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A Logical Analysis of Aliasing in
Imperative Higher-Order Functions

Martin Berger∗ Kohei Honda∗ Nobuko Yoshida†

Abstract

We present a compositional program logic for call-by-valueimperative higher-order functions with
general forms of aliasing, which can arise from the use of reference names as function parameters,
return values, content of references and parts of data structures. The program logic extends our
earlier logic for alias-free imperative higher-order functions with new modal operators which serve
as building blocks for clean structural reasoning about programs and data structures in the presence
of aliasing. This has been an open issue since the pioneeringwork by Cartwright-Oppen and Morris
twenty-five years ago. We illustrate usage of the logic for description and reasoning through concrete
examples including a higher-order polymorphic Quicksort.The logical status of the new operators
is clarified by translating them into (in)equalities of reference names. The logic is observationally
complete in the sense that two programs are observationallyindistinguishable iff they satisfy the
same set of assertions.
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1 Introduction

In high-level programming languages names can be used to indicate either stateless entities
like procedures, or stateful constructs such as imperativevariables.Aliasing, where distinct
names refer to the same entity, has no observable effects forthe former, but strongly affects
the latter. This is because if state changes, that change should affect all names referring to
that entity. Consider

P
def
= x := 1; y :=!z; !y := 2,

where, following ML notation, !x stands for the content of an imperative variable orrefer-
ence x. If z stores a reference namex initially, then the content ofx afterP runs is 2; ifz
stores something else, the final content ofx is 1. But if it is unclear whatzstores, we cannot
know if !y is aliased tox or not, which makes reasoning difficult. Or consider a program

Q
def
= λy.(x := 1; y := 2).

If Q is invoked with an argumentx, the content ofx ends up as 2, otherwise it stays 1.
In these examples, what have been syntactically distinct reference names in the program
text may be coalesced during execution, making it difficult to judge which name refers
to which store from the program text alone. The situation gets further complicated with
higher-order functions because programs with side effectscan be passed to procedures and
stored in references. For example let:

R
def
= λ(f xy). ( let z= !x in !x := 1; !y := 2; f (x,y) ; z := 3 )

whereα = Ref(Ref(Nat)). Rreceives a functionf and two referencesx andy. Its behaviour
is different depending on what it receives asf (for simplicity let’s assumex andy store
distinct references). If we pass a functionλxy.() as f , then, after execution, !x stores 3

and !y stores 2. But if the standard swapping functionswap
def
= λab.let c = !b in (b :=

!a;a := c) is passed, the content ofx andy is swapped and !x now stores 2 while !y stores
3. Such interplay between higher-order procedures and aliasing is common in many non-
trivial programs in ML, C and more recent typed and untyped low-level languages (Peyton
Joneset al., 1999; Grossmanet al., 2002; Shao, 1997).

Hoare logic (Hoare, 1969), developed on the basis of Floyd’sassertion method (Floyd,
1967), has been studied extensively as a verification methodfor first-order imperative pro-
grams with diverse applications. However Hoare’s originalproof system is sound only
when aliasing is absent (Apt, 1981; Cousot, 1999): while various extensions have been
studied, a general solution which extends the original method to treat aliasing, retaining its
semantic basis (Greif & Meyer, 1981; Hoare & Jifeng, 1998) and tractability, has not been
known, not to speak of its combination with arbitrary imperative higher-order functions
(our earlier work (Hondaet al., 2005) extends Hoare logic with a treatment for a general
class of higher-order imperative functions including stored procedures, but does not treat
aliasing).

Resuming studies by Cartwright-Oppen and Morris from 25 years ago (Cartwright &
Oppen, 1978; Cartwright & Oppen, 1981; Morris, 1982b), the present paper introduces
a simple and tractable compositional program logic for general aliasing and imperative
higher-order functions. A central observation in (Cartwright & Oppen, 1978; Cartwright &
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Oppen, 1981; Morris, 1982b) is that (in)equations over names, simple as they may seem,
are expressive enough to describe general aliasing in first-order procedural languages, pro-
vided we distinguish between reference names (which we write x) and the corresponding
content (which we write !x) in assertions. In particular, their work has shown that alias
robust substitution, writtenC{|e/!x|} in our notation, defined by:

M |=C{|e/!x|} iff M [x 7→ [[e]]M ] |= C (1)

(i.e. an update of a store at a memory cell referred to byx with valuee), can be translated
into (in)equations of names through inductive decomposition of C, albeit at the expense
of an increase in formula size. This gives us the following semantic version of Hoare’s
assignment axiom:

{C{|e/!x|}}x := e{C} (2)

where the pre-condition in fact stands for the translated form mentioned above. The rule
subsumes the original axiom but is now alias-robust. As clear evidence of descriptive power
of this approach, Cartwright and Oppen showed that the use of(2) leads to a sound and
(relatively) complete logic for a programming language with first-order procedures and full
aliasing (Cartwright & Oppen, 1978; Cartwright & Oppen, 1981): Morris showed many
non-trivial reasoning examples for data structures with destructive update, including the
reasoning for Schorr-Waite algorithm (Morris, 1982b).

The works by Cartwright-Oppen and Morris, remarkable as they are, still beg the ques-
tion how to reason about programs with aliasing in a tractable way. The first issue is cal-
culation of validity in assertions involving semantic substitutions. Cartwright and Oppen’s
inductive decomposition of{|e/!x|} into (in)equations has been the only syntactic tool avail-
able, and is hardly practical. As demonstrated through manyexamples by Morris (Morris,
1982b) and, more recently, Bornat (Bornat, 2000), this decomposition should be distributed
to every part of a given formula even if that part is irrelevant to the state change under con-
sideration, making reasoning extremely cumbersome. As onetypical example, if we use
the decomposition method for calculating the logical equivalence

C{|c/!x|}{|e/!x|} ≡ C{|c/!x|}

for generalC, with c being a constant, we need either meta-logical reasoning, induction
on C, or an appeal to semantic means. Because such logical calculation is a key part
of program proving (Hoare, 1969), practical usability of this approach becomes unclear.
The second problem is the lack of structured reasoning principles for deriving precise
description of extensional program behaviour with aliasing. This makes reasoning hard,
because properties of complex programs often depend crucially on how sub-programs in-
teract through shared, possibly aliased references. Finally, the logics in (Cartwright & Op-
pen, 1978; Cartwright & Oppen, 1981; Morris, 1982b) and their successors do not offer a
general treatment of higher-order procedures and mutable data structures which may store
such procedures.

We address these technical issues by augmenting the logic for imperative higher-order
functions introduced in (Hondaet al., 2005) with a pair of mutually dual logical primitives
calledcontent quantifiers. They offer an effective middle layer with clear logical status for
reasoning about aliasing. The existential part of the primitives, written〈!x〉C, is defined by



A Logical Analysis of Aliasing in Imperative Higher-Order Functions 3

the following equivalence:

M |= 〈!x〉C
def
≡ ∃V.(M [x 7→V] |= C) (3)

The defining clause says: “for some possible content of a reference namedx,M satisfiesC”
(which maynot be about the current state, but about a possible state, hencethe notation).
Syntactically〈!x〉C doesnot bind free occurrences ofx in C. Its universal counterpart is
written [!x]C, with the obvious semantics.

We mention several notable aspects of these operators. First, their introduction gives a
tractable method for logically calculating assertions with semantic update, solving a central
issue posed by Cartwright-Oppen and Morris 25 years ago. We start from the following
syntactic representation of semantic update using the well-known decomposition:

C{|e/!x|} ≡ ∃m.(〈!x〉(C∧ !x=m)∧m=e). (4)

From (3) and (4), the logical equivalence (1) is immediate, recovering (2) as a syntactic
axiom. Not only doesC{|e/!x|} now have concrete syntactic shape without needing global
distribution of update operations, but these operators also offer a rich set of logical laws
coming from standard quantifiers and modal operators, enabling efficient and tractable
calculation of validity while subsuming Cartwright-Oppen/Morris’s methods. Intuitively
this is because logical calculation can now focus on those parts which do get affected by
state change: just like lazy evaluation, we do not have to calculate those parts which are not
immediately needed. In later sections we shall demonstratethis point through examples.

Closely related with its use in logical calculation is a powerful descriptive/reasoning
framework enabled by content quantification in conjunctionwith standard logical primi-
tives. By allowing hypothetical statements about the content of references separate from
reference names themselves (which is the central logical feature of these operators), com-
plex aliasing situations are given clean, succinct descriptions, combined with effective
compositional reasoning principles. This is particularlyvisible when we describe and rea-
son about disjointness and sharing of mutable data structures (in this sense it expands the
central merits of “separating connectives” (O’Hearnet al., 2004; Reynolds, 2002), as we
shall discuss in later sections). The primitives work seamlessly with the logical machinery
for capturing pure and imperative higher-order behaviour studied in (Honda, 2004; Honda
& Yoshida, 2004; Hondaet al., 2005), enabling precise description and efficient reasoning
for a large class of higher-order behaviour and data structures.

Third, and somewhat paradoxically, these merits of contentquantification come without
additional expressive power: any formula which contains content quantification can be
translated, up to logical equivalence, into one without. While establishing this result, we
shall also show that content quantification and semantic update are mutually definable.
Thus name (in)equations, content quantification and semantic update are all equivalent
in sheer expressive power: the laws of content quantification are reducible to the standard
axioms for predicate calculus with equality, which in turn are equivalent to semantic update
through its axioms for decomposition. This does not howeverdiminish the significance of
content quantification: without identifying it as a proper logical primitive with associated
axioms, it is hard to consider its use in reasoning, both in logical calculation and in its
applications to structured reasoning for programs and datastructures in the presence of
general aliasing.
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Structure of the Paper

In the rest of the paper, Section 2 briefly summarises the programming language. Section
3 introduces models for the logic. Section 4 illustrates thekey ideas underlying content
quantification, expanding some of the themes noted above. Section 5 introduces the as-
sertion language and its semantics. Section 6 discusses syntactic axioms for the assertion
language. Section 7 introduces compositional proof rules for the logic, and discusses struc-
tured reasoning principles for programs in the presence of aliasing. Section 8 discusses sev-
eral key technical properties of the proposed logic: eliminability of content quantification
and soundness of axioms and proof rules. Sections 9 gives non-trivial reasoning examples.
Section 10 is devoted to discussing related work and furthertopics.

This paper is a full version of (Bergeret al., 2005), with complete definitions and de-
tailed proofs. The present version not only gives more illustration of axioms and proof
rules, but also more comprehensive comparisons with related work.

Our previous work on logic for imperative higher-order functions (Hondaet al., 2005),
treated a sublanguage of the language investigated here, different only in that reference
types are never carried by other types. This small syntacticchange in types leads to a
significant difference in realisable behaviour. This difference in behaviour and how it can
be handled, logically as well as semantically, is the main focus of the present work.

2 Language

2.1 Syntax and Typing

The programming language we shall use in the present study iscall-by-value PCF with
unit, sums and products, augmented with imperative variables. Assume given an infinite
set ofvariables(x,y,z, . . ., also callednames). The syntax of programs is standard (Pierce,
2002) and given by the following grammar.

(values) V,W ::= c | x | λxα.M | µ fα⇒β.λyα.M | 〈V,W〉 | ini(V)

(program) M,N ::= V | MN | M := N | !M | op(M̃) | πi(M) | 〈M,N〉 | ini(M)

| if M then M1 else M2 | case M of {ini(x
αi
i ).Mi}i∈{1,2}

Abstraction, recursion and the case construct are annotated by types. Constants (c,c′, . . .)
include unit(), natural numbersn and booleansb (either truet or falsef). op(M̃) (where
M̃ is a vector of programs) is a standardn-ary first-order operation such as+, −, ×, =

(equality of two numbers or that of reference names),¬ (negation),∧ and∨. !M derefer-
encesM while M := N first evaluatesM and obtains a reference (sayx), evaluatesN and
obtains a value (sayV), and assignsV to x. All these constructs are standard, cf. (Pierce,
2002; Gunter, 1995). The notions of binding andα-convertibility are also conventional and
fv(M) denotes the set of free variables inM. We use abbreviations such as:

λ().M
def
= λxUnit.M (x 6∈ fv(M))

M;N
def
= (λ().N)M

let x = M in N
def
= (λx.N)M (x 6∈ fv(M))
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[Var] −
Γ,x : α ⊢ x : α [Unit] −

Γ ⊢ () : Unit
[Bool] −

Γ ⊢ b : Bool
[Num] −

Γ ⊢ n : Nat

[Eq]
Γ ⊢ M1,2 : α α ∈ {Nat,Ref(β)}

Γ ⊢ M1=M2 : Bool
[Abs] Γ,x:α ⊢ M : β

Γ ⊢ λxα.M : α⇒β [Rec]Γ,x:α⇒β ⊢ λyα.M : α⇒β
Γ ⊢ µxα⇒β.λyα.M : α⇒β

[App]Γ ⊢ M : α⇒β Γ ⊢ N : α
Γ ⊢ MN : β [If]

Γ ⊢ M : Bool Γ ⊢ Ni : α (i = 1,2)
Γ ⊢ if M then N1 else N2 : α

[Inj] Γ ⊢ M : αi
Γ ⊢ ini(M) : α1+α2

[Case] Γ ⊢ M : α1+α2 Γ,xi :αi ⊢ Ni : β
Γ ⊢ case M of {ini(x

αi
i ).Ni}i∈{1,2} : β

[Pair]
Γ ⊢ Mi : αi (i = 1,2)

Γ ⊢ 〈M1,M2〉 : α1×α2
[Proj] Γ ⊢ M : α1×α2

Γ ⊢ πi(M) : αi (i = 1,2)

[Deref]
Γ ⊢ M : Ref(α)

Γ ⊢!M : α [Assign]
Γ ⊢ M : Ref(α) Γ ⊢ N : α

Γ ⊢ M := N : Unit

Fig. 1. Typing rules.

Types are ranged over byα,β, . . . and are given by the following grammar.

(types) α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+ β | Ref(α)

We call types of the formRef(α) reference types. All others arevalue types. Although the
grammar is standard, some points are worth noting in the light of their status in the present
theory.

Remark 1 (type structure)

1. Both reference types and value types may carry reference types. This allows pro-
grams which write to a dereference of a variable (e.g. !x := 3), or take a reference as
argument and return a reference (e.g.λx.(x :=!x+1;x)), leading to a strong form of
aliasing illustrated in the introduction.

2. Having reference types as part of arbitrary data types also allows various “destruc-
tive” data structures to be represented. For example,Ref(Nat⇒Nat)×Ref(Nat) is a
type for a record whose first component is a pointer to a function of typeNat⇒Nat

while its second a reference to a natural number.

A basisis a finite map from names to types.Γ,Γ′ . . . range over bases anddom(Γ) denotes
the domain ofΓ, whilecod(Γ) denotes the range ofΓ. The typing rules are standard (Pierce,
2002) and listed in Figure 1, using sequentsΓ ⊢ M : α, which say thatM has typeα under
basisΓ.

The following subclass of programs is important in the subsequent development (its
original appearance may be (Meyer & Sieber, 1988)).

Definition 1 A typed programΓ ⊢ M : α is semi-closedwhencod(Γ) only includes refer-
ence types. We also sayM is semi-closedwhenΓ ⊢ M : α is semi-closed for someΓ and
α.
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Underlying this definition is the distinction between functional variables and imperative
variables: the formerdenote, or stand for, values, while imperative variablesrefer to, or
name, memory cells. We may consider a program with free functional variables to be in-
complete: for it to function properly, those variables needto be instantiated into concrete
(semi-closed) values. Having free reference variables in aprogram is quite different, since
that program needs them to interact with the store. If reference names areλ-abstracted, pro-
grams can touch references only after the abstracted names are instantiated into concrete
names by application. In the light of the above discussion, it is often convenient to sin-
gle out the reference-type part of a basis. We let∆, . . . range over bases whose codomains
are reference types and writeΓ;∆ for a basis whereΓ maps names to value types (called
environment basis) and∆ maps names to reference types (calledreference basis), always
assumingdom(Γ)∩dom(∆) = /0. Semi-closed programs can always be written∆ ⊢ M : α
(however, writingΓ ⊢ M : α doesnot mean the lack of reference-typed variables inM: it
is only in the notationΓ;∆ that Γ denotes an environment basis). We often call variables
of reference typesreference namesor simplyreferences. By abuse of terminology we shall
sometimes use “reference” to denote the named memory cells as far as no confusion arises.

2.2 Dynamics

A store (σ,σ′, ...) is a finite map from reference names to semi-closed values. We write
dom(σ) for the domain ofσ and fv(σ) for names occurring in (both the domain and
codomain of)σ. A configurationis a pair of a semi-closed program and a store. Then
reductionis a binary relation over configurations, written(M,σ) −→ (M′,σ′), generated
by the rules below (Gunter, 1995; Pierce, 2002). We use left-to-right evaluation, but the
proposed logic can treat other evaluation strategies and allows us to infer properties which
hold regardless of evaluation strategy. First we generate reductions over programs (not
configurations) based on the usual reduction rules for call-by-value PCF, omitting obvious
symmetric rules and the rules for first-order operators.

(λx.M)V → M[V/x]

π1(〈V1,V2〉) → V1

case in1(W) of {ini(xi).Mi}i∈{1,2} → M1[W/x1]

if t then M1 else M2 → M1

(µ f.λg.N)W → N[W/g][µ f.λg.N/ f ]

The rules for assignment and dereference are given next. Below σ[x 7→V] denotes the store
which mapsx to V and otherwise agrees withσ. In both rules we letx∈ dom(σ).

(!x, σ) → (σ(x), σ)

(x := V, σ) → ((), σ[x 7→V])

NoteV in x := V is semi-closed byx := V being semi-closed by the definition of configu-
rations. Finally the contextual rules are given as follows.

M → M′

(M,σ) → (M′,σ)
(M,σ) → (M′,σ′)

(E [M],σ) → (E [M′],σ′)
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whereE [ · ] is the left-to-right evaluation context with eager evaluation for first-order op-
erators, pairs, projection and injection. Evaluation contexts are given by the grammar pre-
sented next.

E [ · ] ::= (E [ · ]M) | (VE [ · ]) | πi(E [ · ]) | ini(E [ · ]) | !E [ · ]
| E [ · ] := M |V := E [ · ] | if E [ · ] then M else N
| case E [ · ] of {ini(xi).Mi}i∈{1,2} | op(Ṽ,E [ · ],M̃)

We write(M,σ) ⇓ (V,σ′) iff (M,σ) −→∗ (V,σ′), (M,σ) ⇓ iff (M,σ) ⇓ (V,σ′) for someV
andσ′, and(M,σ) ⇑ iff for all n there is a reduction sequence(M,σ) −→n (M′,σ′). Here
−→n is then-fold relational composition of−→.

To have subject reduction, we need to type stores in additionto programs. Write∆ ⊢ σ
whendom(∆) = dom(σ) = fv(σ) and, moreover, the types ofσ match∆, i.e. for each
x∈ dom(σ) we have∆ ⊢ σ(x) : α iff ∆(x) = Ref(α). Notedom(σ) = fv(σ) means reference
names which occur in the codomain ofσ also occur in its domain. We set:

∆ ⊢ (M,σ)
def
= ( ∆ ⊢ M : α ∧ ∆ ⊢ σ )

For example, givenM
def
=!x := 3 andσ def

= {x 7→ y, y 7→ 2}, we have

x:Ref(Ref(Nat)), y:Ref(Nat) ⊢ (M,σ)

Note thatx:Ref(Ref(Nat)) ⊢ M : Unit: however we need a reference stored inx to have a
well-typed configuration for this assignment to work.

Proposition 1 (subject reduction)Suppose∆ ⊢ M : α and ∆ ⊢ (M,σ). Then(M,σ) −→

(M′,σ′) implies∆ ⊢ M′ : α and∆ ⊢ (M′,σ′).

Convention 1 Henceforth we restrict the reduction relation to well-typed configurations,
that is whenever we write(M,σ) −→ (M′,σ′), we assume∆ ⊢ (M,σ) for some∆.

2.3 Contexts and Contextual Congruence

Write C[·]Γ
′;α′

Γ;α for a typed context such thatΓ′ ⊢ C[M] : α′ wheneverΓ ⊢ M : α. We often
simply writeC[·] for a typed context, leaving their domain and codomain implicit, though
formally contexts are always considered to be typed. We often use the following subset of
typed contexts.

Definition 2 (modest contexts) A typed contextC[·] is semi-closingif its resulting program
is semi-closed. It ismodestif it is semi-closing and, moreover, it does not abstract any
reference name in the hole.

Note a modest context always has the formC[ · ]∆
′;α′

Γ;∆;α with ∆′ ⊇ ∆, and does not collapse
reference names in a program. An example of a modest context is

(λxNat.[ · ])
y:Ref(Nat);Nat⇒Bool

x:Nat,y:Ref(Nat);Bool

which abstracts a value-typed variablex, whereas

(λzRef(Nat).[ · ])
Ref(Nat)⇒Bool

z:Ref(Nat);Bool
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is not (since a reference namez in the hole is abstracted).
The contextual congruence for the language, denoted∼=, is defined in the standard way,

i.e. as the maximum typed congruence satisfying:∆ ⊢ M1 ∼= M2 : Unit iff:

∀σ.( (M1,σ) ⇓ ⇔ (M2,σ) ⇓ ) (5)

Above we assume well-typedness of(M1,2,σ) following Convention 1, similarly hence-
forth. The definition is immediately equivalent to saying that ∼= is the maximum typed
relation satisfyingΓ ⊢ M1 ∼= M2 : α if and only if:

∀σ, semi-closingC[ · ]Unit. ( (C[M1],σ) ⇓ ⇔ (C[M2],σ) ⇓ ) (6)

whereC[ · ]Unit indicates the resulting type isUnit (with some unspecified reference ba-
sis) and (following our convention) we assume well-typedness of configurations (i.e.∆ ⊢

(C[M1,2],σ) for some∆ in the above clause). This in turn is equivalent to saying that ∼=
is the maximum typed relation satisfyingΓ ⊢ M1 ∼= M2 : α if and only if, again assuming
well-typedness:

∀δ, σ, modestC[ · ]Unit. ( (C[M1δ],σ) ⇓ ⇔ (C[M2δ],σ) ⇓ ) (7)

whereδ ranges over (possibly non-injective) well-typed substitution of reference names
for reference names. This characterisation says all experiments we need to inspect the con-
textual behaviour of a program are combination of modest contexts and possible ways to
collapse reference names. To check the equivalence, ifM1 andM2 satisfies (6), then surely
they also satisfy (7), by taking appropriate contexts in (6). For the other direction, sup-
poseM1 andM2 satisfy (7). Then (again by taking appropriate contexts) they also satisfy
(C[M1ξ],σ) ⇓ iff (E[M2ξ],σ) ⇓ for anyσ, ξ, and modestC[ · ], whereξ ranges over well-
typed substitutions of (both non-reference and reference)variables for semi-closed values.
This means we can always replaceM1ξ andM2ξ in a hole of a context without changing
termination behaviour of the whole. Now assume, for a possibly non-modest contextC[ · ],
thatC[M2] converges. Tracing the reductions starting fromC[M1], whenever a duplicate
of M1 is launched into an evaluation context, in the formM1ξ, we replace it withM2ξ,
so that whenC[M2] terminates, a residual ofC[M2] (with replacements), sayN2, is iden-
tical with that ofC[M1], sayN1, except for duplicates ofM1 underλ-abstraction. Since if
N2 has no redex thenN1 cannot have any redex, so we know thatC[M1] also converges.
Symmetrically, ifC[M1] converges thenC[M2] converges, hence we obtain property (6).

A further characterisation of∼= can be obtained by parameterising∼= with a reference
basis. Let us sayΓ (which may map both non-reference and reference names) iscovered
by∆ when the maximal reference basis inΓ is a subset of∆, i.e. whenΓ = Γ0;∆0 such that
∆0 ⊆ ∆.

Definition 3 LetΓ ⊢ M1,2 : α and assume∆ coversΓ. Then we setΓ ⊢ M1 ∼=∆ M2 : α when
the following condition holds.

∀ ∆ ⊢ δ, ∆ ⊢ σ, modest C[ · ]∆;Unit

Γ;α . ((C[M1δ],σ) ⇓ ⇔ (C[M2δ],σ) ⇓)

where∆ ⊢ δ indicates thatδ is a well-typed substitution overdom(∆).

Proposition 2 LetΓ ⊢ M1,2 : α. ThenΓ ⊢ M1 ∼= M2 : α if and only ifΓ ⊢ M1 ∼=∆ M2 : α for
each∆ which coversΓ.
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Proof
The “only if” direction is immediate. For the “if” direction, supposeΓ ⊢ M1 ∼=∆ M2 : α for
each∆ which coversΓ. We showM1 andM2 satisfy the characterisation (7). LetΓ = Γ0;∆0

and supposeC[M1δ] ⇓ for some modestC[ · ]. Let, without loss of generality (through
injective renaming and weakening), we have∆ ⊢ σ such thatdom(∆)∩ dom(Γ) = /0 and
∆0 ⊆ ∆. SinceM1 ∼=∆ M2 we haveC[M2δ] ⇓ as required.

We may further restrict contexts in Definition 2 to evaluation contexts, combined with
closing substitutions for non-reference variables onM1,2.

3 Models

We introduce a class of models which concisely represent computational situations of in-
terest. We follow our previous work (Hondaet al., 2005) except for the additional use
of distinctionsto describe aliasing, an innovation coming from theπ-calculus (Milner
et al., 1992). Our models are immediately faithful to the observable behaviour of programs,
which is important for our logic’s observational completeness.

3.1 Distinctions

In (Hondaet al., 2005) a model was a pair(ξ,σ) whereξ mapped non-reference names
to semi-closed values andσ was a store mapping reference names to semi-closed values.
One of the key operations on models wasM [x 7→V] which returns a model that is exactly
like M , except that the reference namex, assumed to occur inM , now maps toV. In the
presence of aliasing, where distinct reference names may refer to a store location, this op-
erations cannot just work on the given namex, but must also update what is stored at all of
x’s aliases. For this purpose we usedistinctions, equivalence classes of reference names,
following Milner, Parrow and Walker (Milneret al., 1992), rather than introducing an ad-
ditional set of location labels. The latter approach can be found in the dynamic semantics
of ML (Milner et al., 1990). The notion of distinction distills the idea of aliasing at a high
level of abstraction.

Definition 4 (distinction) Adistinction over∆ is an equivalence ondom(∆) relating names
of the same type.D ,D ′, . . . range over distinctions. We write∆ ⊢ D or justD ∆ to indicate
the typing ofD , anddom(D ) for dom(∆). D -identicalsor simply identicals, leavingD
implicit, are theD -equivalence classes. We leti, j , . . . range over identicals. The type of an
identical is that of its members. Thefull distinctionon ∆ is {{x} | x ∈ dom(∆)} (distin-
guishing all names in∆). D ′ extendsD , writtenD ≤ D ′, provideddom(D ) ⊆ dom(D ′)

and for allx,y∈ dom(D ) we havexD y iff xD ′y.

Example 1 Assume∆ = x,y,z : Ref(Nat),a,b : Ref(Nat⇒Nat). Then

D = {(x,x),(y,y),(z,z),(a,a),(b,b),(x,y),(y,x),(a,b),(b,a)},

the least equivalence overdom(∆) relating x with y and a with b, is a distinction of type
∆ with identicals{x,y},{z},{a,b}. The full distinction of type∆− = x,y : Ref(Nat),a :
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Ref(Nat⇒Nat) clearly satisfiesD − ≤ D . But if D ′ is the full distinction of type∆, then
D 6≤ D ′ andD ′ 6≤ D .

We continue with some notational conventions that are useful for handling distinctions.

Notation 1 D − i def
= D \ {i × i} (assumingi is an identical ofD ). Dually D + i = D ∪

{i × i} (assumingi ∩ (∪D ) = /0). We write ∆D for the base which hasD -identicals as
domain of definition and mapsi to ∆(x), providedx ∈ i. GivenΓ;∆ ⊢ M : α andD is a
distinction of type∆, thenMD is obtained by replacing eachx ∈ dom(∆) in M with the
uniqueD -identicali such thatx∈ i. More precisely, ifdom(∆) = {x1, ...,xn} andx j ∈ i j ,

then MD
def
= M[i1/x1] · · · [in/xn].

Example 2 WithD ∆ from Example 1 above, we have

∆D = {x,y} : Ref(Nat),{z} : Ref(Nat),{a,b} : Ref(Nat⇒Nat).

Now let M be the program x:=!a+3; z:=!y. Then∆ ⊢ M : Unit and, settingi
def
= {x,y}, j

def
=

{a,b},k
def
= {z}, we have

MD = i :=!j +3; k :=!i ∆D ⊢M D : Unit.

We construct models relative to a distinction. This is fundamental to our concern since
the logical description of program behaviour generally depends on distinctions. For exam-
ple, we may wish to say:

The command x:= 1;y := 2 results in the state where x and y store1 and2 respectively,
providedx 6= y, i.e. if x and y are distinct references.

For giving a meaning to such description, we need to set up a semantic domain in whichx
andy areRef(Nat)-references and in whichx andy are distinct. But in a different world,
wherex andy are aliased, we may have the following description:

The command x:= 1;y := 2 results in a state where x and y store2, providedx = y, i.e.
if x and y denote the same reference.

which is quite different from the first one.
Consequently, our semantic domains are constructed from semi-closed programs (up to

the observational congruence) parameterised by distinctions. This accords with our intu-
itive understanding of observational indistinguishability under potential aliasing. A pro-
gram’s behaviours relative to a given distinctionD can be made explicit by usingD -
identicals as reference names, as already demonstrated in Example 2. The next example
shows the difference in dynamics engendered by varying distinctions more clearly. Let

M
def
= if x = y then 0 else 1

wherex andyare of a reference type. IfD equatesx andyand, moreover, ifi is the identical
containingx,y, then we have:

MD = if i = i then 0 else 1
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MD immediately converges to 0 unlikeM itself, making clear the effect of distinctions on
observable behaviour of programs.

Since our definition of configurations (page 6) treated storenames atomically, we are
free to use identicals as store domains. All the corresponding constructs (store typings,
reductions, substitution, etc. stay unchanged). For example if N is the programx := 3; !y

typed under∆ def
= x : Ref(Nat), y :Ref(Nat), andD ∆ identifiesx with y, i.e. x,y ∈ i, then

[i 7→ 7] is a well-typed store under∆D . Moreover, we have the following reductions:

(i := 3; !i
︸ ︷︷ ︸

ND

, [i 7→ 7]) → (!i, [i 7→ 3]) → (3, [i 7→ 3]).

We hereafter freely use identicals in this way.
However,∼= as defined in Section 2.3 is too fine for semantics of programs w.r.t. distinc-

tions. To see why, consider

M
def
= if xRef(α) = yRef(α) then () else ω

whereω is some diverging term ofUnit type. If we consider a distinction in whichx and
y are equated, then we expectM and() to be contextually equivalent. But∼= saysM 6∼= ()

because it considers arbitrary aliasing: ifx andy are distinct, then we do haveM ⇑, so we
cannot generally sayM ∼= ().

In order to deal with this phenomenon, we define a distinction-respecting congruence.
Below we say∆ is completeif whenever a reference type (sayα) occurs in any reference
type in its codomain thenα is also in its codomain. Sox : Ref(Ref(α)) is not complete but
x : Ref(Ref(α)), y : Ref(α) is.

Definition 5 (D -respecting congruence) Let∆ be complete andD be a distinction over
∆. Then we writeΓ;∆ ⊢ M1 ∼=D M2 : α for Γ;∆ ⊢ M1,2 : α iff, for each modestC[ · ] and
corresponding storeσ, we have:

(C[M1D ],σ) ⇓ ⇔ (C[M2D ],σ) ⇓

As is customary, we often simply writeM ∼=D N when the typing is clear or irrelevant in a
given context.

Immediately∼=D is a typed equivalence. Observe also∼=D is nothing but the result of
restrictingδ in the characterisation of∼= in (7) (in Section 2.3, Page 8) to beD -respecting,
i.e. we only consider substitutions which collapse names that are equal inD but leave
distinct those which are distinct inD . Conversely,∼= arises from∼=D by rangingD over all
possible distinctions.

Proposition 3 Let∆ be complete. ThenΓ;∆ ⊢M ∼= N : α if and only if, for each distinction
D over∆, we haveΓ;∆ ⊢ M ∼=D N : α.

This Proposition is an easy corollary of∼=’s characterisation in (7). We close this subsection
with a small observation about the effect that extending a distinction has on∼=D .

Proposition 4 Let Γ;∆ ⊢ M1,2 : α and assumeΓ ⊆ Γ′ and∆ ⊆ ∆′. Assume furtherD ∆ ≤

D ′∆′
. ThenΓ;∆ ⊢ M1 ∼=D M2 : α iff Γ′;∆′ ⊢ M1 ∼=D ′ M2 : α.
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Proof
Since the set of semi-closing contexts one can use in Definition 5 do not vary by extending
bases and distinctions.

3.2 Models

We can now define models, but rather than taking tuples(ξ,σ) for models whereξ maps
non-reference names to semi-closed values andξ is a store, i.e. a mapping from reference
names to semi-closed values (this was the model construction in (Hondaet al., 2005)), we
now take triples(D ,ξ,σ).

Definition 6 Let ∆ be complete. Amodel of typeΓ;∆ is a triple(D ,ξ,σ) where

1. D is a distinction ondom(∆);
2. ξ mapsdom(Γ∪∆) to semi-closed values such that eachx∈ dom(Γ) is mapped toV

such that∆D ⊢ V : Γ(x) and eachx∈ dom(∆) is mapped to the uniqueD -identical
containingx.

3. σ is astore, that is a finite map from the identicals ofD to semi-closed values so that
an identical of typeRef(α) is mapped to a term∆D ⊢V : α.

M ,M ′, . . . range over models. IfM
def
= (D ,ξ,σ), thenD (resp.ξ, resp.σ) is thedistinction

(resp.environment, resp.store) of M . We writeΓ;∆ ⊢M orM Γ;∆ whenM is a model of

typeΓ;∆. GivenM Γ;∆, we setdom(M )
def
= dom(Γ∪∆).

Example 3 Let Γ be x: Nat, f : Nat⇒Nat and assume∆ is y,z : Ref(Nat). AssumeD is
the distinction of type∆ identifying y with z, i.e.{x,y} = i. With

ξ = x : 7, f : λn.1+!i,y : i,z : i σ = [i 7→ 9],

(D ,ξ,σ) is a model of typeΓ;∆. Clearlydom(D ,ξ,σ) = {x,y,z, f}.

Convention 2 (notation for models)

1. We often write(ξ,σ) to denote a model(D ,ξ,σ) whereD is recovered fromξ in the
obvious way.

2. Given a modelM
def
= (D ,ξ,σ) of typeΓ;∆, the notationM (x) with x∈ dom(ξ∪σ)

denotes either: (1)ξ(x) if x∈ dom(Γ); (2) σ(i) if x∈ dom(∆) andx∈ i; or (3) σ(x)
if x is aD -identical.

3. ∼=M stands for∼=D with D being the distinction ofM .

There are two important constructions we use with models. The first is an update of the
abstract store of a model with a new value, indicating the effect of assignment commands.

Definition 7 (semantic update) LetM Γ;∆·x:Ref(α) def
= (D , ξ, σ · i 7→W) with x∈ i. Further let

∆⊢V : α, Then the expressionM [x 7→V] or, alternatively,M [i 7→V], denotes(D , ξ, σ · i 7→
V). Clearly (1)M [x 7→ V](x) = V and (2) for eachy that is not inx’s identical we have
M [x 7→V](y) =M (y).
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Notation 2 GivenM = (D ,ξ,σ)Γ;∆, u 6∈ fv(M ) andD ∆ ⊢ V : α, we writeM ·u : V, or
often(ξ ·u : V,σ), for a model that extendsM by one entry with the valueV. Formally we
setM ·u : V to be a modelM ′ such that:

1. If α is a value type thenM ′ = (D ,ξ ·u : V,σ)Γ·u:α;∆; and

2. If α is a reference type then, withi def
= V ∪{u},

M ′ = (D −V + i,ξ[i/V] ·u : i,σ[i/V])Γ;∆·u:α

where the substitutions on environments and stores have thefollowing definitions:
σ[i/j ] is defined as/0[i/j ]= /0 and(σ · i′ 7→U)[i/j ]= σ[i/j ]· i′[i/j ] 7→U [i/j ]. Similarly:
(ξ ·x : U)[i/j ] = (ξ[i/j ]) ·U [i/j ].

In general, in Clause 2 above, we cannot haveM ′(u) = V since for reference typesu itself
is adjoined to an existing identical. Note that suchM ′ is determined uniquely.

4 Two Modal Operators

This section motivates content quantification and its genesis in the analysis of the sound-
ness proof for Hoare’s original logic.

Aliasing and Assignment. As illustrated in the introduction, interaction between alias-
ing and assignment leads to difficulties in reasoning. For concreteness let’s consider the
following program.

double?
def
= λxRef(Nat).λyRef(Nat).(x :=!x+!x ; y :=!y+!y) (8)

It is intended to assign the double of the original value for each of two references it receives
as arguments. However, as one can easily see, the program will not behave that way if
we apply thesamereference to this program twice, as in((double?)r)r. For supposer
originally stores 2. Then, after execution, we obtain 8 instead of 4 as new value stored in
r. This is becausex andy, distinct variables in the procedure body, are coalesced into one
variable through repeated arguments. But if we apply two distinct references todouble? it
will surely double the content of each argument.

Hoare’s principle of logical reasoning (Hoare, 1969) dictates that a valid judgement
should be derived compositionally, i.e. precisely following the program text. Let us con-
sider how this may be done fordouble?, focussing on the second command “y :=!y+!y”.
Suppose for concreteness that the content of bothx andy is 2 at the entry point. If we were
without aliasing, we would have the following specification.

{!x = !y = 2} y :=!y+!y {!x = 2∧ !y = 4} (9)

As x andy can get coalesced into a single name if the arguments are repeated, the assign-
ment toy may affect the content ofx. From this viewpoint, (9) isnota precise specification
of the assignment command in the presence of aliasing. So howcan we amend (9)? Since
the postcondition of (9)is correct ifx andy are distinct references, the following gives a
natural refinement of (9).

{x 6= y∧ !x =!y= 2} y :=!y+!y{!x = 2∧ !y = 4} (10)
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The pre-conditionx 6= y says thatx andy are distinct as names; then !x =!y = 2 says that,
in spite of this distinction, their content is the same. The notational difference betweenx
(denoting a reference name of typeRef(Nat)) and !x (denoting its content, of typeNat)
is fundamental in this assertion. The origin of this differentiation may be traced back to
the early days of computing where, in assembly languages, one distinguished the content
of a registerR from the content of a memory cell whose address is held inR. At the level
of programming languages, it is in typed languages like ML and Haskell, that the need of
assigning correct types to expressions have led to strict differentiation between references
and their content.

Assignment Axiom with Aliasing. But how can we derive specifications such as (10)
syntactically? Hoare logic has a simple rule to derive a sound (and indeed best possible)
pre-condition for any given a post-condition and an assignment command, elegantly using
a syntactic substitution.

[Assign-Org]
−

{C[e/!x]} x := e{C}
(11)

where[e/!x] is the syntactic substitution replacing occurrences of !x with e in C. However
this rule is not valid in the presence of aliasing, as has beenknown from early times,
cf. (Apt, 1981; Cousot, 1999). For example, in the case ofdouble? and the post-condition
!x = 2∧ !y = 4, we easily calculate, with≡ indicating logical equivalence:

(!x = 2∧ !y = 4)[ !y+!y/ !y] ≡ !x = 2∧ !y = 2 (12)

which gives the pre-condition in (9) in the alias-free setting, rather than what we want,
(10). Another slightly different Hoare triple for the same command makes the underlying
issue more vivid. For the programy :=!y+!y and the post-condition !x = 2, we want to
derive:

{(x = y∧ !y = 1) ∨ (x 6= y∧ !x = 2)} y :=!y+!y { !x = 2} (13)

By informal reasoning, we can see that the judgement (13) is operationally reasonable.
But if we apply the syntactic substitution to the given post-condition, we obtain;

(!x = 2)[ !y+!y/ !y] ≡ !x = 2 (14)

In view of the pre-condition in (13), we can see (14) precisely leaves out the case when
x andy are aliased. Indeed, to obtain the pre-condition of (13) from !x = 2, the syntactic
substitution[ !y+!y/ !y] is powerless, sincey does not even occur in the postcondition.

Content Quantification. At the semantic level, the distinction-based models introduced
in Section 3.2 give a clear idea about how our answer should behave, if not the answer
itself. This is through the following logical equivalence,which already appeared in the
introduction. What we are looking for is a formulaC0 such that

M |=C0 iff M [x 7→ [[e]]M ] |= C. (15)

Above the boldfacedx signifies the identical containingx. M represents the statebefore
the assignment, whileM [x 7→ [[e]]M ], the update of that state by the value (denoted by)
e, is the stateafter assigning (the value denoted by)e (calculated in the initial stateM )
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to the memory cell referred to byx. By Definition 7, even ifx is aliased,M [x 7→ [[e]]M ]

gives the correct update. Thus (15) says that, forC to hold as the descriptionafter the
assignmentx := e, the pre-conditionC0 should be such thatM |= C0 holds if and only if
M [x 7→ [[e]]M ] |= C holds.

We already know we cannot use the result of syntactic substitutionC[e/!x] for C0 in the
presence of aliasing. But why did it work in the alias-free setting? In brief, this is thanks to
the following logical equivalence.

C[e/!x] ≡ ∃m.(∃x.(C∧ !x=m)∧m=e) (16)

Note that we cannot simplify the right-hand side into∃x.(C∧ !x=e) because !x may occur
in e. Using (16), we justify (15) as follows, assumingM is alias-free, i.e. its distinction is
full (hence we writex, notx).

M [x 7→ [[e]]M ] |=C ⇔ M ·m : [[e]]M [x 7→ [[e]]M ] |=C ∧ !x = m (17)

⇔ M ·m : [[e]]M |=∃x.(C ∧ !x = m) (18)

⇔ M |=∃m.(∃x.(C∧ !x=m)∧m=e) (19)

⇔ M |=C[e/!x] (20)

All are standard logical equivalences under the full distinction, clarifying the status of the
logical equivalence (16) in Hoare’s original assignment axiom.

The key step in our analysis is that from (17) to (18): we had toget rid of the model
update[x 7→ [[e]]M ], and to do so we must ensure that the truth value of the formulaon
the right of the satisfaction relation is independent of what is stored atx. Without aliasing
we can achieve this by simply hidingx through existential abstraction, because in this
setting, the only (non-trivial) thing we can do with a reference name in a logical formula
is to dereference it. Hence, ifx is not a free name of a formula, the formula is true/false
independently from what the model stores atx.

Now consider why this proof above no longer works in the presence of aliasing an what
can be done about it. Remember that we want to find a formulaC0 such that (15) holds.
Yet, when trying to mimic derivation (17 - 20) in the presenceof aliasing we find that while
the first step is as (17) before, the second fails:

M [x 7→ [[e]]M ] |=C ⇔ M ·m : [[e]]M [x 7→ [[e]]M ] |=C ∧ !x = m

6⇔ M ·m : [[e]]M |=∃x.(C ∧ !x = m)

The problem is that now a formula’s truth value may depend on what is stored at (the
identical containing)x, even whenx does not occur freely in the formula on the right of the
satisfaction relation. The addition of aliasing increasedthe expressiveness of the assertion
language. To see how to deal with this conundrum, we note thatfor all M ′,C′:

M ′[x 7→ [[e]]M ] |=C′ ≡ ∃V.M ′[x 7→V] |=C′ ∧ !x = e.

Since we need to make a formula independent from what stored at x in the model, not from
x itself, this last equivalence is suggestive of a new quantifier: assume we had an operator
〈!x〉C in our logic with the following semantics, cf. (3):

M ′ |= 〈!x〉C′ def
≡ ∃V.M ′[x 7→V] |= C′
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It is the contentV of x, rather thanx itself, that is existentially abstracted.C′ may still talk
aboutx, for example saying thatx = y, but the truth value of〈!x〉C′ is now independent
from whatM ′ stores atx. If content quantification were part of our assertion language, we
could reason:

M [x 7→ [[e]]M ] |=C ⇔ M ·m : [[e]]M [x 7→ [[e]]M ] |=C ∧ !x = m (21)

⇔ M ·m : [[e]]M |=〈!x〉(C ∧ !x = m) (22)

⇔ M |=∃m.(m= e ∧ 〈!x〉(C ∧ !x = m)) (23)

Hence content quantification allows to re-introduce the equivalence (16) that witnessed the
correctness of the original Hoare rule, but enhanced, so it is robust under aliasing. We can
then define

C{|e/!x|}
def
= ∃m.(〈!x〉(C∧ !x=m)∧m=e). (24)

We call{|e/!x|} semantic substitutionor logical substitution. By the semantics of content
quantification, in (21) - (23), we have re-establish the logical equivalence in (15), replacing
C[e/!x] with C{|e/!x|}, mimicking (17–19) above. Thus we now arrive at the following
proof rule.

[AssignBasic]
−

{C{|e/!x|}} x := e{C}
(25)

This rule subsumes the original rule (25) sinceC{|e/!x|} coincides withC[e/!x] under the
full distinction. The semantic status of (25) is clear from the semantics of content quantifi-
cation, offering the weakest precondition ofC under arbitrary aliasing.

So we seem to have arrived at an analogue of Hoare’s assignment axiom in the presence
of full aliasing, by replacing a syntactic substitution by its logical counterpart. But does
this new setting help us reason about programs with various forms of aliasing after all?
More concretely, can we derive the judgement such as (13) easily? Does it allow exten-
sions/generalisation to higher-order programming languages, for example those with the
generalised assignment of the formM := N where bothM andN are appropriately typed
arbitrary expressions? And can we reason about programs with aliasing tractably and mod-
ularly using content quantification? These are the topics weshall explore in the following
sections.

5 Logic (1): Assertions

5.1 Terms and Formulae

This section introduces our logical language and formalises its semantics. The logical lan-
guage is standard first-order logic with equality (Mendelson, 1987) extended with asser-
tions for evaluation and quantification over store content.The latter is the only addition to
the logic in (Hondaet al., 2005).

e ::= xα | () | n | b | op(ẽ) | 〈e,e′〉 | πi(e) | inj
α+β
i (e) | !e

C ::= e= e′ | ¬C | C⋆C′ | Q xα.C | {C} e•e′ = x {C′} | [!e]C | 〈!e〉C

Here⋆ ∈ {∧,∨,⊃} andQ ∈ {∀,∃}. The first set of expressions (ranged over bye,e′, . . .)
aretermswhile the second set areformulae(ranged over byA,B,C,C′ . . .). The constants



A Logical Analysis of Aliasing in Imperative Higher-Order Functions 17

(Γ∪∆)(x) = α
Γ;∆ ⊢ x : α

−
Γ;∆ ⊢ n : Nat

Γ;∆ ⊢ e : Bool
Γ;∆ ⊢ ¬e : Bool

Γ;∆ ⊢ ei : αi (i = 1,2)
Γ;∆ ⊢ (e1,e2) : α1×α2

Γ;∆ ⊢ e1,2 : α
Γ;∆ ⊢ e1 = e2

Γ;∆ ⊢ e : α1×α2
Γ;∆ ⊢ πi(e) : αi

Γ;∆ ⊢ e : αi (i ∈ {1,2})
Γ;∆ ⊢ injα1+α2

i (e) : α1 +α2

Γ;∆ ⊢ e : Ref(α)
Γ;∆ ⊢!e : α

Γ;∆ ⊢C1,2
Γ;∆ ⊢C1 ⋆C2

⋆ ∈ {∧,∨,⊃}
Γ, x:α ; ∆ ⊢C
Γ;∆ ⊢ Q xα.C

Q ∈ {∀,∃}
Γ;∆ ⊢ e : Ref(α) Γ;∆ ⊢C

Γ;∆ ⊢ 〈!e〉C

Γ;∆ ⊢ e : Ref(α) Γ;∆ ⊢C
Γ;∆ ⊢ [!e]C

Γ;∆ ⊢ e1 : α⇒β Γ;∆ ⊢ e2 : α Γ;∆ ⊢C (Γ ; ∆) ·z : β ⊢C′

Γ;∆ ⊢ {C} e1•e2 = z{C′}

Fig. 2. Typing Rules for Terms and Formulae

(c, c′,...) include unit(), numeralsn and booleansb (either truet or falsef). Operators
op(ẽ) range over first-order operations from the target programming language, including
the standard arithmetical operations over natural numbers. In addition, we have paring,
projection1 and injection operation. The final term, !e, denotes the dereference ofe, i.e. the
content of a store denoted bye.

The predicate{C} e• e′ = x {C′} is calledevaluation formula(Hondaet al., 2005),
where the namex binds its free occurrences inC′. C andC′ are called(internal) pre/post
conditions. Intuitively,{C} e•e′ = x {C′} asserts that an invocation ofewith an argument
e′ under the initial stateC terminates with a final state and a resulting value, namedu, both
described byC′. Clearly• is non-commutative.

The remaining two constructs are non-standard quantifications which are at the heart
of the present logic.[!e]C is universal content quantification of e over C, while 〈!e〉C
is existential content quantification of e over C. In both,e should have a reference type.
Informally:

• [!e]C saysC holds regardless of the value stored in a memory cell namede.
• 〈!e〉C saysC holds for some value that may be stored in the memory cell named e.

In both, what is being quantified is the content of a store,notthe name of that store. In[!e]C
and〈!e〉C, C is thescopeof the quantification. Free names ine are not binders: we have
fv(〈!e〉C) = fv([!e]C) = fv(e)∪ fv(C). In particular,x is not a binder in[!x]C and〈!x〉C.
Content quantification obeys all standard axioms of modal operators (hence the notation),
as we explore in Section 6. Binding in formulae is induced only by standard quantifiers
and the evaluation formulae. Formulae are taken up to the inducedα-convertibility.fv(C)

(resp.bv(C)) denotes the set of free variables (resp. bound variables) in C. Since〈!e〉C
is logically equivalent to∃x.(e= x∧〈!x〉C) if x is fresh, content quantification in its full
generality is not needed for expressivity, only〈!x〉C and its de Morgan dual[!x]C.

Terms are typed inductively starting from types for variables and constants and signa-
tures for operators. The key typing rules are given in Figure2. Recalling thatΓ;∆ indicates

1 The projection operatorπi (e) has been included for convenient presentation of some proofrules but is redun-
dant: for example the formulaeπ1(e) = e′ can be expressed as∃xy.(e= 〈x,y〉∧x = e′).
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a map from names to types such thatΓ (resp.∆) is about non-reference types (resp. ref-
erence types), we writeΓ;∆ ⊢ e : α whene has typeα such that free names ine have
types followingΓ;∆; andΓ;∆ ⊢C when all terms inC are well-typed underΓ;∆. We also
write Γ;∆ ⊢C if C is well-typed underΓ;∆. Henceforth we only treat well-typed terms and
formulae.

Further notational conventions follow.

Convention 3 (assertions)

1. In the subsequent technical development, logical connectives are used with their
standard precedence/association, with content quantification given the same prece-
dence as standard quantification (i.e. they associate stronger than binary connec-
tives). For example,

¬A ∧ B ⊃ ∀x.C ∨ 〈!e〉D ⊃ E

is a shorthand for

((¬A) ∧ B) ⊃ (((∀x.C) ∨ (〈!e〉D)) ⊃ E).

C1 ≡C2 stands for(C1 ⊃C2)∧ (C2 ⊃C1), stating the logical equivalence ofC1 and
C2. e 6= e′ stands for¬e= e′. We also use truthT (definable as 1= 1) and falsityF
(which is¬T). The standard binding convention is always assumed.

2. Logical connectives are used not only syntactically but also semantically, i.e. when
discussing meta-logical and other notions of validity.

3. If e′ is not a variable,{C} e1•e2 = e′ {C′} stands for{C} e1•e2 = x {x= e′∧C′},
with x fresh; and{C} e1 •e2 {C′} stands for{C} e1•e2 = () {C′}.

5.2 Syntactic Substitution and Name Capture

In the standard predicate calculus with quantification and/or equality, direct syntactic sub-
stitutions on formulae play a fundamental role in reasoning. Using syntactic substitution
needs care in the present assertion language due to implicitcapture of names introduced
by content quantification and evaluation formulae. The following definition extends the
standard notion “e is free forx in C” as found in (Mendelson, 1987).

Definition 8 We say a termeα is free for xα in C if one of the following clauses holds.

1. e is free forx in e1 = e2.
2. e is free forx in ¬C if it is free for x in C.
3. e is free forx in C1 ⋆C2 with ⋆ ∈ {∧,∨,⊃} if it is free for x in C1 andC2.
4. e is free forx in Q y.C with Q ∈ {∀,∃} if e is free forx in C, and, moreover,y∈ fv(e)

impliesx 6∈ fv(C).
5. e is free forx in {C1} e1•e2 = y {C2} if

• e is free forx in C1 andC2,
• e= E [!e′] impliesx 6∈ fv(C1)∪ fv(C2), and
• if y∈ fv(e) thenx /∈ fv(C1,C2,e1,e2).

6. e is free forx in [!e0]C if
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• e is free forx in C; and
• e= E [!e′] such thate′ ande0 having the same type, impliesx 6∈ fv(C).

7. The case〈!e0〉C is similar to the last.

In (5, 6)E [·] is a one-holed expression context, we omit the straightforward definition.

The last two conditions, 5 and 6, concern name capture by content quantification. As we
formalise later, the semantics of evaluation formulae saysthat dereferences in pre/post-
conditions of evaluation formulae are implicitly universally quantified. Avoiding inappro-
priate name-capture with content quantifiers is similar to the same problem for conven-
tional quantifiers. This is illustrated next, by considering Clause 6 below. Consider the
following assertion:

C
def
= z= 3 ⊃ [!y]z= 3 (26)

The assertion is a tautology (i.e. true in any model), saying: if z is 3, then whatever value a
cell namedy stores,z is still 3. However the following assertion, resulting from(26) when
we apply the substitution[!y/z] naively, isnota tautology (in fact it is unsatisfiable).

C[!y/z]
def
= !y = 3 ⊃ [!y] !y = 3. (27)

Note !y is not free forz in C due to content quantification on !y. (27) says that, if the value
currently stored iny is 3, then any value storeable iny coincides with 3, a sheer absurdity.
Thus we should prohibit such substitution being applied toC.

In the standard quantification theory, we can always rename bound variables to avoid
capture of names. In the present case, what we do is to use (standard) existential quantifi-
cation to “flush out” all names in dangerous positions. As an example, takeC in (26). To
safely apply[!y/z] toC, we transformC to the following formula, up to logical equivalence:

C′ def
= ∃z′.( (z= 3 ⊃ [!y] z′ = 3) ∧ z= z′ ) (28)

Note !y is now free forz in C′. We can now safely perform the substitution:

C′[!y/z]
def
= ∃z′.( (!y = 3 ⊃ [!y] z′ = 3) ∧ !y = z′ ) (29)

which is again a tautology (as it should be). By carrying out such transformations, we can
always assumee to be free forx in a formula whenever we wish to apply[e/x] to C. Thus
we stipulate:

Convention 4 From now on, whenever we write C[e/x] in statements and judgements, we
assume e is free for x in C, unless otherwise specified.

In practical examples, the transformation as given above israrely necessary.

5.3 Logical Substitution

As already explained, the present logic, makes extensive use of a logical version of substi-
tution defined below.
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Definition 9 (logical substitutions) We set:

C{|e2/!e1|}
def
= ∃m.(〈!e1〉(C ∧ !e1 = m) ∧ m= e2)

with m fresh. Dually we set

C{|e2/!e1|}
def
= ∀m.(e2 = m ⊃ [!e1] (m= !e1 ⊃ C)),

again withm fresh.

These substitutions may be calledlogical content substitutionsor simply logical substitu-
tions. We shall deriveC{|e2/!e1|} ≡ C{|e2/!e1|} later with the help of appropriate axioms.
In practice we mostly use the existential rather than the universal variant of logical substi-
tution.

Logical substitutions behave well in the present theory. Inparticular, content substitution
interacts with content quantification just as syntactic substitution does with conventional
quantification (cf. (Mendelson, 1987)). The smooth interplay is aided by suitable axioms
for content quantification, to be presented in Section 6. Forexample, we have[!x]C ⊃

C{|e/!x|} for any (well-typed)x, e andC, which corresponds to the familiar axiom∀x.C ⊃

C[e/x]. It should then be no surprise thatC{|e/!x|} ⊃ 〈!x〉C also holds, corresponding to
the standard entailmentC[e/!x] ⊃ ∃x.C. Properties of content quantifications/substitutions
will be studied in detail later.

5.4 Semantics of Terms and Formulae

The interpretation of terms is straightforward, given as follows.

Definition 10 Let Γ;∆ ⊢ e : α, Γ;∆ ⊢ M andM = (ξ,D ,σ). Then theinterpretation of e
underM , denoted[[e]]M is inductively given by the clauses below.

[[xα]]M = ξ(x)
[[!e]]M = σ([[e]]M )

[[cα]]M = c

[[op(ẽ)]]M = op([[ẽ]]M )

[[〈e,e′〉]]M = 〈[[e]]M , [[e′]]M 〉

[[πi(e)]]M = Vi where[[e]]M = 〈V1,V2〉

[[inji(e)]]M = inji([[e]]M )

In the clause forop we omit to detail the straightforward workings ofop on first-order
values.

We use the following notation to define the satisfaction relation.

Notation 3 Givenx 6∈ fv(M 1),M 1 ≤x:α M 2 if for some appropriately typedV in the sense
of Notation 2: either

• M 2
def
= M 1 ·x : Vα; or

• α = Ref(β) andM 1 = (D ,ξ,σ),M 2 = (D +{x}, ξ ·x : {x}, σ · {x} 7→Vβ).

Informally M 1 ≤x:α M 2 whenM 2 is the result of adding exactly one free name toM 1.
If α is a reference type, thenM 2 either adds an identical{x} and a value stored in it, or,
alternatively, coalescesx to an existing identical. If on the other handα is a value type, then
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there is always a new entry inM 2 which mapsx to an appropriate value. Models extensions
≤x:α are used in interpretating first-order quantifiers.

Next we present the satisfaction relationM |= C. All definitions are standard (equal-
ity is interpreted as identity on abstract values) except for (1) evaluation formulae which
follow (Hondaet al., 2005); (2) content quantification, where we use semantic updates
introduced in Section 3.2; and (3) standard quantification,for which we use the notion of
model extension introduced in Section 3.2.

Definition 11 AssumeM Γ;∆ = (D ,ξ,σ) is a model. Assume in addition thatΓ;∆ ⊢ C.
Then we sayM satisfies C, writtenM |= C, if the following conditions hold inductively.

• M |= e1 = e2 if [[e1]]M
∼=D [[e2]]M .

• M |= ¬C if M 6|= C, i.e. if it is not the caseM |= C.
• M |= C1∧C2 if M |= C1 andM |= C2.
• M |= C1∨C2 if M |= C1 orM |= C2.
• M |= C1 ⊃C2 if M |= C1 impliesM |= C2.
• M |= ∀xα.C if M ′ |= C for eachM ′ such thatM ≤x:α M

′.
• M |= ∃xα.C if M ′ |= C for someM ′ such thatM ≤x:α M

′.

• M |= {C}e•e′ = x{C′} if, for eachM ′ def
= (D ,ξ,σ′) of typeΓ;∆ such thatM ′ |= C,

we have, for some semi-closedV of appropriate type:

— ([[e]]M ′ [[e′]]M ′ , σ′) ⇓ (V,σ′′) and
— (D , ξ·x:V, σ′′) |= C′.

• M |= [!eRef(α)]C if [[e]]M = i and for eachV ∈ [[α]]∆D we haveM [i 7→V] |= C.

• M |= 〈!eRef(α)〉C if [[e]]M = i and someV ∈ [[α]]∆
M

exists withM [i 7→V] |= C.

Some observations follow.

1. The clauses for universal and existential quantificationgive the standard definition
wheneverα is a value type. If it is a reference type, it allowsx to be aliased to existing
identicals, but does not require aliasing.

2. The clause forM |= 〈!e〉C says: in order to see if〈!e〉C holds inM , we evaluatee to
see which identical it denotes. Let it bei. Then the value stored ati inM is irrelevant,
all we need to know is if there is some valueV ∈ [[α]]M such thatM [x 7→V] satisfies
C.

5.5 Examples of Assertions

Dereference

The assertion “y = 6” saysy is equal to 6. In fact, we should write “yNat = 6” with a type
annotation ony, but we often omit such obvious or irrelevant detail. A program which
satisfies this assertion is 6 itself, namedy. Another program which satisfies this assertion
is 3+3, again namedy.

Next, “!y= 6”, again omitting type annotation, says the content of a memory cell named
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y is equal to 6. If bothz andy refer to the same cell, and if the above assertion holds, then
!y = 6 entails !z= 6. In the model, distinctions account for such aliasing.

A reference can store another reference in the target programming language, which
is easily describable with assertions. For example, “!!y = 6” (with y formally typed as
Ref(Ref(Nat))) says that the content of a memory cell whose name is stored inanother
memory celly, is equal to 6. Any store where a memory cell namedy stores some refer-
ence name which in turn names another cell that stores 6, satisfies this assertion. Of course
neither of these cells may be aliased.

Evaluation Formulae

The following assertion can be considered as a specificationfor the programλz.z :=!z×2,
namedu.

∀x.∀i.{!x = i}u• x{!x= 2× i} (30)

We recall from Convention 3 that the formula “{!x= i}u•x{!x= 2× i}” is an abbreviation
for “{!x = i}u•x = z{z= () ∧ !x = 2× i}”. The returned value () can be omitted because
it is insignificant –() is the unique inhabitant of typeUnit, so no other values are possible.
The shorthand also conforms nicely to standard Hoare triples. The assertion says thatu,
which denotes a procedure, always doubles the content of an argument, which should be a
reference storing a natural number.

The following assertion refines (30), giving a more focussedspecification forλz.z :=
!z×2. It shows how we can use inequalities on reference names in combination with an
evaluation formula to assert a strong property of imperative behaviour.

∀x,y, i, j. {!x= i ∧ x 6= y∧ !y = j}u• x{!x= 2× i ∧ x 6= y ∧ !y = j}. (31)

The assertion says that, in addition to the property alreadystated in (30), the program guar-
antees thatx is the only reference it may alter.2 It will be convenient to use the following
abbreviation for (31).

∀x, i. {!x = i}u• x{!x= 2× i}@x (32)

Such assertions are calledlocated assertions. (32) says the same thing as (31) but more
concisely. This is discussed in more detail later, startingwith Section 5.6.

5.5.1 Content Quantification (1): Existential

We now consider assertions which involve content quantification and substitution. These
examples demonstrate how a complex situation can be writtendown concisely using our
new forms of quantifications.

2 In (31), y and j refer to an arbitrary reference and its content, which cannot be typed by the monomorphic
type discipline. There are two straightforward resolutions to this issue. We could add ML-style implicit poly-
morphism to our assertion language (but not to the programming language). Alternatively, we note that if two
referencesy andzare of different types, writing toy cannot change what’s stored byz. However, from the effect
set, which is finite, we can determine set of all reference types where effects may happen. As this set must be
finite (due to the lack of recursive types), we treat each of these types separately. See Section 5.6 for details.
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First, as a very simple example, consider an assertion

〈!y〉 !y = 1 (33)

where we have omitted to annotatey with Ref(Nat). The assertion says:

In some possible state, the reference cell y (of typeRef(Nat)) may store 1.

In a hypothetical state, the content of a store may differ from the current one. Since we can
surely hypothesise such a state, the statement is always true, so that (33) is a tautology.

Next we consider an assertion which, by a trivial transformation, is(!x = 2){|m/!x|} and
may be considered as the precondition for having “!x = 2” after executing the assignment
“x := m”.

〈!x〉(!x = 2∧ !x = m). (34)

A modelM satisfies this assertion if and only if there is a modelM ′ which is exactly
like M except possibly for the value stored at a memory cell referred to byx and which
satisfies, at that memory cell, !x = 2∧ !x = m. What this means is that the assertion above
does not talk about what is stored atx. All it says that it is possible to fill a memory cell
namedx such that we have both !x = 2 andm = !x. Note this entailsm and 2 should be
equal (which is a stateless fact). As this does not claim anything about the content ofx,
only about its possible content, the only thing being asserted here is thatmdenotes 2 in the
model, hence (34) is logically equivalent tom= 2.

The next two examples show how equality and inequality over names interact with ex-
istential content quantification. First, consider

〈!x〉(x = y∧ !y = 1). (35)

It hides the content ofx, but also claims that bothx andy name the same memory cell.
This latter information is not existentially abstracted bythe content quantification since it
is aboutx andy, not their content. Becausex andy denote the same cell, the quantification
not only hides the content ofx but also that ofy. This is an immediate consequence of
the standard equality law (Mendelson, 1987), “x = y ∧ C(x,x) ⊃ C(x,y)” whereC(x,y)
rewrites some of the free occurrences ofx in C(x,x) (to be precise this rule is applicable
sincex is free fory in “x = y∧!y = 1”). Hence (35) is logically equivalent tox = y.

The next example uses inequality instead of equality in the assertion above.

〈!x〉(x 6= y∧ !y = 1). (36)

Againx 6= y is independent from any content quantification. Because of this inequality, we
also know that the content ofy is independent from that ofx: in other words,〈!x〉 does not
hide the content ofy, hence (36) is logically equivalent tox 6= y ∧ !y = 1, i.e. we can take
off the content quantification completely.

Now consider changing “!x = m” in (34) into “!y = m”, obtaining:

〈!y〉(!x = 2 ∧ !y = m) (37)

which is the same thing as “(!x = 2){|m/!y|}” up to logical equivalence. Thus (37) may
be considered as representing the precondition for arriving at “!x = 2” after executing the
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assignment command “y := m”. From our previous examples, we know there are two cases
to consider.

1. If x = y, then the content quantification hides both !y and !x (which are one and the
same thing), hence the formula saysm= 2.

2. If x 6= y, then !y is hidden som cannot be determined, whilex is not hidden. Hence
in this case the formula says !x = 2.

In summary, (37) is equivalent to(x= y⊃m= 2)∧(x 6= y⊃!x= 2), or equivalently to(x=

y∧m= 2)∨(x 6= y∧!x= 2). This is quite different from, say,∃i.(!y= i ∧ !x= 2 ∧ m= !y).

5.5.2 Content Quantification (2): Universal

The following two examples use universal content quantification. It is the de Morgan dual
of its existential counterpart:[!e]C is equivalent to¬〈!e〉¬C. In general,[!x]C says thatC
does not mention anything substantial about the content of (a memory cell named by)x.
As a first example, consider the assertion

[!x] !y = 3 (38)

assumingx is typed withRef(Nat). By definition, (38) literally says the following.

Whatever natural number we may store in x, the number stored in y is3.

When can this be satisfied? Clearly the content ofy should be 3. Moreover, this should be
true when we store inx something different from 3, say 0, so it also saysx andy name
distinct memory cells. Thus the assertion (38) is logicallyequivalent to “x 6= y ∧ !y = 3”.
From this we can easily see[!x] !x = 3 is equivalent to falsity since it should meanx 6=

x∧ !x = 3 which is impossible.
Universal content quantification offers a powerful tool when combined with located eval-

uation formulae. Recall the located assertion (32) which isfor the programλz.z :=!z×2,
reproduced below:

∀x, i. {!x = i}u• x{!x= 2× i}@x (39)

(39) says the program leaves untouched any property of a memory cell except for what it
receives as an argument. So, for example, if the program is fed with x, then, after running,
it leaves an even number iny still even, as far asy is distinct fromx.

∀x, i. {!x= i ∧ [!x]Even(!y)}u• x{!x= 2× i ∧ [!x]Even(!y)}@x (40)

which is a consequence of (39) (hence holds forλz.z :=!z× 2 namedu), remembering
[!x]Even(!y) says the content ofy is even regardless of the content ofx, that is we have
both Even(!y) andy 6= x. The entailment from (39) to (40) is the analogue of the standard
invariance rule, albeit it is purely logical – the notoriousside condition, that a program
does not touch a variable, is directly asserted. It might be useful to note that[!x]C doesnot
say thatC does not dereferencex. [!x]C merely asserts that the truth ofC is independent
from x’s content. That this is a different statement is clear because for example[!x] !x =!x
holds.
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Another occasion where combination of evaluation formulaeand universal content quan-
tification becomes useful is when we wish to perform the analogue of the consequence rule
at the level of evaluation formulae. Here it is essential to be able to have hypothetical as-
sertions on state, as the following example shows.

!x = 2 ∧ [!x] (!x = 3⊃ Odd(!x)) ∧ {Odd(!x)}u• (){Even(!x)} (41)

It says that the current content of a memory cell namedx is 2, the assertion !x = 3 ⊃

Odd(!x) should hold in all hypothetical situations about the content of x, and that invoking
at u will turn an odd content ofx to an even one. It is thus natural to conclude (formally
using axioms discussed in Section 6):

!x = 2 ∧ [!x] (!x = 3⊃ Odd(!x)) ∧ {!x= 3}u• (){Even(!x)} (42)

By comparing (41) with the following assertion we can see therole of content quantifica-
tion in the assertion above.

!x = 2 ∧ (!x = 3⊃ Odd(!x)) ∧ {Odd(!x)}u• (){Even(!x)}

But if !x = 2 holds then the assertion “!x = 3 ⊃ Odd(!x)” (which is now also about the
current state) is always true, hence we can no longer obtain{!x = 3}u• (){Even(!x)} by
the entailment.

5.5.3 Assertions for Double

We continue with assertions for three short programs, one ofwhich, the “Questionable
Double”, already appeared in Section 4. This is followed by the classical “Swap” and then
by assignment to a circular reference, all of which are substantially affected by aliasing. In
Section 9, we shall show that these programs do satisfy thesespecifications using the proof
rules of the logic to be introduced in Section 7.

First we treat the Questionable Double, whose definition in Section 4 was the following.

double?
def
= λ(x,y).(x :=!x+!x;y :=!y+!y)

The program takes a pair of two names, which is syntactic sugar for two subsequentλ-
abstractions, and can be given the following specification.

∀x,y, i, j.{x 6= y ∧ !x = i ∧ !y = j}u• (x,y){!x= 2i ∧ !y = 2 j}

The assertion is silent on what happens whenx = y. The next specification, which is also
satisfied bydouble?, talks just about this case.

∀x,y, i, j. {x = y∧ !x = i}u• (x,y){!x= 4i}

Combining these two, we get a fuller specification.

∀x,y, i, j. {!x = i∧ !y = j}u• (x,y){(x= y∧!x = 4i)∨ ( x 6= y∧!x = 2i∧!y = 2 j)}

The specification fordouble? suggests how we can refine this program so that it is robust
with respect to aliasing. This is done by “internalising” the conditionx 6= y as follows.

double!
def
= λ(x,y).if x = y then x :=!x+!x else x :=!x+!x; y :=!y+!y
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This meets the “expected” specification:

∀x,y, i, j. {!x = i ∧ !y = j} u• (x,y) {!x= 2i ∧ !y = 2 j} (43)

If we use a located assertion (cf. Section 5.6 below), we can further refine (43) to:

∀x,y, i, j. {!x = i ∧ !y = j} u• (x,y) {!x= 2i ∧ !y = 2 j}@xy (44)

The quantification ofx andy extends to the whole formula, including the terminal @xy.
(44) says that we can guarantee, in addition to the functional property described above, that
no reference cells other than those passed as arguments to this program are modified.

5.5.4 Assertions for Swap

A classical example for reasoning about aliasing (cf. (Cartwright & Oppen, 1981; Cartwright
& Oppen, 1978; Kulczyckiet al., 2003)) is the swapping routing:

swap
def
= λ(x,y).let z= !x in (x :=!y;y := z)

It receives two references of the same type and exchanges their content. The assertion
which specifies the behaviour ofswap namedu is:

Swap(u)
def
= ∀xyi j.{!x = i∧!y = j}u• 〈x,y〉{!x= j∧!y = i}.

Again we can refine the program using a located assertion:

Swap(u)
def
= ∀xyi j.{!x = i∧!y = j}u• 〈x,y〉{!x= j∧!y = i}@xy (45)

which gives the full specification forswap in the sense that it characterises behaviour of
programs up to∼=.

5.6 Located Evaluation Formulae

Before moving to the next section, we present the formal definition of located evaluation
formulae, motivated in the previous subsection. Our aim here is to add located evaluation
formulae

{C}e•e′ = x{C′}@g̃ (46)

as derived constructs to our logic, assuming that ˜g represents a finite set of reference typed
expressions. The intended reading or (46) is:

Evaluating the application of (the denotations of) e• e′ in a context that is correctly
described by C will terminate and yield a result. This result, named x, together with the
state after the evaluation is correctly described by C′. In addition, any reference cellnot
denoted by any member ofg̃ stores the same content before and after execution of the
application.

This reading suggests to take (46) as standing for

∀y.∀ j.{C∧y 6= g̃∧!y = j}e•e′ = x{C′∧!y = j} (47)
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wherey, j are fresh andy 6= g̃ stands for∧iy 6= gi . Note that (47) is not typable in general:
∀y cannot range over all reference types, and similarly for∀ j. Relatedly,y 6= g̃ may feature
inequalities between expressions of different types, which is prohibited by the typing rules
in Figure 2.

As mentioned in Footnote 2 on page 21, there are two straightforward approaches that
overcome this problem. The first adds a weak form of polymorphism that allowsy and j
to range over all appropriate types. The second, rather thanhaving a single variabley to
range over all reference cells not denoted by ˜g, takes one such variable for each relevant
type (and likewise forj). This is possible as effects happen only at a finite number oftypes.

The next proposition gives an example of what we would like tobe able to prove for
located assertions, regardless of how they are implemented.

Proposition 5 (located assertions)The following assertions are tautologies.

{C}e•e′ = x{C′}@w̃ ⊃ {C}e•e′ = x{C′}@w̃∪ ṽ

∀ j.{C ∧ !u = j}e•e′ = x{C′ ∧ !u = j}@w̃ ⊃ {C}e•e′ = x{C′}@w̃\u

where, in the second line,̃w\u denotes the result of taking off u from̃w and j should be
fresh.

We often call the first two implicationsweakeningand thinning for located assertions.
Located assertions are extensively used in the subsequent technical development.

We now discuss both implementation options and with sketching how located evalua-
tion formulae deal with potentially unbounded effects, as may happen in the presence of
recursive types.

5.6.1 Located Evaluation Formulae (1): Polymorphic Implementation

To make (46) typable using polymorphism, we add type variables to the grammar of types
used in assertions and universal quantification over types and its dual to the grammar of
assertions:

α ::= ... | X C ::= ... | ∀X.C | ∃X.C

Types are taken syntactically, and to accommodate type variables, the satisfaction relation
is now a tripleM Γ′∆′

|=I CΓ∆ whereI is a finite map from type variables to closed types
such that(Γ∆)I = Γ′∆′, see (Honda & Yoshida, 2004) for details. We must also mildly
change well-formedness and interpretation of expressionsto accommodate type variables.

• Well-formedness of equations is now given as:Γ;∆ ⊢ e1 = e2 iff Γ;∆ ⊢ ei : αi . In
other words, we no longer requiree1 ande2 to have the same type.

• Equations of expressions with different types are always false. This is reflected in
the following modification of the satisfaction relation. Let M = (D ,ξ,σ).

M |= eαi
1 = eα2

2 if

{

F α1 6= α2

[[e1]]M
∼=D [[e2]]M α1 = α2

Using these constructs, we define located evaluation formulae as follows (as usual we use
the vector notation ˜x under the assumption names in ˜x are pairwise disjoint, to denote a
finite set of names on which we freely perform permutations, set union and set difference).
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Definition 12 (located assertions (1)) The notation{C}e•e′ = x{C′}@g̃, calledevaluation
formula located atg̃ with eachgi of reference type, but not containing a dereference,
denotes the following formula, with X,y and j fresh.

∀X. ∀yRef(X). ∀ jX . {C ∧ y 6= g̃∧ !y = j}e•e′ = x{C′ ∧ !y = j}

The set of expressions ˜g in {C}e•e′ = x{C′}@g̃ is called(write) effector modified set.

It is often sufficient, for example in axioms, to use a set of namesw̃ instead of expressions
g̃, though sometimes the general case is needed. As we have already encountered in the
examples in Sections 5.5,{C}e•e′ = x{C′}@w̃ indicates not only that the invocation of
e with argumente′ starting from the initial state described byC terminates with the final
stateC′, the latter also describing the resulting value namedx, but also that during this
evaluation only references named by ˜w can be changed.

5.6.2 Located Evaluation Formulae (2): Monomorphic Implementation

Implementing located evaluation formulae with polymorphism is fine but needs slightly
changed models. We now show how one can avoid this change in setup by extracting more
information from the effects’ types.

The key insight is that effects happen only at a finite number of reference types. For

example if the effect set was{eRef(α)
1 ,eRef(α)

2 ,eRef(β)
3 }, instead of the polymorphicrepresen-

tation:

yRef(X) 6= ẽ∧!y = jX

from Definition 12, we could express the same constraints through the monomorphic

(yRef(α) 6= e1∧y 6= e2∧!y = jα)∧ (zRef(β) 6= e3∧!z= kβ).

This is reflected in the following monomorphic definition forlocated evaluation formulae.

Definition 13 Given a set S= {eα1
1 , ...,eαn

n } andβ, we define S|β
def
= {eαi ∈ S| αi = β}, the

restriction ofS to typeβ.

Using this construct, we define located evaluation formulaeas the following variant of
Definition 12.

Definition 14 (located assertions (2)) Assume ˜g is a finite set of reference typed expres-
sions, not containing a dereference, which together have types{Ref(α1), ...,Ref(αn)}. The
notation{C}e•e′ = x{C′}@g̃ (calledevaluation formula located at̃g) denotes the follow-
ing formula.

∀ỹRef(α̃). ∀ j̃ α̃. {C ∧
^

i

(yi 6= g̃|Ref(αi) ∧ !yi = j i)}e•e′ = x{C′ ∧
^

i

!yi = j i}

Here eachyRef(αi)
i and jαi is fresh.
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5.6.3 Located Evaluation Formulae (3): Recursive Types

The development of located evaluation formulae so far assumed finite effect sets. For
the present programming language this is appropriate because in the absence of recur-
sive types, no typable program can have unbounded effects. This changes with recursive
types. Consider a program, likemap(λxRef(Nat).x :=!x+1) which takes a list of references
storing numbers and increments the content of each reference in the list. If the program is
denoted byf , then we might want to specify

{T} f • x :: y{T}@xy {T} f • x :: y :: z{T}@xyz

wherex :: y is the list havingx as its first element andy as its second, etc. Now the effect
set’s size depends onf ’s argument. But what is the effect setS for

{T} f • l{T}@S

when all we know (by typing) aboutl is that it is a list? The appropriate effect set in this
case cannot be expressed directly with evaluation formulaelike those discussed above.

To deal with this situation we propose usingeffect comprehensions

{C1}e•e′ = x{C2}@C(y). (48)

HereC is a formula in our logic andy a variable. The intuition behind this construct is that
if z is a reference cell andC[z/y] holds, then the content ofzmay be changed by evaluating
e•e′. Conversely, if¬C[z/y], thenzstores the same value before and after. Hence (48) can
be taken to stand for

∀y.∀ j.{C1∧¬C(y)∧!y = j}e•e′ = x{C2∧!y = j}. (49)

As before, (49) cannot be typed directly. The two proposals above can again be employed
to solve this problem. However, this time the polymorphic approach seems easier, because,
the set of reference types affected by a program is less immediately expressed, though still
finite (up to tree-isomorphism). We leave a detailed investigation of effect comprehensions
to a forthcoming exposition, but note in closing that reasoning with effect comprehensions
is virtually as straightforward as with finite effects.

5.6.4 Polymorphic Swap

Our swap above in fact works for a pair of references of an arbitrary type, and is indeed
typable as such in polymorphic programming languages like ML and Haskell. Following
(Honda & Yoshida, 2004), we can capture its polymorphic behaviour by adding∀X.C (and
dually ∃X.C) to the assertion language, with the grammar of types extended with type
variables (X,Y, . . .) and quantifiers (∀X.α and∃X.α). With this extension, we can refine
(45).

∀X.∀xRef(X).∀yRef(X).∀iX .∀ jX .

{!x = i∧!y = j}u• 〈x,y〉{!x= j∧!y = i}@xy
(50)

The assertion should be readable naturally.
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5.6.5 Circular References

We close this chapter on assertions with discussing assignments to circular references. For
example, we would like to assert aboutx :=!!x which is not well-typed in the programming
language considered so far. Typing of such a reference needsrecursive types, which we out-
line first. We take the equi-isomorphic approach (Pierce, 2002) where recursively defined
types are equated iff their representation as regular treesare isomorphic. The grammar
of types is extended as follows, for both the programming language and for the assertion
language.

α ::= ... | X | µX.α
The typing rules do not change except for the change in types.Accordingly no change
is needed in the axioms and proof rules, but one possible, yetnot necessary option is to
introduce a recursively defined assertion.

An assertion forx :=!!x could be the following.

{!x= y ∧ !y = x} x :=!!x {!x = x}

Since originallyx andy refer to each other, after putting !!x to x, x should be pointing
to itself. Correct treatment of circular references is often significant in low-level systems
programming: as seen above, the proposed logical frameworkcan treat programs with
circular references without no extra effort.

Similarly we can easily specify

{!y = x} x := 〈1,inr(!y)〉 {!x = 〈1,inr(x)〉}

wherex is typed withµX.Ref((Nat× (Unit + X))), the type of a mutable list of natural
numbers (one may also use the null pointer as a terminator of alist). The assertion !x =

〈1,inr(x)〉 saysx stores a pair of 1 and the right injection of a reference to itself, precisely
capturing the graphical structure of the datum.

6 Logic (2): Axioms

The purpose of this section is to introduce axioms for deriving valid assertions in our
assertion language. We take for granted the usual notions ofaxiom system, inference rule,
deduction and the like. As is standard (Hoare, 1969), we shall assume that the axioms and
rules from propositional calculus, first-order logic with equality (Mendelson, 1987) and
formal number theory are freely available.

6.1 Axioms for Content Quantification

We start with the axioms for content quantification. Hoare’slogic (Hoare, 1969) allows
tractable reasoning about simple stateful programs because, due to the lack of aliasing,
state change by assignment has a logical description, obtained from an analysis of syn-
tactic substitution. This logical description leads to succinct logical laws and reasoning
principles, because the logical operations used in the decomposition of substitution come
with associated logical laws and reasoning principles.

For similarly tractable reasoning about stateful programswith aliasing we likewise need
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(CA1) [!x] (C-!x
1 ⊃C2) ⊃ (C1 ⊃ [!x]C2) (CA2) [!x]C⊃C

(CA3) [!x] (!x = m⊃C) ≡ 〈!x〉(C∧ !x = m) (CGen) C
[!x]C

Fig. 3. Axioms and Rule of Inference for content quantification.

succinct logical laws and reasoning principles, but for logical substitution. To obtain such,
we need axioms and reasoning principles for content quantification. We obtain those by
analogy with the axiomatisations of first-order quantification.

For example (Mendelson, 1987) axiomatises first-order universal quantification with two
axioms and a single rule of inference (in addition to Modus Ponens):

• ∀x.(A⊃ B) ⊃ A⊃ ∀x.B providedx does not occur inA and
• ∀x.A⊃ A[e/x].
• infer ∀x.A from A providedx does not appear freely in assumptions.

Our axiomatisation of content quantification given in Figure 3 is analogous. First, we
regard〈!x〉C as standing for¬[!x] (¬C). There are three axioms(CA1–CA3). In (CA1), C-!x

indicatesC is syntactically!x-free, defined next.

Definition 15 (active dereference) Theactive dereferencesof an expressione, ad(e), are
inductively defined:

ad(x) = ad(c)
def
= /0 ad(op(ẽ))

def
=

S

i ad(ei) . . . ad(!e)
def
= {!e}∪ad(e)

Theactive dereferencesof a formulaC, ad(C), have the definition given next.

ad(e= e′)
def
= ad(e)∪ad(e′) ad(¬C)

def
= ad(C)

ad(C⋆C′)
def
= ad(C)∪ad(C′) ad({C}e•e′ = x{C′})

def
= ad(e)∪ad(e′)

ad([!e]C)
def
= (ad(C)\ {!e})∪ad(e) ad(〈!e〉C)

def
= (ad(C)\ {!e})∪ad(e)

ad(Q x.C)
def
= ad(C)

Example 4 (active dereferences)

1. T andF contain no active dereferences.
2. !x = 3 has !x as sole active dereference.
3. In !!x =!y we have three: !y, !x and !!x.
4. The evaluation formula{!x = 2}! f•!y = z{!z= 1} has !f and !y as active derefer-

ences.
5. [!!x] (!!x =!y) has two active dereferences, !x and !y.
6. Finally, ∀x.!!x =!y has !!x, !x and !y as active dereferences, but theα-equivalent

∀z.!!z=!y has !!z, !zand !y. Hence active dereferences arenotstable under renaming
of bound variables.

The intuition behindad(·) is that if two modelsM 1,M 2 agree on their stateless part and
on ad(e), then [[e]]M 1

∼= [[e]]M 2
, and similarly for formulae. The need for the – on first

glance possibly peculiar – definitionad([!e]C)
def
= (ad(C)\ {!e})∪ad(e), and likewise for
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existential content quantification, is this: the truth-value of[!!x]C does not depend on what
a model stores at (the identical containing) !!x. It does however depend on what is being
stored at !x. Assume thatM |=!x = y andM ′ |=!x 6= y. Then

M |= [!!x] !!x =!y M ′ 6|= [!!x] !!x=!y.

Definition 16 (syntactic !x-freedom) We generate the set of syntactically !x-free formulae,
S -!x, as follows:

1. [!x]C∈ S -!x, dually〈!x〉C∈ S -!x.
2. C∧

V

i ei 6= x ∈ S -!x and, dually,
V

i ei 6= x ⊃ C ∈ S -!x, in both cases assuming that
{!ei} = ad(C) and that no occurrence of a free name in anei is bound inC.

3. The result of applying any of the logical connectives (including negation) or stan-
dard/content quantifiers, except∀x and∃x, to formulae inS -!x is again inS -!x.

Example 5 (syntactic !x-freedom)

1. T andF are syntactically !x-free.
2. Similarly for [!x]C and〈!x〉C, as well as !y = 3∧x 6= y.
3. The assertion !!y= 3 ∧ x 6=!y is not syntactically !x-free, but the logically equivalent

∃r.(!r = 3∧ r =!y∧ r 6=!y) is.
4. On the other hand, !y = 3 is not syntactically !x-free, even up to≡. Intuitively,C-!x

saysC does not mention the content ofx.

Among the axioms,(CA1) corresponds to familiar∀x.(C−x
1 ⊃ C2) ⊃ (C1 ⊃ ∀x.C2) except

that we requireC1 to be syntactically !x-free instead ofx-free.(CA2) is a degenerate form of
∀x.C⊃C[e/x]. (CA3) says that the two ways of representing logical substitutions coincide,
which is important to recover all properties of semantic update (Cartwright & Oppen, 1981;
Cartwright & Oppen, 1978; Morris, 1982a; Morris, 1982d; Morris, 1982c), as discussed in
the next section. Finally, we add an inference rule (CGen), that is the analogue of standard
generalisation, which says: “If we can deriveC from the axioms, then we may conclude
[!x]C”. This rule assumes deductions without assumptions (e.g. all leaves of a proof tree
should be axioms). If weare to use deduction with non-trivial assumptions, we demand
assumptions to be syntactically !x-free if the deduction uses(CGen) for !x. By a standard
argument, we obtain a deduction theorem (Mendelson, 1987).Once a deduction theorem
is proven, we can use it to derive many laws for content quantification.3

For example, given the assumption[!x] (C1∧C2), we can deriveC1 ∧C2 by (CA2) and
Modus Ponens. Then we obtainC1 by the elimination rule for∧. To the latter we ap-
ply (CGen), which is possible because the assumptions are !x-free, to obtain[!x]C1; simi-
larly we get[!x]C2, so we obtain[!x]C1∧ [!x]C2 by the∧-introduction rule; the other way
round is similar. We also note that (CA2) is not restrictive since from[!x]C we can derive
C{|m/!x|} for arbitrarym.

We now present several such laws. We begin by focussing on theuniversal part of the

3 A different and equivalent axiomatisation of content quantification can be given, again following a first-order
logic, by replacing the rule (CGen) with the axiomC-!x ⊃ [!x]C, and closing all axioms under universal content
quantification, cf. citeenderton
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laws without loss of generality. Later we summarise all lawsincluding their existential
counterparts.

[!x]C′ ⊃ [!x] ((C′ ⊃C) ⊃C) (51)

[!x]C ∧ [!x]C′ ≡ [!x] (C∧C′) (52)

[!x]C ⊃ [!x] [!x]C (53)

[!x]C ∨ [!x]C′ ⊃ [!x] (C∨C′) (54)

[!x] (C∨C′) ⊃ [!x]C ∨ 〈!x〉C′ (55)

The existential counterpart of these laws is by dualisationdiscussed below. (51) allows us
to infer [!x]C′ from [!x]C whenC⊃C′ is a tautology. The existential counterpart of (53) is:

〈!x〉〈!x〉C ⊃ 〈!x〉C. (56)

These rules are reminiscent of axiomatisations for the modal “necessity” operator.4

The next three rules permute and increment quantifiers, again following the treatment of
the necessity modal operator. In the first rule, we assumex andy are distinct symbols.

∀y.[!x]C ⊃ [!x]∀y.C (57)

[!y] [!x]C ⊃ [!x] [!y]C (58)

〈!x〉 [!x]C ⊃ [!x]C (59)

Again they have dual versions. All these entailments are logical equivalences, with the
reverse direction being derivable: for (57), if we have[!x]∀y.C andx andy are distinct,
then byy not free in the formula we have∀y.[!x]∀y.C, from which we conclude∀y.[!x]C;
(58) is already symmetric; finally the converse of (59) uses the notion ofx-freedom of[!x]C
discussed later. We have another derived rule for first-order quantification.

∃x.!x = y (60)

This assertion does not mention content quantification but its derivation needs it.
The next two laws allow us to eliminate and introduce universal content quantifications,

and play the key role in reasoning about aliasing.

¬[!x] !x 6= y (61)

C-!x ⊃ [!x]C (62)

Please note that the reverse of (62) does not hold:[!x] !x =!x is true, despite !x=!xnot being
syntactically !x-free. (61) is easily understood as an analogue of∀x.(x 6= y)⊃ y 6= y ( ≡ F).

The following two laws connect universal content quantification and its dual.

¬[!x]C ≡ 〈!x〉¬C (63)

[!x] (!x = m⊃C) ≡ 〈!x〉(C ∧ !x = m) (64)

(63) directly comes from our definition of existential quantification in our axiom system.
The second law (64) is (CA3), which relates two dual quantifiers without dualisation: its

4 We believe that it is possible to give an alternative and equivalent modal axiomatisation of content quantifica-
tion, although what may be a minimal and natural set of such axioms is not clear.
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origin lies in the logical equivalence∀x.(x = m⊃C) ≡ C[m/x] ≡ ∃x.(C∧ x = m), briefly
mentioned in the introduction.

From (64) we immediately infer the equivalence between the two forms of logical sub-
stitutions introduced in Definition 9:

C{|e′/!e|} ≡ C{|e′/!e|} (65)

for anyC, e′ and !e. The axiom (64) plays a fundamental role in the present theory. From
this we also infer:

[!x]C ⊃ C{|e/x|} (66)

C{|e/x|} ⊃ 〈!x〉C (67)

Proposition 6 All the laws (51) - (67) are derivable.

Proof
The derivations are straightforward. For example, we derive (51) as follows:

1. [!x]C⊃ (([!x]C⊃C′) ⊃C′) (Tautology)

2. [!x] ([!x]C⊃ (([!x]C⊃C′) ⊃C′)) (CGen, 1)

3. [!x]C⊃ [!x] (([!x]C⊃C′) ⊃C′) (CA1, 2)

4. [!x]C⊃C (CA2)

5. [!x]C⊃ [!x] ((C⊃C′) ⊃C′) (3, 4)

For (58) we use:

1. [!y] [!x]C⊃C (CA2)

2. [!y] ([!y] [!x]C⊃C) (CGen, 1)

3. [!y] [!x]C⊃ [!y]C (CA1, 2)

4. [!x] ([!y] [!x]C⊃ [!y]C) (CGen, 3)

5. [!y] [!x]C⊃ [!x] [!y]C (CA1, 4)

The other derivations are equally easy.

For the remaining derived laws for content quantifications,we introduce the semantic
version of Definition 16.

Definition 17 C is !e-freewhen[!e]C≡C.

Remark 2 We usually regard≡ in Definition 17 as a syntactic notion (i.e. derivability of
[!x]C≡C as a theorem in the present logic, involving the axioms in thepresent section as
well as the ambient logical system such as Peano Arithmetic).

By (62), any syntactically !x-free assertion is !x-free but the reverse implication does not
hold, for example !x =!x is semantically but not syntactically !x-free. Some examples of
!x-free formulae follow.

Example 6 (!x-freedom)

1. As noted, any syntactic !x-free formula is !x-free. In particularT andF are !x-free.
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2. Similarly [!x]C and〈!x〉C are immediately !x-free.
3. Since !x-freedom is closed under≡ by definition, any tautologies/unsatisfiable for-

mulae are !x-free. AlsoC is !x-free iff C≡C0 such thatC0 is syntactically !x-free.

4. AssumeC
def
= !!e= 3∧ !e 6= x (sox is of typeRef(Nat)). ThenC is !x-free. Indeed,

we can writeC ≡ ∃r.(!e= r∧!r = 3∧ r 6= x).
5. (α-stateless formulae) Let us say a formulaC is α-stateless(resp.stateless) if C has

no active dereferences of typeα (resp. of any type). ThenC beingα-stateless andx
being typed byRef(α) in C imply C is !x-free.

Since[!x]C⊃C for anyC by (CA2), we knowC is !x-free if and only ifC⊃ [!x]C. Note
〈!x〉C ≡ C also characterises !x-freedom (which is often useful in practice) and that the
converse of (59) does hold.

The following results strengthen our observation that “!x-freedom ofC” acts as a substi-
tute for “x not occurring inC” in standard quantification theory.

Proposition 7 If C1 is !x-free, then:

[!x] (C1 ∨ C2) ≡ C1 ∨ [!x]C2 (68)

〈!x〉(C1 ∧ C2) ≡ C1 ∧ 〈!x〉C2 (69)

[!x] (C1 ⊃ C2) ≡ C1 ⊃ [!x]C2. (70)

Proof
By duality and since (70) merely rephrases (68), it suffices to derive (68).

[!x] (C-!x
1 ∨C2) ⊃ 〈!x〉C-!x

1 ∨ [!x]C2 ≡ C-!x
1 ∨ [!x]C2

C-!x
1 ∨ [!x]C2 ≡ [!x]C-!x

1 ∨ [!x]C2 ⊃ [!x] (C-!x
1 ∨C2)

Both universal and existential characterisations of !x-freedom are needed to obtain the
desired logical equivalence.

Note (70) is the same thing as saying[!x] (C1 ⊃C2) ⊃C1 ⊃ [!x]C2 wheneverC1 is !x-free,
the analogue of the standard axiom for universal quantifications.

Proposition 8 (derived axioms)

1. [!x] (C∧ (C⊃C′)) ⊃ [!x]C′, dually〈!x〉C⊃ 〈!x〉((C⊃C′) ⊃C′).
2. If C ⊃C′ is a tautology then[!x]C⊃ [!x]C′.
3. [!x]C⊃C{|e/!x|}, dually C{|e/!x|} ⊃ 〈!x〉C. Further C{|!x/!x|} ≡C.
4. C is !x-free iff C≡ 〈!x〉C iff ∃C′.(C≡ 〈!x〉C′) iff [!x]C≡C iff ∃C′.(C≡ [!x]C′).
5. If C1,2 are !x-free, then C1 ⋆C2 (⋆ ∈ {∧,∨,⊃}) is !x-free. If C is!x-free, then¬C is

!x-free. If C is!x-free and x6= y, then∀y.C and∃y.C are both!x-free. If C is!x-free,
then[!y]C and〈!y〉C are both!x-free.

6. If eα is free for !x in C and both C[e/!x] and e areα-stateless, C[e/!x] ≡ C{|e/!x|}
(where e is free for!x is defined as in Section 5.2 and C{|e/!x|} is the result of sub-
stituting e for each active occurrence of!x).

Proof
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For (1):

[!x] (C∧ (C⊃C′)) ≡ [!x]C ∧ [!x] (¬C∨C′)

⊃ [!x]C ∧ (〈!x〉¬C∨ [!x]C′)

≡ ([!x]C∧〈!x〉¬C)∨ ([!x]C∧ [!x]C′)

≡ F∨ ([!x]C∧ [!x]C′)

⊃ [!x]C′

For (2), observing any tautology is !x-free:

[!x]C ≡ [!x]C ∧ (C⊃C′)

≡ [!x]C ∧ [!x] (C⊃C′)

≡ [!x] (C ∧ (C⊃C′))

⊃ [!x]C′

For (3), the first statement:

[!x]C ≡ [!x]C∧〈!x〉 !x = m
⊃ 〈!x〉(C∧!x = m)

≡ ∀m.〈!x〉(C∧!x = m)∧∃m.m= e
⊃ ∃m.(〈!x〉(C∧!x = m)∧m= e)
≡ C{|!e/!x|}

The second statement is the dual of the first statement. For one direction of the third
statement, withm fresh:

C ≡ ∃m.(C ∧ !x = m∧ !x = m)

⊃ ∃m.(〈!x〉(C ∧ !x = m) ∧ !x = m)
def
= C{|!x/!x|}.

For the other direction, again withm fresh:

C{|!x/!x|} ≡ C{|!x/!x|}
def
= ∀m.(m=!x ⊃ [!x] !x = m⊃C)

⊃ ∀m.(m=!x ⊃ !x = m⊃C)

⊃ C

(4) and (5) are easy and omitted. For (6):

C{|e/!x|}
def
= ∃m.(〈!x〉(C∧!x = m)∧m= e)
≡ 〈!x〉(C∧!x = e)
≡ 〈!x〉(C[e/!x]∧!x = e)
≡ C[e/!x] ∧ 〈!x〉 !x = e
≡ C[e/!x]

Finally, as a simple application of content quantification,we calculate an example from the
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(e1) {C1}x•y=z{C} ∧ {C2}x•y=z{C} ≡ {C1∨C2} x•y = z{C}

(e2) {C}x•y=z{C1} ∧ {C}x•y=z{C2} ≡ {C} x•y = z{C1∧C2}

(e3) {∃wα.C} x•y = z{C′-w} ≡ ∀wα.{C} x•y = z{C′}

(e4) {C-w} x•y = z{∀wα.C′} ≡ ∀wα.{C} x•y = z{C′}

(e5) {A∧C} x•y = z{C′} ≡ A ⊃ {C} x•y = z{C′}

(e6) {C} x•y = z{A-z ⊃ C′} ⊃ A ⊃ {C} x•y = z{C′}

(e7) {C}x•y=z{C′} ⊃ {C∧A}x•y=z{C′ ∧A}
(e8) [!w̃] (C⊃C0) ∧ {C0}x•y=z{C′

0} ∧ [!w̃] (C′
0 ⊃C) ⊃ {C} x•y = z{C′}

(ext) Ext∆;α⇒β(x,y) ⊃ x = y

Fig. 4. Axioms for evaluation formulae.

introduction.

C{|c/!x|}{|e/!x|} ≡ ∃m.(〈!x〉(〈!x〉(C ∧ !x = c) ∧ !x = m) ∧ m= e)
≡ ∃m.(〈!x〉(C ∧ !x = c) ∧ (〈!x〉 !x = m) ∧ m= e) (∗)
≡ 〈!x〉(C ∧ !x = c)

≡ C{|c/!x|}

where(∗) uses〈!x〉(〈!x〉C∧C′) ≡ 〈!x〉C∧〈!x〉C′, which is direct from Proposition 7.

6.2 Axioms for Evaluation Formulae

The set of axioms for evaluation formulae are given in Figure4. With the exception of
(e8) and (ext), all are unchanged from the axioms in (Hondaet al., 2005). We assume the
following convention used throughout the paper.

Convention 5 From now on A,A′,B,B′, . . . (possibly subscripts) range overstateless for-
mulae, i.e. those formulae without any active dereferences (cf. Example 6 (3)), while C,C′, . . .

still range over general formulae.

In (e8), we use content quantifications to stipulate hypothetical entailment, cf. (41) in Sec-
tion 5.5.1 (which is closely related with Kleymann’s strengthened consequence rule (Kley-
mann, 1998)). In the rule, we assume the ˜w to exhaust all active dereferences inC,C0,C′

0
andC′. (e2) and (e8) together give the following axiom which is often useful:

{C1}x• y=z{C′
1} ∧ {C2}x• y=z{C′

2} ⊃ {C1∧C2} x• y= z{C′
1∧C′

2} (71)

The dual axiom (for disjunction) is similarly obtained from(e1) and (e8).
In (ext), the extensionality formula augments the corresponding formulae for alias-free

sublanguage in (Hondaet al., 2005) with located assertions.

Definition 18 (extensionality formulae) Let∆ = r̃ :Ref(γ̃) andx andy be typed asα⇒β.
Then set set:

Ext∆;α⇒β(x,y)
def
= ∀hα, iβ, j̃ γ̃, j̃ ′

γ̃
. ( { ! r̃ = j̃} x•h= z{z= i ∧ ! r̃ = j̃ ′}@r̃

≡ {! r̃ = j̃} y•h=w{w= i ∧ ! r̃ = j̃ ′}@r̃ )
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(le1) {C1}x•y=z{C}@w̃ ∧ {C2}x•y=z{C}@w̃ ≡ {C1∨C2}x•y = z{C}@w̃
(le2) {C}x•y=z{C1}@w̃ ∧ {C}x•y=z{C2}@w̃ ≡ {C}x•y = z{C1∧C2}@w̃
(le3) {∃uα.C}x•y = z{C′-u}@w̃ ≡ ∀uα.{C}x•y = z{C′}@w̃
(le4) {C-u}x•y = z{∀uα.C′}@w̃ ≡ ∀uα.{C}x•y = z{C′}@w̃
(le5) {A∧C}x•y = z{C′}@w̃ ≡ A ⊃ {C}x•y = z{C′}@w̃
(le6) {C}x•y = z{A-z ⊃ C′}@w̃ ⊃ A ⊃ {C}x•y = z{C′}@w̃
(le7) {C}x•y=z{C′}@w̃ ⊃ {C∧[!w̃]C0}x•y=z{C′∧ [!w̃]C0}@w̃
(le8) [!w̃] (C⊃C0)∧{C0}x•y=z{C′

0}@w̃∧[!w̃] (C′
0⊃C) ⊃ {C}x•y = z{C′}@w̃

(weak) {C}x•y=z{C′}@ṽ ⊃ {C}x•y=z{C′}@ṽw̃
(thin) ∀u, i.{C∧!u = i}x•y=z{C′∧!u = i}@w̃ ⊃ {C}x•y=z{C′}@w̃\u

Fig. 5. Axioms for located evaluation formulae.

We call Ext∆;α⇒β(x,y) the extensionality formula for x and y of typeα⇒ β under∆ or,
more briefly,the extensionality formula for x and y.

The extensionality formula expresses an extensional equality of two imperative sequential
higher-order behaviours. The predicate says, lettingdom(∆) = r̃:

Whenever x converges for some argument and for some stored values atr̃ and returns
some value, then y does the same with the same return value. Inaddition no other
reference cells are altered by x or y.

The use of write effects is fundamental to describe extensionality since, without write
effects, there could be different effects on unspecified memory cells.

In Figure 5, we list axioms for located assertions, which refine the original axioms in
Figure 4 (except (ext) which is already about located assertions), as well as adding two
new axioms for manipulating write effects. The axioms from (le1) to (le6) simply add
write effects to assertions. However (le7) allows us to add universally content-quantified
stateful formulae to the pre/post conditions, strengthening (e7). The reader may recall hav-
ing already seen an instance of this rule in (39) and (40), Section 5.5, Page 24. (le7) is
more general than (e7) in that weakened assertion can be stateful. At the same time (le7)
is justifiable using (e7). For concreteness, take the assertion (39) in Section 5.5:

{!x = i}u• x{!x= 2× i}@x

To this assertion we apply the first-order law∀x.C⊃C[e/x] to obtain for a concretey:

∀ j.{!x = i ∧ x 6= y ∧ !y = j}u• x{!x= 2× i ∧ x 6= y∧ !y = j}

Now we use (e7) and get:

∀ j.{!x = i ∧ x 6= y∧ !y = j ∧ Even( j)}u• x{!x= 2× i ∧ !y = j ∧ Even( j)}

By the law of equality and (e3) we infer:

{∃ j.(!x = i ∧ x 6= y ∧ Even(!y) ∧ !y = j)}u• x{!x= 2× i ∧ x 6= y ∧ Even(!y)}

Hence by (e8) we obtain:

{!x = i ∧ Even(!y)}u• x{!x= 2× i ∧ Even(!y)}@x,
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as required. As in this example, all these rules are easily justifiable using the axioms rules
in Figure 4.

Finally (weak) and (thin) correspond to the first two implications in Proposition 5. They
are reminiscent of the weakening rules and thinning rules invarious type disciplines, hence
the names.

6.3 Axioms for Data Types

Now we introduce axioms for data types. All axioms such as “xUnit = ()” have already
appeared in (Hondaet al., 2005). The only difference is that we no longer have the axiom
saying syntactically distinct reference names never equated, because that no longer holds.
One of the central features of the present logic is its general treatment of data types. Ex-
amples for stateless data types are already illustrated in our previous work, cf. (Honda &
Yoshida, 2004). Here we allow reference types to appear anywhere in types, so that data
structures can now be destructively updated in their parts.In the next section we shall see
a generalised assignment axiom which can treat assignment of an arbitrary data structure
to an arbitrary (mutable part of) data structure, which is quite common in systems pro-
gramming (e.g. a part of a record referred to by another record is replaced with another
pointer).

The data types treated above come from imperative PCFv. In practice, we may incorpo-
rate other standard data types, such as unions, vectors and arrays. Below we consider how
arrays can be treated. At the level of the programming language we add:

(types) α ::= ... | α[]

(programs) M ::= ... | M[N]

together with the typing rules:

−

Γ ⊢ a : α[]

Γ ⊢ M : α[] Γ ⊢ N : Nat

Γ ⊢ M[N] : Ref(α)

The construction above assumes that the identifier of each array to be used is given as a
constant (ranged over bya,b, . . .). We further regard expressionsa[0],a[1], . . . ,a[n−1] for
somen as values of reference types. These values form part of the domain of a concrete
store: it is also convenient, though not necessary, to include them as part of a reference
basis so that the size of an array is determined from a basis. For statically sized arrays, this
offers clean typing, though there are other approaches. Fordefining the dynamics of arrays
there are various alternative approaches that differ mostly in how out-of-bounds errors are
handled. Here we assume that an out-of-bound access generatesnil of the corresponding
reference type; the dereference ofnil leads toerr, anderr, when evaluated, leads toerr of
the whole expression, which follows a standard treatment oftype error (Milner, 1978).

Terms are augmented accordingly:

e ::= ... | a | e[e′] | size(e) | nilRef(α) | errα

where, ine[e′], we typeewith an array type (sayα[]) ande′ with Nat, with the whole term
given the type insize(e) (which denotes the size of an arraye), we typee with an array
type, with the whole term typed withNat; nilRef(α), which denotes the null pointer and
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whose type we usually omit, is typed byRef(α); anderrα denotes a (dereference) error of
typeα, for eachα.

We list some of the main axioms for arrays. First, for each constanta of type α[], we
stipulate its size:

size(a) = n

for a specificn∈ Nat (which should conform to the reference basis if stipulated). Next we
have the following axiom for all arrays to ensure that an array of sizen is made up ofn
distinct references.

∀i, j. ( 0≤ i, j � size(x) ∧ i 6= j ⊃ x[i] 6= x[ j] ) (72)

Another basic axiom for arrays is for their equality (for twoarrays of the same type):

(size(x) = size(y) ∧ ∀i. ( 0≤ i < size(x)−1 ⊃ x[i] = y[i] ) ⊃ x = y (73)

In some languages (such as Pascal), we may also stipulate theinequality axiom:

x 6= y ⊃ ∀i, j. ( 0≤ i < size(x)−1 ∧ 0≤ j < size(y)−1 ⊃ x[i] 6= y[ j] ) (74)

which says two distinct arrays never overlap (note this axiom is not applicable to, for
example, C). Note that (74) is equivalent to:

∃i, j. ( 0≤ i < size(x)−1 ∧ 0≤ j < size(y)−1 ∧ x[i] = y[ j] ) ⊃ x = y. (75)

For those axioms which involvenil anderr, see Remark 3 below.
In models, we may treat an array as simply a function from natural numbers to refer-

ences such that it maps all numbers within its range to distinct references and others tonil,
cf. (Apt, 1981). Other constraints can be considered following the axioms as given above.

As we shall see later, we need to add to the compositional proof system precisely one
introduction rule (as a constant) and one elimination rule (for indexing). This modularity
is one of the key features of the present logic.

Remark 3 (axioms fornil anderr) For reference we list basic axioms involvingnil anderr.
While these constructs are introduced for a wholesome semantic treatment of assertions,
the need to use them may not be as frequent as other “normal” term constructors (however
their treatment becomes essential when we consider e.g. error recovery routines). First of
all, out-of-bound errors are treated as:

i  size(x) ⊃ x[i] = nil (76)

Further we stipulate:

!nil = err. (77)

Further we stipulateerr when used as part of an expression always leads toerr:

E (err) = err (78)

whereE [ · ] is an arbitrary term context. We observe that there can be other choices for the
behaviour of these exceptional terms, whose investigationis deferred to a future occasion.
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7 Logic (3): Judgements and Proof Rules

7.1 Judgements and their Semantics

Following Hoare (Hoare, 1969), a judgement in the present program logic consists of two
formulae and a program, augmented with a fresh name calledanchor:

{C} MΓ;∆;α :u {C′}

(We often drop typing annotations for readability.) This sequent is used for both validity
and provability. If we wish to be specific, we prefix it with either⊢ (for provability) or |=
(for validity). In {C} M :u {C′}, M is thesubjectof the judgement;u its anchor, which
should not be indom(Γ,∆)∪ fv(C); C its pre-condition; andC′ its post-condition.5 We say
{C} MΓ;∆;α :u {C′} is well-typediff

• Γ;∆ ⊢ M : α.
• For someΓ′ ⊇ Γ and∆′ ⊇ ∆ such thatu /∈ dom(Γ′∪∆′) we have

— Γ′;∆′ ⊢C,
— Γ′·u:α;∆′ ⊢C′, if α is not a reference,
— Γ′;∆′·u:α ⊢C′, if α is a reference.

Henceforth we only treat judgements which are well-typed.Following Convention 3 (5),
{C}M {C′} stands for{C}M :u {u = () ∧ C′} whereu is a fresh name, typed asUnit.

As in Hoare logic, the distinction between primary names andauxiliary names plays an
important role in both proof rules and semantics of the logic.

Definition 19 (primary/auxiliary names) Let|={C}MΓ;∆;α :u {C′} be well-typed. Then
the primary namesin this judgement aredom(Γ,∆)∪ {u}. The auxiliary namesin the
judgement are those free names inC andC′ that are not primary.

Example 7 In a judgement “{x = i}2× xx:Nat ;Nat :u {u = 2× i}”, x and u are primary
while i is auxiliary and u is in addition its anchor.

Intuitively, {C} MΓ;∆;α :u {C′} says:

If Γ;∆ ⊢ M : α is closed by values satisfying C (fordom(Γ)) and runs starting from
a store satisfying C (fordom(∆) and maybe more), then it terminates so that the final
state and the resulting value named u together satisfy C′.

A store considered for a model may have a domain greater than∆. First this is sheer neces-
sity because, for example, a store forx : Ref(Ref(Nat)) ⊢!!x : Nat should have not onlyx
but another reference which stores !x (the same is true for auxiliary names). Second this is
consistent with∼=D (as∼=) being considered under all extensions of a given basis, cf.Sec-
tion 2.3/Section 3.1. Formally we stipulate as follows (seeNotation 2, Page 13, for the
notation(ξ ·u : V, σ′)).

5 In spite of the designations “pre/post-conditions”, theseassertions also describe complex (stateless) properties
about higher-order behaviour and data structures.
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Definition 20 (semantics of judgements) We say the judgement|={C}MΓ;∆;α :u {C′} is

valid, written |={C}MΓ;∆;α :u {C′}, iff: for each modelM Γ′;∆′ def
= (ξ,σ) whereΓ′ ⊇ Γ,

∆′ ⊇ ∆, Γ′;∆′ ⊢ C and Γ′ ·u : α;∆′ ⊢ C′, if (ξ,σ) |= C then (Mξ, σ) ⇓ (V,σ′) such that
(ξ ·u : V, σ′) |= C′.

Note that the standard practice of considering all possiblemodels for validity means con-
sidering all possible forms of aliasing conforming to preconditionC.

7.2 Proof Rules (1): Compositional Rules

We now present the proof rules for deriving valid judgementsfor imperative PCFv with
aliasing. There is one compositional proof rule for each programming language construct
which precisely follows syntactic structure. There are additional structural rules which only
manipulate formulae. We can also consider additional inference rules which are useful for
economical reasoning and which are justifiable (admissible) in the present system. We
shall discuss later in some detail inference rules of this third kind, specialised into located
assertions and their counterpart in judgements.

This subsection introduces the compositional proof rules.Their shape is unchanged from
the proof rules for the sublanguage without aliasing (Hondaet al., 2005) except for a
minimal and unavoidable refinement of the rule for assignment, which now uses{|e′/!e|}
instead of syntactic substitution[e′/!e] (cf. Section 4) and an adaptation to our generalised
syntax in dereference and assignment. This is in accordancewith our logical language,
which increments that in (Hondaet al., 2005) by two dual modal operators for reasoning
about aliasing. More fundamentally, the refinement in the assertion language and the proof
rules reflects that of the type structure of the programming language, i.e. the extension
to allow reference types to be carried by other types. This incremental nature, especially
the precise correspondence between type structure and logical apparatus, is central to the
family of program logics under investigation by the presentauthors.

Following (Hondaet al., 2005), we stipulate the following conventions for proof rules.

Convention 6 (proof rules)

• Variablesi, j, . . . that occur freely in a formula range over auxiliary names in agiven
judgement.

• C-x̃ is C in which no name from ˜x freely occurs (note that this is very different from
C-!x̃).

• In each proof rule, we assume all occurring judgements to be well-typed and no
primary names in the premise(s) to occur as auxiliary names in the conclusion. This
may be considered as a variant of the standard bound name convention.

• Whenever a syntactic substitution is used in a proof rule, itshould avoid capture of
names, i.e. it should be safe in the sense detailed in Section5.2.

• Following Convention 5,A,A′,B,B′, . . . range overstateless formulae, i.e. those for-
mulae which do not contain active dereferences (active dereferences are those deref-
erences which do not occur in pre/post conditions of evaluation formulae, cf. Defi-
nition 15).
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[Var] −
{C[x/u]} x :u {C}

[Const] −
{C[c/u]} c :u {C}

[Op]
C0

def
= C {Ci}Mi :mi {Ci+1} (0≤ i ≤ n−1) Cn

def
= C′[op(m0..mn−1)/u]

{C}op(M0..Mn−1) :u {C′}

[Abs]
{C∧A-x} M :m {C′}

{A} λx.M :u {∀x.{C}u•x = m{C′}}

[App]
{C} M :m {C0} {C0} N :n { C1 ∧ {C1} m•n = u {C′}}

{C} MN :u {C
′}

[If ]
{C} M :b {C0} {C0[t/b]} M1 :u {C

′} {C0[f/b]} M2 :u {C
′}

{C} if M then M1 else M2 :u {C
′}

[In1]
{C} M :v {C

′[inj1(v)/u]}
{C} in1(M) :u {C

′}
[Case]

{C-x̃} M :m {C-x̃
0 } {C0[inji(xi)/m]} Mi :u {C

′ -x̃}
{C} case M of {ini(xi).Mi}i∈{1,2} :u {C

′}

[Pair]
{C} M1 :m1 {C0} {C0} M2 :m2 {C

′[〈m1,m2〉/u]}

{C} 〈M1,M2〉 :u {C
′}

[Proj1]
{C} M :m {C′[π1(m)/u]}

{C} π1(M) :u {C
′}

[Deref]
{C}M :m {C′[!m/u]}

{C} !M :u {C
′}

[Assign]
{C} M :m {C0} {C0} N :n {C

′{|n/ !m|}}
{C} M := N {C′}

[Rec]
{A-xi ∧∀ j � i.B( j)[x/u]} λy.M :u {B(i)-x}

{A} µx.λy.M :u {∀i.B(i)}

Fig. 6. Proof rules (1): compositional rules.

The compositional proof rules of the program logic are givenin Figure 6.[Op] is a general
rule for first-order operators, and subsumes[Const] when arity is zero. As noted already,
the shape of all the rules in Figure 6 are identical character-by-character with the composi-
tional rules for the imperative PCFv without aliasing except for [Assign] which uses logical
substitution and hence content quantification. Leaving detailed explanation of the remain-
ing rules to (Hondaet al., 2005), we illustrate the two new rules for imperative constructs,
[Deref] and[Assign] in the following.

[Deref]. The rule[Deref] says that:

If we wish to have C′ for !M named u, then we should assume the same thing about M,
its content, substituting!x for u in C′.

To understand this rule, we may start from the following simpler version (which appeared
in (Hondaet al., 2005)).

[Deref-Org]
−

{C[!x/u]} !x :u {C}
(79)
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The rule says that, if we wish to haveC for !x (as a program) namedu, then we should
assume the same thing about the content ofx, substituting !x for u in C. For example we
may infer:

−

{Even(!x)} !x :u {Even(u)}
(80)

which is also sound in the present target language and logic.[Deref] generalises [Deref-
Org] so that it can treat the case when the dereference is done foran arbitrary program of a
reference type, which can even include invocation of imperative procedures. This becomes
possible by the change of type structure, where references can be used as return values or
as components of data types. An example follows (below and henceforth we often do not
expand simple applications of[Cons]).

1. {T} x :z {z= x} (Var)

2. {T} λx.x :m {∀x.{T}m• x= z{z= x}} (Abs)

3. {∀x.{T}m• x= z{z= x}} y :n {n = y ∧ {T}m•n= z{z= y}} (Var, Cons)

4. {T} (λx.x)y :m {!m=!y} (App, Cons)

5. {T} !((λx.x)y) :u {u =!y} (Deref)

As another simple example, letC be given by:

C
def
= ∀x, i.{!x = i} f • x = z{z= x ∧ !x = i +1},

Then we infer:

{C∧!x = 1} !( f x) :u {u = 2 ∧ !x = 2} (81)

by the following derivation.

1. {C∧!x = 1} f :m {C[m/ f ] ∧ !x = 1} (Var)

2. {C[m/ f ]∧!x = 1} x :n {C[m/ f ] ∧ n = x ∧ !x = 1} (Var)

3. {C[m/ f ]∧!x = 1} x :n {!x = 1∧{!x= 1}m•n=z{z= x∧ !x = 2}} (2, Cons)

4. {C∧!x = 1} f x :l {l = x ∧ !x = 2} (Var)

5. {C∧!x = 1} f x :l {!l = 2 ∧ !x = 2} (4, Cons)

6. {C∧!x = 1} !( f x) :u {u = 2 ∧ !x = 2} (Deref)

Note that the application above not only returns a referencebut also has a side effect. In
this way we can use [Deref] for dereferences of arbitrary programs. It is worth observing
that [Deref-Org] is more efficient when a single variable is dereferenced, which may be
frequent in practice.

Soundness of[Deref]. The shape of[Deref] and other proof rules has a direct semantic
justification: it is born from the semantics. The following semantic justification of the rule
makes this clear (below we write(Mξ,σ) ⇓m (ξ·m : V,σ′) for (Mξ,σ) ⇓ (V,σ′)).

(ξ, σ) |= C ⇒ (Mξ, σ) ⇓m (ξ·m: i, σ′) |= C′[!m/u]

⇒ ((!M)ξ, σ) ⇓u (ξ·u:σ′(i), σ′) |= C′
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The second inference above is valid because dereferencing does not change the store,
noting the freshness ofm.

[Assign]. The rule [Assign] says that:

If, starting from C, we wish the result of executing M:= N to satisfy C′, then we de-
mand, starting from C, M named m terminates (and becomes a reference label) to reach
C0, and, in turn, N named n evaluates from C0 to reach C′ with its occurrences of n
substituted for!m.

Please remember from Section 7 that [Assign] omits mentioning the conclusion’s anchor
(of Unit type) and a substitution of(), the uniqueUnit-value:{C}M := N{C′} stands for
{C}M := N :u {u = ()∧C′} with u fresh. This is justified becauseC[()/x] ≡ C always
holds whenx has the unit type. Hence we can always ignore this substitution. A simple
example of its usage follows (the first line is already reasoned in the previous page).

1. {T} (λx.x)y :m {m= y} (Var, Abs, App)

2. {m= y ∧ 1 = 1} 1 :n {m= y∧n = 1} (Const)

3. (m= y∧n = 1) ⊃ (!y = 1){|n/!m|}

4. {m= y ∧ 1 = 1} 1 :n {(!y= 1){|n/!m|}} (Cons)

5. {T} (λx.x)y := 1{!y= 1} (1, 4, Assign)

Line 3 is derived as:

(m=y∧ n=1) ⊃ [!m] (m=y ∧ n=1)∧〈!m〉 !m=n
⊃ 〈!m〉(m=y ∧ n=1∧ !m=n)

⊃ (!y=1){|n/!m|}.

The rule may be understood by contrasting it with the corresponding rule for the non-
aliased sublanguage in (Hondaet al., 2005). There the assignment rule reads:

[AssignOrg]
{C} M :m {C′[m/ !x]}
{C} x := M {C′}

There are two differences between this original rule and [Assign] in Figure 6. First,[AssignOrg]
only allows a variable as the left-value, while the[Assign] allows an arbitrary program. Sec-
ond, the original rule uses syntactic substitution, while the present system uses the logical
counterpart (cf. Section 5.3). The corresponding rule in the present context (only incorpo-
rating the second point) is:

[AssignVar]
{C} M :m {C′{|m/ !x|}}

{C} x := M {C′}

Clearly[AssignVar] is derivable from[Assign] through[Var].
In many programs, it is often the case that both sides of the assignment are expressions

which are simple in the sense that they do not contain calls toprocedures or abstractions.
One such example is a simple assignment to a variable. A little more complex case may
involve simple expressions on both sides of the assignment.One example follows.

{x = y ∧ Even(!!y)} !x := !!y+1{Odd(!!x) ∧ Odd(!!y)} (82)
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Note both “!x” and “!!y+1” do not have side effects: one may also observe they are both
terms of our assertion language. In such cases, we can use thefollowing rule:

[AssignSimple]
−

{C{|e2/!e1|}} e1 := e2 {C}

AssignSimpleis directly derivable from [Assign] and the following rule (which is derivable
from other rules: the derivability of this rule is easy by induction one).

[Simple]
−

{C[e/u]}e:u {C}

Above the use ofe as a program indicates that it is a term in the logic and a program in
our programming language at the same time. In various programming examples, we often
assign part of a complex data structure to a part of another complex data structure. The rule
[AssignSimple] gives a general rule for such cases.

Soundness of [Assign]. Again the proof rule for assignment is nothing but a logical way to
write down the semantics of the assignment,M := N, as the following semantic justification
of the rule shows. Below we letξ0 = ξ ·m: i (noteNξ = Nξ0).

(ξ, σ) |= C ⇒ (Mξ, σ) ⇓m (ξ·m: i, σ0) |= C0

⇒ (Nξ0, σ0) ⇓n (ξ0·n:W, σ′) |= C′{|n/!m|}

⇒ ((M := N)ξ, σ) ⇓u (ξ0·u:(), σ′[i 7→W]) |= C′

where the last line is by the logical equivalence between thetwo judgementsM |=

C′{|n/!m|} andM [ [[m]]M 7→ [[n]]M ] |= C′ (cf. Section 4).

7.3 Proof Rules (2): Structural Rules

As already mentioned, structural rules manipulate formulae only. They are important for a
logic’s expressivity. A well-known example of a structuralrules is:

C⊃C0 {C0} M :u {C′
0} C′

0 ⊃C′

{C} M :u {C′}
[Cons]

With one exceptions our structural rules are unchanged from(Hondaet al., 2005), where
much illustration can be found, and their details are discussed later, in the next section,
where we present located proof rules, which are a derivable generalisation from which the
original structural rules can easily be recovered.

7.4 Located Judgement and their Proof Rules

One of the central problems in large-scale software development is to prevent inadver-
tent interference between programs through shared variables, especially in the presence of
aliasing. The located assertions in Section 5.6 address this concern by delineating part of
the store a program may affect. Below we extend this idea to judgements. Roughly, we
consider

{C}M :u {C′}@ẽ
def
= {C∧y 6= ẽ∧!y = i}M :u {C′∧y 6= ẽ∧!y = i}.
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wherey andi are fresh and distinct. Once again the problem is how to type this judgement.
As before there are two immediate approaches, the polymorphic one where – omitting
straightforward details –y andi are respectively typed asRef(X) and X for a fresh X, and
the monomorphic counterpart, formalised next.

Definition 21 (located judgement) GivenC, Γ;∆ ⊢ M : α andC′, as well as a finite set of
terms{ẽ} having types{Ref(α1), ...,Ref(αn)} and not containing a dereference. Alocated
judgementhas the following shape.

{C}MΓ;∆;α :u {C′}@ẽ (83)

where{C}MΓ;∆;α :u {C′} is well-typed following Section 7.1. Now|= {C}MΓ;∆;α :u {C′}@ẽ
holds iff

|= {C ∧
^

i

yi 6= ẽ|Ref(αi) ∧ !yi = j i}MΓ;∆;α :u {C′ ∧
^

i

!yi = j i}

holds, with theyi and j i fresh and distinct and typed asRef(αi) andαi respectively (cf. Sec-
tion 5.6). As in located assertions, ˜e in (83) is calledwrite effect, or often simplyeffect,
which is often just a subset of reference names from the basis. A write effect is treated as
a finite set rather than as a sequence.

Starting from Section 5, we have seen several examples of using located assertions. Like
located judgements, located assertions are useful becauseexplicitly delineated write effects
are essential in the presence of aliasing for precisely describing observable behaviours of
programs. A conspicuous example is its use in the definition of extensionality formulae in
Section 6.2. In the following we present some examples of located judgements.

Example 8 (located judgement)

1. A judgement{!x = i} x :=!x+1 {!x = i +1}@x says that the program increments
the content ofx and does nothing else, in particular,x is sole reference whose content
may change.

2. LetM
def
= if x = 0 then 1 else x× f (x−1). Then we have

{Fact( f )} MΓ:Nat :u {u = x!}@/0

with Γ def
= f : Nat⇒Nat ·x : Nat andFact( f )

def
= ∀i � x.{T} f • i = i!{T}@/0.

3. For the sameM, we have:

{Fact′( f )} MΓ:Nat :u {u = x!} @w

whereFact′( f )
def
= ∀i � x.{T} f • i = i!{T}@w. Note thatw is auxiliary. The judge-

ment says: iff may have an effect at some reference, thenM itself may have an
effect on that reference.

Valid located judgements are derivable with the proof rulesfor non-located judgements
by translating located judgements to non-located ones. A more efficient method is to use
compositional proof rules which are derivable in the original system but which are tailored
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[Var] −
{C[x/u]} x :u {C}@ /0 [Abs]

{C∧A-x} M :m {C′}@ẽ
{A} λx.M :u {∀x.{C}u•x= m{C′}@ẽ}@ /0

[Op]
{C} M1 :m1 {C1}@ẽ1 ... {Cn−1} Mn :mn {C

′[op(m1, ...,mn)/u]}@ẽn

{C} op(M1, ...,Mn) :u {C′}@ẽ1...ẽn

[App]
{C} M :m {C0}@ẽ {C0} N :n { C1 ∧ {C1}m•n = u{C′}@ẽ′}@ẽ′′

{C} MN :u {C
′}@ẽẽ′ẽ′′

[If ]
{C} M :b {C0}@ẽ {C0[t/b]} M1 :u {C

′}@ẽ′ {C0[f/b]} M2 :u {C
′}@ẽ′′

{C} if M then M1 else M2 :u {C
′}@ẽẽ′ẽ′′

[In1]
{C} M :v {C

′[inj1(v)/u]}@ẽ
{C} in1(M) :u {C

′}@ẽ
[Case]

{C-x̃} M :m {C-x̃
0 }@ẽ {C0[inji(xi)/m]} Mi :u {C

′-x̃}@ẽi
′

{C} case M of {ini(xi).Mi}i∈{1,2} :u {C
′}@ẽẽ′1ẽ′2

[Pair]
{C} M1 :m1 {C0}@ẽi {C0} M2 :m2 {C

′[〈m1,m2〉/u]}@ẽ2

{C} 〈M1,M2〉 :u {C
′}@ẽ1ẽ2

[Proj1]
{C} M :m {C′[π1(m)/u]}@ẽ

{C} π1(M) :u {C
′}@ẽ

[Deref] {C} M :m {C′[!m/u]}@ẽ
{C} !M :u {C

′}@ẽ

[Assign]
{C} M :m {C0}@ẽ {C0} N :n {C

′{|n/ !m|}}@ẽ′ C0 ⊃ m∈ ẽ
{C} M := N {C′} @ ẽẽ′

[Rec]
{A-xi ∧∀ j � i.B( j)[x/u]} λy.M :u {B(i)-x}@ẽ

{A} µx.λy.M :u {∀i.B(i)}@ẽ

Fig. 7. Derivable proof rules with located judgements.

for located judgements. The proof rules for located judgements are given in Figure 7 (for
compositional rules) and Figure 8 (for structural rules).

The compositional rules are entirely straightforward, closely following Figure 6, just
accounting for the effects, usually by accumulating effects computed in the premise. The
only exceptions are [Var, Abs, App, Assign]. In [Var] we declare the effect to be empty by
fiat. The correctness of this is immediate from the semanticsof variables. [Abs] internalises
the premise’s effect ˜e into the conclusion’s evaluation formula. [App] does the inverse of
this. The only place where new effects are inevitable is [Assign], which demands thatC0

saysm (the target of writing) is in the write effect (the set membership notation “∈” is
understood to denote a disjunction of equations).

Among the structural rules in Figure 8, five may deserve illustration, [Weak], [Thinning],
[Invariance], [Cons-Aux] and [Rename]. All others are straightforwardly derived from their
non-located counterparts, given in (Hondaet al., 2005). Conversely, all non-located struc-
tural rules of our logic are immediately obtained by simple removal of the effect set.
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[Promote]
{C}V :u {C

′}@ /0
{C∧C0}V :u {C

′ ∧C0}@ /0 [Cons]
C⊃C0 {C0} M :u {C

′
0}@ẽ C′

0 ⊃C′

{C} M :u {C
′}@ẽ

[∧-⊃]
{C∧A}V :u {C

′}@ẽ
{C}V :u {A⊃C′}@ẽ

[⊃-∧]
{C} M :u {A⊃C′}@ẽ
{C∧A} M :u {C

′}@ẽ

[∨-Pre]
{C1} M :u {C}@ẽ {C2} M :u {C}@ẽ

{C1∨C2} M :u {C}@ẽ
[∧-Post]

{C} M :u {C1}@ẽ {C} M :u {C2}@ẽ
{C} M :u {C1∧C2}@ẽ

[Aux∃]
{C} M :u {C

′ -i}@ẽ
{∃i.C} M :u {C

′}@ẽ
[Aux∀]

{C-i} M :u {C
′}@ẽ

{C} M :u {∀i.C′}@ẽ

[Invariance]
{C} M :u {C

′}@ẽ C0 is !ẽ-free
{C ∧ C0} M :u {C

′∧C0}@ẽ
[Rename]

{C} M :u {C
′}@ẽ σ injective renaming

{Cσ} Mσ :σ(u) {C
′σ}@ẽσ

[Weak] {C} M :m {C′}@ẽ
{C} M :m {C′}@ẽe′

[Thinning] {C∧!e′ = i} M :m {C′∧!e′ = i}@ẽe′ i fresh
{C} M :m {C′}@ẽ

[Cons-Aux]
{C0} M :u {C

′
0}@ẽ C ⊃ ∃ j̃.( C0[ j̃/ĩ] ∧ [!ẽ] (C′

0[ j̃/ĩ] ⊃C′) )
{C} M :u {C

′}@ẽ

In [Cons-Aux], we let !ẽ (resp.ĩ) exhaust active dereferences (resp. auxiliary names) inC,C′,C0,C′
0,

while j̃ are fresh and of the same length asĩ.

Fig. 8. Derivable structural rules for located judgements.

[Weak]. This rule adds a name to an effect, which is surely safe. As an example usage of
[Weak], we infer :

1. {T}x :m {m= x}@ /0 (Var)

2. {T}x :m {m= x}@ x (Weak)

3. m= x ⊃ m∈ {x}

4. {T}3 :n {(!x = 3){|n/!x|}}@ /0 (Const)

5. {T}x := 3{!x = 3}@ x (3, 4, Assign)

In Line 3, we have(!x = 3){|n/!x|} ≡ n = 3 by Proposition 8 (6). Of course we can assign
more complicated expressions. For example, we infer:

1. {!x = 1}x :m {m= x ∧ !x = 1}@ x (m= x∧ !x = 1) ⊃ m∈ {x}

2. {m= x ∧ !x = 1}!x+1 :n {(!x = 2){|n/!x|}}@ /0
3. {!x = 1}x :=!x+1 :n {n = 2}@ x (1, 2, Assign)

[Thinning]. The rule symmetric to [Weak] is [Thinning], which removes a reference name
from a write set. Hence the judgement becomes stronger, saying a given program modifies
(if ever) content of fewer references. This becomes possible when the premise guarantees
that the program does not change the content of the variable to be removed. Notei is fresh,
so that there is no constraint oni – the judgement thus says whichever value is stored
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[InvUniv] {C} M :u {C
′}@ẽ

{C ∧ [!ẽ]C0} M :u {C
′ ∧ [!ẽ]C0}@ẽ

[InvEx] {C} M :u {C
′}@ẽ

{C ∧ 〈!ẽ〉C0} M :u {C
′ ∧ 〈!ẽ〉C0}@ẽ

Fig. 9. Derivable invariance rules for located judgements.

in x, it does not alter its content. As an example usage of [Thinning], we infer, noting
C{|!x/!x|} ≡C (cf. Proposition 8 (3)):

1. (!x = i){|!x/!x|} ≡ !x = i ⊃ x∈ {x}

2. {!x= i} x := !x {!x = i}@ x (Assign-Simple)

3. {T} x := !x {T}@ /0 (Thinning)

The inference suggests that through the use of [Thinning], the extensional nature of the
logic is maintained in the proof rules for located judgements.

[Invariance]. This rule says that, if we know that a program only touches a certain set
of references, and ifC0 only asserts on a state which does not concern (the content of)
these references, thenC0 can be added to pre/post conditions as invariant for that program.
In practice, we may use the two derivable (and essentially equivalent) rules given next
(derivability is through Proposition 8 (3)).

[InvUniv]
{C} M :u {C′}@ẽ

{C∧ [!ẽ]C0} M :u {C′∧ [!ẽ]C0}@ẽ
[InvEx]

{C} M :u {C′}@ẽ

{C∧〈!ẽ〉C0} M :u {C′∧〈!ẽ〉C0}@ẽ

The rule[InvUniv] says that we demand all actively dereferenced names inC0 to be distinct
from ẽ, in which case surely it is invariance. In[InvEx], we stipulate that we demandC0

to hold only when all actively dereferenced names inC0 are distinct from ˜e. These two
derivable rules are sometimes useful since, using them, we can add any invarianceC0 to a
located judgement with a write set ˜eby simply prefixing with content quantifiers.

As one can easily observe, [Invariance] is a refinement of both the standard invariance
rule in Hoare logic, which has the shape:

⊢Hoare{C} P {C′} P does not touch variables inC0

⊢Hoare{C∧C0} P {C′∧C0}
(84)

and the invariance rule for non-located judgements (from (Hondaet al., 2005), here omit-
ted):

{C} M :u {C′}

{C∧A} M :u {C′∧A}
(85)

The rule may also be regarded as an analogue of a similar rule studied by Reynolds,
O’Hearn and others in (Reynolds, 2002; O’Hearnet al., 2004). Section 10.3 has a full
technical comparison. Since a weakened stateless formulaA in (85) is by definition !x-free
for anyx, [Invariance] above subsumes (85) (except we are now using located judgements).
On the other hand, [Invariance] is justifiable using (85), cf. Section 6.2.
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[Op-eoi]
{Ci} Mi :mi {C

′
i}@ẽi (1≤ i ≤ n)

^

i
〈!ẽi+1..ẽn〉C

′
i ⊃ C′[op(m1..mn)/u]

{
^

i
[!ẽ1..ẽi−1]Ci} op(M1, ...,Mn) :u {C

′}@ẽ1...ẽn

[App-eoi]
{C1}M :m {C′

1}@ẽ1 {C2} N :n { C′
2 ∧ {〈!ẽ2〉C′

1∧C′
2}m•n = u{C′}@ẽ3}@ẽ2

{C1∧ [!ẽ1]C2}MN :u {C
′}@ẽ1ẽ2ẽ3

[Assign-eoi]
{C1} M :m{C′

1}@ẽ1 {C2} N :n{C
′
2}@ẽ2 (〈!ẽ2〉C

′
1∧C2) ⊃ (C′{|n/ !m|}∧m∈ ẽ)

{C1∧ [!ẽ1]C2} M := N {C′} @ ẽẽ1ẽ2

[Pair-eoi]
{C1} M1 :m1 {C

′
1}@ẽ1 {C2} M2 :m2 {C

′
2}@ẽ2 〈!ẽ2〉C1∧C2 ⊃ C′[〈m1,m2〉/u]

{C1∧ [!e1]C2} 〈M1,M2〉 :u {C
′}@ẽ1ẽ2

Fig. 10. Evaluation-order-independent proof rules for located judgements.

7.4.1 Evaluation Order Independence

The derived invariance rules can further be combined with compositional rules for located
judgements in Figure 7 to obtain proof rules which are independent from particular eval-
uation order, in the sense that the correctness of the inference does not depend on the
order of evaluation of expressions appearing in the rule (recall the proof rules for oper-
ators, applications, pairs, etc. all assume a fixed evaluation order, i.e. from left to right).
Evaluation-order independence (EOI for short) in the most general case holds when two
(or more) expressions involved only write to separate stores and, moreover, their resulting
properties only rely on invariants which hold regardless ofthe state change induced by
other expressions. Here we use a slightly stronger constraint, when the properties of each
expression does not at all depend on written sets of the remaining expressions. Figure 10
lists the EOI-refinement of (located) operator/application/assignment/pairing rules. These
rules are all inferred from the original rule together with two variants of the invariance rule,
[InvUniv] and [InvEx].

We illustrate the situation for sequential composition, recalling thatM;N is short for
(λ().N)M. Formodularreasoning we would like to infer a judgement forM;N from judge-
ments{C1} M {C′

1} and{C2} N {C′
2}, whereC1,C′

1 should not talk about things that are
only relevant for inferring{C2} N {C′

2} and vice versa. Ideally we would like a rule as
easily applicable as:

{C1} M {C′
1} {C2} N {C′

2}

{C1∧C2} M;N {C′
1∧C′

2}
(86)

But this is unsound. The execution ofM might invalidate assumptions inscribed inC2.
Similarly, runningN may destroy the guarantees made byC′

1. However, if we’d knew that
C2’s truth-value was independent fromM’s effects, and thatC′

1 was likewise isolated from
N’s destructive updates, (86) would in fact be admissible. With content quantification,
this is easily expressed: assume all ofM’s effects were in ˜e1, then[!ẽ1]C2 was !ẽ1-free,
i.e. independent fromM’s effects. Similarly, withN’s effects in ˜e2, 〈!ẽ2〉C′

1 is !ẽ2-free.
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Hence the following refinement of (86) is sound:

[Seq-I]
{C1} M {C′

1}@ẽ1 {C2} N {C′
2}@ẽ2

{C1 ∧ [!ẽ1]C2} M;N {C′
2 ∧ 〈!ẽ2〉C

′
1}@ẽ1ẽ2

It is noteworthy that this rule doesnot require ˜e1 andẽ2 to be disjoint, or thatC2 does not
mention names in ˜e1 and vice versa. The rule directly infers a judgement for a sequenced
pair of programs from independent judgements for the component programs. Here we show
a simple example usage.

1 {T} x := 2 {!x= 2}@x (AssignS)

2 {T} y :=!z{!y = !z}@y (AssignS)

3 {T} x := 2;y :=!z{〈!y〉 !x = 2∧ !y =!z}@xy (Seq-I)

Note〈!y〉 !x = 2 is equivalent tox 6= y⊃ !x = 2. We used the following located version of
[AssignS]:

[AssignS] {C{|e2/!e1|}} e1 := e2 {C}@ẽ (C⊃ e1 ∈ ẽ)

Similarly, one obtains EOI-rules for operators, application, assignment etc., as given in
Figure 10. All EOI-rules are proved from the corresponding original rule together with
Invariance rules [InvUniv] and [InvEx]. In later sections we shall show a few examples
using located assertions and judgements. Located judgements also play an essential role
for proving observational completeness, one of the basic results about our logic, briefly
discussed in Section 10.

We close this section with a result relating derivability between located and unlocated
judgements. The proof is easy and omitted (to derive[Thinning] we need[Cons-Aux]).
Below a translationof a located judgement is one of the instances of those presented in
Definition 21.

Proposition 9 {C} M :m {C′}@g̃ is derivable in the proof rules for located judgements
iff its translation is derivable in the proof rules for non-located judgements.

7.5 Proof Rules for Imperative Idioms

For reasoning about programs written in an imperative idiom, derived proof rules are some-
times simpler to apply directly than the original rules. Figure 11 lists several located proof
rules for this purpose. The initial four assignment rules are directly derivable from the gen-
eral assignment rule in Figure 7. The next two rules for the one-branch conditional are
also easily derivable from the general conditional rule in Figure 7. In[IfThenSimple], we
assumee is also a term of boolean type in the assertion language (in fact any terme of a
boolean type becomes a formula bye= t, though such translation is seldom necessary).

The two rules for while loops augment the standard total correctness rule by Floyd
(Floyd, 1967). In both rules,e′ (of Nat-type) functions as an index of the loop, which
should be decremented at each step. In[WhileSimple], the guard is a simple expression.
In [While], the guard is a general program, possibly with a side effect (which however
should not increase an index).Ab means that if there is a primary name inA, it must be
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[AssignVar] C{|e/!x|} ⊃ x = g
{C{|e/!x|}} x := e{C}@g

[AssignSimple] C{|e′/!e|} ⊃ e= g
{C{|e′/!e|}} e := e′ {C}@g

[AssignVInit]
C{|e/!x|} !x-free C ⊃ x = g
{C} x := e{C∧!x = e}@g [AssignSInit]

C{|e′/!e|} !e-free C{|e/!e|} ⊃ e= g
{C} e := e′ {C∧!e= e′}@g

[IfThenSimple]
{C∧e} M {C′}@g̃

{C} if ethen M {C′}@g̃

[IfThen] {C} M :m {C0}@g̃ {C0[t/m]} N {C′}@g̃′ C0[f/m] ⊃C′

{C} if M then N {C′}@g̃g̃′

[WhileSimple]
(C∧e) ⊃ e′ > 0 {C∧e∧e′ = i} M {C∧e′ < i}@g̃ i fresh

{C} while edo M {C∧¬e}@g̃

[While]

{C∧e′ = i} M :b {Ab∧C∧e′ <= i} @ g̃
{C∧A[t/b]∧e′ = i} N {C∧e′ < i}@g̃′

C∧A[t/b] ⊃ e′ > 0 i fresh
{C} while M do N {C∧¬e}@g̃g̃′

[Seq] {C} M {C0}@g̃ {C0} N {C′}@g̃′

{C} M;N {C′}@g̃g̃′

[Seq-I]
{C1} M {C′

1}@ẽ1 {C2} N {C′
2}@ẽ2

{C1 ∧ [!ẽ1]C2} M;N {C′
2 ∧ 〈!ẽ2〉C

′
1}@ẽ1ẽ2

[AppSimple]
C ⊃ {C}e• (e1...en) = u{C′}@g̃

{C} e(e1...en) :u {C′}@g̃
[Let]

{C} M :x {C0}@g̃ {C0} N :u {C′}@g̃′

{C} let x = M in N :u {C
′}@g̃g̃′

Fig. 11. Located proof rules for imperative idioms.

b. Both rules are directly derivable from the original rules through the standard encoding,
as illustrated in detail in (Hondaet al., 2005). Finally the aforediscussed[Seq-I] (I is for
independence) is the EOI-version of the standard rule[Seq].

One of the notable aspects of the presented logic is uniform treatment of data types. As
a basic example, let us take a look at how to incorporate reasoning principle for arrays.
Section 6.3 already introduced the array data type with a corresponding axiomatisation.
Figure 12 presents the located version of the proof rules forarrays.[Array], together with
the axioms introduced in Section 6.3 is all we need to reason about arbitrary arrays and
operations on them in imperative PCFv. This simplicity partly comes from treating arrays

[Array]
{C}M :m{C0}@g̃ {C0}N :n{C

′[m[n]/u]}@g̃′ C′[m[n]/u] ⊃ 0≤n<size(m)

{C} M[N] :u {C
′} @ g̃g̃′

[ArraySimple]
C[ e[e′]/u ] ⊃ 0≤ e′< size(e)
{C[ e[e′]/u ]} e[e′] :u {C} @ /0

Fig. 12. Located proof rules for arrays.
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as a string of references, cf. (Apt, 1981). The second rule inFigure 12 is a derivable version
of [Array] for simple expressions which is often useful. Below we give the reading of
[SimpleArray].

If the initial state,C[e[e′]/u], says that the indexe′ (of Nat-type) is within the range of
the size of the arraye (of α[]-type), then we can conclude the arraye[e′] namedu (of
typeRef(α)) has the propertyC, with no write effect.

In comparison [Array] rule just adds state change by evaluating the array and its index.
It is instructive to see how the dynamics involving arrays, in particular assignments, can

be reasoned about using these rules. For example if you wish to assign a value to an array at
a particular index, which is an operation often found in practice, we can simply specialise
eande′ in [ArraySimple] to reach the following rule:

[AssignArray]
C[e′ / !a[e] ] ⊃ 0≤e<size(a)

{C{|e′/ !a[e] |}} a[e] := e′ {C}

The rule is direct combination of[AssignSimple] and[ArraySimple]. It is worth expanding
the precondition in the conclusion. Letm be fresh below.

C{|e′ / !a[e] |}
def
= ∃m.(〈! a[e]〉(C ∧ !a[e] = m) ∧ m= e′) (87)

In the right-hand side of (87), ifC contains a term of the form !a[e′′], then if (C says)
e= e′′ then it is equated withm (hencee′); if not, it is unaffected bym. This case analysis
is precisely what underlies the standard proof rule for array assignment, as presented in
(Apt, 1981), which is subsumed by the proof rule above. It is notable that[AssignArray]
can be used when array names themselves can be aliased which is a common situation in
systems programming.

8 Elimination of Content Quantification, Soundness

In this section we present some of the basic technical results about the proposed logic.

8.1 Elimination of Content Quantification

Using the axioms for content quantification introduced in Section 6, we establish a major
technical result about our logic, eliminability of contentquantification. In other words,
any assertion written using content quantification can be equivalently expressed without.
Before going into technical development, we discuss this fact.

• The result clarifies the logical status of these modal operators; in particular, seman-
tically, we now know they add no more complexity than (in)equations on reference
names. Since (in)equations on reference names can be easilydefined using content
quantifiers, we know these two notions – quantifying over content of references and
discussing equalities of reference names – are essentiallyone and the same thing.

• As a consequence, apart from the use of evaluation formulae,validity in the assertion
language is that of the standard predicate calculus with equality.
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• The elimination procedure only uses the axioms for content quantifications discussed
in Section 6.1 combined with the well-known axioms for equality and (standard)
quantifiers. Thus, relative to the underlying axioms of the predicate calculus with
equality as well as those for evaluation formulae, the axioms give complete charac-
terisation of these modal operators.

The arguments towards the elimination theorem reveal the close connection between con-
tent quantification, logical (semantic) substitutionsC{|e′/!e|} and equations on names.
Practically, this connection suggests the effectiveness of their combined use in logical cal-
culations.

Elimination is done by syntactically transforming a formula in the following three steps.
Assume given[!e]C or 〈!e〉C whereC does not contain content quantification (as the trans-
formation is local, this suffices).

1. We transform content quantification into the corresponding logical substitution ap-
plied toC.

2. We transformC into the form of∃r̃ .(C1 ∧C2) whereC1 does not contain active
dereference whileC2 extracts all active dereferences occurring inC. This step is not
necessary strictly speaking but contributes to the concision of the resulting formulae.

3. By the self-dual nature of logical substitutions, we can compositionally dissolve
the outermost application of the logical substitution, so that it now only affects each
atomic equation inC2 (C1 is simply neglected). We then apply the axioms for content
quantification to turn each into an assertion without content quantifications.

We start from the first step, which underpins the close connection between content quan-
tification and logical substitution.

Proposition 10 With m fresh, we have[!e]C ≡ ∀m.C{|m/!e|}. Dually, again with m fresh,
we have〈!e〉C≡ ∃m.C{|m/!e|}.

Proof

It suffices to treat the case whene
def
= x. Let m be fresh below.

∀m.C{|m/!x|} ≡ ∀m.C{|m/!x|}
≡ [!x]∀m.(!x = m⊃C)

≡ [!x]C

While the second statement is dual, we record it anyway:

∃m.C{|m/!x|} ≡ ∃m.〈!x〉(C∧ !x = m)

≡ 〈!x〉∃m.(C∧ !x = m)

≡ 〈!x〉C

hence done.

Below the conditionz 6∈ {x,y} is not substantial sincezcan be renamed byα-convertibility.
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Lemma 1 The following equivalences hold with⋆ ∈ {∧,∨,⊃} andQ ∈ {∀,∃}.

(C1 ⋆C2){|y/!x|} ≡ C1{|y/x|} ⋆C2{|y/!x|}

(¬C){|y/!x|} ≡ ¬(C{|y/!x|})

(Q z.C){|y/!x|} ≡ Q z.(C{|y/!x|})

{C}e•e′ = x{C′}{|y/!x|} ≡ ∃uv.({C}u• v= w{C′} ∧ (u = e ∧ v = e′){|y/!x|})

C-!x{|y/!x|} ≡ C-!x

In the third line we assume z6∈ {x,y}.

Proof
It suffices to prove the cases of⋆ = ∧ andQ = ∀ as well as the negation. For∧:

(C1 ∧ C2){|y/!x|} ≡ (C1 ∧ C2){|y/!x|}
≡ ∀m.(y = m⊃ [!x] (!x = m⊃ (C1∧C2)))

≡ ∀m.(y = m⊃ [!x]∧i(!x = m⊃Ci))

≡ ∀m.(y = m⊃ ∧i [!x] (!x = m⊃Ci))

≡ ∧i∀m.(y = m⊃ [!x] (!x = m⊃Ci))

≡ C1{|y/!x|} ∧ C2{|y/!x|}

For∀:
(∀z.C){|y/!x|} ≡ ∀z.(C{|y/!x|})

≡ ∀m.(y = m⊃ [!x] (!x = m⊃ ∀z.C))

≡ ∀m.(y = m⊃ [!x]∀z.(!x = m⊃C))

≡ ∀m.(y = m⊃ ∀z.[!x] (!x = m⊃C))

≡ ∀m.∀z.(y = m⊃ [!x] (!x = m⊃C))

≡ ∀z.∀m.(y = m⊃ [!x] (!x = m⊃C))

≡ ∀z.(C{|y/!x|}).

Finally negation:

¬(C{|y/!x|}) ≡ ¬(∃m.(〈!x〉(C ∧ !x = m) ∧ m= y))
≡ ∀m.([!x] (¬C ∨ !x 6= m) ∨ m 6= y))
≡ ∀m.(m= y ⊃ [!x] (!x = m ⊃ ¬C))

≡ (¬C){|y/!x|}
≡ (¬C){|y/!x|}

At the last step we again use self-duality of logical substitution.

Now we move to the second step.

Lemma 2 Assume C does not contain content quantification and first-order quantification.
Then we can rewrite∃x̃.C in the following form up to logical equivalence:

∃r̃ c̃x̃.((
^

i

ci =!r i) ∧ C′)

where (1)r̃c̃ are fresh and (2) C′ does not contain active dererefences.

Proof
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We constructCn inductively: first we setC0
def
= C. Now assume thatCn is of the form

Cn[!en] where !en is active inCn anden does not contain any dereferences. Then we set:

Cn+1
def
= C[cn]∧ rn = en

with cn, rn being fresh. SinceC has only a finite number of active dereferences, the in-
ductive construction will come to a halt eventually, say atCm, i.e.Cm is free from active

dereferences. Then we setC′ def
= Cm. Logical equivalence is immediate.

Now we are in the final stage: we can decompose a logical substitution (!u = z){|m/!x|}
with m fresh, in the following way.

〈!x〉(!u = z∧!x = m) ≡ 〈!x〉((x = u∧!u = z∧!x = m) ∨ (x 6= u∧!u = z∧!x = m))

≡ 〈!x〉(x = u∧!u = z∧!x = m) ∨ 〈!x〉(x 6= u∧!u = z∧!x = m)

≡ (x = u∧m= z) ∨ 〈!x〉(x 6= u∧!u = z∧!x = m)

≡ (x = u∧m= z) ∨ ((x 6= u∧!u = z) ∧ 〈!x〉 !x = m)

≡ (x = u∧m= z) ∨ (x 6= u∧!u = z).

Write [[(!u = z){|m/!x|}]] for the final formula above. Using notation from Lemma 2, and
assumingC does not contain content quantifications, we reason (withm etc. fresh), and
noting, whenm is fresh, we haveC{|m/!x|} ≡ 〈!x〉(C∧!x = m):

〈!x〉C ≡ ∃m.C{|m/!x|} (Lem.10)
≡ ∃m.(∃r̃ c̃.( (∧i !r i = ci) ∧ C′)){|m/!x|} (Lem.2)
≡ ∃m.(∃r̃ c̃.( (∧i !r i = ci){|m/!x|} ∧ C′)) (Lem.1)
≡ ∃m.(∃r̃ c̃.( (∧i [[(!r i = ci){|m/!x|}]]) ∧ C′))

By performing this transformation from each maximal subformula which does not contain
content quantifications, we can completely eliminate all content quantifications from any
given formula. We have thus arrived at:

Theorem 1 For each well-typed assertion C, there exists C′ which satisfies the following
properties: (1) C≡C′ and (2) no content quantification occurs in C′.

The elimination procedure also tells us:

Proposition 11 For any C,[!x]C is equivalent to a formula of the shape:

∃r̃.(C′∧
^

i

r i 6= x)

wherer̃ exhaust all active dereferences in C′.

Proof
Just perform the elimination procedure until we reach the final step, at which point we use
[!x] !r = z≡ x 6= r.

We conclude this subsection with the following observation. Letx= y be an equation on
reference names. It is easy to check this equation is logically equivalent to[!x] [!y] !x =!y,
except whenx and y are of the typeRef(Unit). Thus we can replace all (in)equations
on reference names with content quantifications as far as we exclude the trivial store of
typeRef(Unit) from our discussion. Together with Theorem 1, we conclude that content
quantifications and reference name (in)equations are mutually representable.
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8.2 Soundness

In this subsection we present a key result about our logic, soundness of axioms and proof
rules for non-located and located judgements.

8.2.1 Soundness of Proof Rules

We have already seen in Section 7 that [Deref] and [Assign], the only non-structural rules
which differ in comparison with their counterparts in (Hondaet al., 2005), are semantically
justifiable. As noted there, all other rules are similarly easily justified, with the proofs,
given next, following closely those in (Hondaet al., 2005), Section 5.

Convention 7 We write(ξ ·m: M, σ) ⇓ (ξ ·m:V, σ′) |= C when(Mξ, σ) ⇓ (V, σ′) and
(ξ ·m:V, σ′) |= C for some V andσ′.

We begin with [Var].

(ξ, σ) |= C[x/u] ⇒ (ξ ·u:ξ(x), σ) |= C∧u = x
⇒ (ξ ·u:x, σ) ⇓ (ξ ·u:ξ(x), σ) |= C

The proof for [Const] is the essentially the same as above and omitted. For [Op] we show
the casen = 2 for readability.

(ξ, σ) |= C[x/u] ∧ |= {C}M1 :m1 {C1} ∧ |= {C1}M2 :m2 {C2[op(m1m2)/u]}

⇒ (ξ ·m1 : M1, σ) ⇓ (ξ ·m1 :V1, σ1) ∧

(ξ ·m1 :V1 ·m2 :M2, σ1) ⇓ (ξ ·m1 :V1 ·m2 :V2, σ′) |= C2 ∧ u = op(m1m2)

⇒ (ξ ·u:op(M1M2), σ) ⇓ (ξ ·u:op(V1V2), σ′) |= C2

The generaln-ary case is similarly.

For [Abs] let ξ′ def
= ξ ·x : V below.

(ξ,σ) |= A
⇒ ∀V.( (ξ ·x : V, σ) |= A∧C ⊃ (Mξ′, σ) ⇓ (ξ′ ·m : W, σ′) |= C′ )

⇒ ∀V.((ξ ·x : V, σ) |= A∧C ⊃ ((λx.M)ξV, σ) ⇓ (ξ′ ·m : W, σ′) |= C′)

⇒ (ξ ·u : (λx.M)ξ, σ) |= ∀x.{C}u• x= m{C′}

For [App] we infer, withξ0 = ξ ·m : V:

(ξ, σ) |= C
⇒ (Mξ, σ) ⇓ (ξ ·m : V, σ0) |= C0

⇒ (Nξ0, σ0) ⇓ (ξ0 ·n : W, σ1) |= C1∧{C1}m•n= u{C′}

⇒ (VW, σ) ⇓u (ξ ·u : U, σ′) |= C′

⇒ ((MN)ξ, σ) ⇓u (ξ ·u : U, σ′) |= C′

[Pair] and [Proj] are similar.

For the conditional [If ] we setb1
def
= t andb2

def
= f.

(ξ, σ) |= C ∧ |= {C}M :m {C0} ∧ |= {C0[bi/m]}Ni :u {C} (i ∈ {1,2})
⇒ (ξ·m:M, σ) ⇓ (ξ ·m:bi, σi) |= C0 ∧ (ξ·u:Ni , σi) ⇓ (ξ ·u:vi, σ′) |= C′ (i∈{1,2})
⇒ (ξ·u:ifM thenN1elseN2, σ) ⇓ (ξ ·u:W, σ′) |= C′
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Above we used the fact that closed boolean values are exhausted byt andf.
The proof for [Case] is equally straightforward.

(ξ, σ) |= C ∧ |= {C}M :m {C0} ∧ |= {C0[ini(x)/m]}Ni :u {C} (i ∈ {1,2})
⇒ (ξ·m:M, σ) ⇓ (ξ ·m:ini(vi), σi) |= C0 ∧

(ξ ·x:vi ·u:Ni , σi) ⇓ (ξ ·x:vi ·u:vi, σ′) |= C′ (i∈{1,2})
⇒ (ξ·u:caseM of {ini(x).Ni}i∈{1,2}, σ) ⇓ (ξ ·u:W, σ′) |= C′

Above we used the fact that closed values of sum types are of the form ini(V) with
i ∈ {1,2}. Next we turn to the structural rules, given in their locatedvariant in Figure 8.
Most of these rules, in the variant without effects, are proved as the corresponding rules in
(Hondaet al., 2005). The proofs of rules which make essential use of effects, [Invariance],
[Weak] and [Thinning], are straightforward, and hence omitted. For [Cons-Aux] we need a
preparatory lemma.

Lemma 3 1. If M |= C and u is fresh, then alsoM ·u : V |= C
2. Whenever(M,σ)−→ (M′,σ′) andρ is an injective renaming, then also(Mρ,σρ)−→

(M′ρ,σ′ρ), where we omit the straightforward definitions for applyingrenamings to
terms and stores.

3. Assume that M is typable underΓ;∆, Γ ⊆ Γ′,∆ ⊆ ∆′. Then:(M,σ) −→ (M′,σ′) iff
(M|Γ;∆,σ|Γ;∆) −→ (M′|Γ;∆,σ′|Γ;∆), where we omit the straightforward definitions of
the restriction operator·|Γ;∆.

4. If C is typable underΓ;∆, Γ ⊆ Γ′,∆ ⊆ ∆′ andM Γ′;∆′
|= C then alsoM |Γ;∆ |= C.

Proof
The proofs are direct from the definitions.

For the derivation of [Cons-Aux] assume:Γ;∆ ⊢ M : β. LetM = (ξ,σ) and assume thẽj in
[Cons-Aux] are of typeα̃. Then

1. M |= C

2. ∃M ≤ j̃:α̃ (ξ′,σ′) |= C0[ j̃/ĩ]

3. ∃M ≤ j̃:α̃ (ξ′,σ′),(ξ′[ĩ/ j̃],σ′[ĩ/ j̃]) |= C0

In Steps (2, 3) we ignore the anchoru that occurs in the models by typing, as it is not of
relevance forC0. Then:

4. (Mξ′[ĩ/ j̃],σ′[ĩ/ j̃ ]) ⇓ (V,σ′′′[ĩ/ j̃]) ∧ (ξ′[ĩ/ j̃] ·u : V,σ′′′[ĩ/ j̃]) |= C′
0 (IH, 3, Lem. 3.2)

5. (Mξ′,σ′) ⇓ (V[ j̃/ĩ],σ′′′) (Lem. 3.2)

6. (Mξ′,σ′) ⇓ (V,σ′′′) (ĩ auxiliary)

7. (Mξ′|Γ;∆,σ′|∆) ⇓ (V,σ′′′|∆) (Lem. 3.3)

8. (Mξ,σ) ⇓ (V,σ′′′|∆)

Continuing with parts of (4), we get

10. (ξ′[ĩ/ j̃] ·u : V,σ′′′[ĩ/ j̃]) |= C′
0

11. (ξ′ ·u : V[ j̃/ĩ],σ′′′) |= C′
0[ j̃/ĩ] (Lem. 3.2)

12. (ξ′ ·u : V,σ′′′) |= C′
0[ j̃/ĩ] (ĩ auxiliary)
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Using the premise once again we derive

13. (ξ,σ) |= C

14. (ξ ·u : V,σ) |= C (Lem. 3.1)

15. (ξ′ ·u : V,σ′) |= [!ẽ] (C′
0[ j̃/ĩ] ⊃C′)

16. (ξ′ ·u : V,σ′′′) |= C′
0[ j̃/ĩ] ⊃C′

17. (ξ′ ·u : V,σ′′′) |= C′

18. (ξ ·u : V,σ′′′|∆) |= C′ (Lem. 3.4)

Here (16) follows from (15) because the effects ofM’s evaluation are in ˜e by construc-
tion. This validates [Cons-Aux]. Finally [Rename] holds easily as all relevant operations on
models and the reduction relation is closed under injectiverenaming, cf. Lemma 3. Hence
we have established the next theorem.

Theorem 2 (soundness) If⊢ {C} M :u {C′} then|= {C} M :u {C′}.

8.2.2 Soundness of Axioms

We now show correctness of all axioms.

Theorem 3 All axioms in Figures 3 and 4 are valid. Further, (CGen) in Figure 3 is sound
in the sense that if C is valid then so is[!x]C.

We begin with the axiomatisation of content quantification in Figure 3. We need a some
preliminary facts.

Lemma 4 M [x 7→V] ≤x:α M
′ if and only if∃M ′′.(M ≤M ′′∧M ′′[x 7→V] =M ′).

Proof
Straightforward from the definitions.

Proposition 12 1. Assumead(e) ⊆ {ẽ}: if M |= x 6= ei for all i, then [[e]]M [x7→V ] =

[[e]]M [x7→W].

2. Assumead(C) ⊆ {ẽ}: no occurrence of a free name in ei is bound in C, andM |=

x 6= ei for all i. Then for all V,W,M [x 7→V] |= C iff M [x 7→W] |= C.

3. If C is syntactically!x-free, then for all V,W,M [x 7→V] |= C iff M [x 7→W] |= C.

Proof
We show (1) by induction one. The only interesting case ine =!e′. By the induction

hypothesis (IH)[[e′]]M [x7→V ] = [[e′]]M [x7→W]
def
= i. But M |= x 6= ei , hencex 6∈ i, hence with

M = (ξ,σ), cf. Proposition 7:

σ[x 7→V](i) = σ(i) = σ[x 7→W](i).

But then

[[e]]M [x7→V] = σ[x 7→V](i) = σ[x 7→W](i). = [[e]]M [x7→W].

For (2) we use induction onC. The casee= e′ is by (1) andC⋆C′ as well as¬C are
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immediate by the (IH). For[!e]C 〈!e〉C the result follows directly from the semantics of
content quantification. For the case∀xα.C we assumex 6= y, the casex = y being straight-
forward. Then

M [x 7→V] |= ∀yα.C ≡ ∀M ′.(M [x 7→V] ≤y:α M
′ ⊃M ′ |= C)

≡ ∀M ′.((∃M ′′.M ≤y:α M
′′,M ′′[x 7→V] =M ′) ⊃M ′ |= C) (88)

≡ ∀M ′′.(M ≤y:α M
′′ ⊃M ′′[x 7→V] |= C)

≡ ∀M ′′.(M ≤y:α M
′′ ⊃M ′′[x 7→W] |= C) (89)

≡ ∀M ′.((∃M ′′.M ≤y:α M
′′,M ′′[x 7→W] =M ′) ⊃M ′ |= C)

≡ ∀M ′.(M [x 7→W] ≤y:α M
′ ⊃M ′ |= C) (90)

≡ M [x 7→W] |= ∀yα.C

Here (89) is by (IH) and (88, 90) are by Lemma 4.
Finally, the case of evaluation formulae is immediate because for those, the satisfaction

relation ’throws away’ the store part of a model, hence annihilates the effect of update
operations[x 7→V] etc.

For (3) we proceed by induction on the generation of the assertion C-!x. The case of
outermost content quantification is immediate. ForC∧ x 6= ẽ wheread(C) ⊆ {ẽ} and no
name is inappropriately bound we assume

M [x 7→V] |= C∧x 6= ẽ.

Hence clearly alsoM |= x 6= ẽ. Thus we can apply (2) to obtain

M [x 7→V] |= C iff M [x 7→W] |= C

which immediately implies the required result. Closure under content quantification and
propositional connectives is immediate. Finally, the caseof prefixing with quantifiers is
also by the (IH) and almost identical to the corresponding case in (2).

We now begin the proof of Theorem 3.

Lemma 5 The axioms and the rule in Figure 3 are sound.

Proof
For (CA1) we argue as follows

M |= [!x] (C-!x
1 ⊃C2) ≡ ∀V.M [x 7→V] |= (C1 ⊃C2)

≡ ∀V.(M [x 7→V] |= C1 ⊃M [x 7→V] |= C2)

≡ M |= C1 ⊃ ∀V.M [x 7→V] |= C2 (Prop. 12.3)

≡ M |= C1 ⊃M |= [!x]C2

≡ M |= (C1 ⊃ [!x]C2)

(CA2) has the following justification.

M |= [!x]C ≡ ∀V.M [x 7→V] |= C

⊃≡ M |= C
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For (CA3) we derive

M |= [!x] (!x = m⊃C) ≡ ∀V.(M [x 7→V] |=!x = m⊃C)

≡ ∀V.(M [x 7→V] |=!x = m ⊃ M [x 7→V] |= C)

≡ M [x 7→ [[m]]M ] |= C
≡ M [x 7→ [[m]]M ] |= C∧!x = m
≡ M |= 〈!x〉C∧!x = m

Finally, for the inference rule (CGen), we proceed by induction on the length of the proof.
All the axioms are syntactically !x-free, and none of the proof rules of first-order logic
changes this fact, hence the result is again a consequence ofProposition 12.3. This con-
cludes the proof for the axioms and the rule in Figure 3.

Next is are the axioms for the evaluation formula in Figure 4.

Lemma 6 All axioms in Figure 4 are sound.

Proof
Proofs for Axioms (e1) to (e7) are like the corresponding derivations in (Hondaet al.,
2005). Axiom (e8) is immediately from the semantics of evaluation formulae. The extion-
sionality axiom (ext) is also immediate from the definition of ∼=.

Lemmas 6 and 5 together verify Theorem 3.

8.2.3 Soundness of Located Proof Rules and Axioms

Soundness of the located proof rules can be established in two straightforward ways: we
can show them to be derivable using the original non-locatedrules, or, alternatively, we
can reason directly. In either case, the only non-trivial case is [Thinning]. This is reasoned
using simple instances of [Cons-Aux] (renaming of auxiliary names) combined with dis-
junction on pre/post conditions (derived from [∨-pre] and [Cons]). To make the proof more
transparent, we assume all effects to have the same type.

|= {C∧z6= ẽe′∧ !z= i∧ !e′ = i′} M :u {C′∧z6= ẽe′∧ !z= i∧ !e′ = i′}
⇒ |= {C∧z6= ẽ∧ z6=e′∧!z= i} M :u {C′∧z6= ẽ∧ z6=e′∧!z= i} ∧

|= {C∧z6= ẽ∧ z=e′∧!z= i} M :u {C′∧z6= ẽ∧ z=e′∧!z= i}
⇒ |= {C∧z6= ẽ∧!z= i} M :u {C′∧z6= ẽ∧ !z= i}

Soundness of other located rules is as for the correspondingunlocated rules. We conclude,
with respect to the semantics given in Definition 21:

Theorem 4 (soundness of located judgements) If⊢ {C} M :u {C′} @ g̃ then we have
|= {C} M :u {C′} @ g̃.

Theorem 5 All axioms in Figures 5 are sound.

Proof
The proofs are straightforward, either by translation intoformulae without effects, or di-
rectly semantically.
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9 Reasoning Examples

One of the key criteria in evaluating a program logic’s abilities is ease-of-use in verification.
This section illustrates how our logic can be used for reasoning about the correctness of
programs, starting with simple examples discussed in the introduction and Section 4. We
conclude our exhibition of the logic’s reasoning abilitiesby proving the correctness of
higher-order, generic Quicksort.

9.1 Questionable Double (1): Direct Reasoning

In Section 5.5.3 we introduced the ”Questionable Double”, aprogram behaving differently
under different distinctions. Let us reproduce the program.

double?
def
= λ(x,y).(x :=!x+!x;y :=!y+!y)

We establish the following judgement which says that, if we assume its two arguments to
be distinct, then the program does indeed double the contentof the arguments references.

{T} double? :u { ∀x,y.{x 6= y ∧ !x = i ∧ !y = j}u• (x,y){!x= 2i ∧ !y = 2 j} } (91)

To infer the judgement (91), we use the following two implications.

x 6= y∧ !x = i ∧ !y = j ⊃ (x 6= y ∧ !x = 2i ∧ !y = j){|!x+!x/!x|} (92)

x 6= y∧ !x = 2i ∧ !y = j ⊃ (!x=2i ∧ !y=2 j){|!y+!y/!y|} (93)

We first establish (92) and (93). For the former:

(x 6= y∧ !x = 2i ∧ !y = j){|!x+!x/!x|}
≡ x 6= y ∧ !x = 2i{|!x+!x/!x|} ∧ !y = j{|!x+!x/!x|}
≡ x 6= y ∧ !x+!x = 2i ∧ (x 6= y⊃!y= j)
⊂ x 6= y ∧ !x = i ∧ !y = j

The reasoning for (93) is identical and hence omitted. We cannow present the inference.
We use [AssignVar] discussed already, as well as the obvious extension of [Abs] to cater
for a vector of names, also called [Abs].

1. x 6= y ∧ !x = i ∧ !y = j ⊃ (x 6= y ∧ !x = 2i ∧ !y = j){|!x+!x/!x|} (92)

2. {(x 6= y∧ !x = 2i∧ !y = j){|!x+!x/!x|}} x := !x+!x {x 6= y∧ !x = 2i∧ !y = j} (AssignVar)

3. {x 6= y∧ !x = i∧ !y = j} x := !x+!x {x 6= y∧ !x = 2i∧ !y = j} (1, 2, Cons)

4. x 6= y ∧ !x = 2i ∧ !y = j ⊃ (!x=2i∧!y=2 j){|!y+!y/!y|} (93)

5. {(!x=2i∧!y=2 j){|!y+!y/!y|}} y := !y+!y {!x=2i∧!y=2 j} (AssignVar)

6. {x 6= y∧ !x = 2i∧ !y = j} y := !y+!y {!x=2i∧!y=2 j} (4, 5, Cons)

7. {x 6= y∧ !x = i∧ !y = j} x := !x+!x ; y := !y+!y {!x=2i∧!y=2 j} (3, 6, Seq)

8. {T} double? :u { ∀x,y.{x 6= y ∧ !x = i ∧ !x = j}u• (x,y){!x = 2i ∧ !x = 2 j} } (Abs)

Save for unavoidable uses of [Cons], the structure of this derivation follows the syntax of
the program under investigation. The derivation also suggests how to refine this program
to make it alias-robust. This is done by “internalising” theconditionx 6= y as follows.

double!
def
= λ(x,y).(if x 6= y then x :=!x+!x; y :=!y+!y else x :=!x+!x) (94)
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We now infer:

{T} double! :u { ∀x,y.{!x = i ∧ !x = j}u• (x,y){!x= 2i ∧ !x = 2 j} } (95)

This judgement indicates thatdouble! is robust with respect to aliasing – it satisfies the
required functional property without stipulating anything about possible aliasing of argu-
ments. The inference follows, using the first few lines of theprevious inference. Below in

Line 11 we setM1
def
= x :=!x+!x; y :=!y+!y andM2

def
= x :=!x+!x.

1−7. (As above).

8. x = y∧ !x = i ∧ !y = j ⊃ (!x = 2i ∧ !y = 2 j){|!x+!x/!x|}

9. (!x = 2i ∧ !y = 2 j){|!x+!x/!x|} x := !x+!x {!x= 2i∧ !y = 2 j} (AssignVar)

10. {x = y ∧ !x = i ∧ !y = j} x := !x+!x {!x = 2i∧ !y = 2 j} (1, 2, Cons)

11. {!x = i ∧ !y = j} if x 6= y then M1 else M2 {!x= 2i∧ !y = 2 j} (7, 10, If)

12. {T} double! :u { ∀x,y.{!x = i ∧ !x = j}u• (x,y){!x= 2i ∧ !x = 2 j} }

We omit detailing the calculation for Line 8.

9.2 Questionable Double (2): Located Reasoning

We have seen, in Section 5.5.3, that we can use a located assertion to obtain a more “pre-
cise” specification for the Questionable Double. In this case we wish to say that no refer-
ences apart from those passed as arguments are potentially modified. Hence we derive:

{T}double? :u {∀x,y. ({x 6=y∧ !x= i ∧ !y= j}u• (x,y){!x=2i ∧ !y=2 j}@xy}@ /0

In the following proof, we derive this assertion using a fully extensional judgement for
each subpart of the program. For combining two assignments,we use[Seq-I] in Figure 11.

1. {!x= i} x := !x+!x {!x=2i}@x (AssignVar)

2. {!y= j} y := !y+!y {!y=2 j}@y (AssignVar)

3. {!x= i ∧ [!x] !y= j} x := !x+!x ; y := !y+!y {〈!y〉 !x=2i ∧ !y=2 j}@xy (Seq-I)

4. {x 6=y ∧ !x= i ∧ !y= j} x := !x+!x ; y := !y+!y {(x 6=y⊃!x=2i)∧ !y=2 j}@xy (Cons)

5. {x 6=y ∧ !x= i ∧ !y= j} x := !x+!x ; y := !y+!y {!x=2i∧ !y=2 j}@xy (Invariance)

6. {T}double? :u { ∀x,y. ({x 6=y∧!x= i∧!x= j}u• (x,y){!x=2i∧!x=2 j}@xy) }@/0 (Abs)

Line 5 addsx 6= y to pre/post conditions. Using the EOI rule [Seq-I] may be considered a se-
mantic strengthening of the “local reasoning”, as advocated in Separation Logic (Reynolds,
2002; O’Hearnet al., 2004). The conclusion discusses this phenomenon in detail.

9.3 Swap

Judgements.Next we verifyswap, a program mentioned in the introduction, that ex-
changes the content of two reference cells. We reproduce itscode below.

swap
def
= λ(x,y).let z= !x in ( x :=!y ; y := z )
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Let us also set (taking the located version of its specification):

Swap(u)
def
= ∀x.∀y.{!x = i∧!y = j}u• 〈x,y〉{!x= j∧!y = i}@xy

Using this predicate we wish to establish:

{T} swap :u {Swap(u)} @ /0. (96)

Swap is the classical example, treated in much preceding work (cf. (Cartwright & Oppen,
1981; Cartwright & Oppen, 1978; Kulczyckiet al., 2003)). An interesting point is that the
derivation does have to deal with aliasing, despite the specification’s (96) not mention it.
The proof has two parts: one dealing with the case whenx andy are aliased, the other
applying when they are not. Informally:

1. If x andy are distinct, the two assignments,x :=!y andy := z, are independent (in
the sense that they do not affect each other). Sincez does hold the initial content of
x, we know these two assignments swap the content ofx andy.

2. On the other hand, ifx andy are aliased, the two assignments,x :=!y andy := z,
affect the same memory cell: buty := z in fact does not change the content ofy
becausez denotes the initial value ofx (hence ofy), so that these two assignments
perform a (vacuous) swapping of content.

The above observation indicatessemantic independencebetween the two assignment com-
mands, in the sense that theiroperationalcollision in the case of aliasing does not affect
the demanded postcondition.

Located Reasoning.The semantic independence ofswap is fully exploited using [Seq-I].

Let A
def
= x = y⊃ i = j below. NoteA is stateless

1. {!y= j} x :=!y {!x= j}@x (AssignS)

2. {z= i} y := z{!y= i}@y (AssignS)

3. {!y= j ∧ [!x]z= i} x :=!y ; y := z{〈!y〉 !x = j ∧ !y = i}@xy (1, 2, Seq-I)

4. {!x = i∧!y = j ∧z= i} x :=!y ; y := z{(x 6= y⊃!x = j) ∧ !y = i}@xy (3, Cons)

5. {A∧ !x = i∧!y = j ∧z= i} x :=!y;y := z{A∧ (x 6= y⊃!x = j) ∧ !y = i}@xy (4, Invar.)

6. {!x = i∧ !y = j ∧z= i} x :=!y ; y := z{!x = j ∧ !y = i}@xy (5, Cons)

7. {!x = i∧!y = j} !x :z {!x = i∧!y = j ∧z= i}@ /0 (Deref)

8. {!x = i∧!y = j} let z= !x in (x :=!y ; y := z) {!x = j∧!y = i}@xy (6, 7, Let)

9. {T} swap :u {Swap(u)}@ /0 (8, Abs)

In Line 6, we used that !x = i∧ !y = i entailsA. The rest is immediate.

Reasoning based on Traditional Methods.Reasoning forswap anddouble? was ele-
gant in the sense that properties were inferred compositionally from properties of subterms,
butwithoutusing assumption in the verification of these subterms that are irrelevant to the
subterms and are only required later, when combining the properties to get properties of the
overall program. That our logic facilitates such compositional reasoning – and we will see
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more of that in the verification of Quicksort below – is taken as indicative of our logic’s
usability. For contrast, we now present a derivation of the same specification using the
traditional method a la Morris/Cartwright-Oppen (expressed in the present framework).

1. {(!x = j∧!y = i){|z/!y|}{|!y/!x|}} x :=!y {(!x = j∧!y = i){|z/!y|}}@x (AssignS)

2. {(!x = j∧!y = i){|z/!y|}} y := z{!x = j∧!y = i}@y (AssignS)

3. {(!x = j∧!y = i){|z/!y|}{|!y/!x|}} x :=!y ; y := z{!x = j∧!y = i}@xy (1, 2, Seq)

4. (!x = i∧!y = j ∧z= i) ⊃ (!x = j∧!y = i){|z/!y|}{|!y/!x|} (⋆)

5. {!x = i∧!y = j ∧z= i} x :=!y ; y := z{!x= j∧!y = i}@xy (3, 4, Cons)

6. {!x = i∧!y = j} !x :z {!x = i∧!y = j ∧z= i}@ /0 (Deref)

7. {!x = i∧!y = j} let z= !x in (x :=!y ; y := z) {!x = j∧!y = i}@xy (5, 6, Let)

8. {T} swap :u {Swap(u)}@ /0 (7, Abs)

Except in Line 4, all inferences are direct from the proof rules. Below we derive (⋆),
starting from the consequence and reaching the antecedent.

(!x = j∧!y = i){|z/!y|}{|!y/!x|}
≡ (!x = j){|z/!y|}{|!y/!x|}∧ (!y= i){|z/!y|}{|!y/!x|} (Pro. 10 (2))
≡ ((x = y⊃ z= j) ∧ (x 6= y⊃!x = j)){|!y/!x|} ∧ (z= i){|!y/!x|} (S1)

≡ (x = y⊃ z= j){|!y/!x|} ∧ (x 6= y⊃!x = j){|!y/!x|} ∧ (z= i){|!y/!x|} (Pro. 10 (2))
≡ (x = y⊃ z= j) ∧ (x 6= y⊃!x = j{|!y/!x|}) ∧ z= i (Pro. 7)
≡ (x = y⊃ z= j) ∧ (x 6= y⊃!y = j) ∧ z= i (S1)
⊂ !x = i ∧ !y = j ∧ z= i

This derivation uses Property (S1):

e′ =!e{|e′′/!e2|} ≡ ((e= e2∧e′ = e′′)∨ (e 6= e2∧e′ =!e))

or, as its special instancee′ =!e{|e′′/!e|} ≡ e′ = e′′, in both cases assuminge ande′ do not
contain dereferences. The proof is immediate from the axioms.

While the traditional reasoning gives a slightly shorter derivation, it involves non-trivial
inferences at the assertion level. This is because the traditional method (or separation-based
methods a la Burstall) cannot exploit semantic independence between two assignments,
unlike ours, via [Seq-I].

9.4 Circular References

We next show the reasoning forx :=!!x, the example, appearing in Section 5, that uses
circular data structures. Reproducing the assertion in Section 5, we wish to prove the fol-
lowing judgement.

{!x= y∧!y = x} x :=!!x {!x = x}.
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1 µq. λ(a,c,l,r).
2 if l < r then
3 let p’ = partition(a, c, l, r) in
4 q(a, c, l, p’-1);
5 q(a, c, p’+1, r)

Fig. 13. Quicksort with a comparison procedure as a parameter.

For the proof we start by converting the pre-condition into aform usable by[AssignVar].
We begin the derivation by noting that

!x = y∧!y = x ⇒ !!x = x

⇒ ∃m.(m=!!x∧〈!!x〉(!x= x∧!x = m))

⇒ !x = x{|!!x/m|}

From here it is easy to get:

1. (!x = y∧!y = x) ⊃ ((!x = x){|!!x/!x|})

2. {(!x= x){|!!x/!x|}} x :=!!x {!x = x} (AssignSimple)

3. {!x= y∧!y = x} x :=!!x {!x = x} (1, 2, Cons)

The next assertion, also already discussed in Section 5, cansimilarly easily be derived.

{!y = x} x := 〈1,inr(!y)〉{!x = 〈1,inr(x)〉}

9.5 A Polymorphic, Higher-Order Procedure: Quicksort

Hoare’s Quicksort is an efficient algorithm for sorting arrays. Apart from recursive calls
to itself, Quicksort calls Partition, a procedure which permutes elements of an array so
that they are divided into two contiguous parts, the left containing elements less than a
“pivot value” pv and the right those greater thanpv. The pivot valuepv is one of the array
elements which may ideally be their mean value. In the following we specify and derive
a full specification of one instance of the algorithm, directly taken from its well-known
C version (Kernighan & Ritchie, 1988). Using indentation for scoping, Figures 13 and
14 present the code, assuming a generic swapping procedure like that from Section 5.6.4
being globally available (we could have passed the swappingroutine as a parameter, like
we do with the comparison functionc, without significant effect on specification or proof
complexity, but we wanted to show how our logic can deal with either). We use indentation
for scoping. In these programs we omit type annotations for variables, the main ones of
which (for both programs) are:

a : X[ ] c : (X ×X)⇒Bool l , r : Nat swap : (Ref(X)×Ref(X))⇒Unit

X[ ] is the type of a generic array (details of polymorphic arraysomitted). Quicksort itself
has the function type from the product of these types toUnit. Partition is the same except
that it return type isNat.
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1 λ(a,c,l,r)
2 let pv = !a[r] in
3 p := l;
4 i := l;
5 while !i < r
6 if c(!a[!i], pv) then
7 swap( a[!p], a[!i] )
8 p := !p + 1
9 i := !i + 1

10 swap(a[r], a[!p]);
11 !p

Fig. 14. Partitioning algorithm.

This program exhibits several features which are interesting from the viewpoint of cap-
turing and verifying behavioural properties using the present logic.

• Correctness crucially relies on the extensional behaviourof each part: when recur-
sively calling itself twice in Lines 4 and 5 of Figure 13, it isessential that each call
modifies only the local subarray it is working with, without any overlap. We shall
show how this aspect is transparently reflected in the structures of assertions and
reasoning, realising what O’Hearn and Reynolds called “local reasoning” (O’Hearn
et al., 2004; Reynolds, 2002) through the use of logical primitives of general nature
rather than those introduced for that specific purpose.

• The program is higher-order, receiving as its argument a comparison procedure.
• The program is fully polymorphic, in the sense that it can sort an array of any type

(as far as a proper comparison procedure is provided).

In the following we shall discuss how these aspects can be treated in the present logic. Even
including a recent formal verification of Quicksort in Coq (Filliâtre & Magaud, 1999),
we believe a rigorous verification of Quicksort’s extensional behaviour with higher-order
procedures and polymorphism is given here for the first time.

Specification. We now present a full specification of Quicksort (For simplicity, partition
andswap are assumed inlined: treating them as external procedures is straightforward).

{T} qsort :u {∀X.Qsort(u)}@ /0. (97)

where we set, omitting types:

Qsort(u)
def
= ∀abclr.





{Eq(ablr)∧Order(c)}
u• (a,c, l , r)

{Perm(ablr)∧Sorted(aclr)}@a[l ...r]ip



 (98)

Herea[l ...r]ip is short fora[l ], ...,a[r], i, p. The variableb is auxiliary and is of the same
array type asa, denoting an initial copy ofa, so we can specify the change ofa in the
post-condition is only in the ordering of its elements. Eachpredicate used in (98) has the
following meaning. For the precondition:
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• First, the predicatesEq(ablr) andPerm(ablr) use a distinctness condition on ele-
ments ofa as well asb, p andi, which we writeDist. Formally: define

Distinct(e1..en)
def
= ∧1≤i 6= j≤nei 6= ej ,

then we set

Dist
def
= Distinct( a[0]...a[size(a)−1]b[0]...b[size(b)−1]pi ).

• Eq(ablr) says:distinct arrays a and b coincide in their content in the rangefrom l
to r (with l and r being in the array bound).In addition, it also stipulates freshness
and distinctness of variablesp andi. The formal definition ofEq(ablr) is:

0≤ l , r ≤ size(a) = size(b) ∧ ∀ j.(l ≤ j≤ r ⊃ !a[ j] =!b[ j]) ∧ Dist.

• Order(c) says:c calculates a total order without side effects.Formally, it is the
conjunction of:

— ∀xy.(c• (x,y) ց T ∨ c• (x,y) ց F). In this assertion “c• (x,y)ց e” stands
for “{T}c• (x,y) = z{z= e}@ /0” (“the comparison terminates and has no side
effects”);

— ∀xy.(x 6= y ⊃ (c•(x,y)ցT∨c•(y,x)ցT)) (“two distinct elements are always
ordered”); and

— (c• (x,y)ց T∧c• (y,z)ց T) ⊃ c• (x,z) ց T (“the ordering is transitive”).

The use of this predicate instead of (say) a boolean condition embodies the higher-
order nature of Quicksort.

For the post-condition:

• Perm(ablr) says:entries of a and b in the range from l to r are permutations of
each other in content.It also stipulates the same distinctness condition asEq(ablr).
Formally:

SPerm(ablr)
def
= ∃i, j.(l ≤ i, j ≤ r ∧ !a[i] =!b[ j] ∧ !a[ j] =!b[i] ∧

∀h.( (l ≤ h≤ r ∧ h 6∈ {i, j}) ⊃ !a[h] =!b[h]) ) ∧

size(a) = size(b) ∧ Dist

The result of permutingn times is then given by:

Perm(0)(ablr)
def
= Eq(ablr)

Perm(n+1)(ablr)
def
= ∃a′.(Perm(n)(aa′lr ) ∧ SPerm(a′blr) ∧ Dist[a′/b])

Note that, as inEq(ablr), the permutation predicate asserts the full distinction ofall
relevant references.

• Sorted(alrc) says:the content of a in the range from l to r are sorted w.r.t. the

total order implemented by c.Formally:Sorted(aclr)
def
= ∀i, j.(l ≤ i < j ≤ r ⊃ c•

(!a[i], !a[ j]) ց T).

SoQsort(u) in (98) as a whole says:
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Initially we assume two distinct arrays, a and b, of the same content from l to r
(Eq(ablr)), together with a procedure which realises a total order (Order(c)). After
the program runs, one array remains unchanged (because the assertion says it touches
only a), and this changed array is such that it is the permutation of the original one
(Perm(ablr)) and that it is well-sorted w.r.t. c (Sorted(aclr)).

Located assertions play a fundamental role in this specification: for example, it is crucial
to be able to assertc has no unwanted side effects. In the rest of this section, we present
highlights and key steps of the full derivation of the judgement (97). Straightforward steps
are mostly omitted, as they can be filled in easily, since reasoning follows the syntactic
structure of the algorithm precisely.

Reasoning (1): Sorting Disjoint Subarrays.First we focus on Lines 4 and 5 in Figure
13), which sort subarrays by recursive calls. The reasoningdemonstrates how the use of
our refined invariance rule offers a quick inference by combining two local, extensional
specifications. Concretely, our aim is to establish:

{C1} q(a,c, l , p′−1) ; q(a,c, p′ +1, r) {C′
1}@a[l ...r]ip (99)

where

C1
def
= Perm(ablr) ∧ Parted(aclrp′) ∧ Order(c) ∧ ∀ j <k.QsortBounded(q j) ∧ r − l ≤k

C′
1

def
= Perm(ablr)∧Sorted(aclr).

Two newly introduced predicates are illustrated below.
QsortBounded(q j) with j of Nat type is used as an inductive hypothesis for recursion.

It is the same asQsort(q), given in (98), Page 68, except that it only works for a range no
more thanj and that it replaces “Eq(ablr)” in the precondition of (98) with “Perm(ablr)”,
which is necessary for the induction to go through.Parted(aclrk) says the subarray ofa
from l to r is partitioned at an intermediate indexk w.r.t. the order defined byc. Formally
it is given as:

Parted(aclrk)
def
=





l ≤k≤ r ∧ ∀ j.(l ≤ j≤k ⊃ c• (!a[ j], !a[k])ցT)

∧

∀ j.(k≤ j≤ r ⊃ c• (!a[k], !a[ j])ցT)





A key feature of these two recursive calls is that neither modifies/depends on subarrays
written by the other. As mentioned already, this feature allows us tolocalise reasoning:
the specification and deduction of each part has only to mention local information it is
concerned with. Joining the resulting two specifications isthen transparent through the

invariance rule and basic laws of content quantification. Let ẽ2
def
= a[l ..p′−1]pi and ˜e3

def
=

a[p′ +1..r]pi (which are the parts touched by the first/second calls, respectively). We now
derive:

R.1. {C2} q(l,p
′−1) {C′

2} @ ẽ2

R.2. {C3} q(p
′ +1,r) {C′

3} @ ẽ3

R.3. {C2 ∧ [!ẽ2]C3} q(l,p
′−1) ; q(p′ +1,r) {〈!ẽ3〉C′

2 ∧ C′
3}@ẽ2ẽ3

R.4. C1 ⊃ ∃b′.(([!ẽ3]C2 ∧ C2 ∧ [!ẽ2ẽ3] (C′
2∧〈!ẽ2〉C′

3 ⊃ C′
1)))

R.5. {C1} q(l,p′−1) ; q(p′ +1,r) {C′
1}@ẽ2ẽ3 (Cons-Aux)
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Line (R.3) uses(R.1-2, Seq-I), the first two(AppS). The derivation uses the following
abbreviations.

C2
def
= Eq(ab′l(p′−1)) ∧ Order(c) ∧ ∀ j <k.QsortBounded(q j)

∧ p′−1− l <k

C′
2

def
= Perm(ab′l(p′−1)) ∧ Sorted(acl(p′−1))

C3
def
= Eq(ab′(p′+1)r) ∧ Order(c) ∧ ∀ j <k.QsortBounded(q j) ∧

r−(p′+1)<k

C′
3

def
= Perm(ab′(p′ +1)r) ∧ Sorted(ac(p′ +1)r)

Note each ofC2/C′
2 andC3/C′

3 mentions only the local subarray each call works with. The
auxiliary variableb′ serves as a fresh copy ofa immediately before these calls (we cannot
useb since, e.g.Perm(abl(p′−1)) does not hold). (R.1–3) are asserted and reasoned using
b′, which (R.4) mediates into the judgement onb, so that (R.5) only mentionsb. The
inference uses [Cons-Aux], our rendition of Kleyman’s Rule from Figure 8. In addition, we
need another straightforwardly derived rule:

[AppS]
C ⊃ {C}e• (e1..en)=u{C′}@ẽ

{C} e(e1...en) :u {C
′}@ẽ

Using these rules and[Seq-I], (R.1/2/3/5) are immediate. The remaining step is the deriva-
tion of (R.4), the condition for[Cons-Aux].

First-order logic allows the following entailment

C1 ⇔ C1∧∃b′.(Eq(ab′lr ) ∧ Dist′) ⇒ ∃b′.D

where the definition ofD is next.

D
def
=





Eq(ab′lr ) ∧ Parted(b′clrp′) ∧ Perm(ab′lr ) ∧ Perm(ablr)
∧

Order(c) ∧ l ≤ p′ ≤ r ∧ Dist′ ∧ ∀ j < k.QsortBounded(q j)





Now clearly

D ⇒ C2 ∧ C3 ⇒ C2 ∧ [!ẽ2]C3,

The former implication being first-order logic which the latter using(ua), sinceC-!ẽ2
3 . It is

also the case that

D ⇒ Parted(b′clrp′) ∧ !a[p′] =!b[p′] ∧ Dist′
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1. C′
2 ∧ C′

3

2. Perm(ab′l(p′−1)) ∧ Perm(ab′(p′ +1)r) (1)

3. !a[p′] =!b′[p′]

4. Perm(ab′lr ) (2, 3)

5. Perm(bb′lr )

6. Perm(ablr) (4, 5)

7. Sorted(acl(p′−1)) ∧ Sorted(ac(p′ +1)r) (1)

8. Parted(bclrp′)

9. Sorted(aclr) (4, 7, 8)

Hence in fact

(!a[p′] =!b′[p′] ∧ Perm(bb′lr ) ∧ Parted(bclrp′)) ⊃ ((C′
2 ∧ C′

3) ⊃C′
1)

which in turn implies

(Dist′ ∧ !a[p′] =!b′[p′] ∧ Perm(bb′lr ) ∧ Parted(bclrp′)) ⊃ ((C′
2 ∧ C′

3) ⊃C′
1).

To this tautology we add universal content quantification with respect to ˜e
def
= ẽ2ẽ3 to obtain

[!ẽ] (Dist′ ∧ !a[p′] =!b′[p′] ∧ Perm(bb′lr ) ∧ Parted(bclrp′)) ⊃ ((C′
2 ∧ C′

3) ⊃C′
1).

But in view of Dist′, all terms in the premise of that last term, are ! ˜e-free, hence we apply
Proposition 7.

(Dist′ ∧ !a[p′] =!b′[p′] ∧ Perm(bb′lr ) ∧ Parted(bclrp′)) ⊃ [!ẽ] ((C′
2 ∧ C′

3) ⊃C′
1).

Now, with Dist′, C′
2 is !ẽ3-free, soC′

2 and〈!ẽ3〉C′
2 are in fact equivalent, using (e4, ea).

That means we can refine that last big implication.

(Dist′ ∧ !a[p′] =!b′[p′] ∧ Perm(bb′lr ) ∧ Parted(bclrp′)) ⊃ [!ẽ] ((〈!ẽ3〉C
′
2 ∧ C′

3) ⊃C′
1).

Combining all this, yields the assertion

C1 ⊃ C2∧[!ẽ2]C3∧[!ẽ] ((〈!ẽ3〉C
′
2∧C′

3) ⊃C′
1)

which is (R.4) used above.

Reasoning (2): Using Comparison.Next we focus on the use of a comparison procedure
in the while loop inpartition, which is originally passed to Partition as an argument.
We start with the loop invariant.

Invar
def
=





Cpre
part ∧ l ≤!p, !i ≤ r ∧ Leq(acl(!p−1)pv)

∧

Geq(ac(!p0)(!i −1)pv) ∧ (!p <!i ⊃ c• (!a[!p], pv)ց T)





Leq(aclrv) (resp.Geq(aclrv)) says the entries froml to r in a are smaller (resp. bigger)
thanv. When inside the loop, the values ofp andi differ from the invariant slightly, so that

we also make use of:Cinloop
def
= Invar∧!i < r ∧ r−!i = j. The following assertions specify
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two cases of the conditional branch.

Cthen
def
= Cinloop∧c• (!a[!i], pv)ց T C¬then

def
= Cinloop∧c• (!a[!i], pv)ց F.

We now present the derivation for the if sentence of the loop,where the comparison pro-
cedure received as an an argument is used at the conditional branch. Below we assume
the conditional body (“ifbody”) has been verified already and letj to be a freshly chosen
variable ofNat-type.

(Invar∧ r−!i > 0) ⊃





{Invar∧ r−!i >0}
c• (!a[!i], pv) = z

{c• (!a[!i], pv)ց z∧ Invar∧ r−!i >0}@/0





{Invar∧ r−!i > 0}
c(!a[!i], pv) :z

{c• (!a[!i], pv)ց z∧ Invar∧ r−!i > 0}@/0
(AppSimple)

{Cthen} ifbody {Invar{|!i +1/!i|}∧ r−!i ≤ j)}@a[l ...r −1]ip (omitted)

C¬then⊃ (Invar{|!i +1/!i|}∧ r−!i ≤ j)

{Cinloop}if c(!a[!i], pv) then ifbody
Invar{|!i +1/!i|}∧ r−!i ≤ j){a[l ...r −1]pi}@

(IfThen)

Thus reasoning about a conditional branch which involves a call to a received procedure
is no more difficult than treating first-order expressions. The rest of the verification for
partition is mechanical, so that we reach the following natural judgement:

{Perm(ablr)∧Order(c)}
partition(a,c, l , r) :p′

{Parted(aclrp′)∧Perm(ablr)∧Order(c)}@a[l ..r]pi
.

Reasoning (3): Polymorphism.We are now ready to derive the whole specification of
Quicksort (97). As noted, the algorithm is generic in the type of data being sorted, so
we conclude with deriving its polymorphic specification. Weneed one additional rule for
type abstraction (for further details of treatment of polymorphism, see (Honda & Yoshida,
2004)). We also list the rule for “let” which is easily derivable from[Abs] and[App] through
the standard encoding. Below,ftv(Θ) indicates the type variables inΘ, similarly for ftv(C).

[TAbs]
{C}VΓ;∆;α :m {C′} X 6∈ ftv(Γ,∆)∪ ftv(C)

{C}VΓ,∆;∀X.α :u {∀X.C′}

[Let]
{C} M :x {C0}@ẽ {C0} N :u {C

′}@ẽ′

{C} let x = M in N :u {C′}@ẽẽ′

We now present the derivation. For brevity we use the following abbreviations:C⋆
def
=

Perm(ablr)∧Sorted(aclr), B′ def
= Perm(ablr)∧Order(c)∧∀ j <k.QsortBounded(q j) ∧

r − l ≤k, and B
def
= B′ ∧ l < r. We also writeqsort′ for qsort in Page 67 without the

first line (i.e. withoutµ/λ-abstractions),M for q(a,c, l , p′−1) ; q(a,c, p′ +1, r) andN for
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q(l , p′−1) ; q(p′ +1, r).

{B} partition(a,c, l , r) :p′ {Parted(aclrp′)∧B}@a[l ..r]pi (Invariance)

{Parted(aclrp′)∧B} M {C⋆}@a[l ...r]ip (R.5)

{B} let p′ = partition(a, l , r,c) in N {C⋆}@a[l ...r]ip (Let)

{B′} qsort′ {C⋆}@a[l ...r]ip (IfThen)

{∀ j < k.QsortBounded(q j)} λ(a,c, l , r).qsort′ :m {QsortBounded(mk)}@/0 (Abs)

{T} qsort :u {Qsort(u)}@ /0 (Rec, Cons)

{T} qsort :u {∀X.Qsort(u)}@ /0 (TAbs)

This concludes the derivation of a full specification for polymorphic Quicksort.

10 Conclusion

This paper introduced a program logic for imperative higher-order functions with general
forms of aliasing, presented its basic theory, and exploredits use for specification and
verification through simple but non-trivial examples. Distinguishing features of the pro-
posed program logic include: a general treatment of imperative higher-order functions and
aliasing; its precise correspondence with observational semantics (Greif & Meyer, 1981;
Hennessy & Milner, 1985); provision of structured assertion and reasoning methods for
higher-order behaviour with shared data in the presence of aliasing; and clean extensibil-
ity to data structures. We expect that compositional program logics, capturing fully the
behaviour of higher-order programs, will have applications not only in specification and
verification of individual programs but also in combinationwith other engineering activi-
ties for safety guarantees of programs.

The logic is built on our earlier work (Hondaet al., 2005), where we introduced a logic
for imperative higher-order functions without aliasing. In (Hondaet al., 2005), a reference
type in both the programming and assertion languages is never carried by another type,
which leads to the lack of aliasing: operationally, in that work, a procedure never received
or returned (and a reference never stored) references, while logically, equating two distinct
reference names was contradictory. In the present work we have taken off this restriction.
This leads to substantially richer and more complex programbehaviour, which is met by a
minimal but powerful enrichment in the logic, both in semantics (through introduction of
distinctions) and in syntax (by content quantification). The added machinery allows us to
reason about a general form of assignment,M := N, to treat a large class of mutable data
structures and to reason about many programs of practical significance such as Quicksort,
all of which have not been possible in (Hondaet al., 2005). We conclude the paper with
discussions on remaining topics and related work.

10.1 Observational Completeness

A central property of our logic is its precise correspondence with the observational con-
gruence of the programming language, in the sense that two programs are contextually
equivalent iff they satisfy the same set of assertions. We term this coincidence between
a programming language and its logicobservational completeness. It offers foundations
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for modular software engineering, where replacement of onemodule by another with the
same specification does not violate the observable behaviour of the whole software, up to
the latter’s global specification.

Theorem 6 (observational completeness)Assuming appropriate typing, the following two
statements are equivalent.

• M ∼= N
• For all C,C′: |= {C}M :u {C′} iff |= {C}N :u {C′}.

The proof of observable completeness, omitted for brevity,extends the method used in
(Hondaet al., 2005). A detailed proof will be presented in a forthcoming paper on com-
pleteness phenomena.

10.2 Local References

Apart from aliasing and higher-order behaviours, one of thefocal points in reasoning about
(imperative) higher-order functions is new name generation or local references, as studied
by Pitts and Stark (Pitts & Stark, 1998). Its clean logical treatment is possible through a
rigorous stratification on top of the present logic. At the level of programming language,
the grammar is extended bynew x := M in N with x 6∈ fv(M). For its logical treatment,
there are two layers. In one, local references are never allowed to go out of the original
scope (hence they are freshly created and used at each run of aprogram or a procedure
body, to be thrown away after termination or return). In thiscase, we do not have to change
the assertion language but only add what corresponds to the standard proof rule for locally
declared variables. Below we present a simpler case when name comparison is not allowed
in the target programming language.

{C-x}N :n {C0} {([!x]C0)[!x/n]}MΓ;∆·x:Ref(α);β :m {C′-x}

{C} new x := N in MΓ;∆;β :u {C′}
(100)

This rule says that, when inferring forM, we can safely assume that the newly generated
x is distinct from existing reference names, and that the description of the resulting state
and value,C′, should not mention this new reference. It is notable that this rule and its
refinement for the restricted form of local references allowus to treat the standard param-
eter passing mechanism in procedural languages such as C andJava through the following
simple translation: a procedure definition “f(x,y) {...}” is transformed into

λ(x′,y′).new x := x′ in new y := y′ in ....

Sincex andy are freshly generated, they are never aliased with each other nor with existing
reference names. This aspect is logically captured by (100). Thus the (lack of) aliasing in
stack variables can be analysed as a special case of aliasingin general references, allowing
uniform understanding.

In the fully general form of local references, a newly generated reference can be ex-
ported to the outside of its original scope, reminiscent of scope extrusion in theπ-calculus
(Milner et al., 1992), and may outlive the generating procedure, e.g.λn.new x := n in x.
A procedure can now have local state, possibly changing behaviour at each run, reflecting
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not only a given argument and global state but also its local state, the latter invisible to the
environment. This leads to greater complexity in behaviour, demanding a further enrich-
ment in logics. How this can be handled with a clean and minimal extension to the present
logic will be discussed in the forthcoming (Yoshidaet al., 2006).

10.3 Related Work

A detailed historical survey of the last three decades’ workon program logics and reason-
ing methods which treat aliasing is beyond the scope of the present paper. Instead we focus
on some pioneering and directly related Hoare-like programlogics for aliasing. Janssen
and van Emde Boas (Janssen & van Emde Boas, 1977) first introduce distinctions between
reference names and their content in the assertion method. The assignment rule based on
semantic substitution is discussed by Cartwright and Oppen(Cartwright & Oppen, 1981),
Morris (Morris, 1982b) and Trakhtenbrot, Halpern and Meyer(Trakhtenbrotet al., 1984).
The work by Cartwright and Oppen (Cartwright & Oppen, 1981) presented a (relative)
completeness result for a language with aliasing and procedures. Morris (Morris, 1982b)
gives extensive reasoning examples. The work by Cartwright, Oppen and Morris is dis-
cussed in more detail below. Bornat (Bornat, 2000) further explored Morris’s reasoning
method. Trakhtenbrot et al. (Trakhtenbrotet al., 1984) also propose an invariance rule rem-
iniscent of ours, as well as using the dereference notation in the assertion language for the
first time. As arrays and other mutable data structures introduce aliasing between elements,
studies of their proof rules such as (Gries & Levin, 1980; Luckham & Suzuki, 1979; Apt,
1981) contain logical analyses of aliasing (which goes backto (McCarthy, 1962)). More
recently Kulczycki et al. (Kulczyckiet al., 2003) study possible ways to reason about alias-
ing induced by call-by-reference procedure calls.

Cartwright and Oppen. Cartwright and Oppen (Cartwright & Oppen, 1978; Cartwright
& Oppen, 1981) show how to use distinctions on reference names and semantic update
as part of Hoare Logic’s standard assertion language. They present a formal result which
decomposes semantic update into reference name (in)equations. They treat a programming
language with multiple assignment, (recursive) first-order procedures and pointers. Their
assertion language uses a specific predicate which says reference namesper seare distinct,
rather than having an explicit dereference operator. The underlying model is inspired by
McCarthy’s articulation of imperative computation (McCarthy, 1962) and (Cartwright &
Oppen, 1978; Cartwright & Oppen, 1981) present two related logics.

• First, a logic where the above “distinct” predicate and semantic update are present,
but the programming language has no pointers (hence no aliasing except that coming
from arrays). After observing this semantic update to coincide with syntactic update
in the absence of aliasing, they establish soundness and relative completeness of
their proof rules.

• The second logic extends the first with pointers, at the levelof both programs and
assertions. For assignment !x := e(in our notation), it is observed that the assignment
rule {C{|e/!!x|}}!x := e{C} (again our notation) suffices, but semantic update is no
longer replaceable by a syntactic counterpart. Then a compositional translation of the
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semantic update is presented which uses the “distinct” predicate. They also propose
a rule for procedures which allow pointer passing and discuss its soundness and
completeness.

Despite complexity in presentation, their work is a milestone in the treatment of aliasing in
Hoare’s logic, by (1) distinguishing reference names and content, (2) introducing semantic
update in the assertion language, and (3) showing how semantic update can be eliminated
through decomposition into (in)equations of reference names. Note that (3) is fundamental
for keeping compositional proof rules syntactic in principle.

In the introduction, we already discussed a basic issue of the logic(s) in (Cartwright
& Oppen, 1978; Cartwright & Oppen, 1981): while semantic update becomes “syntactic”
by decomposition, in practice it is hard to carry out real logical calculation. This problem
is acknowledged in (Cartwright & Oppen, 1978; Cartwright & Oppen, 1981). Another
problem was the lack of structured reasoning principles about extensional behaviour of
aliased programs (Cartwright & Oppen, 1978; Cartwright & Oppen, 1981). Treatment of
a higher-order procedures and various data structures (which was beyond the state of the
art at the time) is also left as a future issue. The present work addresses these issues by
clarifying the logical status of semantic update through modal operators and integrating
them with a standard assertion language. At the level of models, our use of distinctions in
models arguably also contributes to the present logic’s simplicity.

Morris. Independently, Morris, in a sequence of works (Morris, 1982a; Morris, 1982d;
Morris, 1982c), presented essentially the same ideas as Cartwright and Oppen, but in a
syntactically more tractable and uniform framework with treatment of general data struc-
tures including pointers. His approach is an elegant extension of Hoare logic based on
conditional update. Morris also distinguishes a referencename and its content, usingx ↓ to
denote the address ofx (which is symmetric to the pointer notationx ↑ in Pascal). His tech-
nical treatment centres on the conditional expression rather than semantic update. He starts
from a notion of conditional substitution given as follows,assumingx andy are reference
names of the same type in a given program.

y{|e/x|}
def
= if x ↓= y ↓ then eelse y

Here a term of typeRef(α) denotes its content in the assertion language, hence (in)equality
of names proceeds by taking their addresses. Morris showed,through examples, that his
conditional update is extensible to complex expressions, but a precise axiomatic treatment
is first given by Bornat in (Bornat, 2000). We reproduce one ofhis calculations below (fol-
lowing the original presentation in using Pascal-like field-selection notation and omitting
obvious↓’s):

(p.s.s){|v/u.s|}

≡ ((p.s){|v/u.s|}.s){|v/u.s|}

≡ (if u = p then v else p.s.s){|v/u.s|}

≡ if u = p then (if v = u then v else v.s) else (if p = u then v else p.s.s)

One may observe that the above inference assumes the data structure allows recursive typ-
ing. Sincep.s.s is written (!(!p.s)).s in imperative PCFv, this calculation corresponds to
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(m = (!(!p.s)).s){|v/!(!u.s)|} in the present logic, though in many cases either such ex-
pansion is unnecessary or partial expansion suffices. Sincethe operation easily extends to
formulae, we can now express a corresponding general axiom:

{C{|e′/e|}} e := e′ {C}

which, because of the definition of conditional update above, means the same thing as
{C{|e′/!e|}} e := e′ {C} in our notation.

Morris’s approach is equivalent to Cartwright and Oppen’s in the sense that formulae
with conditional expressions are easily decomposable intothose without it using (in)equations
on reference names. Morris’s approach is more syntactic andis presented purely in the set-
ting of the first-order logic with equality. Morris (Morris,1982a; Morris, 1982d; Morris,
1982c) further extends his method with axioms for linked lists, and used the resulting
framework for verification of a Schorr-Waite algorithm.

Separation Logic. A different approach to the logical treatment of aliasing, based on
Burstall’s early work, isSeparation Logicby Reynolds, O’Hearn and others (Reynolds,
2002; O’Hearnet al., 2004). They introduce a novel conjunction∗ that also stipulates dis-
jointness of memory regions. Separation Logic uses the semantics and rules of Hoare logic
for alias-free stack-allocated variables while introducing alias-sensitive rules for variables
on heaps. We discuss their work in some detail since it contrast interestingly with ours,
both philosophically and technically. Their logic starts from a resource-aware assignment
rule (Reynolds, 2002):{e 7→ −} [e] := e′ {e 7→ e′} wheree ande′ do not include deref-
erence of heap variables and “x 7→ −” stands for∃i.(x 7→ i)”. The rule demandsthat a
memory cell be available at addresse, demonstrating the resource-oriented nature of the
logic (motivated by reasoning for low-level code). Consequently,{T} [e] := [e] {T} is un-
sound in their logic. This command corresponds tox := !x in our notation.{T} x :=!x {T}
is trivially sound in original Hoare logic (Hoare, 1969) andours.

On the basis of these resource-oriented proof rules, (Reynolds, 2002; O’Hearnet al.,
2004) propose a variant of the invariance rule.

{C} P {C′} fv(C0)∩modify(P) = /0
{C∗C0} P {C′ ∗C0}

(101)

The second premise is standard side condition in Hoare logic(modify(P) is the set of all
stack-allocated variables whichP may write to). Apart from this side condition, soundness
of this rule hinges on the resource-oriented assignment/dereference rules described above,
by which all the variables (addresses) in the heap whichP may write to are explicitly
mentioned inC. Like the standard invariance rule, this rule is intended toserve as an aid
for modular verification of program correctness.

Separation Logic’s ability to reason about aliased references crucially depends on its
resource-oriented nature, the separating conjunction∗ and a special predicate7→ to repre-
sent content of memory cells. In contrast, the present work aims at a precise logical artic-
ulation of observational meaning of programs in the traditions of both Hennessy-Milner
logic and Hoare logic, as exemplified by Theorem 6. Another difference is that our logic
aims to make the best of first-order logic with equality to represent general aliasing sit-
uations. These differences come to life for example in the[Invariance] rule of Section
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7, which plays a role similar to (101). Our rule relies on purely compositional reasoning
about observable behaviour, which, as examples in the previous section may suggest, con-
tributes to tractability in reasoning. A concrete derivation may elucidate the difference, for
example the inference below forx := 2; y :=!z through a direct application of (101) and
[Assign, Inv, Seq, Cons].

{x 7→ −} x := 2 {x 7→ 2}

{y 7→ − ∧ z 7→ i} y :=!z{y 7→ i ∧ z 7→ i}

{x 7→ − ∗ (y 7→ − ∧ z 7→ −)} x := 2;y :=!z{x 7→ 2 ∗ ∃i.(y 7→ i ∧ z 7→ i)}

For the same program, a direct application of our invariancerule [Seq-I] gives:

{T} x := 2 {!x = 2}@x (Assign)

{T} y :=!z{!y= !z}@y (Assign)

{T} x := 2;y :=!z{〈!y〉 !x = 2∧ !y=!z}@xy (Seq-I)

Reflecting observational nature, the pre-condition simplystays empty. Our inference does
not requirex and y to be distinct:〈!y〉 !x = 2 ∧ !y =!z is equivalent to(x 6= y ⊃ !x =

2) ∧ !y =!z, which is more general thanx 7→ 2 ∗ ∃i.(y 7→ i ∧ z 7→ i). Intuitively this
is because content quantification, here〈!y〉, offers a more refined form of protection from
sharing/aliasing.

These examples suggest a gain in generality by using the proposed logical framework for
representation of sharing and disjointness of data structures. WhileC1 ∗C2 is practically
embeddable as[!ẽ2]C1 ∧ [!ẽ1]C2 whereẽi exhausts active dereferences ofCi , the exam-
ples argue that the use of write sets in located judgements/assertions offers a more precise
description and smooth reasoning. On its observational basis, the present logic may incor-
porate resource-sensitive aspects through separate predicates (e.g. a predicateallocated(e)
may sayeof a reference type is allocated). Because of differences inorientation, we expect
a fruitful interplay between Separation Logic and our proposal.

One example of such interplay, applying the analytical power of the present logic, is
a simplification and generalisation of a refined invariance rule involving procedures by
O’Hearn, Yang and Reynolds (O’Hearnet al., 2004). Their rule has several side conditions
about the behaviour of programs, including an operational condition on write effects, and
restrictions on the use of formulae: below we present the corresponding rule in our logic.

C1 !x̃-free {C0} N {C′
0∗C1}@x̃ỹ {C- f ∧ {C0} f {C′

0}@x̃} M :u {C′}@x̃

{C∧C1} let f = λ().N in M :u {C′∧C1}@x̃ỹ
(102)

Here f should beephemeralin the sense that it occurs inM only in the shape off () and
never underλ-abstraction. This is easily checkable by typing. The rule says if a program
M uses a proceduref assuming that it only alters ˜x, and under that conditionM only alters
the content of ˜x, then if we instantiatef to a real program and it touches reference names
distinct fromx̃ but maintains the invariance at those reference names, theninstantiating that
procedure maintains the invariance. Ephemerality off is needed, for if we storef or place
it under abstraction, the invariance in stored/abstractedbehaviour cannot be maintained: in
contrast, in the above case, we can adjust the invariance at the time of instantiation once
and for all. In comparison with the rule in (O’Hearnet al., 2004), (102) differs in that it is
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purely compositional, i.e. does not demand conditions on behaviours ofM andN outside
of judgements. Further, our rule does not restrict the use ofstored higher-order procedures
etc. in non-ephemeral procedure labels. This generality isobtained because we can now
identify precisely why strengthening of invariance is possible in the specific setting the
invariance rule in (O’Hearnet al., 2004) deals with.

Further Related Work. There are other reasoning methods for programs with aliasing
that are not directly about compositional program logics. In this category we find, for ex-
ample, operational reasoning methods studied by Mason (Mason & Talcott, 1991) and Pitts
and Stark (Pitts & Stark, 1998) (both also deal with local references). These approaches
are complementary and their integration with logical methods such as ours an interesting
subjects for further studies.

Aliasing is an essential feature in low-level code and system-level software. Apart from
Separation Logic, there are several recent approaches which address formal safety guaran-
tee of low-level code addressing higher-order procedures and aliasing in an organised way.
An example of work in this direction is (Hamid & Shao, 2004), where integration of typed
assembly code (Morrisettet al., 1999) and Floyd-Hoare logic is studied to offer a formal
framework to guarantee expressive safety properties for assembly code with references to
higher-order code. How the present approach may be usable with lower level languages is
currently being investigated.

One issue not discussed here isdata hiding: for example a callputchar(buff,c) might,
form the client’s point of view, affect only the abstract buffer buff. But from the system’s
perspective the buffer implementation and the precise effect description would be compli-
cated. The problem is that the system’s perspective onputchar is hidden from the user.
With this constraint, is it possible to obtain precisespecificationseven at the user level
without revealing implementation detail? To achieve a smooth interplay between specifi-
cation and hiding Leino and Nelson (Leino & Nelson, 2002) proposeabstraction depen-
dencies, a new construct that allows to specify how the user-level view of effects relates
to the implementation view, but without sacrificing on the modularity afforded by hiding.
Since the aliasing problem becomes more complicated with the diverging perspectives on
software introduced by hiding, studying content quantification in this setting is sure to be
interesting.

In (Ahmed et al., 2005), Ahmed, Morrisett and Fluet present a framework ensuring
type-safety for a higher-order call-by-value imperative language in the presence ofstrong
update, i.e. the update of a variable which can change its type. Thismay be considered an
extreme form of aliasing. We believe that content quantification can be generalised to allow
compositional and observationally complete logical reasoning even with strong update.
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