques to further improve the efficiency of SimRank
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deterministic computation by orders of magnitude. We outline the main contribu-
tions made in this paper as follows:

– We extend the SimRank transition matrix in [25] to avoid locking random surfer
into an enclosed subsection of the entire graph by overlaying a teleportation
matrix.

– We represent similarity equations in a matrix form and employ a sparse storage
scheme for SimRank transition matrix, which lays a foundation for optimizing
computational time from O

(
n3

)
to O (min {n · m, nr}) in the worst case, where

r ≤ log27 with the space requirement from O
(
n2

)
to O (m + n).

– We devise a pruning technique for the similarity matrix to eliminate impractical
almost zero similarity values by setting a threshold, keeping the sparseness of
similarity matrix for each iteration.

– We develop a heuristic optimal permutation technique for minimizing SimRank
transition matrix bandwidth for digraphs, improving the I/O efficiency of Sim-
Rank iteration.

– We show a successive over-relaxation method for SimRank computation to
significantly speed up the convergence rate of the existing technique.

– We validate the performance of our algorithm with an extensive experimental
study on both synthetic and real-life data sets, demonstrating that it outperforms
the state-of-the-art algorithms by orders of magnitude.

Organizations The rest of the paper is organized as follows. In the next section,
the problem definition for SimRank is formally introduced. In Section 3, a solution
framework for SimRank optimization techniques is established. In Section 4, three
optimization techniques for SimRank computation are suggested; the time and space
complexity of the proposed algorithm is analyzed. In Section 5, the experimental
results are reported on the efficiency of our methods over synthetic and real-life data
sets. The related work appears in Sections 6 and 7 concludes the paper.

2 Preliminaries

In this section, the formal definition of SimRank is given and some notations are
presented. The material in this section recalls Jeh’s previous work [12].

2.1 Problem definition

Given a directed graph G = (V, E) , each node in V represents a web page and a
directed edge 〈a, b〉 in E corresponds to a hyperlink from page a to b , we can derive
a node-pair graph G2 �

(
V2, E2

)
, where

(i) ∀ (a, b) ∈ V2 if a, b ∈ V;
(ii) ∀ 〈(a1, b 1) , (a2, b 2)〉 ∈ E2 if 〈a1, a2〉 , 〈b 1, b 2〉 ∈ E.

On a node-pair graph G2, we formally define a similarity function measured by
SimRank score.
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Definition 1 (SimRank similarity) Let s : V2 → [0, 1] ⊂ R be a real-valued function
on G2 defined by

s (a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

1, a = b ;
c

|I(a)||I(b)|
|I(b)|∑

j=1

|I(a)|∑

i=1
s
(
Ii (a) , I j (b)

)
, I (a) , I (b) 	= ∅;

0, otherwise.

(1)

where c ∈ (0, 1) is a constant decay factor , I (a) denotes all in-neighbours of node
a , |I (a)| is the cardinality of I (a), an individual member of I (a) is referred to as
Ii (a) (1 ≤ i ≤ |I (a)|), then s (a, b) is called SimRank similarity score between node a
and b .

The underlying intuition behind SimRank definition is that “two pages are similar
if they are referenced by similar pages”. Figure 1 visualizes the propagation of
SimRank similarity in G2 from node to node, which corresponds to the propagation
from pair to pair in G, starting with the singleton node {4, 4}. Since a unique solution
to the SimRank recursive equation (1) is reached by iteration to a fixed-point, we can
carry out the following iteration for SimRank computation.

s(0) (a, b) =
{

1, a = b ;
0, a 	= b .

(2)

s(k+1) (a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

1, a = b ;
c

|I(a)||I(b)|
|I(b)|∑

j=1

|I(a)|∑

i=1
s(k)

(
Ii (a) , I j (b)

)
, I (a) , I (b) 	= ∅;

0, otherwise.

(3)

where s(k) (a, b) (∀k = 0, 1, 2, · · · ) gives the score between a and b on the k-th
iteration, and this sequence nondecreasingly converges to s (a, b), i.e.,

s (a, b) = lim
k→+∞

s(k) (a, b) .

Figure 1 SimRank
propagating similarity from
pair to pair in G associated
with the propagation from
node to node in G2 with a
decay factor c = 0.8.
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Table 1 Symbols and notations.

Symbol Definition Symbol Definition

P adjacency matrix of G π permutation function
Q transpose of column-normalized �π permutation matrix

matrix P corresponding to π

S SimRank matrix n number of nodes on G
In n × n identity matrix m number of edges on G
K number of iterations d average node degree of G∨

disjunction operator ε accuracy
β (Q) bandwidth of matrix Q c decay factor, 0 < c < 1
N(a) set of neighbors of node a |N(a)| degree of node a

In Table 1, we list the notations that are used throughout this paper. Note that
symbols defined and referenced in a local context are not listed here.

3 Solution framework

In this section, we present our solution framework. The main optimization issue of
SimRank computation covers the following three consecutive steps.

Firstly, a scheme for SimRank matrix representation is adopted. We introduce
a compressed storage scheme for sparse graphs and a fast matrix multiplication for
dense graphs respectively, reducing the space requirement from O

(
n2

)
to O (m + n)

and the time complexity from O
(
n3

)
to O (min {n · m, nr}) in the worst case, where

r ≤ log2 7. We show the results in Section 4.1.
Secondly, a technique for permuted SimRank equation is proposed. For the Sim-

Rank computation to be I/O-efficient, the adjacency matrix needs to be preordered,
which requires off-line precomputation to minimize the bandwidth at query time. We
discuss the approaches in detail in Section 4.2.

Finally, a method for successive over-relaxation (SOR) iteration is suggested to
speed up the convergence rate of SimRank computation. We show that our SimRank
iterative method is practically faster than the most efficient existing techniques [16].
We show theoretical results in Section 4.3.

4 Optimizations for SimRank algorithms

In what follows, each of the three outlined techniques is presented in its own
subsection accordingly.

4.1 Matrix representations for SimRank model

For an elaborate discussion on the subject, we first consider the SimRank similarity
problem in matrix formulation. Let S = (

si, j
) ∈ R

n×n be a SimRank matrix of G
whose entry si, j equals the similarity score between page i and j, and P = (

pi, j
) ∈ N

n×n
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be an adjacency matrix of G whose entry pi, j equals the number of edges from vertex
i to j. Clearly, we can write (2) and (3) as

s(0)

a,b =
{

1, a = b ;
0, a 	= b .

(4)

s(k+1)

a,b = c
|I (a)| |I (b)|

n∑

i=1

n∑

j=1

pi,a · s(k)

i, j · pj,b

= c ·
n∑

i=1

n∑

j=1

⎛

⎜⎜
⎝

pi,a
n∑

i=1
pi,a

⎞

⎟⎟
⎠ · s(k)

i, j ·

⎛

⎜
⎜⎜
⎝

pj,b
n∑

j=1
pj,b

⎞

⎟
⎟⎟
⎠

(5)

where we assume, without loss of generality, that a 	= b (otherwise, s(k)
a,a ≡

1 (k = 0, 1, · · · )).
In matrix notation, (4) and (5) become

{
S(0) = In

S(k+1) = (
c · Q · S(k) · QT

)∨
In (∀k = 0, 1, · · · ) (6)

As we have seen in (6), the computational complexity is O
(
n3

)
per iteration with

the space requirement O
(
n2

)
since the naive matrix multiplication algorithm ui, j =∑n

k=1 qi,k · sk, j (∀i, j = 1, · · · , n) performs O
(
n3

)
operations for all entries of U ∈

R
n×n.
In the following, three techniques are investigated to obtain the time and space

efficient algorithms for SimRank computation. We first give a slight modification of
the naive SimRank transition matrix in order to avoid locking the random surfer into
the pitfall on G2. Then, for sparse graph, the compressed storage scheme is adopted
to reduce the space requirement to O (n + m) with time complexity O (n · m). For
dense graph, the fast matrix multiplication algorithm is suggested to reduce the time
complexity from O

(
n3

)
to O (nr) in the worst case, where r ≤ log2 7.

4.1.1 The modif ication of SimRank transition matrix

As SimRank similarity score s (·, ·) can be seen as a random walker defined on a
node-pair graph G2 depicted in Figure 1b, the walker may wander into an enclosed
subsection of the entire graph which has no out-link web documents so that he will
get stuck in the small subgraph with no possibility to return to any outside web
documents. The aforementioned scenario is associated with a reducible transition
probability matrix, meaning that its corresponding graph is not strongly connected
such that the walker on G2 might easily fall into the enclosed subsection.

To avoid locking the walker into the pitfall, we harness the technique termed
teleportation on the reducible graph by overlaying a teleportation graph to make the



World Wide Web (2012) 15:327–353 333

new induced graph irreducible. We replace zero rows in the transition matrix Q with
1
n in all its entries. In matrix notations, this can be mathematically described as:

Q̃ = λ · Q + (1 − λ) · 1
n

· En, (7)

where λ ∈ [0, 1] is a teleportation probability factor, and En is an n × n matrix with
the i-th row being all ones if vi has no out-links whatsoever.

It can be observed that the choice of value λ greatly influences the SimRank
iterative result. A large λ would well describe that real-life potential link structure
of the web graph, but it would result in a very slow convergence rate of the iteration.
As a compromise, we empirically set λ = 0.8 for practical use.

In the following, we give a theoretical explanation of the above observation.
Taking the vectorization operator (vec) on both sides of (6) and applying the
Kronecker property vec

(
Q · S · QT

) = (Q ⊗ Q) · vec (S), we can obtain
{

vec
(
S(0)

) = vec (In)

vec
(
S(k+1)

) = c · (Q ⊗ Q) · vec
(
S(k)

) ∨ vec (In)
(8)

Note that the above equation is actually a variant of power iteration paradigm on G2.
According to the power method [2], the convergence rate of vec

(
S(k)

)
to the exact

solution is geometrically governed by the ratio O
(∣∣∣ λ2

λ1

∣∣∣
)

, where λi (i = 1, 2) is the i-th

eigenvalue of the matrix c · (Q ⊗ Q).
To determine the first (dominant) eigenvalue of c · (Q ⊗ Q), we need to compute

the eigenvalue of Q. Since Q is a row-stochastic matrix, it follows from the Perron-
Frobenius theorem [2] that 1 is dominant eigenvalue of Q. Hence, according to
the Kronecker property [2], c · (Q ⊗ Q) has the eigenvalues {c, λ2, · · · }. Similarly,

c ·
(

Q̃ ⊗ Q̃
)

has the eigenvalues
{
c, λ2 · λ2, · · ·

}
. Thus, when we replace Q with Q̃

in (8), the convergence rate of vec
(
S(k)

)
will become O

(
λ2·|λ2|

c

)
, where λ is the

teleportation factor of (8), and λ2 is the second largest eigenvalue of the matrix
c · (Q ⊗ Q). Therefore, a value of large λ would lead to the slow convergence of
vec

(
S(k)

)
.

4.1.2 Compressed matrix storage scheme for sparse graph

For certain large scale web graphs, the relative sparseness of the adjacency matrix
increases with the growth of the matrix dimension. To calculate SimRank for large
domains, the memory requirements do not allow the adjacency matrix stored in its
full format. Hence we suggest a compressed sparse matrix representation to be kept
in main memory.

There are various compressed storage schemes to store a matrix [8], including
Compressed Sparse Row (CSR), Compressed Sparse Column (CSC), Jagged Di-
agonal (JAD) format, etc. We use the CSR storage scheme for the sparse row-
normalized adjacency matrix Q due to the high compression ratio. Observing that
the directed graph G implies that Q is a non-symmetric sparse matrix, we construct
a triple 〈val, col_idx, row_ptr〉, where val is a floating-point vector whose element
stores the nonzero entry of the matrix Q, col_idx is an integer vector whose element
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Figure 2 CSR representation of the adjacency matrix Q.

stores the column index of the nonzero entry in Q to make random jumps in the
val vector, row_ptr is an integer vector whose element stores the location in the val
vector that starts a row. Therefore we may infer from val (k) = qi, j that col_idx (k) =
j and k ∈ [

row_ptr (i) , row_ptr (i + 1)).
In Figure 2, we give an illustrative example of CSR representation of the adjacency

matrix Q. And many basic mathematical operations on the sparse matrix such
as matrix-matrix multiplication should be implemented in a new way. For our
application, to calculate U = Q · S in (6), where Q is a sparse matrix and S is a
dense matrix, we cannot use the sum ui, j = ∑n

k=1 qi,k · sk, j (∀i, j = 1, · · · , n) directly
because the column traversal operation in CSR format matrix Q is costly. We adopt
the following algorithm that is more efficient for sparse matrix multiplication [8].

In Algorithm 1, Q is stored in CSR format and the performance of matrix multi-

plication Q · S requires only O
(∑n

i=1
∑n

j=1
∑row_ptrQ( j+1)−1

k=row_ptrQ( j) 1
)

≡ O (n · m) time and

O (n + m) storage. If G is sparse, then m = O (n). It follows that the complexity
for computing the whole SimRank matrix S reduces to quadratic time and linear
intermediate memory, which is a substantial improvement achieved by CSR storage
schemes.

4.1.3 Fast matrix multiplication for dense graph

Even when the input graph is rather dense, we still consider that our algorithm is
more time-efficient than the existing work [16]. Though in this case the naive dense
matrix multiplication requires O

(
n3

)
time complexity, fast matrix multiplication

algorithms can be applied in our algorithms to speed up the computation of the dense
matrices product. To the best of our knowledge, in standard matrix storage format,
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the Coppersmith-Winograd algorithm [7] is the fastest technique for square matrix
multiplication, with a complexity of O

(
n2.38

)
which is a considerable improvement

over the naive O
(
n3

)
time algorithm and the O

(
nlog27

)
time Strassen algorithm [5].

The interested reader can refer to [5–7] for a detailed description. For our purpose,
we implemented the Coppersmith-Winograd algorithm in dense graphs for achieving
high performances of our algorithms. Therefore, combined with the sparse case, the
time efficiency of our techniques is guaranteed with O (min {n · m, nr}) per iteration,
where r ≤ log27, much preferable to the existing approach [16] with a complexity of
O

(
n3

)
in the worst case.

4.1.4 Pruning similarity matrix for each iteration

In many real applications, the similarity matrix often contains an extremely large
fraction of non-zeros entries whose values are almost 0 after several iterations. These
small similarity values require a significant amount of storage space with less practical
information between web documents.

In order to keep the sparseness of similarity matrix, we develop a pruning
technique to get rid of these almost zero values by setting a threshold �. If the
similarity value s(k)

i, j between nodes i and j at k-th iteration is below �, we drop the
corresponding this entry from the SimRank matrix. In symbols, we define the pruned
similarity matrix by a threshold � at k-th iteration in the following:

s̄(k)

i, j =
{

s(k)

i, j , s(k)

i, j ∈ [�, 1]
0, s(k)

i, j ∈ [0,�)
(9)

This dropping will also decrease the redundant similarity computations and space per
iteration. In practice, it is empirically preferable to set the threshold value � = 0.01,
which may improve the algorithmic efficiency by orders of magnitude.

4.2 Permuted SimRank iterative approach

After the CSR storage scheme has been created for the sparse adjacency matrix
Q, the optimization technique suggested in this subsection allows improving I/O
efficiency for SimRank computation. The main idea behind this optimization in-
volves two steps: (a) Reversed Cuthill-McKee(RCM) algorithm [4] for non-symmetric
matrix is introduced for finding an optimal permutation π while reordering the
matrix Q during the precomputation phase. (b) Permuted SimRank iterative equation
is developed for reducing the matrix bandwidth for SimRank computation.

We first introduce the notion of matrix bandwidth [15].

Definition 2 (Matrix bandwidth) Given a matrix Q = (
qi, j

) ∈ R
n×n, let βi (Q) �∣∣

∣∣i − min
1≤ j≤n

{
qi, j 	= 0

}
∣∣
∣∣ denote the i-th bandwidth of matrix Q. We define the bandwidth

of matrix Q to be the quantity

β (Q) � max
1≤i≤n

βi (Q)
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If Q is non-symmetric, β (Q) is the maximum of its distinct upper and lower
bandwidths βupper (Q) and βlower (Q). Figure 3 briefly illustrates an example of the
above concept.

A matrix bandwidth is introduced for measuring the I/O efficiency for SimRank
computation. For achieving smaller bandwidth, we need to reorder the sparse matrix
Q with precomputation by finding an optimal permutation π .

We now give the notions of permutation and permutation matrix which are helpful
for further discussion [4].

Definition 3 (Permutation matrix) Given a permutation π of n objects, π :
{1, 2, · · · , n} → {1, 2, · · · , n} defined in two-line form by

(
1 2 · · · n

π (1) π (2) · · · π (n)

)

The corresponding permutation matrix is �π = (
θi, j

) ∈ {0, 1}n×n, whose entries
satisfy

θi, j =
{

1, j = π (i) ;
0, otherwise.

One important property of a permutation matrix is that multiplying any matrix Q
by a permutation matrix �π on the left/right has the same effect of rearranging the
rows/columns of Q. With this property, we may find an optimal permutation π while
reordering the sparse matrix Q and can thus effectively minimize the bandwidth for
SimRank computation.

4.2.1 Reversed Cuthill–McKee (RCM) algorithm for directed graph

The RCM algorithm for directed graph [4] is used for finding an optimal permutation
π corresponding to Q. With this permutation π , we can separate Q into dense
blocks, store them individually in a CSR format and remove as many empty blocks
as possible from Q. However, it is an NP-complete problem [4] for finding such a
permutation π , which may also be viewed as a web graph labeling problem in our
models. We give an intuitive example in Figure 4.

Figure 4 indicates that our permutation problem for adjacency matrix is equivalent
to the graph labeling problem. It is easy to see that the graph GQ+QT and Gπ(Q+QT)

Figure 3 Bandwidth of the
adjacency matrix Q.
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Figure 4 A simplified version of SimRank minimum bandwidth ordering problem with permutation
π on the adjacency matrix Q.

have the identical structure and the different node labeling when we choose a
new permutation π on both rows and columns of the matrix Q + QT . Thus, the
permutation π can be thought of as a bijection between the vertices of the labeled
graph GQ+QT and Gπ(Q+QT). And the bandwidth β

(
π

(
Q + QT

))
is often no greater

than β
(
Q + QT

)
. In Figure 4, the SimRank bandwidth is optimized by permutation

π as follows:

2 = β (π (Q)) = β
(
π

(
Q + QT))

< β
(
Q + QT) = β (Q) = 5

In the following, our goal is to find a better permutation π minimizing the bandwidth
of the matrix Q.

There have been several heuristic approaches available for determining the better
permutation π for the given matrix Q. Observe that the popular Reversed Cuthill-
McKee(RCM) algorithm [4] is most widely used for ordering sparse symmetric
matrices. We extend the original RCM to the directed graph associated with the non-
symmetric adjacency matrix Q. We reorder the rows of Q by adding “the mate QT”
of each entry and applying RCM to Q + QT whose structure is symmetric since the
bandwidth of π (Q) is no greater than that of π

(
Q + QT

)
. We describe Algorithm 2

in high-level terms for finding the optimal permutation π , which is essentially an
extenstion of RCM algorithm [4].
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We now show how the algorithm Extended_RCM computes the permutation π in
the graph GQ. Firstly, we need to symmetrize the digraph GQ to an undirected graph
GQ+QT by removing the direction of each edge. Then, we build a level structure for
GQ by breadth-first search (BFS) and order the nodes by increasing degrees from the
starting node. More concretely, we start to select a node with a minimal degree of
1 in GQ+QT , say v1 = 2, and add it to 
. We also compute all the neighbors of v1,
denoted by N (v1) = {6} and insert them in an increasing order at the back queue T.
Since T is a FIFO data structure, we remove the node at the front of T, say v2 = 6,
and add it into 
. The algorithm then repeatedly calculates its neighbors and pushes
them into T with an increasing order until T is empty. If the size of 
 is n (meaning
that all nodes have been relabeled), then Extended_RCM returns the reversed order
of 
. If not, the algorithm starts to explore another component, and again chooses
another starting node with a minimal degree in its component till all nodes in all
components of the graph have been visited. Table 2 illustrates the detailed process
on how Extended_RCM computes 
 and T.

Complexity The algorithm consists of three phases: initialization (lines 1–3), permu-
tation computation (lines 4–11), and reversed ordering result collection (lines 12–14).

Table 2 Computational process of permutation.

i vi 
 N(vi) T

1 2 {2} {6} {6}
2 6 {2,6} {2,4,1} {4,1}
3 4 {2,6,4} {3,6} {1,3}
4 1 {2,6,4,1} {5,3,6} {3,5,3}
5 3 {2,6,4,1,3} {4,1} {5,3}
6 5 {2,6,4,1,3,5} {1} {3}
7 3 {2,6,4,1,3,5} {1} {}
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One can verify that these phases take O (1), O (m + 2d) and O (n) time, respectively,
where d is the average degree of the graph GQ. Therefore, the algorithm totally takes
O (m + 2d) worst-case time.

4.2.2 Permuted SimRank iterative equation

We now combine the extended RCM techniques into the SimRank equation (6)
for achieving smaller memory bandwidths and better I/O efficiency. We develop a
permuted SimRank equation based on the following theorem.

Theorem 1 (Permuted SimRank equation) Let π be an arbitrary permutation with an
induced permutation matrix �. For a given sparse graph G, SimRank similarity score
can be computed as

S(k) = π−1
(

Ŝ(k)
)

,

where Ŝ(k) satisf ies
{

Ŝ(0) = In

Ŝ(k+1) = c · π (Q) · Ŝ(k) · π(Q)
T ∨

In (∀k = 0, 1, 2, · · · )

Proof Since π−1 (In) = In, we shall consider only the case when k > 0. Taking
permutation π at both sides of SimRank equation (6) gives that

π (S) = π
(

c · Q · S · QT
∨

In

)

= � · (
c · Q · S · QT) · �T

∨
π (In)

= c · � · Q · (
�T · �

)

︸ ︷︷ ︸
=I

·S · (
�T · �

)

︸ ︷︷ ︸
=I

·QT · �T
∨

In

= c · (
� · Q · �T)

︸ ︷︷ ︸
=π(Q)

· (� · S · �T)

︸ ︷︷ ︸
=π(S)

· (� · Q · �T)T

︸ ︷︷ ︸
=π(Q)T

∨
In

= c · π (Q) · π (S) · π(Q)
T

∨
In

Let Ŝ � π (S) = � · S · �T , it follows that

S = �T · Ŝ · � � π−1
(

Ŝ
)

so that

{
S = π−1

(
Ŝ
)

Ŝ = c · π (Q) · Ŝ · π(Q)
T ∨

In

(10)

and this results in the above iterations, which completes the proof. ��
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This theorem implies that the optimal bandwidth compression technique for
sparse non-symmetric adjacency matrix is a very promising choice for large scale
SimRank computations. The concentration of nonzero entries about the main diago-
nal may result in a significant reduction on not only the banded SimRank solvers but
also memory storage and arithmetic operations consumed.

For the SimRank computation to be I/O efficient, Q needs to be preordered dur-
ing the precomputation. Figure 5 describes the relationship between the permutation
π and its corresponding permutation matrix �. We first determine the permutation
matrix � produced by RCM Algorithm 2, for which π (Q) = � · Q · �T has a smaller
bandwidth. Then based on (10), the optimal techniques in earlier subsections can be
applied to compute the k-th iterative permuted SimRank matrix Ŝ(k). And we can

obtain the SimRank matrix by S(k) = π−1
(

Ŝ(k)
)

= �T · Ŝ · �.

4.3 SOR SimRank acceleration

When the permuted SimRank equation is established, the optimization technique
presented in this subsection allows significantly accelerating the convergence rate
for computing S(k). The main idea behind the optimization is that a successive over-
relaxation (SOR) iterative method is used for computing S(k) and can thus effectively
exhibit faster convergence than the existing technique [16].

We consider the SimRank problem S(k+1) = c · Q · S(k) · QT ∨
In, where Q =(

qi, j
)

n×n, S(k) = (
s1

(k) s2
(k) · · · sn

(k)
)

, and si
(k) denotes the i-th column vector of matrix

S(k). For each si
(k) (i = 1, 2, · · · , n), we can write (6) in the component form

si = c · Q ·
⎛

⎝
n∑

j=1

qi, j · s j

⎞

⎠
∨

In

= c · Q ·
⎛

⎝
∑

j<i

qi, j · s j + qi,i · si +
∑

j>i

qi, j · s j

⎞

⎠
∨

In

Figure 5 The relationship between permutation π and its corresponding permutation matrix �.
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Since qi,i = 0, we can carry out the following iteration

sGS
i

(k+1) = c · Q ·
⎛

⎝
∑

j<i

qi, j · s j
(k) +

∑

j>i

qi, j · s j
(k+1)

⎞

⎠
∨

In (11)

where sGS
i

(k+1) is a Gauss-Seidel auxiliary vector. The actual components sSOR
i

(k+1)

of this iterative method are then defined from

sSOR
i

(k+1) = sSOR
i

(k) + ω
(
sGS

i
(k+1) − sSOR

i
(k)

)

= (1 − ω) sSOR
i

(k) + ω · sGS
i

(k+1) (12)

where ω is a relaxation factor, sSOR
i

(k+1) is a weighted mean of sSOR
i

(k) and sGS
i

(k+1),
which can be computed sequentially using forward substitution. Now we substitute
(11) back into the above equation to get

sSOR
i

(k+1) = (1 − ω) sSOR
i

(k)

+ω · c · Q

⎛

⎝
∑

j<i

qi, j · s j
(k) +

∑

j>i

qi, j · s j
(k+1)

⎞

⎠
∨

In

And we call this equation the successive over-relaxation SimRank iteration.
Choosing the value of ω plays a crucial part in the convergence rate of our

algorithm. It has been proven in [2] that when 0 < ω < 2, the SOR iterative method
converges; ω = 1 shows that the iteration simplifies to the Gauss-Seidel itera-
tion; ω > 1 is used to significantly accelerate convergence, corresponding to over-
relaxation.

To determine the optimal over-relaxation factor ωopt for SOR, [2] gives an a
priori estimate in terms of the spectral radius of the Jacobi matrix, say ρ (QJ)

as follows: ωopt = 2
1+

√
1−ρ2(QJ)

. However, computing ρ (QJ) requires an impractical

amount of computation. Hence, for our purpose, we empirically take the optimal
value ω ≈ 1.3 ± 0.1, which gives a significant improvement in the convergence rate
of the existing technique [16].

4.4 The complete algorithm

Algorithm 3 depicts the complete algorithm that combines the SOR accelerative
technique with the CSR format representation, the pruning technique and the
permuted SimRank equation introduced in the previous subsections.
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– In line 3, the iteration is justified by (7).
– In line 4, π can be calculated by Algorithm 2.
– In line 9, the condition in the header of the while loop is justified by Algorithm

1.
– In lines 10 and 11, the iteration is justified by (11).
– In lines 13 and 14, the expression is calculated by (12).
– In lines 16–20, the iteration is justified by (11).
– In lines 14 and 18, the condition in the header of the for loop is justified by

Algorithm 1.
– In line 21, the pruning technique is justified by (9).

It is easy to analyze that Algorithm 3 has the time complexity O (n · m) with the
space requirement O (n + m) for each iteration. It is worth mentioning that originally
there might have been an inherent trade-off between computational time complexity
and I/O efficiency. However, in our optimization techniques, we can achieve higher
I/O efficiency while retaining computational time complexity. The reason is that
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the I/O efficiency of our algorithm is significantly achieved by our extended RCM
and pruning techniques, whereas the two techniques themselves require less time as
compared to the complete SimRank algorithm, being O(2m + 2d) in the worst case
and even can be reduced to O(2n + 2d) when the graph is sparse. By contrast, as the
SOR SimRank iteration takes O (min {n · m, nr}) time, the time consumption of the
extended RCM algorithm and the pruning techniques can be ignored when compared
with the total time of the SimRank iteration.

5 Experimental evaluation

In this section, we present a comprehensive empirical study of our proposed algo-
rithms. Using both synthetic and real-life data, we conduct two sets of experiments
to evaluate: (1) the effectiveness, (2) the efficiency (i.e., computational time, storage
space, convergence rate and I/O operations) and scalability of our algorithms for
similarity computation.

All experiments were carried out on a Microsoft Windows Vista machine with an
Intel Pentium(R) Dual-Core 2.0G CPU and 2GB main memory. We implemented
the algorithms using Visual C++.

5.1 Experimental setup

5.1.1 Datasets

Two kinds of datasets were used in the evaluation: the synthetic data sets were used
to show the scalability of the algorithm as well as the parameter setting mechanism,
while the real-life datasets were used to demonstrate the effectiveness and efficiency
of our algorithm.

Synthetic datasets To test our implementations, we simulated the web graph with
an average of eight links per page. We generated 10 sample adjacency matrices with
the size (number of web documents) increased from 1K to 10K and with ξ out-links
on each row, where ξ ∼uniform[0, 16] is a random variable. Two storage schemes
were used respectively to represent these graphs: (a) the CSR-styled compression
for sparse graphs; (b) the full matrix format for dense graphs.

Real-life datasets For real datasets, we verified our algorithms over (1) ten-year
(from 1998 to 2007) DBLP dataset, and (2) three English Wikipedia category graphs.

From the DBLP datasets, we extracted the ten-year (from 1998 to 2007) author-
paper information, and picked up papers published on six conferences (‘WWW’,
‘ICDE’, ‘KDD’, ‘SIGIR’, ‘VLDB’, ‘SIGMOD’). We built the digraphs where nodes
represent authors or papers, and one edge represents an author-paper relationship.
We reordered the authors by the number of papers they published on these confer-
ences. Table 3 gives the details of DBLP datasets.

We also used three real-life Wikipedia category graphs (exported in 2009) to
investigate the effectiveness of the our algorithms. As Wikipedia is a popular online
encyclopedia, it has recently attached a growing interest in many academic fields
[11, 14, 16, 17, 25, 26]. We built three category graphs from the English Wikipedia,
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Table 3 The details of
ten-year DBLP datasets.

Period 98–99 98–01 98–03 98–05 98–07

Authors 1,525 3,208 5,307 7,984 10,682
Edges 5,929 13,441 24,762 39,399 54,844

choosing the relationship “a category contains an article to be a link from the category
to the article”. The details of these Wikipedia category graphs are in Table 4.

5.1.2 Parameter settings

For a correspondence with experiment conditions in [16], the parameters in Table 5
were used as default values (unless otherwise specified).

5.1.3 Evaluation metrics

In our experiments, we evaluated the ef f iciency and ef fectiveness of our algorithms.

– The ef f iciency is measured by the computation time complexity, the space
requirement, the I/O operations and the convergence rate needed to reach a
certain desired SimRank accuracy.

– The ef fectiveness is measured by the average differences between two similarity
matrices ave_err (·, ·) defined as

ave_err
(

Sn×n, S̃n×n

)
= 1

n2

n∑

i=1

n∑

j=1

∣
∣si, j − s̃i, j

∣
∣ (13)

5.1.4 Compared algorithms

– PSUM-SR This algorithm adopts the iterative paradigm for similarity estimation
optimized using a partial sums function (PSUM) to cluster similarity values [16,
17].

– SVD-SR This is a new deterministic approximation algorithm for SimRank
similarity computation via a singular value decomposition (SVD) approach [14].

– SOR-SR This is our proposed algorithm which considers both time and space
efficiency.

5.2 Experimental results

5.2.1 Time ef f iciency

In the first set of experiments, we compare the computation time of our method with
that of the existing algorithms [14, 16, 17]. Figure 6a and b show the dynamics in
SimRank computation time with respect to the number of nodes for 10 generated
sparse and dense graphs respectively. Each bar chart is approximated by a poly-
nomial curve, in a least squares sense. We can see that given an accuracy ε, our

Table 4 The details of three
Wikipedia category graph
datasets.

Wiki dataset Articles Links Archived date

wiki0715 3,088,185 1,126,662 15 Jul 2009
wiki0827 3,102,904 1,134,871 27 Aug 2009
wiki0919 3,116,238 1,139,156 19 Sep 2009
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Table 5 Default parameter
settings.

Notation Description Default value

c Decay factor 0.8
ω SOR over-relaxation factor 1.3
ε Accuracy 0.05
λ Teleportation factor 0.8
� Pruning threshold 0.01

Figure 6 Efficiency and scalability on synthetic datasets.
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algorithms with matrix representation and SOR iteration is more time-efficient than
PSUM-SR and SVD-SR algorithms for both sparse and dense graphs. Note that
the different maximum value is chosen across the vertical axis in Figure 6a and b.
For sparse graphs, our method may reduce over half of the SVD-SR algorithmic
time when nodes are growing, whereas for dense graphs, the time complexity of our
method has been significantly improved due to the fast matrix multiplication.

The results have been well consistent with the theoretical analysis. The time
complexity in [16, 17] requires O

(
n2 · d

)
per iteration, where d is the average node

degree, resulting in O
(
n3

)
for dense graphs. For comparison, our approach requires

O (n · m) per iteration for computing sparse matrix multiplication. For each iteration,
since m = n · d, it is not surprising that our method for sparse graphs has the same
time complexity as [16]. Hence, in Figure 6a, it is reasonable to see that for a given
accuracy ε, our method has improved the computational time four fold due to (1)
the SOR techniques accelerating the convergence rate and reducing the number of
iterations to reach a desired accuracy, and (2) the pruning techniques eliminating
impractical almost zero similarity values and making similarity matrix sparse for each
iteration. By contrast, for dense graphs, our method in Figure 6b has a significant
improvement in computation time because the time consumption in [16] requires
O

(
n3

)
in the dense case whilst our technique adopts the fast matrix multiplication

for computing SimRank score, involving O (nr), where r ≤ log27.

5.2.2 Convergence rate

To investigate the correlation between the residual accuracy ε and the number of
iterations K, we increase the iteration number K from 1 to 20 over a 10K generated
sparse graph. As SVD-SR is based on a non-iterative framework [14], here we focus
on the comparison between PSUM-SR and SOR-SR algorithms. We also vary the
over-relaxation factor ω to see how the speed of convergence is influenced by the
choice of ω.

Figure 6c compares the convergence rate of SOR-SR with that of PSUM-SR.
In [16], for achieving accuracy ε, the existing algorithm requires K = �logc ε� − 1
iterations. It is interesting to note that for a given accuracy ε, the number of
iterations needed for SOR computation is much fewer than [16]. It follows that the
SOR technique with ω = 1.3 for computing SimRank can speed up the convergence
roughly twice faster over the algorithm in [16] when ω = 1.3. It also can be discerned
from Figure 6c that choosing the relaxation factor ω = 1.3, SOR-SR can achieve the
most algorithmic efficiency.

Furthermore, to investigate how the relaxation factor ω and accuracy ε affects
the total computational time of the SOR-SR algorithm, we vary ω from 0 to 2 for
every given accuracy. The results in Figure 6c indicate that given any accuracy ε,
the SOR-SR computational time bottomed out when ω ∈ [1.2, 1.4]; when ω = 0 or 2,
our algorithm is not convergent, which fully agrees with the theoretical expectation
for SOR in [2]. That is the reason why we choose ω = 1.3 for achieving the best
performance of our SOR-SR algorithm.

5.2.3 I/O ef f iciency

Next we show the results of applying the extended RCM algorithms and pruning
techniques to the sparse matrix Q for the SimRank precomputation. Figure 6e
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depicts the effect of using the reordering Algorithm 2 and pruning techniques
to 10 generated sparse graphs. We can see that the extended RCM and pruning
technqiues do reduce the total bandwidths, keeping the matrices sparse, and can thus
improve the I/O efficiency of our algorithm. In Figure 6f, we visualize the sparsity
pattern of our generated 10K × 10K adjacency matrix (a) without and (b) with the
extended RCM algorithm. Here, we separate the large matrix into 25 blocks. For
each block, the nonzeros will cluster as much as possible about the main diagonal of
the submatrix so that the computation bandwidth may be greatly minimized.

5.2.4 Space ef f iciency

For achieving storage efficiency, the CSR scheme is adopted for our large and
sparse matrix representations, yielding significant savings in memory usage. From
the space perspective, we implement corresponding arithmetic operations such as
matrix-matrix multiplications for our algorithm.

Figure 7b shows the space comparison between the three methods on DBLP
datasets with the five year periods: 98–99, 98–01, 98–03, 98–05 and 98–07. Note
that a logarithmic scale has been used on the vertical axis, corresponding to the
space consumption for the given method over DBLP with different data sizes (year
periods). As shown in the figure, SOR-SR achieves better space efficiency with small
memory consumption, whereas SVD-SR requires a significant amount of space as
the dataset size is growing. When the year period is chosen to be 98–99, the space
required by PSUM-SR is similar to that of SVD-SR, but not as good as that of
SOR-SR. When the span time increases, SVD-SR needs far more space than PSUM-
SR. This is because SVD-SR does not preserve sparseness of the similarity matrix.
Therefore, after SVD decomposition, most of the entries in the result matrices are
nonzeros even if the original DBLP matrix is sparse. In comparison, SOR-SR uses a
sparse matrix representation combined with a pruning techniques per iteration, thus
achieving high space efficiency.

5.2.5 Ef fectiveness

In the final set of experiments, we evaluated the effectiveness of SOR-SR vs. PSUM-
SR over two kinds of real-life datasets (i.e., DBLP and Wikipedia) as these two
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algorithms are both based on iterative techniques. We used ave_err (·, ·) defined by
(13) to measure the accuracy of computational results. We denote by S(k)

PSUM and
S(k)

SOR the k-th iterative similarity matrix for the algorithms SOR-SR and PSUM-
SR, respectively. Notice that for each of the algorithm, the iterative similarity
matrices both converge to the same exact (theoretical) similarity matrix S∗, i.e.,
lim

k→∞
S(k)

PSUM = lim
k→∞

S(k)

SOR = S∗. By Cauchy criterion for convergence [2], we can

infer that ave_err
(

S(k)

PSUM, S(k−1)

PSUM

)
→ 0 and ave_err

(
S(k)

SOR, S(k−1)

SOR

)
→ 0 as k → ∞.

Hence, (1) for the given algorithm, the gap between two adjacent iterates , say
ave_err

(
S(k), S(k−1)

)
(for k = 1, 2, · · · ) , implies the speed of convergence to reach

the exact solution S∗; (2) for two distinct algorithms, the gap ave_err
(

S(k)

SOR, S(k)

PSUM

)

indicates the average similarity difference between SOR-SR and PSUM-SR at the
k-th iteration.

Table 6 shows the results for DBLP datasets with average similarity difference be-
tween SOR-SR and PSUM-SR when we set the iteration number k = 1, 5, 10, 15, 20.
From the results, we can see that SOR-SR outperformed PSUM-SR in terms of

effectiveness since the values of ave_err
(

S(k)

SOR, S(k−1)

SOR

)
converge faster than that of

PSUM-SR per iteration, which enables SOR-SR achieves a higher accuracy than
PSUM-SR with the same number of total iterations. More concrete comparable
results are reported in Figure 8a and b, which visualizes the changes of the average
differences between the two adjacent similarity matrix iterates for SOR-SR and
PSUM-SR algorithms over DBLP 98–03 and 98–07 datasets, respectively.

We next verified the efficiency and effectiveness of our methods for similarity
computation over the Wikipedia category graphs described in Table 4. Since the
Wikipedia category graphs are huge and sparse (i.e., the corresponding transition
matrices with few non-zero entries), we represent them in the CSR format and
set a threshold to eliminate impractical similarity values in SimRank matrices per
iteration, thus saving significant amount of space. We chose c = 0.6, ε = 0.1 corre-
sponding with the evaluation conditions in [16]. We set the cache size of 128 MB for
Oracle Berkeley DB and kept the Wikipedia graphs in the CSR format.

Figure 8 Effectiveness on DBLP datasets.
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Table 7 Effectiveness of SOR-SR & PSUM-SR on Wikipedia datasets.

Wiki dataset wiki0715 wiki0825 wiki0919

K SOR-SR PSUM-SR SOR-SR PSUM-SR SOR-SR PSUM-SR

2 8.74E-5 5.76E-4 8.63E-5 4.76E-4 5.91E-5 4.50E-4
4 3.09E-5 1.09E-4 4.04E-5 1.32E-4 4.82E-5 1.64E-4
6 3.19E-5 5.22E-5 3.31E-5 6.59E-5 3.41E-5 9.02E-5

From the efficiency perspective, our evaluations on three Wikipedia category
graphs reported that SOR-SR takes an average time of approximately 12 h with
only three iterations to complete the similarity computation on one processor for
reaching a desired accuracy. In comparison, PSUM-SR requires almost an average
of 25 h time with six iterations, almost doubling the amount of SOR-SR time. SVD-
SR takes about 19 h (including about five-hour in the precomputation phase) to get
approximate similarity values and its memory consumption seems rather significant
due to the Kronecker tensor product operations.

From the effectiveness perspective, we showed the values of ave_err
(
S(k), S(k−1)

)

(k = 2, 4, 6) in Table 7 to compare the effectiveness of SOR-SR and PSUM-SR
over the three Wikipedia graphs. As we can observe in Table 7 that both of the
algorithms have relatively small average similarity differences between the adjacent
iterates. A reasonable explanation is that both algorithms have achieved a fast
rate of convergence. Another interesting finding is that for almost any iteration

number k, we have ave_err
(

S(k)

PSUM, S(k−1)

PSUM

)
> ave_err

(
S(k)

SOR, S(k−1)

SOR

)
, which indicates

that SOR-SR has high computational accuracy due to over-relaxation accelerative
iteration.

The results over the real-life datasets demonstrate that our method is preferable
on a single machine as it yields less computation time and storage requirement, which
agrees with our theoretical analysis addressed in Section 4.

6 Related work

The issue of measuring object-to-object similarity has attracted a lot of attention.
Existing work on similarity search techniques can be distinguished into two broad
categories: text-based and link-based [9, 10, 12, 19, 21].

The link-based similarity computation can be modeled by a web-graph, with
vertices corresponding to web pages and edges to the hyperlinks between pages.
In terms of a graph structure, the methods of bibliographic coupling [22] and co-
citation [23] have been applied to cluster scientific papers according to topic. In both
schemes, similarities between two nodes are measured only from their immediate
neighbors. As a generalization of similarity functions to exploit the information in
multi-step neighborhoods, HITS [18], PageRank [19], SimRank [12] and SimFusion
[24] algorithms were suggested by adapting link-based ranking schemes.

Jeh first introduced a similarity measure called SimRank [12] aiming at “two pages
are similar if they are referenced by similar pages”. The underlying intuition behind
the SimRank approach somewhat resembles the one for SimFusion “integrating
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relationships from multiple heterogeneous data sources”. In [12], SimRank is known
to be efficient since it recursively refines the co-citation measure and forms a
homogenous language-independent data set.

Optimization algorithms for SimRank computation have been explored in [1, 3,
10, 16]. Results show that the use of fingerprint trees and random permutations with
extended Jaccard coefficient can approximately compute SimRank scores under a
scalable Monte Carlo framework. The algorithms in [10] use probability theory to
calculate the expected-f meeting time τ (u, v) and estimate s (u, v) by E

(
cτ(u,v)

)
. The

solution is rather stochastic. In comparison, our algorithm can get a deterministic
solution by using numerical techniques for computing SimRank.

There has also been a host of work for computing SimRank deterministically, the
most efficient optimization techniques presented in [16, 17] introduced a partial sum
function to reduce the number of access operations to the SimRank function and
speed up similarity scores calculation by sk (u, ∗) values clustering. The algorithm
in [16, 17] has improved SimRank computational complexity from O

(
Kn2 · d2

)
in

[12] to O
(
Kn2 · d

)
, where d is the average node degree, n is the number of nodes.

In comparison, our method has achieved the same time complexity O (Kn · m) for
sparse graphs, where m is the number of edges. When the graph is rather dense,
the time complexity in [16, 17] is O

(
Kn3

)
, whereas our technique only requires

O (nr) operations, where r ≤ log2 7, taking advantage of fast matrix multiplications.
In addition, our algorithm also accelerates the convergence rate of [16, 17].

Li et al. [14] proposed a novel approximate SimRank computation algorithm for
static and dynamic information networks. Their approximation algorithm is based on
the non-iterative framework, taking O

(
n2α4

)
time and O

(
n2

)
space, where α is the

rank of graph adjacency matrix. However, the optimization technique of Kronecker
product in their approach is prohibitively costly in computational time. Additionally,
for a sparse graph, the SVD decomposition cannot keep the sparsity of the graph
adjacency matrix. Therefore, in practice their method is not preferable.

As for SimRank parallel algorithms, Yu et al. [26] devised an AUG-SimRank
algorithm over undirected graphs on distributed memory multi-processors. They
combined the PLAPACK solvers with their partition techniques to parallelize the
SimRank algorithm. He et al. [11] also proposed a graphics processing units (GPU)
based parallel framework for similarity computation.

Li et al. [13] developed a BlockSimRank algorithm that partitions the web graph
into several blocks to efficiently compute similarity of each node-pair in the graph.
Their approach takes O(n

4
3 ) time, which is based on the random walk model. Zhao

et al. [28] proposed a new structural similarity measure called P-Rank (Penetrating
Rank) that says “two entities are similar if (a) they are referenced by similar
entities; and (b) they reference similar entities.” This similarity takes into account
of both in- and out-link relationships of entity pairs and penetrates the structural
similarity computation beyond neighborhood of vertices to the entire information
network. Antonellis et al. [1] extended the weighted and evidence-based SimRank
yielding better query rewrites for sponsored search; however, their framework lacks
a solid theoretical background and the edge weight in the transition probability is an
empirical distribution.

Meanwhile, Xi et al. [24] introduced SimFusion algorithm to represent heteroge-
neous data objects. The Unif ied Relationship Matrix (URM) approach is employed
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to support for various intra-nodes relations and information spaces. SimFusion
iterative reinforcement similarity score takes the form:

Sk
usm (a, b) = Lurm (a) · Sk−1

usm (a, b) · (Lurm (b))
T

= 1
|I (a)| |I (b)|

|I(b)|∑

j=1

|I(a)|∑

i=1

Sk−1
usm

(
Ii (a) , I j (b)

)

where Lurm is a single step probability transformation matrix in a Markov Chain
that combines all the relationships among nodes, Surm is a Unif ied Similarity Matrix
(USM) that represents similarity values between node pairs. The computational com-
plexity for SimFusion is O

(
n3

)
whilst our approach takes the time O (min {n · m, nr}),

where r ≤ log27. The storage for SimFusion requires O
(
n2

)
, whereas we use CSR

representation for reducing the space requirement to O (n + m) for sparse graphs.
Moreover, our algorithm is I/O efficient, minimizing the bandwidth during the
precomputation and has the faster convergence rate. Finally, some of the iterative
matrix-analytic methods used in this work are surveyed in [2].

7 Conclusions

This paper investigated the optimization issues for SimRank computation. We
first extended the SimRank transition matrix in our conference paper [25], and
formalized the SimRank equation in matrix notations. A compressed storage scheme
for sparse graphs is adopted for reducing the space requirement from O

(
n2

)
to

O (n + m), whereas a fast matrix multiplication for dense graph is used for improving
the time complex from O

(
n2 · d

)
to O (min {n · m, nr}), where r ≤ log27. Then, for

achieving the I/O efficiency of our algorithm, we developed a permuted SimRank
iteration in combination of the extended Reversed Cuthill-McKee algorithm. We
also devised a pruning technique for the similarity matrix to get rid of the impractical
almost zero similarity values, keeping the sparseness of similarity matrix for each
iteration. Finally, we have shown a successive over-relaxation method for computing
SimRank to significantly speed up the convergence rate of the existing technique.
Our experimental evaluations on synthetic and real-life data sets demonstrate that
our algorithms have high performances in time and space, and can converge much
faster than the existing approaches.

References

1. Antonellis, I., Garcia-Molina, H., Chang, C.C.: Simrank++: query rewriting through link analysis
of the click graph. PVLDB 1(1), 408–421 (2008)

2. Bhatia, R.: Matrix Analysis. Springer, New York (1997)
3. Cai, Y., Li, P., Liu, H., He, J., Du, X.: S-simrank: combining content and link information to

cluster papers effectively and efficiently. In: ADMA (2008)
4. Chan, W.M., George, A.: A linear time implementation of the reverse cuthill-mckee algorithm.

BIT 20(1), 8–14 (1980)
5. Cohen, J., Roth, M.S.: On the implementation of strassen’s fast multiplication algorithm. Acta

Inf. 6, 341–355 (1976)
6. Coppersmith, D., Winograd, S.: On the asymptotic complexity of matrix multiplication. SIAM J.

Comput. 11(3), 82–90 (1982)



World Wide Web (2012) 15:327–353 353

7. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb.
Comput. 9(3), 1–6 (1990)

8. D’Azevedo, E.F., Fahey, M.R., Mills, R.T.: Vectorized sparse matrix multiply for compressed
row storage format. In: International Conference on Computational Science (1) (2005)

9. Fogaras, D., Racz, B.: A scalable randomized method to compute link-based similarity rank on
the web graph. In: EDBT Workshops (2004)

10. Fogaras, D., Rácz, B.: Scaling link-based similarity search. In: WWW (2005)
11. He, G., Feng, H., Li, C., Chen, H.: Parallel simrank computation on large graphs with iterative

aggregation. In: KDD (2010)
12. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In: KDD (2002)
13. Li, P., Cai, Y., Liu, H., He, J., Du, X.: Exploiting the block structure of link graph for efficient

similarity computation. In: PAKDD (2009)
14. Li, C., Han, J., He, G., Jin, X., Sun, Y., Yu, Y., Wu, T.: Fast computation of simrank for static

and dynamic information networks. In: EDBT (2010)
15. Lim, A., Rodrigues, B., Xiao, F.: Heuristics for matrix bandwidth reduction. Eur. J. Oper. Res.

174(1), 69–91 (2006)
16. Lizorkin, D., Velikhov, P., Grinev, M., Turdakov, D.: Accuracy estimate and optimization tech-

niques for simrank computation. PVLDB 1(1), 422–433 (2008)
17. Lizorkin, D., Velikhov, P., Grinev, M.N., Turdakov, D.: Accuracy estimate and optimization

techniques for simrank computation. VLDB J. 19(1), 45–66 (2010)
18. Mendelzon, A.O.: Review—authoritative sources in a hyperlinked environment. ACM

SIGMOD Digit. Rev. 1, 604–632 (2000)
19. Page, L., Brin, S.R.M., Winograd, T.: The pagerank citation ranking bringing order to the web.

Technial report (1998)
20. Pathak, A., Chakrabarti, S., Gupta, M.S.: Index design for dynamic personalized pagerank.

In: ICDE (2008)
21. Quevedo, J.U., Huang, S.H.S.: Similarity among web pages based on their link structure. In: IKE

(2003)
22. Weinberg, B.H.: Bibliographic coupling: a review. Inf. Storage Retr. 10(5–6), 189–196 (1974)
23. Wijaya, D.T., Bressan, S.: Clustering web documents using co-citation, coupling, incoming, and

outgoing hyperlinks: a comparative performance analysis of algorithms. IJWIS 2(2), 69–76 (2006)
24. Xi, W., Fox, E.A., Fan, W., Zhang, B., Chen, Z., Yan, J., Zhuang, D.: Simfusion: measuring

similarity using unified relationship matrix. In: SIGIR (2005)
25. Yu, W., Lin, X., Le, J.: A space and time efficient algorithm for simrank computation. In: APWeb

(2010)
26. Yu, W., Lin, X., Le, J.: Taming computational complexity: efficient and parallel simrank opti-

mizations on undirected graphs. In: WAIM (2010)
27. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute similarities.

PVLDB 2(1), 718–729 (2009)
28. Zhao, P., Han, J., Sun, Y.: P-rank: a comprehensive structural similarity measure over infor-

mation networks. In: CIKM ’09: Proceeding of the 18th ACM Conference on Information and
Knowledge Management (2009)


	A space and time efficient algorithm for SimRank computation
	Abstract
	Introduction
	Preliminaries
	Problem definition

	Solution framework
	Optimizations for SimRank algorithms
	Matrix representations for SimRank model
	The modification of SimRank transition matrix
	Compressed matrix storage scheme for sparse graph
	Fast matrix multiplication for dense graph
	Pruning similarity matrix for each iteration

	Permuted SimRank iterative approach
	Reversed Cuthill--McKee (RCM) algorithm for directed graph
	Permuted SimRank iterative equation

	SOR SimRank acceleration
	The complete algorithm

	Experimental evaluation
	Experimental setup
	Datasets
	Parameter settings
	Evaluation metrics
	Compared algorithms

	Experimental results
	Time efficiency
	Convergence rate
	I/O efficiency
	Space efficiency
	Effectiveness


	Related work
	Conclusions
	References



