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Abstract. A multiparty session forms a unit of structured interactions among
many participants which follow a prescribed scenario specified as a global type
signature. This paper develops, besides a more traditionalcommunicationtype
system, a novel staticinteractiontype system for global progress in dynamically
interleaved multiparty sessions.

1 Introduction

Widespread use of message-based communication for developing network applications
to combine numerous distributed services has provoked urgent interest in structuring
series of interactions to specify and implement program communication-safe software.
The actual development of such applications still leaves tothe programmer much of
the responsibility in guaranteeing that communication will evolve as agreed by all the
involved distributed peers.Multiparty session type disciplineproposed in [12] offers a
type-theoretic framework to validate a message-exchange among concurrently running
multiple peers in the distributed environment, generalising the existing binary session
types [10, 11]; interaction sequences are abstracted as a global type signature, which
precisely declares how multiple peers communicate and synchronise with each other.

The multiparty sessions aim to retain the powerful dynamic features from the origi-
nal binary sessions, incorporating features such as recursion and choice of interactions.
Among features,session delegationis a key operation which permits to rely on other
parties for completing specific tasks transparently in a type safe manner. When this
mechanism is extended to multiparty interactions engaged in two or more specifica-
tions simultaneously, further complex interactions can bemodelled. Each multiparty
session following a distinct global type can be dynamicallyinterleavedby other ses-
sions at runtime either implicitly via communications belonging to different sessions or
explicitly via session delegation.

Previous work on multiparty session types [12] has provideda limited progress
property ensured only within a single session, ignoring this dynamic nature. More pre-
cisely, although the previous system assures that the multiple participants respect the
protocol, by checking the types of exchanged messages and the order of communica-
tions in a single session, it cannot guarantee aglobal progress, i.e, that a protocol which

⋆ The work is partially supported by IST-3-016004-IP-09 SENSORIA, EPSRC GR/T03208,
EPSRC EP/F003757 and IST2005-015905 MOBIUS.



merges several global scenarios will not get stuck in the middle of a session. This limita-
tion prohibits to ensure a successful termination of a transaction, making the framework
practically inapplicable to a large size of dynamically reconfigured conversations.

This paper develops, besides a more traditionalcommunicationtype system (§ 3),
a novel staticinteraction type system (§ 4) for global progress in dynamically inter-
leaved multiparty, asynchronous sessions. High-level session processes equipped with
global signatures are translated into low-level processeswhich have explicit senders
and receivers. Type-soundness of low-level processes is guaranteed against the local,
compositional communication type system.

The new calculus for multiparty sessions offers three technical merits without sac-
rificing the original simplicity and expressivity in [12]. First it avoids the overhead of
global linearity-check in [12]; secondly it provides a moreliberal policy in the use of
variables, both in delegation and in recursive definitions;finally it implicitly provides
each participant of a service with a runtime channel indexedby its role with which he
can communicate with all the other participants, permitting also broadcast in a natural
way. The use of indexed channels, moreover, permits to definea light-weight interac-
tion type system for global progress.

The interaction type system automatically infers causalities of channels for the low
level processes, ensuring the entire protocol, starting from the high-level processes
which consist of multiple sessions, does not get stuck at intermediate sessions also
in the presence of implicit and explicit session interleaving.

Full definitions and the proofs are at http://www.di.unito.it/ dezani/papers/bcdddy.pdf.

2 Syntax and Operational Semantics

Merging Two Conversations: Three-Buyer Protocol.We introduce our calculus through
an example, the three-buyer protocol, extending the two-buyer protocol from [12],
which includes the new features, session-multicasting anddynamically merging of two
conversations. The overall scenario, involving a Seller (S), Alice (A), Bob (B) and Carol
(C), proceeds as follows.

1. Alice sends a book title to Seller, then Seller sends back aquote to Alice and Bob.
Then Alice tells Bob how much she can contribute.

2. If the price is within Bob’s budget, Bob notifies both Seller and Alice he accepts,
then sends his address, and Seller sends back the delivery date.

3. If the price exceeds the budget, Bob asks Carol to collaborate together by establish-
ing a new session. Then Bob sends how much Carol must pay, thendelegatesthe
remaining interactions with Alice and Seller to Carol.

4. If the rest of the price is within Carol’s budget, Carol accepts the quote and notifies
Alice, Bob and Seller, and continues the rest of the protocolwith Seller and Alice
transparently,as if she were Bob. Otherwise she notifies Alice, Bob and Seller to
quit the protocol.

Then multiparty session programming consists of two steps:specifying the intended
communication protocols using global types, and implementing these protocols using
processes. The specifications of the three-buyer protocol are given as two separated
global types: one isGa among Alice, Bob and Seller and the other isGb between Bob



and Carol. We write principals with legible symbols though they will actually be coded
by numbers: inGa we haveS = 3, A = 1 andB = 2, while inGb we haveB = 2, C = 1.
Ga = Gb =

1. A −→ S : 〈string〉.
2. S −→ {A,B} : 〈int〉.
3. A −→ B : 〈int〉.
4. B −→ {S,A} : {ok :B−→ S : 〈string〉.
5. S−→ B : 〈date〉;end

6. quit : end}

1. B −→ C : 〈int〉.
2. B −→ C : 〈T〉.
3. C −→ B : {ok : end, quit : end}.

T =
⊕({S,A},

{ok :!〈S,string〉;?〈S,date〉;end,
quit : end})

The types give a global view of the two conversations, directly abstracting the scenario
given by the diagram. InGa, line 1 denotesA sends a string value toS. Line 2 saysS
multicasts the same integer value toA andB and line 3 says thatA sends an integer to
B. In lines 4-6B sends eitherok or quit to S andA. In the first caseB sends a string toS
and receives a date fromS, in the second case there are no further communications.

Line 2 in Gb represents the delegation of the capability specified by theaction type
T of channels (formally defined later) fromB to C (note thatS andA in T concern the
session ona).

We now give the code, associated toGa andGb, for S, A, B andC in a “user” syntax
formally defined in the following section:
S = ā[3](y3).y3?(title);y3!〈quote〉;y3&{ok : y3?(address);y3!〈date〉;0, quit : 0}

A = a[1](y1).y1!〈"Title"〉;y1?(quote);y1!〈quotediv 2〉;y1&{ok : 0, quit : 0}

B = a[2](y2).y2?(quote);y2?(contrib);
if (quote - contrib< 100) then y2⊕ok;y2!〈"Address"〉;y2?(date);0
else b̄[2](z2).z2!〈quote - contrib -99〉;z2!〈〈y2〉〉;z2&{ok : 0, quit : 0}

C = b[1](z1).z1?(x);z1?((t));
if (x < 100) then z1⊕ok; t ⊕ok; t!〈"Address"〉; t?(date);0
else z1⊕quit; t ⊕quit;0

Session namea establishes the session corresponding toGa. S initiates a session involv-
ing three bodies as third participant by ¯a[3](y3): A andB participate as first and second
participants bya[1](y1) anda[2](y2), respectively. ThenS, A andB communicate using
the channelsy3, y1 andy2, respectively. Each channelyp can be seen as a port connect-
ing participantp with all other ones; the receivers of the data sent onyp are specified by
the global type (this information will be included in the runtime code). The first line of
Ga is implemented by the input and output actionsy3?(title) andy1!〈"Title"〉. The last
line of Gb is implemented by the branching and selection actionsz2&{ok : 0, quit : 0}
andz1⊕ok, z1⊕quit.

In B, if the quote minusA’s contribution exceeds 100e (i.e.quote - contrib≥ 100),
another session betweenB andC is established dynamically through shared nameb.
The delegation is performed by passing the channely2 from B to C (actionsz2!〈〈y2〉〉
andz1?((t))), and so the rest of the session is carried out byC with S andA. We can
further enrich this protocol with recursive-branching behaviours in interleaved sessions
(for example,C can repeatedly negotiate the quote withS as if she wereB). What we
want to guarantee by static type-checking is that the whole conversation between the



P ::= ū[n](y).P Multicast Request
| u[p](y).P Accept
| y!〈e〉;P Value sending
| y?(x);P Value reception
| y!〈〈z〉〉;P Session delegation
| y?((z));P Session reception
| y⊕ l ;P Selection
| y&{l i : Pi}i∈I Branching

u ::= x | a Identifier
v ::= a | true | false Value

| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| (νa)P Hiding
| def D in P Recursion
| X〈e,y〉 Process call

e ::= v | x
| eand e′ | not e . . . Expression

D ::= X(x,y) = P Declaration

Table 1.Syntax for user-defined processes

four parties preserves progress as if it were a single conversation.

Syntax for Multiparty Sessions.The syntax for processes initially written by the user,
calleduser-defined processes, is based on [12]. We start from the following sets:ser-
vice names, ranged over bya,b, . . . (representing public names of endpoints),value
variables, ranged over byx,x′, . . . , identifiers, i.e., service names and variables, ranged
over by u,w, . . . , channel variables, ranged over byy,z,t . . . , labels, ranged over by
l , l ′, . . . (functioning like method names or labels in labelled records); process vari-
ables, ranged over byX,Y, . . . (used for representing recursive behaviour). Thenpro-
cesses, ranged over byP,Q. . . , andexpressions, ranged over bye,e′, . . . , are given by
the grammar in Table 1.

For the primitives for session initiation, ¯u[n](y).P initiates a new session through
an identifieru (which represents a shared interaction point) with the other multiple par-
ticipants, each of shapeu[p](y).Qp where 1≤ p ≤ n−1. The (bound) variabley is the
channel used to do the communications. We callp, q,... (ranging over natural numbers)
theparticipantsof a session. Session communications (communications thattake place
inside an established session) are performed using the nextthree pairs of primitives: the
sending and receiving of a value; the session delegation andreception (where the for-
mer delegates to the latter the capability to participate ina session by passing a channel
associated with the session); and the selection and branching (where the former chooses
one of the branches offered by the latter). The rest of the syntax is standard from [11].

Global Types.A global type, ranged over byG,G′, .. describes the whole conversation
scenario of a multiparty session as a type signature. Its grammar is given below:
Global G ::= p→{pk}k∈K : 〈U〉.G′ ExchangeU ::= S | T

| p→{pk}k∈K : {l i : Gi}i∈I Sorts S ::= bool | . . . | G
| µ t.G | t | end

We simplify the syntax in [12] by eliminating channels and parallel compositions, while
preserving the original expressivity (see§ 5).

The global typep → {pk}k∈K : 〈U〉.G′ says that participantp multicasts a mes-
sage of typeU to participantspk (k ∈ K) and then interactions described inG′ take
place.Exchange types U,U ′, ... consist ofsorts typesS,S′, . . . for values (either base
types or global types), andaction typesT,T ′, . . . for channels (discussed in§3). Type
p→{pk}k∈K : {l i : Gi}i∈I says participantp multicasts one of the labelsl i to participants



P ::= c!〈{pk}k∈K ,e〉;P Value sending
| c?(p,x);P Value reception
| c!〈〈p,c′〉〉;P Session delegation
| c?((q,y));P Session reception

| c⊕〈{pk}k∈K , l〉;P Selection
| c&(p,{l i : Pi}i∈I ) Branching
| (νs)P Hiding session
| s : h Named queue
| ...

c ::= y | s[p] Channel
m ::= (q,{pk}k∈K ,v) | (q,p,s[p′]) | (q,{pk}k∈K , l) Message in transit
h ::= m· h | � Queue

Table 2.Runtime syntax: the other syntactic forms are as in Table 1

pk (k ∈ K). If l j is sent, interactions described inG j take place. Typeµ t.G is a recur-
sive type, assuming type variables (t, t′, . . . ) are guarded in the standard way, i.e. type
variables only appear under some prefix. We take anequi-recursiveview of recursive
types, not distinguishing betweenµ t.G and its unfoldingG{µ t.G/t} [18] (§21.8). We
assume thatG in the grammar of sorts is closed, i.e., without free type variables. Type
end represents the termination of the session. We often writep→ p′ for p→ {p′}.

Runtime Syntax. User defined processes equipped with global types are executed
through a translation into runtime processes. The runtime syntax (Table 2) differs from
the syntax of Table 1 since the input/output operations (including the delegation ones)
specify the sender and the receiver, respectively. Thus,c!〈{pk}k∈K ,e〉 sends a value to
all the participants in{pk}k∈K ; accordingly,c?(p,x) denotes the intention of receiving a
value from the participantp. The same holds for delegation/reception (but the receiver
is only one) and selection/branching.

We call s[p] a channel with role: it represents the channel of the participantp in
the sessions. We usec to range over variables and channels with roles. As in [12], in
order to model TCP-like asynchronous communications (message order preservation
and sender-non-blocking), we use the queues of messages in asession, denoted byh;
a message in a queue can be a value message,(q,{pk}k∈K ,v), indicating that the value
v was sent by the participantq and the recipients are all the participants in{pk}k∈K ;
a channel message (delegation),(q,p′,s[p]), indicating thatq delegates top′ the role
of p on the sessions (represented by the channel with roles[p]); and a label message,
(q,{pk}k∈K , l) (similar to a value message). The empty queue is denoted by�. With
some abuse of notation we will writeh ·m to denote thatm is the last element included
in h andm·h to denote thatm is the head ofh. By s : h we denote the queueh of the
sessions. In (νs)P all occurrences ofs[p] and the queuesare bound. Queues and chan-
nels with role are generated by the operational semantics (described later).

We present the translation of Bob (B) in the three-buyer protocol with the runtime
syntax: the only difference is that all input/output operations specify also the sender and
the receiver, respectively.
B = a[2](y2).y2?(3,quote);y2?(1,contrib);

if (quote - contrib< 100) then y2⊕〈{1,3},ok〉;y2!〈{3},"Address"〉;y2?(3,date);0
else b̄[2](z2).z2!〈{1},quote - contrib -99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0}).

It should be clear from this example that starting from a global type and user-defined
processes respecting the global type it is possible to add sender and receivers to each



a[1](y1).P1 | ... | ā[n](yn).Pn −→ (νs)(P1{s[1]/y1} | ... | Pn{s[n]/yn} | s : �) [Link]

s[p]!〈{pk}k∈K ,e〉;P | s : h−→ P | s : h· (p,{pk}k∈K ,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉;P | s : h−→ P | s : h· (p,q,s′[p′]) [Deleg]

s[p]⊕〈{pk}k∈K , l〉;P | s : h−→ P | s : h· (p,{pk}k∈K , l) [Label]

s[p j ]?(q,x);P | s : (q,{pk}k∈K ,v) ·h−→ P{v/x} | s : (q,{pk}k∈K\ j ,v) ·h ( j ∈ K) [Recv]

s[p]?((q,y));P | s : (q,p,s′[p′]) ·h−→ P{s′[p′]/y} | s : h [Srec]

s[p j ]&(q,{l i : Pi}i∈I ) | s : (q,{pk}k∈K , l i0) ·h −→ Pi0 | s : (q,{pk}k∈K\ j , l i0) ·h
( j ∈ K) (i0 ∈ I) [Branch]

Table 3.Selected reduction rules

communication obtaining in this way processes written in the runtime syntax.
We callpurea process which does not contain message queues.

Operational Semantics.Table 3 shows the basic rules of the process reduction relation
P−→P′. Rule [Link] describes the initiation of a new session amongn participants that
synchronises over the service namea. The last participant ¯a[n](yn).Pn, distinguished by
the overbar on the service name, specifies the numbern of participants. For this rea-
son we call it theinitiator of the session. Obviously each session must have a unique
initiator. After the connection, the participants will share the private session names,
and the queue associated tos, which is initialized as empty. The variablesyp in each
participantp will then be replaced with the corresponding channel with role, s[p]. The
output rules [Send], [Deleg] and [Label] push values, channels and labels, respectively,
into the queue of the sessions (in rule [Send],e↓ v denotes the evaluation of the expres-
sione to the valuev). The rules [Recv], [Srec] and [Branch] perform the corresponding
complementary operations. Note that these operations check that the sender matches,
and also that the message is actually meant for the receiver (in particular, for [Recv], we
need to remove the receiving participant from the set of the receivers in order to avoid
reading the same message more than once).

Processes are considered modulo structural equivalence, denoted by≡, and defined
by adding the following rules for queues to the standard ones[17]:
s : h1 · (q,{pk}k∈K ,z) · (q′,{pk}k∈K ′ ,z′) ·h2 ≡ s : h1 · (q

′,{pk}k∈K ′ ,z′) · (q,{pk}k∈K ,z) ·h2

if K ∩K′ = /0 orq 6= q′

s : (q, /0,v) ·h≡ s : h s: (q, /0, l) ·h≡ s : h

wherez ranges overv, s[p] andl . The first rule permits rearranging messages when the
senders or the receivers are not the same, and also splittinga message for multiple re-
cipients. The last two rules garbage-collect messages thathave already been read by all
the intended recipients. We use−→∗ and 6−→ with the expected meanings.

3 Communication Type System

The previous section defines the syntax and the global types.This section introduces
the communication type system, by which we can check type soundness of the commu-



nications which take place inside single sessions.

Types and Typing Rules for Pure Runtime Processes.We first define the local types
of pure processes, calledaction types. While global types represent the whole protocol,
action types correspond to the communication actions, representing sessions from the
view-points of single participants.
Action T ::= !〈{pk}k∈K ,U〉;T send

| ?(p,U);T receive
| ⊕〈{pk}k∈K ,{l i : Ti}i∈I 〉 selection
| &(p,{l i : Ti}i∈I ) branching

| µ t.T recursive
| t variable
| end end

The send type!〈{pk}k∈K ,U〉;T expresses the sending to allpk for k ∈ K of a value
or of a channel of typeU , followed by the communications ofT. Theselection type
⊕〈{pk}k∈K ,{l i : Ti}i∈I 〉 represents the transmission to allpk for k∈ K of a labell i cho-
sen in the set{l i | i ∈ I} followed by the communications described byTi . Thereceive
andbranchingare dual and only need one sender. Other types are standard.

The relation between action and global types is formalised by the notion of projec-
tion as in [12]. Theprojection of G ontoq (G ↾ q) is defined by induction onG:

(p→{pk}k∈K : 〈U〉.G′) ↾ q =











!〈{pk}k∈K ,U〉;(G′ ↾ q) if q= p,

?(p,U);(G′ ↾ q) if q= pk for somek∈ K,

G′ ↾ q otherwise.
(p→{pk}k∈K : {l i : Gi}i∈I ) ↾ q =



















⊕({pk}k∈K ,{l i : Gi ↾ q}i∈I ) if q = p

&(p,{l i : Gi ↾ q}i∈I ) if q = pk for somek ∈ K

G1 ↾ q if q 6= p,q 6= pk∀k∈ K and

Gi ↾ q = G j ↾ q for all i, j ∈ I .
(µt.G) ↾ q = µt.(G ↾ q) t ↾ q= t end ↾ q= end.

As an example, we list two of the projections of the global typesGa andGb of the
three-buyer protocol:
Ga ↾ 3 = ?〈1, string〉; !〈{1,2}, int〉;&(2,{ok :?〈2, string〉; !〈{2},date〉;end,quit : end})
Gb ↾ 1 = ?〈2, int〉;?〈2,T〉;⊕〈{2},{ok : end,quit : end}〉

whereT = ⊕〈{1,3},{ok :!〈{3}, string〉;?〈3,date〉;end, quit : end}〉.
The typing judgements for expressions and pure processes are of the shape:

Γ ⊢ e : SandΓ ⊢ P⊲ ∆
whereΓ is thestandard environmentwhich associates variables to sort types, service
names to global types and process variables to pairs of sort types and action types;∆ is
thesession environmentwhich associates channels to action types. Formally we define:

Γ ::= /0 | Γ ,u : S | Γ ,X : S T and∆ ::= /0 | ∆ ,c : T

assuming that we can writeΓ ,u : Sonly if u does not occur inΓ , briefly u 6∈ dom(Γ )
(dom(Γ ) denotes the domain ofΓ , i.e. the set of identifiers which occur inΓ ). We use
the same convention forX : S T and∆ .

Table 4 presents the interesting typing rules for pure processes. Rule⌊MCAST⌋ per-
mits to type a service initiator identified byu, if the type ofy is then-th projection of the
global typeG of u and the number of participants inG (denoted by pn(G)) is n. Rule
⌊MACC⌋ permits to type thep-th participant identified byu, which uses the channel



Γ ⊢ u : 〈G〉 Γ ⊢ P⊲∆ ,y : G ↾ n n= pn(G)

⌊MCAST⌋
Γ ⊢ ū[n](y).P⊲∆

Γ ⊢ u : 〈G〉 Γ ⊢ P⊲∆ ,y : G ↾ p

⌊MACC⌋
Γ ⊢ u[p](y).P⊲∆

Γ ⊢ e : S Γ ⊢ P⊲∆ ,c : T
⌊SEND⌋

Γ ⊢ c!〈{pk}k∈K ,e〉;P⊲∆ ,c : !〈{pk}k∈K ,S〉;T

Γ ,x : S⊢ P⊲∆ ,c : T
⌊RCV⌋

Γ ⊢ c?(q,x);P⊲∆ ,c :?(q,S);T

Γ ⊢ P⊲∆ ,c : T
⌊DELEG⌋

Γ ⊢ c!〈〈p,c′〉〉;P⊲∆ ,c : !〈p,T ′〉;T,c′ : T ′

Γ ⊢ P⊲∆ ,c : T,y : T ′

⌊SREC⌋
Γ ⊢ c?((q,y));P⊲∆ ,c :?(q,T ′);T

Γ ⊢ P⊲∆ Γ ⊢ Q⊲∆ ′ dom(∆)∩dom(∆ ′) = /0
⌊CONC⌋

Γ ⊢ P | Q⊲∆ ∪∆ ′

Table 4.Selected typing rules for pure processes

y, if the type ofy is thep-th projection of the global typeG of u. The successive six
rules associate the input/output processes to the input/output types in the expected way.
Note that, according to our notational convention on environments, in rule⌊DELEG⌋
the channel which is sent cannot appear in the session environment of the premise,
i.e. c′ 6∈ dom(∆)∪{c}. Rule⌊CONC⌋ permits to put in parallel two processes only if
their sessions environments have disjoint domains. For example we can derive:

⊢ t ⊕〈{1,3},ok〉; t!〈{3},"Address"〉; t?(3,date);0⊲ {t : T}
whereT = ⊕〈{1,3},{ok :!({3}, string);?〈3,date〉;end, quit : end}〉.
In the typing of the example of the three-buyer protocol the types of the channelsy3 and
z1 are the third projection ofGa and the first projection ofGb, respectively. By applying
rule ⌊MCAST⌋ we can then derivea : Ga ⊢ S⊲ /0. Similarly by applying rule⌊MACC⌋
we can deriveb : Gb ⊢ C⊲ /0.

Types and Typing Rules for Runtime Processes.We now extend the communication
type system to processes containing queues.
MessageT ::= !〈{pk}k∈K ,U〉 message send

| ⊕〈{pk}k∈K , l〉 message selection
| T;T′ message sequence

GeneralisedT ::= T action
| T message
| T;T continuation

Message typesare the types for queues: they represent the messages contained in the
queues. Themessage send type!〈{pk}k∈K ,U〉 expresses the communication to allpk for
k ∈ K of a value or of a channel of typeU . Themessage selection type⊕〈{pk}k∈K , l〉
represents the communication to allpk for k ∈ K of the labell andT;T′ represents
sequencing of message types. For example⊕〈{1,3},ok〉 is the message type for the
message(2,{1,3},ok).
A generalised typeis either an action type, or a message type, or a message type fol-
lowed by an action type. TypeT;T represents the continuation of the typeT associated
to a queue with the typeT associated to a pure process. An example of generalised type
is⊕〈{1,3},ok〉; !〈{3}, string〉;?〈3,date〉;end.

We start by defining the typing rules for single queues, in which the turnstile⊢
is decorated with{s} (wheres is the session name of the current queue) and the ses-
sion environments are mappings from channels to message types. The empty queue has
empty session environment. Each message adds an output typeto the current type of



the channel which has the role of the message sender.
In order to type pure processes in parallel with queues, we need to use generalised

types in session environments and further typing rules. Themore interesting rules are:

Γ ⊢ P⊲ ∆
⌊GINIT ⌋

Γ ⊢ /0 P⊲ ∆

Γ ⊢Σ P⊲ ∆ Γ ⊢Σ ′ Q⊲ ∆ ′ Σ ∩Σ ′ = /0
⌊GPAR⌋

Γ ⊢Σ∪Σ ′ P | Q⊲ ∆ ∗∆ ′

where the judgementΓ ⊢Σ P⊲∆ means thatP contains the queues whose session names
are inΣ . Rule⌊GINIT⌋ promotes the typing of a pure process to the typing of an ar-
bitrary process, since a pure process does not contain queues. When two arbitrary pro-
cesses are put in parallel (rule⌊GPAR⌋) we need to require that each session name is
associated to at most one queue (conditionΣ ∩Σ ′ = /0). In composing the two session
environments we want to put in sequence a message type and an action type for the same
channel with role. For this reason we define the composition∗ between local types as:

T ∗T′ =







T;T′ if T is a message type,
T′;T if T′ is a message type,
⊥ otherwise

where⊥ represents failure of typing. We extend∗ to session environments as expected:
∆ ∗∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{c : T ∗T′ | c : T ∈ ∆ & c : T′ ∈ ∆ ′}.

Note that∗ is commutative, i.e.∆ ∗∆ ′ = ∆ ′ ∗∆ . Also if we can derive message types
only for channels with roles, we consider the channel variables in the definition of∗ for
session environments since we want to get for example{y : end} ∗ {y : end} = ⊥. An
example of derivable judgement is:
⊢{s} P | s : (3,{1,2},ok)⊲ {s[3] : ⊕〈{1,2},ok〉; !〈{1}, string〉;?〈1,date〉;end}

whereP = s[3]!〈{1},"Address"〉;s[3]?(1,date);0.

Subject Reduction.Since session environments represent the forthcoming communi-
cations, by reducing processes session environments can change. This can be formalised
as in [12] by introducing the notion of reduction of session environments, whose rules
are:

– {s[p] : !〈{pk}k∈K ,U〉; T,s[p j ] :?(p,U);T ′} ⇒ {s[p] : !〈{pk}k∈K\ j ,U〉; T,s[p j ] : T ′} if j ∈K
– {s[p] : T;⊕〈{pk}k∈K ,{l i : Ti}i∈I 〉} ⇒ {s[p] : T;⊕〈{pk}k∈K , l i〉;Ti}

– {s[p] : ⊕〈{pk}k∈K , l〉;T,s[p j ] : &(p,{l i : Ti}i∈I )} ⇒ {s[p] : ⊕〈{pk}k∈K\ j , l〉;T,s[p j ] : Ti}
if j ∈ K andl = l i

– {s[p] : !〈 /0,U〉; T} ⇒ {s[p] : T} {s[p] : ⊕〈 /0, l〉;T} ⇒ {s[p] : T}
– ∆ ∪∆ ′′ ⇒ ∆ ′∪∆ ′′ if ∆ ⇒ ∆ ′.

The first rule corresponds to the reception of a value or channel by the participantp j ,
the second rule corresponds to the choice of the labell i and the third rule corresponds to
the reception of the labell by the participantp j . The fourth and the fifth rules garbage
collect read messages.

Using the above notion we can state type preservation under reduction as follows:

Theorem 1 (Type Preservation).If Γ ⊢Σ P⊲ ∆ and P−→∗ P′, thenΓ ⊢Σ P′ ⊲ ∆ ′ for
some∆ ′ such that∆ ⇒∗ ∆ ′.

Note that the communication safety [12, Theorem 5.5] is a corollary of this theorem.
Thus the user-defined processes with the global types can safely communicate since
their runtime translation is typable by the communication type system.



4 Progress

This section studies progress: informally, we say that a process has the progress property
if it can never reach a deadlock state, i.e., if it never reduces to a process which contains
open sessions (this amounts to containing channels with roles) and which is irreducible
in any inactive context (represented by another inactive process running in parallel).

Definition 1 (Progress).A process P has theprogress propertyif P −→∗ P′ implies
that either P′ does not contain channels with roles or P′ | Q−→ for some Q such that
P′ | Q is well typed and Q6−→.

We will give an interaction type system which ensures that the typable processes always
have the progress property.

Let us say that achannel qualifieris either a session name or a channel variable.
Let c be a channel, its channel qualifierℓ(c) is defined by: (1) ifc = y, thenℓ(c) = y;
(2) else ifc = s[p], thenℓ(c) = s. Let Λ , ranged over byλ , denote the set of all service
names and all channel qualifiers.

The progress property will be analysed via three finite sets:two setsN andB

of service names and a setR ⊆ Λ ∪ (Λ ×Λ). The setN collects the service names
which are interleaved following the nesting policy. The setB collects the service names
which can be bound. The Cartesian productΛ ×Λ , whose elements are denotedλ ≺ λ ′,
represents a transitive relation. The meaning ofλ ≺ λ ′ is that an input action involving
a channel (qualified by)λ or belonging to serviceλ could block a communication
action involving a channel (qualified by)λ ′ or belonging to serviceλ ′. MoreoverR
includes all channel qualifiers and all service names which do not belong toN or B

and which occur free in the current process. This will be useful to easily extendR in
the assignment rules, as it will be pointed out below. We callN nested service set, B

bound service setandR channel relation(even if only a subset of it is, strictly speaking,
a relation). Let us give now some related definitions.

Definition 2. LetR ::= /0 | R,λ | R,λ ≺ λ ′.

1. B∪̄{e} =

{

B∪{a} if e = a is a session name

B otherwise.

2. R \λ = {λ1 ≺ λ2 | λ1 ≺ λ2 ∈ R & λ1 6= λ & λ2 6= λ}∪{λ ′ | λ ′ ∈ R & λ ′ 6= λ}

3. R \\λ =

{

R \λ if λ is minimal inR

⊥ otherwise.

4. R⊎R
′ = (R ∪R

′)+

5. pre(ℓ(c),R) = R⊎{ℓ(c)}⊎{ℓ(c) ≺ λ | λ ∈ R & ℓ(c) 6= λ}

whereR
+ is the transitive closure of (the relation part of)R andλ is minimal in R if

6 ∃λ ′ ≺ λ ∈ R.
Note, as it easy to prove, that⊎ is associative. A channel relation iswell formedif it is
irreflexive, and does not contain cycles. A channel relationR is channel free(cf(R)) if
it contains only service names.

In Table 5 we introduce selected rules for the interaction type system. The judge-
ments are of the shape:Θ ⊢ P ◮ R ; N ; B whereΘ is a set ofassumptionsof the
shapeX[y] ◮R ; N ; B (for recursive definitions) with the variabley representing
the channel parameter ofX.



Θ ⊢ P ◮ R ; N ; B

{MCAST}
Θ ⊢ ā[n](y).P ◮ R{a/y} ; N ; B

Θ ⊢ P ◮ R ; N ; B

{MACC}
Θ ⊢ a[p](y).P ◮ R{a/y} ; N ; B

Θ ⊢ P ◮ R ; N ; B

{MCASTN}
Θ ⊢ ā[n](y).P ◮ R \\y; N ∪{a} ; B

Θ ⊢ P ◮ R ; N ; B

{MACCN}
Θ ⊢ a[p](y).P ◮ R \\y; N ∪{a} ; B

Θ ⊢ P ◮ R ; N ; B cf(R \\y)
{MCASTB}

Θ ⊢ ū[n](y).P ◮ R \\y; N ; B∪̄{u}

Θ ⊢ P ◮ R ; N ; B cf(R \\y)
{MACCB}

Θ ⊢ u[p](y).P ◮ R \\y; N ; B∪̄{u}

Θ ⊢ P ◮ R ; N ; B

{SEND}
Θ ⊢ c!〈{pk}k∈K ,e〉;P ◮ {ℓ(c)}∪R ; N ; B∪̄{e}

Θ ⊢ P ◮ R ; N ; B

{RCV}
Θ ⊢ c?(q,x);P ◮ pre(ℓ(c),R) ; N ; B

Θ ⊢ P ◮ R ; N ; B

{DELEG}
Θ ⊢ c!〈〈p′,c′〉〉;P ◮ {ℓ(c),ℓ(c′),ℓ(c) ≺ ℓ(c′)}⊎R ; N ; B

Θ ⊢ P ◮ R ; N ; B R ⊆ {ℓ(c), y, ℓ(c) ≺ y}
{SREC}

Θ ⊢ c?((q,y));P ◮ {ℓ(c)} ; N ; B

Θ ⊢ P ◮ R ; N ; B Θ ⊢ Q ◮ R
′ ; N

′ ; B
′

{CONC}
Θ ⊢ P | Q ◮ R⊎R

′ ; N ∪N
′ ; B∪B

′

Θ ⊢ P ◮ R ; N ; B a 6∈ R∪N

{NRES}
Θ ⊢ (νa)P ◮ R ; N ; B \a

{VAR}
Θ ,X[y] ◮ R ; N ; B ⊢ X〈e,c〉 ◮ R{ℓ(c)/y} ; N ; B∪̄{e}

Θ ,X[y] ◮ R ; N ; B ⊢ P ◮ R ; N ; B Θ ,X[y] ◮ R ; N ; B ⊢ Q ◮ R
′ ; N

′ ; B
′

{DEF}
Θ ⊢ def X(x,y) = P in Q ◮ R

′ ; N
′ ; B

′

Table 5.Selected interaction typing rules

We say that a judgementΘ ⊢ P ◮ R ; N ; B is coherentif: (1) R is well formed;
(2) R∩ (N ∪B) = /0. We assume that the typing rules are applicable if and onlyif the
judgements in the conclusion are coherent.

We will give now an informal account of the interaction typing rules, through a set
of examples. It is understood that all processes introducedin the examples can be typed
with the communication typing rules given in the previous section.

The crucial point to prove the progress property is to assurethat a process, seen as
a parallel composition of single threaded processes and queues, cannot be blocked in a
configuration in which:
1. there are no thread ready for a session initialization (i.e. of the form ¯a[n](y).P or
a[p](y).P). Otherwise the process could be reactivated by providing it with the right
partners.
2. all subprocesses are either non-empty queues or processes waiting to perform an in-
put action on a channel whose associated queue does not offeran appropriate message.

Progress inside a single service is assured by the communication typing rules in
§ 3. This will follow as an immediate corollary of Theorem 2. The channel relation is
essentially defined to analyse the interactions between services: this is why in the defi-
nition of pre(ℓ(c),R) we put the conditionℓ(c) 6= λ . A basic point is that a loop inR
represents the possibility of a deadlock state. For instance take the processes:

P1 = b[1](y1).ā[2](z2).y1?(2,x);z2!〈1, false〉;0
P2 = b̄[2](y2).a[1](z1).z1?(2,x′);y2!〈1, true〉;0.



In processP1 we have that an input action on serviceb can block an output action on
servicea and this determinesb≺ a. In processP2 the situation is inverted, determining
a≺ b. In P1 | P2 we will then have a loopa≺ b≺ a. In factP1 | P2 reduces to

Q = (νs)(νr) (s[1]?(2,x); r[1]!〈2, false〉;0 | r[2]?(1,x′);s[2]!〈1, true〉;0)

which is stuck. It is easy to see that servicesa andb have the same types, thus we could
changeb in a in P1 andP2 obtainingP′

1 andP′
2 with two instances of servicea and a

relationa≺ a. But alsoP′
1 | P′

2 would reduce toQ. Hence we must forbid also loops on
single service names (i.e. the channel relation cannot be reflexive).

Rule{RCV} asserts that the input action can block all other actions inP, while rule
{SEND} simply addsℓ(c) in R to register the presence of a communication action in
P. In fact output is asynchronous, thus it can be always performed. Rule{DELEG} is
similar to{SEND} but asserts that a use ofℓ(c) must precede a use ofℓ(c′): the relation
ℓ(c) ≺ ℓ(c′) needs to be registered since an action blockingℓ(c) also blocksℓ(c′).

Three different sets of rules handle service initialisations. In rules{MCAST}-{MACC},
which are liberal on the occurrences of the channely in P, the service namea replaces
y in R. Rules{MCASTN}-{MACCN} can be applied only if the channely associated
to a is minimal in R .This implies that oncea is initialised inP all communication
actions on the channel with role instantiatingy must be performed before any input
communication action on a different channel inP. The namea is added to the nested
service set. Remarkably, via rules{MCASTN}-{MACCN} we can prove progress when
services are nested, generalising the typing strategy of [6]. The rules{MCASTB} and
{MACCB} addu to the bound service set wheneveru is a service name. These rules are
much more restrictive: they require thaty is the only free channel inP and that it is min-
imal. Thus no interaction with other channels or services ispossible. This safely allows
u to be a variable (since nothing is known about it before execution except its type) or
a restricted name (since no channel with role can be made inaccessible at runtime by a
restriction onu). Note that rule{NRES} requires thata occurs neither inR nor inN .

The setsN andB include all service names of a processP whose initialisations
is typed with{MCASTN}-{MACCN}, {MCASTB}-{MACCB}, respectively. Note that
for a service name which will replace a variable this is assured by the (conditional)
addition ofe to B in the conclusion of rule{SEND}. The setsN andB are used to
assure, via the coherence conditionR∩ (N ∪B) = /0, thatall participants to the same
service are typed either by the first two rules or by the remaining four. This is crucial to
assure progress. Take for instance the processesP1 andP2 above. If we type the session
initialisation onb using rule{MACCN} or {MACCB} in P1 and rule{MCAST} in P2

no inconsistency would be detected. But rule{CONC} does not typeP1 | P2 owing to
the coherence condition. Instead if we use{MACC} in P1, we detect the loopa≺ b≺ a.
Note that we could not use{MCASTN} or {MCASTB} for b in P2 sincey2 is not mini-
mal.

Rules{MCASTN}-{MACCN} are useful for typing delegation. An example is pro-
cess B of the three-buyer protocol, in which the typing of thesubprocess

z2!〈{1},quote - contrib -99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0})
givesz2 ≺ y2. So by using rule{MCAST} we would get firstb≺ y2 and then the cycle
y2 ≺ b≺ y2. Instead using rule{MCASTN} for b we get in the final typing of B either
{a};{b}; /0 or /0;{a,b}; /0 according to we use either{MCAST} or {MCASTN} for a.



Rule{SREC} avoids to create a process where two different roles in the same ses-
sion are put in sequence. Following [23] we call this phenomenon self-delegation. As
an example consider the processes

P1 = b[1](z1).a[1](y1).y1!〈〈2,z1〉〉;0
P2 = b̄[2](z2).ā[2](y2).y2?((1,x));x?(2,w);z2!〈1, false〉;0

and note thatP1 | P2 reduces to(νs)(νr)(s[1]?(2,w);s[2]!〈1, false〉;0) which is stuck.
Note thatP1 | P2 is typable by the communication type system butP2 is not typable by
the interaction type system, since by typingy2?((1,x));x?(2,w);z2!〈1, false〉;0 we get
y2 ≺ z2 which is forbidden by rule{SREC}.

A closed runtime processP is initial if it is typable both in the communication and
in the interaction type systems. The progress property is assured for all computations
that are generated from an initial process.

Theorem 2 (Progress).All initial processes have the progress property.

It is easy to verify that the (runtime) version of the three-buyer protocol can be typed in
the interaction type system with{a};{b}; /0 and /0;{a,b}; /0 according to which typing
rules we use for the initialisation actions on the service namea. Therefore we get

Corollary 1. The three-buyer protocol has the progress property.

5 Conclusions and Related Work

The programming framework presented in this paper relies onthe concept of global
types that can be seen as the language to describe the model ofthe distributed commu-
nications, i.e., an abstract high-level view of the protocol that all the participants will
have to respect in order to communicate in a multiparty communication. The program-
mer will then write the program to implement this communication protocol; the system
will use the global types (abstract model) and the program (implementation) to generate
a runtime representation of the program which consists of the input/output operations
decorated with explicit senders and receivers, according to the information provided in
the global types. An alternative way could be that the programmer directly specifies the
senders and the receivers in the communication operations as our low-level processes;
the system could then infer the global types from the program. Our communication and
interaction type systems will work as before in order to check the correctness and the
progress of the program. Thus the programmer can choose between a top-down and
a bottom-up style of programming, while relying on the same properties checked and
guaranteed by the system.

We are currently designing and implementing a modelling andspecification lan-
guage with multiparty session types [19] for the standards of business and financial
protocols with our industry collaborators [20, 21]. This consists of three layers: the
first layer is a global type which corresponds to a signature of class models in UML;
the second one is for conversation models where signatures and variables for multi-
ple conversations are integrated; and the third layer includes extensions of the existing
languages (such as Java [13]) which implement conversationmodels. We are currently
considering to extend this modelling framework with our type discipline so that we can
specify and ensure progress for executable conversations.



Multiparty sessions.The first papers on multiparty session types are [2] and [12].
The work [2] uses a distributed calculus where each channel connects a master end-
point and one or more slave endpoints; instead of global types, they solely use (recursion-
free) local types. In type checking, local types are projected to binary sessions, so that
type safety is ensured using duality, but it loses sequencing information: hence progress
in a session interleaved with other sessions is not guaranteed.

The present calculus is an essential improvement from [12];both processes and
types in [12] share a vector of channels and each communication uses one of these
channels, while our user processes and global types are simpler and user-friendly with-
out these channels. The global types in [12] have a parallel composition operator, but its
projectability from global to local types limits to disjoint senders and receivers; hence
it does not increase expressivity.

The present calculus is more liberal than the calculus of [12] in the use of declara-
tions, since the definition and the call of recursive processes are obliged to use the same
channel variable in [12]. Similarly the delegation in [12] requires that the same channel
is sent and received for ensuring subject reduction, as analysed in [23]. Our calculus
solves this issue by having channels with roles, as in [9] (see the example at page 13).
As a consequence some recursive processes, which are stuck in [12], are type-sound
and reducible in our calculus, satisfying the interaction type system.

Different approaches to the description of service-oriented multiparty communica-
tions are taken in [3, 4]. In [3], the global and local views ofprotocols are described
in two different calculi and the agreement between these views becomes a bisimula-
tion between processes; [4] proposes a distributed calculus which provides communi-
cations either inside sessions or inside locations, modelling merging running sessions.
The type-safety and progress in interleaved sessions are left as an open problem in [4].

Progress.The majority of papers on service-oriented calculi only assure that clients
are never stuck inside asinglesession, see [1, 7, 12] for detailed discussions, including
comparisons between the session-based and the traditionalbehavioural type systems of
mobile processes, e.g. [15, 22]. We only say here that our interaction type system is
inspired by deadlock-free typing systems [14, 15, 22]. In [1, 7, 12], structured session
primitives help to give simpler typing systems for progress.

The first papers considering progress for interleaved sessions required the nesting of
sessions in Java [6, 8] and SOC [1, 5, 16]. The present approach significantly improves
the binary session system for progress in [7] by treating thefollowing points:
(1) asynchrony of the communication with queues, which enhances progress;
(2) a general mechanism of process recursion instead of the limited permanent accepts;
(3) a more liberal treatment of the channels which can be sent; and
(4) the standard semantics for the reception of channels with roles, which permits to get
rid of process sequencing.
None of the previous work had treated progress across interfered, dynamically inter-
leaved multiparty sessions.
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