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1 Introduction

The study of behavioural type theories as pursued by WG1 - Foundations is a mandatory step
towards the adoption of behavioural types into mainstream programming languages and the design
of new languages features based on behavioral types. Nonetheless, such studies are often carried
out on abstract and simplified computational models which do not always capture all practical
and idiomatic facets of real-world programming languages. The purpose of WG3 - Languages is
to fill the gap between theory and practice of behavioral types and to develop principles and key
runtime mechanisms for programming with behavioural type systems as intrinsic structures.

Despite the recent interest in behavioral types, there is already a rather massive bibliography
on their integration in concrete programming languages and paradigms. This report aims at
providing a first comprehensive view on the efforts done so far in this respect and to aid interested
researchers at identifying the areas as yet unexplored.

The report is structured as follows:

• Section 2 is devoted to the integration of behavioral types into Object-Oriented languages.
Object-oriented languages are relevant for their widespread adoption in the current devel-
opment of software, for the wealth and popularity of tools that are available, and because
objects nicely fit a distribution model to which behavioural types can be applied naturally.
The integration can be achieved in different ways: either by enriching the languages with
constructs (in particular, sessions) that call for a corresponding extension at the type level,
or by interpreting objects themeselves as the entities for which a behavioral description is
required, for example to specify the order in which methods must/can be invoked.

• Section 3 explores the integration of behavioral types within other programming contexts,
in particular the functional and multiagent paradigms. Functional languages are relevant
for their qualities of being easily endowed with high-level type-theoretic and concurrent
extensions, for their natural support to parallelism, and since they permit rapid prototyping.
Behavioral types also provide an effective abstraction tool for describing autonomous entities
in multiagent systems. High-performance computing often relies on parallel processes that
synchronize by means of message passing. Also in this case, behavioral types provide an
effective means for making sure that such communications occur without errors.

• Section 4 provides an overview of the use of behavioral types in Singularity OS, a prototype
Operating System developed by Microsoft which adopts communication as the fundamental
and only synchronization mechanism between processes. Sing#, the programming language
used for the implementation of Singularity OS, is an extension of C# that comprises both
object-oriented and functional constructs and provides a native notion of channel contract
closely related to the concept of session type.

• Section 5 describes the potential of behavioral abstractions akin to behavioral types in the
specific domain of Web Service description. These descriptions enable sophisticated forms of
static and dynamic verification that in turn can be used for implementing runtime discovery
and composition/orchestration of Web Services.

• Section 6 explores the potentials of the design-by-contract methodology to the development
of possibly distributed, communicating systems. According to this methodology, behavioral
types are used for describing, from a vantage point of view, the topology of the communi-
cation network, the communications that are supposed to occur, and in which order. Such
global specifications can then be projected for describing the local behavior of the network
participants.

This brief overview already hints at the abundance and diversity of programming contexts
in which behavioral types can play a role. In an attempt to make it easier for the reader to
appreciate similarities and differences between contexts, all the sections that follow refer to the
same simple scenario depicted in Figure 1 and taken from [CDLPRIMER]. In this example there
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Figure 1: Graphical representation of the Customer-Agency protocol.

are two interacting entities, named Customer and Agency, that establish a communication session
s. The interaction consists of two phases: the first one, marked as “repeat” in the figure, is made
of an unbound number of queries issued by Customer who is planning a trip through a travel
Agency. Each query includes the journey details, abstracted as a message of type String , to which
the Agency answers with the price of the journey, represented as a message of type Double. In the
second phase, Customer decides whether to book one of the journeys, which it signals by sending
either an ACCEPT message followed by the Address to which the physical documents related to the
journey should be delivered at some Date estimated by Agency, or a REJECT message that simply
terminates the interaction. Arrows in the diagram denote the direction of messages, while the
two s-labeled arcs respectively denote initiation and closing of the session between Customer and
Agency. The discontinuity in the vertical development of the protocol is meant to suggest that the
subprotocols beginning with the ACCEPT and REJECT messages are mutually exclusive, the decision
being taken by Customer.

The sections that follow include a general introduction to the interest and main difficulties of
integrating behavioral types to the language/paradigm being considered, the implementation of
relevant parts of the Customer-Agency example, either in the form of actual code or as terms of a
suitable formal calculus, the peculiar characteristics of the language/paradigm, as well as a short
commented bibliography on the approach with hints to open issues and future work.
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2 Object-Oriented Languages

2.1 Calculi

The wide adoption of object-oriented paradigm for writing modern applications is the reason that
motivates the research efforts towards integrating session types and session-oriented programming
with object-oriented programming.

Object-oriented programs based on communication are implemented using sockets or remote
method invocation primitives (as Java RMI or C] remoting). The former approach uses an abstrac-
tion of an untyped communication channel, therefore a great amount of dynamic checks of types
is needed to ensure type safety of the exchanged data. The latter approach has the advantages of
a standard method invocation in a distributed environment, which requires a method to be used
according to his signature, but it suffers lack of flexibility to describe patterns of interaction that
provide bidirectional message exchanges from both communication parties, interleaved by local
computations.

Sessions and session types are then a good answer to the limitations encountered with the
previous approaches, taking into account the aim of writing concurrent and distributed applications
with a better structure and, consequently, more solid.

The integration of session types into the object-oriented paradigms can be pursued:

• by extending standard object-oriented languages with ad-hoc primitives for session-based
communication, as in languages Moose Dezani-Ciancaglini et al. [2005, 2006, 2009], Moose<: Dezani-
Ciancaglini et al. [2007], and AMoose Coppo et al. [2007].

• by amalgamating standard object-oriented methods and sessions in a unique, more expres-
sive, construct, as in languages Stoop Drossopoulou et al. [2007], SAMg Capecchi et al.
[2009], and SAM∨ Bettini et al. [2008a, 2013].

2.1.1 Moose dialects

The work Moose (Multi-threaded Object-Oriented calculus with Sessions) is the result of the
embedding of session types into object-oriented languages. Moose is a multi-threaded language
with session types, thread spawning, iterative and higher-order sessions. Its design aims to con-
sistently integrate the object-oriented programming style and sessions, and to treat various case
studies from the literature.

Simple Communications: Value Sending/Receiving. Two parties may start communicat-
ing, provided the types attached to that communication, i.e., the corresponding session types, are
dual of each other. Then, the type system is able to ensure soundness, in the sense that two
communicating partners are guaranteed to receive/send sequences of values following the order
specified by their session types.

We will present the language Moose by the example of a travel purchase, taken from Hu
et al. [2008], involving a customer, an agency, and a travel service. The code of the customer is
as in Figure 2. The class Customer contains a method buy for the purchase of a travel tricket
according to the parameters journeyPreferences and maxPrice. When the method is called,
the connect on the channel c1 with session type placeOrder is executed. Therefore, if another
object is trying to connect on the same channel c1 with a dual session type, then the connection
will be established. The session type of the connection is

session placeOrder = begin.!<!String.?double>*.!<!Address.?Date.end,end>

The code of a compatible agency is as in Figure 3. The class Agency contains a method
requestEq(Int m1, Int m2). When the method is called, the connect on the channel c1 with
session type acceptOrder is executed and if another object is trying to connect on the same
channel c1 with a dual session type, then the connection will be established. The session type of
the connection is
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class Customer {

Address addr;

double price;

bool loop := true;

void buy( String journeyPref, double maxPrice ) {

connect c1 placeOrder {

c1.sendWhile (loop) {

c1.send( journeyPref );

price := c1.receive;

loop := evalOffer(journeyPref,price); // implem. omitted

}

c1.sendIf( price <= maxPrice ) {

c1.send( addr );

Date date := c1.receive;

}{ null; /* customer rejects price, end of protocol */ }

} /* End connect */

} /* End method buy */

Figure 2: The class Customer.

session acceptOrder = begin.?<?String.!double>*.?<?Address.!Date.end,end>

The code of the communication can be as follows:

spawn(new Customer.buy("London to Paris, Eurostar",300));new Agency.sell()

Let us see how this expression reduces following the semantic rules of Moose, which can be
found in Dezani-Ciancaglini et al. [2009]. During the evaluation, we need additional information
about objects and channels, that are recorded in the heap h, defined as follows:

h ::= [ ] | h :: [o 7→ (C, f :v)] | h :: c

where :: denotes heap concatenation.
So, the initial configuration is

spawn(new Customer.buy("London to Paris, Eurostar",300));new

Agency.sell()
[ ]

At first we evaluate the spawn expression that makes its body become a new parallel thread:

new Agency.sell()‖ new Customer.buy("London to Paris,

Eurostar",300)
[ ]

At this point the next expressions to be evaluated are the two new. They will create two
objects, instances of classes Agency and Customer respectively, and the heap will be updated with
the new information: for each object the heap contains the name of the instance associated to the
corresponding class and the names and initial values of the fields:

o1.sell()‖o2.buy("London to Paris, Eurostar",300)

[ o1 7→ (Agency,journeyPref:"") ] :: [ o2 7→ (Customer,addr:"",price:"",loop:true) ]
At this point the two methods can be invoked. Notice that the formal parameters in the body

of method buy are replaced with the actual parameters "London to Paris, Eurostar" and 300,
and this is replaced with the corresponding object identifier:

connect c1 placeOrder {

· · ·
c1.send( "London to Paris, Eurostar" );

price := c1.receive; · · ·}

‖
connect c1 acceptOrder {

· · ·
journeyPref := c1.receive;

c1.send( price ); · · ·}

[ o1 7→ (Agency,journeyPref:"") ] :: [ o2 7→ (Customer,addr:"",price:"",loop:true) ]
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class Agency {

String journeyPref;

void sell() {

connect c1 acceptOrder {

c1.receiveWhile {

journeyPref := c1.receive;

double price := getPrice( journeyPref ); // implem. omitted

c1.send( price );

}

c1.receiveIf { // buyer accepts price

JourneyDetails journeyDetails := new JourneyDetails();

spawn {

connect c2 delegateOrderSession {

c2.send( journeyDetails );

c2.sendS( c1 );

}

}

}{ null; /* receiveIf : buyer rejects */ }

} /* End connect */

} /* End method sell */

}

Figure 3: The class Agency.

class Service {

void delivery() {

connect c2 receiveOrderSession {

JourneyDetails journeyDetails := c2.receive;

c2.receiveS( x ) {

Address custAddress := x.receive;

Date date := new Date();

x.send( date );

}

} /* End connect */

} /* End method delivery */

}

Figure 4: The class Service.
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Now, since the two connects are on the same channel c1 with dual session types, the connection
can be established and the previous parallel composition reduces to:

· · ·
k1.send( "London to Paris, Eurostar" );

price := k1.receive;

‖
· · ·
journeyPref := k1.receive;

k1.send( price );

[ o1 7→ (Agency,journeyPref:"") ] :: [ o2 7→ (Customer,addr:"",price:"",loop:true) ] :: k
where k1 is a new fresh channel replacing the old channel c1, that has been created and added

to the heap. The freshness of k1 guarantees privacy of the session communication between the
two threads.

At this point the exchange of data can begin and the parallel composition above reduces to:

· · ·
price := k1.receive;

‖
· · ·
journeyPref := "London to Paris, Eurostar"

k1.send( price );

[ o1 7→ (Agency,journeyPref:"") ] :: [ o2 7→ (Customer,addr:"",price:"",loop:true) ] :: k

Choices. Choices in Moose are modeled with the following constructs

• c.sendIf(e){e1}{e2}: where first the boolean expression e is evaluated, then its result is
sent through channel c. If the result was true, it continues with e1, otherwise with e2;

• c.receiveIf{e}{e1}: receives a boolean value via channel c, and if it is true then it con-
tinues with e, otherwise with e1;

Similar constructs are used to model iterations: c.sendWhile(e){e1} and c.receiveWhile{e2},
where the evaluation of e1 and e2 is repeated while the result of e is true.

In Figures 2 and 3 we can see in use both these constructs. Notice that in the original protocol
the choice is modeled with a label-based construct, so that the two braches are labeled with specific
ACCEPT and REJECT labels, and the Customer chooses one branch over the other by sending
the corresponding label to the Agency. While in here the Customer sends just a Boolean value.
For more comparison, see the Peculiarities section below.

Delegation. Delegation works as in the standard session types and it is modeled through the
constructs:

• c.sendS(c1): the channel c1 is sent over c;

• c.receiveS(x){e}: a channel is received on c and bound by x within the expression e.

In figure 3 the Agency connects to the Service through channel c2, exposing a session type:

session delegateOrderSession = begin.!String.!(?Address.!Date.end).end

The delegation of a portion of communication to be held on channel c1 is performed by means
of the command c2.sendS(c1). The Service by exposing a dual session type:

session acceptOrderSession = begin.?String.?(?Address.!Date.end).end

is a suitable candidate for accepting the delegated session.
The semantics of delegation is as expected, except that, when the channel is exchanged, the

receiver spawns a new thread to handle the consumption of the delegated session. This strategy
is necessary in order to avoid deadlocks in the presence of circular paths of session delegation
(see Dezani-Ciancaglini et al. [2009]).
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Peculiarities. In Moose, sessions have been added to an object-oriented calculus in a way to
be as close as possibile to the original π-calculus based sessions. Therefore most of the features
are mere adaptions of the corresponding ones in the π-calculus. A few differences, however, can
be noticed. First of all, choices are based on boolean values instead on labels, in order to be more
close to the standard programming constructs and habits. Notice that this feature does not affect
expressivity in any way, since it corresponds to a binary labeled choice, thus choices with more
branches can be easily encoded with nested expressions, but with the disadvantage of sending
multiple boolean values instead of one label.

Other differences are rather technical and concern the use of channels for the connection and
communication.

In the original π-calculus sessions Yoshida and Vasconcelos [2007] two parties connect over a
public channel, thus the connection contructs mention the public name and a varible binding the
new private name in the scope of the session. In here there is no such variable, intead the new
private name will replace the public name (e.g. c1 in Figure 2) in the body of the connection.

Delegation, i.e., the moving of channel names around, does not get along easily with the
structural essence of session types. If wrong configuration are allowed then subject reduction may
fail Yoshida and Vasconcelos [2007]. Two main solutions have been adopted: one can is based on
the use of two different private names, identifying the two endpoint of the communication, another
one is based on the use of just one private name with the restriction α-conversion is implicitly
performed ahead of communication. This calculus does not fall in any of the two cases, because
only one name is actually created at runtime and it does substitute the public name provided in
the program. The type system ensures type safety by preventing interleaved connections, so that
wrong configurations cannot occur.

Bounded polymorphism. Pursuing the intent of studying the integration of session types into
a mainstream object-oriented programming language, one cannot ignore the feature of genericity.
The natural course was to study bounded polymorphism for object-oriented sessions, by following
the steps of Gay [2008], where bounded polymorphism is included into the π-calculus sessions.

Thus, in Dezani-Ciancaglini et al. [2007] the language Moose<:is presented, which extends
Moose with an adapted notion of bounded polymorphism for session types, inspired by Gay
[2008], as a means of describing the behavior of processes that operate uniformly over all subtypes
of a given type.

For instance, it is possible to express the behavior of a process that receives an object of a
subclass of a given class and then sends back a value of the same subclass. Let us consider the
following session descriptor:

?(X <: Image).!X

that specifies the behavior of a process that receives an image in some format and sends back an
image in the same format as the one received. This behavior matches the one of a process that
sends a JPG photo and expects a JPG photo, or the one of the process that sends a GIF image and
expects back a GIF image.

Therefore a refined notion of duality is needed to correctly deal with bounded polymorphism,
that associates to each session type more than one dual type.

Progress. The paper by Coppo et al. [2007] gives a type system assuring progress for AMoose,
an asynchronous variant of Moose.

2.1.2 Stoop dialects

In both Moose and its variants sessions were added to the object-oriented language as an orthog-
onal feature. However sessions and methods show related, though different, features and this fact
suggests that both could be derived from a more general notion of session associated to an object.
In Drossopoulou et al. [2007] a language that amalgamates the notion of session-based communi-
cation with the one of object-oriented programming is proposed. The approach was called Stoop
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“traditional” “traditional” “amalgamated”
session method session/method

request on a thread an object an object

execution starts threads reach immediately immediately
when certain point

executed body is rest of the thread determined by the determined by the
class of the receiver class of the receiver

execution concurrent same thread concurrent

communication any direction n-inputs any direction
interleaved with then computation interleaved with
computations then one output computations

Figure 5: “Traditional” sessions, “traditional” methods, and “amalgamated” sessions/methods.

(Session Types and Object-Oriented Programming). Stoop is only a “language kernel”, since it
is only concerned with the amalgamation of the object-oriented and the session paradigms, but
is agnostic about issues that concern synchronization, distribution, copying of values across local
heaps etc..

Stoop drives the amalgamation very far, by unifying sessions and methods, and by basing the
choices of alternative paths in communications on the object being sent or received (see Dezani-
Ciancaglini et al. [2007]) rather than on labels, as in traditional session types. Stoop includes
a rather general form of delegation, even if sessions are not higher order, that is sessions cannot
communicate sessions, a common feature in many session calculi.

The rationale of the method-session amalgamation The fundamental idea at the basis of
the Stoop calculus is to amalgamate sessions and methods in one construct and it arises mostly
from two observations:

1. sessions and methods share similar features; and

2. the integration of sessions and methods reflects well the intuition of a service.

This amalgamation comes out to be a very natural approach in an object-oriented setting: the
abstractions provided by the object-oriented paradigm are much more intuitive than the ones of
other paradigms, supporting a more direct translation of the real problems that have to be resolved
into the correspondent models. The running programs are objects, that come to life in a virtual
world where actively participate to a common goal, where each party carries out its own tasks,
cooperating with the others through a reciprocal message exchange, that is exactly the essence of
the object-oriented computation.

The notion of communication is already implied in the object-oriented paradigm and, from this
point of view, the sessions do not introduce any innovation: the immediate encoding of methods
through sessions, that could be seen simply as a generalization of methods, will be a confirmation
of this.

In Figure 5, we compare “traditional” sessions and “traditional” methods from object-oriented
languages with the “amalgamated” session/methods of Stoop.

Sessions are invoked on threads in a manner similar to the Ada rendez-vous, and execution
starts when two threads reach a certain point in their execution, where they can “serve” the
session. The computation proceeds by executing in parallel the code of both threads. Sessions
allow communication of any number of objects in any direction.

On the other hand, methods are invoked on an object, the body to run is defined in the class of
the receiving object, execution is immediate and sequential, and it supports any number of inputs,
followed by computation, followed by one output.

Stoop proposes “amalgamated” sessions/methods, which, for brevity, we shall call sessions
from now on. Invocation takes place on an object, for instance a customer asks to withdraw
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class Customer {

Address addr;

double price, maxPrice;

bool loop := true;

String journeyPref;

new Agency.sell {

sendWhile (loop) {

send( journeyPref );

price := receive;

loop := evalOffer(journeyPref,price); // implem. omitted

};

sendCase( evalPrice(price,maxPrice) ) {

ACCEPT . send( addr ); Date date := receive;

REJECT . null; /* customer rejects price, end of protocol */ }

} /* End method invocation */

Figure 6: The class Customer.

class Agency {

String journeyPref;

void acceptOrder sell {

receiveWhile {

journeyPref := receive;

double price := getPrice( journeyPref ); // implem. omitted

send( price );

}

receiveCase (x) { // buyer accepts price

ACCEPT . new Service • orderDelivery { } ,

REJECT . null;/* receiveCase : buyer rejects */ }

} /* End method sell */

}

Figure 7: The class Agency.

money from a particular ATM machine, and execution of the corresponding session takes place
immediately and concurrently with the requesting thread. The body is defined in the class of the
receiving object, for instance the body of the withdraw session is defined in the ATM class, and
any number of communications interleaved with computation is possible. Moreover no explicit
mention of communication channels is required at source code level.

Simple Communications: Value Sending/Receiving Let us see how the ticket purchase
example can be written in Stoop. The code of the Customer is listed in Figure 6. Notice that the
code does not specify any channel. In Stoop all the channels are private and created at runtime.

In Stoop session invocations have a body that will be executed in parallel with the body of
the session requested. The two bodies must have dual session types. This is checked at compile
time, not at runtime as in Moose.

To see the evaluation of the expression above, we need to define the heap that stores objects
and values exchanged during the communication:

h ::= [ ] | h ::o 7→ (C, f :v) | h ::k 7→ v

where :: denotes heap concatenation, k are the private channels created at runtime.
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class Service {

void receiveOrderSession orderDelivery() {

Address custAddress := receive;

Date date := new Date();

send( date );

}

}

Figure 8: The class Service.

Now we can see how the invocation is evaluated. At first the heap is empty:

new Agency.sell {

...

send( "London to Paris, Eurostar" );

price := receive;

...

};

, [ ]

A new object of class Agency is created and the heap is updated with the information related
to the new object:

o.sell {

· · ·
send( "London to Paris, Eurostar" );

price := receive;

· · ·
};

, [ o 7→ (Agency,journeyPref:"") ]

At this point the session is invoked and a new thread is spawned in order to execute the body
of the session. A pair of fresh channels k and k̃ is created, that correspond to the two end points
of the same private channel: they have dual session types. Every communication expression (send
and receive) is now prefixed with a new channel. The heap is updated with an empty queue for
each channel, in which the received value will be put, waiting to be read.

· · ·
k.send( "London to Paris, Eurostar" );

price := k.receive;

· · ·

‖

· · ·
journeyPref := k̃.receive;

· · ·
k̃.send( price );

· · ·
[ o 7→ (Agency,journeyPref:"") ] :: [ k 7→ () ] :: [ k̃ 7→ () ]

The communication begin with the sending of the first value. The value is put in the heap,
in the queue associated to the channel k̃, dual of the channel the value was sent over. The
communication is asynchronous, so the value may not be read right away by the partner.

price := k.receive;

· · ·
‖

· · ·
journeyPref := k̃.receive;

· · ·
k̃.send( price );

· · ·
[ o 7→ (Agency,journeyPref:"") ] :: [ k 7→ "London to Paris, Eurostar"] :: [ k̃ 7→ () ]

Now the result can be read from the queue and stored into the field journeyPref. The queues
associated to the channels ensures that messages are read in the same order they were sent.

Choices Choices are dealt with constructs similar to the one in Moose, except that the choice
is based on the class of the exchanged object:

12



• sendCase(e){Ci Bei}i∈I : where first the expression e is evaluated and reduced to an object,
then depending on its class, if it Ci, it continues with ei;

• receiveCase(x){Ci Bei}i∈I : receives an object and continues with ei if the class of the
object is Ci.

The type system guarantees that the class of the exchanged object is one of the Ci.
Similar constructs are used to model iterations: sendWhile(e){Ci Bei}i∈I and receiveWhile(x){Ci Bei}i∈I ,

where a special variable cont occurring in some of the ei, when encountered, make the execution
start again.

Delegation The delegation in Stoop works in a quite different way than in traditional languages
with sessions. It is not modeled by the exchange of a private channel, instead it uses a new
construct:

e•s{ },

that means that the delegating object requests the session s in the class of the expression e to
take temporarily the control of the communication with its partner.

We can see an instance of delegation in Figure 7 where the session is being delegated to a new
Service: In the class in Figure 7 we see a delegation request to the session offerDelivery of
Service.

That code gets executed if the Customer accepts the purchase (buy sending to the Agency an
object of class ACCEPT). Then the corresponding branch is selected and the runtime configuration
is as follows (on the right we have the code of the Customer and on left the one of the Agency)

k.send( addr );

Date date := k.receive;
‖ new Service•orderDelivery { }

[ o 7→ (Agency,-) ] :: [ k 7→ () ] :: [ k̃ 7→ () ]
The Customer sends its address on channel k but the Agency is not set up to receive it. Instead,

it delegates that part of the communication to a delivery Service. A new object is created and
stored in the heap, and the code of the session orderDelivery is retrieved and all the send/receive
instructions are decorated with the private channel of the delegator object, namely channel k̃.

Date date := k.receive; ‖
Address custAddress := k̃.receive;

Date date := new Date();

k̃.send( date );

[ o 7→ (Agency,-) ] :: [ o1 7→ (Service,-) ] :: [ k 7→ addr] :: [ k̃ 7→ () ]
After the delegated code is executed, the control returns back to the delegator object, and the

communication goes on as expected between the two original partners. In this case no communi-
cation is left and the session ends.

Union types. Choices based on the exchanged object, peculiar to the Stoop approach, have
the advantage to be more object oriented, thus the choice may be better integrated within the
program. However, in many case the particular object needed for the selection has to be expressly
created for the purpose of the choice. Thus treating objects as mere labels. With union types it is
possible to express communications between parties which manipulate heterogeneous objects just
by sending and receiving objects which belong to subclasses of one of the classes in the union. In
this way the flexibility of object-oriented depth-subtyping is enhanced, by strongly improving the
expressiveness of choices based on the classes of sent/received objects. In Bettini et al. [2008a,
2013] the use of union types for session-centered communications is formalized for SAM∨, a core
object-oriented calculus based on the Stoop approach.

Union types represent the least common supertype of all the types Ti forming the union
∨

i∈I T.
In object-oriented programming this is a useful way to enhance subtyping beyond the inheritance
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relation: two classes used in similar contexts, but placed apart in the class hierarchy, can have a
common meaningful supertype. For example, let us consider the session descriptor

!(NoMoney ∨ OK)

that describes the behavior of a process representing a bank that answers yes or no to a seller
that wants to check the money availability of a client—where yes and no are objects of classes
OK and NoMoney, respectively. Without union types, a superclass of both OK and NoMoney would
be required: this superclass would allow the sending of objects of unrelated classes w.r.t OK and
NoMoney.

Generic types. Analogously to the work done for Moose, also in Stoop the integration of
polymorphism and session types has been studied. In Capecchi et al. [2009] the adoption of
generic types for session-centered communications is formalized for SAMg, a core object-oriented
calculus based on the Stoop approach.

The use of generic types allows the code to be typed “generically”, using variables instead of
actual types, guaranteeing uniform behavior on a range of types. In an object-oriented language
this means having parameterized classes and methods.

For instance, let reconsider the bounded polymorphism example shown before. We had a
service with a behavior ?(X <: Image).!X that could interact with a client behaving as prescribed
by !JPG.?JPG or with a client following the protocol represented by the descriptor !GIF.?GIF. At the
language level this means having two different classes of clients JPGcustomer and GIFcustomer.
In the language with generic types we can implement this two clients with a single parameterized
class Customer〈X extends Image〉, and then instantiate two objects of class Customer〈JPG〉 and
class Customer〈GIF〉.

2.2 Java

In this section we review attempts to integrate a form of behavioural types to Java or a java-like
language, usually using a couple of syntax extensions (typically to declare protocols) and some
specific typing rules which are used to check behaviour conformance. The features shared by all
of them are: only objects of some specific classes are controlled by the behavioural type system;
aliasing is disallowed for these objects; behavioural type-checking can in principle be implemented
as a first pass before the file is passed to a regular Java compiler; syntactic extensions are either
translated or erased after this pass.

In terms of actual implementation, most of the works presented here have only had a one-shot
proof-of-concept implementation. SessionJ http://code.google.com/p/sessionj/ is the largest
software project and was developed over several years.

These works draw from two different pre-existing lines of research: session types for channel-
based communication, and type systems for non-uniform objects (see the companion WG1 report
on Foundations of Behavioural Types for a history and references).

SessionJ Hu et al. [2008, 2010], Ng et al. [2011], Alves et al. [2010] is based on the Moose
calculus described in Section 2.1, with adaptations to Java and additional features; in this language,
session-typed communication channels are objects of one specific class. Usage of these objects is
strictly controlled whereas objects of other classes are treated as in plain Java.

On the other side, Yak Militão [2008], Militão and Caires [2009] allows adding a usage protocol
to any class, but has no specific construct for channels or concurrency.

Bica Gay et al. [2010], Caldeira and Vasconcelos [2011] seeks to integrate both approaches: all
classes can have specified usage protocols, and communication channels are objects of one specific
class. The usage protocol for the channel class is not fixed: instances of that class are created
by initializing a communication session, and their initial usage protocol is determined from the
associated session type.

Mool Campos and Vasconcelos [2010] has usage protocols and concurrency, but no explicit
channels: message-passing between threads is done through regular method calls.
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We now review SessionJ and Bica in more detail. Yak’s type system is very similar to Bica’s
although the syntax is different; the main additional feature it has is handling of exceptions in the
protocols. Mool uses essentially the same types for objects as Bica, with the addition of qualifiers
to control aliasing.

2.2.1 Session Java

SessionJ (SJ) is a Java extension to support session-typed channels, developed at Imperial College
mainly by Raymond Hu. Several versions have been released with increasingly many features,
described in several papers: Hu et al. [2008], Hu et al. [2010], Ng et al. [2011], Alves et al. [2010].

It is based on the Moose calculus described in Section 2.1.1, thus the implementation of the
running example will be very close; we follow the same structure. In SJ, the session type for the
customer side of the protocol is declared as follows:

protocol placeOrder {

begin.

![

!<String>.

?(Double)

]*.

!{

ACCEPT: !<Address>.?(Date),

REJECT:

}

}

Contrary to Moose, SJ allows labelled branching and not just boolean branching. The other
differences are cosmetic. ![S]∗ represents a loop where, at each iteration, this side decides whether
to loop or to continue. !{L1 : S1, . . . Ln : Sn} represents a choice where this side decides which
option to select.

A communication channel endpoint is an object of class SJSocket, which is implemented on
top of a TCP socket. Thus, on the client side, this object is created by connecting to a specific
host and port; on the server side, it is created by listening to a specific port. In our example, class
Customer implements a client. The buy method of this class can be written this way:

public void buy (String journeyPref, double maxPrice) {

boolean decided = false;

SJServerAddress agency = SJServerAddress.create(placeOrder, host, port);

SJSocket c = SJSocketImpl.create(agency);

c.request();

c.outwhile(!decided) {

c.send(journeyDetails);

double cost = c.receive();

decided = evalOffer(journeyPref, price);

}

if (price <= maxPrice) {

c.outbranch(ACCEPT) {

c.send(address);

Date dispatchDate = c.receive();

}

} else {

c.outbranch(REJECT) {}

}

where placeOrder has been declared previously as described above. Here c is seen as as a session-
typed channel by the SJ system, which will statically check its correct usage throughout the
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method body before compilation; it is seen as an object of class SJSocket by the Java compiler
and runtime. Note that c must be created inside the buy method and cannot escape it (except by
being delegated, which will be illustrated later). In particular, it cannot be a field of the Customer
class.

Apart from the part establishing the communication, the code is reasonably close to Moose.
send and receive look like regular Java method calls. The syntactic construct outwhile(bool) {loop body}

corresponds directly to the sendWhile of Moose; the analogue of Moose’s sendIf on the other
hand is a combination of a regular java if and two outbranch(label) {body} calls to select a
particular label and then execute the body part. Since the branching is not done by a specific
construct here, a n-ary choice could be implemented as a cascade of if/elses, as a switch/case,
or as a combination of the two, and there is no requirement that all choices allowed by the
session type are effectively present. The important part for the type system is that in every
c.outbranch(LABEL) {body} call which appears, body uses channel c in conformance with the
session type associated with label LABEL.

The dual protocol which the agency must implement is acceptOrder, declared as follows.

protocol acceptOrder {

begin.

?[

?(String).

!<Double>

]*.

?{

ACCEPT: ?(Address).!<Date>,

REJECT:

}

}

Delegation As in the Moose example, we illustrate delegation by having class Agency delegate
the end of the transaction to a remote service after the customer has selected ACCEPT. This
delegation takes place itself over a session-typed channel; the type of this channel is declared thus:

protocol delegateOrderSession {

begin.!<?(Address).!<Date>>

}

on the Agency side and thus:

protocol receiveOrderSession {

begin.?(?(Address).!<Date>)

}

on the Service side.
The sell() method of class Agency is then:

void sell() {

SJServerSocket ss = SJServerSocketImpl.create(acceptOrder, port);

SJSocket c1 = ss.accept();

c1.inwhile() {

String journeyDetails = s.receive();

// calculate the price

s.send(price);

}

c1.inbranch() {

case ACCEPT: {

SJServerAddress service = SJServerAddress.create(delegateOrderSession, host, port);
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SJSocket c2 = SJSocketImpl.create(service);

c2.request();

c2.send(c1);

}

case REJECT: {}

}

Note that it is also possible for a session channel to be passed as an argument to a regular
method call, so that the remainder of the session is delegated to another local object rather than
to another site. A method expecting a channel endpoint as argument declares the expected session
type as its argument type (rather than SJSocket).

The delivery() method of class Service is::

void delivery() {

SJServerSocket ss_sa = SJServerSocketImpl.create(receiveOrderSession, port);

SJSocket s_sa = ss_sa.accept();

SJSocket s_sc = s_sa.receive();

Address custAddr = s_sc.receive();

s_sc.send(dispatchDate);

}

Additional features In addition to what was illustrated through the example above, SJ im-
plements several protocols for session delegation, each of which has advantages and drawbacks
depending on the network configuration, and allows choosing which one to use.

Furthermore, the latest version of the language, called ESJ, combines all the features discussed
above with event-driven programming.

2.2.2 Modular session types for objects/Bica

Gay et al. [2010] present a clean incorporation of session types in a java-like language, where
sessions control the order in which methods are called, but also the choices imposed on clients
by virtue of values returned by methods. The type verification is strictly static and sessions do
not exist in the semantics, thus in practice this can be implemented by a verification pass on
annotated Java source code just before compilation. Caldeira and Vasconcelos [2011] is such an
implementation.

In this system, communication channels are objects and the usual session types for channels
can be translated into object sessions. (Note that this translation is not implemented in Bica;
currently, in order to typecheck usage of a session-typed channel, its object session type would
have to be given directly.)

As opposed to SJ, this work focuses not on communication channels but on the usage protocols
of objects in general and on ‘modularity’. Modularity in this context means that a method can
implement part of the protocol for some object, then set this object aside and return to the caller.
Later in the program, another method will get back to the object and complete its protocol.

This is not possible with a system like SJ which has usage protocols only for channels, since
it implies that the methods of the enclosing object must themselves be called in the proper order.
In SJ, a channel can only be disposed of by terminating its session type completely or passing it
as an argument to a method call.

In the following, we first show a straightforward adaptation of the running example, keeping
the same structure as for SJ/Moose. We then show how a Customer class could divide the
implementation of the protocol between several methods.

The translation of channel session types into object session types is only defined, in the paper,
for a language of session types which does not include the while construct (![]* and ?{}*) of SJ
and Moose. It is however possible to encode this while construct into session types with only
branching:
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acceptOrder =

&{QUERY: ?[String].![Double].acceptOrder;

ACCEPT: ?[Address].?[Date];

REJECT: end}

By applying the translation we then obtain the following object session type, which will be the
type of the channel endpoint object once the connection is established:

AcceptOrderEndpoint = {

linkthis receive() :

<

QUERY: {String receive() : {Null send(Double) : AcceptOrderEndpoint}};

ACCEPT: {Address receive() : {Date receive() : {}}};

REJECT: {}

>

}

The curly braces indicate the set of methods which can be called at a given point when using
the object. The angle brackets indicate a choice point where the client must examinate the value
returned by the last method call in order to know how to continue using the object.

AcceptOrderEndpoint is the type the channel object will have when first created. It says: the
only method available initially (there is only one thing in the outermost curly braces) is receive().
This method has no argument and its return type is linkthis, which means the return value will
be a label indicating how to continue using the object. After the colon, we have, between angle
brackets, the possible return values, each of them associated with a session type. If the returned
value is QUERY then the only method call available is receive(), which will return a String,
after which a call to send will be possible, with an argument of type Double; this call will return
nothing and the object will get back to session type AcceptOrderEndpoint.

If the returned value is ACCEPT, then method receive() is available as well, but its return
type is different in this case, as well as the subsequent session type. If the return value is REJECT,
no method can be called anymore.

The dual channel session type, on the client side, is:

placeOrder =

+{QUERY: ![String].?[Double].placeOrder;

ACCEPT: ![Address].![Date];

REJECT: end}

This gets translated into an object session type as follows (note that the duality between the
two endpoint types is not obviously visible anymore):

PlaceOrderEndpoint = {

Null send({QUERY}) : {Null send(String) : {Double receive() : PlaceOrderEndpoint}};

Null send({ACCEPT}) : {Null send(Address) : {Null send(Date) : {}}};

Null send({REJECT}) : {}

}

In this type, {QUERY}, {ACCEPT} and {REJECT} are singleton types, i. e. particular
cases of enumerated types, which can in general be any finite set of labels. Thus the initial set of
available methods contains three elements, with the same method name but different (and disjoint)
argument types. The meaning is that code using the object can do any of the three method calls
and must then follow the subsequent protocol associated to that one.

Note: in this system, a set like {QUERY, ACCEPT} is a valid enumerated type and a supertype
of both {QUERY} and {ACCEPT}. The type system would however not allow, given the session
type above, a call to send with an argument of type {QUERY, ACCEPT}, since it would not be
possible to know statically which branch is taken.

The code of the client, without taking advantage of modularity, could look like:
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PlaceOrderEndpoint c = agencyAccesspoint.request();

boolean decided = false;

while(!decided) {

c.send(QUERY);

c.send(journeyDetails);

double cost = c.receive();

//set decided to true or change details and retry

}

if (want to place an order) {

c.send(ACCEPT);

c.send(address);

Date dispatchDate = c.receive();

} else {

c.send(REJECT);

}

where agencyAccesspoint has type <acceptOrder>. It represents a URL and is supposed to
be defined globally, like classes, via an access declaration. This declaration contains the URL
and the channel session type acceptOrder. When request() is called, the result is an object
whose type is the object translation of the dual of the channel session type, so here the type is
PlaceOrderEndpoint.

The other endpoint would be obtained by calling accept() on the same access point, and would
have the translation of the channel session type itself (not its dual), i. e. AcceptOrderEndpoint.

Delegation The language described in the paper allows delegation, like Moose and SJ. It is
however not implemented in Bica. We show how the code would be written nevertheless.

Let us suppose a global access point serviceAccessPoint has been declared with channel session
type ?[?[Address].![Date]]. This channel session type gives the translation:

ReceiveOrderSession = {

{Address receive() : {Null send(Date) : {} } } receive() : {}

}

for the accept side : only a call to receive() is possible and it will return an object with session
type {Address receive() : {Null send(Date) : {} } }.

For the request side, the translation of the dual is:

DelegateOrderSession = {

Null send({Address receive() : {Null send(Date) : {} } }) : {}

}

The code of the agency could look like:

AcceptOrderEndpoint s_ac = agencyAccesspoint.accept();

switch(s_ac.receive()) {

QUERY:

String journeyDetails = s_ac.receive();

// calculate the price

s_ac.send(price);

ACCEPT:

DelegateOrderSession s_as = serviceAccessPoint.request();

s_as.send(s_ac);

REJECT: null;

}

and the code of the service:
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ReceiveOrderSession s_sc = serviceAccessPoint.accept();

Address custAddr = s_sc.receive();

s_sc.send(dispatchDate);

Modularity Up to now, the code written is very close to the SJ and Moose examples, despite
the type system being different. We now show how the customer class could be structured in a
way that takes advantage of modularity.

class Customer {

// Session declaration

session Init

where Init = {Null connect(<acceptOrder>) : {Double getPrice(String) : S}}

and S = {

Double getPrice(String) : S;

Date placeOrder(Address) : Init;

Null cancel() : Init;

}

c; //this declares a field named c

//then the method bodies are declared

connect(agency) {

c = agency.request();

}

getPrice(journeyDetails) {

c.send(QUERY);

c.send(journeyDetails);

return(c.receive());

}

placeOrder(address) {

c.send(ACCEPT);

c.send(address);

return(c.receive());

}

cancel() {

c.send(REJECT);

}

}

Note that the field declaration does not have a type, because the field’s type is allowed to
change over time; the method declarations do not have types either because their types are in the
session type of the class.

The system works by taking the session type of the whole class and inferring from the method
bodies the types the fields will have after each method call. Here the only field initially has type
Null because it is not initialized. Then the first method called must be connect with an argument
type of <acceptOrder>. The body of connect is typable in this context and changes the type of
the field to PlaceOrderEndpoint (i. e. the translated dual type of acceptOrder).

Then the session type of Client says that the next method to be called will always be getPrice
with an argument of type String. The body of getPrice is typechecked knowing that the s ca field
has type PlaceOrderEndpoint before the call and the type it gets to afterwards is inferred, etc.

Mool Campos and Vasconcelos [2010] extends modular session types for objects in two ways.
(1) Bica treats communication channels shared by different threads as objects, by hiding channel
primitive operations in an API from where clients can call methods. Mool eliminates channels
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in a programming language that relies on a simpler communication model—message passing in
the form of method calls, both in sequential and concurrent settings. (2) Bica deals with linear
annotated classes only. Mool deals with linear types as well as shared ones, treating them in a
unified framework.

Classes written in Mool are annotated with a usage descriptor that structures method invoca-
tion, enhanced by lin/un qualiers for aliasing control. Mool defines a single category for objects
that may evolve from a linear status into an unrestricted (or shared) one.

Example Taking advantage of objects, the Customer-Agency protocol can be split over several
classes and methods. The interaction takes place through an object of type Order that the Agency
sets up and returns to the Customer:

class Order {

usage lin init; Sale

where Sale = lin getPrice; lin{accept; end + reject; end};

// the class fields

Service service; String journeyDetails; double price;

unit init(Service service, String journeyDetails, double price) {

... // sets field values

}

double getPrice() {

price;

}

Date accept(Address address) {

service.dispatch(journeyDetails, price, address);

}

unit reject() {

// clean up and end the protocol

unit;

}

}

The usage type of class Order defines a sequential composition of available methods, starting
with the linear “constructor” method init(), and including a choice (given by +) for the caller (a
Customer instance) to accept or reject a journey based on its price. In either case, the protocol
is finished, end being an abbreviation for an unrestricted empty set of methods. The type system
provides crucial information to object deallocation, enforcing that the type of an Order object is
consumed to the end.

Class Customer receives an object of type Order[Sale] when querying the agency for the
journey in method acceptOrder(). The type says that the object has advanced to a state
where getPrice is the next available method, that is, Order[Sale] abbreviates lin getPrice;

lin{accept; end + reject; end}.

class Customer {

usage lin init; Order

where Order = lin acceptOrder; <getDate; end + Order>;

// the class fields

Agency[Order] agency; Date date;

unit init(Agency[Order] agency) {

this.agency = agency;

}

boolean acceptOrder(String journeyDetails, double maxPrice) {

Order[Sale] order = agency.placeOrder(journeyDetails);

if(order.getPrice() <= maxPrice) {

date = order.accept();
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true; // return true

} else {

order.reject();

false; // return false

}

}

Date getDate() {

date; // return date

}

}

The usage type defined in class Customer allows an unlimited number of attempts to book
journeys. <getDate; end + Order> denotes a variant type, indexed by the boolean values re-
turned by method acceptOrder(). A caller of this method should test the result of the call: if
true is returned the journey was booked, and the next available method is getDate(), otherwise
the interaction can be repeated. The type for the class guarantees that getDate() always return
an initialized value (set by method acceptOrder()).

Finally, the Agency usage type makes available the linear “constructor” method init() that
sets up the service, after which the usage defines a new state Agency[Order] that abbreviates
the recursive branch type given by *placeOrder. In turn, *placeOrder abbreviates type T such
that T = un placeOrder; T. In state Agency[Order], an Agency instance can be shared by
an unrectricted number of customers. Order objects are then returned to Customer objects to
establish the interaction.

class Agency {

usage lin init; Order

where Order = *placeOrder;

// the only field

Service service;

init(Service service) {

this.service = service;

}

Order[Sale] placeOrder(String journeyDetails) {

Order order = new Order();

order.init(service, journeyDetails, getPrice(journeyDetails));

order; // return order

}

double getPrice(String journeyDetails) {

... // implementation omitted

}

}

2.3 Typestate

Whereas the type of an object specifies all operations that can be performed on the object, types-
tates identify subsets of these operations that can be performed on the object in particular abstract
states. When an operation is applied on the object, the typestate of the object may change, thereby
dynamically changing the object’s set of permitted operations. A typestate precondition must hold
for an operation to be applicable, and a typestate postcondition reflects the possible typestates af-
ter the operation has been applied. Typestates were introduced by Strom and Yemini [1986], who
applied typestates as abstractions over the states of data structures to control the initialization of
variables (with the two typestates “uninitialized” and “initialized”) and defined a static checker
for typestates in this context. Strom and Yemini observe that although unrestricted aliasing and
concurrency make the static checking of typestates impossible, it is still possible to apply static
checking for controlled concurrency and dynamic process creation.
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Fugue was the first modular verification system for specifying and statically checking typestate
properties for .Net-based programs, and adapts Strom and Yemini’s typestates to object-oriented
programs. The typestate system of Fugue is presented by DeLine and Fähndrich [2004]. In Fugue,
a typestate is an abstraction over the concrete state of an object; i.e., a typestate is a predicate
defined over the fields of the object. This approach has two main challenges: (1) the actual
definition of a typestate depends on the subclass relation, and (2) the typestates must be uniform.
These challenges are solved in Fugue by frame typestates, which define the property corresponding
to a typestate for each subclass, and by sliding methods, which ensure that subclasses override
methods of superclasses which change the typestate, such that the change also applies in the
subclass. To address aliasing, Fugue uses the adoption and focus model presented in Fähndrich and
DeLine [2002] and distinguish two modes for object references: NotAliased and MayBeAliased.
References which are NotAliased may become MayBeAliased and the typestate of MayBeAliased
objects cannot change.

Typestate-oriented programming integrates typestates directly into the language design instead
of integrating typestates with the features of existing languages. Aldrich et al. [2009] argue that
this approach leads to a cleaner language design and ultimately to better code. Plaid is an object-
oriented language following this approach, developed by Sunshine et al. [2011b,a]. In contrast to
Fugue, the typestates in Plaid are not predicates over concrete states. Typestates are declared in
a way which is very similar to classes. Different typestates in Plaid may have the same values for
the fields of the concrete state, but the fields of different typestates need not be the same. An
object can change its typestate by means of an assignment, written this <- NewTypestate(...).
This can be seen as a dynamic constructor which replaces the current object by an instance
of NewTypestate (the arguments to the constructor are used to initialize the declared fields of
NewTypestate. A Customer could have three different substates, reflecting if it is in the process
of Ordering from an Agency a, if it is Accepting an offer from the Agency or if it is Rejecting

all offers. A Plaid implementation of such a Customer is given below:

state Customer {

Agency a;

}

state Ordering case of Customer {

void init () {

Double d = getPrice("string"); ... ;

if (good_offer("string",d)){ this<-Accepting(a,"string"); a.accept("string")

} else { this<-Rejecting; a.reject(); }

}

}

state Accepting case of Customer {

String s;

...

}

state Rejecting case of Customer {...}

If the client is in typestate Ordering, it can start the session by calling the init method. Note
how the successful "string" argument is passed to the Accepting state. Similarly, the Agency

could consist of the typestates OrderSession, Accept, and Reject.

state Agency {

Service service;

}

state OrderSession case of Agency {

Double getPrice(String s){...} // calculate the price

Date accept(Address a){
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this<-Accept;

Session s = service.createSession();

return s.deliveryAddress(a);

}

Void reject(){ this<-Reject; }

}

state Accept case of Agency {

Double getPrice(String s){ this<-OrderSession; ...} // calculate the price

}

state Reject case of Agency {

Double getPrice(String s){ this<-OrderSession; ...} // calculate the price

}

Here, we see how external choice is captured by different methods and internal choice by a con-
ditional. Since the object can accept any number of getPrice calls when it is in the typestate
OrderSession, this method does not change the typestate. By introducing the typestates Accept
and Reject, calls to the methods accept and reject must be interleaved by calls to getPrice.
To create a new Session, the Service creates an instance of typestate Session which accepts
calls to the method deliveryAddress. Thus the acceptmethod of typestate OrderSession can
delegate to the Session object in a standard way.

state Service {

Session createSession(){return new Session();}

}

state Session {

Date deliveryAddress(String s){...}

}

Recent work on gradual typestates by Wolff et al. [2011] use access permissions, similar to
Fugue, as aliasing annotations to control references. References with full permissions have exclu-
sive write access, references with shared permissions have write access, and references with pure

permissions have only read access. This approach allows the number of dynamic checks to be
reduced at the overhead of adding annotations to the program, while retaining a modular static
analysis technique.
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3 Other Paradigms

3.1 Functional Languages

The integration of sessions and of session types in functional languages poses two main challenges.
The first one concerns both lazy and strict functional languages and regards the fact that, by their
own definition, session types describe entities (channel endpoints) whose capabilities may change
after each usage. This feature is at odds with conventional types used in functional languages,
which statically describe the nature of values. In particular, an arrow type t → s describes
functions in terms of what they accept as argument (values of type t) and of what they produce
as result (values of type s), but says nothing on how the function acts on channels possibly used
when the function is applied to an argument. The second challenge concerns the fact that the
evaluation order of expressions is difficult to control in lazy functional languages (in particular,
Haskell). This contrasts with the need to perform input/output operations over channel endpoints
in an order which is precisely determined by a session type. More generally, this is yet another
instance of the recurring tension between the need of purity implied by laziness and the need to
perform side-effects in order for a program to be useful.

The first challenge has been extensively investigated for an ML-like language by Vasconcelos
et al. [2006], Gay and Vasconcelos [2010]. Vasconcelos et al. [2006] take a conventional approach
with respect to session types and extend function types to enable the description of the effect of
a function on the channel it uses, in a way that resembles effect types. For example, the agency
process can be modeled thus:

agency :: 〈Agency〉a → Unit

agency agencyAccess = sell (accept agencyAccess)

sell :: s : Agency; Chan s → Unit; s : End

sell s =

case s {

QUERY ⇒ let journeyDetails = receive s in

send (cost journeyDetails) on s

sell s

ACCEPT ⇒ let address = receive s in

send (date journeyDetails) on s

REJECT ⇒ ()

}

The agency function takes as argument a shared channel agencyAccess on which it accepts
connections from customers through the accept primitive. The sell function implements the
behavior of the agency by reading and writing messages on the private session s by means of the
send and receive primitives. The case construct is also related to communication: it waits for
a label (one of QUERY, ACCEPT, or REJECT in the example) and evaluates the code that follows
the actual label received from the session.

The type of sell specifies that the function accepts a channel as argument, but it also gives a
name s to the channel. This way, the decoration s : Agency before the domain type gives the
expected session type (Agency) of the channel s when the function is applied, while the decoration
s : End after the codomain type gives the session type (End) of the channel s after the function
has returned. In the example, Agency is a type alias for a conventional session type:

Agency = &〈QUERY: ?String.!Double.Agency,

ACCEPT: ?String.!Date.End,

REJECT: End〉

While analyzing the body of sell, the type checker tracks each occurrence of the channel s
and verifies that it is consistent with its type, which is updated as the analysis works through the
code from top to bottom.
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In a subsequent work, Gay and Vasconcelos [2010] take a rather different approach whereby
channels are treated as truly linear resources that must be used exactly once. The idea is that a
function that takes a channel as argument consumes the channel, which is not available for further
operations. However, the function may produce a continuation of the same channel, which can
have a possibly different type. Following this style, the sell function above is rewritten thus:

sell :: Agency → End

sell s =

case s {

QUERY ⇒ λs.let (journeyDetails, s) = receive s in

let s = send (cost journeyDetails) s in

sell s

ACCEPT ⇒ λs.let (address, s) = receive s in

let s = send (date journeyDetails) s in

s

REJECT ⇒ λs.s
}

Note that the case construct now expects functions on the rhs of ⇒’s, which are applied with
the continuation of s (next to the case keyword) after the label has been received. Also, the
receive and send constants are given the following type schemas:

receive :: ?T .S → (T , S)
send :: T → !T .S → S

The type of receive denotes the fact that receive consumes a channel of type ?T .S and
produces a pair made of the message (of type T ) received from the channel and a continuation
channel (of type S) on which the communication may continue. The function send, on the other
hand, takes a message of type T , consumes a channel of type !T .S by sending the message on it,
and produces a continuation channel of type S. These types explain the subsequent rebindings of
the channel s in the code above. In fact, each occurrence of s is virtually a different channel that
either is used exactly once, or it is returned by the function. We say “virtually” because in practice
there is just one session channel which is re-used over and over again after each input/output
operation. The rebinding is thus meaningful only at the type level, allowing each occurrence of s
to be associated with a possibly different type. Interestingly, these re-bindings are reminishent of
the compilation scheme of sessions into pure π-calculus channels [Dardha et al., 2012] as well as
of monadic handling of state in pure functional languages such as Haskell, whereby the “state” s

is threaded in a strictly sequential way and the rebinding boilerplate code is implicit and hidden
within the monad definition (a monadic treatment of sessions for Haskell is indeed feasible and is
described by Pucella and Tov [2008], which we discuss below).

This approach conceals a problem caused by the fact that the type of a function provides no
information whatsoever on the possible free objects that a function may store within its closure.
This problem emerges with partial application, an idiomatic feature of (most) functional languages.
For example, assuming that s’ is a channel of type T (which is a session type), the partial
application

send s’ :: !T .S → S

denotes a function that, when applied to another channel s of type !T .S, delegates s’ over s and
then returns the continuation of s, having type S. The problem is that a conventional type system
does not recognize a value of type !T .S → S as a linear value that must be used. Therefore, the
closure resulting from the partial application send s’ might be discarded or used multiple times,
compromising any communication that is supposed to occur on s or, possibly worse, violating
the protocol specified by the session type of s’. To solve this problem, Gay and Vasconcelos
[2010] introduce a linear arrow type ( that denotes functions that must be used exactly once. In
particular, the partial application above is typed thus:

send s’ :: !T .S ( S
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Bono et al. [2013] have extended the type system in [Gay and Vasconcelos, 2010] with support
for polymorphism à la ML. In particular, in [Bono et al., 2013] it is possible to associate the
receive and send functions with the types

receive :: ∀a. ∀A. ?a.A → (a, A)
send :: ∀a. ∀A. a → !a.A → A

where a and A respectively stand for type and session type variables. In this way, the constants
that implement communication primitives need not be treated with ad hoc type checking rules.
Further decorations are allowed on quantifiers and arrow types for detecting potentially harmful
communication topologies that leave some channels unreachable.

Support for sessions and session types in Haskell has been investigated by Neubauer and
Thiemann [2004], Pucella and Tov [2008], Imai et al. [2010]. Incorporating primitives for session
interaction, which rely on input/output operations, into a lazy functional language requires special
care, so that their execution order becomes predictable. Therefore, all of the mentioned approaches
define an appropriate monad (related to the IO monad) representing computations that may access
to a session. The use of a monad dedicated to session interactions also solves the aliasing problem.
Unlike [Vasconcelos et al., 2006, Gay and Vasconcelos, 2010, Bono et al., 2013], which extend the
type system of an existing language and add support for linear types, Neubauer and Thiemann
[2004], Pucella and Tov [2008] encode sessions using the features of Haskell’s type system, which
makes no provision for linear values. If session channels were treated as ordinary Haskell values,
and output on the channel were implemented through a send function with one of the types
discussed above, nothing would prevent the same channel to be used multiple times, violating the
protocol specified in its session type. For example, it could be possible to evaluate

send 74 c

twice, even if the type of c is !Int.End which allows only one integer to be sent over c. The
monad for session interaction hides the actual channel from the programmer, and prevents the
creation of aliases that could grant non-linear access to the channel.

In the specific case of [Pucella and Tov, 2008], the abstract type

Session st st’ a

denotes an action of the Session monad that transforms a session channel from type st to type
st’, at the same time producing a value of type a. For instance, receive and send have the
polymorphic types

receive :: Session (Cap e (a :?: r)) (Cap e r) a

send :: a → Session (Cap e (a :!: r)) (Cap e r) Unit

which are analogous to the ones we have discussed above, except that there is no explicit argument
denoting the channel on which these operations act. The actual channel is hidden in the definition
of the Session monad, which is private to the library and not accessible to the programmer.
Here, Cap is a phantom type constructor that stores a type environment e (used for handling
recursive protocols) and a proper session type obtained through other type constructors :?: and
:!: (for input and output), :&: and :+: (for binary branches and selections), and Eps (which
plays the same role as End). For instance, a :?: r and a :!: r are respectively the encodings
of the session types ?a.r and !a.r. The agency server above is coded in Haskell like this (for the
sake of simplicity, we implement a session that accepts exactly one query from the customer):

agency :: Rendezvous (String :?: Double :!:

(Eps :&: (String :?: Date :!: Eps))) → IO Unit

agency agencyAccess = accept agencyAccess agencyOnce

agencyOnce :: Session (Cap e (String :?: Double :!:

(Eps :&: (String :?: Date :!: Eps))))

agencyOnce = do journeyDetails <- receive
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send (cost journeyDetails)

offer close

(do address <- receive

send (date journeyDetails)

close)

Note that agencyOnce makes no explicit reference to the session channel being used, which
is instead supplied by accept. In the code, the basic actions offer and close respectively
implement basic constructs for session branching and closing.

An analogous technique for avoiding aliasing is used in [Neubauer and Thiemann, 2004]. Pucella
and Tov [2008] describe other extensions, including the encoding of recursive session types and
the interleaving of multiple channels, and they claim that their encoding of session types scales
without major obstacles to other polymorphic, typed languages such as ML and Java.

In general, the encodings proposed in [Neubauer and Thiemann, 2004, Pucella and Tov, 2008]
produce types which are cumbersome and error-prone to write explicitly. Fortunately, it is possible
to take advantage of Haskell’s type inference for inferring them in most cases. A more advanced
session type inference technique is described by Imai et al. [2010].

Future work Overall the achievements described in the aforementioned works suggest that a
good integration of behavioral types in higher-order languages is indeed feasible. It should be
remarked, however, that the behavioral types taken into account so far are solely aimed at guar-
anteeing basic safety properties, and that the enforcement of stronger properties (such as liveness
guarantees) usually requires the embedding of more precise information into types. This embed-
ding poses little technical problems at the foundation level, because of the close correspondence
between the structure of types and that of processes adhereing to them. However, there is evidence
suggesting that the same embedding is not trivial when higher-order languages are considered.
This calls for further investigations to maintain the research done at the level of programming
languages aligned with that on the foundations of behavioral types.

3.2 High-performance computing

The Message Passing Interface library specification Forum [2012] is the de facto standard for
programming high-performance parallel applications. The standard’s first version came out in 1994
and has included bindings for the Fortran and for the C programming languages. Since then,
there are many implementations of the standard for different platforms that support hundred of
thousands of processing units.

MPI programs adhere to the Single Program, Multiple Data paradigm, in which a single
program specifies the behaviour of the various processes, each working on different data and
running on a different processor/core. MPI offers different forms of communication, including
point-to-point, collective, and one-sided communication. Point-to-point communication specifies
the interaction between two different processes: a sender and a receiver. The communication
can be characterised along two orthogonal directions: (1) synchronous and asynchronous and (2)
blocking and non-blocking (also referred as immediate). The standard includes primitives for all
four possible combinations that arises from the fact that MPI communications account for the
duration of the transmission. For example, in MPI it is possible to communicate synchronously
in a blocking manner, as well as synchronously following a non-blocking approach. Non-blocking
communication allows for the overlapping of computation and communication.

Collective operations are executed synchronously by all (or a group of) processes. These oper-
ations include, for instance, the ability to broadcast a buffer for all (or a group) of processes, the
capability to scatter or gather a buffer amongst processes, and reducing operations on values from
all (or a group) of processes. Collective operations facilitate the writing of complex behaviours and
give the opportunity for the MPI implementation to optimise the performance of communication.
Although a broadcast and n-send/-receive operations from one process to the others may be seen
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as having the same behaviour, MPI implementations exploit the fact that a collective operation is
taking place in order to optimise the way communication is handled.

One-sided communication allows a process to remotely access the memory of another process
(RMA) for getting and putting values directly on the other’s process memory. It differs from the
previous modes of communication because the process issuing the request may do it without the
collaboration of the other involved process, as in point-to-point and collective communications.

High-performance computing applications can exhibit complex message passing behaviours
and are often deployed in computing infrastructures that include thousands of processors/cores,
costing serious money on computing power. The MPI standard, for instance, describes hundreds
of primitives that can be used along the computation and that express far from trivial behaviours.
It is, in fact, very easy to write an MPI application that deadlocks or enters into race conditions
just by following a wrong communication protocol. For that matter, behavioural types can be of
great help, since they can capture the global communication protocol and are able to enforce this
behaviour on the program.

Several proposals to discipline communication in high-performance computing have been put
forward Ng et al. [2012a, 2011], Honda et al. [2012], Ng et al. [2012c], Marques et al. [2013b],
based on the theory of multi-party sessions types. The approach starts by describing a global
protocol of the application using a protocol description language, for instance Scribble Honda
et al. [2011]. Then, the global protocol is projected to endpoint protocols to be followed by each
participant. The theory of session types guarantees, to this point, that the protocol is deadlock
free and communication safe by construction. The final step is to guarantee that each process
behaves according to each endpoint protocol.

Example

The Customer-Agency running example protocol can described in Scribble as follows.

protocol PurchaseATrip(role Customer , role TravelAgency) {

rec tripProcurement {

JourneyDetails from Customer to TravelAgency;

Price from TravelAgency to Customer;

tripProcurement;

}

choice at Price {

AcceptTrip from Customer to TravelAgency;

DeliveryAddress from Customer to TravelAgency;

date from TravelAgency to Customer;

} or {

RejectTrip from Customer to TravelAgency;

}

}

A possible implementation sketch in C using MPI primitives (C+MPI) can be as follows.

#define CUSTOMER 0

#define AGENCY 1

#define MSG_SIZE 100

#define ADDRESS_SIZE 100

#include <mpi.h>

int main(int argc ,char **argv){

int rank; /∗ p r o c e s s rank ∗/
MPI_Status status;

MPI_Init (&argc , &argv);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);
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do {

char journeyDetails[MSG_SIZE ];

float price;

if (rank == CUSTOMER) {

journeyDetails = generateMessageToSend ();

MPI_Send(journeyDetails ,MSG_SIZE ,MPI_CHAR ,AGENCY ,0,

MPI_COMM_WORLD );

MPI_Recv (&price ,1,MPI_FLOAT ,AGENCY ,0,MPI_COMM_WORLD ,& status );

processPrice(price);

} else if (rank == AGENCY) {

MPI_Recv(journeyDetails ,MSG_SIZE ,MPI_CHAR ,CUSTOMER ,0,

MPI_COMM_WORLD ,& status );

price = computePrice(journeyDetails );

MPI_Send (&price ,1,MPI_FLOAT ,CUSTOMER ,0, MPI_COMM_WORLD );

}

} while (moreQuestionsToAsk ());

int decision;

char deliveryAddress[ADDRESS_SIZE ];

int date [3]; /∗ f o rmat : year , month , day ∗/
if (rank == CUSTOMER) {

decision = decidesToAccept ();

MPI_Send (&decision ,1,MPI_INT ,AGENCY ,0, MPI_COMM_WORLD );

if (decision) {

deliveryAddress = getDeliveryAddress ();

MPI_Send(deliveryAddress ,ADDRESS_SIZE ,MPI_CHAR ,AGENCY ,0,

MPI_COMM_WORLD );

MPI_Recv(date ,3,MPI_INT ,AGENCY ,0,MPI_COMM_WORLD ,& status );

}

} else if (rank == AGENCY) {

MPI_Recv (&decision ,1,MPI_INT ,CUSTOMER ,0,MPI_COMM_WORLD ,& status );

if (decision) {

MPI_Recv (& deliveryAddress ,ADDRESS_SIZE ,MPI_CHAR ,CUSTOMER ,0,

MPI_COMM_WORLD ,& status );

date = computeDate(deliveryAddress );

MPI_Send(date ,3,MPI_INT ,CUSTOMER ,0, MPI_COMM_WORLD );

}

}

MPI_Finalize ();

return 0;

} /∗ main ∗/

The program defines the behaviour of both participants at the same time, in the style of single
program, multiple data. It starts by initialising the MPI library and by getting the process rank.
The rank is an integer that uniquely represents each process. In the present case, the process
ranked 0 is the customer, whereas the process ranked 1 is the travel agency. The behaviour of
each participant is distinguished by testing the process rank and by choosing different control
flows for each participant. Then, the program enters a loop where an unbound number of queries
are posted to the travel agency. The sender of a message has to specify the buffer holding the
data, its size and type, the rank to whom it is addressed to, a tag that may be used to distinguish
messages (in the example we always use zero) and the communicator that specifies the group and
topology of processes use in the communication (in the example we always use the predefined
MPI COMM WORLD that includes all processes). The receiver has to specify the buffer where
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the message is going to be stored, the size and type of the incoming message, its sender’s rank,
the tag, the communicator, and the status structure that contains information about the message
being received. MPI is shutdown with a call to the MPI_Finalize function.

3.2.1 Session Java

Session Java (SJ) is an extension of Java with session types, supporting statically safe distributed
programming by message passing Ng et al. [2011]. The goal of studying distributed programming
with session types at a higher level of abstraction is to disentangle communication from compu-
tation, as it is the case of C+MPI programs, and to ensure communication correctness (in terms
of communication safety and progress) of well-typed programs, as well as to increase productivity
and performance.

Session Java uses a server-client programming model, since SJ is based on binary session types.
SJ, as a language, and its static type checking approach ensures the compatibility between any
two communicating processes. Parallel programming with SJ extends binary sessions to multiple
inter-connected binary sessions in parallel. The verification of SJ parallel program therefore re-
quires two component: (1) correctness of each binary sessions, and (2) correctness of the network
topology which defines the connection between the individual binary sessions, using ”outwhile”
and ”inwhile” synchronised iteration primitives.

An SJ program consists of a collection of SJ classes, one for each type of process to be deployed.
Processes differ by their position in the network topology and by their role in the coordination of
the parallel algorithm as a whole. To complete the application there is a configuration file that
describes how to connect the process classes. The deployment workflow is describes as follows:
(1) SJ classes are compiled into Java standard bytecode using the SJ compiler, which checks
the correct implementation of each binary session; (2) the topology verifier checks the topology
declared in the configuration file, which in conjunction with step (1) prevents global deadlocks;
(3) the verified, compiled files are deployed in the cluster; and (4) program execution makes use of
the ConfigLoader utility, from the SJ library, to establish sessions with their assigned neighbours
in the configuration file, ensuring safe execution of the parallel program.

Complex protocol interactions, like iteration and branching, are coordinated by active and pas-
sive actions at each side of the session. The master process decides whether to continue the session
iteration using outwhile(condition), or selects a branch using outbranch(label), whereas the
worker processes passively follow the iteration or the selected branch decision using inwhile

and inbranch primitives and proceed accordingly. In more detail, for iterations, two methods are
available: local and communicating iterations. Local iterations is a standard statement, such as
while-statements, with session operations occurring inside. Communication iterations are a dis-
tributed version of loops, where, at each iteration, the loop condition is computed by the process
calling outwhile and is communicated to processes calling inwhile. The while loop is designed to
support multicast, so that a single outwhile can control multiple processes. This pattern is useful
in a number of parallel iterative algorithms, which the loop continues until certain conditions (e.g.,
convergence) are reached and cannot be determined statically. As for branching, different branches
may have different communication behaviours, and the deciding participant needs to inform the
other participant which branch is chosen. The passive participant will react accordingly.

The Customer-Agency example written in Session Java

The protocol description and implementation of our running example is presented in Section 2.2.1.
The increase in clarity is evident when compared with the C+MPI program presented in the pre-
vious section. Thereby, productivity gains are clear. Besides that, SJ offers statically guarantees
that well-typed programs are free from deadlocks and that communication is safe. Further work
includes the support for more flexible topologies and native compilation for efficiency gains. How-
ever, Session Java consistently outperforms MPJ Express,1 a Java implementation of the MPI
standard, a performance competitor with C-based MPICH2 Shafi et al. [2009].

1http://mpj-express.org
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A final aspect to notice is that most programs in the HPC community use collective opera-
tions. Building on that, programs are able to maintain a shared state that allows them to decide
collectively, based on this state. This happens without having to follow a master-worker pattern,
avoiding additional communications for synchronising iterative and branching computations, as
seen in SJ.

3.2.2 Session C

Session C Ng et al. [2012a] is a multiparty session-based programming environment for C that
enforces deadlock-freedom, communication safety, and global progress through static type check-
ing. This approach starts with the specification of a global protocol, using a protocol description
language, that captures the communication pattern of the parallel algorithm to be implemented.
From this protocol, the projection algorithm generates endpoint protocols that guide the design
and implementation of each endpoint C program. The endpoint protocol can be further optimised
through subtyping for asynchronous communication, preserving the original safety properties. The
underlying theory can ensure that the complexity of the toolchain stays in polynomial time on the
size of programs.

Session C represents an enhancement from SJ, since it can handle directly multiparty commu-
nications—SJ originally treats only binary sessions. To guarantee deadlock freedom and global
progress for multiparty sessions, SJ depends on an external tool, as discussed in the previous
session. Session C also offers a significant speed-up (60%) compared to SJ as well as MPI for Java.

A Session C application is developed in a top-down approach through four stages. First, a
programmer designs a global protocol using Scribble (as shown in Section 3.2). An application
is compose by individual programs that implement each participant behaviour. This approach
contrasts with that of single program, multiple data put forward by MPI. Second, a projection
algorithm takes the global type and generates endpoint protocols, extracting only the interactions
that involve each particular participant. Then, in the third stage, a protocol can be refined,
meaning that the programmer may write a program that differs from the original protocol up to
the reordering of asynchronous messages Mostrous [2009], Mostrous et al. [2009] for minimising
the waiting time. The fourth step checks the conformance of the refined C program with a subtype
of the endpoint projection.

The programming environment is made up of two main components: a session type checker
and a runtime library. The session type checker takes an endpoint protocol and a source code
program as input and validates the source code against its endpoint protocol. The library offers
a simple but expressive enough interface for session-based communications programming.

The Customer-Agency example written in Session C

Our running example can be sketch in Session C as follows. Here is the customer code.

#include <libsess.h>

...

int main(int argc , char **argv) {

session *s;

join_session (&argc , &argv , &s, ‘‘Customer.spr’’);

const role *agency = s->get_role(s, ‘‘TravelAgency ’’);

do {

send_string(agency , generateMessageToSend ());

processPrice(recv_float(agency ));

} while(outwhile(moreQuestionsToAsk ()));

if (outbranch(decidesToAccept ())) {

send_string(agency , getDeliveryAddress ());

int date [3] = recv_int_array(agency , 3);

}

end_session(s);
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}

Follows the code for the travel agency.

#include <libsess.h>

...

int main(int argc , char **argv) {

session *s;

join_session (&argc , &argv , &s, ‘‘Travel_Agency.spr’’);

const role *customer = s->get_role(s, ‘‘Customer ’’);

do {

send_float(customer , computePrice(recv_string(customer )));

} while(inwhile(customer ));

switch (inbranch(customer , &rcvd)) {

case Accept: send_int_array(customer ,

computeDate(recv_string(customer )));

case Reject: break;

}

end_session(s);

}

A Session C program is a C program that calls the session runtime library. The code above
implements the behaviour of both the customer and the travel agency. We focus on the customer
code. In the main function, join_session indicates the start of a session, whose arguments (argc
and argv from the command line) are a session handle of type session * and the location of the
endpoint Scribble file. The join_session establishes connections to other participating processes
in the session, according to a connection configuration information such as the host/port for each
participant, automatically generated from the global protocol. Next, the lookup function get_role

returns the participant identifier of type role *. Then, we have a series of session operations such
as send type or recv type. Iteration and branching in Session C are declared explicitly with the
use of inwhile, outwhile and inbranch, outbranch, respectively, similarly to what has been
described for Session Java.

3.2.3 Deductive Verification of C+MPI programs

This approach directly verifies C+MPI programs against session types Honda et al. [2012], Marques
et al. [2013b], in contrast with Session C and Session Java where programmers use a particular
library of communication operations. This approach is also founded on the theory of Multiparty
Session Types.

To verify the conformance of C+MPI programs against protocol specifications the programmer
starts by capturing the application’s communication global protocol description. Afterwards, the
protocol is translated into a term written in the language of VCC Cohen et al. [2009], a software
verifier tool for the C programming language (refer to the example below). The translation is
done automatically using a tool that verifies that the protocol is well formed, guaranteeing global
deadlock freedom. The C+MPI code imports the protocol definition (in VCC form) and a VCC-
annotated MPI library with session type contracts for the various MPI primitives. Depending on
the specifics of the C code, further manual annotations may be required. In this setting, VCC
is invoked to check whether the C code follows the communication type. The overall workflow
process is depicted in Figure 9.

The verification deals with point-to-point and collective operations. For that, the protocol
specification departs from Multiparty Session Types and Scribble by introducing collective decision
primitives, allowing for behaviours where all participants decide to enter or to leave a loop, or to
choose one of two branches of a choice input. These two patterns are impossible to describe in
Scribble, but are a standard practice in C+MPI programs. The communication types language
includes specific MPI collective operations, as well as a dependent functional type constructor.
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Figure 9: Approach for verifying C+MPI programs

The verification process checks the program from MPI initialisation (call to MPI_Init) to shut-
down (MPI_Finalize). There is the need to add state and behaviour to perform the verification.
This is known as ghost data and code, and is only available for the verification process. A ghost
type_func function, representing the protocol, parametric on the rank, returns the endpoint pro-
jection of the global type for a given rank. This endpoint type is assigned to a ghost variable
and the verification proceeds by progressively reducing the protocol, i.e., by changing the ghost
variable through the contracts of MPI primitives or as a result of the annotations that handle
program control flow. The goal is that the ghost variable reaches a state congruent to end() at
the shutdown point (the call to MPI_Finalize).

As for control flow, collective choices, and loops in particular, direct annotations are necessary
in the program body. These are partially generated by a tool. Here, we focus now on its meaning,
using the collective loop of our running example.

_(ghost SessionType body = loopBody(type );)

_(ghost SessionType continuation = head(type );)

do {

_(ghost type = body;)

...

_(assert congruent(type , end())

} while (moreQuestionsToAsk ());

_(ghost type = continuation );

The fragment illustrates the extraction of the protocols corresponding to the loop body and its
continuation from the endpoint type stored in ghost variable type. The protocol for the body
must be a loop type. The verification procedure asserts that the loop protocol body is reduced to
a term congruent to end(). After the loop, verification proceeds by using the loop continuation

as the type.
The VCC theory put forward in Marques et al. [2013a] is divided in two parts: the first is a

contract-annotated version of the MPI function signatures that ensures the conformance of the
program operations against a protocol; the second encodes the type reduction relation (omitted
here for brevity). We illustrate contract annotation using the MPI_Send function.

A significant part of the required program annotations are introduced automatically by a tool
that uses the Clang/LLVM framework to traverse the syntactic tree of a C program and generate
a new, annotated, version.
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Verifying the Customer-Agency C+MPI program using VCC

Our running example protocol can be sketch using a VCC datatype value as follows. The function
contains the global type ready to be projected, depending on the rank parameter.

_(ghost _(pure) \Type type_func(int rank)

_(requires 0 <= rank && rank < 2)

_(ensures \result ==

loop (

rank == 0 ?

(comm(send(1,MPI_CHAR ,100) , ...);

comm(recv(1,MPI_FLOAT ,1), ...)) :

rank == 1 ?

(comm(recv(0,MPI_CHAR ,100) , ...);

comm(send(0,MPI_FLOAT ,1), ...)) :

end()

);

rank == 0 ?

comm(send(1,MPI_INT ,1), ...) :

rank == 1 ?

comm(recv(0,MPI_INT ,1), ...) :

end();

choice(

(rank == 0 ?

(comm(send(1,MPI_CHAR ,100) , ...);

comm(recv(1,MPI_INT ,3), ...)) :

rank == 1 ?

(comm(recv(0,MPI_CHAR ,100) , ...);

comm(send(0,MPI_INT ,3), ...)) :

end())

end(),

end ())))))

In what follows we present an excerpt of the annotations required to the C+MPI program
presented in the beginning of this section.

...

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

_(ghost type = type_func (rank))

_(ghost \Type loop_body = loopBody(type );)

_(ghost \Type loop_continuation = reduce(type );)

do {

_(ghost type = loop_body ;)

...

_(assert congruent(type , end())

} while (moreQuestionsToAsk ());

_(ghost type = loop_continuation ;)

...

_(ghost \Type choice_true = choiceTrue(type );)

_(ghost \Type choice_false = choiceFalse(type );)

_(ghost \Type choice_continuation = reduce(type );)

if (decision) {

_(ghost type = choice_true ;)

...

_(assert congruent(type , end())
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}

_(ghost type = choice_continuation ;)

...

MPI_Finalize ();

The ghost annotations inserted into the C+MPI code introduce the ghost variable type, pro-
jecting it for a particular rank. The verification proceeds, either directed by the MPI function
contract annotations or by the manual annotations inserted before the loops and before the collec-
tive choices. More interesting examples include collective operations and foreach loops, but were
omitted since they are not part of our running example.

Open issues and future work

There were plans to explore more complex topologies that can be supported by Session Java and
its topology verifier. Due to the similarity of the approach with Session C and that Session Java
only supports binary session types, which limits the usefulness in supporting collective operations
in parallel programming, efforts of further extending the session-based approach is now focussed
on Session C.

Session C needs to be extended to support more conventional parallel programming runtime
library. Message Passing Interface (MPI) has been identified as the ideal API to target because
of its comprehensiveness and that it is standardised, and to a lesser extent, of its popularity in
the HPC community. Also, the approach of Session C is only as useful as the expressiveness
of the protocol language (Scribble) being type-checked against. In order to support MPI as the
programming API for Session C, Scribble is currently being extended to a dependent language,
with the primary aim of supporting a scalable way of addressing participants using numeric indices.
The challenges of this is to keep type checking decidable, while increasing the complexity of the
parallel programming/MPI primitives that Session C supports. One idea being developed is to use
code generation in place of static type checking, which sees communication safe code generated
from a well-formed Scribble protocol.

The HPC community makes also extensive use of non-blocking and one-sided communications.
Non-blocking operations allows for the overlapping of computation and communication, while one-
side communications allows for a participant to remotely access the memory of another participant.
The remote access happens without a corresponding operation from the remote participant, as
it is the case with point-to-point and collective operations. Governing these kind of interactions
deserves further investigation.

New programming languages have been introduced in the recent past aimed at HPC, notably
X10 Charles et al. [2005], Chapel Chamberlain et al. [2007], and Fortress Steele [2006], that propose
new interaction models, in particular the asynchronous partitioned global address space Saraswat
et al. [2010] that introduces challenging open issues.

3.3 Multiagent systems

Multi-agent systems (MASs, Jennings et al. [1998]) have been proved to be an industrial-strength
technology for integrating and coordinating autonomous and heterogeneous systems. MASs are
open, highly dynamic, and unpredictable; for these reasons, ensuring conformance of the agents’
actual behavior to a given interaction protocol is of paramount importance to guarantee the
participants’ interoperability and security.

In this section we focus on the problem of verifying protocol conformance for Jason Bordini et al.
[2007], one of the most widespread implementations of the logic-based agent oriented programming
language AgentSpeak Rao [1996]. Static verification for Jason is very challenging, since like the
majority of logic-based languages, Jason is statically untyped; for this reason any non trivial static
analysis turns out to be very difficult and algorithmically intractable, unless one implements a non
downward-compatible extension of the language by introducing explicit type annotations.

We have therefore opted for investigating dynamic verification of protocol conformance for
Jason; even though this choice implies less guarantees in comparison with the static approach,
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dynamic verification has the advantage that more expressive formalisms can be used, since the
undecidability issues typical of static analysis are a less serious concern.2

Although a more expressive formalism makes specifications more concise and readable, veri-
fication becomes more challenging, because, in order to be effective, dynamic checks need to be
efficient. A system has to be monitored for a considerable (ideally, for an indefinite) amount of
time. For this reason, the time complexity of dynamic checking protocol conformance should be
linear in the length of the sequence of exchanged messages.

In this section we introduce the notion of global type presented in previous work Ancona et al.
[2012, 2013a,c], Mascardi and Ancona [2013].

Global types can be easily represented as cyclic Prolog terms, and a mechanism for verifying
that a sequence of messages complies to a global type has been designed and implemented in Prolog.
By exploiting these features, a monitor has been developed on top of Jason; such a monitor is
able to verify at run-time that the actual conversation among agents in the MAS complies to the
interaction protocol specified by a global type in the formalism described in this section.

Interactions. An interaction occurs between two agents and is a 4-tuple consisting of two agent
identifiers (the sender and the receiver of the message), the performative expressed in some agent
communication language the agents agree upon, such as FIPA-ACL Foundation for Intelligent
Physical Agents [2002] or KQML Mayfield et al. [1995] (in the Jason implementation the latter is
used), and the actual content of the message expressed in some content language shared among
the agents (in the Jason implementation Prolog terms are used). For instance the interaction
ca(seller, buyer, tell, price(pasta,10)) specifies that agent seller tells agent buyer

that he intends to sell pasta at the price of 10 euros. Performatives are defined in the “speech
acts theory” Austin [1962], which is part of the philosophy of language, as sentences which are not
only passively describing a given reality, but are changing the social reality they are describing.
In the Agent Communication Languages (ACL) research field, the performative denotes the type
of the communicative act of the ACL message, such as telling, asking, recommending, etc. Each
ACL, such as FIPA-ACL and KQML, defines its own set of performatives.

The set of interactions is denoted by A throughout this section.
Interaction types. In the specification of the global type we use interactions types to model

which kind of message pattern is expected at a certain point of the conversation. This gives us the
freedom to specify the expected content type, such as an integer, a string, or a complex term, the
sender and receiver type, and the performative type, possibly using free variables and additional
conditions for modeling protocols in which, for example, we do not care who are the agents that
interact as long as the interaction has a certain performative and the sender and the receiver are
two different agents. An interaction type α is a predicate on interactions, hence its interpretation
is the set of interactions that verify α; we write a ∈ α to mean that α is true on a, and we also
say that a has type α.

Global types. A global type τ represents a set of possibly infinite sequences of interactions, and
is defined on top of the following type constructors:

• λ (empty sequence), representing the singleton set {ε} containing the empty sequence ε.

• α:τ (seq), representing the set of all sequences whose first element is an interaction amatching
type α (a ∈ α), and the remaining part is a sequence in the set represented by τ .

• τ1 + τ2 (choice), representing the union of the sequences of τ1 and τ2.

• τ1|τ2 (fork), representing the set obtained by shuffling the sequences in τ1 with the sequences
in τ2 .

• τ1 · τ2 (concat), representing the set of sequences obtained by concatenating the sequences
of τ1 with those of τ2.

2Most decision problems are already undecidable for context-free languages, whereas the formalism adopted here
is strictly more expressive than context-free grammars.
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Example

The Customer-Agency example described in [CDLPRIMER] can be modeled by global types in
the following way.

CustomerAgency = Sell ·AcceptOrReject

Sell = query0 : propose0 : (Sell + λ)

AcceptOrReject = (Accept+Reject)

Accept = confirm0 : sendAddress0 : forwardAddress0 :
sendDate0 : forwardDate0 : λ

Reject = reject0 : λ

Interactions types. In global types, only interaction types appear. Actual interactions taking
place in the environment are expected to have one of the foreseen interaction types, but the
link between actual communication actions and their types is kept separate from the global type
definition. Decoupling interaction types from actual communication actions allows the global type
designer to concentrate on the description of the communication protocol among the involved
parties, abstracting from the actual agent communication language used by them.

The coupling must be defined if the global type must be used in practice, for monitoring
a real multiagent system. For example, in the Customer-Agency protocol we might state that
an actual interaction ca(Customer,Agency, cfp, journey(Dest)) has type query iff it models a
call for proposal for an offer concerning a journey and Customer is the identifier of the cus-
tomer, Agency is the identifier of the agency, and Dest is a string. Another actual interaction
ca(Agency, Customer, propose, journey(Price)) could have type propose iff, besides constraints
similar to those in the previous example, Price is a double.

As interactions in MASs are usually very complex and are not in the scope of this document,
we do not enter into the details of actual communications and we limit ourselves to model their
types.

Customer-Agency Global Type. The global type CustomerAgency is defined by means of
the equation CustomerAgency = Sell · AcceptOrReject, meaning that it is a composite type
consisting of the global type Sell followed by the global type AcceptOrReject (· is the global type
concatenation operator).

Sell is in turn defined as
Sell = query0 : propose0 : (Sell + λ)

meaning that it consists of the query about some destination Dest from Customer to Agency,
followed by the price proposal (propose) from Agency to Customer (: is the sequence operator
whose first operand is an interaction, and the second is a global type), further followed by a choice
between repeating Sell (+ is the choice operator) or stopping (λ is the empty global type). It-
eration is implemented by allowing a variable to appear in the equation defining the variable itself.

AcceptOrReject is defined as a choice between two global types (Accept+Reject), where Accept
consists of a message from Customer to Agency to accept the proposal, followed by a message to
inform Agency of the address where delivering the tickets, followed by a message from Agency to
Service requesting to purchase the tickets to Customer, followed by the message from Service to
Agency to inform it about the ticket purchase date which is forwarded by Agency to Customer.
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The final λ means that this branch of the global type ends here.

Reject just consists of a message from Customer to Agency, rejecting all the proposals made so far.

Note: the 0 superscript of all interaction types can be ignored for this example; it will be intro-
duced and explained in the “specific examples” subsection below.

In the MAS frameworks where we exploited/plan to exploit the monitor, which include Jason
but also JADE Bellifemine et al. [2007] and possibly others, agents are usually aware of the receiver
of the messages that they send, and of the sender of the messages they receive. Hence, delegation
as described in page 3, step 4, of [Hu et al., 2008],

Customer then sends a delivery address (unaware that he/she is now talking to Service)

is not supported by the formalism.

Peculiarities

One of the distinguishing features of the global types presented here is their coinductive inter-
pretation. This means that it is possible to specify and verify protocols that are not allowed
to terminate. In particular, the monitor agent checks also agents responsiveness by means of
time-outs; three different scenarios may occur:

1. if the current state of the monitor corresponds to the empty protocol (that is, the protocol
must terminate), then the monitor reports an error as soon as an interaction is detected
(independently of the time-out);

2. if the current state is final, but does not correspond to the empty protocol (that is, the
protocol is allowed to terminate, but can also continue), then the monitor reports a warning
if a valid interaction is detected after the time-out has expired (if an invalid interaction is
detected, then an error is reported independently of the time-out);

3. if the current state is not final (that is, the protocol is not allowed to terminate), then the
monitor reports a warning as soon as the time-out expires, if no interaction is detected (an
error is reported in case an invalid interaction is detected before the time-out).

If, on one side, static verification ensurers strongest guarantees on the correct behavior of
a MAS, on the other side, dynamic verification allows the adoption of much more expressive
languages. For instance, since global types are recursive and support concatenation, context-free
languages can be specified3 Furthermore, since context-free languages are not closed under shuffle,
global types are strictly more expressive. The expressive power of the formalism is further increased
by the ability of constraing the shuffle operator, by specifying that two or more interaction types
must correspond to the same event; in this way, languages that cannot be expressed with Petri
nets can be specified with global types. For instance, the typical example of non context-free
language4 {anbncn | n ∈ N} can be easily specified (see the next section).

Specific examples

We consider the ABP, in the version defined by Deniélou and Yoshida Deniélou and Yoshida
[2012]. Four different interactions may occur: Alice sends msg1 to Bob (interaction type msg1 ),
Alice sends msg2 to Bob (interaction type msg2 ), Bob sends ack1 to Alice (interaction type ack1 ),
Bob sends ack2 to Alice (interaction type ack2 ). Also in this case the protocol is an infinite
iteration, but the following constraints have to be satisfied for all occurrences of the interactions:

• The n-th occurrence of msg1 must precede the n-th occurrence of msg2 .

3Given the coinductive nature of global types, this claim holds if only finite sequences are considered.
4Again, given the coinductive interpretation, the languages must contain also the infinite sequence a∞.

39



• The n-th occurrence of msg1 must precede the n-th occurrence of ack1 , which, in turn, must
precede the (n+ 1)-th occurrence of msg1 .

• The n-th occurrence of msg2 must precede the n-th occurrence of ack2 , which, in turn, must
precede the (n+ 1)-th occurrence of msg2 .

The type defined below by the variable AltBit1 is a correct specification of the ABP:

AltBit1 = msg1 :M2

AltBit2 = msg2 : M1

M1 = (msg1 : A2) + (ack2 : AltBit1 )
A1 = (ack1 : M1) + (ack2 : ack1 : AltBit1 )
M2 = (msg2 : A1) + (ack1 : AltBit2 )
A2 = (ack2 : M2) + (ack1 : ack2 : AltBit2 )

The type is reasonably compact, but it is not very readable, and it takes time to understand
what protocol is specified; also, it is not trivial to prove that ABP is correctly specified by the
type.

Another problem is that the size of the type grows exponentially with the number of interaction
types; for instance, if we extend the ABP to three messages and three acknowledges, then we get
the following type defined by the variable AltBit3 :

AltBit3 = msg1 : S1

S1 = (msg2 : S2 ) + (ack1 : msg2 : S6 )
S2 = (ack1 : S6 ) + ((ack2 : S4 ) + (msg3 : S3 ))
S3 = (ack1 : S7 ) + ((ack2 : S8 ) + (ack3 : S5 ))
S4 = (ack1 : msg3 : ack3 : AltBit3 ) + (msg3 : S8 )
S5 = (ack1 : ack2 : AltBit3 ) + (ack2 : ack1 : AltBit3 )
S6 = (msg3 : S7 ) + (ack2 : msg3 : ack3 : AltBit3 )
S7 = (ack3 : ack2 : AltBit3 ) + (ack2 : ack3 : AltBit3 )
S8 = (ack1 : ack3 : AltBit3 ) + (ack3 : ack1 : AltBit3 )

To see how constrained shuffle enhances the expressive power of the language, let us start with
the following basic global type representing a naive and incorrect solution to the specification of
the ABP:

WAB = MA1|MA2

MA1 = msg1 :ack1 :MA1

MA2 = msg2 :ack2 :MA2

The interpretation of WAB is a proper superset of the ABP; for instance, it contains sequences
starting with msg2 msg1 ack2 ack1 . . . which do not meet the protocol, because the first occurrence
of msg2 must follow the first occurrence of msg1 .

This is due to the fact that the shuffle operator performs an unconstrained shuffle of the set of
sequences (belonging to the interpretation) of the two operand types, while all correct sequences of
the ABP must verify the additional constraint that the i-th occurrence of msg2 must follow the i-th
occurrence of msg1 and precede the i+1-th occurrence of msg1 , for all natural numbers i. In other
words, a correct sequence of the ABP must yield the infinite sequence msg1 msg2 msg1 msg2 . . .,
specified by the global type MM = msg1 :msg2 :MM , when restricted to the interactions msg1 and
msg2 .

However, the type MA1|MA2|MM is not a correct fix to WAB , since the interactions generated
from MM are considered different from those generated from MA1 and MA2. To avoid this
problem, we introduce two different kinds of interaction types, called producers and consumers,
respectively. In global types extended with constrained shuffle (extended global types, for short)
producer interaction types play the same role of interaction types in basic global types: each
occurrence of a producer interaction type must correspond to the occurrence of a new event; in
contrast, consumer interaction types correspond to the same event specified by a certain producer
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interaction type. The purpose of consumer interaction types is to impose constraints on interaction
sequences, without introducing new events.

Differentiating producer and consumer interaction types allows us to express in a quite intuitive
and simple way the ABP:

ABP = MA′1|MA′2|MM
MA′1 = msg1

1 :ack0
1 :MA′1

MA′2 = msg1
2 :ack0

2 :MA′2
MM = msg1 :msg2 :MM

Global types MA′1 and MA′2 contain just producer interaction types, whereas MM contains
only consumer interaction types. A consumer is an interaction type, whereas a producer is an
interaction type α equipped with a natural superscript n specifying the number n of corresponding
consumers that coincide with the same event; hence, n is the least required number of times a ∈ α
has to be “consumed” to allow a transition labeled by a.

Hence msg1
1 and msg1 in MA′1 and MM respectively, always correspond to the same event

(and analogously for msg1
2 and msg2 in MA′2 and MM ). Since no constraint relates ack1 and

ack2 , the corresponding producers in MA′1 and MA′2 are super-scripted by 0.
As a final example, let us consider the protocol where first Alice sends n (with n arbitrary,

and possibly infinite) messages to Bob (interaction type msg1 ), then Bob send n messages to
Carol (interaction type msg2 ), and, finally, Carol sends n messages back to Alice (interaction type
msg3 ). This can be expressed by the global type T defined as follows:

T = M1,2|M2,3

M1,2 = λ+ ((msg0
1 :M1,2) · (msg1

2 :λ))
M2,3 = λ+ ((msg2 :M2,3) · (msg0

3 :λ))

Since the two interaction types msg1
2 and msg2 in M1,2 and M2,3, respectively, must coincide with

the same event, the number of messages exchanged between the three partners must always be
the same.

Further reading

The notion of global type presented here is similar to that defined by Castagna et al. [2012]. There,
global types model protocols in terms of atomic actions (interactions) and composite actions,
essentially denoting a “language of legal interactions that can occur in a multi-party session”. A
protocol can consist of the empty sequence, a single interaction between a sender and a receiver,
the concatenation, the shuffle, or the union of two global types. Interactions of arbitrary but finite
length are defined with the Kleene star operator.

Whereas that paper focuses on “local” session types, which represent the projections of the
global type on single entities (actors, agents), here only a global perspective is taken. Also,
the interpretation of global types is inductive: only interactions where the number of messages
exchanged is arbitrary but always finite can be modeled. This is a radical difference with the
formalism presented here, where infinite interactions can be modeled as well. Finally, constrained
shuffle is not supported, and types cannot be recursive, hence the language is less expressive.

An approach similar to Castagna et al. [2012] is described in Deniélou and Yoshida [2012] where
the authors explore the connection between session types (which again are intended as projections
of a global type to single participants) and communicating automata or Communicating Finite
State Machines (CFSMs, Brand and Zafiropulo [1983]), and give a new syntax for global types.

With the Deniélou and Yoshida global types the ABP can be specified in a reasonably compact
way, and the size of the type grows linearly if the protocol is extended. However their solution
is less simple than the specification presented in the previous section. Furthermore, the notion
of global type as decribed here is more amenable to be directly translated in Prolog as a finite
collection of unification equations having regular terms as solutions.
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An interesting proposal for overcoming the limitations of dynamic protocol verification based
on a centralized monitor, comes from Chen et al. [2011a]. There, a formal model of run-time
safety enforcement for largescale, cross-language distributed applications with possibly untrusted
endpoints is proposed, whose underlying theory is based on multiparty session types with log-
ical assertions (MPSA). MPSA is an expressive protocol specification language that supports
run-time validation through monitoring. Given the global specifications based on MPSAs which
the participants should obey, distributed monitors use local specifications, projected from global
specifications, to detect whether the interactions are well-behaved and take appropriate actions,
such as suppressing illegal messages. The main difference between that work and ours lies in this
projection stage that, having a centralized monitor, we do not need to perform.

The material related to global types for MASs, including papers, the code of working pro-
totypes, and implemented examples, can be found here: http://www.disi.unige.it/person/

MascardiV/Software/globalTypes.html. The Jason monitor is discussed in Ancona et al. [2012],
whereas Mascardi and Ancona [2013] discusses the adoption of global types extended with at-
tributes in the more general context of logic-based MASs. The theoretical underpinning of global
types have been investigated in Ancona et al. [2013b].
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1 void Agency([Claims] imp<C:START> in ExHeap c,

2 [Claims] exp<D:START> in ExHeap d) {

3 switch receive {

4 case c.Query(String de):

5 ‘‘produce a price pr for de’’;

6 c.Price(pr);

7 Agency(c, d);

8 case c.Reject():

9 c.Close();

10 d.Close();

11 case c.Accept():

12 d.Delegate(c);

13 d.Close();

14 }

15 }

Figure 10: Agency.

4 Singularity OS

Singularity OS Hunt et al. [2005], Fähndrich et al. [2006] is the prototype of a dependable op-
erating system where software-isolated processes (SIPs) run in the same address space. Process
interaction occurs solely through the exchange of messages over asynchronous, FIFO channels and
the communication overhead is tamed by copyless message passing: only pointers to messages
are physically transferred from one process to another. Static analysis guarantees process isola-
tion, namely that every process can only access memory it owns exclusively. The Singularity OS
implementation can be found at http://singularity.codeplex.com/.

Sing# is the programming language specifically designed for the development of programs that
run in Singularity OS. We take now a closer look at Sing# by means of the Costumer-Agency
example.

It is useful to know that Singularity channels consist of pairs of related endpoints, called the
peers of the channel. Messages sent over one peer are received from the other peer, and vice versa.
Each peer is associated with a FIFO buffer containing the messages sent to that peer that have not
been received yet. Therefore, communication is asynchronous (send operations are non-blocking)
and process synchronization must be explicitly implemented by means of suitable handshaking
protocols. Channel communication is, in fact, governed by statically verified channel contracts
that describe messages, message argument types, and valid message interaction sequences as finite
state machines similar to session types.

The pseudocode snippet in Figure 10 defines a function Agency that encodes the behaviour
of the process Agency. The function accepts two arguments: a c endpoint representing one peer
of the channel used as the session channel to interact with the Customer (which the other peer
endpoint belongs to); a d endopoint representing one peer of the channel exploited to delegate c

to the Service at the appropriate moment. The switch receive construct (lines 3–14) is used to
receive messages from an endpoint, and to dispatch the control flow to various cases depending
on the kind of message that is received. Each case block specifies the endpoint from which a
message is expected and the tag of the message. If a request of details comes (message Query

on line 4), a proposal is sent (line 6), and the function Agency is invoked recursively (line 7),
so that the negotiation might continue. In the case a Reject message is received (line 8), both
endpoints are closed, as the negotiation failed. If a Accept is received, the endpoint c is delegated
to Service by sending it over the endpoint d (whose peer belongs to Service), then d is closed.
From this point on, the communication will be between Customer and Service, the former unware
of the change of interlocutor. The operational semantics of the processes Customer and Service,
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1 void Customer([Claims] exp<C:START> in ExHeap c,

2 String destination, String address) {

3 c.Query(destination);

4 switch receive {

5 case c.Price(double p):

6 if (‘‘p not ok and negotiate’’)

7 Customer(c, destination, address);

8 else

9 if (‘‘p not ok and reject’’){

10 c.Reject();

11 c.Close();

12 }

13 else {

14 c.Accept();

15 c.Address(address);

16 switch receive {

17 case c.Date(String d):

18 c.Close();

19 }

20 }

21 }

22 }

Figure 11: Customer.

1 void Service([Claims] imp<D:START> in ExHeap d) {

2 switch receive {

3 case d.Delegate(<C:ADDRESS> in ExHeap x):

4 switch receive {

5 case x.Address(String a):

6 ‘‘produce a date da for a’’

7 x.Date(da);

8 x.Close();

9 }

10 d.Close();

11 }

12 }

Figure 12: Service.
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encoded as functions Customer and Service and shown in Figure 11 and Figure 12, should be
self-explanatory. We illustrate now the meaning of the type annotations and their relevance with
respect to static analysis. The in ExHeap annotation state that a name denotes a pointer to an
object allocated on the exchange heap. Static analysis of Sing# programs aims at providing strong
guarantees on the absence of errors deriving from communications and the usage of heap-allocated
objects. Regarding communications, the correctness of this code fragment relies on the assumption
that the process(es) using the peer endpoints of c and d are able to deal with the message types as
they are received/sent from within Agency. To this aim, the designers of Sing# have consequently
devised channel contracts describing the allowed communication patterns on a given endpoint.
Consider, for example, the contracts for the Costumer-Agency example:

contract C {

message Query(String);

message Price(double);

message Reject();

message Accept();

message Address(String);

message Date(String);

state START

{ Query! → REC_PRICE;

Accept! → ADDRESS;

Reject! → END; }

state REC_PRICE

{ Price? → START; }

state ADDRESS

{ Address! → DATE; }

state DATE

{ Date? → END; }

state END {}

}

contract D {

message Delegate(<C:ADDRESS> in ExHeap);

state START

{ Delegate! → END; }

state END { }

}

A contract is made of a finite set of message specifications and a finite set of states connected
by transitions. Each message specification begins with the message keyword and is followed by
the tag of the message and the type of its arguments. The state of the contract determines the
state in which the endpoint associated with the contract is and this, in turn, determines which
messages can be sent/received. Communication errors are avoided by associating the two peers of
a channel with types that are complementary, in that they specify complementary actions. This
is achieved in Sing# with the exp<C:s> and imp<C:s> type constructors that, given a contract C

and a state s of C, respectively denote the so-called exporting and importing views of C when in
state s. It is useful to think of the exporting view as of the type of the provider of the behavior
specified in the contract, and of the importing view as of the type of the consumer of the behavior
specified in the contract.

Going back to the Costumer-Agency example, note that Service waits for an endpoint value
in x (Figure 12, line 3) that must be in the state ADDRESS of the contract C, in order to conclude
the transaction with Customer correctly.

From the previous discussion, it seems plausible to formalize Sing# using a process calculus
equipped with a suitable session type system for endpoint types. There are, in fact, clear analogies
between contracts and endpoint types: the contract describes an interaction between two processes
in terms of states and transitions, with a bias towards one of the two processes; the endpoint type
describes the behavior of a single process involved in the interaction.

An encoding of the example Costumer-Agency in the style of Bono et al. [2011] may look like
as:
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INTERACTION(de, ad , pr , da) = open(c : T, c′ : T ).(CUSTOMER(c, de, ad)|
open(d : D, d′ : D).(AGENCY(c′, d, pr)|
SERVICE(d′, da)))

CUSTOMER(c, de, ad) = c!Query(de).c?Price(p : double).
rec X.(c!Query(de).c?Price(p : double).X⊕
c!Reject().close(c)⊕
c!Accept().c!Address(ad). c?Date(da : String).close(c))

AGENCY(c′, d, pr) = rec X.(c′?Query(x : String).c′!Price(p).X+
c′?Reject().close(c′).close(d)+
c′?Accept().d!Deleg(c′).close(d))

SERVICE(d′, da) = d′?Deleg(x : S).x?Address(a : String).x!Date(da).close(x).close(d′)

The operational semantics of the construct open present in the process INTERACTION cor-
responds to the creation of a channel by allocating the peer endpoints in the heap. The endpoint
types appearing in the code are as follows:

T = rec α. (!Query(String).?Price(double).α⊕
!Accept().!Address(String).?Date(String).end⊕
!Reject().end)

D = !Deleg(S).end

S = !Address(String).?Date(String).end

Note that S is a suffix of one of the internal choices of T and this is the parallel of requiring x

of type <C:ADDRESS> in ExHeap on line 3 of the function Service (Figure 12).
A major complication of the copyless paradigm derives from the fact that communicated objects

are not copied from the sender to the receiver, but rather pointers to allocated objects are passed
around. This can easily invalidate the ownership invariant if special attention is not payed to
whom is entitled to access which objects. Any chosen type discipline, then, should control the
ownership of allocated objects, whereby at any given time every allocated object is owned by one
(and only one) process. Whenever (the pointer to) an allocated object is sent as a message, its
ownership is also transferred from the sender to the receiver. There are two possible cases for
ownership of parameters: either the ownership is given back to the caller (no annotation), or it is
retained by the callee (annotation [Claims]) after the execution. In the example of Figure 10, the
function Agency owns its two parameters and retains their ownership. In fact, either it closes both
endpoints in the case of rejection of the negotiation (lines 9 and 10), or it sends away endpoint
c (transferring the ownership to the receiver) and closes endpoint d in the case of acceptance
(lines 12 and 13).

One could hope that, by imposing a linear usage on entities, the problems regarding the
ownership of heap-allocated objects would be easily solved. In practice, things are a little more
involved than this because, somewhat surprisingly, linearity alone is too weak to guarantee the
absence of memory leaks, which occur when every reference to an heap-allocated object is lost.
We illustrate this issue through a simple example. Consider the function:

void leak([Claims] imp<C:START> in ExHeap e,

[Claims] exp<C:START> in ExHeap f)

{ e.Arg(f); e.Close(); }

which accepts two endpoints e and f allocated in the exchange heap, sends endpoint f as an
Arg-tagged message on e, and closes e. The [Claims] annotations in the function header are
motivated by the fact that one of the two arguments is sent away in a message, while the other
is properly deallocated within the function. Yet, this function may produce a leak if e and f
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are the peer endpoints of the same channel. If this is the case, only the e endpoint is properly
deallocated while every reference to f is lost and will never be deallocated. Note that the leak

function behaves correctly with respect to the Sing# contract

contract C {

message Arg(exp<C:START> in ExHeap);

state START { Arg? → END; }

state END { }

}

whose only apparent anomaly is the implicit recursion in the type of the argument of the Arg

message, which refers to the contract C being defined.
An encoding of this example in the calculus is straightforward:

LEAK = open(e : T, f : S).e!Arg(f).close(e)

where:
T = !Arg(S).end
S = rec α.?Arg(α).end

The types T, S are dual and, in particular, S corresponds to the contract C shown above.
In order to avoid memory leaks, it might be tempting to rule out types with a recursive form

such as the one of S, however this is too restrictive, as the problem does not lie in the implicit
recursion in the type of the argument of the Arg message, but in the fact that LEAK creates
a memory loop: at the end of the execution, the endpoint f is present in its own FIFO queue,
as the argument of a message that will be never read. Therefore, loops of this nature should be
avoided: the intuition is that such a message queue containing a loop has an infinite “depth”. In
fact, the idea introduced in Bono et al. [2011] is to define a notion of weight for endpoint types
which roughly gives the “depth” of the message queues in the endpoints having those types and
to restrict endpoint types to those having finite weight.

Remarkably, the leak function is ill typed also in Sing# Fähndrich et al. [2006], although the
motivations for considering leak dangerous come from the implementation details of ownership
transfer rather than from the memory leaks that leak can produce. Having pinpointed the actual
reason why the function leak is faulty is the main contribution of the formalization of Sing# in
Bono et al. [2011].

The interested reader can consult the following sources:

• Fähndrich et al. [2006] report on the language, verification, and run-time system features
that make messages practical as the sole means of communication between processes in the
Singularity operating system. They show that using advanced programming language and
verification techniques, it is possible to provide and enforce strong system-wide invariants
that enable efficient communication and low-overhead software-based process isolation. An
(informal) overview of Singularity OS specifications is in Hunt et al. [2005].

• Bono et al. [2011], Bono and Padovani [2012] present a calculus that models a form of process
interaction based on copyless message passing, in the style of Singularity OS. The calculus
is equipped with a type system ensuring that well-typed processes are free from memory
faults, memory leaks, and communication errors. The type system is essentially linear, but
linearity alone is inadequate, because it leaves room for scenarios where well-typed processes
leak significant amounts of memory.

• Bono and Padovani [2012] extend Bono et al. [2011] by adding bounded polymorphism to
endpoint types, along the lines of Gay [2008], while preserving all the properties mentioned
earlier. Notably, when polymorphic endpoint types are allowed, a simple (polymorphic)
variant of the process LEAK can be typed without resorting to recursive types. The notion
of weight extends smoothly to type variables: when α occurs in a constraint α 6 t, we
estimate the weight of α to be the same as the weight of t.
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• Stengel and Bultan [2009] show that they are implementable without deadlocks if they
are deterministic and autonomous. The first condition requires that there cannot be two
transitions that differ only for the target state. The autonomous condition requires that
every two transitions departing from the same state are either two sends or two receives.
These conditions make it possible to split contracts into pairs of dual session types, and to
fit existing session type theories in our setting in such a natural way.

• Villard et al. [2009, 2010] study an extension of separation logic for verifying correct com-
munications and absence of memory leaks in programs using copyless message passing in the
style of Singularity.

• Jakšić and Padovani [2012, 2013] extend [Bono et al., 2011, Bono and Padovani, 2012] with
exceptions. The semantics of processes draws inspiration from software transactional mem-
ories: a transaction is a process that is meant to accomplish some exchange of messages and
that should either be executed completely, or should have no observable effect if aborted by
an exception.

• Bono et al. [2013] extend the technique presented in Bono et al. [2011], Bono and Padovani
[2012] for detecting memory leaks to a language with first-class functions. These results are
part of the stream of work on functional languages (see Section 3.1). The technique based
on weights mentioned above does not work directly in a language with first-class functions.
The problem is that arrow types only tell us what a function accepts and produces, but not
which other (heap-allocated) values the function may use, while this information is essential
for determining the weight of a linear arrow type. The devised solution is to decorate a
linear arrow type with a weight which is an upper bound for the weights of the types of all
endpoints occurring in the function body. As before, the weight represents an approximation
of the length of a chain of pointers in the program heap, therefore it is possible to send a
function value over an endpoint only if its weight is bounded.
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5 Web Services

5.1 Behavioral Interfaces for Web Services

Service Oriented Computing (SOC) is based on services, intended as autonomous and hetero-
geneous components that can be published and discovered via standard interface languages and
publish/discovery protocols. Web Services is the most prominent service oriented technology: Web
Services publish their interface expressed in the Web Service Description Language (WSDL); they
are discovered through the UDDI protocol, and they are invoked using SOAP.

Services are often developed as combination of other existing services, by using, so-called or-
chestration languages, such as WS-BPEL: executable languages which perform activities by means
of local computations combined with invokations to other services. In this context, behavioural
abstractions, which can be seen as an analogous of behavioural types extracted from a program
written in an orchestration language (see, e.g., Boreale and Bravetti [2011]), have been studied in
order to reason about correctness of service composition. Examples of these languages are Ab-
stract WS-BPEL and behavioural contracts (see, e.g., Fournet et al. [2004], Bravetti and Zavattaro
[2007, 2008]). Such abstract languages make it possible to check whether the retrieved services and
the client invocation protocol are actually compliant/complementary. For instance, they make it
possible to check whether the overall composition of the client protocol with the invoked services
is stuck-free Fournet et al. [2004] or succesfully terminates Bravetti and Zavattaro [2007, 2008].
Session types make it possible to extract such behavioural descriptions (in the form of types)
from the actual service code (type inference) or to directly check that service code conforms to
a given behavioural description (type checking). Type checking crucially relies on a sub-typing
relation between session types that is defined to be the coarsest possible that preserves the desired
termination properties, so to be as permissive as possible when typing code (we will discuss this
with examples in Section 5.2.2).

In order to be able to perform this kind of checks, it is necessary for the services to expose
in their interface also the description of their expected behaviour. In general, a service interface
description language can expose both static and dynamic information. The former deals with the
signature (name and type of the parameters) of the invocable operations; the latter deals with
the correct order of invocation of the provided operations in order to correctly complete a session
of interaction. The WSDL, which is the standard Web Services interface description language is
basically concerned just with static information.

In the following we will deal with languages for representing concrete and abstract service or-
chestrations. The idea would be to then exploit such abstract representations to enrich information
provided in WSDL.

5.2 Related Approaches

Concerning inclusion of abstract service descriptions in WSDL, for instance SAWSDL [Kopecky
et al., Nov.-Dec.] provides a mechanism for adding semantic annotations in WSDL. It would be
interesting to see whether an extension to SAWSDL with behavioral information is possible.

In addition, other kind of checks can be obtained by enriching information included in WSDL
descriptions. For instance, Allison et al. [2012] deals with negotiation between a web service
requester and a web service provider. The negotiation is performed for privacy reasons (i.e.,
the requester specifies privacy preferences that should be met by the provider). It is a specific
negotiation case (for privacy purposes), but shows the process of negotiation that is relevant to
BETTY. Specifically, the policy languages employed in such negotiations are relevant to WG3
(e.g., eXtensible Access Control Markup Language - XACML).

5.2.1 Concrete Languages for Service Compositions

We already mentioned WS-BPEL as an executable standard language for programming service
orchestrations. Jolie (Java Orchestration Language Interpreter Engine) is a general-purpose pro-
gramming language based on the Service-Oriented Computing paradigm [Montesi et al., 2014,

49



development team]. It was originally presented in [Montesi et al., 2007] as an orchestration lan-
guage for Web Services alternative to the standard language WS-BPEL: one of the main advan-
tages is that Jolie does not have an hard to read XML syntax, but on the contrary has a more
programmer-friendly syntax similar to C/Java. Jolie has been subsequently extended with a rather
sophisticated fault handling mechanism [Guidi et al., 2009]: compensation handlers can be dy-
namically updated taking under consideration information available only at runtime. Moreover,
if a fault occurs during a bidirectional request-response interaction, the correct interruption and
compensation of both communicating processes is guaranteed. Despite Jolie was initially designed
as a language for Web Services orchestration, in its development the language has evolved to a
general-purpose tool that can be applied to different scenarios, from multi-core computing to web
applications [Montesi, 2013, Montesi et al., 2014].

We exemplify service composition using orchestration by implementing the Customer-Agency
use case in Jolie. Our implementation includes two programs, one for the customer and one for
the agency. We first discuss the program for the customer, reported below:

1 main

2 {

3 start@Agency ()(m.sid);

4 satisfied = false;

5 for(i = 0, !satisfied && i < 5, i++) {

6 showInputDialog@SwingUI("Product Name")(m.product);

7 askPrice@Agency(m)( price);

8 showYesNoQuestionDialog@SwingUI(string(price ))( answer);

9 satisfied = !bool(answer)

10 };

11 showYesNoQuestionDialog@SwingUI

12 ("Buy " + m.product + " for " + price + "?")( answer);

13 satisfied = !bool(answer);

14 if (satisfied) {

15 accept@Agency(m);

16 order@Agency(m)(date)

17 } else {

18 reject@Agency(m)

19 }

20 }

Above, the customer program starts by sending a message for operation start to Agency, an
external reference pointing to the Jolie program implementing the agency. Operation start will
start a fresh session in the agency service, identified by a new session identifier that we expect to
receive as a reply. We store such session identifier in the variable m.sid, and we will use the data
structure m in the rest of the code to refer to the correct session inside the agency. Lines 5–10
implement the loop of the use case; here, we allow the customer to request the price for a product
at most 5 times or until she is satisfied. In Line 6, we use an external service SwingUI (provided
by the Jolie standard library) for interacting with the user and ask her which product she desires
to buy. In Line 7, we ask the agency for the price of the product the user wishes to buy; then, the
user can select whether the price is acceptable or not. After the loop ends, in Lines 11–12, we ask
the user whether she wishes to proceed with the purchase of the last selected product. If so, in
Lines 15–16 we send a message for the accept operation offered by the agency and we place the
order using another message; when placing the order, we expect to receive the expected delivery
date for the product as a reply. Otherwise, if the user does not wish to proceed, we invoke the
agency on operation reject and the session terminates.

We now show the code for the agency:

1 main

2 {
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3 start ()(csets.sid) { csets.sid = new };

4 continue = true;

5 while(continue) {

6 [ askPrice(m)(double(price )) {

7 showInputDialog@SwingUI(m.product )( price)

8 } ] { nullProcess }

9 [ accept(m) ] {

10 order(m)(date) {

11 date = string(int(m.product ))

12 };

13 continue = false

14 }

15 [ reject(m) ] {

16 continue = false

17 }

18 }

19 }

The agency is willing to start a new session when invoked on operation start; when such operation
is invoked, in Line 1, the agency creates a new session identifier csets.sid and sends it back to
the invoker. Thereafter, the agency enters a loop in which it offers three possibilities (expressed by
the input choice construct [ ] { } ... [ ] { }). If the customer invokes operation askPrice,
then the agency calculates the price for the received product, sends it back to the invoker, and
continues in its loop. The loop terminates only when either operation accept or operation reject

is invoked; in the first case, the agency also waits for an order request and sends back the expected
delivery date (here calculated with a toy example); otherwise, the loop simply terminates.

5.2.2 Abstract Languages for Service Compositions

The orchestration language WS-BPEL can be used to describe so-called abstract processes, that is
behavioural descriptions which include unspecified parts, hence may represent just the externally
visible communicating behaviour of a service. Such Abstract WS-BPEL representations are not
meant to be executable: they can be exposed to the service users in order to determine how to
succesfully interact with it.

As we already mentioned, using a process algebraic approach, it is possible to define how to
extract the externally observable behaviour (beavioural/session type) from the actual executable
behaviour of a service (see, e.g., Boreale and Bravetti [2011]).

The achieved abstraction, expressed in an process algebraic language similar to Abstract WS-
BPEL, is then enough informative to enable analysis of certain properties of the actual service
(when interacting with other services), e.g. stuck freedom Fournet et al. [2004], termination (under
fairness assumption) Bravetti and Zavattaro [2007, 2008], . . . . In particular, such analysis is often
carried out by resorting to more low level semantical descriptions of service behaviors (essentially
labeled transition systems) called behavioural contracts. One of the most important aspect of
the service contract technology is considered to be correctness of composition: given any set of
services, it should be possible to prove that their composition is correct (according to the above
mentioned termination properties) knowing only their contracts, i.e. in the absence of complete
knowledge about (the internal details of) the services behaviour.

We exemplify abstract process representation by providing the description of the Customer-
Agency use case with abstract WS-BPEL. In order to avoid writing (unreadable and long) XML
code we adopt the, quite intuitive, notation of BPELscript. The representation of the Customer
is the following.

while ( !satisfied(price) ) {

price=askPrice (A);

};
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if (confirm(price )) {

accept (A); date=order (A);

} else

reject (A);

Notice that functions stisfied() and confirm() are underspecified and, thus, assumed to non-
deterministically yield a boolean return value. The representation of the Agency is the following.

continue = true;

while (continue) {

pick {

onMessage(C,askPrice) { reply(C,askPrice ,price); }

onMessage(C,accept) {

receive(C,order);

reply(C,order ,date);

continue = false; }

onMessage(C,reject) {continue = false; }

}

}

Again the generation of price and date values is underspecified.
This can be seen as the behavioural abstraction of the Jolie code given in the previous section,

where the i < 5 constraint in the for loop is disregarded.
Notice that, in order to reason about such service abstraction, it is common to resort to a

more semantical notation which just expresses the behaviour in the form of (finite-state) transition
systems, where labels are of the kind {al, a, τ} representing invocations of operation a on service
l, receive/onMessage on operation a, and internal computations τ .

For example, using a regular expression notation, the Customer service contract is:
(askPriceA; price)∗; (acceptA; orderA; date) + rejectA,
while the Agent service contract is:
(askPrice; priceC)∗; (accept; order; dateC) + reject.
Such contracts can be also derived by projection from the choreografical description given in

Section 6.1.
An important topic in this regard is service substitutability. It is a fundamental notion in

behavioural contract theory and corresponds to, so-called, contract refinement (subcontract rela-
tion). Such a notion permits to determine when, given the contract describing an expected service
behaviour, a given service can be used to play that role, based on its contract. Intuitively, a
contract C ′ refines a contract C if any C ′ successfully interacts with any environment (set of con-
tracts of other services) successfully interacting with C. As we already mentioned, in the context
of session types, where behavioral descriptons are used as types for actual service code, contract
refinement corresponds to the definition of sub-typing. It is thus quite immediate to observe that
one of the main challanges is to define contract refinement so that it is the coarsest possible pre-
order that preserves the desired termination properties, so to be as permissive as possible when
typing checking code against a given type.

In the following we show, with a couple of examples, how underlying contracts can be used to
reason about service compositions.

It is not difficult to see that the parallel composition of the contracts above for the Customer
and the Agency is a correct service composition: it is both stuck-free Fournet et al. [2004] and
always leads to termination of all interacting contracts (assuming fairness) Bravetti and Zavattaro
[2007, 2008].

It is also interesting to observe that in the Customer service we can establish a maximum
number of invocations to the askPrice service without breaking the correctness of the system:

i=0;

while ( !satisfied(price) && i<5) {

price=askPrice (A);
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i++;

};

if (confirm(price )) {

accept (A); date=order (A);

} else

reject (A);

This can be seen as the behavioural abstraction of the Jolie code for the Customer given in
the previous section.

According to the the theory in Bravetti and Zavattaro [2007, 2008] the contract for this service
is a refinement of the contract for the previous unbounded Customer service.

On the contrary, the contract for the unbounded Customer service is not a refinement of the
contract for this service because there exists a context for which it is not a correctness preserving
substitute. Consider, for instance, an Agency service that can only perform the pick activity for
5 cycles: it would cause the Customer service to stuck (and not to reach termination).

Finally we show a substitute service of the original agency service. For instance, the following
alternative agency service gives rise to a refinement of the contract of the one above.

continue = true;

while (continue) {

pick {

onMessage(C,askPrice) { reply(C,askPrice ,price); }

onMessage(C,accept) {

receive(C,order);

reply(C,order ,date);

continue = false; }

onMessage(C,loan) {continue = false; }

onMessage(C,reject) {continue = false; }

}

}

The reason for originating a refined contract is that it simply differs for an additional input on
the loan channel, modelling the possibility for the Agency to receive a loan request.
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6 Choreographies

Choreographies are syntactic descriptions of the overall coordination of a system, in terms of in-
teractions between autonomous principals. A choreography captures how two or more endpoints
(or nodes) exchange messages during execution from a global viewpoint, instead of a collection of
programs that define individually the behaviour of each endpoint. As an example of a choreogra-
phy, consider the following pseudo-code (whose syntax is a variant of the “Alice and Bob” security
protocol notation from Needham and Schroeder [1978]):

1. Customer -> Agency : product;
2. Agency -> Customer : price

The choreography above describes the behaviour of two endpoints, Customer and Agency. In Line
1, Customer sends to Agency a product name; then, in Line 2, Agency replies to Customer with the
price of the product she requested.

The following discusses two approaches to developing communication-based software using
choreographies. In Section 6.1, choreographic programming is a paradigm where programmers
write a choreography to generate system that is “safe by design”, since it describes directly the
intended communications in the system: a choreography can be seen as the formalisation of the
communication flow intended by the programmer. Moreover, each communication is treated as
atomic: the sending and receiving actions of the respective sender and receiver endpoints cannot
be seen separately, preventing typical concurrency bugs such as deadlocks. In Section 6.2, a
choreography is treated as a global specification of an asynchronous communication protocol that
is used to verify, by static type checking or dynamically through decentralised run-time monitoring,
the conformance of each endpoint process to the protocol.

6.1 Choreography Languages

A recent line of research advocates the development of safe distributed systems with Choreographic
Programming, a programming paradigm in which developers write system implementations using
choreographies. The executable code for each endpoint (which we call endpoint code) is then
automatically projected from a choreography, using a procedure known as Endpoint Projection
(EPP). The key idea is to formally prove that the definition of EPP is correct, i.e., it preserves
the intended behaviour of a projected choreography in the produced endpoint code; in other
words, executing the endpoint code produced by EPP leads exactly to the communications defined
in the originating choreography. This property enables a development methodology in which
developers write a choreography and then distributed software implementing the choreography is
automatically generated. We depict such methodology in the following:

Choreography
choreography projection (EPP)
−−−−−−−−−−−−−−−−−−−−−−−−−−→ Endpoint Code

The main aspect of the methodology above is that the produced endpoint code is safe by con-
struction: since the EPP procedure is correct, it follows that the communications defined by the
programmer are implemented faithfully and without errors. Such methodology has been used in
many theoretical works, e.g., Carbone et al. [2006], Qiu et al. [2007], Bravetti and Zavattaro [2007],
Lanese et al. [2008]. Mendling and Hafner [2005] informally discuss how to project choreographies
to endpoint code using the real-world choreography language WS-CDL CDL and the endpoint
process language WS-BPEL OASIS [2007]. A formalisation of WS-CDL is provided by Carbone
et al. [2012]. Montesi and Yoshida [2013] present how choreography models can be extended to
support the integration of (i) choreographies developed separately and (ii) choreographies with
externally provided services that have been developed using the typical programming of endpoint
programs.

Currently, the most renown implemented choreography languages are WS-CDL CDL and
BPMN BPMN, which do not come with a behavioural typing discipline. More recently, Car-
bone and Montesi [2013] have proposed a choreographic programming model for the development
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of distributed systems based on multiparty sessions and asynchronous messaging that can be
checked for respecting protocols specified as multiparty session types Honda et al. [2008]. We
depict such methodology below:

Protocols

global
validation
−−−−−−−−−−→ Choreography

choreography
projection

−−−−−−−−−−−−→ Endpoint
Code

Building on the model proposed by Carbone and Montesi [2013], the Chor language offers an
Integrated Development Environment (IDE) based on Eclipse for developing systems with the
methodology above Chor.

Example. Below, we report an implementation of the Customer-Agency example in the Chor
language.

1 program customer_agency;

2

3 protocol PurchaseProtocol {

4 Customer -> Agency: askPrice(string);

5 CheckPrice

6 }

7

8 protocol CheckPrice {

9 Agency -> Customer: price(int);

10 Customer -> Agency: {

11 askPrice(string);

12 CheckPrice ,

13 accept(void);

14 Customer -> Agency: order(string);

15 Agency -> Customer: date(string),

16 reject(void)

17 }

18 }

19

20 public agency_url: PurchaseProtocol

21

22 define checkPrice(c,a)(s[CheckPrice:c[Customer],a[Agency ]])

23 {

24 ask@a(prod ,price);

25 a.price -> c.price: price(s);

26 ask@c(price ,satisfied);

27 if(satisfied == "Yes")@c {

28 ask@c("Confirm?",confirm);

29 if (confirm == "Yes")@c {

30 c -> a: accept(s);

31 c.prod -> a.prod: order(s);

32 ask@a(prod ,date);

33 a.date -> c.date: date(s)

34 } else {

35 c -> a: reject(s)

36 }

37 } else {

38 ask@c("Product Name",prod);

39 c.prod -> a.prod: askPrice(s);

40 checkPrice(c,a)(s)
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41 }

42 }

43

44 main

45 {

46 c[Customer] start a[Agency]: agency_url(s);

47 ask@c("Product Name",prod);

48 c.prod -> a.prod: askPrice(s);

49 checkPrice(c,a)(s)

50 }

In the program above, we start by defining a protocol for our example, named PurchaseProtocol.
In Chor, protocols are behavioural types describing the structure of the communication flow be-
tween some roles; in this case, our roles are Customer and Agency. In protocol PurchaseProtocol,
role Customer sends a message to role Agency on operation askPrice, asking the price for a prod-
uct; then, the protocol proceeds as protocol CheckPrice. In protocol CheckPrice, the agency
sends the price for the product to the customer. The customer then selects one of three available
choices on the agency: (i) ask again for the price of another product, in which case we recur
the protocol; (ii) accept the price and order the product, in which case the agency replies with a
delivery date; (iii) reject the price, in which case the protocol terminates.

Below the protocol definitions, we have a choreography of our system implementation that
follows the previously defined protocols. Procedure main is the choreography entry-point of exe-
cution. In Line 46, we start a session s between a customer and an agency processes respectively
called c and a. The two processes synchronise on the public URL agency_url. In Line 47, the
customer internally computes (by asking its user through a user interface) the product to buy;
then, it asks the agency for the price of the product in Line 48 and the whole system proceeds as
defined by procedure checkPrice.

Procedure checkPrice implements protocol CheckPrice. In Line 22, the procedure is declared
together with the processes and sessions it uses, respectively c,a and s. All parameters are
behaviourally typed, indicating which protocol each session should implement and which role each
process plays in the sessions. In this case, we are declaring that session s implements protocol
CheckPrice using process c as the customer and process a as the agency. Lines 24–41 follow the
structure of protocol CheckPrice, where the most notable differences are the usage of concrete
data values and the conditional construct if.

Using Chor, the choreography above can be automatically translated into an executable im-
plementation in the Jolie language development team. In § 5.1, we show how to relate our Chor
implementation of the Customer-Agency example to other behavioural analyses in the context
of Web Services. Observe that Chor uses multiparty session types, from Honda et al. [2008], as
protocol specifications and repetition is thus expressed through recursion. Differently, in § 5.1,
we will employ the notation used in Lanese et al. [2008], Bravetti and Zavattaro [2012] for service
contracts and will thus refer to the following alternative choreographical representation:

(askPriceC→A; priceA→C)∗; ((acceptC→A; orderC→A; dateA→C) + rejectC→A)

6.2 Scribble

The Scribble project Honda et al. [to appear, 2011], Red Hat JBoss, Team [a] is a collaboration
between session types researchers and architects and engineers from industry Savara, Initiative
towards the application of session types principles and techniques to current engineering practices.
Building on the theory of multiparty session types Honda et al. [2008], Bettini et al. [2008b]
(MPST), this ongoing work tackles the challenges of adapting and implementing session types
to meet the real-world requirements of our industry partners. This section gives an overview of
the current version of the Scribble framework for the MPST-based development of distributed
software. In the context of Scribble, we use the terms session and conversation interchangeably.

The main elements of the Scribble framework are as follows.
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. . .Dynamic
Verification

Specification
(Scribble)

1 module TravelAgency;

2

3 type <java> "java.lang.Double" from "rt.jar" as Double;

4 type <java> "java.lang.String" from "rt.jar" as String;

5 type <java> "java.util.Date" from "rt.jar" as Date;

6

7 global protocol BookJourney(role Customer as C,

8 role Agency as A, role Service as S) {

9 rec LOOP: {

10 choice at C {

11 query(journey:String) from C to A;

12 price(Double) from A to C;

13 continue LOOP;

14 } or {

15 choice at C {

16 ACCEPT() from C to A;

17 details(String) from A to S;

18 Address(String) from C to S;

19 (Date) from S to C;

20 } or {

21 REJECT() from C to A;

22 REJECT() from A to S;

23 } } } }

Figure 13: (a) The Scribble framework for distributed software development, and (b) a Scribble
specification of a global protocol for the Online Travel Agency use case

The Scribble language is a platform-independent description language for the specification of asyn-
chronous, multiparty message passing protocols Team [b], Honda et al. [to appear, 2011].
Scribble may be used to specify protocols from both the global (neutral) perspective and
the local perspective of a particular participant (abstracted as a role); at heart, the Scribble
language is an engineering incarnation of the notation for global and local types in formal
MPST systems and their correctness conditions.

The Scribble Conversation API provides the local communication operations for implementing
the endpoint programs for each role natively in various mainstream languages. The current
version of Scribble supports Java Red Hat JBoss and Python Initiative Conversation APIs
with both standard socket-like and event-driven interfaces for initiating and conducting
conversations.

The Scribble Runtime is a local platform library for executing Scribble endpoint programs writ-
ten using the Conversation API. The Runtime includes a conversation monitoring service for
dynamically verifying Hu et al. [2013], Bocchi et al. [2013], Neykova et al. [2013] the inter-
actions perfomed by the endpoint against the local protocol for its role in the conversation.
In addition to internal monitors at the endpoints, Scribble also supports the deployment of
external conversation monitors within the network Chen et al. [2011b].

The Scribble framework combines these elements to promote the MPST-based methodology for
distributed software development depicted in Figure 13. Below, we first illustrate an example
protocol specification in the Scribble language, and then describe the stages of the Scribble frame-
work, explaining the design challenges of applying session types to practice and the research
threads motivated by this work.

Scribble resources are available from the project home pages Team [a], Red Hat JBoss.

Online Travel Agency example To demonstrate Scribble as a multiparty session types lan-
guage, Figure 13 lists the Scribble specification of the global protocol for an extended version of
the running Online Travel Agency example. If Customer decides to accept a travel quote from
Agency, the exchange of address details and the ticket dispatch date is now conducted between
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Customer and a new party, Service, representing the transport service being brokered by Agency.
The Scribble is read as follows:

• The first line declares the Scribble module name. Although this example is self-contained
within a single module, Scribble code may be organised into a conventional hierarchy of
packages and modules. Importing payload type and protocol declarations between modules
is useful for factoring out libraries of common payload types and subprotocols.

• The design of the Scribble language focuses on the specification of protocol structures. With
regards to the payload data that may be carried in the exchanged messages, Scribble is
designed to work orthogonally with external message format specifications and data types
from other languages. The type declaration on Line 3 declares a payload type based on
Java object serialization format, specifically java.lang.Double objects, whose definition (i.e.
class) is to be imported from the file rt.jar, and is aliased as Double within this Scribble
module. Data type formats from other languages, as well as XML or various IDL based
message formats, may be used similarly. A single protocol definition may feature a mixture
of message types defined by different formats.

• Lines 7–8 declare the signature of a global protocol called BookJourney. This protocol involves
three roles, Customer, Agency and Service, aliased as C, A and S, respectively.

• Lines 9–23 define the interaction structure of the protocol. Line 11 specifies a basic message
passing action. query(journey:String) is a message signature for a message with header
(label) journey, carrying one payload element within the parentheses. A payload element is
an (optional) annotation followed by a colon and the payload type, e.g. journey details are
recorded in a String. This message is to be dispatched by C to be received by A.

• The outermost construct of the protocol body is the rec block with label Loop. Similarly to
labelled blocks in e.g. Java, the occurrence of a continue for the same label within the block
causes the flow of the protocol to return to the start of the block. The first choice within the
rec, decided by C, is to obtain another quote (lines 11–13: send A the query details, receive
a price, and continue back to the start), or to accept/reject a quote. The latter is given by
the inner choice, with C sending ACCEPT to A in the first case and REJECT in the second. In
the case of ACCEPT (lines 16–19), A forwards the details to S before C and S exchange Address

and Date messages; otherwise, A forwards the REJECT to S instead.

Tool usage instructions The Scribble tools are available from Team [a]. Taking the Python-
based tools as an example:

• Download and extract the Python tool set. Python 2.7.3 or later is required to run the tools.

• The Scribble listing in Figure 13 should be saved in a file TravelAgency.scr, matching the
Scribble module declaration.

• Running the scribblec tool included in the Python distribution:

> scribblec TravelAgency.scr

will check all the protocols in this file are well-formed (BookJourney). If no problems are
found, the tool will complete without any feedback.

• Running:

> scribblec TravelAgency.scr -project TravelAgency.BookJourney Customer

will perform the projection (discussed below) on the TravelAgency.BookJourney protocol for
the Customer role and output the result in a file TravelAgency BookJourney Customer.scr in
the same directory. The output will be as listed in Figure 14.
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1 module TravelAgency_BookJourney_Customer;

2

3 type <java> "java.lang.Double" from "rt.jar" as Double;

4 type <java> "java.lang.String" from "rt.jar" as String;

5 type <java> "java.util.Date" from "rt.jar" as Date;

6

7 local protocol BookJourney_Customer at Customer

8 (role Customer as C, role Agency as A,

9 role Service as S) {

10 rec LOOP: {

11 choice at C {

12 query(journey:String) to A;

13 price(Double) from A;

14 continue LOOP;

15 } or {

16 choice at C {

17 ACCEPT() to A;

18 Address(String) to S;

19 (Date) from S;

20 } or {

21 REJECT() to A;

22 } } } }

A!REJECT()

A!ACCEPT()

S!Address(String)

S?(Date)

A!query(String)

A?price(Double)

Figure 14: (a) Scribble local protocol for Customer projected from the BookJourney global protocol,
and (b) the FSA generated from the local protocol by the Scribble conversation monitor

The Scribble framework The Scribble development workflow starts from the explicit spec-
ification of the required global protocols (such as BookJourney above), similarly to the existing,
informally applied approaches based on prose documentation, such as Internet protocol RFCs,
and common graphical notations, such as UML and sequence diagrams. Designing an engineering
language from the formal basis of MPST types faces the following challenges.

• To developers, Scribble is a new language to be learned and understood, particularly since
most developers are not accustomed to formal protocol specification in this manner. For
this reason, we have worked closely with our collaborators towards making Scribble proto-
cols easy to read, write and maintain. Aside from the core interaction constructs that are
grounded in the formal theory, Scribble features extensions for the practical engineering and
maintenance of protocol specifications, such as subprotocol abstraction and parameterised
protocols Honda et al. [to appear] (demonstrated in the examples below).

• As a development step (as opposed to a higher-level documentation step), developers face
similar coding challenges in writing formal protocol descriptions as in the subsequent im-
plementation steps. IDE support for Scribble and integration with other development tools,
such as the Java-based tooling in Red Hat JBoss, are thus important for developer uptake.

• Although session types have proven to be sufficiently expressive for the specification of
protocols in a variety of domains, including standard Internet applications Hu et al. [2010],
parallel algorithms Ng et al. [2012b] and Web services CDL, the evaluation of Scribble
through our collaboration use cases has motivated the development of new multiparty session
type constructs, such as asynchronous conversation interrupts Hu et al. [2013] (demonstrated
below) and subsession nesting Demangeon and Honda [2012], which were not supported by
the pre-existing theory.

After the specification of the global protocols, the next step of the Scribble framework (Fig-
ure 13) is the projection of local protocols from the global protocol for each role. In comparison
to languages implemented from binary session types, such as SJ (Section 2.2), Bica (Section 2.2)
and Sing# (Section 4), this additional step is required to derive local specifications for the end-
point implementation of each role process from the central global protocol specification. Scribble
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projection follows the standard MPST algorithmic projections, with extensions for the additional
features of Scribble, such as the subprotocols and conversation interrupts mentioned above Team
[b].

Figure 14 lists the local protocol generated by the Scribble tools Team [a] as the projection
of the BookJourney for the Customer role, as identified in the local protocol signature. Projection
preserves the dependencies of the global protocol, such as the payload types used, and the core
interaction structures in which the target role is involved, e.g. the rec and choice blocks, as well
as payload annotations and similar protocol details. The well-formedness conditions on global
protocols allow the projection to safely discard all message actions not involving C (i.e. messages
between A and S).

Analogously to the binary session languages cited above, it is possible to statically type check
role implementations written in endpoint languages with appropriate MPST programming prim-
itives against the local protocols following the standard MPST theory: if the endpoint program
for every role is correct, then the correctness of the whole multiparty system is guaranteed. The
endpoint languages used in the Scribble industry projects, however, are mainstream engineering
languages like Java and Python that lack the features, such as first-class communication chan-
nels with linear resource typing or object alias restriction, required to make static session typing
feasible. In Scribble practice, the Conversation API is used to perform the relevant conversation
operations natively in these languages, making static MPST type checking intractable. In general,
distributed systems are often implemented in a mixture of languages, including dynamically typed
languages (e.g. Python), and techniques such as event-driven programming, for which the static
verification of strong safety properties is acknowledged to be difficult.

For these reasons, the Scribble framework, differently to the above session languages, is designed
to focus on dynamic verification of endpoint behaviour Hu et al. [2013]. Endpoint monitoring by
the local Conversation Runtime is performed by converting local protocols to communicating finite
state automata, for which the accepted languages correspond to the I/O action traces permitted by
the protocol. The conversion from syntactic Scribble local protocols to FSA extends the algorithm
in Deniélou and Yoshida [2012] to support subprotocols and interrupts, and to use nested FSM
for parallel conversation threads to avoid the potential state explosion from constructing their
product. Figure 14 depicts the FSA generated by the monitor from the Customer local protocol.
The FSA encodes the control flow of the protocol, with transitions corresponding to the valid I/O
actions that C may perform at each state of the protocol.

Analogously to the static typing scenario, if every endpoint is monitored to be correct, the
same communication-safety property is guaranteed Bocchi et al. [2013]. In addition, since the
monitor verifies both messages dispatched by the endpoint into the network and the messages
inbound to the endpoint from the network, each conversation monitor is able to protect the local
endpoint within an untrusted network and vice versa. The internal monitors embedded into each
Conversation runtime function perform synchronous monitoring (the actions of the endpoint are
verified synchronously as they are performed); Scribble supports mixed configurations between
internal endpoint monitors and asynchronous, external monitors deployed within the network (as
well as statically verified endpoints, where possible) Chen et al. [2011b].

Further examples The following gives two further examples to demonstrate additional features
of Scribble motivated by application in practice.

The first example demonstrates the abstraction of protocol declarations as subprotocols, and the
related feature of parameterised protocol declarations. Figure 15 gives an alternative specification
for the Travel Agency example that is decomposed into four smaller global protocols.

ServiceCall specifies a generic call-return pattern between a Client and a Server. The message
signatures of the two communications are abstracted by the Arg and Res parameters, declared
by the sig keyword inside the angle brackets of the protocol signature.

Forward specifies a generic forwarding pattern between three roles, from X to Y and then Y to Z.
The intent is for Y to forward a copy of the same message, so the signatures of the two
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1 global protocol CustomerOptions

2 (role Customer as C, role Agency as A, role Service as S) {

3 choice at C {

4 do GetQuote(C as Customer, A as Agency);

5 } or {

6 choice at C {

7 do Forward<ACCEPT()>(C as X, A as Y, S as Z);

8 do ServiceCall<Address(String), (Date)>(C as Client, S as Server);

9 } or {

10 do Forward<REJECT()>(C as X, A as Y, S as Z);

11 } } }

12

13 global protocol GetQuote(role Customer as C, role Agency as A) {

14 do ServiceCall<query(String, String, String), price(Int)>(C as Client, A as Server);

15 do CustomerOptions(C as Customer, A as Agency);

16 }

17

18 global protocol ServiceCall<sig Arg, sig Res>(role Client as C, role Server as S) {

19 Arg from C to S;

20 Res from S to C;

21 }

22

23 global protocol Forward<sig M>(role X, role Y, role Z) {

24 M from X to Y;

25 M from Y to Z;

26 }

Figure 15: Decomposition of the BookJourney global protocol using parameterised subprotocols

1 global protocol InterruptibleServiceCall(role Client as C, role Server as S) {

2 Arg from C to S;

3 interruptible {

4 Res from S to C;

5 } with {

6 cancel() by C;

7 } }

Figure 16: Revision of the ServiceCall global protocol with a request cancel interrupt

communications are abstracted by the same M parameter.

CustomerOptions is the main protocol in this version of the Travel Agency specification, with
the same signature as BookJourney in Figure 13. It starts with the outer choice of C to get
another quote or move to the quote accept/reject phase. The latter case is given by the inner
choice whose actions are specified in terms of the Forward and ServiceCall subprotocols. For
example, do Forward<ACCEPT()>(C as X, A as Y, S as Z) on line 7 states that the Forward

protocol should be performed with the target roles X, Y and Z played by C, A and S, respectively,
and ACCEPT() as the concrete message signature in place of the M parameter; C sends ACCEPT to
A, who forwards it to S. After this, C and S engage in a ServiceCall subprotocol to exchange
the Address and Date messages.

GetQuote performs the quote request case of the outer choice between C and A, and loops back
to the overall start of the protocol. The quote exchange is specified by instantiating the
ServiceCall with the appropriate role and message signature parameters. To return to the
start of the protocol, we recursively do the main protocol CustomerOptions). The loop is thus
specified by the mutual recursion between these two protocol declarations.

The final example demonstrates the Scribble feature for asynchronously interruptible conver-
sations. Unlike the previous features, which involve the integration of session types with useful,
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general programming language features (code abstraction and parameterisation), conversation in-
terrupts require extensions to the core design of session types Hu et al. [2013]. The motivation
for interrupts comes from our collaboration use cases, featuring patterns such as asynchronously
interruptible streams and interaction timeouts Initiative, which could not be directly expressed in
the standard MPST formulations. Figure 16 gives a very simple revision of the ServiceCall proto-
col that allows the Client to cancel the call by interrupting the Server’s reply. A key design point
is that interruptible conversation segments do not incur any additional synchronisation over the
explicit messaging actions (i.e. interrupts are themselves communicated as regular messages). Due
to asynchrony between C and S, the interrupt can cause various communication race conditions
to arise, e.g. C sending cancel before S processes the initial Arg or after S has already dispatched
the Res. The Scribble Runtime is designed to handle these issues by tracking the progress of the
local endpoint through the protocol (as part of the monitoring service). This allows the Runtime
to resolve the communication races by discarding messages that are no longer relevant due to the
local role raising an interrupt or receiving an interrupt message from another role.

Future work The development of the Scribble framework and its application in real-world use
cases is ongoing work. The two main use case projects mentioned in the above are:

Savara Savara is JBoss project developed by Red Hat and employed in a commercial setting by
a Cognizant business unit e Cognizant business unit. Savara relies on Scribble as an interme-
diate language for representing protocols, to which high-level notations, such as BPMN2, are
translated to perform endpoint projections and various refactoring tasks. Savara provides
a suite of tools for testing of service specifications against the initial project requirements.
The testing is based on simulations between the former, represented in Scribble, and the
latter, expressed as sequence diagram traces.

The Ocean Observatories Initiative OOI is an NSF-funded project to develop the infrastruc-
ture for the remote, real-time acquisition and delivery of data from a large sensor network
deployed in ocean environments to users at research institutions. The Scribble framework,
including Conversation Runtime monitoring, has been integrated into the Python-based OOI
platform. So far, the OOI cyberinfrastructure is mainly running on an RPC-based archi-
tecture. The current Scribble integration is accordingly primarily used for the specification
of RPC service and application protocols, and the dynamic verification of the Python clien-
t/server endpoints.

Below, we summarise some of the active threads in regards to these projects.

• The Savara project is examining formal encodings between the specification languages com-
monly used in practice and Scribble (the current translation by Savara is not yet formalised),
which is motivating further extensions to Scribble, such as dynamic introduction of roles
during a conversation and fork-join conversation patterns. In general, adapting MPST and
Scribble to graphical representations will increase the expressiveness of the protocol speci-
fication language. Using the native semantics of formal graphical formats for concurrency,
such as communication automata Deniélou and Yoshida [2012] and Petri nets, to provide
global execution models of conversations is an interesting direction for integrating Scribble
protocol specifications with specifications of other system aspects, such as internal endpoint
workflows.

• The current phase of the OOI project includes the development of a framework for actor-
based interactions over the existing service infrastructure. To support the specification and
verification of higher-level application properties above the core message passing protocol,
Scribble is being extended with a framework for annotating protocols with assertions and
policies in third-party languages. Annotations may be associated to individual messages,
interaction steps, control flow structures, roles or protocols as a whole; examples range from
basic constraints on specific message values and control flow (e.g. recursion bounds) to more
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complicated logics for security or contractural obligations of roles. The Scribble frame-
work will accept plugins for parsing and projecting the annotation language, and evaluating
the annotations at run-time. This allows the Scribble tools and monitors to be extended
modularly with application- and domain-specific annotations, and the dynamic verification
approach enables the enforcement of properties that would be difficult or impossible to verify
statically without conservative restrictions.

• The Savara and OOI use cases implement the Scribble language, meaning the syntax, well-
formedness (valid protocol) conditions and projections, as defined by the central language ref-
erence Team [a]. Both implementations also necessarily conform to baseline communication
model of Scribble, namely asynchronous but reliable and role-to-role ordered messaging. The
Scribble project is currently working on defining an accompanying Conversation Runtime
specification. This will provide the reference for Scribble runtime libraries and platforms,
including the specification of the key system protocols for conversation initiation, message
formats (conversation and monitoring message meta data) and more advanced features such
as conversation delegations Hu et al. [2008]. This work is towards full interoperability of
Scribble endpoints running on different platforms, such as the Java and Python platforms of
the above use cases, supported by platform-independent monitoring. This interoperability
will also extend to safely combining dynamically and statically verified endpoints within
conversations.
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7 Conclusion

This reports provides a comprehensive overview of the support of behavioral types in programming
languages, taking into accout both static and runtime aspects. Overall, the report gives consistent
evidence of the fact that behavioral types, despite their recent appearence, have sprinkled signifi-
cant interest in the realm of programming languages and have the potential for being adopted in
very different contexts. As shown in Section 6, behavioral types are also having an impact on the
way software is designed, not just developed. It is to be noted, however, that in many cases the
proposed solutions rely on modifications of type systems and therefore on some native support
provided by language compilers and other developer tools. As these tools tend to evolve slowly,
it is therefore interesting to envisage less invasive, yet concrete forms of integration of behavioral
types into existing programming language. This can be achieved either by means of explicit code
annotations in the form of comments or pragma directives or by means of syntax extensions to be
handled by pre-processing.

Another issue is that the experimental integrations of behavioral types into programming
languages have been mostly focused on “simple” types used for ensuring basic safety properties,
such as the absence of communication errors. In this respect, the report from WG1 – Foundations
shows that an increasing number of behavioral type theories rely on more informative types in
order to enforce stronger properties. It is not evident that the integrations that have succeeded
so far scale smoothly when richer types are considered. This calls for an effort to investigate the
integration of such richer types into mainstream programming languages.
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Degano, and José Meseguer, editors, Concurrency, Graphs and Models, volume 5065 of LNCS,
pages 659–680. Springer-Verlag, 2008a. DOI 10.1007/978-3-540-68679-8_41.

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini,
and Nobuko Yoshida. Global progress in dynamically interleaved multiparty sessions. In CON-
CUR ’08, volume 5201 of LNCS, pages 418–433. Springer, 2008b.

Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Betti Ven-
neri. Deriving session and union types for objects. Mathematical Structures in Computer Science,
FirstView:1–57, 4 2013. ISSN 1469-8072. DOI 10.1017/S0960129512000886.

Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida. Moni-
toring networks through multiparty session types. In FMOODS, volume 7892 of LNCS, pages
50–65. Springer, 2013.

65

http://dx.doi.org/10.1145/1639950.1640073
http://dx.doi.org/10.4204/EPTCS.69.1
http://dx.doi.org/10.1007/978-3-540-68679-8_41
http://dx.doi.org/10.1017/S0960129512000886


Viviana Bono and Luca Padovani. Typing Copyless Message Passing. Logical Methods in Computer
Science, 8:1–50, 2012. ISSN 1860-5974. DOI 10.2168/LMCS-8(1:17)2012.

Viviana Bono, Chiara Messa, and Luca Padovani. Typing Copyless Message Passing. In Proceed-
ings of the 20th European Symposium on Programming (ESOP’11), volume LNCS 6602, pages
57–76. Springer, 2011. DOI 10.1007/978-3-642-19718-5_4.

Viviana Bono, Luca Padovani, and Andrea Tosatto. Polymorphic Types for Leak Detection in a
Session-Oriented Functional Language. In Proceedings of 2013 IFIP Joint International Confer-
ence on Formal Techniques for Distributed Systems, volume LNCS 7892, pages 83–98. Springer,
2013. DOI 10.1007/978-3-642-38592-6_7.
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