
Discrete Maths

Philippa Gardner

These lecture notes are based on previous notes by Iain Phillips.

This short course introduces some basic concepts in discrete mathemat-

ics: sets, relations, and functions. These notes are written to accompany

the slides: the slides summarise the content of the course; the notes provide

more explanation and detail. I hope you will find them helpful. You will

find that a knowledge of the concepts covered here will be important in un-

derstanding many areas of computer science, such as data types, databases,

specification, functional programming and logic programming.

Recommended books

1. K.H. Rosen. Discrete Mathematics and its Applications, McGraw Hill

1995.

2. J.L. Gersting. Mathematical Structures for Computer Science, Free-

man 1993.

3. J.K. Truss. Discrete Mathematics for Computer Science, Addison-Wesley

1991.

4. R. Johnsonbaugh, Discrete Mathematics, 5th ed. Prentice Hall 2000.

5. C. Schumacher, Fundamental Notions of Abstract Mathematics, Addison-

Wesley, 2001.

Related courses include the mathematical reasoning courses (logic, pro-

gram reasoning and discrete maths 2), Haskell and Databases 1. In particu-

lar, we will use some of the notation introduced in the logic course:

A ∧ B A ∨ B ¬A A → B A ↔ B ∀x.A ∃x. A.

You will be given assessed exercises in week 7 (submission date Tuesday,

November 23nd) and week 9 (submission date Tuesday, December 7th).

There will be a test at the end of the Christmas term, and an exam at the end

of the year. These notes are self-contained, though rather concise. I shall be

grateful if any inaccuracies are brought to my notice, plus any suggestions

for improving the course material.
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1 Motivation

This course investigates some key mathematical concepts: sets, functions

and relations. You will probably have come across these concepts before.

This course gives a rigorous account, that forms the underpinnings of many

courses in the Computer Science degree.

Sets are like types in Haskell. For example, consider the type declaration

data Bool = False | True

This command declares a type Bool with two elements True and False.

This course introduces the abstract concept of set. We talk about the set of

Boolean values True and False, the set of natural numbers, the set of real

numbers, the set of prime numbers, the set of students taking the Imperial

Computer Science course, ... We describe what it means for two sets to be

equal, how to construct new sets from old, and analyse properties of these

set constructors.

We also describe the notion of a mathematical function, which maps

elements of one set to another. Haskell functions can be viewed as mathe-

matical functions, although they also have the additional property that they

are computable. [In fact, the idea of a computable function can be ex-

pressed precisely. For example, Turing machines describe the computable

functions, and this theoretical concept became one route to the invention of

computers.] You will be hearing more about computable functions during

your time at Imperial. Here we lay the ground work by introducing you to

mathematical functions.

We will also discuss relations. A natural example is an equality rela-

tion between equivalent Haskell functions which intuitively behave in the

same way. To illustrate what this means, consider the following two Haskell

functions:

myand :: Bool -> Bool -> Bool myand’ :: Bool -> Bool -> Bool

myand False False = False myand’ False x = False

myand False True = False myand’ True x = x

myand True False = False

myand True True = True

If the only expressions of type Bool are True and False, then myand and

myand’ behave in the same way in the sense that they give the same results

on all inputs. We can however declare expressions of type Bool which never

terminate. For example, consider the declaration

2



bottom :: Bool

bottom = bottom

The functions myand and myand’ do not behave in the same way using bottom.

The expression (myand’ False bottom) evaluates to False, whereas the ex-

pression (myand False bottom) does not terminate. Now consider in addi-

tion the Haskell function

myand’’ :: Bool -> Bool -> Bool

myand’’ b1 b2 = if b1 then b2 else False

The function myand’’ has identical behaviour to myand’.

We can describe the relationship between equivalent Haskell functions

as follows:

Two Haskell functions f : A → B and g : A → B behave in the

same way if and only if, for all terms a in type A, then if f a

terminates then g a terminates and f a = g a, and if f a does not

terminate then g a does not terminate.

You will be learning more about this story in the operational semantics

course in the second year. Here, we explore the abstract concept of rela-

tions. We will describe equivalence relations, special relations which for ex-

ample behave like the standard equality on the natural numbers and include

the above relationship between equivalent Haskell functions, and orderings

which for example behave like the ‘less than’ ordering between natural num-

bers. We will also describe natural ways of constructing new relations from

old, including those used in relational databases.

2 Sets

Our starting point will be the idea of a set, a concept that we shall not

formally define. Instead, we shall simply use the intuitive idea that a set is

a collection of objects.

DEFINITION 2.1 (INFORMAL)

A set is a collection of objects (or individuals) taken from a pool of objects.

The objects in a set are also called the elements, or members, of the set. A

set is said to contain its elements.

We write x ∈ A when object x is a member of set A. When x is not a member

of A, we write x 6∈ A or sometimes ¬(x ∈ A) using notation from the logic

course.
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Sets can be finite or infinite. In fact, we shall see that there are many

different infinite sizes! Finite sets can be defined by listing their elements.

Infinite sets can be defined using a pattern or restriction. Here are some

examples:

1. the two-element set Bool = {True,False}, which is analogous to the

Haskell data type

data Bool = True | False

2. the set of vowels V = {a, e, i, o, u}, which is read ‘V is the set con-

taining the objects (in this case letters) a, e, i, o, u’;

3. an arbitrary (nonsense) set {1, 2, e, f, 5, Imperial}, which is a set con-

taining numbers, letters and a string of letters with no obvious rela-

tionship to each other;

4. the set of natural numbers N = {0, 1, 2, 3, . . .}, which is read ‘N is

the set containing the natural numbers 0, 1, 2, 3, ...’;

5. the set of integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .};

6. the set of primes P = {x ∈ N : x is a prime number};

7. the empty set ∅ = { }, which contains no elements;

8. nested sets, such as the set {{∅}, {a, e, i, o, u}} containing the sets {∅}
and {a, e, i, o, u} as its two elements.

The set N is of course an infinite set. The ‘...’ indicates that the remaining

elements are given by some rule, which should be apparent from the initial

examples: in this case, the rule is to add one to the previous number. Notice

that sets can themselves be members of other sets, as the last example illus-

trates. There is an important distinction between {a, b, c} and {{a, b, c}} for

example, or between ∅ and {∅}.

2.1 Comparing Sets

We define the notion of one set being a subset of (contained in) another set,

and the related notion of two sets being equal. You will be familiar with the

notion of sublist from the Haskell course:

h:: [Int] -> Int -> [Int]

h xs n = filter (<n) xs
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The function h takes a list of integers and an integer n, and returns a sublist

of elements less than n.

2.1.1 Subsets

DEFINITION 2.2 (SUBSETS)

Let A, B be any two sets, Then A is a subset of B, written A ⊆ B, if and

only if all the elements of A are also elements of B: that is,

A ⊆ B ⇔ ∀ objects x.(x ∈ A → x ∈ B)

We have written the subset definition in two ways, using English and also

using logical notation which will be familiar from the lectures on logic. Ei-

ther style is appropriate for this course. Just use whichever suits you best.

Notice that the definition talks about all objects x, although we have not

said what an object is! We assume that there is an underlying universe of

discourse when discussing sets: that is, the set of all possible objects under

discussion. This set is sometimes written U .

Any set is a subset of itself. Other simple examples are

{a, b} ⊆ {a, b, c}
{c, c, b} ⊆ {a, b, c, d}

N ⊆ Z
∅ ⊆ {1, 2, 5}

This last example is tricky. To convince ourselves that it is true we need to

show that every element in ∅ is contained in {1, 2, 5}. Since there are no

elements in ∅, this property is vacuously true: ∅ is a subset of every set!

PROPOSITION 2.3

Let A, B, C be arbitrary sets. If A ⊆ B and B ⊆ C then A ⊆ C.

Notice that we have stated that this property holds for arbitrary (all) sets

A, B and C: such properties are universal properties on sets, in the sense

that they are hold for all sets. What does it mean to convince ourselves

that such properties are true? In the logic course, you have been exploring

very formal definitions of a proof within a logical system. In this course, we

do not have to be quite so formal. However, the proofs should be convinc-

ing even though they are not written within a purely logical setting. When

faced with constructing a proof, check three things: (1) that the arguments

put forward are all true and the sequence follows logically from beginning
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to end; (2) that the arguments are sufficient to prove the theorem; and

(3) that the arguments are all necessary to prove the statement.

Proof of proposition 2.3 Assume that A, B and C are arbitrary sets and

that A ⊆ B and B ⊆ C. We need to show that, for an arbitrary element x,

if x is a member of A then it must also be a member of C. Assume x ∈ A.

By assumption, we know that A ⊆ B, and hence by the definition of the

subset relation that x ∈ B. We also know that B ⊆ C, and hence x ∈ C as

required. �

2.1.2 Set Equality

Whenever we introduce a structure (in this case sets), an important part of

knowing what we mean is to be able to identify when two such structures

are equal, in other words when they denote the same thing. Two sets are

equal if and only if they contain the same elements.

DEFINITION 2.4 (SET EQUALITY)

Let A, B be any two sets. Then A equals B, written A = B, if and only if

A ⊆ B and B ⊆ A: that is,

A = B ⇔ A ⊆ B ∧ B ⊆ A

This definition of equality on sets means that the number of occurrences

of elements and the order of the elements of a set do not matter: the sets

{a, b, c} and {b, a, a, c} are equal. Contrast this property with the (perhaps

more familiar) list data structure, where the order and number of elements

is important.

2.2 Constructing Sets

There are several ways of describing sets. So far, we have informally in-

troduced two approaches: (1) either we just list the elements inside curly

brackets:

V = {a, e, i, o, u}, N = {0, 1, 2, . . .}, {∅, {a}, {b}, {a, b}};

or (2) we define a set by stating the property that its elements must satisfy:

P = {x ∈ N : x is a prime number}
R = {x : x is a real number}
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Approach (2) can be generalised to a general axiom of comprehension, which

constructs sets by taking all elements of a set which satisfies some property

P (x). In fact, you have seen a similar construct in Haskell: the construction

[x | x <- S, p x]

denotes a list of terms x such that x is in the list S and the property p(x)
holds for some predicate p. However, a completely unrestricted use of com-

prehension can cause problems:

Russel’s paradox: the construction R = {X : Xis a set ∧X 6∈ X}
is not a set1.

Assume R is a set. If R ∈ R, then by the construction of R it follows that

R 6∈ R which is impossible. If R 6∈ R, then by the construction of R it follows

that R ∈ R and again we have a contradiction. Hence, the assumption must

be wrong and R cannot be a set. It is possible to remove this sort of paradox

using axiomatic set theory, which is a very formal definition of set theory.

This definition is beyond the scope of this course, and any ‘normal’ sets you

are likely to construct will not encounter this problem.

2.2.1 Basic Set Constructors

We describe set constructors which build new sets from old. In each case.

the resulting sets can be assumed to be well-defined as long as the original

sets are well-defined.

DEFINITION 2.5 (COMBINING SETS)

Let A and B be any sets. We may construct the following sets:

Set Union A ∪ B = {x : x ∈ A ∨ x ∈ B}
Set Intersection A ∩ B = {x : x ∈ A ∧ x ∈ B}
Difference A − B = {x : x ∈ A ∧ x 6∈ B}
Symmetric difference A4B = (A − B) ∪ (B − A)

1A colloquial rendition of this paradox is: ‘In a certain town, Kevin the barber shaves all

those and only those who do not shave themselves. Who shaves the barber?’ The riddle has

no good answer.
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For example, let A = {1, 3, 5, 7, 9} and B = {3, 5, 6, 10, 11}. Then

A ∪ B = {1, 3, 5, 6, 7, 9, 10, 11}
A ∩ B = {3, 5}
A − B = {1, 7, 9}
A4B = {1, 7, 9, 6, 10, 11}

It is often helpful to illustrate these combinations of sets using Venn dia-

grams2.

2.2.2 Properties of Operators

In this section, we investigate certain equalities between sets constructed

from our set-theoretic operations.

PROPOSITION 2.6 (PROPERTIES OF OPERATORS)

Let A, B and C be arbitrary sets. They satisfy the following properties:

Commutativity Idempotence

A ∪ B = B ∪ A A ∪ A = A

A ∩ B = B ∩ A A ∩ A = A

Associativity Empty set

A ∪ (B ∪ C) = (A ∪ B) ∪ C A ∪ ∅ = A

A ∩ (B ∩ C) = (A ∩ B) ∩ C A ∩ ∅ = ∅
Distributivity Absorption

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) A ∪ (A ∩ B) = A

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) A ∩ (A ∪ B) = A

Proof We will just look at the first distributivity equality. Some of the other

cases will be set as exercises. Draw a Venn diagram to give some evidence

that the property is indeed true. It is not a proof! Let A, B and C be

2I will check whether you have been taught Venn diagrams. If not, we will go over them

during lectures.
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arbitrary sets. The proof is given by:

A ∪ (B ∩ C) = {x : x ∈ A ∨ x ∈ (B ∩ C)}
= {x : x ∈ A ∨ (x ∈ B ∧ x ∈ C)}
= {x : (x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C)}
= {x : (x ∈ A ∪ B) ∧ (x ∈ A ∪ C)}
= {x : x ∈ (A ∪ B) ∩ (A ∪ C)}

Notice that this proof depends on the distributivity of the logical connective

∨ over ∧ introduced in the logic course.

This style of proof can be confusing to those who are unsure of the logical

notation. We can also give another style of proof, which is more wordy but

basically reasons in the same way. Let A, B and C be arbitrary sets. We will

prove the following two results:

1. A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C)

2. (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C)

To prove part 1, assume x ∈ A ∪ (B ∩ C) for an arbitrary element x. By the

definition of set union, this means that x ∈ A or x ∈ B∩C. By the definition

of set intersection, this means that either x ∈ A, or x is in both B and C.

By the distributivity of ‘or’ over ‘and’, it follows that x ∈ A or x ∈ B, and

also that x ∈ A or x ∈ C. This means that x ∈ A ∪ B and x ∈ A ∪ C, and

hence x ∈ (A ∪ B) ∩ (A ∪ C). We have shown that x ∈ A ∪ (B ∩ C) implies

x ∈ (A ∪ B) ∩ (A ∪ C).
To prove part 2, we must prove that x ∈ (A ∪ B) ∩ (A ∪ C) implies

x ∈ A ∪ (B ∩ C). In this case the proof is simple, since it just follows the

above proof in reverse. The details are left as an exercise. �

The above proof is an example of the generality often required to prove

a property about sets: it uses arbitrary sets and arbitrary elements of such

a set. In contrast, to show that a property is false, it is enough to find one

counter-example. Such counter-examples should be as simple as possible,

to illustrate that a statement is not true with minimum effort to the reader.

PROPOSITION 2.7

The following statements are not true:

1. A ∪ (B ∩ C) = (A ∩ B) ∪ C;

2. A ∪ (B ∩ C) = (A ∩ B) ∪ (A ∩ C).
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Proof A simple counter-example to part 1 is A = {a}, B = {b}, C = {c},

where a, b, c are different objects. In this example, B ∩ C = ∅ and A ∪ (B ∩
C) = {a} whereas A ∩ B = ∅ and (A ∩ B) ∪ C = {c}. A simple counter-

example to part 2 is A = {a}, B = C = {b}, where again a, b are different.

�

Question: Under what conditions are A ∪ (B ∩ C) and (A ∩ B) ∪ C equal?

Answer: It is simple to see the solution by drawing the Venn diagrams. The

sets are equal when A − (B ∪ C) = ∅ and C − (A ∪ B) = ∅.

2.2.3 Size of Finite Sets

In this section, we begin to explore the number of elements in a finite set.

In section 4.6, we will learn how to talk about the number of elements in an

infinite set.

DEFINITION 2.8 (CARDINALITY)

Let A be a finite set. The cardinality of A, written |A|, is the number of

distinct elements contained in A.

Notice the similarity between this definition and the length function over

lists in Haskell. Here are some examples:

|{a, e, i, o, u}| = 5

|{a, a, b, c}| = 3

|∅| = 0

|N | = undefined for now

Fact Let A and B be finite sets. Then |A ∪ B| = |A| + |B| − |A ∩ B|.
Informal proof The number |A| + |B| counts the elements of A ∩ B twice,

so we subtract A∩B to obtain the result. A consequence of this proposition

is that, if A and B are disjoint sets, then |A ∪ B| = |A| + |B|.

2.2.4 Introducing Power Sets

In definition 2.2, we defined a notion of a subset of a set. The set of all

subsets of A is called the power set3 of A.

DEFINITION 2.9 (POWER SET)

Let A be any set. Then the power set of A, written P(A), is {X : X ⊆ A}
3The name might be due to the cardinality result in proposition 2.10. At least this expla-

nation helps to remember the result!
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Consider the Haskell function:

h’ :: [Int] -> [Int] -> [Int]

h’ xs rs = [ x | (x,r) <- zip xs rs, r > x]

Given the list xs, we may obtain any sublist as the output list depending on

the list rs. Constructing the list of possible output lists associated with list

xs is analogous to the power set constructor.

Examples of power sets include:

P({a, b}) = {∅, {a}, {b}, {a, b}}
P(∅) = {∅}
P(N ) = {∅, {1}, {2}, . . . , {1, 2}, {1, 3}, . . . , {2, 1}, {2, 2}, . . .}

Let A be an arbitrary finite set. One way to list all the elements of P(A) is

to start with ∅, then add the sets taking one element of A at a time, then the

sets talking two elements from A at a time, and so on until the whole set A
is added, and P(A) is complete.

PROPOSITION 2.10

Let A be a finite set with |A| = n. Then |P(A)| = 2n.

Proof This statement is true, but you may need some convincing. If so, test

the proposition on an example such as P({a, b}). Here is one proof, which

you do not need to remember. Consider an arbitrary set A = {a1, . . . , an}.

We form a subset X of A by taking each element ai in turn and deciding

whether or not to include it in X. This gives us n independent choices

between two possibilities: in X or out. The number of different subsets we

can form is therefore 2n. An alternative way of explaining this is to assign

a 0 or 1 to all the elements ai. Each subset corresponds to a unique binary

number with n digits. There are 2n such posibilities.

Another proof will be given in the reasoning course next term, using the

so-called ‘induction principle’. �

2.2.5 Introducing Products

The last set construct we consider is the product of two (or arbitrary n)

sets. This constructor forms an essential part of the definition of relation

discussed in the next section. If we want to describe the relationship ‘John

loves Mary’, then we require a way of talking about John and Mary at the
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same time. We do this using an ordered pair. An ordered pair (a, b) is a pair

of objects a and b where the order in which a and b are written matters. For

any objects a, b, c, d, we have (a, b) = (c, d) if and only if a = c and b = d.

In our example, we have the pair (John, Mary) in the ‘loves’ relation, but

not necessarily the pair (Mary, John) since the love might be unrequited.

Hence, the order of the pair is important. The product constructor allows us

to collect the ordered pairs together in one set.

DEFINITION 2.11 (CARTESIAN/BINARY PRODUCT)

Let A and B be arbitrary sets. The Cartesian (or binary) product of A and B,

written A × B, is {(a, b) : a ∈ A ∧ b ∈ B}. We sometimes write A2 instead

of A × A. [Do not confuse the binary relation × on sets with the standard

multiplication × on numbers.]

Simple examples of Cartesian products include:

1. the coordinate system of real numbers R2: points are described by

their coordinates (x, y);

2. computer marriage bureau: let M be the set of men registered and W
the set of women, then the set of all possible matches is M × W ;

3. products are analogous to the product types of Haskell: for instance,

(Int, Char) is Haskell’s notation for the product Int × Char.

Fact Let A and B be finite sets. Then |A × B| = |A| × |B|.
Proof If you are uncertain about whether this fact is true, explore examples

such as {a, b} × {1, 2, 3} and ∅ × {a, b}. We give an informal proof, which

you do not need to remember. Suppose that A and B are arbitrary sets with

A = {a1, . . . , am} and B = {b1, . . . , bn}. Draw a table with m rows and n
columns of the members of A × B:

(a1, b1) (a1, b2) . . .

(a2, b1) (a2, b2) . . .

. . .

Such a table has m × n entries. �

We can extend this definition of Cartesian product to the n-ary case.

DEFINITION 2.12 (n-ARY PRODUCT)

1. For any n ≥ 1, an n-tuple is a sequence (a1, . . . , an) of n objects where

the order of the ai matter.
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2. Let A1, . . . , An be arbitrary sets. The n-ary product of the Ai, written

A1 × . . . × An or
⋃n

i=1 Ai, is {(a1, . . . , an) : ai ∈ Ai for 1 ≤ i ≤ n}.

The n-ary product of As is written An, with A2 corresponding to the Carte-

sian product introduced in definition 2.11. The following examples are sim-

ple examples of n-ary products.

1. The three dimensional space of real numbers R3.

2. The set timetable = day × time × room × courseno: a typical element

of this set is (Wednesday, 11.00, 308, 140). In Haskell notation, this

timetable example can be given by:

type Day = String

type Time = (Int, Int)

type Room = Int

type CourseNo = Int

type Timetable = (Day, Time, Room, CourseNo)

(Wednesday, (11,00), 308, 140) :: Timetable

3. Record types are also similar to n-ary products. Suppose we wish to

have a database which stores information about people. An array will

be unsuitable, since information such as height, age, colour of eyes,

date of birth, will be of different types. In many procedural and object-

oriented languages, we can instead define

Person = RECORD

who : Name;

height : Real;

age : [0...120];

eyeColour : Colour;

dateOfBirth : Date

END

This record is like a Haskell type augmented with projector functions:

type Name = String

type Colour = String

type Date = (Int, Int)

type Person = (Name, Float, Int, Colour, Date)
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who :: Person -> Name

height :: Person -> Float

age :: Person -> Int

eyeColour :: Person -> Colour

dateOfBirth :: Person -> Date

height (_, h, _, _, _) = h

...

Just like products, records can be nested, so that in the above example

we might have

Date = RECORD

day : [1...31];

month : [1...12];

year : [1900...1990]

END

Fact Let Ai be finite sets for each 1 ≤ i ≤ n. Then |A1 × . . . × An| =
|A1| × . . .× |An|. This fact can be simply proved by the ‘induction principle’,

introduced next term.

Notice that we can now form the product of three sets in three different

ways:

A × B × C (A × B) × C A × (B × C)

These sets are all different, so the set-operator × is not associative [whereas

multiplication × on numbers is associative]. There is however a clear corre-

spondence between the elements (a, b, c) and ((a, b), c) and (a, (b, c)), and so

these sets are in some sense equivalent. We make this intuition precise later

in the course. This phenomenon also occurs with Haskell types. A natural

example is

type Name = String

type Firstname = String

type Secondname = String

type Surname = String

Name1 ::= (FirstName, SecondName, Surname)
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Forenames ::= (FirstName, SecondName)

Name2 ::= (Forenames, Surname)

3 Relations

We wish to capture the concept of objects being related: for example, John

loves Mary; 2 < 5; two programs P and Q are ‘equal’. Such properties

can be expressed in logic using relations on atomic terms, as you have seen

in the logic course. Here we define relations as special sets. For instance,

assume the universal set People of all people. We form a set loves consisting

of all ordered pairs of people such that the first loves the second:

loves = {(x, y) : x, y ∈ People ∧ x loves y}

Thus loves ⊆ People × People.

3.1 Introducing Relations

DEFINITION 3.1 (BINARY RELATIONS)

A binary relation between (arbitrary) sets A and B is a subset of the binary

product A × B.

We use R,S, . . . to range over relations. If R ⊆ A1 × A2, we say that R has

type A1×A2. If R ⊆ A×A, we sometimes just say that R is a binary relation

on A. Instead of (a1, a2) ∈ R, we often write R(a1, a2); for example, we use

the logical notation loves(x, y) rather than (x, y) ∈ loves. We sometimes

write aR b instead of R(a, b); for example, x loves y or 2 < 5 or a ‘f ‘ b in

Haskell.

In general, there will be many relations on any set. A relation does not

have to be meaningful; any subset of a Cartesian product is a relation. For

example, for A = {a, b}, there are sixteen relations on A:

∅ {(a, b), (b, a)}
{(a, a)} {(a, b), (b, b)}
{(a, b)} {(b, a), (b, b)}
{(b, a)} {(a, a), (a, b), (b, a)}
{(b, b)} {(a, a), (a, b), (b, b)}
{(a, a), (a, b)} {(a, a), (b, a), (b, b)}
{(a, a), (b, a)} {(a, b), (b, a), (b, b)}
{(a, a), (b, b)} {(a, a), (a, b), (b, a), (b, b)}
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However, listing ordered pairs can get tedious and hard to follow. For binary

relations R ⊆ A × B, we have several other representations.

1. (Diagram) Let A = {a1, a2}, B = {(b1, b2, b3}, R = {(a1, b1), (a2, b1), (a2, b2)}.

We can represent R by the following diagram

A B

b1

b2

b3

a1

a2

You should remember this pictorial representation. [We sometimes

remove the boundary circles when it is clear which elements belong to

which set.]

2. (Directed Graph) In the case where R is a binary relation on A we can

also use a directed graph, which consists of a set of nodes correspond-

ing to the elements in A, joined by arrowed lines indicating the rela-

tionship between the elements. For example, let A = {a1, a2, a3, a4}
and R = {(a1, a2), (a2, a1), (a3, a2), (a3, a3)}. The directed graph of

this relation is

A
a1

a2a3

a4

Notice that the direction of the arrows matters. It is, of course, still

possible to use a diagram where the source and target sets are drawn

separately as in 1. You should also remember this formulation. [Again,

we sometimes omit the boundary circle.] Directed graphs will be stud-

ied further in Discrete Maths 2.
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3. (Special representations) We have invented special ways of drawing

certain important relations. For example, we can represent a relation

on R2 as an area in the plane. The following diagram represents the

relation R defined by xR y if and only if x + y ≤ 7.

7

7

y

x

4. (Matrix) Suppose that A = {a1, a2, . . . , am} and B = {b1, . . . , bn}.

We can represent R by an m × n matrix M of booleans (T,F), where

recall from the logic course that T stands for True and F for False. For

i = 1, . . . ,m and j = 1, . . . , n, define

M(i, j) = T, ai R bj

= F, otherwise

where M(i, j) is the usual notation for the ith row and jth column

of the matrix. For example, if A = {a1, a2}, B = {b1, b2, b3} and

R = {(a1, b1), (a2, b1), (a2, b2)} as before, then the matrix is

(

T F F

T T F

)

It is also common to use the elements 0, 1 instead of F,T. You do

not need to remember this formulation, although past exam questions

have asked questions about this representation.

5. (Implementation) On a computer, we can store a relation using an

array. This allows random access and easy manipulation, but can be

expensive in space if the relation is much smaller that A × B. With a

sparse relation, where there are not many ordered pairs, an alternative

approach is to use an array of linked lists, called an adjacency list. For

example, consider the binary relation R = {(1, 1), (1, 3), (2, 1)} on set
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{1, 2, 3}. This relation only has 3 of the possible 9 ordered pairs. We

create an array of three pointers, one for each element of {1, 2, 3}, and

list for each element which other elements it is related to:

31

1

3

2

1

Just as for products, we can extend the definition of a binary relation to an

arbitrary n-ary relation.

DEFINITION 3.2

A n-ary relation between sets A1, . . . , An is a subset of a n-ary product A1 ×
. . . × An. The definition of a 2-ary relation is the same as that of a binary

relation given in definition 2.11. A unary relation, or predicate, over set A is

a 1-ary relation: that is, a subset of A.

EXAMPLE 3.3

1. The set {x ∈ N : x is prime} is a unary relation on N .

2. The set {(x, y, z) ∈ R3 :
√

x2 + y2 + z2 = 1} is a 3-ary relation on the

real numbers, which describes the surface of the unary sphere with

centre (0, 0, 0).

3.2 Constructing relations

Just as for sets, we may construct new relations from old. We just give the

definitions for binary relations. it is easy to extend the definitions to the

n-ary case.

DEFINITION 3.4 (BASIC RELATION OPERATORS)

Let R,S ⊆ A1 × A2. Define the relations R ∪ S, R ∩ S and R, all with type

A1 × A2, by

1. (Relation Union) (a1, a2) ∈ R ∪ S iff (a1, a2) ∈ R or (a1, a2) ∈ S;

2. (Relation Intersection) (a1, a2) ∈ R ∩ S if and only if (a1, a2) ∈ R and

(a1, a2) ∈ S;
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3. (Relation Complement) (a1, a2) ∈ R if and only if (a1, a2) ∈ A1 × A2

and (a1, a2) 6∈ R.

EXAMPLE 3.5

Let R and S be binary relations on {1, 2, 3, 4} such that

R = {(1, 2), (2, 3), (3, 4), (4, 1)}
S = {(1, 2), (2, 1), (3, 4), (4, 3)}

We may construct the following relations:

R ∪ S = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 1), (4, 3)}
R ∩ S = {(1, 2), (3, 4)}

R = {(1, 1), (1, 3), (1, 4), (2, 1), (2, 2), (2, 4), (3, 1), (3, 2), (3, 3), (4, 2),

(4, 3), (4, 4)}

We have overloaded notation: R ∪ S and R ∩ S denotes relation union and

intersection respectively when R and S are viewed as relations, and set

union and intersection when viewed as sets. Notice that to form a relation

union or intersection, the relations must be of the same type. In contrast,

we can form the union and intersection of arbitrary sets. It should be clear

from the context which interpretation we intend.

DEFINITION 3.6 (IDENTITY RELATION)

Given any set S, the identity on A, written idA, is a binary relation on A
defined by idA = {(a, a) : a ∈ A}.

DEFINITION 3.7 (INVERSE RELATION)

Let R ∈ A×B denote an arbitrary binary relation. The inverse of R, written

R−1, is defined by aR−1 b if and only if bR a.

Inverse should not be confused with complement: for example, the inverse

of ‘is a parent of’ is ‘is the child of’; if z is the cousin of y, then z is in the

complement of ‘is a parent of’, but not the inverse. Using the R from exam-

ple 3.5, the inverse R−1 = {(2, 1), (3, 2), (4, 3), (1, 4)}. If we take the inverse

of the inverse of a relation, we recover the original relation: (R−1)−1 = R.

DEFINITION 3.8 (COMPOSITION OF RELATIONS)

Given R ⊆ A×B and S ⊆ B ×C, then the composition of R with S, written

R ◦ S, is defined by

aR◦S c if and only if ∃b ∈ B. (aR b ∧ b S c)
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The notation R ◦ S may be read as ‘R composed with S’ or ‘R circle S’. The

relation R◦S is only defined if the types of R and S match up. For example,

we can define the set grandparent = parent ◦ parent by:

x grandparent of y iff ∃z. (x parent of z) ∧ (z parent of y).

Using the R and S from example 3.5, we have

R ◦ S = {(1, 1), (2, 4), (3, 3), (4, 2)}
S ◦ R = {(1, 3), (2, 2), (3, 1), (4, 4)}

Contrast this notation for relational composition with the Haskell notation

for functional composition:

(g.f) x = g ( f x)

With the Haskell notation, the functional composition g . f reads ‘f followed

by g’, whereas the relational composition R◦S reads ‘R followed by S’. Very

confusing!

3.3 Equalities between Relations

Recall from proposition 2.5 that we can prove certain equalities between sets

constructed from the set operations. We can also similar equalities between

relations constructed from the operations on relations.

PROPOSITION 3.9

1. If R ⊆ A × B, then idA ◦ R = R = R ◦ idB.

2. ◦ is associative: that is, for arbitrary relations R ⊆ A × B and S ⊆
B × C and T ⊆ C × D, then

R ◦ (S ◦ T ) = (R ◦ S) ◦ T.

Proof The proof of part 1 is simple and left as an exercise. We prove part 2.

Let R, S and T be relations specified in the proposition, and let (x, u) be an

arbitrary member of (R ◦S) ◦ T . We show that (x, u) ∈ R ◦ (S ◦ T ) using the

following reasoning:

x (R ◦ S) ◦ T u ⇒ ∃z. x (R ◦ S) z ∧ z T u

⇒ ∃z. (∃y. xR y ∧ y S z) ∧ z T u

⇒ ∃z, y. (xR y ∧ y S z ∧ z T u)

⇒ ∃y. (xR y) ∧ (∃z. y S z ∧ z T u)

⇒ ∃y. (xR y) ∧ (y S ◦ T u)

⇒ xR ◦ (S ◦ T )u
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We have shown that (R◦S)◦T ⊆ R◦ (S ◦T ). The reverse direction showing

that R ◦ (S ◦ T ) ⊆ (R ◦ S) ◦ T can be proved in a similar way. �

PROPOSITION 3.10

Let R and S be arbitrary binary relations on A. In general

1. R 6= R−1;

2. composition is not commutative: that is, R ◦ S 6= S ◦ R;

3. R ◦ R−1 6= idA.

Proof Just as for proposition 2.7, the way to prove that a property does

not hold is to provide a counter-example. A counter-example to part 1 is

the relation R = {(a, b)} ⊆ {a, b} × {a, b}. Then R−1 = {(b, a)} which is

plainly different from R. To show that composition is not commutative, we

must find R,S such that R ◦ S 6= S ◦ R. Let A = B = {a, b}, R = {(a, a)}
and S = {(a, b)}. Then R ◦ S = {(a, b)} but S ◦ R = ∅. Part 3 is left as an

exercise.

3.4 Application to Relational Databases

A relational database is a collection of relations. We describe further oper-

ations on relations which are key operations used in relational databases.

[We only deal with the static aspects of databases, not concerning ourselves

with updating and maintaining integrity.] Consider the example of a uni-

versity registry database, which has a relation Student storing the students’

names, addresses and examination numbers. It is usual to represent such a

database relation as a table:

name address number

. . . . . . . . .

Brown, B 5 Lawn Rd. 105

Jackson, B. 1 Oak Dr. 167

Smith, J. 9 Elm St. 156

Walker, S. 4 Ash Gr. 189

. . . . . . . . .

Each tuple of the relation corresponds to a row in the table. The records in

a database, in this case name, address, number, are called the attributes of

the relation; each attribute corresponds to a column. Associated with each
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attribute is a set (or domain) from which it takes its values. It is clear that

these database relations are just the same as the n-ary relations we have

been studying. In our example, we may write

Student ⊆ name set × address set × number set

using an obvious notation for the sets associated with each attribute.

Suppose that the registry database has another relation, called Exam,

which records the results for students taking the compilers exam. It has

attributes number and grade. A table for Exam might look like

number grade

. . . . . .

105 A

156 A

189 C

. . . . . .

Notice that the relations Student and Exam share an attribute, namely num-

ber. We can combine the two relations using an operation called join to get

a new relation, which we call Student Exam, which merges the two relations

on their common attribute:

name address number grade

. . . . . . . . . . . .

Brown, B 5 Lawn Rd. 105 A

Smith, J 9 Elm St. 156 A

Walker, S 4 Ash Gr. 189 C

. . . . . . . . . . . .

Notice that candidate 167 did not sit the exam, and so therefore does not

appear in the join. We can define this join operation quite easily using our

logical notation:

Student Exam(n,a,no,g) ⇔ Student(n,a,no) ∧ Exam (no,g)

In the language of database theory, it is usually given a more readable form,

such as

join Student and Exam over number
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We might wish to modify Student Exam by hiding the number informa-

tion to get a new relation Results. This can be done by the operation projec-

tion, to yield the following result:

name address grade

. . . . . . . . .

Brown, B 5 Lawn Rd. A

Smith, J 9 Elm St. A

Walker, S 4 Ash Gr. C

. . . . . . . . .

In our logical notation, we may write:

Results(n,a,g) if and only if ∃ no. Student Name(n,a,no,g)

In database notation, this would be written in the style

project Student Exam over (name, address, grade)

Notice that Results is obtained from Student and Exam by a sort of gen-

eralised composition. In fact, composition of binary relations can be con-

structed by a join followed by a projection.

Another operation we might wish to do is to select a part of a relation

table which is of interest. Suppose in our registry example we wish to have

the names of those students who should be considered for a prize, and so we

select those candidates who got A in the exam. Starting from the relation

Results, we obtain a relation A-Results:

name address grade

. . . . . . . . .

Brown, B 5 Lawn Rd. A

Smith, J 9 Elm St. A

. . . . . . . . .

In logical notation, we could write

A-Results(n,a,g) if and only if Results(n,a,g) ∧ g = ‘A’

In database notation we have

select results where grade = ‘A’

The relation A-Results gives us the names we want, but we could reduce

further to get the relation PrizeCands with the single attribute:
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name

. . .

Brown, B

Smith, J

. . .

We have introduced three database operations—join, projection, selection—

and have seen how each operation has a counterpart in our formalism. More

details about relational databases will be given in the database course in the

second term. Relations will also be used in the second half of the Declarative

Programming Course: Logic Programming.

3.5 Properties of Relations

From section 1, recall our definition of two Haskell functions being equiva-

lent:

Two Haskell functions f : A → B and g : A → B are equivalent,

written f = g, if and only if, for all terms a in type A, then if f a

terminates then g a terminates and f a = g a, and if f a does not

terminate then g a does not terminate.

It is simple to show that the following properties are satisfied for this defini-

tion of equivalence between Haskell functions:

• (reflexivity) ∀f. f = f;

• (symmetry) ∀f1, f2. f1 = f2 ⇒ f2 = f1;

• (transitivity) ∀f1, f2, f3. f1 = f2 ∧ f2 = f3 ⇒ f1 = f3.

We give universal definitions for the properties just described. A relation

may or may not satisfy such properties.

DEFINITION 3.11

Let R be a binary relation on A. Then

1. R is reflexive if and only if ∀x ∈ A. xR x;

2. R is symmetric if and only if ∀x, y ∈ A. xR y ⇔ y R x;

3. R is transitive if and only if ∀x, y, z ∈ A. xR y ∧ y R z ⇒ xR z.
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Relations with these properties occur naturally: the equality relation on sets

is reflexive, symmetric and transitive; the relations ≤ on numbers and ⊆ on

sets are reflexive and transitive, but not symmetric; and the relation < on

numbers is transitive, but not reflexive nor symmetric.

Another way to define these relations is in terms of the operations on

relations introduced in the previous section.

PROPOSITION 3.12

let R be a binary relation on A.

1. The relation R is reflexive if and only if idA ⊆ R.

2. The relation R is symmetric if and only if R = R−1.

3. The relation R is transitive if and only if R ◦ R ⊆ R.

Proof The proof is easy and is left as an exercise.

3.6 Equivalence Relations

We think of an equivalence relation as a weak equality: aR b means that a
and b are in some sense indistinguishable. For example, imagine that we

have a set of programs and we have various demands to make of them: for

example, we might require that the programs

• always terminate;

• cost less than a hundred pounds;

• compute π to 100 decimal places;

• . . .

Even though two programs are not equal, they can satisfy the same demands

and so be ‘equal enough’ for our purposes. In such a case, we say that two

programs are equivalent.

DEFINITION 3.13

Let A be a set and R a binary relation on A. The relation R is an equivalence

relation if and only if R is reflexive, symmetric and transitive. We sometimes

just say that R is an equivalence.
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Examples

1. Given n ∈ N , the binary relation R on Z defined by aR b if and only

if n divides into (b − a) is an equivalence relation.

2. The binary relation S on the set Z ×N defined by (z1, n1)S (z2, n2) if

and only if z1 × n2 = z2 × n1 is an equivalence.

3. Let A be any set. Then the identity relation idA : A × A is an equiva-

lence relation.

4. Given a set Student and a map age : Student → N , the binary relation

sameage on Student defined by

s1 sameage s2 if and only if age(s1) = age(s2)

is an equivalence.

5. In definition 4.22, we define the relation ∼ between sets, which char-

acterises when (finite and infinite) sets have the same number of ele-

ments. Proposition 4.23 shows that ∼ is an equivalence relation.

6. The logical equivalence between formulae, given by A ≡ B if and only

if ` A ↔ B, is an equivalence.

The above examples suggest that equivalence relations lead to natural par-

titions of the elements into disjoint subsets. The elements in these subsets

are related and equivalent to each other.

DEFINITION 3.14 (EQUIVALENCE CLASSES)

Let R be an equivalence relation on A. For any a ∈ A, the equivalence class

of a with respect to R, denoted [a]R, is defined as

[a]R = {x ∈ A : aR x}.

We often write [a] instead of [a]R when the relation R is apparent.

The set of equivalence classes is sometimes called the quotient set A/R. In

examples 1 and 2 just given, Z/R represents the integers modulo n, and

(Z ×N )/S is the usual representation of the rational numbers.
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The equivalence classes of a set A can be represented by a Venn diagram:
for example,

A1

A2

A3

A4A5

A

In this case, there are five equivalence classes, illustrated by the five disjoint

subsets. In fact, the equivalence classes always separate the elements into

disjoint subsets that cover the whole of the set, as the following proposition

states formally.

PROPOSITION 3.15

The set of equivalence classes {[a] : a ∈ A} forms a partition of A: that is,

• each [a] is non-empty;

• the classes cover A: that is, A =
⋃

a∈A[a];

• the classes are disjoint (or equal): ∀a, b ∈ A. [a] ∩ [b] 6= ∅ ⇒ [a] = [b].

Proof Given any a ∈ A, then aR a by reflexivity and so a ∈ [a]. Also

a ∈ ⋃

a∈A[a], and hence the classes cover A. Suppose [a] ∩ [b] 6= ∅, and

let x ∈ [a] ∩ [b]. This means that aR x and bR x. It follows that xR b by

symmetry. Given any v ∈ [b], observe that bR v. Now aR x, xR b and bR v,

so aR v by transitivity. Therefore v ∈ [a] and so [b] ⊆ [a]. But [a] ⊆ [b] using

a similar argument, so [a] = [b]. �

3.7 Transitive Closure

Consider the following situation. There are various flights between various

cities. For any two cities, we wish to know whether it is possible to fly

from one to the other allowing for changes of plane. We can model this by

defining a set City of cities and a binary relation R such that aR b if and only

if there is a direct flight from a to b. This relation may be represented as a

directed graph with the cities as nodes, as in the following example:
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London

EdinburghManchester

Dubin 

Knock

Paris

Rome

Madrid

Define the relation R+ by aR+ b if and only if there is a trip from a to

b. Then clearly aR+ b if and only if there is some path from a to b in the

directed graph. For instance, there is a path from Manchester to Rome, but

no path from Rome to Manchester. We would like to calculate R+ from

R. Such a relation is called the transitive closure of R, since it is clearly

transitive, and is in fact a special relation in the sense that it is the smallest

transitive relation containing R.

We can express the relation R+ in terms of R using relational composi-

tion: aR+ b if and only if there is a path of length n from a to b, for some

n ≥ 1. Another way of making this statement is to define the interim rela-

tions Rn: aRn b if and only if there is a path of length n from a to b. Another

way of defining Rn is

R1 = R

R2 = R ◦ R

R3 = R ◦ R2 = R2 ◦ R, since ◦ is associative

...

Rn = R ◦ Rn−1 = R ◦ . . . ◦ R, n times
...

Therefore, we have aR+ b if and only if ∃n ≥ 1. aRn b: moreover

R+ = R ∪ R2 ∪ . . . ∪ Rn ∪ . . . =
⋃

n≥1

Rn

There are many other natural examples of transitive closure, such as the

following examples:
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1. Program modules can import other modules. [You have seen this al-

ready in the Haskell course.] They can also depend indirectly on mod-

ules via some chain of importation, so that for instance M depends on

M ′ if M imports M ′′ and M ′′ imports M ′. The relation ‘depends’ is

the transitive closure of the relation ‘imports’.

2. Two people are related if one is the parent of the other, if they are mar-

ried, or if there is a chain of such relationships joining them directly.

We can model this by a universal set People, with three relations Mar-

ried, Parent and Relative. The relation Relative is defined using the

transitive closure:

Relative = ((Parent ∪ Parent−1) ∪ Married)+

DEFINITION 3.16 (TRANSITIVE CLOSURE)

Let R be a binary relation on A. The transitive closure of R, written t(R) or

R+, is
⋃

n≥1 Rn: that is,

R ∪ R2 ∪ R3 ∪ R4 ∪ . . .

The transitive closure of a binary relation always exists. To cast more light

on R+, we now examine an alternative way of building the transitive clo-

sure. Let R be finite, and imagine that we want to make R transitive in the

most ‘economical’ fashion. If R is already transitive, we need do nothing.

Otherwise, there exists a, b, c ∈ A such that aR bR c, but not aR c. We add

the pair (a, c) to the relation.It is now in some sense closer to being transi-

tive. We carry on doing this, until there are no more pairs. We now have

a transitive relation. Anything we have added to R was forced upon us by

the requirement of transitivity, so we have obtained the smallest possible

relation containing R.

Another approach is to see how a computer might compute R+. In order

to calculate R+, we can compute successively

R,R ∪ R2, R ∪ R2 ∪ R3, . . .

In terms of paths, the relation R ∪ R2 ∪ . . . ∪ Rn represents all paths of

length between 1 and n. But since R+ is defined as an infinite union it

seems that we will have to carry on computing for ever, which will not do.

If R is finite however, the process will come to an end at some finite stage

because eventually nothing new will be added. Suppose the set on which

R is defined has n elements. Then we need not consider paths of length
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greater than n since they will involve repeats (visiting the same node of the

graph twice). So Rn+1 is already included in R∪R2 ∪ . . .∪Rn and we need

not calculate further as we have found R+. In fact, we often don’t have to

go as far as n. In the airline example at the beginning of the section there

are 8 cities, but the longest paths without repeats are of length 3. Thus we

compute R∪R2∪R3 and find that R4 ⊆ R∪R2∪R3, so that we can stop. We

may describe our procedure by the following Kenya-like algorithm where :=
denotes assignment:

Input R
S := R
T := R
S := R ◦ S
while not S ⊆ T do

T := T ∪ S
S := R ◦ S

od

Output T

In the above algorithm, whenever the while loop is entered, then S = Rn+1

and T = R ∪ R2 ∪ . . . ∪ Rn for n = 1, 2, 3, . . .. There are many ways of

improving the algorithm. A very much more efficient method is Warshall’s

algorithm, described in Discrete Maths 2.

It is sometimes useful to ‘reverse’ the process of finding the transitive

closure. In other words, given a transitive relation R, the task is to find

a smallest S such that S+ = R. The benefit is that S is smaller, while

in some sense having the same information content as R, since R can be

reconstructed from S. In general, there can be many solutions for S. We

will return to this problem in the easier setting of partial orders in section 5.

4 Functions

You have probably spent a large part of your mathematical education con-

sidering mathematical functions in one context or another. In this section,

we formalize the notion of mathematical functions as special relations, giv-

ing the basic definitions, ways of constructing functions and properties for

reasoning about functions. You have also been introduced to Haskell func-

tions, which are examples of the computable functions. In future courses,

you will learn about these computable functions.
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4.1 Introducing Functions

DEFINITION 4.1 (FUNCTIONS)

A function f from a set A to a set B, written f : A → B, is a relation

f ⊆ A×B such that every element of A is related to one element of B; more

formally, it is a relation which satisfies the following additional properties:

1. (a, b1) ∈ f ∧ (a, b2) ∈ f ⇒ b1 = b2;

2. ∀a ∈ A.∃b ∈ B. (a, b) ∈ f .

The set A is called the domain of f , and B is the co-domain of f . If a ∈ A,

then f(a) denotes the unique b ∈ B such that (a, b) ∈ f . One awkward

convention is that, if the domain A is the n-ary product A1×. . .×An, then we

often write f(a1, . . . , an) instead of f((a1, . . . , an)). The intended meaning

should be clear from the context. Also, recall the difference between the

following two Haskell functions:

f :: a -> b -> c -> d

f :: (a,b,c) -> d

In definition 4.1, the definition of function can not be curried.

DEFINITION 4.2

Let f : A → B. For any X ⊆ A, define the image of X under f to be

f [X]
def
= {f(a) : a ∈ X}

The set f [A] of all images of f is called the image set of f .

We explore some examples. Since functions are special binary relations,

we can use the representations given in section 3 to describe relations.

When the domain and co-domain are finite, a useful representation is the

diagram representation.

1. Let A = {1, 2, 3} and B = {a, b, c}. Let f ⊆ A × B be defined by

f = {(1, a), (2, b), (3, a)}. Then f is a function, as is clear to see from

the diagram:
A B

1

2

3

a

b

c

The image set of f is {a, b}. The image of {1, 3} under f is {a}.
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2. Let A = {1, 2, 3} and B = {a, b}. Let f ⊆ A × B be defined by

f = {(1, a), (1, b), (2, b), (3, a)}. This f is not a well-defined function,

since one element of A is related to two elements in B as is evident

from the diagram:
A B

1

2

3

a

b

3. The following are examples of functions with infinite domains and co-

domains:

(a) the function f : N ×N 7→ N defined by f(x, y) = x + y;

(b) the function f : N 7→ N defined by f(x) = x2;

(c) the function f : R 7→ R defined by f(x) = x + 3.

The binary relation R on the reals defined by xR y if and only if x = y2

is not a function, since for example 4 relates to both 2 and −2.

PROPOSITION 4.3 (FINITE CARDINALITY)

Let A → B denote the set of all functions from A to B, where A and B are

finite sets. If |A| = m and |B| = n, then |A → B| = nm.

Sketch proof For each element of A, there are m independent ways of map-

ping it to B. You do not need to remember this proof. �

4.2 Partial Functions

Recall that it is easy to write Haskell functions which return run-time errors

on some (or all) arguments. For example, when designing a program P
to compute square roots, it is quite reasonable to have P return an error

message for negative inputs. We can either regard P as a function which

returns the error answer on negative inputs, or we can regard the program

as a partial function which is undefined on negative arguments.

DEFINITION 4.4

A partial function f from a set A to a set B, written f : A ⇀ B, is a relation

f ⊆ A×B such that just some elements of A are related to unique elements

of B; more formally, it is a relation which satisfies:

(a, b1) ∈ f ∧ (a, b2) ∈ f ⇒ b1 = b2
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The partial function f is regarded as undefined on those elements which

do not have an image under f . It is sometimes convenient to refer to this

undefined value explicitly as ⊥ (pronounced bottom). A partial function

from A to B is the same as a function from A to (B + {⊥}).
Example The relation R = {(1, a), (3, a)} is a partial function:

A B

1

2

3

a

b

We can see that not every element in A maps to an element in B.

Example The binary relation R on R defined by xR y if and only if
√

x = y
is a partial function. It is not defined when x is negative.

Exercise Let A ⇀ B denote the set of all partial functions from A to B. If

|A| = m and |B| = n, what is the cardinality of |A ⇀ B|?

4.3 Properties of Functions

Recall that we highlighted certain properties of relations, such as reflexivity,

symmetry and transitivity. We also highlight certain properties of functions,

which will be used to extend our cardinality definition to infinite sets.

DEFINITION 4.5 (PROPERTIES OF FUNCTIONS)

Let f : A → B be a function. We define the following properties on f :

1. f is onto (sometimes called surjective) if and only if every element of

B is in the image of f : that is, ∀b ∈ B.∃a ∈ A. f(a) = b;

2. f is one-to-one (sometimes called injective) if and only if for each b ∈ B
there is at most one a ∈ A with f(a) = b: that is, ∀a, a′ ∈ A. f(a) =
f(a′) implies a = a′;

3. f is a bijection if and only if f is both one-to-one and onto.

Notice that the definition of an one-to-one function is equivalent to a1 6=
a2 ⇒ f(a1) 6= f(a2), and so an one-to-one function never repeats values.
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EXAMPLE 4.6

Let A = {1, 2, 3} and B = {a, b}. The function f = {(1, a), (2, b), (3, a)} is

onto, but not one-to-one, as is immediate from its diagram:

A B

1

2

3

a

b

c

It is not possible to define a one-to-one function from A to B, as there are

too many elements in A for them to map uniquely to B.

EXAMPLE 4.7

Let A = {a, b} and B = {1, 2, 3}. The function f = {(a, 3), (b, 1)} is one-to-

one, but not onto:

a

b

1

2

3

It is not possible to define an onto function from A to B in this case, as there

are not enough elements in A to map to all the elements of B.

EXAMPLE 4.8

Let A = {a, b, c} and B = {1, 2, 3}. The function f = {(a, 1), (b, 3), c, 2)} is

bijective:

a

b

c

1

2

3

A B

EXAMPLE 4.9

The function f on natural numbers defined by f(x, y) = x + y is onto but

not one-to-one. To prove that f is onto, take an arbitrary n ∈ N . We

must find (m1,m2) ∈ N × N such that f(m1,m2) = n. This is easy since

f(n, 0) = n+0 = n. To show that f is not one-to-one, we need to produce a

counter-example. In other words, we must find (m1,m2), (n1, n2) such that
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(m1,m2) 6= (n1, n2), but f(m1,m2) = f(n1, n2). There are many possibili-

ties, such as (1, 0) and (0, 1). In fact, since + is commutative, (m,n), (n,m)
is a counter-example for any m,n.

EXAMPLE 4.10

The function f on natural numbers defined by f(x) = x2 is one-to-one, but

the similar function f on integers is not. The function f on integers defined

by f(x) = x + 1 is surjective, but the similar function on natural numbers is

not.

EXAMPLE 4.11

The function f on the real numbers given by f(x) = 4x + 3 is a bijective

function. To prove that f is one-to-one, suppose that f(n1) = f(n2), which

means that 4n1 + 3 = 4n2 + 3. It follows that 4n1 = 4n2, and hence n1 =
n2. To prove that f is onto, let n be an arbitrary real number. We have

f((n − 3)/4) = n by definition of f , and hence f is onto. Since f is both

one-to-one and onto, it is bijective. Notice that the function f on the natural

numbers given by f(x) = x + 3 is one-to-one but not onto, since 2 is not in

the image-set of f .

4.4 The Pigeonhole Principle

Suppose that m objects are to be placed in n pigeonholes, where m > n.

Then some pigeonhole will have to contain more than one object. A similar

example is that, if there are at least 367 people in a room, then at least two

must share the same birthday. This idea is called the pigeonhole principle,

due to the illustrative example just given. Let us rephrase the pigeonhole

principle in our formal language of functions:

Let f : A → B be a function, where A and B are finite. If

|A| > |B|, then f cannot be a one-to-one function.

Recall example 4.6. We stated that is not possible to define a one-to-one

function from A = {1, 2, 3} to B = {a, b}, since A is too big. It is not

possible to prove this property directly. Instead, the pigeonhole principle

states that we assume that the property is true.

PROPOSITION 4.12

Let A and B be finite sets, let f : A → B and let X ⊆ A. Then |f [X]| ≤ |X|.
Proof This property is intuitively clear, and can be proved by appealing

to the pigeonhole principle. Suppose for contradiction that |f [X]| > |X|.
Define a place function p : f [X] → X by
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p(b) = some a ∈ X such that f(a) = b.

It does not matter which a we choose, but there will be such an a by defi-

nition of f [X]. We are placing the members of f [X] in the pigeonholes X.

By the pigeonhole principle, some pigeonhole has at least two occupants. In

other words, there is some a ∈ X and b, b′ ∈ f [X] with p(b) = p(b′) = a. But

then f(a) = b and f(a) = b′, which cannot happen as f is a function. �

PROPOSITION 4.13

Let A and B be finite sets, and let f : A → B.

1. If f is one-to-one, then |A| ≤ |B|.

2. If f is onto, then |A| ≥ |B|.

3. If f is a bijection, then |A| = |B|.

Proof Part (a) is the contrapositive of the pigeonhole principle. For (b),

notice that if f is onto then f [A] = B, so that in particular |f [A]| = |B|. Also

|A| ≥ |f [A]| by proposition 4.12. Therefore |A| ≥ |B| as required. Finally,

part (c) follows from parts (a) and (b). �

4.5 Operations on Functions

Since functions are special relations, we can define the identity, composi-

tion and inverse relations of functions. The composition of two functions

is always a function. In contrast, we shall see that the inverse relation of a

function need not necessarily be a function.

DEFINITION 4.14 (COMPOSITION OF FUNCTIONS)

Let A,B and C be arbitrary sets, and let f : A → B and g : B → C
be arbitrary functions of these sets. The composition of f with g, written

g ◦ f : A → C, is a function defined by

g ◦ f(a)
def
= g(f(a))

for every element a ∈ A. In Haskell notation, we would write

(g.f) a = g (f a)

It is easy to check that g ◦ f is indeed a function. Notice that the co-domain

of f must be the same as the domain of g for the composition to be well-

defined.
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Example Let A = {1, 2, 3}, B = {a, b, c}, f = {(1, a), (2, b), (3, a)} and g =
{(a, 3), (b, 1)}. Then g ◦ f = {(1, 3), (2, 1), (3, 3)}:

2

3

1

2

3

A B A

1 a

b

PROPOSITION 4.15 (ASSOCIATIVITY)

Let f : A → B, g : B → C and h : C → D be arbitrary sets. Then

h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Proof This result is easily established from the definition of functional com-

position. Take an arbitrary element a ∈ A. Then

(h ◦ (g ◦ f))(a) = h((g ◦ f)(a)) = h(g(f(a))) = (h ◦ g)(f(a)) = ((h ◦ g) ◦ f)(a)

The proof may be illustrated by this picture:

A B

C D

f

h

g ◦ f
g h ◦ g

Each of the two triangles ABC, BDC ‘commutes’: that is, the result is the

same whether one follows f followed by g or g ◦ f , and whether one does g
followed by h or h◦g. The parallelogram ABCD therefore ‘commutes’, which

means that the result holds. �

PROPOSITION 4.16

let f : A → B and g : B → C be arbitrary functions. If f, g are bijections,

then so is g ◦ f .

Proof It is enough to show that

1. if f, g are onto then so is g ◦ f ;

2. if f, g are one-to-one then so is g ◦ f .

To prove the onto result, assume f and g are onto and let c be an arbitrary

element of C. Since g is onto, we can find an element b ∈ B such that
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g(b) = c. Since f is onto, we can also find an element a ∈ A such that

f(a) = b. But then g ◦ f(a) = g(f(a)) = g(b) = c, and hence g ◦ f is onto.

To prove the one-to-one result, assume f and g are one-to-one. Let

a1, a2 be arbitrary elements of A, and suppose g ◦ f(a1) = g ◦ f(a2). Then

g(f(a1)) = g(f(a2)) by the definition of g◦f . Since g is one-to-one, it follows

that f(a1) = f(a2). Since f is also one-to-one, it follows that a1 = a2, and

hence g ◦ f is one-to-one. �

DEFINITION 4.17 (IDENTITY FUNCTION)

Let A be a set. Define the identity function on A, denoted idA : A → A, by

idA(a) = a for all a ∈ A. In Haskell, we would declare the function

id :: A -> A

id x = x

We shall now define the inverse function. We cannot just define it using

the definition of inverse relations, as we do not always get a function this

way. For example, the inverse relation of the function f : {1, 2} → {1, 2}
defined by f(1) = f(2) = 1 is not a function. However, we shall see that

when inverse functions exist they correspond to the inverse relation.

DEFINITION 4.18 (INVERSE FUNCTION)

let f : A → B be an arbitrary function. The function g : B → A is an inverse

of f if and only if

for all a ∈ A, g(f(a)) = a

for all b ∈ B, f(g(b)) = b

Another way of stating the same property is that g ◦f = idA and f ◦ g = idB .

Example Let A = {a, b, c}, B = {1, 2, 3}, f = {(a, 1), (b, 3), (c, 2)} and g =
{(1, a), (2, c), (3, b)}. Then g is an inverse of f .

PROPOSITION 4.19

Let f : A → B be a bijection, and define f−1 : B → A by

f−1(b) = a whenever f(a) = b

In this case, the relation f−1 is a well-defined function, and is an inverse of

f (in fact, the inverse in view of the next proposition).

Proof Let b ∈ B be arbitrary. Since f is onto, there is an a such that

f(a) = b. Since f is one-to-one, this a is unique. This means that f−1 is a

function. By definition, it satisfies the conditions for being an inverse of f .

�
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PROPOSITION 4.20

Let f : A → B. If f has an inverse g, then f must be a bijection and the

inverse is unique (and is the f−1 given in proposition 4.19).

Proof Let g be the inverse of f . To show that f is onto, let b be an arbitrary

element of B. Since f(g(b)) = b, it follows that b must be in the image of f .

To show that f is one-to-one, let a1, a2 be arbitrary elements of A. Suppose

f(a1) = f(a2), which implies that g(f(a1)) = g(f(a2)). Since g ◦ f = idA,

it follows that a1 = a2. To show that the inverse is unique, suppose that

g, g′ are both inverses of f . We will show that g = g ′. Let b be an arbitrary

element of B. Then f(g(b)) = f(g′(b)) since g, g′ are inverses. Hence g(b) =
g′(b) since f is one-to-one. �

In view of the proceeding proposition, one way of showing that a func-

tion is a bijection is to show that it has an inverse. Furthermore, if f is a

bijection with inverse f−1, then f−1 has an inverse, namely f , and so f−1 is

also a bijection.

EXAMPLE 4.21

The function f : N → N defined by

f(x) = x + 1 x odd

= x − 1 x even

It is easy to check that (f ◦ f)(x) = x, considering the cases when x is odd

and even separately. Therefore f is its own inverse, and we can deduce that

it is a bijection.

4.6 Cardinality of Sets

We are finally in a position to compare the size of infinite sets, using a natu-

ral relation between sets defined using bijective functions.

DEFINITION 4.22

For any sets A,B, define A ∼ B if and only if there is bijection from A to B.

PROPOSITION 4.23

The relation ∼ is reflexive, symmetric and transitive.

Proof The relation ∼ is reflexive , since idA : A → A is clearly a bijection.

To show that it is symmetric, observe that by definition A ∼ B implies that

there is a bijection f : A → B. By proposition 4.19, it follows that f has

an inverse f−1 which is also a bijection. Hence B ∼ A. The fact that the

relation ∼ is transitive follows from proposition 4.16. �
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EXAMPLE 4.24

Let A,B,C be arbitrary sets, and consider the products (A × B) × C and

A× (B ×C). In section 2.2.5, we observed that these sets are not in general

equal. There is however a natural bijection f : (A×B)×C → A× (B ×C)
given by:

f : ((a, b), c) 7→ (a, (b, c))

Define the function g : A × (B × C) → (A × B) × C in a similar fashion:

g : (a, (b, c)) 7→ ((a, b), c)

It is not difficult to show that g ◦ f = idA×(B×C) and f ◦ g = id(A×B)×C , and

hence by proposition 4.20 that f is a bijection.

EXAMPLE 4.25

Consider the set Even of even natural numbers. There is a bijection between

Even and N given by f(n) = 2n. Notice that there not all function from

Even to N are bijections: for example, the function g : Even → N given by

g(n) = n is one-to-one but not onto. To show that Even ∼ N it is enough to

show the existence of such a bijection.

Recall that the cardinality of a finite set is the number of elements in that

set. Consider a finite set A with cardinality n. Then there is a ‘counting’

bijection

cA : {1, 2, . . . , n} → A

This function should be familiar, in that we often enumerate the elements

in A by {a1, . . . , an}. Now let A and B be two finite sets. If A and B have

the same number of elements, the we can define a bijection f : A → B by

f(a) = (cB ◦ c−1
A )(a)

Thus, two finite sets have the same number of elements if and only if there

is a bijection between then. We extend this observation to compare the size

of infinite sets.

DEFINITION 4.26 (CARDINALITY)

Given two arbitrary sets A and B, then A has the same cardinality as B,

written |A| = |B|, if and only if A ∼ B.

We explore examples of infinite sets in two stages. We first look at those

sets which have the same cardinality as the natural numbers, since such sets

have nice properties. We then briefly explore examples of infinite sets which

40



are ‘bigger’ than the set of natural numbers. The set of natural numbers is

one of the simplest infinite sets. We can build it up by stages:

0
0, 1
0, 1, 2
...

in such a way that any number n will appear at some stage. Infinite sets

which can be built up in finite portions by stages are particularly nice for

computing. We therefore distinguish those set which are either finite or

which have a bijection to N .

DEFINITION 4.27 (COUNTABLE)

For any set A, A is countable if and only if A is finite or A ∼ N . The elements

of a countable set A can be listed as a finite or infinite sequence of distinct

terms: A = {a1, a2, a3, . . .}.

EXAMPLE 4.28

The integers Z are countable, since they can be listed as:

0, 1,−1, 2,−2, 3,−3, . . .

This ‘counting’ function can be defined formally by the bijection g : Z → N
defined by

g(x) = 2x, x ≥ 0

= −1 − 2x, x < 0

EXAMPLE 4.29

The set of integers Z is like two copies of the natural numbers N . We can

even count N 2, which is like N copies of N , as illustrated by the following
diagram:

0 1 2 3 4

1

2

3

4
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Comment The rational numbers are also countable.

In contrast, Cantor showed that there are uncountable sets: that is, in-

finite sets that are too large to be countable. An important example is the

set of reals R. We cannot build up the reals in infinite stages, and this

means that we cannot manipulate reals in the way we can natural numbers.

Instead, we have to use approximations, such as the floating point deci-

mals (given by the type Float in Haskell). Another example is the power

set P(N ). For further information about infinite sets and countability see

Truss, section 2.4.

5 Orderings

Orderings are special relations which characterise when one object is ‘better’

than another. Orderings on sets of numbers such as N , Z and R are familiar:

the ordering < describes the ‘less than’ ordering, and ≤ the ‘less than or

equal’ ordering. We can also have orderings on other sets. For instance,

suppose that we have a set of programs and we wish to distinguish which

are cheaper, or run faster, or are more accurate. These sort of orderings

are used in Discrete Mathematics 2 to compare the efficiency of algorithms.

Here we give the formal definitions and properties of some orderings.

DEFINITION 5.1 (ORDERINGS)

1. Let R be a binary relation on a set A. Then R is a pre-order if and only

if R is reflexive and transitive.

2. Let R be a binary relation on a set A. Then R is anti-symmetric if and

only if ∀a, b ∈ A. (xR y ∧ y R x ⇒ x = y). The relation R is a partial

order if and only if R is reflexive, transitive and anti-symmetric. Partial

orders are often denoted by ≤. We write (A,≤) to denote a partial

order ≤ on A.

3. Let R be a binary relation on a set A. Then R is irreflexive if and only

if ∀a ∈ A.¬(aR a). Let R be a binary relation on a set A. Then R is a

strict partial order if and only if R is irreflexive and transitive. Strict

partial orders are often denoted by <.

4. A partial order R on A is a total order iff ∀a, b ∈ A. (aR b∨bRa). Total

orders are also sometimes called linear orders.

42



In the definition of partial order, notice that anti-symmetric is not the oppo-

site of symmetric, since a relation can be both symmetric and anti-symmetric:

for example, the identity relation or the empty relation.

EXAMPLE 5.2

1. The numerical orders ≤ on N , Z and R are total orders. The orders

< are strict partial orders.

2. Division on N \{0} is a partial order: ∀n,m ∈ N . n ≤ m iff n divides

m.

3. For any set A, the power set of A ordered by subset inclusion is a

partial order.

4. Suppose (A,≤A) is a partial order and B ⊆ A. Then (B,≤B) is a

partial order, where ≤B denotes the restriction of ≤A to the set B.

5. Define a relation on formulae by: A ≤ B if and only if ` A→B. Then

≤ is a pre-order. For example, false ≤ A ≤ true and A ≤ A ∨ B.

6. For any two partially ordered sets (A,≤A) and (B,≤B), there are two

important orders on the product set A × B:

• product order: (a1, b1) ≤P (a2, b2) iff (a1 ≤A a2) ∧ (b1 ≤B b2)

• lexicographic order: (a1, b1) ≤L (a2, b2) iff (a1 <A a2) ∨ (a1 =
a2 ∧ b1 ≤B b2).

If (A,≤) and (B,≤) are both total orders, then the lexicographic order

on A × B will be total. By contrast, the product order will in general

only be partial. For any partially ordered sets (A,≤) and (B,≤), the

product order is contained in the lexicographic order.

7. (For interest, gives ordering for words in a dictionary) For any totally

ordered (finite) alphabet A, the sets A∗ = {ε}∪A∪A2 ∪A3∪ . . . is the

set if all strings made from that alphabet, with ε denoting the empty

string. The full lexicographic order ≤F on A∗ is defined as follows.

Given two words u, v ∈ A∗, if u = ε then u ≤F v and if v = ε then

v ≤F u. Otherwise, both u and v are non-empty so we can write

u = u1x and v = v1y where u1 and v1 are the first letters of u and v
respectively. Now u ≤F v ⇔ (u = ε)∨ (u1 <A v1)∨ (u1 = v1∧x ≤F y).
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5.1 Hasse Diagrams

Since partial orders are special binary relations on a set A, we can repre-

sent them by directed graphs. However, these graphs get rather cluttered if

every arrow is drawn. We therefore introduce Hasse diagrams, which pro-

vide a compact way of representing the partial order. First we require some

definitions.

DEFINITION 5.3

If R is a partial order on a set A and aR b for a 6= b, we call a a predecessor

of b, and similarly b a successor of a. If a is a predecessor of b and there is no

c with aR c and cR b, then a is the immediate predecessor of b.

Hasse diagrams are like directed graphs, except that they just record the

immediate predecessors; the other pairs in the partial order can be inferred.

Also the direction of the lines is usually omitted, with the convention that

all lines are directed up the page. We give two examples of Hasse diagrams.

EXAMPLE 5.4

For example, the Hasse diagram for the relation ‘is a divisor of’ for the set

{1, 2, 3, 6, 12, 18} is

1

2 3

6

12 18

EXAMPLE 5.5

The Hasse diagram for the binary relation ⊆ on P({1, 2, 3}) is

∅

{3}

{1, 3}

{1, 2, 3}

{2, 3}{1, 2}

{1}
{2}
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5.2 Analysing Partial Orders

The shape of the partial orders (N ,≤) and (Z,≤) are different from each

other. The number 0 is the smallest element with respect to the natural

numbers, but not with respect to the integers.

DEFINITION 5.6 (ANALYSING PARTIAL ORDERS)

Let (A,≤) be a partial order.

1. An element a ∈ A is minimal iff ∀b ∈ A. (b ≤ a ⇒ b = a).

2. An element a ∈ A is least iff ∀b ∈ A. a ≤ b.

3. An element a ∈ A is maximal iff ∀b ∈ A. (a ≤ b ⇒ a = b).

4. An element a ∈ A is greatest iff ∀b ∈ A. b ≤ a.

In example 5.4, the least (and minimal) element is 1, the maximal elements

are 12 and 18, and there is no greatest element. In example 5.5, the least

(and minimal) element is ∅, and the greatest (and maximal) element is

{1, 2, 3}. With the usual partial order (N ,≤), the least element is 0, and

there is no maximal element.

PROPOSITION 5.7

Let (A,≤) be a partial order.

1. If a is a least element, then a is a minimal element.

2. If a is a least element, then it is unique.

3. If A is finite and non-empty, then (A,≤) must have a minimal element.

4. If (A,≤) is a total order, where A is finite and non-empty, then it has

a least element.

Proof To prove part 1, suppose that a ∈ A is least and assume for contra-

diction that b < a for some b ∈ A such that b 6= a. But a ≤ b by definition

of a being least. This contradicts anti-symmetry. To prove part 2, suppose

that a and b are both least elements. By definition of least element, we have

a ≤ b and b ≤ a. By anti-symmetry, it follows that a = b.
To prove part 3, pick any a0 ∈ A. If a0 is not minimal we can pick

a1 < a0. If a1 is not minimal, we can pick a2 < a1. In this way, we get a

decreasing chain a0 > a1 > a2 > . . .. All the elements of the chain must be

different, by construction. Since A is a finite set, we must find a minimal

element at some point. [Notice that in this proof we not only show the

existence of minimal elements, but also how to find one.] Part 4 is left as an

exercise. �
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5.3 From Partial to Total Orders

Given a finite partial order, we can extend it to a total order. For example,

suppose we have a set of tasks T to perform. We wish to decide in what

order to perform them. We are not totally free to choose, because some

tasks have to be finished before others can be started. We can express this

pre-requisite structure by a partial order < on T. We want to find a total

order <′ on T which respects < in the sense that if t < u then t <′ u.

As a more concrete example, consider the partial order ⊆ on P({1, 2, 3})
given in example 5.5. It is partial because, for example, the sets {1} and {3}
are not contained in each other. A total order ⊆T which extends this partial

order is given by the sequence

∅, {3}, {2}, {1}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
We are forced to have {1} ⊆T {1, 2} since we wish to respect the partial

order, but we have chosen to have {3} ⊆T {1}. This process of going from

a partial to a total order is called topological sorting, and we can define a

simple algorithm for topological sorting based on minimal elements.

PROPOSITION 5.8 (TOPOLOGICAL SORTING)

Let (A,≤) denote a finite partial order. We can construct a total order ≤T

on A such that ∀a, b ∈ A.(a ≤ b ⇒ a ≤T b).

Proof First choose a minimal element a1 ∈ A. Such an element exists since

A is finite. Note that (A\{a1},≤) is also a po. If it is non-empty, choose

a minimal element a2 ∈ A\{a1}. Continue this process, until there are no

more elements left. [In fact there is a slight subtlety. At each step, there

may be more than one minimal element. These cannot be compared with

each other, so it does not matter what order they have in the total order.

Instead of putting just one of them into the total order, we could include all

of them in some arbitrary order before going on to the next step and finding

the minimal elements in the remainder of A.] Since A is finite, this process

must terminate. The total order is given by the sequence a1, a2, a3, . . .. �

5.4 Well-founded Partial Orders

Well-founded partial orders are extremely useful. For example, consider the

function Ack : N ×N → N defined by

Ack(0, y) = y + 1

Ack(x + 1, 0) = Ack(x, 1)

Ack(x + 1, y + 1) = Ack(x,Ack(x + 1, y))
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This program is a well-known example in computer science, since the func-

tion computed by this program grows extremely rapidly. We wish to prove

that this program always terminates, and therefore defines a total function.

Counting down from x is not good enough, since the third equation does

not decrease x + 1, because of the embedded Ack(x + 1, y). We will devise

a different way of counting down, by defining a well-founded partial order

with the property that it always decreases to a terminating state.

DEFINITION 5.9 (WELL-FOUNDED PARTIAL ORDERS)

A partial order (A,≤) is well-founded if and only if it has no infinite de-

creasing chain of elements: that is, for every infinite sequence a1, a2, a3, . . .
of elements in A with a1 ≥ a2 ≥ a3 ≥ . . ., there exists m ∈ N such that

an = am for every n ≥ m.

For example, the conventional numerical order ≤ on N is a well-founded

partial order. This is not the case for ≤ on Z, which can decrease for ever.

PROPOSITION 5.10

If two partial orders (A,≤) and (B,≤) are well-founded, then the lexico-

graphical order on A × B (see example 5.2) is also well-founded.

Proof Suppose (a1, b1) ≥L (a2, b2) ≥L (a3, b3) ≥L . . .. Then a1 ≥A a2 ≥A

a3 ≥A ... by the definition of lexicographic order, so the sequence is must ul-

timately consists of the same element, since (A,≤A) is well-founded. There-

fore, there exists m ∈ N such that an = am for every n ≥ m. Now by the

definition of lexicographic order, we have bm ≥B bm+1 ≥B bm+3 ≥B . . ., and

this sequence must also ultimately end up being constant because (B ≤B)
is well-founded. Thus, the original sequence is ultimately constant. �

This result implies that the product order on A×B is well-founded, since the

product order is contained in the lexicographical order (see example 5.2).

Let us return to the Ack function, and consider the strict lexicographical

order on N ×N by

(x, y) < (x′, y′) if and only if x < x′ or (x = x′ and y < y′)

Notice that

(x + 1, 0) > (x, 1)

(x + 1, y + 1) > (x,Ack(x + 1, y))

(x + 1, y + 1) > (x + 1, y)

and so evaluating the Ack function takes us down the order. Moreover the

order is well-founded, using proposition 5.10 and the fact that (N , <) is
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well-founded. Even though a member such as (4, 3) has infinitely many

other elements below it (for example, (3, y) for every y), any decreasing

chain must be finite. Hence, the Ack program always gives an answer.
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