
Parameterised Multiparty Session Types

Nobuko Yoshida, Pierre-Malo Deniélou, Andi Bejleri, and Raymond Hu

Department of Computing, Imperial College London

Abstract. For many application-level distributed protocols and parallel algorithms, the
set of participants, the number of messages or the interaction structure are only known
at run-time. This paper proposes a dependent type theory for multiparty sessions which
can statically guarantee type-safe, deadlock-free multiparty interactions among processes
whose specifications are parameterised by indices. We use the primitive recursion operator
from Gödel’s System T to express a wide range of communication patterns while keeping
type checking decidable. We illustrate our type theory through non-trivial programming
and verification examples taken from parallel algorithms and Web services usecases.

1 Introduction
As the momentum around communications-based computing grows, the need for effec-
tive frameworks to globally coordinate and structure the application-level interactions is
pressing. The structures of interactions are naturally distilled as protocols. Each protocol
describes a bare skeleton of how interactions should proceed, through e.g. sequencing,
choices and repetitions. In the theory of multiparty session types [5, 6, 12], such protocols
can be captured as types for interactions, and type checking can statically ensure runtime
safety and fidelity to a stipulated protocol.

One of the particularly challenging aspects of protocol descriptions is the fact that
many actual communication protocols are highly parametric in the sense that the number
of participants and even the interaction structure itself are not fixed at design time. Exam-
ples include parallel algorithms such as the Fast Fourier Transform (run on any number
of communication nodes depending on resource availability) and Web services such as
business negotiation involving an arbitrary number of sellers and buyers. This paper in-
troduces a robust dependent type theory which can statically ensure communication-safe,
deadlock-free process interactions which follow parameterised multiparty protocols.

We illustrate the key ideas of our proposed parametric type structures through exam-
ples. Let us first consider a simple protocol where participant Alice sends a message of
type nat to participant Bob. To develop the code for this protocol, we start by specify-
ing the global type, which can concisely and clearly describe a high-level protocol for
multiple participants [5, 12, 16], as follows (below end denotes protocol termination):

G1 = Alice→ Bob : 〈nat〉.end

Upon agreement on G1 as a specification for Alice and Bob, each program can be
implemented separately. For type-checking, G1 is projected into end-point session types:
one from Alice’s point of view, !〈Bob,nat〉 (output to Bob with nat-type), and another
from Bob’s point of view, ?〈Alice,nat〉 (input from Alice with nat-type), against which
the respective Alice and Bob programs are checked to be compliant.

The first step towards generalised type structures for multiparty sessions is to allow
modular specifications of protocols using arbitrary compositions and repetitions of in-
teraction units (this is a standard requirement in multiparty contracts [19]). Consider the
type G2 = Bob → Carol : 〈nat〉.end. The designer may wish to compose G1 and G2

together to build a larger protocol:

G3 = G1;G2 = Alice→ Bob : 〈nat〉.Bob→ Carol : 〈nat〉.end

1

We may also want to iterate the composed protocols n-times, which can be written by
foreach(i < n){G1;G2}, and moreover bind the number of iteration n by a dependant
product to build a family of global specifications, as in:

Πn.foreach(i < n){G1;G2} (1)

Beyond enabling a variable number of exchanges between a fixed set of participants, the
ability to parameterise participant identities can represent a wide class of the communi-
cation topologies found in the literature. For example, the use of indexed participants W[i]
(denoting the i-th worker) allows to specify a family of session types such that neither
the number of participants nor message exchanges are known before the run-time instan-
tiation of the parameters. The following type and diagram both describe a sequence of
messages from W[n] to W[0] (indices decrease in our foreach, see § 2):

Πn.(foreach(i < n){W[i+ 1]→ W[i] : 〈nat〉}) n // n-1 // . . . // 0 (2)

Here we face an immediate question: what is the underlying type structure for such
parametrisation, and how can we type-check each (parametric) end-point program? The
type structure should allow the projection of a parameterised global type to an end-point
type before knowing the exact shape of the concrete topology. In (2), if n ≥ 2, there
are three distinct communication patterns inhabiting this specification: the initiator (send
only), the n − 1 middle workers (receive and send), and the last worker (receive only).
This is no longer the case when n = 1 (there is only the initiator and the last worker)
or when n = 0 (no communication). Can we provide an decidable projection and static
type-checking by which we can preserve the main properties of the session types such as
progress and communication-safety in parameterised process topologies? The key tech-
nique proposed in this paper is a projection method from a dependent global type onto a
generic end-point generator which exactly captures the interaction structures of parame-
terised end-points and which can represent the class of all possible end-point types.

Contributions of this work

– A new expressive framework to globally specify and program a wide range of para-
metric communication protocols (§ 2). We achieve this result by combining dependent
type theories derived from Gödel’s System T [17] (for expressiveness) and indexed
dependent types from [20] (for tractability to control parameters), with multiparty
session types.

– Decidable and flexible projection methods based on a generic end-point generator and
mergeability of branching types, enlarging the typability (§ 3.1).

– A dependent typing system that treats the full multiparty session types integrated with
dependent types. The resulting static typing system allows decidable type-checking
and guarantees type-safety and deadlock-freedom for well-typed processes involved
in parameterised multiparty communication protocols (§ 3).

– Applications featuring various process topologies, including the complex butterfly
network for the parallel FFT algorithm (§ 2.4,3.6). As far as we know, this is the first
time such a complex protocol is specified by a single type and that its implementa-
tion can be automatically type-checked to prove communication-safety and deadlock-
freedom. We also extend the calculus with a new asynchronous join primitive for
session initialisation, applied to Web services use cases [2] (§ 3.6).

The complete formal definition of our system, including proofs and additional material
for examples and implementations can be found in the appendices and in [1].

2

2 Types and processes for parameterised multiparty sessions
2.1 Global types
Global types allow the description of the parameterised conversation scenarios of multi-
party sessions as a type signature. Our type syntax integrates three different formulations:
(1) global types from [5]; (2) dependent types with primitive recursive combinators based
on [17] and (3) parameterised dependent types from a simplified Dependent ML [3, 20].

i ::= i | n | i op i′ Indices
P ::= P ∧ P | i ≤ i′ Propositions
I ::= nat | {i :I | P} Index sorts
P ::= Alice | Worker | . . . Participants
p ::= p[i] | P Principals
S ::= nat | 〈G〉 Value type
U ::= S | T Payload type
K ::= {n0, ..., nk} Finite integer set

G ::= Global types
| p→ p′ : 〈U〉.G Message
| p→ p′ : {lk : Gk}k∈K Branching
| µx.G Recursion
| R G λi :I.λx.G′ Primitive recursion
| x Type variable
| G i Application
| end Null

R G λi :I.λx.G′ 0 −→ G
R G λi :I.λx.G′ (n+1) −→ G′{n/i}{R G λi :I.λx.G′ n/x}

Fig. 1. Global types and type reduction

The grammar of global types (G,G′, ...) is given in figure 1. Parameterised principals
p, p′, q, ... can be indexed by one or more parameters, e.g. Worker[5][i+1]. Index i ranges
over index variables i, j, n, naturals n or arithmetic operations. A global interaction can
be a message exchange (p → p′ : 〈U〉.G), where p, p′ denote the sending and receiving
principals, U the payload type of the message and G the subsequent interaction. Payload
types U are either value types S (which contain base type nat and session channel types
〈G〉), or end-point types T (which correspond to the behaviour of one of the session par-
ticipants and will be explained in § 3) for delegation. Branching (p→ p′ : {lk : Gk}k∈K)
allows to follow the different Gk paths in the interaction (K is a ground and finite set of
integers). µx.G is a recursive type where type variable x is guarded in the standard way.

The interesting addition is the primitive recursion operator R G λi : I.λx.G′ from
Gödel’s System T [11]. Its reduction semantics is given in figure 1. The primitive recur-
sive operator takes as parameters a global type G, an index variable i with range I , a
type variable for recursion x and a recursion body G′.1 When applied to an index i, its
semantics corresponds to the repetition i-times of the body G′, with the index variable i
value going down one at each iteration, from i − 1 to 0. The final behaviour is given by
G when the index reaches 0. The index sorts comprise the set of natural numbers and its
restrictions by sets of predicates (P, P′, ..). In our case, these are conjunctions of inequal-
ities. op represents first-order operators on indices (such as +, −, ∗,...). We often omit
I and end in our examples. Using R, we can define the product, composition, repetition
and test operators (used in § 1):

Πi.G = R end λi.λx.G{i+ 1/i} foreach(i<j){G} = R end λi.λx.G{x/end} j
G1;G2= R G2 λi.λx.G1{x/end} 1 if j then G1 else G2= R G2 λi.λx.G1 j

where we assume that x is not free in G and G1, and that G1 and G terminate with
end. The encoding substitutes x for end. The composition operator executes G1 and
G2 sequentially; the repetition operator above repeats G j-times2; the boolean values are
integers 0 (false) and 1 (true). These definitions are similar for other types and processes.

1 A separation between the recursion and the recursor is essential for decidability results, see § 3.4.
2 It is useful to write the parameterised communication in the increasing order, see Appendix B.

3

2.2 Example of a parameterised multiparty protocol

Mesh
//

��

//

��
. . . //

��//

��

//

��

. . . //

��
:

��

:

��

. . . :

��// // . . . //

Πn.Πm.

foreach(i < n){
foreach(j < m){
W[i+ 1][j + 1]→ W[i][j + 1] : 〈nat〉.
W[i+ 1][j + 1]→ W[i+ 1][j] : 〈nat〉};

W[i+ 1][0]→ W[i][0] : 〈nat〉};
foreach(k < m){W[0][k + 1]→ W[0][k] : 〈nat〉}

Fig. 2. Parameterised multiparty protocol on a mesh topology

The session from figure 2 describes a particular protocol over a standard mesh topol-
ogy [14]. In this two dimensional example, each worker has four neighbours, except for
the ones located on the first and last rows and columns. Our session takes two parame-
ters n and m which represent the number of rows and the number of columns. Then we
have two iterators that repeat W[i + 1][j + 1] → W[i][j + 1] : 〈nat〉 and W[i + 1][j + 1] →
W[i+1][j] : 〈nat〉 for all i and j. These two messages specify that each worker not situated
on the last row or last column sends a message to his neighbours situated below and on
its right.3 The types W[i + 1][0] → W[i][0] : 〈nat〉 and foreach(k < m){W[0][k + 1] →
W[0][k] : 〈nat〉} deal with, respectively, the last column and the last row. The flow of mes-
sages comes from W[n][m] and converges towards W[0][0].

2.3 Process syntax and semantics

Syntax The syntax of expressions and processes is given in figure 3, extended from [5],
adding the primitive recursion operator and a new request process. Identifiers u can be
variables x or channel names a. Values v are either channels a or natural numbers n. Ex-
pressions e are built out of indices i, values v, variables x, session end points (for delega-
tion) and operations over expressions. In processes, sessions are asynchronously initiated
by ū[p0, .., pn](y).P . It spawns, for each of the {p0, .., pn}4, a request that is accepted by
the participant through u[p](y).P . Messages are sent by c!〈p, e〉;P to the participant p
and received by c?〈q, x〉;P from the participant q. Selection c⊕ 〈p, l〉;P , and branching
c&〈q, {lk : Pk}k∈K〉, allow a participant to choose a branch from those supported by an-
other. Standard language constructs include recursive processes µX.P , restriction (νs)P
and parallel composition P | Q. The primitive recursion operator R P λi.λX.Q takes as
parameters a process P , a function taking an index parameter i and a recursion variable
X . A queue s : h stores the asynchronous messages in transit.

An annotated P is the result of annotating P ’s bound names and variables as in
e.g. (νa : 〈G〉)Q or s?(x : 〈G〉)Q or R Q λi : I.λX.Q′. We omit the annotations un-
less needed. We often omit 0 and the participant p from the session primitives. Requests,
session hiding and channel queues appear only at runtime, as explained below.

Semantics The semantics is defined by the reduction relation −→ presented in figure 4.
The standard definition of evaluation contexts (that allow W[3+1] to be reduced to W[4]) is

3 Processes can execute asynchronously and in parallel as long as the communication actions
specified in their types are not causally dependant [12]. Hence these messages are multicasted.

4 Since the set of principals is parameterised, we allow some syntactic sugar to express ranges of
participants.

4

c ::= y | s[p] Channels
u ::= x | a Identifiers
v ::= a | n Values

p̂, q̂ ::= p̂[n] | P Principal values
m ::= (q̂,p̂,v) | (q̂,p̂,s[p̂’]) | (q̂,p̂,l) Messages in transit
h ::= ε |m · h Queue types

e ::= i | v | x | s[p] | e op e′ Expressions
P ::= Processes
| ū[p0, .., pn](y).P Init
| u[p](y).P Accept
| ā[p] : s Request
| c!〈p, e〉;P Value sending
| c?〈p, x〉;P Value reception
| c⊕ 〈p, l〉;P Selection
| c&〈p, {lk : Pk}k∈K〉 Branching

| µX.P Recursion
| 0 Inaction
| P | Q Parallel
| R P λi.λX.Q Primitive recursion
| X Process variable
| (P i) Application
| (νs)P Session restriction
| s:h Queues

Fig. 3. Syntax for user-defined and run-time processes

R P λi.λX.Q 0 −→ P [ZeroR]

R P λi.λX.Q n + 1 −→ Q{n/i}{R P λi.λX.Q n/X} [SuccR]

ā[p̂0, .., p̂n](y).P −→ (νs)(P{s[p̂0]/y} | s : ∅ | ā[p̂1] : s | ... | ā[p̂n] : s) [Init]

ā[p̂k] : s | a[p̂k](yk).Pk −→ Pk{s[p̂k]/yk} [Join]

s[p̂]!〈q̂, v〉;P | s : h −→ P | s : h · (p̂, q̂, v) [Send]

s[p̂]⊕ 〈q̂, l〉;P | s : h −→ P | s : h · (p̂, q̂, l) [Label]

s[p̂]?(q̂, x);P | s : (q̂, p̂, v) · h −→ P{v/x} | s : h [Recv]

s[p̂]&(q̂, {lk : Pk}k∈K) | s : (q̂, p̂, lk0) · h −→ Pk0 | s : h (k0 ∈ K) [Branch]

Fig. 4. Reduction rules

omitted. The metavariables p̂, q̂, .. range over principal values (where all indices have been
evaluated). [ZeroR] and [SuccR] are standard and the same as for global types. The rule
[Init] describes the initialisation of a session by its first participant ā[p0, .., pn](y0).P0.
Asynchronous requests ā[p̂k] : s are spawned to allow delayed acceptance by the other
participants (rule [Join]). After the connection, the participants share the private session
name s, and the queue associated to s, which is initialised as empty. The variables yp in
each participant p are then replaced with the corresponding session channel, s[p].

The rest of the session reductions are standard [5, 12]. The output rules [Send] and
[Label] push values, channels and labels into the queue of the session s. The rules [Recv]
and [Branch] perform the complementary operations. Note that these operations check
that the sender and receiver match. Processes are considered modulo structural equiva-
lence, denoted by ≡ (in particular, we note µX.P ≡ P{µX.P/X}).

2.4 Processes for parameterised multiparty protocols

We give here the processes corresponding to the interactions described in § 1 and § 2.2,
then introduce a parallel implementation of the Fast Fourier Transform algorithm.

Sequence from § 1 (2) The process below generates all participants using a recursor:

Πn.(if n = 0 then end
else (R (ā[W[n], .., W[0]](y).y!〈W[n− 1], v〉; end

| a[W[0]](y).y?(W[1], z); end)

λi.λX.(a[W[i+ 1]](y).y?(W[i], z); y!〈W[i+ 2], z〉; end |X) n− 1)

5

When n = 0 no message is exchanged. In the other case, the recursor creates the n − 1
workers through the main loop and finishes by spawning the initial and final ones.

Mesh from figure 2 The mesh example is more complex: when n and m are bigger than
2, there are 9 distinct roles that each have a different pattern of communication. We only
list processes for (1) the centre workers W[i][j] (0<i<n, 0<j <m) who are connected
in all four directions, (2) the initiator W[n][m] from the top-left corner and (3) the workers
W[0][j] (1 < j < m) from the middle of the bottom row. Below, f(i, j) represents the
expression computed at the (i, j)-th element.

Pcentre(i, j) = a[W[i][j]](y).y?(W[i+ 1][j], z1); y?(W[i][j + 1], z2);
y!〈W[i− 1][j], f(i− 1, j)〉; y!〈W[i][j − 1], f(i, j − 1)〉; 0

Pstart(n,m) = ā[W[0][0]..W[n][m]](y).y!〈W[n− 1][m], f(n− 1,m)〉;
y!〈W[n][m− 1], f(n,m− 1)〉; 0

Pbot middle(n,m) = a[W[0][j]](y).y?(W[1][j], x); y?(W[0][j + 1], z); y!〈W[0][j − 1], f(0, j)〉; 0

(a) Butterfly pattern
xk−N/2

$$HHHHHH
// Xk−N/2 = xk−N/2+

xk ∗ ωk−N/2N

xk

::vvvvvvv
// Xk = xk−N/2 + xk ∗ ωkN

(b) FFT diagram
x0 //'&%$!"#0

 AAAAAA
1 //'&%$!"#0

��0
000000000

2 //'&%$!"#0

��(
(((((((((((((((((((

3 //'&%$!"#0
X0 //

x4 //'&%$!"#1

>>}}}}}} //'&%$!"#1

��0
000000000 //'&%$!"#1

��(
(((((((((((((((((((
//'&%$!"#1

X1 //

x2 //'&%$!"#2

 AAAAAA //'&%$!"#2

FF���������� //'&%$!"#2

��(
(((((((((((((((((((
//'&%$!"#2

X2 //

x6 //'&%$!"#3

>>}}}}}} //'&%$!"#3

FF���������� //'&%$!"#3

��(
(((((((((((((((((((
//'&%$!"#3

X3 //

x1 //'&%$!"#4

 AAAAAA //'&%$!"#4

��0
000000000 //'&%$!"#4

KK��������������������
//'&%$!"#4

X4 //

x5 //'&%$!"#5

>>}}}}}} //'&%$!"#5

��0
000000000 //'&%$!"#5

KK��������������������
//'&%$!"#5

X5 //

x3 //'&%$!"#6

 AAAAAA //'&%$!"#6

FF���������� //'&%$!"#6

KK��������������������
//'&%$!"#6

X6 //

x7 //'&%$!"#7

>>}}}}}} //'&%$!"#7

FF���������� //'&%$!"#7

KK��������������������
//'&%$!"#7

X7 //

(c) Global type G =

Πn.
foreach(i < 2n){i→ i : 〈nat〉};
foreach(l < n){
foreach(i < 2l){
foreach(j < 2n−l−1){
foreach(k < 2){
foreach(k′ < 2){
i ∗ 2n−l + k ∗ 2n−l−1 + j

→ i ∗ 2n−l + k′ ∗ 2n−l−1 + j : 〈nat〉}}}}}

(d) Processes P (n, p, xp, y, rp) =

y!〈p, xp〉;
foreach(l < n){

if bitn−l(p) = 0

then y?〈p, x〉; y!〈p + 2n−l−1, x〉;
y?〈p + 2n−l−1, z〉; y!〈p, x+ z ω

g(l,p)
N 〉;

else y?〈p, x〉; y!〈p− 2n−l−1, x〉;
y?〈p− 2n−l−1, z〉; y!〈p, z + xω

g(l,p)
N 〉; };

y?〈p, x〉; rp!〈0, x〉;

where g(l, p) = p mod 2l

Fig. 5. Fast Fourier Transform on a butterfly network topology

FFT - Figure 5 We describe a parallel implementation of the Fast Fourier Transform
algorithm (more precisely the radix-2 variant of the Cooley-Tukey algorithm [10]).

Figure 5(a) illustrates the recursive principle of the algorithm, called butterfly, where
two different outputs can be computed in constant time from the results of the same two
recursive calls. The complete algorithm is illustrated by the diagram from figure 5(b). It
features the application of the FFT on a network of N = 23 machines on an hypercube
network computing the discrete Fourier transform of vector x0, . . . , x7. Each row repre-
sents a single machine at each step of the algorithm. Each edge represents a value sent to

6

another machine. The dotted edges represent the particular messages that a machine sends
to itself to remember a value for the next step. Each machine is successively involved in
a butterfly with a machine whose number differs by only one bit. Note that the recursive
partition over the value of a different bit at each step requires a particular bit-reversed
ordering of the input vector: the machine number p initially receives xp where p denotes
the bit-reversal of p. Figure 5(c) gives the global session type describing the interactions
between 2n machines. The first iterator is the initialisation step. Then we have an itera-
tion over variable l for the n successive steps of the algorithm. Figure 5(d) defines the
processes that each of the machines runs. Each process returns the final answer at rp.

3 Typing parameterised multiparty interactions

3.1 End-point types and end-point projections

T ::= End-point types
| !〈p, U〉;T Output
| ?〈p, U〉;T Input
| ⊕〈p, {lk : Ti}k∈K〉 Selection
| &〈p, {lk : Ti}k∈K〉 Branching

| µx.T Recursion
| R T λi :I.λx.T ′ Primitive recursion
| x Type variable
| T i Application
| end End

Fig. 6. End-point types

The syntax of end-point types is given in figure 6. Output expresses the sending to p of
a value or channel of type U , followed by the interactions T . Selection represents the
transmission to p of a label lk chosen in {lk}k∈K followed by Tk. Input and branching
are their dual counterparts. The other types are similar to their global versions.

End-point projection: a generic projection The relation between end-point and global
types is formalised by the projection relation. Since the actual participant characteris-
tics might only be determined at runtime, we cannot straightforwardly use the definition
from [5, 12]. Instead, we rely on the expressive power of the primitive recursive operator:
a generic end-point projection of G onto q, written G � q, represents the family of all the
possible end-point types that a principal q can satisfy at run-time.

p→ p′ : 〈U〉.G� q = if q=p=p’ then !〈p, U〉; ?〈p, U〉;G � q
else if q=p then !〈p′, U〉;G � q
else if q=p’ then ?〈p, U〉;G � q
else G� q

p→ p′ : {lk : Gk}k∈K� q = if q=p then ⊕〈p′, {lk : Gk � q}k∈K〉
else if q=p’ then &〈p, {lk : Gk � q}k∈K〉
else tk∈KGk � q

R G λi :I.λx.G′� q = R G � q λi :I.λx.G′ � q

(µt.G)� p = µt.G � p
x� p = x

(G i) � p = (G� p) i
end � p = end

Fig. 7. Projection of global types to end-point types

The general endpoint generator is defined in figure 7 using the derived construct
if then else . The projection p → p′ : 〈U〉.G � q leads to a case analysis: if the
participant q is equal to p, then the end-point type of q is an output of type U to p′;
if participant q is p′ then q inputs U from p′; else we skip the prefix. The fourth case
corresponds to the possibility for the sender and receiver to be identical. Projecting the
branching global type is similarly defined, but for the operator t explained below. For the
other cases (as well as for our derived operators), the projection is homomorphic.

7

Mergeability and injection of branching types We first recall the example from [12],
which explains that naı̈ve branching projection leads to inconsistent end-point types.

W[0]→ W[1] : {ok : W[1]→ W[2] : 〈bool〉, quit : W[1]→ W[2] : 〈nat〉}

We cannot project the above type onto W[2] because, regardless of the choice made by
W[0], both branches fail to behave in the same way, as W[2] is not aware of the chosen
branch and cannot know the type of the expected value. The projection would only be
defined if we changed the above nat to bool. This illustrates the fact that the projection
of all branches is required to be identical.

In our framework, this restriction is too strong since each branch may contain different
parametric interaction patterns. To solve this problem, we propose two methods called
mergeability and injection of branching types. Formally, the mergeability relation ./ is the
smallest congruence relation over end-point types such that:5 if ∀i ∈ (K ∩ J).Tk ./ T ′j
and ∀i ∈ (K \ J) ∪ (J \ K).lk 6= lj , then &〈p, {lk : Tk}k∈K〉 ./ &〈p, {lj : T ′j}j∈J〉.
When T1 ./ T2 is defined, we define the injection t as a partial commutative operator
over two types such that T t T = T for all types and that:

&〈p, {lk : Ti}k∈K〉 t&〈p, {lj : T ′j}j∈J〉 =
&〈p, {lk : Tk t T ′k}k∈K∩J ∪ {lk : Tk}k∈K\J ∪ {lj : T ′j}j∈J\K〉

The mergeability relation states that two types are identical up to their branching types
where only branches with distinct labels are allowed to be different. By this extended
typing condition, we can modify our previous global type example to add ok and quit
labels to notify W[2]. We get:

W[0]→ W[1] : {ok : W[1]→ W[2] : {ok : W[1]→ W[2]〈bool〉 },
quit : W[1]→ W[2] : {quit : W[1]→ W[2]〈nat〉}}}

Then W[2] can have the type &〈W[1], {ok : 〈W[1],bool〉, quit : 〈W[1],nat〉}〉 which could
not be obtained through the original projection rule in [5, 12]. This projection is sound up
to branching subtyping (cf. Lemma 3.4).

3.2 Type system
This subsection introduces the type system. Because free indices appear both in terms (e.g.
participants in session initialisation) and in types, the formal definition of what constitutes
a valid term and a valid type are interdependent and both in turn require a careful definition
of a valid global type.

Judgements and environments One of the main differences with previous session type
systems is that session environments ∆ can contain dependent process types. The gram-
mar of environments, process types and kinds are given below.

∆ ::= ∅ |∆, c:T Γ ::= ∅ | Γ, P | Γ, u : S | Γ, i : I | Γ,X : τ τ ::= ∆ |Πi :I.τ

∆ is the session environments which associates channels to session types. Γ is the stan-
dard environment which contains predicates and which associates variables to sort types,
service names to global types, indices to index sets and process variables to session types.
τ is a process type which is either a session environment or a dependent type. We write
Γ, u : S only if u 6∈ dom(Γ). We use the same convention for other variables.

5 The idea of meargeablity is introduced informally in the tutorial paper [8].

8

Following [20], we assume given in the typing rules two semantically defined judge-
ments: Γ |= P (predicate P is a consequence of Γ) and Γ |= i : I (i : I follows from
the assumptions of Γ). We also inductively define well-formed types using a kind sys-
tems (Appendix A). The judgement Γ ` U I κ means type U has kind κ. Kinds include
proper types for global, value, principal, end-point and process types (denoted by Type),
and the kind of type families, written by Πi : I.κ. Well-formedness of a term i and P in
Γ and environments is defined in the standard way [3].

3.3 Typing processes

Γ ` Env
[TNAT]

Γ ` nB nat

Γ ` κ
[TID]

Γ ` AliceB κ

Γ ` pBΠi :I.κ Γ |= i :I
[TP]

Γ ` p[i]B κ{i/i}

Γ, i : I−, X : τ{i/j} ` QB τ{i+ 1/j} Γ ` P B τ{0/j} Γ, j :I ` τ I κ
[TPREC]

Γ ` R P λi.λX.QBΠj :I.τ

Γ ` whnf(G1) ≡wf whnf(G2)
[WF]

Γ ` G1 ≡ G2

Γ ` P B τ Γ ` τ ≡ τ ′
[TEQ]

Γ ` P B τ ′
Γ ` P B τ Γ ` τ ≤ τ ′

[TSUB]
Γ ` P B τ ′

Γ,X : τ ` P B τ
[TREC]

Γ ` µX.P B τ

Γ,X : τ ` Env
[TVAR]

Γ,X : τ ` X B τ

Γ ` P BΠi :I.τ Γ |= i ∈ I
[TAPP]

Γ ` P iB τ{i/i}

Γ ` u : 〈G〉 Γ ` P B∆, y : G � p0

Γ ` pi B nat Γ |= pid(G) = {p0..pn}
[TINIT]

Γ ` ū[p0, .., pn](y).P B∆

Γ ` u : 〈G〉 Γ ` P B∆, y : G � p

Γ ` pB nat Γ |= p ∈ pid(G)
[TACC]

Γ ` u[p](y).P B∆

Γ ` a : 〈G〉 Γ ` pB nat Γ |= p ∈ pid(G)
[TREQ]

Γ ` ā[p] : sB s[p] : G � p

Γ ` eB S Γ ` P B∆, c : T
[TOUT]

Γ ` c!〈p, e〉;P B∆, c :!〈p, S〉;T

Fig. 8. Process typing

We explain here (Figure 8) a selection of the process typing rules of our system.
Rules bTNATc and bTVARc are standard (Γ ` Env means that Γ is well-formed). For
participants, we check their typing by bTIDc and bTPc in a similar way as [20] where
Γ ` κ means kinding κ is well-formed. In bTPRECc, we use the abbreviation [0..j] =
{i : nat | i ≤ j}. Then we define I− by [0..0]− = ∅ and [0..i]− = [0..i − 1].
This rule needs to deal with the changed index range within the recursor body. More
precisely, we first check τ ’s kind. Then we verify for the base case (j = 0) that P has type
τ{0/j}. Last, we check the more complex inductive case: Q should have type τ{i+ 1/j}
under the environment Γ, i : I−, X : τ{i/j} where τ{i/j} of X means that X satisfies
the predecessor’s type (induction hypothesis). The rule bTAPPc is the elimination rule of
dependent types. Since our types include dependent types and recursors, we need a notion
of type equivalence bTEQc to type processes up-to type reductions. The rule bWFc is the
main rule defining G1 ≡ G2 and relies on the existence of a common weak head normal
form for the two types (we extend the standard method from [3, §2] with the recursor).
bTINITc types a session initialisation on shared channel u, binding channel y and re-

quiring participants {p0, .., pn}. The premise verifies that the type of y is the first projec-
tion of the global type G of u and that the participants in G (denoted by pid(G)) can be

9

semantically derived as {p0, .., pn}. bTACCc allows to type the p-th participant to the ses-
sion initiated on u. The typing rule checks that the type of y is the p-th projection of the
global type G of u and that G is fully instantiated. The kind rule ensures that G is fully
instantiated (i.e. G′’s kind is Type). bTREQc types the process that waits for an accept
from a participant: its type corresponds to the end-point projection of G.

Recursion bTRECc, variable (bTVARc), output (bTOUTc), input, delegation, inaction,
branching/selection and the expression typing rules as well as the typing rules for queues
are similar to those in [5, 12].

3.4 Properties of typing
Ensuring termination of type-checking with dependent types is not an easy task since
type equivalences are often defined from term equivalences. We rely here on the strong
normalisation of System T [11] for the termination proof.

Proposition 3.1 (Termination and Confluence) The head relation −→ on global and
end-point types (i.e. G −→ G′ and T −→ T ′ for closed types in Figure 2) are strong
normalising and confluent on well-formed kindings.

The following lemma is proved by defining the weight of the equality and showing the
weight of any premise of a rule is always less than the weight of the conclusion (the
weight for a recursor needs to be extended to allow the inductive equality rule).

Proposition 3.2 (Termination for Type-Equality Checking) Assuming that proving the
predicates Γ |= P appearing in type equality derivations is decidable, then type-equality
checking of Γ ` G ≡ G′ terminates. Similarly for other types.

Proposition 3.3 (Termination for Type-Checking) Assuming that proving the predicates
Γ |= P appearing in kinding, equality, projection and typing derivations is decidable, then
type-checking of annotated process P , i.e. Γ ` P B ∅ terminates.

Proof. (Outline) By the standard argument from indexed dependent types [3, 20], for the
dependent λ-applications, we do not require equality of terms (i.e. we only need the equal-
ity of the indices by the semantic consequence judgements). Hence to eliminate the type
equality rule bTEQc, we include the type equality check into bTINIT,TREQ,TACCc (be-
tween the global type and its projected session type), and the input rule (between the
session type and the type annotating x). Similarly for recursive agents. Since α ≡ β (for
any type α and β) terminates, these checks always terminate. ut

Notice that the projection of G on p is always decidable if the equality on principals is
decidable. To ensure the termination of Γ |= P, several solutions include the restriction
of predicates to linear equalities over the naturals without multiplications (or to other
decidable arithmetic subsets) or the restriction of indices to finite domains, cf. [20].

3.5 Subject reduction
The following lemma states that mergeability is sound with respect to the branching sub-
typing ≤ (see figure 25 in the Appendix).

Lemma 3.4 (Soundness of mergeability) Suppose G1 � p ./ G2 � p and Γ ` Gi. Then
there exists G such that G � p = u{T | T ≤ Gi � p (i = 1, 2)} where u denotes the
maximum element with respect to ≤.

10

By this lemma, we can safely replace the third clause tk∈KGk � q of the branching case
from the projection definition by u{T | ∀k ∈ K.T ≤ (Gk � q)}. This allows us to prove
subject reduction by including subsumption in the runtime typing as done in [12].

As session environments record channel states, they evolve when communications
proceed. This can be formalised by introducing a notion of session environments reduc-
tion. These rules are formalised below modulo ≡.

– {s[p̂] :!〈q̂, U〉;T, s[q̂] :?〈p̂, U〉;T ′} ⇒ {s[p̂] : T, s[q̂] : T ′}
– {s[p̂] : ⊕〈q̂, {lk : Tk}k∈K〉} ⇒ {s[p̂] : ⊕〈q̂, lj〉;Tj}
– {s[p̂] : ⊕〈q̂, lj〉;T, s[q̂] : &(p, {lk : Tk}k∈K)} ⇒ {s[p̂] : T, s[q̂] : Tj}
– ∆ ∪∆′′ ⇒ ∆′ ∪∆′′ if ∆ ⇒ ∆′.

The first rule corresponds to the reception of a value or channel by the participant
q̂; the second rule treats the case of the choice of label lj while the third rule propagate
these choices to the receiver (participant q̂). Using the above notion we can state type
preservation under reductions as follows:

Theorem 3.5 (Subject Congruence and Reduction)
– If Γ ` P . ∆ and P ≡ P ′, then Γ ` P ′ . ∆.
– If Γ ` P . τ and P −→∗ P ′, then Γ ` P ′ . τ ′ for some τ ′ such that τ ⇒∗ τ ′.

Note that communication safety [12, Theorem 5.5] and session fidelity [12, Corollary
5.6] are corollaries of the above theorem. A notable fact is, in the presence of the asyn-
chronous join primitive, we can still obtain progress in a single multiparty session as in
[12, Theorem 5.12], i.e. if a program P starts from one session, the reductions at session
channels do not get a stuck. Formally we write Γ `? PB∆ if P is typable and with a type
derivation where the session typing in the premise and the conclusion of each prefix rule
is restricted to at most a singleton. Another element which can hinder progress is when
interactions at shared channels cannot proceed. We say P is well-linked when for each
P −→∗ Q, whenever Q has an active prefix whose subject is a (free or bound) shared
channels, then it is always reducible. The proof is similar to [12, Theorem 5.12].6

Theorem 3.6 (Progress) If P is well-linked and does not contain the runtime syntax and
Γ `? P B ∅. Then for all P −→∗ Q, either Q ≡ 0 or Q −→ R for some R.

3.6 Typing examples
Repetition example - § 1 (1) This example illustrates the repetition of a message pattern.
Let G(n) = foreach(i < n){Alice → Bob : 〈nat〉.Bob → Carol : 〈nat〉}. Following
the projection definition from Figure 7, Alice’s end-point projection of G(n) is:

G(n) � Alice = R end λi.λx.!〈Bob, nat〉; x n

Let Alice(n) = ā[Alice, Bob, Carol](y).(R 0 λi.λX.y!〈Bob, e[i]〉;X n) and ∆(n) =
{y : (G(n) � Alice)} and Γ = n :nat, a :〈G〉. We can prove that Γ ` Alice(n)B∅ from
bTINITc if we have Γ ` R 0 λi.λX.y!〈Bob, e[i]〉;X nB∆(n). This, in turn, is given by
bTPRECc and bTAPPc from Γ, i : I−, X : ∆(i) ` y!〈Bob, e[i]〉;XB∆(i+1) and the trivial
Γ ` 0B y : end. From bTVARc, we have Γ, i : I−, X : ∆(i) ` X B∆(i). We conclude
by bTOUTc and weak head normal form equivalence bWFc of the types ∆(i + 1) and
y :!〈Bob,nat〉; (R end λj.λx.!〈Bob,nat〉; x i). Bob(n) and Carol(n) can be similarly
typed.

6 A stronger progress property for interleaved multiparty sessions ensured by the interaction typing
in [5] can be obtained in this framework, too (since our typing system is an extension from the
communication system in [5]).

11

Sequence example - § 1 (2) The sequence example consists of three roles (when n ≥ 2):
the starter W[n] sends the first message, the final worker W[0] receives the final message
and the middle workers first receive a message and then send another to the next worker.
We write below the generic projection for participant W[p] (left) and the end-point type
that naturally types the processes (right):

R end λi.λx.
if p = W[i+ 1] then !〈W[i], nat〉; x
else if p = W[i] then ?〈W[i+ 1], nat〉; x
else if x n

if p = W[n] then !〈W[n− 1], nat〉; else
if p = W[0] then ?〈W[1], nat〉;else
if p = W[i] then ?〈W[i+ 1], nat〉;!〈W[i− 1], nat〉;

For readability we omitted in the projected type the impossible case p = W[i+1] = W[i]. In
order to type this example, we need to prove the equivalence of these two types. For any
instantiation of p and n, the standard weak head normal form equivalence rule bWFc is
sufficient. Proving the equivalence for all p and n requires either (a) to bound the domain
I in which they live, and check all instantiations within this finite domain; or (b) to prove
the equivalence through a meta-logic case analysis. In case (a), type checking terminates,
while case (b) allows to easily prove strong properties about a protocol’s implementation.

FFT example - Figure 5 We prove type-safety and deadlock-freedom for the FFT pro-
cesses. Let Pfft be the following process:

Πn.(νa)(R ā[p0..p2n−1](y).P (2n − 1, p0, xp0 , y, rp0)

λi.λY.(ā[pi+1](y).P (i+ 1, pi+1, xpi+1 , y, rpi+1) | Y) 2n − 1)

As we reasoned above, each P (n, p, xp, y, rp) is straightforwardly typable by an end-point
type which is equivalent with the one projected from the global type G from figure 5(c).
Automatically checking the equivalence for all n is not easy though: we need to rely on
the finite domain restriction using bWFc. The following theorem says once Pfft is applied
to a natural number m, its evaluation always terminates with the answer at rp.

Theorem 3.7 (Type safety and deadlock-freedom of FFT) For all m, ∅ ` Pfft m B ∅;
and for allQ such that ifPfft m −→∗ Q, thenQ −→∗ (r0!〈0, X0〉 | . . . | r2m−1!〈0, X2m−1〉)
where the rp!〈0, Xp〉 are the actions sending the final values Xp on external channels rp.

Proof. By the progress property from Theorem 3.5, noting Pfft m is automatically typable
by a single, multiparty dependent session. ut

Web Service example - Figure 9 We program and type a real-world Web service use
case: Quote Request (C-U-002) is the most complex scenario described in [2], the pub-
lic document authored by the W3C Choreography Description Language Working Group
[19]. As described in Figure 9, a buyer interacts with multiple suppliers who in turn in-
teract with multiple manufacturers in order to obtain quotes for some goods or services.
The Requirements from Section 3.1.2.2 of [2] include the ability to reference a global
description from within a global description to support recursive behaviour as denoted in
STEP 4(b, d): it can be achieved by parameterised multiparty session types.

We write the specification of the usecase program modularly, starting from the first
steps of the informal description above. Here, Buyer stands for the buyer, Supp[i] for a
supplier, and Manu[j] for a manufacturer. We alias manufacturers by Manu[i][j] to express
the fact that Manu[j] is connected to Supp[i] (a single Manu[j] can have multiple aliases
Manu[i′][j], see figure 9). Then, we can write global types for each of the steps. STEP 1

12

Supp[0] oo //
gg
''OOOO Manu[0][0]

Buyer oo //
xx

88qqqqq
ee

%%JJJJJJ Supp[1] ff
&&MMMMM
Manu[0][1]
Manu[2][1]

Supp[2] oo //
xx
88qqqqq
Manu[1][2]
Manu[2][2]

: :

1. A buyer requests a quote from a set of suppliers.
G1 = foreach(i < n){Buyer→ Supp[i] : 〈Quote〉}

2. All suppliers receive the request ask their respective manu-
facturers for a bill of material items. The suppliers interact
with their manufacturers to build their quotes for the buyer.
G2(i)=foreach(j : Ji){ Supp[i]→ Manu[i][j] : 〈Item〉.

Manu[i][j]→ Supp[i] : 〈Quote〉}
The eventual quote is sent back to the buyer.
G2 =foreach(i : I){G2(i); Supp[i]→ Buyer : 〈Quote〉}3. EITHER

(a) The buyer agrees with one or more of the quotes and places the order(s). OR
(b) The buyer responds to one or more of the quotes by modifying and sending them back to

the relevant suppliers.
4. EITHER

(a) The suppliers respond to a modified quote by agreeing to it and sending a confirmation
message back to the buyer. OR

(b) The supplier responds by modifying the quote and sending it back to the buyer and the
buyer goes back to STEP 3. OR

(c) The supplier responds to the buyer rejecting the modified quote. OR
(d) The quotes from the manufacturers need to be renegotiated by the supplier. Go to STEP 2.

G3 = R t λi.λy.Buyer→ Supp[i] : {
ok : end
modify :Buyer→ Supp[i] : 〈Quote〉.

Supp[i]→ Buyer : {ok : end
retryStep3 : y
reject : end}} i

G3 � Supp[n] = &〈Buyer, {
ok : end
modify : ?〈Buyer,Quote〉;⊕〈Buyer, {

ok : end
retryStep3 : y
reject : end}〉}〉

Fig. 9. The Quote Request use case (C-U-002) [2] with the corresponding global types

is a simple multicast (type G1). For STEP 2, we write first G2(i), the nested interaction
loop between the i-th supplier and its manufacturers (Ji gives all Manu[j] connected to
Supp[i]). Then G2 can describe the subsequent action within the main loop. For STEP 3,
for simplicity we assume the preference is given by the (reverse) ordering of I . The first
choice of G3 corresponds to the two cases of STEP 3. In the innermost branch of G3,
the branches ok, retryStep3 and reject correspond to STEP 4(a), (b) and (c) respectively,
while the type variable t models STEP 4(d). We can now compose these subprotocols
together. The full global type is then G = Πi.ΠJ̃.(G1 ; µt.(G2 ; G3)) where we have i
suppliers, and J̃ gives the index sets Ji of the Manu[j]s connected with each Supp[i].

For the end-point projection, we focus on the suppliers’ case. The projections of G1

and G2 are straightforward. For G3 � Supp[n], we use the branching injection and merge-
ability theory developed in § 3.1. After the relevant application of bTEQc, we can obtain
the projection written in Figure 9. To tell the other suppliers whether the loop is be-
ing reiterated or if it is finished, we can simply insert the following closing notification
foreach(j ∈ I \ i){Buyer → Supp[j] : {close :}} before each end, and a similar retry
notification (with label retryStep3) before x. Finally, each end-point type is formed by
(G1 � Supp[n] ; µx.G2 � Supp[n] ; G3 � Supp[n]). While the global types look sequen-
tial, actual typed processes can asynchronously join a session and be executed in parallel
(e.g., at STEP 1-2, no synchronisation is needed between Supp[i]), cf. footnote 3.

13

4 Extensions and related work
Programming experiments We have explored the impact of the parametrised type struc-
tures for communications through implementation of the above use case as well as a few
parallel algorithms with parameterised topologies in Java with session types [13], includ-
ing the Jacobi method (with a sequence and a mesh) and the FFT (a butterfly network
on an hypercube). We observe two immediate benefits: (1) a clear coordination of the
communication behaviour of each party with the construction of the whole multiparty
protocol, thus reducing the programming errors and ensuring deadlock-freedom; (2) a
performance benefit against the original binary session version, reducing the overhead of
multiple binary session establishments (see [1]).

Dependent types The first use of primitive recursive functionals for dependent types is
in Nelson’s T π [17] for the λ-calculus, which is a finite representation of T ∞ by Tait
and Martin Löf [15, 18]. T π can type functions previously untypable in ML, and the
finite representability of dependent types makes it possible to have a type-reconstruction
algorithm. We also use the ideas from the DML’s dependent typing system in [3, 20] where
type dependency is only allowed for index sorts, so that type-checking can be reduced to a
constraint-solving problem over indices. Our design choice to combine both systems gives
(1) the simplest formulation of sequences of global and end-point types and processes
described by the primitive recursor; (2) a precise specification for parameters appearing in
the participants based on index sorts; and (3) a clear integration with the full session types
and general recursion, whilst ensuring decidability of type-checking (if the constraint-
solving problem is decidable). From the basis of these works, our type equivalence does
not have to rely on behavioural equivalence between processes, but only on the strongly
normalising types represented by recursors. None of these works investigate families of
global specifications using dependent types.
Types and contracts for multiparty interactions Recent formalisms for typing multi-
party interactions include [7, 9]. These works treat different aspects of dynamic session
structures. Contracts [9] can type more processes than session types, thanks to the flexi-
bility of process syntax for describing protocols. However, typable processes themselves
in [9] may not always satisfy the properties of session types such as progress: it is proved
later by checking whether the type meets a certain form. Hence proving progress with
contracts effectively requires an exploration of all possible paths (interleavings, choices)
of a protocol. The most complex example of [9, § 3] (a group key agreement protocol
taken from [4]), which is typed as π-processes with delegations, can be specified and
articulated by a single parameterised global session type as follows:

Πn :I.(foreach(i < n){W[n− i]→ W[n− i+ 1] : 〈nat〉};
foreach(i < n){W[n− i]→ W[n] : 〈nat〉.W[n]→ W[n− i] : 〈nat〉})

Once the end-point process conforms to this specification, we can automatically guaran-
tee communication safety and progress.

Conversation Calculus [7] supports the dynamic joining and leaving of participants.
Though the formalism in § 2.3 can operationally capture such dynamic features, the aim
of the present work is not the type-abstraction of dynamic interaction patterns. Our pur-
pose is to capture, in a single type description, a family of protocols over arbitrary number
of participants, to be instantiated at runtime. The parameterisation gives freedom not pos-
sible with previous session types: once typed, a parametric process is ensured that its arbi-
trary well-typed instantiations, in terms of both topologies and process behaviours, satisfy

14

the safety and progress properties of typed processes. Parameterisation, composition and
repetition are common idioms in parallel algorithms and choreographic/conversational in-
teractions, all of which are uniformly treatable in our dependent type theory. Here types
offer a rigorous structuring principle which can economically abstract rich interaction
structures, including parameterised ones.

References
1. Online version of this paper. http://www.doc.ic.ac.uk/˜yoshida/dependent/.
2. Web Services Choreography Requirements (No. 11). http://www.w3.org/TR/

ws-chor-reqs.
3. D. Aspinall and M. Hofmann. Advanced Topics in Types and Programming Languages, chapter

Dependent Types. MIT, 2005.
4. G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group key agreement and friends. In

CCS ’98: Proceedings of the 5th ACM conference on Computer and communications security,
pages 17–26, New York, NY, USA, 1998. ACM.

5. L. Bettini et al. Global progress in dynamically interfered multiparty sessions. In CONCUR’08,
volume 5201 of LNCS, pages 418–433, 2008.

6. E. Bonelli and A. Compagnoni. Multipoint session types for a distributed calculus. In TGC’07,
volume 4912 of LNCS, pages 240–256, 2008.

7. L. Caires and H. T. Vieira. Conversation types. In ESOP, volume 5502 of LNCS, pages 285–
300. Springer, 2009.

8. M. Carbone, N. Yoshida, and K. Honda. Asynchronous session types: Exceptions and multi-
party interactions. In SFM’09, volume 5569 of LNCS, pages 187–212. Springer, 2009.

9. G. Castagna and L. Padovani. Contracts for mobile processes. In CONCUR 2009, number
5710 in LNCS, pages 211–228, 2009.

10. J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of Computation, 19(90):297–301, 1965.

11. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in
Theoretical Computer Science. CUP, 1989.

12. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL’08,
pages 273–284. ACM, 2008.

13. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in Java. In
ECOOP’08, volume 5142 of LNCS, pages 516–541, 2008.

14. F. T. Leighton. Introduction to parallel algorithms and architectures: arrays, trees, hypercubes.
Morgan Kaufmann, 1991.

15. P. Martin-Lőf. Infinite terms and a system of natural deduction. In Compositio Mathematica,
pages 93–103. Wolters-Noordhoof, 1972.

16. D. Mostrous, N. Yoshida, and K. Honda. Global principal typing in partially commutative
asynchronous sessions. In ESOP’09, volume 5502 of LNCS, pages 316–332. Springer, 2009.

17. N. Nelson. Primitive recursive functionals with dependent types. In MFPS, volume 598 of
LNCS, pages 125–143, 1991.

18. W. W. Tait. Infinitely long terms of transfinite type. In Formal Systems and Recursive Func-
tions, pages 177–185. North Holland, 1965.

19. Web Services Choreography Working Group. Choreography Description Language. http:
//www.w3.org/2002/ws/chor/.

20. H. Xi and F. Pfenning. Dependent types in practical programming. In POPL, pages 214–227,
1999.

15

A Syntax, typing rules and semantics
In this Appendix section, we give the elements of our syntax, type system and semantics
that were omitted in the main sections.

Evaluation contexts (Figure 10)
E[, . . . ,] ::= Evaluation contexts

| op Expression
| (P) Application
| ā[, . . . ,](y).P Request
| a[](y).P Accept
| s[]!〈 , 〉;P Send
| s[]⊕ 〈 , l〉;P Selection
| s[]?(, x);P Receive
| s[]&(, {lk : Pk}k∈K) Branching

Fig. 10. Evaluation contexts

Structural equivalence (Figure 11)
P | 0 ≡ P P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) (νrr′) P ≡ (νr′r) P

(νr) 0 ≡ 0 (νs) s : ∅ ≡ 0

(νr) P | Q ≡ (νr) (P | Q) if r /∈ fn(Q)

s : (q, p, z) · (q′, p′, z′) · h ≡ s : (q′, p′, z′) · (q, p, z) · h if p 6= p′ or q 6= q′

µX.P ≡ P{µX.P/X}

r ranges over a; s and z ranges over v, s[p] and l.
Fig. 11. Structural equivalence

Reduction rules (Figure 12)
(λi.P) n −→ P{n/i} [Beta]

P −→ P ′ ⇒ P e −→ P ′ e P −→ P ′ ⇒ (νr)P −→ (νr)P ′ [App,Scop]

P −→ P ′ ⇒ P | Q −→ P ′ | Q [Par]

P ≡ P ′ and P ′ −→ Q′ and Q ≡ Q′ ⇒ P −→ Q [Str]

e0 −→ e′0 ⇒ E [e0, . . . , ei] −→ E [e′0, . . . , ei] [Context]

Fig. 12. Reduction rules (2)

Judgements (Figure 13)

Kinding The definition of kinds is given in figure 14.
The kinding rules are defined in Figures 15, 16, 17, 18, 19, 20 and 21. We only explain

the global type kinding rules from Figure 19.
Rule bKIOc states that if both participants have nat-type, that the carried type U and

the rest of the global type G′ are kinded by Type, and that U does not contain any free
type variables, then the resulting type is well-formed. This prevents these types from being
dependent. The rule bKBRAc is similar, while rules bKREC,KTVARc are standard.

Dependent types are introduced when kinding recursors in bKRCRc and abstractions
in bKPIc. In bKRCRc, we need an updated index range for i in the premise Γ, i : I− `
G′ I Type since the index substitution uses the predecessor of i. We define I− using the
abbreviation [0..j] = {i :nat | i ≤ j}:

16

Γ ` Env well-formed environments
Γ ` κ well-formed kindings
Γ ` α I κ well-formed types
Γ ` α ≡ β type equivalence
Γ ` α ≈ β type isomorphism
Γ ` eB U expression
Γ ` pB Up participant
Γ ` P B τ processes

Fig. 13. Judgements (α, β, ... range over any types)

Up ::= nat |Πi :I.Up
κ ::= Πj : I.κ | Type | SType | PAType | LType | PType

Fig. 14. Kinds

[0..0]− = ∅ and [0..i]− = [0..i− 1]

Note that the second argument (λi :I−.λx.G′) is closed (i.e. it does not contain free type
variables).

We use bKAPPc for both index applications. Note that bKAPPc checks weather the
argument i satisfies the index set I . Other rules are similarly understood including those
for process types (noting ∆ is a well-formed environment if it only contains types T of
kind PType).

Γ ` Env
bKBASEc

Γ ` Type

Γ ` I Γ, i :I ` κ
bKSEQc

Γ ` Πi :I.κ
[KBase] works similarly for PAType,SType, LType,PType.

Fig. 15. Kind correctness

Type equivalence The rules are found in figures 22 and 23. We only define the rules for
G while the same set of rules can be applied to T and τ . Since the dependent abstraction
Πi : I.G is used many times in the examples and τ includes Πi : I.τ ′ in its syntax, we
include Πi :I.G in the definitions.

To check G1 ≡ G2, we use the following algorithm:

1. We first reduce each types to the weak head normal forms G′i = whnf(Gi) by
bWFBASEc.

2. Then we check G′1 ≡wf G
′
2.

(a) If G′i is not in the form of the application, then we check they are equal or not by
induction on the structures of types.

(b) If G′i = G′′i ii, since G′′i ii is in the weak head normal form (bWFAPPc), there are
two possibilities:

i. If G′′i is an either recursor or abstraction with ii is a variable: then we
check G′′1 and G′′2 are equal or not by induction on the structures of types
(bWFPROD,WFRECc); if it fails and in the case of the index is finite (I =
[0..n]), then we check they are mathematically equal or not in (bWFRECFc,
bWFRLc, bWFLRc and bWFLLc).

ii. If G′′i is an application, we check they are equal or not by induction, by
applying bWFAPPc again.

Typing rules (Figure 24). ∆ end only means ∀c ∈ dom(∆).∆(c) = end.

17

Γ ` G I Type ftv(G) = ∅
bKMARc

Γ ` 〈G〉 I SType
Γ ` Env

bKNATc
Γ ` nat I SType

Γ ` Env
bKBOOLc

Γ ` bool I SType

Fig. 16. Kinding rules for value types

Γ ` Env
bKPABASEc

Γ ` nat I PAType

Γ, i :I ` Up I κ
bKPABASEc

Γ ` Up I Πi :I.κ

Fig. 17. Kinding rules for principals

Γ ` Env
bENVNc

Γ ` nat

Γ, i :I |= P ∧ 0 ≤ i
bENVIc

Γ ` {i :I | P ∧ 0 ≤ i}

Fig. 18. Kinding for Index Sets

Γ ` pB nat, p′ B nat Γ ` G′ I Type Γ ` U I Type
bKIOc

Γ ` p→ p
′ : 〈U〉.G′ I Type

Γ ` pB nat, p′ B nat ∀k ∈ K, Γ ` Gk I Type
bKBRAc

Γ ` p→ p
′ : {lk : Gk}k∈K I Type

Γ ` G I κ{0/j} Γ, i : I− ` G′ I κ{i+ 1/j}
bKRCRc

Γ ` R G λi :I−.λx.G′ I Πj :I.κ

Γ ` G I Type
bKRECc

Γ ` µx.G I Type

Γ ` κ
bKVARc

Γ ` x I κ

Γ ` Env
bKENDc

Γ ` end I Type

Γ ` G I Πi :I.κ Γ |= i : I
bKAPPc

Γ ` G i I κ{i/i}

Fig. 19. Kinding rules for global types

18

Γ ` pB nat Γ ` T I LType Γ ` U I SType or LType
bKLOUTc

Γ `!〈p, U〉;T I LType

Γ ` pB nat Γ ` T I LType Γ ` U I SType or LType
bKLINc

Γ `?〈p, U〉;T I LType

Γ ` T I Πi :I.κ Γ |= i : I
bKLPROJc

Γ ` T i I κ{i/i}

Γ ` pB nat ∀k ∈ K,Γ ` Tk I LType
bKLSELc

Γ ` ⊕〈p, {lk : Tk}k∈K〉 I LType

Γ ` pB nat ∀k ∈ K,Γ ` Tk I LType
bKLBRANCHc

Γ ` &〈p, {lk : Tk}k∈K〉 I LType

Γ ` T I κ{0/j} Γ, i : I− ` T ′ I κ{i+ 1/j}
bKLRECSEQc

Γ ` R T λi :I−.λx.T ′ I Πj :I.κ

Γ ` κ
bKVARc

Γ ` x I κ

Γ ` T I LType
bKLRECc

Γ ` µt.T I LType

Γ ` Env
bKLTVARc

Γ ` end I LType

Fig. 20. Kinding rules for local types

Γ ` Env
bKPNULLc

Γ ` ∅ I PType

Γ ` ∆ I PType Γ ` T I LType
bKPCHANc

Γ ` ∆, c : T I PType

Γ, i : I ` τ I κ
bKPPRODc

Γ ` Πi :I.τ I Πi :I.κ

Fig. 21. Kinding rules for process types

19

Γ ` U1 ≡ U2 Γ ` G1 ≡ G2 Γ ` p→ p′ : 〈Ui〉.Gi I Type
bWFIOc

Γ ` p→ p
′ : 〈U1〉.G1 ≡wf Γ ` p→ p

′ : 〈U2〉.G2

∀k ∈ K. Γ ` G1k ≡ G2k Γ ` p→ q : {lk : Gjk}k∈K I Type (j = 1, 2)
bWFBRAc

Γ ` p→ q : {lk : G1k}k∈K ≡wf p→ q : {lk : G2k}k∈K

Γ ` G1 ≡ G2

bWFPRECc
Γ ` µx.G1 ≡wf µx.G2

Γ ` Env
bWFRVARc

Γ ` x ≡wf x

Γ ` Env
bWFENDc

Γ ` end ≡wf end

Γ, i :I ` G1 ≡ G2

bWFPRODc
Γ ` Πi :I.G1 ≡wf Πi :I.G2

Γ ` G1 ≡ G2 Γ, i :I ` G′1 ≡ G′2
bWFRECc

Γ ` R G1 λi :I.λx.G
′
1 ≡wf R G2 λi :I.λx.G

′
2

Γ ` G1 ≡wf G2 Γ |= i1 : I = i2 : I Γ ` Giii I κ (i = 1, 2)
bWFAPPc

Γ ` G1i1 ≡wf G2i2

Fig. 22. Global type weak head-normal form equivalence: Context rules

Γ ` whnf(G1) ≡wf whnf(G2)
bWFBASEc

Γ ` G1 ≡ G2

Γ ` R G1 λi :I.λx.G
′
1 n ≡ R G2 λi :I.λx.G

′
2 n Γ |= I = [0..m] 0 ≤ n ≤ m

bWFRECFc
Γ ` R G1 λi :I.λx.G

′
1 ≡wf R G2 λi :I.λx.G

′
2

Γ ` R G1 λi :I.λx.G
′
1 n ≡ Πi :I.G2 n Γ |= I = [0..m] 0 ≤ n ≤ m

bWFRLc
Γ ` R G0 λi :I.λx.G1 ≡wf Πi :I.G2

Γ ` R G1 λi :I.λx.G
′
1 n ≡ Πi :I.G2 n Γ |= I = [0..m] 0 ≤ n ≤ m

bWFLRc
Γ ` Πi :I.G2 ≡wf R G0 λi :I.λx.G1

Γ ` Πi :I.G1 n ≡ Πi :I.G2 n Γ |= I = [0..m] 0 ≤ n ≤ m
bWFLLc

Γ ` Πi :I.G1 ≡wf Πi :I.G2

Fig. 23. Global type weak head-normal form equivalence: Mathematical Induction rules

20

Γ, x : S ` P B∆, c : T
bTINc

Γ ` c?〈p, x〉;P B∆, c :?〈p, S〉;T

Γ ` P B∆, c : Tj j ∈ K
bTSELc

Γ ` c⊕ 〈p, lj〉;P B∆, c : ⊕〈p, {lk : Tk}k∈K〉

∀k ∈ K,Γ ` Pk B∆, c : Tk
bTBRAc

Γ ` c&〈p, {lk : Pk}k∈K〉B∆, c : &〈p, {lk : Tk}k∈K〉

Γ, a : U ` P B∆
bTNUc

Γ ` (νa)P B∆

Γ ` ∆ ∆ end only
bTNULLc

Γ ` 0B∆

Γ ` P B∆ Γ ` QB∆′
bTPARc

Γ ` P | QB∆,∆′

Fig. 24. Process typing (Part 2)

Subtyping and runtime typing rules Figure 25 presents the subtyping rules. Figure 26
presents the runtime typing rules omitted from the main sections. They are identical with
[5].

21

Γ ` T ≤ T ′
bTSUBOUTc

Γ `!〈p, U〉;T ≤!〈p, U〉;T ′
Γ ` T ≤ T ′

bTSUBINc
Γ `?〈p, U〉;T ≤?〈p, U〉;T ′

∀k ∈ K ⊆ J, Γ ` Tk ≤ T ′k
bTSSEL≤c

Γ ` ⊕〈p, {lk : Tk}k∈K〉 ≤ ⊕〈p, {lj : T ′j}j∈J〉

∀k ∈ J ⊆ K, Γ ` Tk ≤ T ′k
bTBRA≤c

Γ ` &〈p, {lk : Tk}k∈K〉 ≤ &〈p, {lj : T ′j}j∈J〉

Γ ` T1 ≤ T2 Γ, i : I ` T ′1 ≤ T ′2
bTSUBPRECc

Γ ` R T1 λi :I.λx.T
′
1 ≤ R T2 λi :I.λx.T

′
2

Γ ` T{µt.T/t} ≤ T ′
bTLSUBRECc

Γ ` µt.T ≤ T ′
Γ ` T ′ ≤ T{µt.T/t}

bTRSUBRECc
Γ ` T ′ ≤ µt.T

Γ ` T ≤ T ′ Γ |= i : I = i
′ : I
bTSUBPROJc

Γ ` T i ≤ T ′ i′

Γ ` Env
bTSUBENDc

Γ ` end ≤ end

Γ ` Env
bTSUBRVARc

Γ ` x ≤ x
Fig. 25. Subtyping

Γ ` P . ∆
bGINITc

Γ `∅ P . ∆

Γ `Σ P . ∆ ∆′end only
bWEAKc

Γ `Σ P . ∆ ∗∆′

Γ `Σ P . ∆ Γ `Σ′ Q . ∆′ Σ ∩Σ′ = ∅
bGPARc

Γ `Σ∪Σ′ P | Q . ∆ ∗∆′

Γ `Σ P . ∆ co(∆, s)
bGSRESc

Γ `Σ\s (νs)P . ∆ \ s

Γ, a : 〈G〉 `Σ P . ∆
bGNRESc

Γ `Σ (νa)P . ∆

Fig. 26. Run-time process typing

Γ ` Env
bQINITc

Γ `{s} s : ε . ∅

Γ `{s} s : h . ∆ Γ ` v : S
bQSENDc

Γ `{s} s : h · (q, p, v) . ∆; {s[q] : !〈p, S〉}

Γ `{s} s : h . ∆
bQDELEGc

Γ `{s} s : h · (q, p, s′[p′]) . ∆, s′[p′] : T ′; {s[q] : !〈p, T ′〉}

Γ `{s} s : h . ∆ j ∈ K
bQSELc

Γ `{s} s : h · (q, p, lj) . ∆; {s[q] : ⊕〈p, {lk : Tk}k∈K〉}

Fig. 27. Queue typing

22

B Ring and mesh communication patterns
We present some programming examples of global types which make use of typical com-
munication patterns that can be found in classical parallel algorithms textbooks.

(a) Ring pattern

0 // 1 // . . . // ncc

Πn : I.

(R W[n]→ W[0] : 〈U〉.end

λi.λx.W[n− i− 1]→ W[n− i] : 〈U〉.x
n)

(b) Mesh pattern
//

��

//

��
. . . //

��//

��

//

��

. . . //

��
:

��

:

��

. . . :

��// // . . . //

Πn.Πm.

(R

(R end λk.λz.W[0][k + 1]→ W[0][k] : 〈nat〉.z m)

λi.λx.

(R (W[i+ 1][0]→ W[i][0] : 〈nat〉.x)

λj.λy.

W[i+ 1][j + 1]→ W[i][j + 1] : 〈nat〉.
W[i+ 1][j + 1]→ W[i+ 1][j] : 〈nat〉.y

m)

n)

Ring The ring pattern consists of n + 1 workers (named by W) that each has exactly
two neighbours: the worker W[i] communicates with the worker W[i − 1] and W[i + 1]
(1 ≤ i ≤ n − 1), with the exception of W[0] and W[n] who share a direct link. The non-
uniformity of linking between the workers in the ring gives three distinct roles: Starter,
represented by W[0], Middle, represented by W[i] for 1 ≤ i ≤ n− 1, and Last, represented
by W[n]. The type specifies that the first message is sent by W[0] to W[1], and the last one is
sent from W[n] back to W[0]. To ensure the presence of all three roles in the workers of this
topology, the parameter domain is set to n ≥ 2. The process that generates all the roles
using a recursor is as follows:

Πn.(R ā[W[0], ..., W[n]](y).y!〈W[1], v〉; y?(W[n], z);P

a[W[n]](y).y?(W[n− 1], z); y!〈W[0], z〉;Q
λi.λX.(a[W[i+ 1]](y).y?(W[i], z); y!〈W[i+ 2], z〉; |X) n− 1)

Mesh The session from figure 2(c) describes communication over a two dimensional
mesh pattern. The participants in the first and last rows and columns, except the corners
which have two neighbors, have three neighbors. The other participants have four neigh-
bors. The roles of the mesh are defined by the communication behavior of each participant
and by the links the participants have with their neighbors. From the figure, it is easy to
identify the nine roles present in the pattern. Our session takes two parameters n and m
which represent the number of rows and the number of columns. Then we have two itera-
tors that repeat W[i+1][j+1]→ W[i][j+1] : 〈nat〉 and W[i+1][j+1]→ W[i+1][j] : 〈nat〉

23

for all i and j. These two messages specify the fact that each worker not situated on the
last row or last column sends a message to his neighbors situated below and on its right.
The types W[i+1][0]→ W[i][0] : 〈nat〉 and R end λk.λz.W[0][k+1]→ W[0][k] : 〈nat〉.z m
deal with, respectively, the last column and the last row. Variants of this pattern include
toric meshes and hypercubes. To ensure the presence of all three roles in the workers of
this topology, the parameter domain is set to n,m ≥ 2.

The process that implements a parameterised mesh communication pattern is defined
as follows. The processes having as second name “middle” define the elements in the
middle of rows and columns, which place is defined by the first name.

Pstart(n,m) = ā[W[n][m], ..., W[0][0]](y).y!〈W[n− 1][m], f(n− 1,m)〉;
y!〈W[n][m− 1], f(n,m− 1)〉; 0

Ptop right corner(n) = a[W[n][0]](y).y?(W[n][1], z); y!〈W[n− 1][0], f(n− 1, 0)〉; 0
Pbottom left corner(m) = a[W[0][m]](y).y?(W[1][m], z); y!〈W[0][m− 1], f(0,m− 1)〉; 0
Pbottom right corner(m) = a[W[0][0]](y).y?(W[1][0], z1); y?(W[0][1], z2); 0

Ptop middle(n, k) = a[W[n][k + 1]](y).y?(W[n][k + 2], z1);
y!〈W[n− 1][k + 1], f(n− 1, k + 1)〉; y!〈W[n][k], f(n, k)〉; 0

Pbottom middle(k) = a[W[0][k + 1]](y).y?(W[1][k + 1], z1); y?(W[0][k + 2], z2);
y!〈W[0][k], f(0, k)〉; 0

Pleft middle(m, i) = a[W[i+ 1][m]](y).y?(W[i+ 2][m], z1); y!〈W[i][m], f(i,m)〉;
y!〈W[i+ 1][m− 1], f(i+ 1,m− 1)〉;

Pright middle(i) = a[W[i+ 1][0]](y).y?(W[i+ 2][0], z1); y?(W[i+ 1][1], z2);
y!〈W[i][0], f(i, 0)〉; 0

Pcenter(i, j) = a[W[i+ 1][j + 1]](y).y?(W[i+ 2][j + 1], z1); y?(W[i+ 1][j + 2], z2);
y!〈W[i][j + 1], f(i, j + 1)〉; y!〈W[i+ 1][j], f(i+ 1, j)〉; 0

Πn.Πm.(R (R Pstart(n,m)|Pbottom right corner(m)|Ptop right corner(n)|Pbottom left corner(m))
λk.λZ.(Ptop row(n, k)|Pbottom middle(k)|Z)

m− 1)
λi.λX.(R Pleft middle(m, i)|Pright middle(i)|X

λj.λY.(Pcenter(i, j)|Y)
m− 1)

n− 1)

B.1 Typing

Ring pattern - figure 2(a) The typing of the ring pattern is similar to the one of sequence.
The general generator of this pattern is

R (W[n]→ W[0] : 〈nat〉.end) � p
λi.λx.if p = W[n− i− 1] then !〈W[n− i], nat〉; x

elseif p = W[n− i] then ?〈W[n− i− 1], nat〉; x
elseif x n

and

24

the user would design the end-point type as follows:

if p = W[0] then !〈W[1], nat〉; ?〈W[n], nat〉;
elseif p = W[n] then ?〈W[n− 1], nat〉; !〈W[0], nat〉;
elseif 1 ≤ i+ 1 ≤ n− 1 and p = W[i+ 1]

then ?〈W[i], nat〉;!〈W[i+ 2], nat〉;

The first case denotes the protocol of the initiator; the second one corresponds to the last
worker, while the third one to one of the middle workers.

The type equality is the same as the sequence: proved by the case analysis by the
induction of the recursor using the inductive rules in a version of the end-point types
following in figure 23 (bWFBASE,WFLL,WFRECFc), combining the β-reductions over two
end-point types.

From these types, the ring processes are straightforwardly typable using R.
Let us define:

P0 = ā[W[0], .., W[n]](y).y!〈W[1], v〉; y?(W[n], z);P
Pn = a[W[n]](y).y?(W[n− 1], z); y!〈W[0], z〉;Q
Pi+1 = a[W[i+ 1]](y).y?(W[i], z); y!〈W[i+ 2], z〉; 1 ≤ i+ 1 ≤ n− 1

Assume
∅ ` P B∆0

By bTOUT, TINc, we have:

a : 〈G〉 ` y!〈W[1], v〉; y?(W[n], z);P B∆n, y : G � p0

where G � p0 is obtained from the role type above. Hence, by bTINITc, noting p0 = W[0],

a : 〈G〉 ` P0 B∆0

Similarly, using bTACCc with pn = W[n], we have:

a : 〈G〉 ` Pn B∆n

Hence we have
a : 〈G〉 ` P0 | Pn B∆

with ∆ = ∆0, ∆n. Similarly, we can type:

a : 〈G〉, i : I−, 1 ≤ i+ 1 ` Pi+1 B ∅

with I = [0..n− 1]. Also we have:

a : 〈G〉, i : I−, X : τ{i/j} ` X B τ{i+ 1/j}

where τ{i/j} = ∆ for all i. Hence by strengthing and bTPARc, we have:

a : 〈G〉, i : I−, X : τ{i/j} ` Pi+1|X B τ{i+ 1/j}

Hence applying bTPRECc, we can type the ring process as:

a : 〈G〉 ` Pring B∆

as required.

25

Mesh pattern - figure 2(b) The highlight of this example is a type-equality between
the general end-point generator and a role-based end-point type (called role-types). The
role-type groups the participants who inhabit in the same parameterised protocol as a
single role. We observe the mesh pattern consists of the nine roles (when n,m ≥ 2). The
participants in the first and last rows and columns, except the corners which have two
neighbors, have three neighbors. The other participants have four neighbors. The roles of
the mesh are defined by the communication behavior of each participant and by the links
the participants have with their neighbors. The transformation starts from the general
generator of this topology given below.

R (R end � p λk.λz.if p = W[0][k + 1] then !〈W[0][k], nat〉; z
elseif p = W[0][k] then ?〈W[0][k + 1], nat〉; z
else z)m

λi.λx.
(R (if p = W[i+ 1][0] then !〈W[i][0], nat〉; x

elseif p = W[i][0] then ?〈W[i+ 1][0], nat〉; x
else x)

λj.λy.
if p = W[i+ 1][j + 1] then !〈W[i][j + 1], nat〉;

if p = W[i+ 1][j + 1] then !〈W[i+ 1][j], nat〉; y
elseif p = W[i+ 1][j] then ?〈W[i+ 1][j + 1], nat〉; y
else y

elseif p = W[i][j + 1] then ?〈W[i+ 1][j + 1], nat〉; y
if p = W[i+ 1][j + 1] then !〈W[i+ 1][j], nat〉; y
elseif p = W[i+ 1][j] then ?〈W[i+ 1][j + 1], nat〉; y
else y

elseif p = W[i+ 1][j + 1] then !〈W[i+ 1][j], nat〉; y
elseif p = W[i+ 1][j] then ?〈W[i+ 1][j + 1], nat〉; y
else y

m)
n

From the figure 2(b), the user would design the end-point type as follows:

if p = W[n][m] then !〈W[n− 1][m], nat〉; !〈W[n][m− 1], nat〉;
elseif p = W[n][0] then ?〈W[n][1], nat〉; !〈W[n− 1][0], nat〉;
elseif p = W[0][m] then ?〈W[1][m], nat〉; !〈W[0][m− 1], nat〉;
elseif p = W[0][0] then ?〈W[1][0], nat〉; ?〈W[0][1], nat〉;
elseif 1 ≤ k + 1 ≤ m− 1 and p = W[n][k + 1]

then ?〈W[n][k + 2], nat〉; !〈W[n− 1][k + 1], nat〉; !〈W[n][k], nat〉;
elseif 1 ≤ k + 1 ≤ m− 1 and p = W[0][k + 1]

then ?〈W[1][k + 1], nat〉; ?〈W[0][k + 2], nat〉; !〈W[0][k], nat〉;
elseif 1 ≤ i+ 1 ≤ n− 1 and p = W[i+ 1][m]

then ?〈W[i+ 2][m], nat〉; !〈W[i][m], nat〉; !〈W[i+ 1][m− 1], nat〉;
elseif 1 ≤ i+ 1 ≤ n− 1 and p = W[i+ 1][0]

then ?〈W[i+ 2][0], nat〉; ?〈W[i+ 1][1], nat〉; !〈W[i][0], nat〉;
elseif 1 ≤ i+ 1 ≤ n− 1 and 1 ≤ j + 1 ≤ m− 1 and p = W[i+ 1][j + 1]

then ?〈W[i+ 2][j + 1], nat〉; ?〈W[i+ 1][j + 2], nat〉; !〈W[i][j + 1], nat〉; !〈W[i+ 1][j], nat〉;

Each case denotes a role in the mesh pattern. Role names are given in process defini-
tion. We will present the typing of the two roles left-top-corner and bottom-row to give
an idea of how our system types the mesh pattern. The other cases are left to the reader.

26

Let T [p][n][m] for the first original type and T ′[p][n][m] for the second role type. We
can check for all n,m ≥ 2 and p, we have:

(
∏
n.

∏
m.T [p][n][m])nm −→∗ Tn,m 6−→ iff

(
∏
n.

∏
m.T ′[p][n][m])nm −→∗ Tn,m 6−→.

For p = W[n][m], which implements the left top corner role, the generator type reduces
to one step and gives the end-point type !〈W[n− 1][m],nat〉; !〈W[n][m− 1],nat〉;, which is
the same to the one returned by the case analysis of the role-type built by the programmer.
For p = W[0][k + 1], we analyze the case when n = 2 and m = 2, where 1 ≤ k +
1 ≤ m− 1. The generator type returns the end-point type ?〈W[1][k + 2],nat〉; ?〈W[0][k +
2],nat〉; !〈W[0][k],nat〉; where the first action comes from the case in line number 13, the
second action comes from the case in line 2 and the third action comes from case in line 1.
One can observe that the end-point type returned for p = W[0][k+1] in the role-type of the
programmer is the same as the one returned by the generator. Similarly for all the other
cases. Note that for all n,m, the β-reduction terminates, so that the equality checking
terminates.

By bTOUT, TINc, we have:

a : 〈G〉 ` y!〈W[n−1][m], f(n−1,m)〉; y!〈W[n][m−1], f(n,m−1)〉; 0B∆, y : G � pstart

a : 〈G〉 ` y?(W[1][k+1], z1); y?(W[0][k+2], z2); y!〈W[0][k], f(0, k)〉; 0B∆′, y : G � pbottom row

where G � p is obtained from the role type above.
The primitive recursive process is typed similarly as for the one of the sequence pat-

tern.

C Proofs of the lemmas and theorems
C.1 Basic properties
We prove here a series of consistency lemmas concerning permutations and weakening
of judgements follow. They are invariably deduced by induction on the derivations in the
standard manner.

We use the following additional notations: Γ ⊆ Γ ′ iff u : S ∈ Γ implies u : S ∈ Γ ′
and similarly for other mappings. In other words, Γ ⊆ Γ ′ means that Γ ′ is a permutation
of an extension of Γ .

Lemma C.1 1. (Permutation and Weakening) Suppose Γ ⊆ Γ ′ and Γ ′ ` Env. Then
Γ ` J implies Γ ′ ` J .

2. (Strengthening) Γ, u : U, Γ ′ ` J and u 6∈ fv(Γ ′, J) ∪ fn(Γ ′, J). Then Γ, Γ ′ ` J .
Similarly for other mapping.

3. (Agreement)
(a) Γ ` J implies Γ ` Env.
(b) Γ ` G I κ implies Γ ` κ. Similarly for other judgements.
(c) Γ ` G ≡ G′ implies Γ ` G I κ. Similarly for other judgements.
(d) Γ ` P B τ implies Γ ` τ I κ. Similarly for other judgements.

4. (Exchange)
(a) Γ, u : U, Γ ′ ` J and Γ ` U ≡ U ′. Then Γ, u : U ′, Γ ′ ` J . Similarly for other

mappings.

27

(b) Γ, i :I, Γ ′ ` J and Γ |= i :I = i :I ′. Then Γ, i :I ′, Γ ′ ` J .
(c) Γ, P, Γ ′ ` J and Γ |= P = P′. Then Γ, P′, Γ ′ ` J .

The next lemma will be important in the proof of Subject Reduction. The following lemma
which states that well-typedness is preserved by substitution of appropriate values for
variables, is the key result underlying Subject Reduction. This also guarantees that the
substitution for the index which affects to a shared environment and a type of a term, and
the substitution for a process variable are always well-defined.

Lemma C.2 (Substitution Lemma) 1. If Γ, i : I, Γ ′ ` J and Γ |= n : I , then Γ, (Γ ′{n/i}) `
J{n/i}.

2. If Γ,X : ∆0 ` P . τ and Γ ` Q : ∆0, then Γ ` P{Q/X} . τ .
3. If Γ, x : S ` P . ∆ and Γ ` v : S, then Γ ` P{v/x} . ∆.
4. If Γ ` P . ∆, y : T , then Γ ` P{s[p̂]/y} . ∆, s[p̂] : T .

Note that substitutions may change session types and environments in the index case. The
application of (1) to process judgements is especially useful for the Subject Reduction
Theorem: if Γ, i : I, Γ ′ ` P . τ and Γ ` n . nat with Γ |= n : I , then Γ, (Γ ′{n/i}) `
P{n/i} . τ{n/i}.

C.2 Proofs for Propositions, Lemmas and Theorems in the main sections
Proposition C.3 (Termination and Confluence) (restatement of 3.1) The head relation
−→ on global and end-point types (i.e.G −→ G′ and T −→ T ′ for closed types in Figure
2) are strong normalising and confluent on well-formed kindings. Similarly the relation
−→ on global and end-point types (i.e. G −→ G′ and T −→ T ′ for open types which
reduce under recursive prefixes, abstractions and recursors) are strong normalising and
confluent on well-formed kindings.

Proof. By strong normalisation of System T [11]. For the confluence, we first prove that
the relation −→ is locally confluent, i.e. if G −→ Gi (i = 1, 2) then Gi −→∗ G′. Then
we achieve the result by Newman’s Lemma. �

Proposition C.4 (Termination for Type-Equality Checking) (cf. 3.2) Assuming that prov-
ing the judgements Γ |= J appearing in type equality derivations is decidable (e.g. in
bKPROJc), then type-equality checking of Γ ` α ≡ β terminates.

To prove termination of the second equality requires a careful analysis since the
premises of the mathematical induction rules compare the two types whose sizes are lager
than those of the conclusions. These rules correspond to the contextual congruence. The
size of the judgements are carefully defined using the following four functions (figures 28
and 29).

1. |G| is the size of (the structure of) G
2. µ◦(G) is the number of the head reductions from G.
3. µ(G) is the number of the head reductions from G and its subterms.
4. µ?(G) is the maximum number of the head reductions from G and its subterms.

This includes the mathematical induction case where the dependent applications with
variables as the arguments.

The termination then is proved by the following lemma.

28

Judgements w(Γ ` G1 ≡wf G2) = ω · µ(G1) + ω · µ(G2) + |G1|+ |G2|+ 1

w(Γ ` G1 ≡ G2) = w(Γ ` G1 ≡wf G2) + 1

Types

Value |bool| = nat = 1, |〈G〉| = |G|+ 1

Global |p→ p′ : 〈U〉.G| = 2 + |U |+ |G|, |p→ p′ : {lk : Gk}k∈K | = 2 +Σk∈K(1 + |Gk|)
|µt.G| = |G|+ 1, |t| = |x| = |end| = 1

|Πi :I.G| = 1 + |G|, |G i| = |G|+ 1

|R G λi :I.λx.G′| = 4 + |G|+ |G′|
Local |!〈p, U〉;T | = 3 + |U |+ |T |, |?〈p, U〉;T | = 3 + |U |+ |T |

| ⊕ 〈p, {lk : Tk}k∈K〉| = |&〈p, {lk : Tk}k∈K〉| = 2 +Σk∈K(1 + |Tk|)
|µt.T | = |T |+ 1, |t| = |x| = |end| = 1

|Πi :I.T | = 1 + |T |, |T i| = |T |+ 1

|R T λi :I.λx.T ′| = 4 + |T |+ |T ′|
Principals |Πi :I.Up| = 1 + |Up|
Processes |∅| = 0, |∆, c :T | = |∆|+ |T |+ 1

|Πi :I.τ | = 1 + |τ |, |τ i| = 1 + |τ |

Fig. 28. Size of types and judgements

µ(p→ p′ : 〈U〉.G) = µ(U) + µ(G), µ(p→ p′ : {lk : Gk}k∈K) = Σk∈Kµ(Gk)

µ(µt.G) = µ(G), µ(t) = µ(x) = µ(end) = 0

µ(Πi :I.G) = µ(G)

µ(R G λi :I.λx.G′) = µ(G) + µ(G′)

µ(G m) = µ◦(G m) + µ(whnf(G m))

µ(G i) = µ?(G)

µ?(Πi :I.G) = Σ0≤j≤n+1 (µ(G j) + 1) + 1 (I = [0..n])

µ?(Πi :I.G) = µ(Πi :I.G) (I = nat)
µ?(R G λi :I.λx.G′) = Σ0≤j≤n+1 (µ(R G λi :I.λx.G′j) + 1) + 1 (I = [0..n])

µ?(R G λi :I.λx.G′) = µ(R G λi :I.λx.G′) (I = nat)
µ◦(G) = n if G −→n G′ 6−→

Fig. 29. Number of reductions

29

Lemma C.5 (Size of Equality Judgements) The weight of any premise of a rule is al-
ways less than the weight of the conclusion.

We argue by induction of the length of reduction sequences and the size of terms. This is
obvious for the rules in figure 22. The rule bWFBASEc is by definition. Other rules use the
definition of µ? directly.

Lemma C.6 (Soundness of mergeability) (restatement of 3.4) Suppose G1 � p ./ G2 �
p and Γ ` Gi. Then there exists G such that G � p = u{T | T ≤ Gi � p (i = 1, 2)}
where u denotes the maximum element with respect to ≤.

Proof. The only interesting case is G1 � p and G2 � p take a form of the branching
type. Suppose G1 = p′ → p : {li : G′i}i∈I and G2 = p′ → p : {lj : G′′j}j∈J with
G1 � p ./ G2 � p. Let G′i � p = Ti and G′′j � p = T ′j . Then by the definition of ./ in
§ 3.1, we have G1 � p = &〈p′, {li : Ti}i∈I〉 and G2 � p = &〈p′, {lj : T ′j}j∈J〉 with
∀i ∈ (I ∩ J).Ti ./ T ′j ∀i ∈ (I \ J) ∪ (J \ I).li 6= lj . By the assumption and inductive
hypothesis on Ti ./ T ′j , we can set

T = &〈p′, {lk : T ′′k }k∈K〉

such that K = I ∪ J ; and (1) if k ∈ I ∩ J , then T ′′k = Tk u T ′k; (2) if k ∈ I, k 6∈ J , then
T ′′k = Tk; and (3) if k ∈ J, k 6∈ I , then T ′′k = T ′k. Set G0k � p = T ′′k . Then we can obtain

G = p′ → p : {kk : G0k}k∈K

which satisfies G � p = u{T | T ≤ Gi � p (i = 1, 2)}, as desired. ut

Theorem C.7 (Subject Congruence and Reduction) (cf 3.5)

– If Γ ` P . ∆ and P ≡ P ′, then Γ ` P ′ . ∆.
– If Γ ` P . τ and P −→∗ P ′, then Γ ` P ′ . τ ′ for some τ ′ such that τ ⇒∗ τ ′.

Proof. We only list the crucial cases of the proof of subject reduction: the recursor (where
mathematical induction is required) and the initialisation. Our proof works by induction
on the length of the derivation P −→∗ P ′. The base case is trivial. We then proceed by
a case analysis on the reduction P −→ P ′. We omit the hat from principal values for
readability.
Case ZeroR: Trivial.
Case SuccR: Suppose Γ ` R P λi.λX.Q n + 1 . τ and R P λi.λX.Q n + 1 −→
P{n/i}{R P λi.λX.Q n/X}. Then there exists τ ′ such that

Γ, i : I−, X : τ{i/j} ` QB τ ′{i+ 1/j} (3)
Γ ` P . τ ′{0/i} (4)

Γ ` Πj :I.τ I Πj :I.κ (5)

with τ ≡ (Πi : I.τ ′)n + 1 ≡ τ ′{n + 1/i} and Γ |=n + 1 : I . By Substitution Lemma
(Lemma C.2 (1)), noting Γ |=n : I−, we have: Γ,X : τ{i/j}{n/i} ` Q{n/i} B τ ′{i +
1/j}{n/i}, which means that

Γ,X : τ{n/j} ` Q{n/i}B τ ′{n + 1/j} (6)

30

Then there are two cases.
Base Case n = 0: By applying Substitution Lemma (Lemma C.2 (2)) to (6) with (4), we
have Γ ` Q{1/i}{P/X}B τ ′{1/j}.
Inductive Case n ≥ 1: By the inductive hypothesis on n, we assume: Γ ` RP λi.λX.Q n.
τ ′{n/j}. Then by applying Substitution Lemma (Lemma C.2) to (6) with this hypothesis,
we obtain Γ ` Q{n/i}{R P λi.λX.Q n/X}B τ ′{n + 1/j}.

Case [Init]

ā[p0, .., pn](y).P −→ (νs)(P{s[p0]/y} | s : ε | ā[p1] : s | ... | ā[pn] : s)

We assume that Γ `∅ ā[p0, .., pn](y).P . ∆. Inversion of bTINITc and bTSUBc gives that
∆′ ≤ ∆ and:

∀i 6= 0, Γ ` pi B nat (7)
Γ ` a : 〈G〉 (8)
Γ |= pid(G) = {p0..pn} (9)
Γ ` P B∆′, y : G � p0 (10)

From (10) and Lemma C.2 (4), Γ ` P{s[p0]/y} . ∆, s[p0] : G � p0 (11)
From Lemma C.1 (3a) and bQINITc, Γ `s s : ε . ∅ (12)

From (7), (8), (9) and bTREQc, ∀i 6= 0, Γ ` ā[pi] : sB s[pi] : G � pi (13)

Then bTPARc on (11), (12) and (13) gives:

Γ ` P{s[p0]/y} | ā[p1] : s | ... | ā[pn] : sB∆′, s[p0] : G � p0, ..., s[pn] : G � pn

From bGINITc and bGPARc, we have:

Γ `s P{s[p0]/y} | ā[p1] : s | ... | ā[pn] : s | s : εB∆′, s[p0] : G � p0, ..., s[pn] : G � pn

From Lemma 3.4 we know that co((s[p0] : G � p0, ..., s[pn] : G � pn), s). We can then
use bGSRESc to get:

Γ `∅ (νs)(P{s[p0]/y} | ā[p1] : s | ... | ā[pn] : s | s : ε)B∆′

We conclude from bTSUBc.
Case [Join]

ā[p] : s | a[p](y).P −→ P{s[p]/y}
We assume that Γ ` ā[p] : s | a[p](y).P B∆. Inversion of bTPARc and bTSUBc gives that
∆ = ∆′, s[p] : T and :

Γ ` ā[p] : sB s[p] : G � p (14)
T ≥ G � p (15)
Γ ` u[p](y).P B∆′ (16)

By inversion of bTACCc from (16) Γ ` P B∆′, y : G � p (17)
From (17) and Lemma C.2 (4), Γ ` P{s[p]/y} . ∆′, s[p] : G � p (18)

We conclude by bTSUBc from (18) and (15).

The proof of the progress is a corollary from this theorem. The detailed definitions
(simple and well-linked) can be found in a full version of [12].

31

D The Fast Fourier Transform algorithm and proofs of Theorem 3.7
We first give more detailed explanations of the FFT algorithm, its global type and end-
point processes in the FFT example in § 2.4. Then we prove Theorem 3.7 – the processes
are typable against the given global type. Their termination (i.e. deadlock-freedom) is
then obtained as a corollary.

D.1 More on the FFT
We start by a quick reminder of the discrete fourier transform definition, followed by the
description of an FFT algorithm that implements it over a butterfly network. We then give
the corresponding global session type. From the diagram in (b) and the session type from
(c), it is finally straightforward to implement the FFT as simple interacting processes.
The Discrete Fourier Transform The goal of the FFT is to compute the Discrete Fourier
Transform (DFT) of a vector of complex numbers. Assume the input consists in N com-
plex numbers ~x = x0, . . . , xN−1 that can be interpreted as the coefficients of a poly-
nomial f(y) =

∑N−1
j=0 xj y

j . The DFT transforms ~x in a vector ~X = X0, . . . , XN−1

defined by
Xk = f(ωkN)

with ωkN = eı
2kπ
N a primitive root of unity. The DFT can be seen as a polynomial interpo-

lation on the primitive roots of unity or as the application of the square matrix (ωijN)i,j to
the vector ~x.
FFT and the butterfly network We present here the radix-2 variant of the Cooley-Tukey
FFT algorithm [10]. Assuming that N is a power of 2, this FFT algorithm uses a divide-
and-conquer strategy based on the following equation (we use the fact that ω2k

N = ωkN/2):

Xk =
∑N−1
j=0 xj ω

jk
N

=
∑N/2−1
j=0 x2j ω

jk
N/2 + ωkN

∑N/2−1
j=0 x2j+1 ω

jk
N/2

Each of the two separate sums are DFT of half of the original vector members, separated
into even and odd indices. Recursive calls can then divide the input set further based on
the value of the next binary bits. The good complexity of this FFT algorithm comes from
the lower periodicity of ωN/2: we have ωjkN/2 = ω

j(k−N/2)
N/2 and thus computations of Xk

and Xk−N/2 only differ by the multiplicative factor affecting one of the two recursive
calls. Figure 5(a) illustrates this recursive principle, called butterfly, where two different
outputs can be computed in constant time from the results of the same two recursive calls.

The complete algorithm is illustrated by the diagram from figure 5(b). It features the
application of the FFT on a network of N = 23 = 8 machines computing the DFT of
vector x0, . . . , x7. Each row represents a single machine at each step of the algorithm.
Each edge represents a value sent to another machine. The dotted edges represent the
particular messages that a machine sends to itself to remember a value for the next step.
When reading the diagram from right to left, each step consists in merging the results from
half of the inputs, following in this the butterfly pattern: each machine is successively
involved in a butterfly with a machine whose number differs by only one bit. Note that the
recursive partition over the value of a different bit at each step requires a particular bit-
reversed ordering of the input vector: the machine number p initially receives xp where p
denotes the bit-reversal of p.

This parallel version of the FFT algorithm gives an excellent O(N) speedup on a
butterfly network of N machines when applied on a vector of size N . It has also the

32

advantage of being able to compute the DFT inverse by just changing the multiplication
factors of each butterfly. Finally, this algorithm can be implemented easily on common
network topologies such as the hypercube.

Global Types Figure 5(c) gives the global session type corresponding to the execution
of the FFT. The size of the network is specified by the index parameter n: for a given
n, 2n machines compute the DFT of a vector of size 2n. The first iteration concerns
the initialisation: each of the machines sends the xp value to themselves. Then we have
an iteration over variable l for the n successive steps of the algorithm. The iterators over
variables i, j work in a more complex way: at each step, the algorithm applies the butterfly
pattern between pairs of machines whose numbers differ by only one bit (at step l, bit
number n − l is concerned). Iterators over variables i and j thus generate all the values
of the other bits: for each l, i ∗ 2n−l + j and i ∗ 2n−l + 2n−l−1 + j range over all pairs
of integers from 2n − 1 to 0 that differ on the (n − l)th bit. The four repeated messages
within the loops then correspond exactly to the four edges of the butterfly pattern.

Processes The processes that are run on each machine to execute the FFT algorithm are
presented in figure 5(d). When p is the machine number, xp the initial value, and y the
session channel, the machine starts by sending xp to itself: y!〈xp〉;. The main loop cor-
responds to the iteration over the n steps of the algorithm. At step l, each machine is
involved in a butterfly corresponding to bit number n − l, i.e. whose number differs on
the (n− l)th bit. In the process, we thus distinguish the two cases corresponding to each
value of the (n − l)th bit (test on bitn−l(p)). In the two branches, we receive the pre-
viously computed value y?(x); .., then we send to and receive from the other machine
(of number p + 2n−l−1 or p − 2n−l−1, i.e. whose (n − l)th bit was flipped). We finally
compute the new value and send it to ourselves: respectively by y!〈x + z ω

g(l,p)
N 〉;X or

y!〈z + xω
g(l,p)
N 〉;X . Note that the two branches do not present the same order of send

and receive as the global session type specifies that the diagonal up arrow of the butterfly
comes first. At the end of the algorithm, the calculated values are sent to some external
channels: rp!〈0, x〉.

We show our static type-checking can guarantee communication-safety and deadlock-
freedom for a whole group of N -processes over this complex butterfly topology.

D.2 Proofs of Theorem 3.7

We assume index n to be a parameter as in figure 5. The main loop is an iteration over
the n steps of the algorithm. Forgetting for now the content of the main loop, the generic
projection for machine p has the following skeleton:
Πn.(R (R end λl.λx.(. . .) n)
λk.λu.

if p = k then !〈k, U〉; ?〈k, U〉; u else u)
2n

A simple induction gives us the equivalent type:
Πn.!〈p, U〉; ?〈p, U〉; (R end λl.λx.(. . .) n) 2n

We now consider the inner loops. The generic projection gives:

33

. . .
(R x λi.λy.

(R y λj.λz.

if p = i ∗ 2n−l + 2n−l−1 + j = i ∗ 2n−l + j then . . .

else if p = i ∗ 2n−l + 2n−l−1 + j then !〈i ∗ 2n−l + j, U〉; . . .
else if p = i ∗ 2n−l + j then ?〈i ∗ 2n−l + 2n−l−1 + j, U〉; . . .
else if . . . then . . . else . . .

) 2n−l−1

) 2l

. . .

An induction over p and some simple arithmetic over binary numbers gives us the only
two branches that can be taken:
. . .
if bitn−l(p) = 0

then ?〈p + 2n−l−1, U〉; !〈p + 2n−l−1, U〉; !〈p, U〉; ?〈p, U〉; x
else !〈p− 2n−l−1, U〉; ?〈p− 2n−l−1, U〉; !〈p, U〉; ?〈p, U〉; x
. . .

The first branch corresponds to the upper part of the butterfly while the second one corre-
sponds to the lower part. For programming reasons (as seen in the processes, the natural
implementation include sending a first initialisation message with the xk value), we want
to shift the self-receive ?〈p, U〉; from the initialisation to the beginning of the loop iter-
ation at the price of adding the last self-receive to the end: ?〈p, U〉; end. The resulting
equivalent type up to ≡ is:

Πn.!〈p, U〉;
(R ?〈p, U〉; end λl.λx.
if bitn−l(p) = 0

then ?〈p, U〉; ?〈p + 2n−l−1, U〉; !〈p + 2n−l−1, U〉; !〈p, U〉; x
else ?〈p, U〉; !〈p− 2n−l−1, U〉; ?〈p− 2n−l−1, U〉; !〈p, U〉; x) n

From this end-point type, it is straightforward to type and implement the processes defined
in figure 5(d) in § 2.4.

34

