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A Logical Analysis of Aliasing in
Imperative Higher-Order Functions

Martin Bergek Kohei Honda Nobuko Yoshidat

Abstract

We present a compositional program logic for call-by-valeerative higher-order functions with
general forms of aliasing, which can arise from the use aregfce names as function parameters,
return values, content of references and parts of datatstasc The program logic extends our
earlier logic for alias-free imperative higher-order ftions with new modal operators which serve
as building blocks for clean structural reasoning abougrms and data structures in the presence
of aliasing. This has been an open issue since the pioneedrigby Cartwright-Oppen and Morris
twenty-five years ago. We illustrate usage of the logic facdigtion and reasoning through concrete
examples including a higher-order polymorphic Quicks®tte logical status of the new operators
is clarified by translating them into (in)equalities of nefiece names. The logic is observationally
complete in the sense that two programs are observatioimaligtinguishable iff they satisfy the
same set of assertions.
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1 Introduction

In high-level programming languages names can be useditmieckither stateless entities
like procedures, or stateful constructs such as imperagisiablesAliasing, where distinct
names refer to the same entity, has no observable effedtssfémrmer, but strongly affects
the latter. This is because if state changes, that changgdsafiect all names referring to
that entity. Consider

p & x:=1;y:=lz;ly:=2

where, following ML notation,x stands for the content of an imperative variablesber-
ence x If z stores a reference namaenitially, then the content ok afterP runs is 2; ifz
stores something else, the final content &f 1. But if it is unclear what stores, we cannot
know if lyis aliased toc or not, which makes reasoning difficult. Or consider a progra

Q¥ Ay.(x:=1;y:=2).
If Q is invoked with an argument, the content ok ends up as 2, otherwise it stays 1.
In these examples, what have been syntactically distifieteace names in the program
text may be coalesced during execution, making it difficaljudge which name refers
to which store from the program text alone. The situatiors detther complicated with
higher-order functions because programs with side effagide passed to procedures and
stored in references. For example let:

R & A(fxy). (let z=Ixinlx:=1;ly:=2; f(xy); z:=3)
wherea = Ref(Ref(Nat)). Rreceives a functiori and two referencesandy. Its behaviour
is different depending on what it receives fgfor simplicity let's assumex andy store
distinct references). If we pass a functidnry.() as f, then, after executionx!stores 3

and Y stores 2. But if the standard swapping functiamp % \ablet c=!bin (b:=
la;a:= c) is passed, the content andy is swapped andinow stores 2 whiley stores
3. Such interplay between higher-order procedures ansimjas common in many non-
trivial programs in ML, C and more recent typed and untyped level languages (Peyton
Jonest al, 1999; Grossmaat al,, 2002; Shao, 1997).

Hoare logic (Hoare, 1969), developed on the basis of Flogstertion method (Floyd,
1967), has been studied extensively as a verification mdtrdulst-order imperative pro-
grams with diverse applications. However Hoare’s origipdof system is sound only
when aliasing is absent (Apt, 1981; Cousot, 1999): whildowsr extensions have been
studied, a general solution which extends the original oeth treat aliasing, retaining its
semantic basis (Greif & Meyer, 1981; Hoare & Jifeng, 1998) triactability, has not been
known, not to speak of its combination with arbitrary impgem higher-order functions
(our earlier work (Hondat al., 2005) extends Hoare logic with a treatment for a general
class of higher-order imperative functions including stbprocedures, but does not treat
aliasing).

Resuming studies by Cartwright-Oppen and Morris from 25yego (Cartwright &
Oppen, 1978; Cartwright & Oppen, 1981; Morris, 1982b), tihespnt paper introduces
a simple and tractable compositional program logic for geingliasing and imperative
higher-order functions. A central observation in (Carghiti& Oppen, 1978; Cartwright &
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Oppen, 1981; Morris, 1982b) is that (in)equations over rgmienple as they may seem,
are expressive enough to describe general aliasing irofidgr procedural languages, pro-
vided we distinguish between reference names (which wewyriand the corresponding
content (which we writeX) in assertions. In particular, their work has shown thedsali
robust substitution, writte@{e/!x[} in our notation, defined by:

2 =Cle/ix)y it ot [x— €] ] £ C (1)

(i.e. an update of a store at a memory cell referred ta tWth valuee), can be translated
into (in)equations of names through inductive decompasitf C, albeit at the expense
of an increase in formula size. This gives us the followinmaatic version of Hoare’s
assignment axiom:

{Cle/!x}}x:=e{C} @
where the pre-condition in fact stands for the translatechfmentioned above. The rule
subsumes the original axiom but is now alias-robust. As@e@ence of descriptive power
of this approach, Cartwright and Oppen showed that the u§2)déads to a sound and
(relatively) complete logic for a programming languagenfitst-order procedures and full
aliasing (Cartwright & Oppen, 1978; Cartwright & Oppen, 198Vorris showed many
non-trivial reasoning examples for data structures witktretive update, including the
reasoning for Schorr-Waite algorithm (Morris, 1982b).

The works by Cartwright-Oppen and Morris, remarkable ag #re, still beg the ques-
tion how to reason about programs with aliasing in a traetaddy. The first issue is cal-
culation of validity in assertions involving semantic stifogions. Cartwright and Oppen’s
inductive decomposition dfe/!x[} into (in)equations has been the only syntactic tool avail-
able, and is hardly practical. As demonstrated through nexaynples by Morris (Morris,
1982b) and, more recently, Bornat (Bornat, 2000), this dgmusition should be distributed
to every part of a given formula even if that part is irreleMarthe state change under con-
sideration, making reasoning extremely cumbersome. Astypieal example, if we use
the decomposition method for calculating the logical egignce

C{c/!x}H{e/!Ix} = C{c/\x}

for generalC, with c being a constant, we need either meta-logical reasonidggction
on C, or an appeal to semantic means. Because such logical atideuis a key part
of program proving (Hoare, 1969), practical usability othpproach becomes unclear.
The second problem is the lack of structured reasoning ipta®: for deriving precise
description of extensional program behaviour with aligsifihis makes reasoning hard,
because properties of complex programs often depend dyuciahow sub-programs in-
teract through shared, possibly aliased references.|¥itta logics in (Cartwright & Op-
pen, 1978; Cartwright & Oppen, 1981; Morris, 1982b) andrtBatcessors do not offer a
general treatment of higher-order procedures and mutaltéestiructures which may store
such procedures.

We address these technical issues by augmenting the lagimperative higher-order
functions introduced in (Hondgat al., 2005) with a pair of mutually dual logical primitives
calledcontent quantifiersThey offer an effective middle layer with clear logicaltsisfor
reasoning about aliasing. The existential part of the fives, written(!x) C, is defined by
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the following equivalence:

Q.
=

o= (INC V(M [x—V] EC) 3)
The defining clause says: “for some possible content of ageée names, » satisfie”
(which maynotbe about the current state, but about a possible state, fiemoetation).
Syntactically(!x) C doesnot bind free occurrences ofin C. Its universal counterpart is
written [!x] C, with the obvious semantics.

We mention several notable aspects of these operators. thies introduction gives a
tractable method for logically calculating assertiongwgigmantic update, solving a central
issue posed by Cartwright-Oppen and Morris 25 years ago.t&vefsom the following
syntactic representation of semantic update using thekmelvn decomposition:

C{e/Ixp = Im({x) (CAlx=m)Am=e). 4)

From (3) and (4), the logical equivalence (1) is immediag¢eprering (2) as a syntactic
axiom. Not only doe€{e/!x[} now have concrete syntactic shape without needing global
distribution of update operations, but these operators @ffer a rich set of logical laws
coming from standard quantifiers and modal operators, @makfficient and tractable
calculation of validity while subsuming Cartwright-Oppktorris's methods. Intuitively
this is because logical calculation can now focus on thosis pahich do get affected by
state change: just like lazy evaluation, we do not have mutate those parts which are not
immediately needed. In later sections we shall demongtia@oint through examples.

Closely related with its use in logical calculation is a pofwedescriptive/reasoning
framework enabled by content quantification in conjunciith standard logical primi-
tives. By allowing hypothetical statements about the cointé references separate from
reference names themselves (which is the central logiaeslife of these operators), com-
plex aliasing situations are given clean, succinct desorip, combined with effective
compositional reasoning principles. This is particulatsible when we describe and rea-
son about disjointness and sharing of mutable data stegf{in this sense it expands the
central merits of “separating connectives” (O’Heatral., 2004; Reynolds, 2002), as we
shall discuss in later sections). The primitives work seslly with the logical machinery
for capturing pure and imperative higher-order behavitudied in (Honda, 2004; Honda
& Yoshida, 2004; Hondat al., 2005), enabling precise description and efficient reampni
for a large class of higher-order behaviour and data strestu

Third, and somewhat paradoxically, these merits of corgaantification come without
additional expressive power: any formula which containstent quantification can be
translated, up to logical equivalence, into one without.ilé/Bstablishing this result, we
shall also show that content quantification and semanti@aigpdre mutually definable.
Thus name (in)equations, content quantification and sémaptiate are all equivalent
in sheer expressive power: the laws of content quantificatie reducible to the standard
axioms for predicate calculus with equality, which in tura aquivalent to semantic update
through its axioms for decomposition. This does not howeuminish the significance of
content quantification: without identifying it as a propegical primitive with associated
axioms, it is hard to consider its use in reasoning, both gicll calculation and in its
applications to structured reasoning for programs and statectures in the presence of
general aliasing.
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Structure of the Paper

In the rest of the paper, Section 2 briefly summarises therprogning language. Section
3 introduces models for the logic. Section 4 illustrateskbg ideas underlying content
guantification, expanding some of the themes noted abowtio8e introduces the as-
sertion language and its semantics. Section 6 discussezcigraxioms for the assertion
language. Section 7 introduces compositional proof ride#ite logic, and discusses struc-
tured reasoning principles for programs in the presenckasfiag. Section 8 discusses sev-
eral key technical properties of the proposed logic: elabitity of content quantification
and soundness of axioms and proof rules. Sections 9 givefriwal reasoning examples.
Section 10 is devoted to discussing related work and futtgcs.

This paper is a full version of (Berget al., 2005), with complete definitions and de-
tailed proofs. The present version not only gives moretilatoon of axioms and proof
rules, but also more comprehensive comparisons with elatek.

Our previous work on logic for imperative higher-order ftinons (Hondaet al., 2005),
treated a sublanguage of the language investigated héfieredt only in that reference
types are never carried by other types. This small syntattange in types leads to a
significant difference in realisable behaviour. This diiece in behaviour and how it can
be handled, logically as well as semantically, is the magu$oof the present work.

2 Language
2.1 Syntax and Typing

The programming language we shall use in the present stuchlliby-value PCF with
unit, sums and products, augmented with imperative vafalAssume given an infinite
set ofvariables(x,y, z, ..., also callechame$. The syntax of programs is standard (Pierce,
2002) and given by the following grammar.

(values VW = c|x| MM | ufo=B Ay M | (V,W) | inj(V)
(progran) M,N == V|MN|M:=N|IM|op(M)|m(M)|(M,N) | inj(M)
| if M then Mj else My | case M of {in; ()ﬁqi)-Mi}ie{l,Z}

Abstraction, recursion and the case construct are anuadgtéypes. Constantg(c’,...)
include unit(), natural numbers and booleans (either truet or falsef). op(M) (where

M is a vector of programs) is a standardry first-order operation such as —, x, =
(equality of two numbers or that of reference namesfjnegation) A andV. IM derefer-
encesM while M := N first evaluated and obtains a reference (s&y evaluatesN and
obtains a value (sa¥), and assign¥ to x. All these constructs are standard, cf. (Pierce,
2002; Gunter, 1995). The notions of binding andonvertibility are also conventional and
fv(M) denotes the set of free variablesvh We use abbreviations such as:

AOM T Ut (xg (M)
MiN & (0.N)M

L ANM (xg (M)

let X=Min N
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Ml scarxa VMUEEg e BOOlrreiBoor NUMrFniNat
[Eq]r%Ml,Z:aae{Nat,Ref(B)} [Abs rx:okFM:B [ e(}r,x:a#Bi—)\y".M:a:B
I - M;=M, : Bool TEMCM:a=B MRy M:a=p

Apg T FMia=B TEN:a (T EM:Bool [HNiia(i=12)
P FFMN:B [F if M then Nj else Np : O

(inj] r=M:aq; [Casé Fr’=M:aj4+a; Fx:ai EN:B
[Finj(M):ap+a; 'k case M of {inj(X").Ni}icq12) : B

Nr-Mi:aqi (i=1,2)
[+ <M17M2> X0z

rEM:ag xap

[Pair] FrEm(M)ca; (i=1,2)

[Proj]

[ F M :Ref(a)
TTFM:a

F’EM:Ref(a) TEN:a
'EM:=N:Unit

[Deref] [Assign

Fig. 1. Typing rules.

Types are ranged over loy 3, ... and are given by the following grammar.
(types apf = Unit | Bool | Nat | a=B | axB | a+B | Ref(a)

We call types of the fornRef(a) reference typedAll others arevalue typesAlthough the
grammar is standard, some points are worth noting in the difftheir status in the present
theory.

Remark 1 (type structure)

1. Both reference types and value types may carry refergmesst This allows pro-
grams which write to a dereference of a variable (exg='3), or take a reference as
argument and return a reference (&uxg(x :=!x+ 1;x)), leading to a strong form of
aliasing illustrated in the introduction.

2. Having reference types as part of arbitrary data typesallews various “destruc-
tive” data structures to be represented. For exanRaiéNat=-Nat) x Ref(Nat) is a
type for a record whose first component is a pointer to a fonati typeNat=-Nat
while its second a reference to a natural number.

A basisis a finite map from names to typds.I”’ ... range over bases addm(I") denotes
the domain of”, while cod(I") denotes the range 6t The typing rules are standard (Pierce,
2002) and listed in Figure 1, using sequents M : a, which say thaM has typex under
basisr".

The following subclass of programs is important in the sgbsat development (its
original appearance may be (Meyer & Sieber, 1988)).

Definition 1 A typed prograni + M : a is semi-closedvhencod(I") only includes refer-
ence types. We also sdy is semi-closedvhenl - M : a is semi-closed for some and
Q.
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Underlying this definition is the distinction between fuoaotl variables and imperative
variables: the formedenote or stand for values, while imperative variablesfer to, or
name memory cells. We may consider a program with free funcifieasgables to be in-
complete: for it to function properly, those variables nézthe instantiated into concrete
(semi-closed) values. Having free reference variablegirogram is quite different, since
that program needs them to interact with the store. If refezeames ark-abstracted, pro-
grams can touch references only after the abstracted namésséantiated into concrete
names by application. In the light of the above discussibis, dften convenient to sin-
gle out the reference-type part of a basis. Wellet. range over bases whose codomains
are reference types and writeA for a basis wheré maps names to value types (called
environment basjsandA maps names to reference types (caliefdrence basjs always
assuminglom(I') Ndom(A) = 0. Semi-closed programs can always be writteda M : o
(however, writingl” - M : a doesnot mean the lack of reference-typed variabledAnit

is only in the notatiori; A thatl” denotes an environment basis). We often call variables
of reference typeseference namesr simplyreferencesBy abuse of terminology we shall
sometimes use “reference” to denote the named memory sdls as no confusion arises.

2.2 Dynamics

A store(o,d’,...) is a finite map from reference names to semi-closed valueswiite
dom(o) for the domain ofc and fv(o) for names occurring in (both the domain and
codomain of)o. A configurationis a pair of a semi-closed program and a store. Then
reductionis a binary relation over configurations, writtéd,c) — (M’,d’), generated

by the rules below (Gunter, 1995; Pierce, 2002). We usetdefight evaluation, but the
proposed logic can treat other evaluation strategies amus to infer properties which
hold regardless of evaluation strategy. First we geneedeations over programs (not
configurations) based on the usual reduction rules forlmalalue PCF, omitting obvious
symmetric rules and the rules for first-order operators.

AxM)V  —  MV/X
m((V,V2)) — W
case in1(W) of {in; (Xi)-Mi}ie{l,z} —  M1[W/x1]
if t then M1 elseMy; — M1
(UfAGNW  —  NW/g][uf.Ag.N/f]

The rules for assignment and dereference are given nexiwBek — V| denotes the store
which maps<toV and otherwise agrees with In both rules we lek € dom(0o).

('x, o) — (0o(x), 0)
x:=V, 0) — (0, ax—V])

NoteV in x:=V is semi-closed by :=V being semi-closed by the definition of configu-
rations. Finally the contextual rules are given as follows.

M— M (M,0) — (M, 0")
(M,0) — (M",0) (£[M],0) — (£[M'],0")
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wherez[-] is the left-to-right evaluation context with eager evaiomtfor first-order op-
erators, pairs, projection and injection. Evaluation eatd are given by the grammar pre-
sented next.

E[] v= (£[M) | (VEL]) | e | sm(el) |l
|  £[-]:=M|V:i=%[]|if £[-] then M else N
|

case Z[-] of {ini(%).Mi}ic(12) | op(V,Z[-],M)

We write (M,0) | (V,d) iff (M,0) —* (V,0), (M,0) |} iff (M,0) | (V,0’) for someV
anda’, and(M, o) 1) iff for all nthere is a reduction sequen@d,c) —" (M’,0’). Here
—" is then-fold relational composition of—.

To have subject reduction, we need to type stores in addibigmograms. Writé\ - ¢
whendom(A) = dom(o) = fv(o) and, moreover, the types of matchA, i.e. for each
x € dom(0) we haveA - o(x) : o iff A(x) = Ref(a). Notedom(o) = fv(0) means reference
names which occur in the codomain@also occur in its domain. We set:

A-(M,0) & (AFM:aAAFO)
For example, giveM ®ix:= 3 ando d:‘gf{x»—> y, y— 2}, we have
X:Ref(Ref(Nat)), y:Ref(Nat) + (M, 0)

Note thatx: Ref(Ref(Nat)) = M : Unit: however we need a reference stored o have a
well-typed configuration for this assignment to work.

Proposition 1 (subject reductionpupposéA - M : a andA + (M, o). Then(M,0) —
(M’,0’) impliesA+ M :a andA+ (M',0’).

Convention 1 Henceforth we restrict the reduction relation to well-tgm®nfigurations,
that is whenever we writeM, o) — (M’,0’), we assumé + (M, 6) for someA.

2.3 Contexts and Contextual Congruence

Write C[-][. for a typed context such that - C[M] : o whenever - M : a. We often
simply writeC[-] for a typed context, leaving their domain and codomain iniplihough
formally contexts are always considered to be typed. Wenafse the following subset of
typed contexts.

Definition 2 (modest contexts) A typed contéXf] is semi-closingf its resulting program
is semi-closed. It isnodestf it is semi-closing and, moreover, it does not abstract any
reference name in the hole.

Note a modest context always has the f&m ]?’A"; with A’ D A, and does not collapse
reference names in a program. An example of a modest costext i

()\XNat [ . ])y:Ref(Nat);Nat:>Boo|
) X:Nat,y:Ref(Nat);Bool

which abstracts a value-typed variaklavhereas

€ a Ref(Na bool
(AZRef(Nat) | ])z:Re(f(Nta)t:;Boo'
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is not (since a reference namni the hole is abstracted).
The contextual congruence for the language, dentad defined in the standard way,
i.e. as the maximum typed congruence satisfyilg:M; = My : Unit iff:

vo.((M,0) | < (M2,0)) ()

Above we assume well-typedness(dly 2,0) following Convention 1, similarly hence-
forth. The definition is immediately equivalent to sayin@ttke is the maximum typed
relation satisfying” - M1 = My : a if and only if:

Vo, semi-closingC[ - |V, ( (C[M4],0) | < (C[Mg],0) |}) (6)

whereC| - [t indicates the resulting type I$nit (with some unspecified reference ba-
sis) and (following our convention) we assume well-typexdnaf configurations (i.eA -
(C[M12],0) for someA in the above clause). This in turn is equivalent to saying tha
is the maximum typed relation satisfyilmg- M1 = M> : a if and only if, again assuming
well-typedness:

V5, o, modesC[ - |U"t. ((C[M18],0) | <«  (C[M23],0) |}) (7)

whered ranges over (possibly non-injective) well-typed substitu of reference names
for reference names. This characterisation says all exigertis we need to inspect the con-
textual behaviour of a program are combination of modestects and possible ways to
collapse reference names. To check the equivalenb, #indM, satisfies (6), then surely
they also satisfy (7), by taking appropriate contexts in F@r the other direction, sup-
poseM; andM satisfy (7). Then (again by taking appropriate contextey thlso satisfy
(C[M1&],0) |} iff (E[M2€],0) || for anyo, &, and modes€E] - ], whereg ranges over well-
typed substitutions of (both non-reference and referevenégbles for semi-closed values.
This means we can always replade andM-¢ in a hole of a context without changing
termination behaviour of the whole. Now assume, for a pdgsin-modest contex@| - |,
that C[M;] converges. Tracing the reductions starting fr6fM;], whenever a duplicate
of Mj is launched into an evaluation context, in the fokMré, we replace it withM5g,
so that wherC[M;] terminates, a residual &[M,] (with replacements), sal\, is iden-
tical with that ofC[M1], sayNi, except for duplicates d¥l; underA-abstraction. Since if
N2 has no redex theN; cannot have any redex, so we know tR##;] also converges.
Symmetrically, ifC[M4] converges the@[M5] converges, hence we obtain property (6).

A further characterisation ¢& can be obtained by parameterisiggwith a reference
basis. Let us saf (which may map both non-reference and reference namesyiered
by A when the maximal reference basid’iiis a subset of, i.e. when™ = I"g; Ag such that
Ao C A

Definition 3 Letl - Mz : a and assumé coversl . Then we sdl - M1 =5 M2 : a when
the following condition holds.

Y A3, Ao, modest G- JFid™. ((C[M18],0) | < (C[M28],0) {)
whereA + & indicates thabd is a well-typed substitution ovelom(A).

Proposition 2 Letl =Mz, :a. Thenl =M1 = My : a if and only ifl" - My =5 M2 : a for
eachA which coverd .
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Proof

The “only if” direction is immediate. For the “if” directiarsupposé - M1 =A M» : a for
eachA which coverd . We showM; andM3 satisfy the characterisation (7). Uet=T; Ag
and suppos€[M;9] || for some modesE| - |. Let, without loss of generality (through
injective renaming and weakening), we have o such thatdom(A) Ndom(l") = 0 and
Ag C A. SinceM; = My we haveC[M29)] || as required. [

We may further restrict contexts in Definition 2 to evaluatioontexts, combined with
closing substitutions for non-reference variablesvbrp.

3 Models

We introduce a class of models which concisely represenpatational situations of in-
terest. We follow our previous work (Hond# al, 2005) except for the additional use
of distinctionsto describe aliasing, an innovation coming from tlealculus (Milner
etal, 1992). Our models are immediately faithful to the obselevabhaviour of programs,
which is important for our logic’s observational completes.

3.1 Distinctions

In (Hondaet al, 2005) a model was a pafE, o) where¢ mapped non-reference names
to semi-closed values armwas a store mapping reference names to semi-closed values.
One of the key operations on models wasx — V] which returns a model that is exactly
like ar , except that the reference namessumed to occur in/ , now maps td/. In the
presence of aliasing, where distinct reference names nfi@rytoea store location, this op-
erations cannot just work on the given naxpbut must also update what is stored at all of
X's aliases. For this purpose we udistinctions equivalence classes of reference names,
following Milner, Parrow and Walker (Milneet al., 1992), rather than introducing an ad-
ditional set of location labels. The latter approach candumd in the dynamic semantics
of ML (Milner et al, 1990). The notion of distinction distills the idea of aliagat a high
level of abstraction.

Definition 4 (distinction) Adistinction oveiA is an equivalence odbm(A) relating names
of the same typep, ’,... range over distinctions. We writgl 9 or just»? to indicate
the typing of», anddom(®) for dom(A). »-identicalsor simplyidenticals leavingD
implicit, are thep -equivalence classes. We Igt, . .. range over identicals. The type of an
identical is that of its members. THell distinctionon A is {{x} | x € dom(A)} (distin-
guishing all names ifA). D' extendsp, written © < o, provideddom(®) C dom(2’)
and for allx,y € dom(D) we havexpy iff xD'y.

Example 1 Assumé = X,y,z: Ref(Nat),a,b: Ref(Nat=-Nat). Then
D= {(X7X>a (yay)v (Zv Z)v (av a)v (bv b)v (X,y), (yvx)a (aa b)a (b, a)},

the least equivalence ovedpm(A) relating x with y and a with b, is a distinction of type
A with identicals{x,y},{z},{a,b}. The full distinction of typé\~ = x,y : Ref(Nat),a:
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Ref(Nat = Nat) clearly satisfieso ~ < ». But if D’ is the full distinction of typd\, then
D £ andd’' £ D.

We continue with some notational conventions that are ligaftnandling distinctions.

Notation1 » —i %' p \{i xi} (assuming is an identical ofp). Dually » +i =D U

{i xi} (assuming N (UD) = 0). We write A for the base which ha®-identicals as
domain of definition and magsto A(x), providedx € i. Givenl';A+ M :a and? is a
distinction of typeA, thenM® is obtained by replacing eache dom(A) in M with the

unique-identicali such thatx € i. More precisely, ifdom(A) = {x1,...,Xa} andx; € ij,

then Mo E'MJiy/xq] -+« [in/X)-

Example 2 With »2 from Example 1 above, we have

AD = {x,y} : Ref(Nat),{z} : Ref(Nat), {a,b} : Ref(Nat=-Nat).

Now let M be the program x!a+3; z:=!y. ThemA+ M : Unit and, setting GEf{x,y},j &ef

{a,b},k d:ef{z}, we have

Mo = i:=lj+3k:=li AD = D : Unit.

We construct models relative to a distinction. This is fumeatal to our concern since
the logical description of program behaviour generallyatets on distinctions. For exam-
ple, we may wish to say:

The command x= 1;y:= 2results in the state where x and y stdrand2 respectively,
providedx #y, i.e. if x and y are distinct references.

For giving a meaning to such description, we need to set umasic domain in whichx
andy areRef(Nat)-references and in whickhandy are distinct. But in a different world,
wherex andy are aliased, we may have the following description:

The command x= 1,y := 2 results in a state where x and y st@geprovidedx =y, i.e.
if x and y denote the same reference.

which is quite different from the first one.

Consequently, our semantic domains are constructed fromadesed programs (up to
the observational congruence) parameterised by distimetiThis accords with our intu-
itive understanding of observational indistinguishapilinder potential aliasing. A pro-
gram’s behaviours relative to a given distinctien can be made explicit by using-
identicals as reference names, as already demonstratecinge 2. The next example
shows the difference in dynamics engendered by varyingdt&ins more clearly. Let

M Eir X=ythenOelsel

wherex andy are of a reference type.4f equates andy and, moreover, ifis the identical
containingx, y, then we have:

MDD = ifi=ithenOelsel
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Mo immediately converges to 0 unlilé itself, making clear the effect of distinctions on
observable behaviour of programs.

Since our definition of configurations (page 6) treated stammes atomically, we are
free to use identicals as store domains. All the correspmndonstructs (store typings,
reductions, substitution, etc. stay unchanged). For elaifipl is the progranx := 3;ly
typed undeis ey Ref(Nat), y:Ref(Nat), and? identifiesx with y, i.e.x,y € i, then
[i — 7] is a well-typed store undérp. Moreover, we have the following reductions:

=3, [i—7 li, [i—3 3, [i—3)]).

( i—7) — (,[—3) — @[~—3)
ND»

We hereafter freely use identicals in this way.

However 2 as defined in Section 2.3 is too fine for semantics of programis distinc-
tions. To see why, consider

def Ref(a) Ref(al)

M if X =y then () else @

wherew is some diverging term diinit type. If we consider a distinction in whichand
y are equated, then we expddtand() to be contextually equivalent. Bat saysM 2 ()
because it considers arbitrary aliasingx @indy are distinct, then we do hawe 1}, so we
cannot generally sayl 2 ().

In order to deal with this phenomenon, we define a distinetaspecting congruence.
Below we sayA is completef whenever a reference type (say occurs in any reference
type in its codomain thea is also in its codomain. So: Ref(Ref(a)) is not complete but
x: Ref(Ref(a)), y: Ref(a) is.

Definition 5 (p-respecting congruence) LAtbe complete aned be a distinction over
A. Then we writel;AF M1 =, Ma:a for ;A My 2 : a iff, for each modes€] - | and
corresponding store, we have:

(C[Ml@]ao) J < (C[MZQ)LG) U

As is customary, we often simply writd =2,, N when the typing is clear or irrelevantin a
given context.

Immediately2,, is a typed equivalence. Observe alsg is nothing but the result of
restrictingd in the characterisation ¢t in (7) (in Section 2.3, Page 8) to lie-respecting,
i.e. we only consider substitutions which collapse names &éine equal inp but leave
distinct those which are distinct in. Conversely> arises from,, by ranging» over all
possible distinctions.

Proposition 3 LetA be complete. Thein, AFM = N : a if and only if, for each distinction
D overA, we havd ;AFM =, N:aq.

This Proposition is an easy corollary®fs characterisation in (7). We close this subsection
with a small observation about the effect that extendingstirdition has or¥,,.

Proposition 4 Letl;A+Mj:a and assumé& C " andA C A'. Assume furthep? <
»™ Thenl; A+ M 22, My aiff ;A - My 22, My : 0.
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Proof
Since the set of semi-closing contexts one can use in Defiritido not vary by extending
bases and distinctions.[]

3.2 Models

We can now define models, but rather than taking tufes) for models where& maps
non-reference names to semi-closed valueséasd store, i.e. a mapping from reference
names to semi-closed values (this was the model constructi¢giondaet al, 2005)), we
now take tripleg»,¢,0).

Definition 6 LetA be complete. Anodel of typd ;A is a triple(?,§,0) where

1. o is adistinction ordom(A);

2. ¢ mapsdom(I' UA) to semi-closed values such that eachdom(I") is mapped t&/
such thatAo F V : T'(x) and eachx € dom(A) is mapped to the unique-identical
containingx.

3. ois astore that is a finite map from the identicals ofto semi-closed values so that
an identical of typeRef(a) is mapped to aterao FV : a.

M ,M’,...range over models. bt d:Ef(a),E,c), theno (resp.§, resp.o) is thedistinction

(resp.environmentresp.store) of & . We writel ;A + 2 or v« "2 whenas is a model of
typel;A. Givenas T2, we setdom(a ) £ dom(FUA).

Example 3 Letl" be x: Nat, f : Nat=-Nat and assum@ is y,z: Ref(Nat). Assumep is
the distinction of typ@ identifying y with z, i.e{x,y} =i. With

& = x:7,f:And+liy:i,z:i o=1[+—9,
(p,&,0) is a model of typ€; A. Clearlydom(2,8,0) = {x,y,z f}.

Convention 2 (notation for models)

1. We often writg(§, 0) to denote a mod€b , &, ) where? is recovered frong in the
obvious way.

2. Given a modef/ OEf(f/),z,c) of typerl; A, the notatiom (x) with x € dom(§ U 0)
denotes either: (1(x) if x € dom(I"); (2) a(i) if x € dom(A) andx € i; or (3) o(x)
if Xis ap-identical.

3. =, stands forz,, with » being the distinction of« .

There are two important constructions we use with models. firist is an update of the
abstract store of a model with a new value, indicating theatf assignment commands.
Definition 7 (semantic update) Letr ""&Ref(@) €1y & 5.j W) with x € i. Further let
ARV :a, Thenthe expressian [x— V] or, alternativelya/ [i — V], denote$, &, 0-i —
V). Clearly (1)a [x— V](x) =V and (2) for eacly that is not inx’s identical we have
M [x = V](y) = 9 (y).
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Notation 2 Givena = (0,&,0)"4, u¢ fv(m ) andDAFV : a, we writeas -u:V, or
often(§-u:V,0), for a model that extend® by one entry with the valu€. Formally we
setaf -u:V to be a modeds’ such that:

1. If ais a value type thems ' = (9,&-u:V,0)"¥%4; and

2. If ais a reference type then, witlie'v U {u},

M’ = (D —V+i,E[i/V]-u:i,afi/V])Aua

where the substitutions on environments and stores havielibeiing definitions:
oli/j]isdefined ag|i /j] =0and(c-i' — U)li/j] =oli/j]-i'[i/j] — Uli/j]. Similarly:
(&-x:U)[i/j] = (&[i/j])-Vi/il.

In general, in Clause 2 above, we cannot hawéu) =V since for reference typesitself
is adjoined to an existing identical. Note that sueh is determined uniquely.

4 Two Modal Operators

This section motivates content quantification and its geringhe analysis of the sound-
ness proof for Hoare’s original logic.

Aliasing and Assignment. As illustrated in the introduction, interaction betweerasd
ing and assignment leads to difficulties in reasoning. Foicoeteness let's consider the
following program.

def

double? AxRef(Nat) \yRef(Nat) (- —1xp1x; yi=ly+ly) (8)

Itis intended to assign the double of the original value farteof two references it receives
as arguments. However, as one can easily see, the programotvibehave that way if
we apply thesamereference to this program twice, as (ifdouble?)r)r. For suppose
originally stores 2. Then, after execution, we obtain 8dadtof 4 as new value stored in
r. This is because andy, distinct variables in the procedure body, are coalesdedane
variable through repeated arguments. But if we apply twtrtisreferences tdouble? it
will surely double the content of each argument.

Hoare’s principle of logical reasoning (Hoare, 1969) dietathat a valid judgement
should be derived compositionally, i.e. precisely follogiithe program text. Let us con-
sider how this may be done fdpbuble?, focussing on the second command=!y+!y".
Suppose for concreteness that the content of batidy is 2 at the entry point. If we were
without aliasing, we would have the following specification

{Ix=ly=2}y:=ly+ly{Ix=2Aly=4} 9

As x andy can get coalesced into a single name if the arguments arategh¢he assign-
ment toy may affect the content of From this viewpoint, (9) imota precise specification
of the assignment command in the presence of aliasing. Schowe amend (9)? Since
the postcondition of (9is correct ifx andy are distinct references, the following gives a
natural refinement of (9).

{X£yAIx=ly=2}y:=ly+ly{Ix=2Aly=4} (10)
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The pre-conditiorx # y says thak andy are distinct as names; thex=!y = 2 says that,
in spite of this distinction, their content is the same. Th#ational difference between
(denoting a reference name of tyRef(Nat)) and X (denoting its content, of typMat)

is fundamental in this assertion. The origin of this diffefation may be traced back to
the early days of computing where, in assembly languagesdistinguished the content
of a registelR from the content of a memory cell whose address is heRl it the level
of programming languages, it is in typed languages like Md Biaskell, that the need of
assigning correct types to expressions have led to stffetreintiation between references
and their content.

Assignment Axiom with Aliasing. But how can we derive specifications such as (10)
syntactically? Hoare logic has a simple rule to derive a do@md indeed best possible)
pre-condition for any given a post-condition and an assigmreommand, elegantly using
a syntactic substitution.

[AssignOrg] (11)

{Cle/!X]} x:=e{C}
where[e/!X] is the syntactic substitution replacing occurrencexafiith ein C. However
this rule is not valid in the presence of aliasing, as has bewnvn from early times,
cf. (Apt, 1981; Cousot, 1999). For example, in the caséoable? and the post-condition
Ix=2 A ly= 4, we easily calculate, witk indicating logical equivalence:

(Ix=2Aly=4)[ly+ly/ly] = Ix=2Aly=2 (12)

which gives the pre-condition in (9) in the alias-free seftirather than what we want,
(10). Another slightly different Hoare triple for the sam@nemand makes the underlying
issue more vivid. For the prograyn=!y+!y and the post-conditiork!= 2, we want to
derive:

{x=yAly=1) vV (x£yAIx=2)} y:=lyt+ly {Ix=2} (13)
By informal reasoning, we can see that the judgement (13pésaiionally reasonable.
But if we apply the syntactic substitution to the given postidition, we obtain;

(Ix=2)[ly+ly/ly] = Ix=2 (14)

In view of the pre-condition in (13), we can see (14) pregiselves out the case when
x andy are aliased. Indeed, to obtain the pre-condition of (13nfte = 2, the syntactic
substitution]!y+!y/ly] is powerless, sincgdoes not even occur in the postcondition.

Content Quantification. At the semantic level, the distinction-based models intozdl
in Section 3.2 give a clear idea about how our answer shouidue if not the answer
itself. This is through the following logical equivalenaehich already appeared in the
introduction. What we are looking for is a formuTa such that

M =Co it o [x— €] - C. (15)

Above the boldfacea signifies the identical containing 4/ represents the stabefore
the assignment, whiles [x — [[€]],,], the update of that state by the value (denoted by)
g, is the stateafter assigning (the value denoted by)calculated in the initial stater)
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to the memory cell referred to by By Definition 7, even ifx is aliased g [x — [[€]] 4]
gives the correct update. Thus (15) says that,ddo hold as the descriptioafter the
assignmenx := e, the pre-conditioily should be such thatr = Cp holds if and only if
M [x—[[€],4] E C holds.

We already know we cannot use the result of syntactic sultistitC[e/!x] for Cp in the
presence of aliasing. But why did it work in the alias-fretting? In brief, this is thanks to
the following logical equivalence.

Cle/lx} = dIm(Ix(CAlx=m)Am=e) (16)

Note that we cannot simplify the right-hand side ifto(C A !x=e) becauseX may occur
in e. Using (16), we justify (15) as follows, assuming is alias-free, i.e. its distinction is
full (hence we writex, notx).

M [x— [y ]FC & ar-m:[e]y [x— (e, ]FCAX=m (17
= M -m: €], EIX(CAIx=m) (18)
& M E3IM(IX.(CAIXx=m) Am=e) (19)
& M =Cle/!X] (20)

All are standard logical equivalences under the full digtom, clarifying the status of the
logical equivalence (16) in Hoare's original assignmenbax

The key step in our analysis is that from (17) to (18): we hadebrid of the model
update[x — [€],,], and to do so we must ensure that the truth value of the formula
the right of the satisfaction relation is independent of iwbatored ak. Without aliasing
we can achieve this by simply hidingthrough existential abstraction, because in this
setting, the only (non-trivial) thing we can do with a refece name in a logical formula
is to dereference it. Hence, xfis not a free name of a formula, the formula is true/false
independently from what the model storexat

Now consider why this proof above no longer works in the pmesef aliasing an what
can be done about it. Remember that we want to find a for@gksuch that (15) holds.
Yet, when trying to mimic derivation (17 - 20) in the presentaliasing we find that while
the first step is as (17) before, the second fails:

M x— €], ]=C & o -m:e], [x— ey ]FCAIX=m
& M -m: €], EIX(CAIXx=m)
The problem is that now a formula’s truth value may depend batvis stored at (the
identical containing¥, even wherx does not occur freely in the formula on the right of the

satisfaction relation. The addition of aliasing increasetlexpressiveness of the assertion
language. To see how to deal with this conundrum, we notedhatl ¢ ’,C':

M X [€], ] EC = V' [x—V]=C Alx=e

Since we need to make a formula independent from what stoseith dhe model, not from
x itself, this last equivalence is suggestive of a new quantiissume we had an operator
(Ix)C in our logic with the following semantics, cf. (3):

Q.
=

e

M’ = (IxC = N.m'x—V] EC
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It is the contenV of x, rather tharx itself, that is existentially abstracte@. may still talk
aboutx, for example saying that=y, but the truth value of!x)C’ is now independent
from whatas ’ stores ak. If content quantification were part of our assertion larggjave
could reason:

M x [€la ] EC & o -mifely [x [ea ] ECAX=m  (21)
= M -m: €, =X (CAIx=m) (22)
& M EIm(m=e A {IX)(CA!x=m)) (23)

Hence content quantification allows to re-introduce thewed@nce (16) that witnessed the
correctness of the original Hoare rule, but enhanced, sarithust under aliasing. We can

then define

Cle/ixp £ Im((x) (CAlx=m) Am=6e). (24)

We call{e/!x]}} semantic substitutioor logical substitution By the semantics of content
quantification, in (21) - (23), we have re-establish thedagequivalence in (15), replacing
Cle/!x] with C{e/!x[}, mimicking (17-19) above. Thus we now arrive at the follogvin
proof rule.

[AssignBasic (25)

{C{e/Ix} } x:=e{C}
This rule subsumes the original rule (25) sir@§e/!x} coincides withC[e/!x] under the
full distinction. The semantic status of (25) is clear frdme semantics of content quantifi-
cation, offering the weakest precondition@ftinder arbitrary aliasing.

So we seem to have arrived at an analogue of Hoare’s assigiaxiem in the presence
of full aliasing, by replacing a syntactic substitution Ity logical counterpart. But does
this new setting help us reason about programs with variotsd of aliasing after all?
More concretely, can we derive the judgement such as (13y®@d3oes it allow exten-
sions/generalisation to higher-order programming laggaafor example those with the
generalised assignment of the folvh:= N where bothM andN are appropriately typed
arbitrary expressions? And can we reason about prograrhsiiasing tractably and mod-
ularly using content quantification? These are the topicshedi explore in the following
sections.

5 Logic (1): Assertions
5.1 Terms and Formulae

This section introduces our logical language and formalisesemantics. The logical lan-
guage is standard first-order logic with equality (Mende|/st987) extended with asser-
tions for evaluation and quantification over store cont&he latter is the only addition to
the logic in (Hondaet al., 2005).

e = x| (|n|b|op® | (ee€)|m(e | inji e |re
C 1= e=€|-C|CxC' | QxX.C|{C}ee€d = x{C'}|['€C| (te)C

Herex € {A,V,D} andq € {V,3}. The first set of expressions (ranged overehy, ...)
aretermswhile the second set afermulae(ranged over byA B,C,C'...). The constants
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(frub)(x) =a _ [Ak-e:Bool [AFg:0i(i=12) TAteps:a
MAFX:a INAFn:Nat T;AF-e:Bool T;Al (e,e):01x02 [@NAFe =

MAke:apxap MAFe:a;(ie{1,2}) I;AF e: Ref(a)
HAEm(e):ai AN %(e) tag+az rAFle:a

MAFCyio

, rx:o;AFC Al e:Ref(a) I;AFC
MAFCL +xCo

*E{/\,\/,D} WQG{VH} r;A}—<!e>C

M Al-e:Ref(d) TAFC T;Ale:a=B TAFe:a TMAFC (T;A)-z:BHC
FAF[eC FAF {Cleee, = 2(C)

Fig. 2. Typing Rules for Terms and Formulae

(c, ¢,...) include unit(), numeralsh and boolean$ (either truet or falsef). Operators
op(&) range over first-order operations from the target programgrfanguage, including
the standard arithmetical operations over natural numtberaddition, we have paring,
projectiort and injection operation. The final terne, Henotes the dereferencespi.e. the
content of a store denoted by

The predicatgC} ee€ = x {C'} is calledevaluation formulaHondaet al, 2005),
where the name binds its free occurrences @&f. C andC’ are called(internal) pre/post
conditions Intuitively, {C} ee€ = x{C'} asserts that an invocation@ith an argument
€ under the initial stat€ terminates with a final state and a resulting value, namédth
described byC'. Clearlye is non-commutative.

The remaining two constructs are non-standard quantificativhich are at the heart
of the present logic[!€]C is universal content quantification of e over @hile (!e)C
is existential content quantification of e over @ both, e should have a reference type.
Informally:

e [!e]C saysC holds regardless of the value stored in a memory cell nagned
e (le)C saysC holds for some value that may be stored in the memory cell dame

In both, what is being quantified is the content of a stootthe name of that store. [he]C
and(!e)C, C is thescopeof the quantification. Free namesérare not binders: we have
fv(('e)C) = fv([!e]C) = fv(e) Ufv(C). In particularx is nota binder in[!x]C and(!x)C.
Content quantification obeys all standard axioms of modafatprs (hence the notation),
as we explore in Section 6. Binding in formulae is inducedydnt standard quantifiers
and the evaluation formulae. Formulae are taken up to thecembi-convertibility. fv(C)
(resp.bv(C)) denotes the set of free variables (resp. bound variahieS) Since(!e)C
is logically equivalent taix.(e = x A (IX)C) if x is fresh, content quantification in its full
generality is not needed for expressivity, oflly) C and its de Morgan dud!x|C.

Terms are typed inductively starting from types for varéabhnd constants and signa-
tures for operators. The key typing rules are given in FiguiRecalling thaf ; A indicates

1 The projection operatam (€) has been included for convenient presentation of some potes but is redun-
dant: for example the formulam (€) = € can be expressed asgy.(e = (x,y) Ax=¢€).
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a map from names to types such tiafresp.A) is about non-reference types (resp. ref-
erence types), we writ€;A F e: a whene has typea such that free names & have
types followingl; A; andl"; A+ C when all terms irC are well-typed under; A. We also
write I'; A C if Cis well-typed undef ; A. Henceforth we only treat well-typed terms and
formulae.

Further notational conventions follow.

Convention 3 (assertions)

1. In the subsequent technical development, logical cdivescare used with their
standard precedence/association, with content quatitificgiven the same prece-
dence as standard quantification (i.e. they associategerahan binary connec-
tives). For example,

~AABDWCV (leeDDE
is a shorthand for

((=A) AB) D ((("xC) Vv ({!e)D)) D E).

C1 = C; stands for(C; D C2) A (Cz D Cy), stating the logical equivalence 6f and
C,. e # € stands for-e = €. We also use trutfi’ (definable as & 1) and falsityF
(which is—T). The standard binding convention is always assumed.

2. Logical connectives are used not only syntactically betd aemantically, i.e. when
discussing meta-logical and other notions of validity.

3. If ¢ isnotavariable{C} ejee, = € {C'} stands fo{C} ejee; = x{x=€AC'},
with x fresh; and{C} e; e e, {C'} stands fo{C} e;ee; = () {C'}.

5.2 Syntactic Substitution and Name Capture

In the standard predicate calculus with quantification aneduality, direct syntactic sub-
stitutions on formulae play a fundamental role in reasonigjng syntactic substitution
needs care in the present assertion language due to ingajsiitire of names introduced
by content quantification and evaluation formulae. Theofeihg definition extends the
standard notionéis free forx in C” as found in (Mendelson, 1987).

Definition 8 We say a terne” is free for ¥' in C if one of the following clauses holds.

1. eisfree forxin e, = &.
2. eisfree forxin —Cifitis free forxin C.
3. eis free forxin C1 xCy with x € {A, Vv, D} if itis free for x in C; andC;.
4. eisfreeforxin Qy.Cwith @ € {V,3} if eis free forxin C, and, moreovey € fv(e)
impliesx ¢ fv(C).
5. eisfree forxin {Ci1} e1ee, = y{Co} if
e eis free forxin Cy andCy,
e e=z|[l€]impliesx ¢ fv(C1) Ufv(Cy), and
o if yefv(e) thenx ¢ fv(Cy1,Cp, €1, €2).
6. eis free forxin ['ep| C if
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e eis free forxin C; and
e e= £[!€] such tha¥ andey having the same type, impliesz fv(C).

7. The casé!ep)C is similar to the last.
In (5, 6) £[] is a one-holed expression context, we omit the straighticdvdefinition.

The last two conditions, 5 and 6, concern hame capture byenbguantification. As we
formalise later, the semantics of evaluation formulae shgs dereferences in pre/post-
conditions of evaluation formulae are implicitly univeltgajuantified. Avoiding inappro-
priate name-capture with content quantifiers is similar® same problem for conven-
tional quantifiers. This is illustrated next, by considgrilause 6 below. Consider the
following assertion:

c ¥ 223 5 [yz=3 (26)

The assertion is a tautology (i.e. true in any model), sayifrmis 3, then whatever value a
cell namedy storeszis still 3. However the following assertion, resulting fr¢@6) when
we apply the substitutiofly/Z] naively, isnota tautology (in fact it is unsatisfiable).

Clly/Z def ly=3 D> [lyly=3. (27)

Note lyis not free forzin C due to content quantification og.}(27) says that, if the value
currently stored iry is 3, then any value storeableyrcoincides with 3, a sheer absurdity.
Thus we should prohibit such substitution being applie@.to

In the standard quantification theory, we can always renamu@db variables to avoid
capture of names. In the present case, what we do is to uselgst existential quantifi-
cation to “flush out” all names in dangerous positions. Asxangple, takeC in (26). To
safely apply|!y/Z] toC, we transfornC to the following formula, up to logical equivalence:

¢ L 3 (z=3 > [YZ=3) A z=7) (28)
Note ly is now free forzin C'. We can now safely perform the substitution:
Cly/d £ 3Z.((ly=3 > [yYZ=3) Aly=7) (29)

which is again a tautology (as it should be). By carrying aurstransformations, we can
always assumeto be free forx in a formula whenever we wish to applg/x] to C. Thus
we stipulate:

Convention 4 From now on, whenever we writd€x] in statements and judgements, we
assume e is free for x in C, unless otherwise specified.

In practical examples, the transformation as given abokarely necessary.

5.3 Logical Substitution

As already explained, the present logic, makes extensweis logical version of substi-
tution defined below.



20 M. Berger K. Honda N. Yoshida

Definition 9 (logical substitutions) We set:

Clex/!enf}

with mfresh. Dually we set

L Im(le)(CAler=m) A m=e)

Cle/lesf £ vm(ez=m> [le(m=le; O C)),

again withmfresh.

These substitutions may be callledical content substitutionsr simplylogical substitu-
tions We shall deriveC{ey/!e;[} = C{e;/!e1]} later with the help of appropriate axioms.
In practice we mostly use the existential rather than thearsal variant of logical substi-
tution.

Logical substitutions behave well in the present theorpdrticular, content substitution
interacts with content quantification just as syntacticssitition does with conventional
guantification (cf. (Mendelson, 1987)). The smooth intaygk aided by suitable axioms
for content quantification, to be presented in Section 6.&@mple, we hav@x]C D
C{e/!x}} for any (well-typed), e andC, which corresponds to the familiar axiom.C O
Cle/x]. It should then be no surprise thafe/!x} > (!x)C also holds, corresponding to
the standard entailme@{e/!x] > 3x.C. Properties of content quantifications/substitutions
will be studied in detail later.

5.4 Semantics of Terms and Formulae

The interpretation of terms is straightforward, given dkofes.

Definition 10 Letl;Ale:a, A+ o andv = (§,D,0). Then theinterpretation of e
underas , denotedje]],, is inductively given by the clauses below.

X o €(x)
_ [(e€)la = ([€la:[€]a)
[[[E‘?]}Z _ S([[eﬂM) [m®ls = Vi wherefe], =(V1,Vz)
[[OP(N)]]M OP([[é]]M) [[ani(e)]]M = 'nJi([[e]]M)

In the clause folp we omit to detail the straightforward workings ef on first-order
values.

We use the following notation to define the satisfactiontiefa

Notation 3 Givenx ¢ fv(M1), M1 <xq M2 if for some appropriately typed in the sense
of Notation 2: either

def
o My = a1 -X: VY or

e o =Ref(B) andary = (D,&,0), Mo = (D + {x}, &-x: {x}, 0-{x} — VP).
Informally ar1 <yx.q M2 whenas, is the result of adding exactly one free nameiq.

If o is a reference type, them, either adds an identicdik} and a value stored in it, or,
alternatively, coalescedo an existing identical. If on the other haads a value type, then
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there is always a new entry > which maps<to an appropriate value. Models extensions
<xq are used in interpretating first-order quantifiers.

Next we present the satisfaction relatien = C. All definitions are standard (equal-
ity is interpreted as identity on abstract values) exceptTd evaluation formulae which
follow (Hondaet al, 2005); (2) content quantification, where we use semantitatgs
introduced in Section 3.2; and (3) standard quantificafimnywhich we use the notion of
model extension introduced in Section 3.2.

Definition 11 Assumea "2 = (1 ,§,0) is a model. Assume in addition thatA - C.
Then we sayv satisfies Cwritten a4 = C, if the following conditions hold inductively.

M = e =eif [l =o [€2-

M =-Cif » £C,i.e.ifitis notthe casesr =C.

M |=C1/\C2 if M |=C1 anda )=C2.

M |=C1\/C2 if M |=C1 or M |=C2.

M =C1 D Cyif M =Cyimpliesa = Co.

M EVXE.Cif m’ =Cforeachar’ such thaty <yq M.
M =3IC.Cif o’ |=C for somen’ such thatr <yq M.
M = {Clee€ =x{C'} if, for eachar’ d:ef(a),E,c’) of typel’;A such thatv ' |=C,
we have, for some semi-clos¥dof appropriate type:

— ([€lla/[€]ar, o) 4 (V,0") and

— (D, &x:V, 0" EC.

M = R DICif [€e],, =i and for eaclV € [a]4 we havex [i — V] =C.
o o = (1RO Cif [e],, =iand some/ € [a]4 exists withas [i — V] [=C.

Some observations follow.

1. The clauses for universal and existential quantificagiive the standard definition
wheneven is a value type. If itis a reference type, it allows be aliased to existing
identicals, but does not require aliasing.

2. The clause foss |= (!e)C says: in order to see {fe) C holds ina/ , we evaluate to
see which identical it denotes. Let it b&hen the value stored aih ¢ is irrelevant,
all we need to know is if there is some vaMe= [a]],, such that [x+— V] satisfies
C.

5.5 Examples of Assertions
Dereference

The assertiony = 6” saysy is equal to 6. In fact, we should writgN*t = 6” with a type
annotation ory, but we often omit such obvious or irrelevant detail. A pargrwhich
satisfies this assertion is 6 itself, named\nother program which satisfies this assertion
is 3+ 3, again namegl.

Next, “ly = 6", again omitting type annotation, says the content of a orgreell named
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yis equal to 6. If botlz andy refer to the same cell, and if the above assertion holds, then
ly = 6 entails £ = 6. In the model, distinctions account for such aliasing.

A reference can store another reference in the target progiag language, which
is easily describable with assertions. For example; 216" (with y formally typed as
Ref(Ref(Nat))) says that the content of a memory cell whose name is storadather
memory celly, is equal to 6. Any store where a memory cell nargesiores some refer-
ence name which in turn names another cell that stores &fisatihis assertion. Of course
neither of these cells may be aliased.

Evaluation Formulae

The following assertion can be considered as a specificididhe progranhzz:=!zx 2,
namedu.
UxVi.{Ix=iluex{Ix=2xi} (30)

We recall from Convention 3 that the formulfl =i} uex{Ix=2xi}"is an abbreviation
for“{Ix=i}uex=z{z= () A Ix=2xi}". The returned value () can be omitted because
it is insignificant —() is the unique inhabitant of typénit, so no other values are possible.
The shorthand also conforms nicely to standard Hoare &iplehe assertion says that
which denotes a procedure, always doubles the content ajamant, which should be a
reference storing a natural number.

The following assertion refines (30), giving a more focusspecification forAz.z :=
Izx 2. It shows how we can use inequalities on reference namesnibioation with an
evaluation formula to assert a strong property of impeegtighaviour.

UYL {IX=1 A X#YAly=jluex{Ix=2xi A X£yAly=j}. (31)

The assertion says that, in addition to the property alrstated in (30), the program guar-
antees tha is the only reference it may altédt will be convenient to use the following
abbreviation for (31).

Vx,i. {Ix=ituex{Ix=2xi}@x (32)
Such assertions are callémtated assertiong32) says the same thing as (31) but more
concisely. This is discussed in more detail later, stantiity Section 5.6.

5.5.1 Content Quantification (1): Existential

We now consider assertions which involve content quantifinaand substitution. These
examples demonstrate how a complex situation can be wudtam concisely using our
new forms of quantifications.

2 In (31),y andj refer to an arbitrary reference and its content, which cabeayped by the monomorphic
type discipline. There are two straightforward resoluiom this issue. We could add ML-style implicit poly-
morphism to our assertion language (but not to the progragmanguage). Alternatively, we note that if two
referencey andz are of different types, writing tg cannot change what’s stored hyHowever, from the effect
set, which is finite, we can determine set of all referencedyphere effects may happen. As this set must be
finite (due to the lack of recursive types), we treat each eé¢htypes separately. See Section 5.6 for details.
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First, as a very simple example, consider an assertion

(Iply=1 (33)

where we have omitted to annotatevith Ref(Nat). The assertion says:

In some possible state, the reference cell y (of §¢Nat)) may store 1.

In a hypothetical state, the content of a store may diffenftbe current one. Since we can

surely hypothesise such a state, the statement is alwaysstrihat (33) is a tautology.
Next we consider an assertion which, by a trivial transfdfomgis (!x = 2){m/!x} and

may be considered as the precondition for having=!2" after executing the assignment

“ ”

X:=m.
() (Ix=2A Ix=m). (34)

A model 3¢ satisfies this assertion if and only if there is a mogel which is exactly
like & except possibly for the value stored at a memory cell refetoeby x and which
satisfies, at that memory celk £ 2 A Ix=m. What this means is that the assertion above
does not talk about what is storedxatAll it says that it is possible to fill a memory cell
namedx such that we have bottx = 2 andm =!x. Note this entailsn and 2 should be
equal (which is a stateless fact). As this does not claimhangtabout the content of,
only about its possible content, the only thing being assdrere is thatn denotes 2 in the
model, hence (34) is logically equivalentrio= 2.

The next two examples show how equality and inequality oeenes interact with ex-
istential content quantification. First, consider

() (x=yAly=1). (35)

It hides the content of, but also claims that botk andy name the same memory cell.
This latter information is not existentially abstractedtbg content quantification since it
is aboutx andy, not their content. Becauseandy denote the same cell, the quantification
not only hides the content of but also that ofy. This is an immediate consequence of
the standard equality law (Mendelson, 198%)=y A C(x,x) D C(x,y)” whereC(x,y)
rewrites some of the free occurrencesxah C(x,x) (to be precise this rule is applicable
sincex is free fory in “x = yAly = 1"). Hence (35) is logically equivalent to=y.

The next example uses inequality instead of equality in fiserion above.

(10 (x £y A ly = 1). (36)

Againx # yis independent from any content quantification. Becauskisftequality, we
also know that the content gfis independent from that of in other words{!x) does not
hide the content of, hence (36) is logically equivalentic£y A ly=1, i.e. we can take
off the content quantification completely.

Now consider changing X=m"in (34) into “ly = m’, obtaining:

('y)y(Ix=2Aly=m) (37)

which is the same thing ag!% = 2){m/!y[}” up to logical equivalence. Thus (37) may
be considered as representing the precondition for agriatri!x = 2” after executing the
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assignment commang ‘= m’. From our previous examples, we know there are two cases
to consider.

1. If x=1y, then the content quantification hides bogtahd X (which are one and the
same thing), hence the formula says= 2.

2. If x#£Yy, then y is hidden san cannot be determined, whileis not hidden. Hence
in this case the formula says + 2.

In summary, (37) is equivalentta =y D> m=2) A (x#y DIx=2), or equivalently tqx =
yAm=2)V (x# yAlx=2). Thisis quite differentfrom, sagi.(ly=i AIx=2 A m=ly).

5.5.2 Content Quantification (2): Universal

The following two examples use universal content quantifica It is the de Morgan dual
of its existential counterpartte] C is equivalent to-(!e) —-C. In general]!x| C says thaC
does not mention anything substantial about the conterd afgmory cell named by.
As a first example, consider the assertion

[IX]ly=3 (38)
assuming is typed withRef(Nat). By definition, (38) literally says the following.

Whatever natural number we may store in x, the number storgdd3.

When can this be satisfied? Clearly the content sifiould be 3. Moreover, this should be
true when we store im something different from 3, say 0, so it also sayandy name
distinct memory cells. Thus the assertion (38) is logicatipivalentto X £ y A ly = 3".
From this we can easily sd&x|!x =3 is equivalent to falsity since it should mean‘
X A Ix= 3 which is impossible.

Universal content quantification offers a powerful tool wltembined with located eval-
uation formulae. Recall the located assertion (32) whidbrighe program\z.z:=!zx 2,
reproduced below:

VX, 0. {Ix=ituex{Ix=2xi}@x (39)
(39) says the program leaves untouched any property of a myezel except for what it

receives as an argument. So, for example, if the prograndiii x, then, after running,
it leaves an even number yrstill even, as far ag s distinct fromx.

vx,i. {Ix=1 A [IX Ever(ly)}uex{Ix=2xi A [IX Ever(ly)} @x (40)

which is a consequence of (39) (hence holdsXar :=!z x 2 hamedu), remembering
['x]Ever(ly) says the content of is even regardless of the contentofthat is we have
both Evelfly) andy # x. The entailment from (39) to (40) is the analogue of the siamhd
invariance rule, albeit it is purely logical — the notoriagide condition, that a program
does not touch a variable, is directly asserted. It mightdegful to note thali x] C doesnot
say thatC does not dereference [!x]C merely asserts that the truth Gfis independent
from x's content. That this is a different statement is clear beedar examplg!x] Ix =!x
holds.



A Logical Analysis of Aliasing in Imperative Higher-Ordeufctions 25

Another occasion where combination of evaluation formalaguniversal content quan-
tification becomes useful is when we wish to perform the agiamf the consequence rule
at the level of evaluation formulae. Here it is essentialéable to have hypothetical as-
sertions on state, as the following example shows.

IXx=2 A [IX(IXx=32 0dd(!x)) A {Odd(!x)}ue(){Even(!x)} (41)

It says that the current content of a memory cell namreésl 2, the assertionx!= 3 D
0dd(!x) should hold in all hypothetical situations about the cohtérx, and that invoking
at u will turn an odd content ok to an even one. It is thus natural to conclude (formally
using axioms discussed in Section 6):

IX=2 A [IX(Ix=3D0dd(!x)) A {Ix=3}ue(){Even(!x)} (42)
By comparing (41) with the following assertion we can seertiie of content quantifica-
tion in the assertion above.

IX=2 A (Ix=320dd(Ix)) A {Odd(!x)}ue(){Even(!x)}

But if Ix = 2 holds then the assertionx’= 3 D Odd(!x)” (which is now also about the
current state) is always true, hence we can no longer oltaia 3} ue () {Even(!x)} by
the entailment.

5.5.3 Assertions for Double

We continue with assertions for three short programs, onghi¢h, the “Questionable
Double”, already appeared in Section 4. This is followedh®y¢lassical “Swap” and then
by assignment to a circular reference, all of which are sutigtlly affected by aliasing. In
Section 9, we shall show that these programs do satisfy Hpeszfications using the proof
rules of the logic to be introduced in Section 7.

First we treat the Questionable Double, whose definitioreicti®n 4 was the following.

def

double? = A(XY).(X:=Ix+Ixy:=ly+ly)

The program takes a pair of two names, which is syntacticrsiagawo subsequerk-
abstractions, and can be given the following specification.

VXV, JAXAYAIX=T Aly=jlue (x,y){Ix=2i A ly=2j}

The assertion is silent on what happens wkeny. The next specification, which is also
satisfied bydouble?, talks just about this case.

WXV, {x=y A Ix=i}lue (x,y){Ix=4i}
Combining these two, we get a fuller specification.
Y Yoi, j. {IX=1Aly=jlue (X, y){(X=yAIX=4i) V ( X £ yAlx = 2iAly = 2))}

The specification fodouble? suggests how we can refine this program so that it is robust
with respect to aliasing. This is done by “internalisingé ttonditionx # y as follows.

double! & A(X,y).if Xx=y then X:=Ix+!x else x:=Ix+IX;y:=ly+ly
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This meets the “expected” specification:

YV j. {Ix=1Aly=jlue(xy) {Ix=2i Aly=2j} (43)
If we use a located assertion (cf. Section 5.6 below), we aethér refine (43) to:
Yy {Ix=iAly=j}lue(xy) {Ix=2i Aly=2j}@xy (44)

The quantification ok andy extends to the whole formula, including the terminaky@
(44) says that we can guarantee, in addition to the fundtipoperty described above, that
no reference cells other than those passed as argumenis podgram are modified.

5.5.4 Assertions for Swap

A classical example for reasoning about aliasing (cf. (@aght & Oppen, 1981; Cartwright
& Oppen, 1978; Kulczycket al., 2003)) is the swapping routing:

swap oer A(Xy).let z=Ixin (X:=ly;y:=2)
It receives two references of the same type and exchangiesctment. The assertion

which specifies the behaviour efrap namedu is:

ef

Swap(u) 2 wxyij.{Ix=iAly= jlue (x y){Ix=jAly=i}.
Again we can refine the program using a located assertion:

Swap(u) gef Uxyij{Ix=iAly=j}ue (xy) {Ix=jAly=i} @xy (45)

which gives the full specification faswap in the sense that it characterises behaviour of
programs up té.

5.6 Located Evaluation Formulae

Before moving to the next section, we present the formal diefinof located evaluation
formulae, motivated in the previous subsection. Our aine leto add located evaluation
formulae

{Clee€ =x{C'} @F (46)
as derived constructs to our logic, assuming thegpresents a finite set of reference typed

expressions. The intended reading or (46) is:

Evaluating the application of (the denotations of§ & in a context that is correctly
described by C will terminate and yield a result. This resu#tmed X, together with the
state after the evaluation is correctly described Byl@ addition, any reference catlot
denoted by any member gfstores the same content before and after execution of the
application.

This reading suggests to take (46) as standing for

V.Y {CAYy#grhly= jteed =x{C'Aly=j} (47)
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wherey, j are fresh ang # § stands for\y # gi. Note that (47) is not typable in general:
Yy cannot range over all reference types, and similarly/foiRelatedlyy # § may feature
inequalities between expressions of different types, Wwisgrohibited by the typing rules
in Figure 2.
As mentioned in Footnote 2 on page 21, there are two straigtdird approaches that
overcome this problem. The first adds a weak form of polymismphhat allowsy and j
to range over all appropriate types. The second, rathertibgimg a single variablg to
range over all reference cells not denotedghbyakes one such variable for each relevant
type (and likewise fof). This is possible as effects happen only at a finite numbigpefs.
The next proposition gives an example of what we would likéeoable to prove for
located assertions, regardless of how they are implemented

Proposition 5 (located assertion3)he following assertions are tautologies.
{Cleeed =x{C'}@W > {Cleed =x{C'}@WUYV
Vi{CAlu=jleeed=x{C'ANlu=jl@W > {Cleed =x{C'}@W\u

where, in the second lin&/\ u denotes the result of taking off u frafnand j should be
fresh.

We often call the first two implicationaeakeningand thinning for located assertions.
Located assertions are extensively used in the subseaqaobmital development.

We now discuss both implementation options and with skatchiow located evalua-
tion formulae deal with potentially unbounded effects, ag/happen in the presence of
recursive types.

5.6.1 Located Evaluation Formulae (1): Polymorphic Impénation

To make (46) typable using polymorphism, we add type vaembd the grammar of types
used in assertions and universal quantification over typdsta dual to the grammar of
assertions:

ax=.. | X Cu=.. | ¥XC | 3IXC
Types are taken syntactically, and to accommodate typablas, the satisfaction relation
is now a triplear 2" |=! C"2 wherel is a finite map from type variables to closed types
such that(FA)l = I"A’, see (Honda & Yoshida, 2004) for details. We must also mildly
change well-formedness and interpretation of express@mascommodate type variables.

e Well-formedness of equations is now given BsA e = e iff AR g : aj. In
other words, we no longer requieg ande, to have the same type.

e Equations of expressions with different types are alwalgefarhis is reflected in
the following modification of the satisfaction relation.tle = (D,§,0).

. . |F o #d
Mlze‘f':egﬁf{ 17 0z
lewlar =0 [€2]s a1=0a2
Using these constructs, we define located evaluation faenas follows (as usual we use
the vector notatiorx inder the assumption namesxrare pairwise disjoint, to denote a
finite set of names on which we freely perform permutatioesysion and set difference).
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Definition 12 (located assertions (1)) The notatiffd}ee € = x{C'} @g, calledevaluation
formula located atj with eachg; of reference type, but not containing a dereference,
denotes the following formula, with X, andj fresh.

VX R wiX {CAy£GA ly=jleed =x{C' A ly=j}
The set of expressiongsin {C}ee € = x{C'}@g is called(write) effector modified set

It is often sufficient, for example in axioms, to use a set ohaaw instead of expressions
g, though sometimes the general case is needed. As we haadyakacountered in the
examples in Sections 5.5C}ee € = x{C'} @W indicates not only that the invocation of
e with argumen¥ starting from the initial state described Byterminates with the final
stateC’, the latter also describing the resulting value namebut also that during this
evaluation only references namedwygan be changed.

5.6.2 Located Evaluation Formulae (2): Monomorphic Impdertation

Implementing located evaluation formulae with polymosgphiis fine but needs slightly
changed models. We now show how one can avoid this changtuin Isg extracting more
information from the effects’ types.

The key insight is that effects happen only at a finite numbieeference types. For
example if the effect set W&(Qﬁef(a),e?ef(a),egef(ﬁ)}, instead of the polymorphiepresen-
tation

yRef(X) 75 é/\|y: jX
from Definition 12, we could express the same constraintaitin the monomorphic
(@ £ e ny # eanly = [ A (P 2 e3niz=1P).

This is reflected in the following monomorphic definition focated evaluation formulae.

Definition 13 Given a set S- {€[*,...,ei"} andp, we define § d:ef{e"‘i € S| aj =B}, the
restriction ofSto typep.

Using this construct, we define located evaluation formalsdhe following variant of
Definition 12.

Definition 14 (located assertions (2)) Assurges a finite set of reference typed expres-
sions, not containing a dereference, which together hgestfiRef(a1), ..., Ref(an) }. The
notation{C}ee € = x{C'} @g (calledevaluation formula located &) denotes the follow-
ing formula.

WD VEAC A A # Blreta A i = ) Jee € =x{C' A Alyi = i}

Here eacly™®) and is fresh.
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5.6.3 Located Evaluation Formulae (3): Recursive Types

The development of located evaluation formulae so far assgufimite effect sets. For

the present programming language this is appropriate lseciauthe absence of recur-
sive types, no typable program can have unbounded effelsts.changes with recursive
types. Consider a program, likap(AxRef(Nat) x :—ix 4 1) which takes a list of references
storing numbers and increments the content of each refeianibe list. If the program is

denoted byf, then we might want to specify

{T}fex:y{T}@xy {T}fex:y:zZ{T}@xyz

wherex :: y is the list havingx as its first element anglas its second, etc. Now the effect
set’s size depends dis argument. But what is the effect sefor

{T}fel{T} @S

when all we know (by typing) aboditis that it is a list? The appropriate effect set in this
case cannot be expressed directly with evaluation formika¢hose discussed above.
To deal with this situation we propose usieffect comprehensions

{Cl}eo d= X{Cz} @C(y). (48)

HereC is a formulain our logic angt a variable. The intuition behind this construct is that

if zis a reference cell ar@[z/y] holds, then the content afmay be changed by evaluating
ee €. Conversely, if-C|z/y], thenz stores the same value before and after. Hence (48) can
be taken to stand for

Vy.Vj{CiA-C(y)Aly = jleed =x{CoAly = j}. (49)

As before, (49) cannot be typed directly. The two proposats/a can again be employed
to solve this problem. However, this time the polymorphiprach seems easier, because,
the set of reference types affected by a program is less inatedgdexpressed, though still
finite (up to tree-isomorphism). We leave a detailed ingadion of effect comprehensions
to a forthcoming exposition, but note in closing that reasgmvith effect comprehensions
is virtually as straightforward as with finite effects.

5.6.4 Polymorphic Swap

Our swap above in fact works for a pair of references of an arbitrapetyand is indeed
typable as such in polymorphic programming languages likeakid Haskell. Following
(Honda & Yoshida, 2004), we can capture its polymorphic beha by addingZX.C (and
dually 3X.C) to the assertion language, with the grammar of types erttndth type
variables (XY,...) and quantifiers\(X.a and3X.a). With this extension, we can refine
(45).

VX xReF(X) pyRef(X) wiX X

{Ix=iAly=jlue (x,y){Ix= jAly=i}@xy

The assertion should be readable naturally.

(50)
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5.6.5 Circular References

We close this chapter on assertions with discussing assigtsno circular references. For
example, we would like to assert about=!!x which is not well-typed in the programming
language considered so far. Typing of such a reference meedsive types, which we out-
line first. We take the equi-isomorphic approach (Pierc®@22@vhere recursively defined
types are equated iff their representation as regular sem=ssomorphic. The grammar
of types is extended as follows, for both the programmingleage and for the assertion
language.
a = .. | X | pXa

The typing rules do not change except for the change in tyfdesordingly no change
is needed in the axioms and proof rules, but one possiblejgtetecessary option is to
introduce a recursively defined assertion.

An assertion fox :=!!x could be the following.

{Ix=yAly=x} x:=lIx {Ix=x}

Since originallyx andy refer to each other, after puttingx!to x, x should be pointing
to itself. Correct treatment of circular references is mfsgnificant in low-level systems
programming: as seen above, the proposed logical frameeamktreat programs with
circular references without no extra effort.

Similarly we can easily specify

{ly=x} x:={(1,inz(ly)) {!x=(1,inr(x))}

wherex is typed withuX.Ref((Nat x (Unit + X))), the type of a mutable list of natural
numbers (one may also use the null pointer as a terminatofisf)aThe assertionxd=
(1,inr(X)) saysx stores a pair of 1 and the right injection of a reference #dfitprecisely
capturing the graphical structure of the datum.

6 Logic (2): Axioms

The purpose of this section is to introduce axioms for degwalid assertions in our

assertion language. We take for granted the usual notioasiof system, inference rule,
deduction and the like. As is standard (Hoare, 1969), wd akalime that the axioms and
rules from propositional calculus, first-order logic witQuality (Mendelson, 1987) and

formal number theory are freely available.

6.1 Axioms for Content Quantification

We start with the axioms for content quantification. Hoateic (Hoare, 1969) allows
tractable reasoning about simple stateful programs becalug to the lack of aliasing,
state change by assignment has a logical description,n@atdrom an analysis of syn-
tactic substitution. This logical description leads tod@nct logical laws and reasoning
principles, because the logical operations used in therdposition of substitution come
with associated logical laws and reasoning principles.

For similarly tractable reasoning about stateful prograiitis aliasing we likewise need
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(CA1) [IX(C;* 2 C2) D (C1 D [IXCy) (CA2) [IXCDC
(CA3) [1X(Ix=m>C) = (Ix) (CAlx=m) (CGen) %

Fig. 3. Axioms and Rule of Inference for content quantificati

succinct logical laws and reasoning principles, but foidabsubstitution. To obtain such,
we need axioms and reasoning principles for content queatibin. We obtain those by
analogy with the axiomatisations of first-order quantifimat

For example (Mendelson, 1987) axiomatises first-orderarsad quantification with two
axioms and a single rule of inference (in addition to Modusd?ts):

¢ ¥X.(AD B) D A D Vx.B providedx does not occur ith and
o VX.AD Ale/X].
e infer Yx.Afrom A providedx does not appear freely in assumptions.

Our axiomatisation of content quantification given in Fig@® is analogous. First, we
regard(!x) C as standing for[!x] (=C). There are three axion(§A1-CA3). In (CA1), C"X
indicate<C is syntactically!x-free defined next.

Definition 15 (active dereference) Thective dereferencesf an expressiom, ad(e), are
inductively defined:

ad(x) =ad(c) &0 ad(op(®) E'Uiad(e) ...  ad(le)E'{1e}Uad(e)
Theactive dereferencesf a formulaC, ad(C), have the definition given next.
adle=¢) ¥ ad(e)uad(e) ad(-C) £ ad(c)
ad(CxC) L' ad(C)uad(C) ad({Cleee =x{C'}) L' ad(e)Uad(e)
ad(lgC) ' (ad(C)\ {le}) Uad(e) ad((le)C) L' (ad(C)\ {le})Uad(e)
ad(@xC) % ad(C)

Example 4 (active dereferences)

1. T andF contain no active dereferences.

2. Ix=23 has k as sole active dereference.

3. Inllx=!ywe have threey} Ix and !ix.

4. The evaluation formuld@!x = 2}! fely=z{!z= 1} has If and Y as active derefer-
ences.

. [x] ('x =!y) has two active dereferencesdnd Y.

. Finally, vx.I'x =!y has !k, !x and y as active dereferences, but thesquivalent
vz!lz=lyhas!z,!zand Y. Hence active dereferences a stable under renaming
of bound variables.

o Ol

The intuition behindad(-) is that if two modelsy 1, 42 agree on their stateless part and
on ad(e), then[€e],,, = [€],,, and similarly for formulae. The need for the — on first

glance possibly peculiar — definitici([!€] C) oer (ad(C)\ {'e})Uad(e), and likewise for
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existential content quantification, is this: the truthueabf[!! x C does not depend on what
a model stores at (the identical containing) It does however depend on what is being
stored atX. Assume thatv |=!x=yandax ' =Ix#y. Then

M =[x x=ly M XU x=ly.

Definition 16 (syntactic k-freedom) We generate the set of syntacticatijree formulae,
s, as follows:

1. IXC € s, dually (IX)C € s™™.

2. CAN& #xe€ s and, dually,\;& # x D C € s7%, in both cases assuming that
{l&} = ad(C) and that no occurrence of a free name ireais bound inC.

3. The result of applying any of the logical connectives l(iding negation) or stan-
dard/content quantifiers, except and3x, to formulae ins ¥ is again ins ™.

Example 5 (syntactic k-freedom)

1. T andF are syntacticallyx-free.

2. Similarly for[!x]C and(!x)C, as well asy = 3AX#Y.

3. The assertionyi=3 A x #!yis not syntacticallyX-free, but the logically equivalent
ar.(Ir =3Ar =lyAr £ly)is.

4. On the other handy= 3 is not syntacticallyx-free, even up te=. Intuitively, C**
saysC does not mention the contentxf

Among the axioms(CA1) corresponds to familiavx.(C;* D Cz) D (Cy D ¥x.Cz) except
that we requir€; to be syntacticallyx-free instead ox-free.(CA2) is a degenerate form of
¥x.C D Cle/x]. (CA3) says that the two ways of representing logical substitst@mincide,
which is importantto recover all properties of semanticatpqCartwright & Oppen, 1981;
Cartwright & Oppen, 1978; Morris, 1982a; Morris, 1982d; Mey1982c), as discussed in
the next section. Finally, we add an inference rule (CGéal, is the analogue of standard
generalisation, which says: “If we can der@&rom the axioms, then we may conclude
['X]C". This rule assumes deductions without assumptions (#.tpases of a proof tree
should be axioms). If ware to use deduction with non-trivial assumptions, we demand
assumptions to be syntacticalby-free if the deduction usg€Gen) for Ix. By a standard
argument, we obtain a deduction theorem (Mendelson, 1@8Y9e a deduction theorem
is proven, we can use it to derive many laws for content qgfieation3

For example, given the assumptifir] (C1 AC,), we can derivéC; AC, by (CA2) and
Modus Ponens. Then we obtdll by the elimination rule forA. To the latter we ap-
ply (CGen), which is possible because the assumptionscreé, to obtair!x|]Cy; simi-
larly we get[!x]Cy, so we obtair!x|Cy A [!X]C, by theA-introduction rule; the other way
round is similar. We also note that (CA2) is not restrictiirece from[!x]C we can derive
C{m/!x|} for arbitrarym.

We now present several such laws. We begin by focussing ourtiversal part of the

3 A different and equivalent axiomatisation of content gifamation can be given, again following a first-order
logic, by replacing the rule (CGen) with the axi@i* > ['x]C, and closing all axioms under universal content
quantification, cf. citeenderton
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laws without loss of generality. Later we summarise all lamguding their existential
counterparts.

[xc > X ((C' >C)>C) (51)

[IXIC A [IXC = [IX(CAC) (52)
IXXC >  [I¥[XC (53)
IXCV[XC > [IX(CvC) (54)
[IX(CvC) > [IXCV (IxC (55)

The existential counterpart of these laws is by dualisadisoussed below. (51) allows us
to infer [!x]C’ from [!X]C whenC D C' is a tautology. The existential counterpart of (53) is:

(X (IC >  (IXC. (56)

These rules are reminiscent of axiomatisations for the mioeaessity” operatof.
The next three rules permute and increment quantifierspdgiéowing the treatment of
the necessity modal operator. In the first rule, we assuarely are distinct symbols.

vy.[Ix]C D ['x]vy.C (57)
e > [IM[ylC (58)
() ['x]C > ['xC (59)

Again they have dual versions. All these entailments ar&cédgquivalences, with the
reverse direction being derivable: for (57), if we haldVvy.C andx andy are distinct,
then byy not free in the formula we havey.[!x] vy.C, from which we conclud&y.[!x]C;
(58) is already symmetric; finally the converse of (59) ubegiption ofx-freedom of/!x|C
discussed later. We have another derived rule for firstraydantification.

IxIx=y (60)

This assertion does not mention content quantificationtbutdrivation needs it.
The next two laws allow us to eliminate and introduce unigkecentent quantifications,
and play the key role in reasoning about aliasing.

S[IXIx#y (61)
c™ o [IXC (62)
Please note that the reverse of (62) does not fiofdx =!xis true, despiteX=!xnot being

syntactically k-free. (61) is easily understood as an analogu&dx #y) Dy#y (=F).
The following two laws connect universal content quanttfamaand its dual.

-[IXC = (Ix-C (63)
[IX(Ix=m>C) = (IX) (C A Ix=m) (64)

(63) directly comes from our definition of existential gquéioation in our axiom system.
The second law (64) is (CA3), which relates two dual quamsifidthout dualisationits

4 We believe that it is possible to give an alternative and\edeit modal axiomatisation of content quantifica-
tion, although what may be a minimal and natural set of suamnasis not clear.
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origin lies in the logical equivalencex.(x = m > C) = C[m/x] = 3Ix.(CAx = m), briefly
mentioned in the introduction.

From (64) we immediately infer the equivalence betweenweforms of logical sub-
stitutions introduced in Definition 9:

cle/le} = Cle/e} (65)

for anyC, € and k. The axiom (64) plays a fundamental role in the present théoom
this we also infer:

['x|C D C{e/x}t (66)
C{e/x}t > (Ix)C (67)

Proposition 6 All the laws (51) - (67) are derivable.

Proof
The derivations are straightforward. For example, we @gi#1) as follows:
1 [IXCo((['YC>C)>C) (Tautology)
2. IX(XCo((IXC>C)>C))  (CGen,1)
3. IXCo[IX(('xCoC)DC) (CAL 2)
4. 'xC>C (CA2)
5 [IXCo[IX((C>C)>C) (3,4
For (58) we use:
1 [ly]['x¥C>C (CA2)
2. 'Yl ('y]['x€C>C) (CGen, 1)
3. ['y]['¥[IC > [ly|lC (CAL, 2)
4. X (IYIXC DO [YC)  (CGen,3)
5 [y[[IXCD[IX[ly|C (CAL, 4)

The other derivations are equally easy.]
For the remaining derived laws for content quantificatioms,introduce the semantic
version of Definition 16.

Definition 17 C is !e-freewhen[!e]C =C.

Remark 2 We usually regareE in Definition 17 as a syntactic notion (i.e. derivability of
['X]C =C as a theorem in the present logic, involving the axioms irpifesent section as
well as the ambient logical system such as Peano Arithmetic)

By (62), any syntacticallyxXfree assertion isxtfree but the reverse implication does not
hold, for examplex =!x is semantically but not syntactically-free. Some examples of
Ix-free formulae follow.

Example 6 (Ix-freedom)

1. As noted, any syntactia{free formula is x-free. In particulai andF are X-free.
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2. Similarly['x]C and(!x) C are immediatelyx-free.

3. Since k-freedom is closed undet by definition, any tautologies/unsatisfiable for-
mulae arex-free. AlsoC is !x-free iff C = Cy such thaCy is syntactically x-free.

4. AssumeC E'e =3 le # x (sox is of typeRef(Nat)). ThenC is !x-free. Indeed,
we can writeC = 3r.(le=rAlr =3Ar #X).

5. (a-stateless formulae) Let us say a formGlas a-statelesgresp.stateleskif C has
no active dereferences of type(resp. of any type). The@ beinga-stateless ans
being typed byRef(a) in Cimply C is !x-free.

Since[!X]C D C for anyC by (CA2), we knowC is !x-free if and only ifC > [!X]C. Note
(Ix)C = C also characterises-freedom (which is often useful in practice) and that the
converse of (59) does hold.

The following results strengthen our observation thatffeedom ofC” acts as a substi-
tute for “x not occurring inC” in standard quantification theory.

Proposition 7 If C; is Ix-free, then:

X (C1 V Cp) = Ci Vv ['XCo (68)
(Ix) (C1 A C) = Ci A (IXC (69)
X (C1 D C) = Ci1 D [IXCa. (70)
Proof
By duality and since (70) merely rephrases (68), it suffioeddrive (68).
IX(C*VC) D (IXNC*V[IKC = C*VI[IXGC
C*VI[NC = [IXNC*VIXC > IX(C*VECy)

Both universal and existential characterisationsxefréedom are needed to obtain the
desired logical equivalence.[

Note (70) is the same thing as sayiltgj (C1 D Cz) D C1 D [!X|C2 whenevelC, is !x-free,
the analogue of the standard axiom for universal quantifioat

Proposition 8 (derived axioms)

1. IX(CA(CDC)) D [IXC, dually(Ix)C D (Ix) (C>C') > C)).

. If C > C'is a tautology therf!x|C D ['x]C'.

. ['X]C > C{e/Ix}, dually C{le/!x} D (Ix)C. Further G!x/!x[} =C.

. Cis!x-free iff C= (Ix) C iff 3IC".(C = (Ix)C') iff [[x]C=C iff 3C".(C=['x]C).

. If Cq12 are Ix-free, then €xC; (x € {A,V, D}) is Ix-free. If C is!x-free, then-C is
Ix-free. If C islx-free and x£ y, thenvy.C and3y.C are both!x-free. If C is!x-free,
then[!y]C and(ly)C are both!x-free.

6. If e is free for!x in C and both (&/!x] and e area-stateless, (&/!x] = C{e/!x}

(where e is free fotx is defined as in Section 5.2 and&'!x[} is the result of sub-
stituting e for each active occurrence!ad.

a b~ wnN

Proof
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For (1):
[IX[(CA(CDC)) = [IXIC A [IX(-CVC)

D [IXC A ({IxX)=CV X C)
= (IXNCA(X-C)V(INCAINC)
= FV([IXICA[IXC)
> ['xC

For (2), observing any tautology ix-free:

IXC = [IXIC A (CDC)

= [IXIC A [IX(CDC)
= [IX[(C A (CDC))
D [Ix]C’

For (3), the first statement:

[IxC [IXCA(IX)Ix=m
(1) (CAlx=m)
vm.(Ix) (CAlx=m)Admm=e
Im.((Ix) (CAIx=m)Am=e)
C{'e/Ix}
The second statement is the dual of the first statement. F@dwoaction of the third
statement, withm fresh:

1/ A | I O |

C = IM(CA IX=mA Ix=m)
D IM((IX) (CA Ix=m) A Ix=m)
e cfix/ixp.
For the other direction, again with fresh:
C{!x/!x} = C{'x/Ix}}
g Ym.(m=Ix D [IX]!x=m>C)
D vm(m=!x OD!x=m>C)
> C
(4) and (5) are easy and omitted. For (6):
cle/xp £ Im((Ix) (CAlx=m)Am=eg)

(Ix) (CAlx=¢)
(Ix) (Cle/IX|AIx=¢€)
Cle/!Ix] A (IX)Ix=e

Cle/!X]

O

Finally, as a simple application of content quantificatiwe,calculate an example from the
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(e1) {Ciixey=2z{C} A {Co}xey=2{C} =  {CVC}xey=2{C}
(e2) {C}xey=z{C1} A {C}xey=2{C;} =  {C}xey=2z{CiACp}
(e3) {IWClxey=z{C™ = v {C}xey=2z{C'}
(ed) {C} xey=z{vw?.C'} = vw. {C} xey=z{C'}
(e5) {AAC} xey=2z{C'} = A D {C} xey=2z{C'}
(e6) {C} xey=z{AZ>C} D) A D {C} xey=2z{C'}
(e7) {Cixey=2{C'} >  {CAA}xey=z{C'AA}
(e8) [W¥(CDCp) A {Colxey=2{Cy} A [IW](C{DC) o\ {C} xey=2z{C'}

(ext) Ext®B(xy) > x=y

Fig. 4. Axioms for evaluation formulae.

introduction.

C{c/! X[ {e/!x} = IM((IX) ((IX) (CA Ix=c) A Ix=m) A m=¢)
= IN((IX)(CAlX=c) A ({IX)Ix=m) A m=¢g) (%)
= () (C A Ix=c)
= C{c/!Ix}

where(x) uses(!x) ((IX)CAC') = (IX)C A (!x)C’, which is direct from Proposition 7.

6.2 Axioms for Evaluation Formulae

The set of axioms for evaluation formulae are given in Figlir®Vith the exception of
(e8) and (ext), all are unchanged from the axioms in (Haetdd,, 2005). We assume the
following convention used throughout the paper.

Convention 5 From now on AA' B, B', ... (possibly subscripts) range ovstateless for-
mulae i.e. those formulae without any active dereferences f&infiple 6 (3)), while @C/, . ..
still range over general formulae.

In (e8), we use content quantifications to stipulate hypatabentailment, cf. (41) in Sec-
tion 5.5.1 (which is closely related with Kleymann'’s strémgned consequence rule (Kley-
mann, 1998)). In the rule, we assume théo exhaust all active dereferencedrCy,C;
andC'. (e2) and (e8) together give the following axiom which isofuseful:

{Ci}xey=2{Ci} A {Cobxey=2{C} D {CiACo}xey=2{CiACL}  (71)

The dual axiom (for disjunction) is similarly obtained frdil) and (e8).
In (ext), the extensionality formula augments the corresiixag formulae for alias-free
sublanguage in (Hondzt al,, 2005) with located assertions.

Definition 18 (extensionality formulae) Lek = f: Ref(y) andx andy be typed asi = .

Then set set:
ExtdB(xy)  E whe B ViV ({1F=[}xeh=z{z=inlF =]} @F
= {IF=j}yeh=w{w=iAlF=]

'y @r)
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(lel) {Ci}xey=z{C}@W A {Co}xey=2z{C}@W
(le2)  {C}xey=z{Ci}@W A {C}xey=2{C>}@W

{C1vCoixey=2z{C}@W
{C}Xay: Z{C]_/\Cz}@vv

(led) {JuWClxey=z{C™"@% = WuU".{C}xey=2z{C'}@W

(led) {CU}xey=z{Vuo.C't@W = Vu*.{Clxey=z{C'l@W

(le5) {AAC}xey=z{C'}@W = A D {Cixey=z{C'}@W

(le6) {C}xey=z{AZDC}@W D AD {Clxey=z{C'}@W

(Ie7) {Clxey=2{C'}@W > {CA['W[Co}ixey=2{C'A['W]Co}@W
(1e8)  ['W] (COCo)A{Colxey=2{CHH@UANT] (ChoC) > {Clxey=2z{C'}@

(weak) {Clxey=Z{C'}@V > {Clxey=z{C'}@WW

(thin) vu,i.{CAlu=ilxey=2z{C'ANlu=it@W > {Clxey=2z{C'}@W\u

Fig. 5. Axioms for located evaluation formulae.

We call Ext®*~F(x y) the extensionality formula for x and y of type= B underA or,
more brieflythe extensionality formula for x and y

The extensionality formula expresses an extensional gégeékwo imperative sequential
higher-order behaviours. The predicate says, leting(A) =F:

Whenever x converges for some argument and for some stdrggs\ati” and returns
some value, then y does the same with the same return val@eldition no other
reference cells are altered by x or y.

The use of write effects is fundamental to describe exteradity since, without write
effects, there could be different effects on unspecified prgreells.

In Figure 5, we list axioms for located assertions, whichneethe original axioms in
Figure 4 (except (ext) which is already about located assest, as well as adding two
new axioms for manipulating write effects. The axioms frdeil] to (le6) simply add
write effects to assertions. However (le7) allows us to adigarsally content-quantified
stateful formulae to the pre/post conditions, strengthge7). The reader may recall hav-
ing already seen an instance of this rule in (39) and (40)ti@e&.5, Page 24. (le7) is
more general than (e7) in that weakened assertion can lefusiatt the same time (le7)
is justifiable using (e7). For concreteness, take the ass€B9) in Section 5.5:

{Ix=i}uex{Ix=2xi}@x
To this assertion we apply the first-order l&wC D C[e/X| to obtain for a concretg
Vi{lx=i A x£yAly=jluex{Ix=2xi A x#£yAly=j}
Now we use (e7) and get:
Vi{lx=i Ax#yAly=j A Ever(j)}uex{Ix=2xiAly=j A Ever(j)}

By the law of equality and (e3) we infer:

{3j.(Ix=1 A x#y A Ever(ly) A ly=[)}uex{Ix=2x1i A X#Yy A Ever(ly)}
Hence by (e8) we obtain:

{Ix=1i A Ever(ly)}uex{Ix=2xi A Ever(ly)} @Xx,
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as required. As in this example, all these rules are easljfipble using the axioms rules
in Figure 4.

Finally (weak) and (thin) correspond to the first two imptioas in Proposition 5. They
are reminiscent of the weakening rules and thinning rulesiious type disciplines, hence
the names.

6.3 Axioms for Data Types

Now we introduce axioms for data types. All axioms such @& = ()" have already
appeared in (Hondet al., 2005). The only difference is that we no longer have theraxio
saying syntactically distinct reference names never egljdecause that no longer holds.
One of the central features of the present logic is its géteratment of data types. Ex-
amples for stateless data types are already illustratedriprvious work, cf. (Honda &
Yoshida, 2004). Here we allow reference types to appear heganin types, so that data
structures can now be destructively updated in their pbrthe next section we shall see
a generalised assignment axiom which can treat assignrhantarbitrary data structure
to an arbitrary (mutable part of) data structure, which igegggommon in systems pro-
gramming (e.g. a part of a record referred to by another tesoreplaced with another
pointer).

The data types treated above come from imperative PCFvalttipe, we may incorpo-
rate other standard data types, such as unions, vectorsrayd.a8Below we consider how
arrays can be treated. At the level of the programming lagguee add:

(types a RES e | a]]
(program$ M = .| MIN]

together with the typing rules:

— F’EM:af] TEN:Nat
MFa:af I = M[N] : Ref(a)
The construction above assumes that the identifier of eaely & be used is given as a
constant (ranged over tayb, .. .). We further regard expressioaf],a[1],...,an— 1] for
somen as values of reference types. These values form part of theithoof a concrete
store: it is also convenient, though not necessary, to decthem as part of a reference
basis so that the size of an array is determined from a bawist&tically sized arrays, this
offers clean typing, though there are other approachesiéforing the dynamics of arrays
there are various alternative approaches that differ jmostiow out-of-bounds errors are
handled. Here we assume that an out-of-bound access genétaif the corresponding
reference type; the dereferencendfleads toerr, anderr, when evaluated, leads ¢or of
the whole expression, which follows a standard treatmetyps error (Milner, 1978).
Terms are augmented accordingly:

e u= .. | a | eé] | size(e) | nilRef@ | en®

where, ingl€], we typee with an array type (sagt[]) ande’ with Nat, with the whole term
given the type irsize(e) (which denotes the size of an arrey we typee with an array
type, with the whole term typed witNat; nilRef(@) which denotes the null pointer and
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whose type we usually omit, is typed Bef(a); anderr® denotes a (dereference) error of
typea, for eacha.

We list some of the main axioms for arrays. First, for eachstamta of type af], we
stipulate its size:

size(a) =n
for a specifimn € Nat (which should conform to the reference basis if stipulatsigxt we
have the following axiom for all arrays to ensure that anyaofsizen is made up oh
distinct references.
Wi j. (0<i,j<size() A i#] D Xi]#x]) (72)

Another basic axiom for arrays is for their equality (for taxrays of the same type):

(size(x) =size(y) A Vi. (0<i<size(x)—1 D x[i|=y[i]) D x=y (73)
In some languages (such as Pascal), we may also stipulatetiisality axiom:

X£Yy D Vi,j.(0<i<sizex)—1 A 0<j<size(y)—1 D X[i]#VY[i]) (74)
which says two distinct arrays never overlap (note this mxis not applicable to, for
example, C). Note that (74) is equivalent to:

Ji,j. (0<i<size(X) =1L AO0<]<size(y)—1LAX[i]=VY[]]) D x=y. (75

For those axioms which involvel anderr, see Remark 3 below.

In models, we may treat an array as simply a function from nahtuumbers to refer-
ences such that it maps all numbers within its range to distéferences and othersnd,
cf. (Apt, 1981). Other constraints can be considered fdatligvthe axioms as given above.

As we shall see later, we need to add to the compositionalf gymtem precisely one
introduction rule (as a constant) and one elimination ride ihdexing). This modularity
is one of the key features of the present logic.

Remark 3 (axioms fomil anderr) For reference we list basic axioms involvinganderr.
While these constructs are introduced for a wholesome ségrtagatment of assertions,
the need to use them may not be as frequent as other “normial’tienstructors (however
their treatment becomes essential when we consider eay.regovery routines). First of
all, out-of-bound errors are treated as:

i >size(x) D X[i]=nil (76)
Further we stipulate:

Inil = err. (77)

Further we stipulaterr when used as part of an expression always leadsto

E(err) = err (78)

wherez[-] is an arbitrary term context. We observe that there can ber ctivices for the
behaviour of these exceptional terms, whose investigadideferred to a future occasion.
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7 Logic (3): Judgements and Proof Rules
7.1 Judgements and their Semantics

Following Hoare (Hoare, 1969), a judgement in the presesgam logic consists of two
formulae and a program, augmented with a fresh name caiiedor.

{C} MF;A;a U {C/}

(We often drop typing annotations for readability.) Thigjsent is used for both validity
and provability. If we wish to be specific, we prefix it withleétr (for provability) or =
(for validity). In {C} M 3y, {C'}, M is the subjectof the judgementu its anchor, which
should not be inlom(I",A) Ufv(C); C its pre-condition andC its post-conditior? We say
{C} MB&ia - 1C'} is well-typediff

e AFM:q.

e Forsomd’ DT andA’ D A such thau ¢ dom(I" UA') we have
— MA'-C,
— Mu:a;A' = C, if ais not a reference,
— IM":N.u:at-C,if ais a reference.

Henceforth we only treat judgements which are well-tygedlowing Convention 3 (5),
{C}M{C'} stands fo{C} M :, {u= () A C'} whereu s a fresh name, typed &hit.

As in Hoare logic, the distinction between primary namesaumxliary names plays an
important role in both proof rules and semantics of the logic

Definition 19 (primary/auxiliary names) Lef={C} MM 42 :, {C'} be well-typed. Then
the primary namesn this judgement aréom(I",A) U {u}. The auxiliary namesin the
judgement are those free name<€iandC’ that are not primary.

Example 7 In a judgement {x = i}2 x x*Nat:Nat - £y — 2 i}”, x and u are primary
while i is auxiliary and u is in addition its anchor.

Intuitively, {C} MT&9 ; {C'} says:

If I;AFM:ais closed by values satisfying C (fdom(I")) and runs starting from
a store satisfying C (fodom(A) and maybe more), then it terminates so that the final
state and the resulting value named u together satisfy C

A store considered for a model may have a domain greaterthiinst this is sheer neces-
sity because, for example, a store farRef(Ref(Nat)) H!!x: Nat should have not only

but another reference which storaqthe same is true for auxiliary names). Second this is
consistent withe2,, (as=) being considered under all extensions of a given basi§exf-
tion 2.3/Section 3.1. Formally we stipulate as follows (d&gation 2, Page 13, for the
notation(§ - u:V, @)).

5 In spite of the designations “pre/post-conditions”, thassertions also describe complex (stateless) properties
about higher-order behaviour and data structures.
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Definition 20 (semantics of judgements) We say the judgemef€} MT4 ;, {C'} is

valid, written |={C} M4 =, {C'}, iff: for each modelar ™4 %' (£, o) wherel” D T,

NOA T NECandlM-u:o;A FCif (§,0) = C then(ME, o) || (V,0') such that
(&-u:v,d)E=C.

Note that the standard practice of considering all possitidels for validity means con-
sidering all possible forms of aliasing conforming to pneditionC.

7.2 Proof Rules (1): Compositional Rules

We now present the proof rules for deriving valid judgemdatsmperative PCFv with
aliasing. There is one compositional proof rule for eachgpimmming language construct
which precisely follows syntactic structure. There areiéloal structural rules which only
manipulate formulae. We can also consider additional @rfee rules which are useful for
economical reasoning and which are justifiable (admisgibleéhe present system. We
shall discuss later in some detail inference rules of thisgl thind, specialised into located
assertions and their counterpart in judgements.

This subsection introduces the compositional proof rilegir shape is unchanged from
the proof rules for the sublanguage without aliasing (Hoatlal, 2005) except for a
minimal and unavoidable refinement of the rule for assigrimnehich now useq€/!e}
instead of syntactic substitutide /! €] (cf. Section 4) and an adaptation to our generalised
syntax in dereference and assignment. This is in accordaitheour logical language,
which increments that in (Hondat al., 2005) by two dual modal operators for reasoning
about aliasing. More fundamentally, the refinement in tised®n language and the proof
rules reflects that of the type structure of the programmamgliage, i.e. the extension
to allow reference types to be carried by other types. Thieimental nature, especially
the precise correspondence between type structure armhl@giparatus, is central to the
family of program logics under investigation by the presauthors.

Following (Hondeet al., 2005), we stipulate the following conventions for prodesi

Convention 6 (proof rules)

e Variabled, j,... that occur freely in a formula range over auxiliary namesgivan
judgement.

e C¥isCin which no name fronx freely occurs (note that this is very different from
C-!)"()_

e In each proof rule, we assume all occurring judgements to &étyped and no
primary names in the premise(s) to occur as auxiliary nam#se conclusion. This
may be considered as a variant of the standard bound namerdanv.

e Whenever a syntactic substitution is used in a proof rulghduld avoid capture of
names, i.e. it should be safe in the sense detailed in Sex@on

e Following Convention 5A,A',B,B/, ... range ovestateless formulae.e. those for-
mulae which do not contain active dereferences (activefeleneces are those deref-
erences which do not occur in pre/post conditions of evadndormulae, cf. Defi-
nition 15).
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b ST (SR A (ST TR (]

op S EC {CGHMitm {Ciua} (0<i<n—1) Cp='Clop(my.my_1)/u

{C}op(Mo..Mp_1) 1y {C'}

{CAAXI M :m {C'}
[Abg {A} AM 1y {¥x.{Cluex = m{C'}}

Appj CEMm {Co} {Co} Nin {C1 1 {Cibmen = u{C'}}
{CHMN 4 (C'}

117 1CH M (Co}(Cot/bl} My (C'}_(Colfbl) Mz C')
{C} if M then M; else My :, {C'}

C) My (CTins (/U] e 1670 Mim (G5} (Coling )} M 2 ()
{C) im(M) % (C) {C} case M of {ini(X)Mi}ic(12) u {C]

[Inq]

{C} M :m {C' [y (m) /u]}
{C} m(M) . {C}

[Pai] {C} M1 :m, {Co} {Co} Mg :m, {C'[(my,mp) /u}

{C} (M1 Mg) 4 (C'} [Proj]

CIM :m{C'| ) C}M:m{Co Co} N {C/ |
[Dereﬂ{ ];(C}!M{;u [{g)éu]} [As&gr}{ ) {{C}} M{;:}N {Cé {n/!m}}

Reg (A AV <1 BOI/ULE AyM -y {B()™}
{A} pxAy.M : {Vi.B(i)}

Fig. 6. Proof rules (1): compositional rules.

The compositional proof rules of the program logic are giveRigure 6.[Op)| is a general
rule for first-order operators, and subsunfi@enst when arity is zero. As noted already,
the shape of all the rules in Figure 6 are identical chardzyecharacter with the composi-
tional rules for the imperative PCFv without aliasing extdep [Assign which uses logical
substitution and hence content quantification. Leavingitiet explanation of the remain-
ing rules to (Hondat al.,, 2005), we illustrate the two new rules for imperative coundis,
[Deref] and[Assign in the following.

[Derefl. The rule[Deref says that:

If we wish to have Cfor M named u, then we should assume the same thing about M,
its content, substitutintx for u in C.

To understand this rule, we may start from the following denpersion (which appeared
in (Hondaet al., 2005)).

[Deref-Org (79)

{C[!x/u];!x w{C}
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The rule says that, if we wish to hagfor !x (as a program) namag then we should
assume the same thing about the content, glubstituting X for u in C. For example we
may infer:

{Ever(!x)} Ix:y {Ever(u)} (80)
which is also sound in the present target language and Ifigaref] generalisesDeref-
Org] so that it can treat the case when the dereference is doae farbitrary program of a
reference type, which can even include invocation of imipggrocedures. This becomes
possible by the change of type structure, where refereramebe used as return values or
as components of data types. An example follows (below anddferth we often do not
expand simple applications ¢€onsg).

1L {Tix:z{z=x} (Var)
2. {T} AxXx:m {¥x{T}mex=2z{z=x}} (Abs)
3 {Wx{Timex=2z{z=x}}y:n {n=y A {T}men=2z{z=y}} (Var, Cons)
4. {T} AxX)Y:m {Im=ly} (App, Cons)
5. {T} H(AxX)y) iy {u=ly} (Deref)

As another simple example, IEtbe given by:

Cd:erx,i.{!x:i}fox:z{z:xA IXx=i+1},

Then we infer:

{CAlx=1} 1(fx) .y {u=2 A Ix=2} (81)
by the following derivation.
1 {CAlx=1} f:m {CIM/f] A Ix=1} (Var)
2. {CIm/f]Alx=1} x:n {C[M/f] A n=XA Ix=1} (Var)
3. {C[m/fIAIx=1} x:n {Ix=1A{Ix=1}men=2z{z=xA!x=2}} (2, Cons)
4. {CAlx=1} fx; {l =x A Ix=2} (Var)
5 {CAlx=1} fx; {Il=2 A Ix=2} (4, Cons)
6. {CAIx=1}I(fx):y {u=2 A Ix=2} (Deref)

Note that the application above not only returns a referétealso has a side effect. In
this way we can useJeref for dereferences of arbitrary programs. It is worth obsegv
that [Deref-Org is more efficient when a single variable is dereferenced¢civimay be
frequent in practice.

Soundness ofDerefl. The shape ofDeref and other proof rules has a direct semantic
justification: it is born from the semantics. The followirgnsantic justification of the rule
makes this clear (below we writt&,0) |m (§-m:V,d’) for (ME,0) |} (V,0)).

(E7 0) lZC = (ME, O') um (Emh 0-/) ): C/[lm/u]
= (IM)E, 0) Iy (E-u:d(i), d) = C



A Logical Analysis of Aliasing in Imperative Higher-Ordeufctions 45

The second inference above is valid because dereferenors) ribt change the store,
noting the freshness of.

[Assigni. The rule Assigr says that:

If, starting from C, we wish the result of executing:MN to satisfy €, then we de-
mand, starting from C, M nhamed m terminates (and becomegeerefe label) to reach
Co, and, in turn, N named n evaluates frorg © reach C with its occurrences of n
substituted fotm.

Please remember from Section 7 thas$igl omits mentioning the conclusion’s anchor
(of Unit type) and a substitution df, the uniqueUnit-value:{C} M := N {C'} stands for
{C}M =Ny {u= () AC'} with u fresh. This is justified becausg()/x] = C always
holds whenx has the unit type. Hence we can always ignore this substitufi simple
example of its usage follows (the first line is already reasbin the previous page).

L {T} AXX)y:m {m=y} (Var, Abs, App)

2. {m=yAl1=1}1; {m=yAn=1} (Const)

3. (m=yAan=1) > (ly=1){n/!m}

4. {m=y A 1=1}1:; {(ly=1){n/!m}} (Cons)

5 {T} (Axx)y := 1{ly=1} (1, 4, Assign)

Line 3 is derived as:
(m=yAn=1) > ['m(m=yAn=LA{m)!m=n
> ('m) (m=y A n=1AIm=n)
> (ly=1){n/Im[.
The rule may be understood by contrasting it with the cowadpmg rule for the non-
aliased sublanguage in (Honegal., 2005). There the assignment rule reads:

C} M :m {C'm/1X}
{C}x:=M{C'}

There are two differences between this original rule ass$[gr in Figure 6. First]AssignOrg
only allows a variable as the left-value, while fAessign allows an arbitrary program. Sec-
ond, the original rule uses syntactic substitution, wHile present system uses the logical
counterpart (cf. Section 5.3). The corresponding rule éngresent context (only incorpo-
rating the second point) is:

[AssignOrg {

{C} M :m {C'{m/ !X} }
{C}x:=M{C'}

Clearly [AssignVal is derivable fronAssigr through[Var].

In many programs, it is often the case that both sides of thigm®ient are expressions
which are simple in the sense that they do not contain calisdoedures or abstractions.
One such example is a simple assignment to a variable. A fitttre complex case may
involve simple expressions on both sides of the assignnsmd.example follows.

{x=y A Ever(lly)} Ix:=1ly4+1{Odd(!!x) A Odd(!'y)} (82)

[AssignVar
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Note both “X” and “lly+ 1" do not have side effects: one may also observe they are both
terms of our assertion language. In such cases, we can uf#ltivéng rule:

AssignSimple
ASSINSIMPE ey el ) & = e (€

AssignSimplés directly derivable fromAssigr} and the following rule (which is derivable
from other rules: the derivability of this rule is easy by ution one).

[SmP4 e eraTjen 1)

Above the use o€ as a program indicates that it is a term in the logic and a piragn
our programming language at the same time. In various pnomiiag examples, we often
assign part of a complex data structure to a part of anotheptax data structure. The rule
[AssignSimplggives a general rule for such cases.

Soundness offAssigr]. Again the proof rule for assignment is nothing but a logicajwo
write down the semantics of the assignmémt= N, as the following semantic justification
of the rule shows. Below we Iép = & - m:i (noteNg = N&p).

(& oEC = (M o0) Im (§mi, 00) E Co
= (N&o, 00) In (§o-n:W, 0') = C'{n/'m}
= (M=N)E 0) Uy (Eou:(), i W]) | C

where the last line is by the logical equivalence betweentiye judgementsv |
C'{n/'m} andas [ [m],, — [[n]l,, | E C’ (cf. Section 4).

7.3 Proof Rules (2): Structural Rules

As already mentioned, structural rules manipulate formolaly. They are important for a
logic’s expressivity. A well-known example of a structurales is:

CoG {Co}M:w{C} CoDOC
{C}M W {C}
With one exceptions our structural rules are unchanged {tdomdaet al., 2005), where
much illustration can be found, and their details are diseddater, in the next section,
where we present located proof rules, which are a derivaelisation from which the
original structural rules can easily be recovered.

[Cong

7.4 Located Judgement and their Proof Rules

One of the central problems in large-scale software dewedoy is to prevent inadver-

tent interference between programs through shared vasads$pecially in the presence of
aliasing. The located assertions in Section 5.6 addresgtinicern by delineating part of
the store a program may affect. Below we extend this ideadggments. Roughly, we

consider

CIM {Cr@s £ [Cay#£&Ny=i}M: {CAy£BENy=i}.
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wherey andi are fresh and distinct. Once again the problem is how to tyisgudgement.
As before there are two immediate approaches, the polynomte where — omitting
straightforward details ¥ andi are respectively typed &ef(X) and X for a fresh X, and
the monomorphic counterpart, formalised next.

Definition 21 (located judgement) Give@, ';A+ M : a andC/, as well as a finite set of
terms{&} having typeqRef(a1),...,Ref(an)} and not containing a dereferencelotated
judgemenhas the following shape.

{crmTA (' @¢ (83)

where{C} M"& : {C'} is well-typed following Section 7.1. Now {C}M"4¢:, [C'} @€
holds iff

F{CnA /_\yi # Blret(ay ANV = JifMTA% 2y {CT A /\!yi — i}

holds, with they; andj; fresh and distinct and typed Ref(a;) anda; respectively (cf. Sec-
tion 5.6). As in located assertions,i (83) is calledwrite effect or often simplyeffect
which is often just a subset of reference names from the bagsisite effect is treated as
a finite set rather than as a sequence.

Starting from Section 5, we have seen several examples 0§ Istated assertions. Like
located judgements, located assertions are useful beeaplgitly delineated write effects
are essential in the presence of aliasing for preciselyrisg observable behaviours of
programs. A conspicuous example is its use in the definitf@xtensionality formulae in
Section 6.2. In the following we present some examples @ftkxtjudgements.

Example 8 (located judgement)

1. Ajudgement{!x =i} x:=Ix+1 {Ix=i+ 1} @x says that the program increments
the content ok and does nothing else, in particulais sole reference whose content
may change.

2. LetM £'if x = 0 then 1 else X x f(x—1). Then we have

{Fact(f)} MFNat - fu = x1} @0

with I ' : Nat= Nat -x: Nat andFact(f) £'vi < x.{T}f ei = il{T}@0.

3. For the sam#/, we have:

{Fact/(f)} MTNat - fu=x1} @w

whereFact'(f) Ly <x{T}fei=il{T}@w. Note thatw is auxiliary. The judge-

ment says: iff may have an effect at some reference, theitself may have an
effect on that reference.

Valid located judgements are derivable with the proof rdt@snon-located judgements
by translating located judgements to non-located ones. Perafficient method is to use
compositional proof rules which are derivable in the oridsystem but which are tailored
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_ {CAA} M :m{C'} @€
Vel e xe 1eT@0 AP TAT A -y (vx [Cluex— m(C'} @6} @0

0p 1! Maim (C1}@6i .. {Cos} Mo im, {C'[op(my..... )/} @6
[C} op(M1, .., Mn) u {C'} @6...6,

app LG M im {Co} @€ {Co} N:n {Cy A {Cr}men— u{C'} @¢} @¢’
{CYMN:, {C'} @eed

1] {CEM 5 {Co} @€ {Coft/b]} My 2y {C}@€ {Colf/b]} My {C'} @€'
{C} if M then M; else My :, {C'} @ée'e’

(C) M [CTy (/) @€ 1 1C) M [CGF) @€ (Colis)/mi} My () @
{C}iny(M) y {C'} @€ {C} case M of {inj(%)-Mi}icf12} u {C't @é€,

[Ing]

{C} M1:m, {Co} @& {Co} Mz :m, {C'[(my,mp)/u]} @€

[Pair] {C} (M1,Mp) :, {C'} @€1&

{C} M 1 {C'[m(m)/u]} @€ [Deref {C} M 1 {C'['m/u]} @€

ProL) ey m(M) - (C') @8 [y M (Cree

- {CIM :m{Col @& {Co}N:n{C'{n/!Im}}@€ Coomeé
[Assign CIM=N(C} @&

Reg AN Y] <1BU)X/U} AyM 1y {B()™} @€
{A} pxAy.M 3y {Vi.B(i)} @€

Fig. 7. Derivable proof rules with located judgements.

for located judgements. The proof rules for located judgemare given in Figure 7 (for
compositional rules) and Figure 8 (for structural rules).

The compositional rules are entirely straightforward sely following Figure 6, just
accounting for the effects, usually by accumulating efexmputed in the premise. The
only exceptions arédar, Abs App, Assigh. In [Var] we declare the effect to be empty by
fiat. The correctness of this is immediate from the semanfieariables. Abqg internalises
the premise’s effeat into the conclusion’s evaluation formulaApg does the inverse of
this. The only place where new effects are inevitabledissjgr, which demands thatg
saysm (the target of writing) is in the write effect (the set meng¥gép notation £” is
understood to denote a disjunction of equations).

Among the structural rules in Figure 8, five may deservetitat®n, (Weah, [ Thinning,
[Invariancd, [Cons-Aukand [Renamg All others are straightforwardly derived from their
non-located counterparts, given in (Horetal., 2005). Conversely, all non-located struc-
tural rules of our logic are immediately obtained by sim@moval of the effect set.
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CIV 1 {C} @0 C5C {ColM:w{Cl@e CoC
[Pr°m°t¢{m{co{v:u}c/}mo}@o [Cong {C}M:u{g?}@é %

[CAALV i {C'} @6
{Cyv {A>C @€

{CIM {ADC @€
[CAAIM 4 [Cl @6

[A-D] [D>-A]

CiIM:W{Cl@6 {C}M:y {Cl@é CIM:wW{C1} @6 {C}M:y{Co} @€
[v-pre 1) {civ}cz}eM?uf(}:}@é{} € repost 1< {é}ll\;:f{cl{A(};z}@é e

My {C 1 @e (CIM: {C @6
Awsl SeTm, (@@ A eV (Vi) @6

{CYM: {C'}@E Gis !&free
{C A Col My {C'ACo} @€

{C}M:, {C'} @€ o injective renaming
{Co} Mo :4(,) {C'c} @€0

[Renamg

[Invariancg

{CIM m{C'l @€ (Thinning {CAlE =i} M m {C'AId =i} @E€ i fresh

[Weal {C}M:m {C'} @¢c¢ {CiMm {CT@€é

{Co} M1y {Co} @& C O 3].(Colj/i] A ['(Cpli/i12C))
[Cons-Auk CI M0 (C'} @6

In [Cons-Auk, we let € (resp.i) e3<haust active dereferences (resp.~auxiliary names)@, Co, Cy,
while j are fresh and of the same lengthias

Fig. 8. Derivable structural rules for located judgements.

[WeaK. This rule adds a name to an effect, which is surely safe. Axample usage of
[Weak, we infer :

{TIXim{m=x}@0 (Var)

{TIX:m{Mm=x}@ x (Weak)

m=x D me {x}

{T}3:0 {(Ix=3){n/Ix} }@0 (Const)

{Tix:=3{Ix=3}@x (3, 4, Assign)

gk lwIN|E

In Line 3, we havd!x = 3){n/!x} = n = 3 by Proposition 8 (6). Of course we can assign
more complicated expressions. For example, we infer:

L {Xx=1}xim{m=x A Ix=1}@x (M=xAIx=1)D>me {x}

2. {m=xA X=1}x+1n{(Ix=2){n/Ix}}@0

3. {Ix=1x:=Ix+1n{n=2}@x (1, 2, Assign)

[Thinning]. The rule symmetric to\/eaR is [Thinning, which removes a reference name
from a write set. Hence the judgement becomes strongengayjiven program modifies

(if ever) content of fewer references. This becomes passiblen the premise guarantees
that the program does not change the content of the variable temoved. Notgis fresh,

so that there is no constraint én- the judgement thus says whichever value is stored
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_ ClM: {C'l@é
[InvUniv] o [!é‘]éo% Mo }C’}/\ [(!aé]co} @€

[CIM:{Cl@e
[InVEX IC A (BCoI My {C A (1BCo @6

Fig. 9. Derivable invariance rules for located judgements.

in X, it does not alter its content. As an example usageTbirfning, we infer, noting
C{!x/!x[t = C (cf. Proposition 8 (3)):

L (x=D{x/x} = x=i D xe {x}

2. {Ix=i}x:=Ix{Ix=i}@x (Assign-Simple)

3 {Tix:=x{T}@0 (Thinning)
The inference suggests that through the useTbfrning, the extensional nature of the
logic is maintained in the proof rules for located judgensent

[Invariance]. This rule says that, if we know that a program only touchesrgateset

of references, and i€y only asserts on a state which does not concern (the content of
these references, th€g can be added to pre/post conditions as invariant for thajrpro.

In practice, we may use the two derivable (and essentiallyvatent) rules given next
(derivability is through Proposition 8 (3)).

{C}M  {C'} @€ {C} My {C'} @€
{CA[18Co} My {C'A[1Co} @6 {CA(I8)Co} My {C' A (18Co} @6
The rule[InvUniv] says that we demand all actively dereferenced nam@gtio be distinct
from &, in which case surely it is invariance. [mvEX, we stipulate that we demai
to hold only when all actively dereferenced name<&inare distinct frome” These two
derivable rules are sometimes useful since, using themawadd any invariandg, to a
located judgement with a write seby simply prefixing with content quantifiers.

As one can easily observenyjariancg is a refinement of both the standard invariance
rule in Hoare logic, which has the shape:

Froare{C} P {C'} P does not touch variables @
Fhoare {CACo} P {C' ACo}

and the invariance rule for non-located judgements (fromn@het al., 2005), here omit-
ted):

[InvUnivi [InvEX

(84)

{C} M {C}
{CAA} M {C'AA}
The rule may also be regarded as an analogue of a similar tutiéed by Reynolds,
O’Hearn and others in (Reynolds, 2002; O’'Heatnal., 2004). Section 10.3 has a full
technical comparison. Since a weakened stateless fovinl&85) is by definition k-free
for anyx, [Invariancd above subsumes (85) (except we are now using located juelgysin
On the other hand)rivariancd is justifiable using (85), cf. Section 6.2.

(85)
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{CG}Mim {G}@§ (1<i<n) A (1&1.8)C D Clop(mi.my)/u
}

[Op_eo] {/\I[Iélé*l] Ci OP(M17 vy Mn) u {C/} @eiéfl

/App-e0] {CiIM i {C1} @& {C2} N:n {C) A {(1&)CIAC,imen=u{C'} @&} @&
{CLA['&]C}MN 1y {C'} @€16:63

{C1} M m{CL} @61 {Co} N'n {Ch} @65 ((1€)CLAC,) O (C'{n/1m} Amed)

[Assign-edi {C1A1&]C} M =N {C} @&:&

{C1} M1 {C @61 {Co} M2:m, {C)} @& (1&)CiAC; D C[(my,mp)/u]
{CiAle1]Co} (M1, Mp) 1y {C'} @€1&

Fig. 10. Evaluation-order-independent proof rules foated judgements.

[Pair-eoli]

7.4.1 Evaluation Order Independence

The derived invariance rules can further be combined withpasitional rules for located
judgements in Figure 7 to obtain proof rules which are indejgat from particular eval-
uation order, in the sense that the correctness of the imferdoes not depend on the
order of evaluation of expressions appearing in the ruleaft¢he proof rules for oper-
ators, applications, pairs, etc. all assume a fixed evaloatider, i.e. from left to right).
Evaluation-order independence (EOI for short) in the mestegal case holds when two
(or more) expressions involved only write to separate starel, moreover, their resulting
properties only rely on invariants which hold regardlesshaf state change induced by
other expressions. Here we use a slightly stronger consteahen the properties of each
expression does not at all depend on written sets of the réngaéxpressions. Figure 10
lists the EOI-refinement of (located) operator/appliaa#ssignment/pairing rules. These
rules are all inferred from the original rule together witfotvariants of the invariance rule,
[InvUniv] and [InvEX.

We illustrate the situation for sequential compositiorcaténg thatM; N is short for
(A().N)M. Formodularreasoning we would like to infer a judgement drN from judge-
ments{C} M {C;} and{C,} N {C}}, whereC;,C; should not talk about things that are
only relevant for inferring{C,} N {C,} and vice versa. Ideally we would like a rule as
easily applicable as:

UM {C} {C}N{Ch) .
{C1AC2} M;N {C] ACS}

But this is unsound. The execution bf might invalidate assumptions inscribed @.
Similarly, runningN may destroy the guarantees madeXyyHowever, if we’d knew that
C>'s truth-value was independent frawii's effects, and tha®; was likewise isolated from
N’s destructive updates, (86) would in fact be admissiblethWgbntent quantification,
this is easily expressed: assume allW'é effects were irey; then[!'&]|C, was &i-free,
i.e. independent fronM’s effects. Similarly, withN's effects ine3, (!&)C; is !&-free.
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Hence the following refinement of (86) is sound:
{GiM{C @& {C}N{C}@&
{CLA['&]Co} MiN {Cy A (16)Cy } @616
It is noteworthy that this rule doa®t requiree; andé; to be disjoint, or tha€, does not
mention names i\ and vice versa. The rule directly infers a judgement for aisaged
pair of programs from independent judgements for the coraptggrograms. Here we show
a simple example usage.
1 {T}x:=2{Ix=2}@x (AssignS)
2 {T}y:=lz{ly=!z} @y (AssignS)
3{Tx:=2y:=lz{(ly)Ix=2A ly=Iz} @xy (Seq-l)
Note (ly) Ix = 2 is equivalent tox £ y D !x = 2. We used the following located version of
[Assign$

[Seq-|

[Assign$ {Cle)/les}}er =& {C}@6 (Coe€d)

Similarly, one obtains EOI-rules for operators, applicatiassignment etc., as given in
Figure 10. All EOl-rules are proved from the correspondimigioal rule together with
Invariance ruleslpvUniv] and InvEX. In later sections we shall show a few examples
using located assertions and judgements. Located judgerakso play an essential role
for proving observational completeness, one of the basiglt®about our logic, briefly
discussed in Section 10.

We close this section with a result relating derivabilityvoeen located and unlocated
judgements. The proof is easy and omitted (to defM@nning we need[Cons-Aug).
Below atranslationof a located judgement is one of the instances of those prexsém
Definition 21.

Proposition9 {C} M :, {C'} @4 is derivable in the proof rules for located judgements
iff its translation is derivable in the proof rules for nondated judgements.

7.5 Proof Rules for Imperative Idioms

For reasoning about programs written in an imperative ididenived proof rules are some-
times simpler to apply directly than the original rules. g 11 lists several located proof
rules for this purpose. The initial four assignment rulesdirectly derivable from the gen-
eral assignment rule in Figure 7. The next two rules for the-branch conditional are
also easily derivable from the general conditional ruleiguFe 7. In[IfThenSimplg we
assumee is also a term of boolean type in the assertion language ¢inafay terme of a
boolean type becomes a formulady: t, though such translation is seldom necessary).
The two rules for while loops augment the standard totaleminess rule by Floyd
(Floyd, 1967). In both ruless’ (of Nat-type) functions as an index of the loop, which
should be decremented at each stepM#nileSimplg the guard is a simple expression.
In [Whild, the guard is a general program, possibly with a side effgbioh however
should not increase an indexd® means that if there is a primary nameAnit must be
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C{€/'e} De=g

Cle/'x} Dx=g
e é/le}} e:=¢€ {C}@g

[AssignVay {Cle/'x}} x:=e{Cl@g

AssignSimple

C{€/le} lefree C{e/le} De=g

C{e/!x} Ix-free Cox=g
{Cle:=¢€ {Chle=¢€}@g

{C} x:=e{CAlx=e}@g

[AssignVInit [AssignSinit

: {Cre} M {C'} @F
[IfThenSmp!}e{C} if e then M {C'} @G

Ther 1€} M im {Co} @J_{Colt/m)} N {C}@F  Colf/m 5C
{C} if M then N {C'} @gg

(Che) D €>0 {Crend=ilM{CAE<i}@F ifresh
{C} while edo M {CA—-e} @F

[WhileSimplé

{CAE =i} M {APACAE <=i}@¢
{CAAt/DAE =i} N{CAE <il@F )
CAAt/b] O & >0 ifresh Sed {CIM{Cl@F {Co}N{C'}@g
{C} while M do N {CA—e} @G {C}M;N {C'} @gy

[Whilg

Seq-] LI M {Cl}@& {C}N{C} @6
{CL A 18]G} MIN {Cy A (1€)C1 } @616

. .C D {Clee(er..en) = u{C'}@4 {CIM 5 {C}@F {Co} N {C'}@g
AP SIMPIE= = e e w [T} @G ey 1ot x= M in N {(C'} @69

Fig. 11. Located proof rules for imperative idioms.

b. Both rules are directly derivable from the original rulesough the standard encoding,
as illustrated in detail in (Hondet al, 2005). Finally the aforediscussé8eq-] (I is for
independence) is the EOI-version of the standard [Sésg.

One of the notable aspects of the presented logic is unifigatrhent of data types. As
a basic example, let us take a look at how to incorporate néaggrinciple for arrays.
Section 6.3 already introduced the array data type with eesppnding axiomatisation.
Figure 12 presents the located version of the proof ruleari@ys.[Array|, together with
the axioms introduced in Section 6.3 is all we need to reaboutaarbitrary arrays and
operations on them in imperative PCFv. This simplicity [yacbmes from treating arrays

Ay {CIM 1 {Co}@F {Co}N :n{C'[m[n]/u}@g C'[m[n]/u] > 0<n<size(m)
{C}MN] . {C"} @ ¢

C[el€]/u] D 0< € < size(e)
{Clee]/ul} ele]u{C} @0

[ArraySimplé

Fig. 12. Located proof rules for arrays.
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as a string of references, cf. (Apt, 1981). The second rutégare 12 is a derivable version
of [Array] for simple expressions which is often useful. Below we give teading of
[SimpleArray.

If the initial state C[e[€/]/u], says that the inde (of Nat-type) is within the range of
the size of the arrag (of a[]-type), then we can conclude the arrgg] namedu (of
typeRef(a)) has the propert€, with no write effect.

In comparisonArray] rule just adds state change by evaluating the array anddexi

Itis instructive to see how the dynamics involving arrapgparticular assignments, can
be reasoned about using these rules. For example if you wasdstgn a value to an array at
a particular index, which is an operation often found in pica; we can simply specialise
eand¢ in [ArraySimpléto reach the following rule:

C[€/'ale]] D 0<e<size(a)
{Cl€/ ale}} ale =€ {C}

The rule is direct combination dAssignSimpleand[ArraySimplé. It is worth expanding
the precondition in the conclusion. Letbe fresh below.

[AssignArray

c{d/tag} £ 3Im((lalg)(CAlald=m) A m=¢€) (87)

In the right-hand side of (87), i€ contains a term of the formale’], then if C says)
e= € then it is equated witim (hencee); if not, it is unaffected byn. This case analysis
is precisely what underlies the standard proof rule foryaassignment, as presented in
(Apt, 1981), which is subsumed by the proof rule above. Itdgable thafAssignArray
can be used when array names themselves can be aliased s/hicleinmon situation in
systems programming.

8 Elimination of Content Quantification, Soundness

In this section we present some of the basic technical reabtiut the proposed logic.

8.1 Elimination of Content Quantification

Using the axioms for content quantification introduced icte® 6, we establish a major
technical result about our logic, eliminability of contequantification. In other words,
any assertion written using content quantification can havatently expressed without.
Before going into technical development, we discuss ttds fa

e The result clarifies the logical status of these modal opesain particular, seman-
tically, we now know they add no more complexity than (in)ations on reference
names. Since (in)equations on reference names can be éafiiigd using content
quantifiers, we know these two notions — quantifying overtennof references and
discussing equalities of reference names — are essertiadland the same thing.

e As aconsequence, apart from the use of evaluation formaéidity in the assertion
language is that of the standard predicate calculus withlégu
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e The elimination procedure only uses the axioms for conteattjfications discussed
in Section 6.1 combined with the well-known axioms for edyahnd (standard)
quantifiers. Thus, relative to the underlying axioms of tihedicate calculus with
equality as well as those for evaluation formulae, the asigime complete charac-
terisation of these modal operators.

The arguments towards the elimination theorem reveal theeatonnection between con-
tent quantification, logical (semantic) substituticd§e’/!e} and equations on names.
Practically, this connection suggests the effectivenétiseir combined use in logical cal-
culations.

Elimination is done by syntactically transforming a formin the following three steps.
Assume giverjle] C or (!e) C whereC does not contain content quantification (as the trans-
formation is local, this suffices).

1. We transform content quantification into the correspogdgical substitution ap-
plied toC.

2. We transforntC into the form of3f.(Cy A C;) whereC; does not contain active
dereference whil€; extracts all active dereferences occurrin@irThis step is not
necessary strictly speaking but contributes to the comisf the resulting formulae.

3. By the self-dual nature of logical substitutions, we campositionally dissolve
the outermost application of the logical substitution,tsat it now only affects each
atomic equation ilt, (Cy is simply neglected). We then apply the axioms for content
quantification to turn each into an assertion without coingerantifications.

We start from the first step, which underpins the close catmebetween content quan-
tification and logical substitution.

Proposition 10 With m fresh, we havige]C = Vm.C{m/!e}. Dually, again with m fresh,
we have(le) C = Im.C{m/!e}}.

Proof
It suffices to treat the case Whelggfx. Letmbe fresh below.
Ym.C{m/!x[} = vYm.C{m/!x[;
= [IX]Vm.(Ix=m>C)
= ['xC

While the second statement is dual, we record it anyway:

Im.C{m/!x}} = Im.(Ix) (CAIx=m)
= (1) IM.(CA X =m)
= (Ix)C

hence done. O

Below the conditiorz & {x,y} is not substantial sincecan be renamed ky-convertibility.
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Lemma 1 The following equivalences hold withe {A,Vv,D>} andq € {V,3}.

CorxCly/Ixp = Culy/x}+Ca{ly/!x}
Ofy/Xy = ~(CHy/!xb)
(zC{y/xp = z(C{y/!x})
{Clee€ =x{C'Hy/!x} =  Fuv({Cluev=w{C'} A (u=e A v=¢€){y/'x})
cC™y/ixp = C™

In the third line we assumeg {x,y}.

Proof
It suffices to prove the casesof A andQ =V as well as the negation. For

(C1 A Co){ly/!x) (€1 A C)Ty/™X]

vym.(y=m>D [IX] (Ix=mD (CLACp)))
vm.(y=m>D X Ai(IXx=mDG))
vm.(y=m>DA[IX (IXx=mDG))
AVM(y=m>D X (Ix=m>DG))
Culy/!X} A Cafly/!x}

ForV:

(vzC){y/!x}; vz.(C{y/!x})

vm.(y=m>D [IX (IXx=m>DVzC))
vm.(y=m>D [IXVz(Ix=m>DC))
vym.(y=m>DVz[IX (Ix=m>C))
vmvz(y=m>D [IX (Ix=m>DC))
vzVm.(y=m>D [IX (Ix=m>C))

vz (C{y/!x}).

Finally negation:

~(Cly/!x}) ~Em({1X) (C A x=m) A m=Y))
VYm.(IX] (-C V Ix#£m) V m#Yy))

vm(m=y D [IX(Ix=m > =C))
(=C){ly/!xl}

(=C)ly/ !}

At the last step we again use self-duality of logical substn. [

Now we move to the second step.

Lemma 2 Assume C does not contain content quantification and fidgaguantification.
Then we can rewritélX.C in the following form up to logical equivalence:

ek (A =!r) A C)

where (1)¢ are fresh and (2) Cdoes not contain active dererefences.

Proof
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We construcC, inductively: first we setCq %f ¢. Now assume that, is of the form

Cu['en] where k&, is active inC, ande, does not contain any dereferences. Then we set:

Ch1

with ¢,y being fresh. Sinc€ has only a finite number of active dereferences, the in-
ductive construction will come to a halt eventually, saat i.e. Cy, is free from active

dereferences. Then we SEIO'ZEme. Logical equivalence is immediate.[]

def Clea]Atn=¢en

Now we are in the final stage: we can decompose a logical sutsti ('u = z){m/!x}
with mfresh, in the following way.

() ('u=zAlx=m) = () (x=uAlu=zAIx=m) V (X# uAlu=zAlx=m))
() (X=uAlu=zAIx=m) VvV (IX)(X# uAlu=zAlx=m)
(x=uAm=2) VvV (IX)(X# uAlu=zAlx=m)
(x=uAm=2) V (X£uAlu=2) A (IX)!x=m)

= (Xx=uAm=2) vV (X#UuAlu=2).

Write [(u = z){m/!x}] for the final formula above. Using notation from Lemma 2, and
assumingC does not contain content quantifications, we reason (mittc. fresh), and
noting, whermmis fresh, we hav€{m/!x} = (Ix) (CAlx = m):

(Ix)C = IM.C{m/Ix}} (Lem.10)
= Im.(IFE.((Ailri=ci) A C)){m/Ix} (Lem.2)
= Im.(IFE.( (Ailri =c){m/Ix} A C))) (Lem.1)

Am.(FFE.( (Ai[[('ri = c){m/IX}]) A C)))
By performing this transformation from each maximal subfata which does not contain

content quantifications, we can completely eliminate atiteat quantifications from any
given formula. We have thus arrived at:

Theorem 1 For each well-typed assertion C, there existsabich satisfies the following
properties: (1) C= C’ and (2) no content quantification occurs ih C

The elimination procedure also tells us:
Proposition 11 For any C,[!x]C is equivalent to a formula of the shape:
F(C'A AT #X)
i
wheref exhaust all active dereferences ih.C

Proof
Just perform the elimination procedure until we reach the 8tep, at which point we use
[IX!r=z=x#r. O

We conclude this subsection with the following observatl@ix =y be an equation on
reference names. It is easy to check this equation is IdgieglLiivalent to[!x] [ly] Ix =ly,
except wherx andy are of the typeRef(Unit). Thus we can replace all (in)equations
on reference names with content quantifications as far asxelade the trivial store of
type Ref(Unit) from our discussion. Together with Theorem 1, we concludé tontent
guantifications and reference name (in)equations are iiyitepresentable.
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8.2 Soundness

In this subsection we present a key result about our logimdoess of axioms and proof
rules for non-located and located judgements.

8.2.1 Soundness of Proof Rules

We have already seen in Section 7 tHagefef] and [Assign, the only non-structural rules
which differ in comparison with their counterparts in (Hared al., 2005), are semantically
justifiable. As noted there, all other rules are similarlgilajustified, with the proofs,
given next, following closely those in (Hon@aal.,, 2005), Section 5.

Convention 7 We write (§ - m: M, o) | (§-m:V, ¢’) = C when(Mg, o) |} (V, ¢’) and
(&-m:V, d’) =C for some V and’.

We begin with Jar].
(& 0) FCix/ul = (& u&(x), |=C/\u:x
~ (Euix 0) b (E-uE(X), 0) - C

The proof for [Const is the essentially the same as above and omitted. ®grye show
the casen = 2 for readability.

(& 0) ECX/ul A = {CtM1m, {C1} A = {Ca}M2 im, {C2lop(munmy) /ul}
= (&-m:Mq,0) (& m:Vi, 01) A
(&-my:Vi-mp:Ma, 01) J (&-my:Vi-mp:Va, o) ECy A u=op(mmy)
= (& -uiop(MiMy), 0) || (§-u:op(ViV2), 0') EC;
The generah-ary case is similarly.
For [Abg let &’ d:EfE -X:V below.

(&0) A
= W.((&-x:V,0) EAAC D (ME,0) (& -m:W,d)EC)
= W.((&-x:V,0) EAAC D (AXM)EV, o) (& -m:W, d)=C)

= (&-u: (AxM)E, 0) EVx{Cluex=m{C'}

For [App we infer, with§o =& -m:V:

(8 0)}=C
= (Mg, o) |} (EmVoo)):Co

= (NEo, 0o) (Eo n:W, oi) |:C1/\{C1}mon:u{C’}
= VW, 0) Jy (§-u:U, o) =C
= ((MN)E, 0) Jy (§-u:U, o) =C

[Pair] and [Proj] are similar.

For the conditionallf] we setb1 defy andb, defe.
(8 0) FCA E{CIM m{Co} A = {Colbi/m}N 2 {C} (i € {1.2})

= (&m:M, 0)§ (& -m:by, 0) ECo A (E-u:N;, i) I (§-uiv, 0) EC (1€{1,2})
= (§-u:if MthenNjelseNy o) | (§-u:W, d') =C
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Above we used the fact that closed boolean values are exdthlongt andf.
The proof for [Casé is equally straightforward.

& 0) FCA E{CIM im{Co} A [= {Colini (x)/m}Ni 1 {C} (i € {1,2})
= (&m:M, o) | (§ - m:ini(vi), 0i) ECo A
E-xvi-uN, o) U (§-xvi-uivi, ) EC (1€{1,2})
= (&-u:caseMof {inj(X)Ni}ic(12;, 0) | (- 0:W, o) =C

Above we used the fact that closed values of sum types areeofotim in; (V) with

i € {1,2}. Next we turn to the structural rules, given in their locatediant in Figure 8.
Most of these rules, in the variant without effects, are prbas the corresponding rules in
(Hondaet al., 2005). The proofs of rules which make essential use of esff@avariancé,
[Weak and [Thinning, are straightforward, and hence omitted. FGophs-Aukwe need a
preparatory lemma.

Lemma3 1. Ifa =Canduisfresh,thenalsar -u:V C

2. Wheneve(M, o) — (M’,0’) andpis an injective renaming, then al$Mp, op) —
(M’p,d’p), where we omit the straightforward definitions for applyregamings to
terms and stores.

3. Assume that M is typable underA, T C I/, A C A'. Then:(M,0) — (M’,d) iff
(Mlr:a,0|r:a) — (M|ra,0|r:a), Wwhere we omit the straightforward definitions of
the restriction operatof|r:a.

4. If Cis typable undeF;A, T C T/ AC A andar ™4 = C then alsanf |1 |= C.

Proof
The proofs are direct from the definitions[J

For the derivation ofCons-Aukassumel ;A M : B. Let = (£,0) and assume thgin
[Cons-Aukare of typed. Then

1. M EC

2. IM <15 (€,0') = Coli/]

8. 3 <pq (&,0),EN1/1],01/1]) ECo
In Steps (2, 3) we ignore the anchothat occurs in the models by typing, as it is not of
relevance foCq. Then:

4. (ME/7,0T/i) 4 (a” /) A €/ -u:V,a”[i/f) ECL (H, 3, Lem. 3.2)
5. (ME&,d") | (V]j/i],a") (Lem. 3.2)
6. (M&,0") | (V,0") (i auxiliary)
7. (M&|ra,0'|a) I (V,0"|a) (Lem. 3.3)
8. (ME,0) I (V,0"[a)

Continuing with parts of (4), we get

10. (&'fi/f]-u: V.0 [i/j]) = Co

11 (& -u:V[j/il,d”) E=CH)/i]  (Lem.3.2)
12. (&'-u:V,0") =Cy[j/i] (i auxiliary)
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Using the premise once again we derive

13 (£,0)C

14. (§-u:V,0)C (Lem. 3.1)
15 (&-u:V,0) = [1E( 6[~/~]DC’

16. (&'-u:V,0”) = Cylj/i] o

17. (& -u:Vv,d") =C

18 (§-u:V,0”|p) EC (Lem. 3.4)

Here (16) follows from (15) because the effectdw$§ evaluation are ire by construc-
tion. This validatesCons-Auk Finally [Renamgholds easily as all relevant operations on
models and the reduction relation is closed under injecémaming, cf. Lemma 3. Hence
we have established the next theorem.

Theorem 2 (soundness) i {C} M, {C'} then= {C} M 3, {C'}.

8.2.2 Soundness of Axioms

We now show correctness of all axioms.

Theorem 3 All axioms in Figures 3 and 4 are valid. Further, (CGen) in &ig 3 is sound
in the sense that if C is valid then so[ig]C

We begin with the axiomatisation of content quantificatiorFigure 3. We need a some
preliminary facts.

Lemma4 o [x— V] <xq M ifand only if3ac”.(m <" A" [x—V]=a").

Proof
Straightforward from the definitions. ]

Proposition12 1. Assumead(e) C {&}: if & |=x+# & for all i, then [[],/ v =
(€]l pewy-
2. Assumed(C) C {&}: no occurrence of a free name inis bound in C, andv =
x # ¢ for alli. Then for all VW, ¢ [x — V] = C iff 0 [x— W] =C.
3. If C is syntactically!x-free, then for all VW, a¢ [x— V] = C iff & [x+— W] = C.

Proof

We show (1) by induction o®. The only interesting case iea=!€. By the induction

hypotheS|s (IHY€T s v = (€T ¢ ey ®fi. But ar E x# g, hencex ¢ i, hence with

= (&,0), cf. Proposition 7:
o[x— V(i) = o(i) = a[x— W](i).
But then

(€]l ¢ pev) = Olx = V(i) = alx = WI(i). =[] -
For (2) we use induction o@. The casee = € is by (1) andCxC’ as well as-C are
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immediate by the (IH). Fofie]C (!e)C the result follows directly from the semantics of
content quantification. For the cage”.C we assume +# y, the casex =y being straight-
forward. Then
M [X—=V]EW'.C = V' (M [x—V]<ya M D' |=C)
=M (M M <ya M M"x—=V]=m") DM |=C) (88)
= V" (M <ya M Du"[x—V]=C)

= V" (M <yaM” D u"[x—W]]EC) (89)
=V (Au" M <yaM" M"x—>W]=m")Du' |=C)
= V' (M [x— W] <yq M’ D' |=C) (90)

M [x— W] = wy*.C

Here (89) is by (IH) and (88, 90) are by Lemma 4.

Finally, the case of evaluation formulae is immediate beedar those, the satisfaction
relation 'throws away’ the store part of a model, hence aifatis the effect of update
operationgx — V] etc.

For (3) we proceed by induction on the generation of the tiese€™*. The case of
outermost content quantification is immediate. Eok x # & wheread(C) C {&} and no
name is inappropriately bound we assume

M [X— V] =ECAX#E
Hence clearly alsas |= x # & Thus we can apply (2) to obtain
M[x—V]E=C iff M [x—W]E=C

which immediately implies the required result. Closure emcbntent quantification and
propositional connectives is immediate. Finally, the cafsprefixing with quantifiers is
also by the (IH) and almost identical to the correspondirsgda (2).

O

We now begin the proof of Theorem 3.

Lemma 5 The axioms and the rule in Figure 3 are sound.

Proof
For (CA1) we argue as follows
ME[INCPDC) = Wa[x—V]|(CiDC)
= WMWMxX—V]|EC DM [Xx—V]E=C)
= MECOWMX—V]EC (Prop. 123)

= M 'zchM ':[!X]Cz
M 'Z(ClD[!X]Cz)

(CA2) has the following justification.

M E[IMIXC = Wwm[x—V]EC
o= M EC
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For (CA3) we derive
M E X (!x=m>DC) W.(M [X— V] EIx=m>DC)
W.(M [x— V] EX=m D> o [x— V] EC)
M [x— [m], ] =C

[ [[m]] H:C/\!X:m
M = (IX)CAlx=m

Finally, for the inference rule (CGen), we proceed by inducbn the length of the proof.
All the axioms are syntacticallyx!free, and none of the proof rules of first-order logic
changes this fact, hence the result is again a consequerepdsition 12.3. This con-
cludes the proof for the axioms and the rule in Figure 81

Next is are the axioms for the evaluation formula in Figure 4.

Lemma 6 All axioms in Figure 4 are sound.

Proof

Proofs for Axioms (el) to (e7) are like the correspondingwdgions in (Hondaet al,
2005). Axiom (e8) is immediately from the semantics of easibn formulae. The extion-
sionality axiom (ext) is also immediate from the definitidrea [

Lemmas 6 and 5 together verify Theorem 3.

8.2.3 Soundness of Located Proof Rules and Axioms

Soundness of the located proof rules can be establishedistraightforward ways: we
can show them to be derivable using the original non-locatéss, or, alternatively, we
can reason directly. In either case, the only non-trivigkcia [Thinning. This is reasoned
using simple instances o€pns-Auk (renaming of auxiliary names) combined with dis-
junction on pre/post conditions (derived from-pre] and [Cong). To make the proof more
transparent, we assume all effects to have the same type.

E{CArz£8ENI1z=iNIE =i} My {C' Az#£EENIZ=INIE =i}
= E{Chz£énz£ENZ=i} My {C ANZz#£BAN ZEENZ=1} A
E{Chz£énz=€ANlz=i} M, {C' Nz#£EAN z=€ENz=1i}
= E{Chz£8Nz=i} M {C'ANz£ENIZ=I}
Soundness of other located rules is as for the correspondingated rules. We conclude,
with respect to the semantics given in Definition 21:

Theorem 4 (soundness of located judgements) C} M :, {C'} @ § then we have
F{CIMy{C} @4

Theorem 5 All axioms in Figures 5 are sound.

Proof
The proofs are straightforward, either by translation ifaionulae without effects, or di-
rectly semantically. [J
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9 Reasoning Examples

One of the key criteria in evaluating a program logic’s digiti is ease-of-use in verification.
This section illustrates how our logic can be used for respabout the correctness of
programs, starting with simple examples discussed in ttiednction and Section 4. We
conclude our exhibition of the logic’s reasoning abilitieg proving the correctness of
higher-order, generic Quicksort.

9.1 Questionable Double (1): Direct Reasoning

In Section 5.5.3 we introduced the "Questionable Doublglagram behaving differently
under different distinctions. Let us reproduce the program

double? = A(xY).(x:=xtxy =ly+ly)

We establish the following judgement which says that, if \wsuane its two arguments to
be distinct, then the program does indeed double the cootéiné arguments references.

{T} double? y { VX, y{x#YyAIx=iAly=jtue(xy){Ix=2iAly=2j}} (91)
To infer the judgement (91), we use the following two implioas.
XEYAIX=iAly=] D (XAZYAIX=2i Aly=j){Ix+!x/Ix} (92)
XEYAIX=2iAly=] D (Ix=2i Aly=2)){ly+!y/ly} (93)
We first establish (92) and (93). For the former:

(X#YA Ix=2i Ay = D{Ix+Ix/Ix]}

X#Y A IX=2{IX+IX/IX} Aly = j{Ix+!x/Ix}
XZYAIXHIX=2 A (x£yDly=])

C XZYAIX=TAly=]

The reasoning for (93) is identical and hence omitted. Wenzam present the inference.
We use AssignVa} discussed already, as well as the obvious extensioAlod fto cater
for a vector of names, also calledli§g.

L x#ZyAIx=iAly=j] D (XEYAIXx=2 Aly=j){Ix+Ix/Ix} (92)
2. {(x#£YAIx=2Aly= D{Ix+HIX/IX}} X :=Ix+IX {X#YAIX=2iAly= |} (AssignVar)
3. {XZyAlx=iAnly=j} x:=Ix+Ix {X£YyAIx=2iAly=j} (1, 2, Cons)
4. x#£ZyAIx=2iAly=] D (Ix=2Aly=2)){ly+ly/ly} (93)
5. {(Ix=2iAly=2)){ly+ly/ly}} vy :=ly+ly {Ix=2iAly=2j} (AssignVar)
6. {XZYyAlx=2iAly=j} y:=Ily+ly {Ix=2iAly=2j} (4, 5, Cons)
7. {x#FyAlx=inly=j} x:=Ix+Ix; y:=ly+ly {Ix=2iAly=2j} (3, 6, Seq)
8. {T}double?y { VXY {X#YyAIXx=iAlIx=jlue(xy){Ix=2 Alx=2j}} (Abs)

Save for unavoidable uses @¢n4, the structure of this derivation follows the syntax of
the program under investigation. The derivation also ssitggeow to refine this program
to make it alias-robust. This is done by “internalising” ttenditionx # y as follows.

double! OEf)\(x,y).(if X # Yy then X:=Ix+!X; y:=ly+ly else x:=Ix+!x) (94)
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We now infer:
{T} double!:y { VX y{Ix=iAIx=j}lue(xy){Ix=2i Alx=2j}} (95)

This judgement indicates thdbuble! is robust with respect to aliasing — it satisfies the
required functional property without stipulating anytpiabout possible aliasing of argu-
ments. The inference follows, using the first few lines of phevious inference. Below in
Line 11 we seM % =Ix+Ix; y :=ly+lyandM; i =Ix+Ix.

1-7. (Asabove).

8. x=yAlx=iAly=] D (Ix=2i Aly=2]){!x+!x/Ix}

9. (Ix=2 Aly=2)){Ix+!x/Ix} x:=Ix+Ix {Ix=2iAly=2j} (AssignVar)

10. {x=yAIx=iAly=j} x:=Ix+Ix {Ix=2iAly=2j} (1, 2, Cons)

11 {Ix=iAly=j}if X#ythen Mj else My {Ix=2iAly=2j} (7,10,

12. {T} double! :y { VX, y.{Ix=1iAIx=j}ue(xy){Ix=2i AIx=2j}}

We omit detailing the calculation for Line 8.

9.2 Questionable Double (2): Located Reasoning

We have seen, in Section 5.5.3, that we can use a locatediasderobtain a more “pre-
cise” specification for the Questionable Double. In thisecas wish to say that no refer-
ences apart from those passed as arguments are potentiglified. Hence we derive:

{T}double? iy {¥X,y. ({x#Yy A Ix=i Aly=jlue(x,y){Ix=2i Aly=2]} @xy} @0

In the following proof, we derive this assertion using a yudixtensional judgement for
each subpart of the program. For combining two assignmeetsise[Seq-] in Figure 11.

1 {Ix=i} x:=Ix+Ix {Ix=2i}@x (AssignVar)
2. {ly=j} y:=ly+ly {ly=2j1@y (AssignVar)
3 {Ix=iA [IXly=j} x:=Ix+Ix; y = ly+ly {{ly)Ix=2i A ly=2]j}@xy (Seq-1)

4 {x£Yy A IX=iAly=j} x:=Ix+Ix; y = ly+ly {(X£yDIx=2i)Aly=2j}@xy (Cons)
5. {X£Yy A Ix=i A ly=j} x:=Ix+Ix; y = ly+ly {Ix=2iA ly=2j}@xy (Invariance)
6. {T}double? iy { VX, y. ({X#AYAIXx=iAlx=]}ue(x,y) {IX=2iAIx=2]} @xy) }@D (Abs)

Line 5 adds+# y to pre/post conditions. Using the EOI rulgdqg-] may be considered a se-
mantic strengthening of the “local reasoning”, as advatat&eparation Logic (Reynolds,
2002; O'Hearret al,, 2004). The conclusion discusses this phenomenon in detail

9.3 Swap

Judgements. Next we verify swap, a program mentioned in the introduction, that ex-
changes the content of two reference cells. We reproducedts below.

swap OIZEf)\(x,y).le*c z=Ixin (x:=ly;y:=2)
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Let us also set (taking the located version of its specificati
Swap(u) d:erx.Vy.{!x: iANly=jlue (x,y){Ix=jAly=i} @xy
Using this predicate we wish to establish:
{T} swap :y {Swap(u)} @ 0. (96)

Swap is the classical example, treated in much preceding (gr(Cartwright & Oppen,
1981; Cartwright & Oppen, 1978; Kulczyckt al., 2003)). An interesting point is that the
derivation does have to deal with aliasing, despite theiipation’s (96) not mention it.
The proof has two parts: one dealing with the case whandy are aliased, the other
applying when they are not. Informally:

. If x andy are distinct, the two assignmenis,=!y andy := z, are independent (in
the sense that they do not affect each other). Sirdimes hold the initial content of
X, we know these two assignments swap the conterboidy.

2. On the other hand, X andy are aliased, the two assignments=!y andy := z,
affect the same memory cell: byt= z in fact does not change the contentyof
because denotes the initial value of (hence ofy), so that these two assignments
perform a (vacuous) swapping of content.

The above observation indicatssmantic independenbetween the two assignment com-
mands, in the sense that theperationalcollision in the case of aliasing does not affect
the demanded postcondition.

Located Reasoning.The semantic independencesafap is fully exploited using $eq-].
def

LetA = x=yDi=j below. NoteA is stateless
1 {ly=j}x:=ly{lx=j}@x (AssignS)
2. {z=i}y:=z{ly=i}@y (AssignS)
3. {ly=] A [Iz=i}x:=ly; yi=z{(y)!x= A 'y:i}@xy (1,2, Seq-)
4. {Ix=iNly=jArz=i}x:=ly; y:i=z{(X£yDIx=j) A |}@xy (3, Cons)
5 {AAIx=iNly=jAz=i} x:=lyyi=z{AA( x#yg'x—J =it@xy (4, Invar.)
6. {Ix=iANly=jAaz=i}x:=ly;y:=z{Ix=jAly=i}@xy (5, Cons)
7. {Ix=iAly=j} X {Ix=iAly=jAz=i} @0 (Deref)
8. {Ix=iAly=j}letz=Ixin (x:=ly;y:=2) {Ix=jAly=i}@xy (6, 7, Let)
9. {T} swap:y {Swap(u)} @0 (8, Abs)

In Line 6, we used tha!=iAly =i entailsA. The rest is immediate.

Reasoning based on Traditional Methods.Reasoning foswap anddouble? was ele-
gantin the sense that properties were inferred compoaitioinom properties of subterms,
butwithoutusing assumption in the verification of these subterms ttegitieelevant to the
subterms and are only required later, when combining theepts to get properties of the
overall program. That our logic facilitates such compositél reasoning — and we will see
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more of that in the verification of Quicksort below — is takenirdicative of our logic’s
usability. For contrast, we now present a derivation of taee specification using the
traditional method a la Morris/Cartwright-Oppen (expezss the present framework).

L A{Ux=jAly={z/ty}{ly/!Ix} } x:=ly {(Ix= jAly=i){z/ly}} @x  (AssignS)

2. {(Ix=jAly=i){z/ly}}y:=z{Ix=jAly=i} @y (AssignS)
3 {(Ix=jAly=i){z/ly}{ly/!x}} x:=ly; yi=z{Ix=jAly=i}@xy (1,2, Seq)
4. (Ix=inly=jaz=i) D (Ix=jAly=D){z/ly}{ly/'X} (*)
5 {Ix=iANly=jAaz=i} x:=ly; y:i=z{Ix=jAly=i}@xy (3, 4, Cons)
6. {Ix=iAly=j} !X {Ix=iAly=jAz=i} @0 (Deref)
7. {Ix=iAly=j}letz=Ixin (x:=ly;y:=2) {Ix=jAly=i}@xy (5, 6, Let)
8. {T} swap :y {Swap(u)} @0 (7, Abs)

Except in Line 4, all inferences are direct from the prooksilBelow we derivex),
starting from the consequence and reaching the antecedent.

(x = jAly = D){jz/ty}H{y/!x}

= (x= ) {Z/yB{ty/1xb A Cy= D) {2/} ly/ 1) (Pro. 10 (2))
= (x=y>z=j) A (x#£yDIx=]){ly/Ix} A (z=1){ly/!x} (S1)

= (x=yDz=)){ly/IxX} A (x#yDIx=){ly/!x} A (z=i){ly/!x} (Pro. 10 (2))
= (Xx=yDz=]j) A (X#ZyDIx=j{ly/IxX}) A z=i (Pro. 7)

= (x=yDz=j) A (X#£yDly=j) Az=i (S1)

C

IX=iAly=] A z=i

This derivation uses Property (S1):
€ =le{€'/le]} = (e=exn€ =¢€")V(e£en€ =lg))

or, as its special instaneé=!e{ e’ /!e} = & = €’, in both cases assumirgnde do not
contain dereferences. The proof is immediate from the agiom
While the traditional reasoning gives a slightly shortetivdgion, it involves non-trivial

inferences at the assertion level. This is because thditragdi method (or separation-based
methods a la Burstall) cannot exploit semantic indepenel&etween two assignments,
unlike ours, via $eq-].

9.4 Circular References

We next show the reasoning far.=!!x, the example, appearing in Section 5, that uses
circular data structures. Reproducing the assertion itic3eb, we wish to prove the fol-
lowing judgement.

{Ix=yAly=x} x:=lIx{Ix=x}.
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Mg.A(a, c, |, r).
if | <r then
let p° = partition(a, c, |, r) in
Q(ai c, Iv p"l);
g(a, c, p' +1, r)

Fig. 13. Quicksort with a comparison procedure as a paramete

For the proof we start by converting the pre-condition intforn usable byAssignVay.
We begin the derivation by noting that

IX=yAly =X = X=X
= Im.(m=IIxA (IIX) (Ix=xAlXx=m))
= Ix = x{!Ix/m[}

From here it is easy to get:

1 (Ix=yAly=x) D ((Ix=x){"x/Ix})
2. {(Ix=x){"x/Ix}} x:=Ix{Ix=x} (AssignSimple)
3. {Ix=yAly=x} x:=lIx{Ix=x} (1, 2, Cons)

The next assertion, also already discussed in Section Sicalarly easily be derived.

{ly=x} x:= (L, inz(ly)){!x= (1,inr(X))}

9.5 A Polymorphic, Higher-Order Procedure: Quicksort

Hoare’s Quicksort is an efficient algorithm for sorting gsaApart from recursive calls
to itself, Quicksort calls Partition, a procedure whichrpates elements of an array so
that they are divided into two contiguous parts, the lefttaoning elements less than a
“pivot value” pv and the right those greater tham. The pivot valuepvis one of the array
elements which may ideally be their mean value. In the falhgwve specify and derive
a full specification of one instance of the algorithm, diket¢aken from its well-known
C version (Kernighan & Ritchie, 1988). Using indentatiom &zoping, Figures 13 and
14 present the code, assuming a generic swapping procekieitbat from Section 5.6.4
being globally available (we could have passed the swappintine as a parameter, like
we do with the comparison functian without significant effect on specification or proof
complexity, but we wanted to show how our logic can deal witheg). We use indentation
for scoping. In these programs we omit type annotations éoiables, the main ones of
which (for both programs) are:

a: X[] c: (X x X)=-Bool [,r: Nat swap : (Ref(X) x Ref(X))=-Unit

X[]is the type of a generic array (details of polymorphic arraystted). Quicksort itself
has the function type from the product of these typedria. Partition is the same except
that it return type is\at.



© ® N o ¢ A w N e

i
o

i
=

68 M. Berger K. Honda N. Yoshida

A@a,c,l,r)
let pv =1!la[r] in
pi=1;
i =1
while li <
if c(la[ti], pv) then
swap( a[!p], a[!i] )
p:=I!p+1
i=1li +1

swap(a[r], a[!p]);
'p

Fig. 14. Partitioning algorithm.

This program exhibits several features which are intergdtiom the viewpoint of cap-
turing and verifying behavioural properties using the presogic.

e Correctness crucially relies on the extensional behawibeach part: when recur-
sively calling itself twice in Lines 4 and 5 of Figure 13, itéssential that each call
modifies only the local subarray it is working with, withoutyaoverlap. We shall
show how this aspect is transparently reflected in the sirestof assertions and
reasoning, realising what O’Hearn and Reynolds calleddllogeasoning” (O’'Hearn
et al, 2004; Reynolds, 2002) through the use of logical primgiségeneral nature
rather than those introduced for that specific purpose.

e The program is higher-order, receiving as its argument gpesivon procedure.

e The program is fully polymorphic, in the sense that it cart aorarray of any type
(as far as a proper comparison procedure is provided).

In the following we shall discuss how these aspects can hestilén the presentlogic. Even
including a recent formal verification of Quicksort in Coglijgtre & Magaud, 1999),
we believe a rigorous verification of Quicksort's extensibipehaviour with higher-order
procedures and polymorphism is given here for the first time.

Specification. We now present a full specification of Quicksort (For simipficpartition
andswap are assumed inlined: treating them as external procedustsightforward).

{T} gsort :y {VX.Qsort(u)} @0. 97)
where we set, omitting types:
{Eq(ablr)AOrder(c)}
Qsort(u) def Yabclr. ue (a,c,l,r) (98)
{Perm(ablr)ASorted(aclr)}@a]l...r]ip
Herea]l...rlip is short fora(l],...,a[r],i, p. The variableb is auxiliary and is of the same
array type asa, denoting an initial copy of, so we can specify the change ain the

post-condition is only in the ordering of its elements. Epobdicate used in (98) has the
following meaning. For the precondition:
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o First, the predicateBq(ablr) and Perm(ablr) use a distinctness condition on ele-
ments ofa as well ash, p andi, which we writeDist. Formally: define

Distinct(ey..en) def Ni<izj<n€ 7 €j,
then we set
Dist %' Distinct( a[0]...a[size(a) — 1]b[0]...b[size(b) — 1] pi ).

o Eq(ablr) says:distinct arrays a and b coincide in their content in the rarfgen |
to r (with | and r being in the array bound)n addition, it also stipulates freshness
and distinctness of variablgsandi. The formal definition oEq(ablr) is:

0<I,r <size(a) =size(b) A Vj.(I<j<r D!'a[j]=!b[j]) A Dist.
e Order(c) says:c calculates a total order without side effecEormally, it is the

conjunction of:

— Uxy.(ce(X,y) \\ T V ce(x,y) \,F). In this assertion¢e (x,y) \, € stands
for “{T}ce (x,y) = zZ{z= e} @0" (“the comparison terminates and has no side
effects”);

— UxY.(X#£Y D (ce(x,y) \,TVce(y,x)\,T)) (“two distinct elements are always
ordered”); and

— (coe(X,yY) \\TACe(y,2) \,T) Dce(x2) \, T (“the ordering is transitive”).

The use of this predicate instead of (say) a boolean comd#imbodies the higher-
order nature of Quicksort.

For the post-condition:

e Perm(ablr) says:entries of a and b in the range from | to r are permutations of
each other in contentt also stipulates the same distinctness conditioBgblr).
Formally:

SPerm(ablr) %" 3 j.( <i,j <r A tafi] =!b[j] A talj] =!b[i] A

Vh.((I<h<r A hé&{i,j}) D'ah =!Ibh])) A
size(a) = size(b) A Dist
The result of permuting times is then given by:

Perm@(ablr) £ Eq(ablr)

Perm™(ablr) %" Ja.(Perm™(adlr) A SPerm(ablr) A Dist[a/b])
Note that, as irfEq(ablr), the permutation predicate asserts the full distinctioalbf

relevant references.
e Sorted(alrc) says:the content of a in the range from | to r are sorted w.r.t. the

total order implemented by &ormally: Sorted(aclr) d:eri, jI<i<j<r Dce

(‘afil,'alj]) . T).

SoQsort(u) in (98) as a whole says:



70 M. Berger K. Honda N. Yoshida

Initially we assume two distinct arrays, a and b, of the sarostent from | to r
(Eq(ablr)), together with a procedure which realises a total ordérder(c)). After
the program runs, one array remains unchanged (becaused$ertion says it touches
only a), and this changed array is such that it is the permatabf the original one
(Perm(ablr)) and that it is well-sorted w.r.t. cSprted(aclr)).

Located assertions play a fundamental role in this spetiditafor example, it is crucial
to be able to assetthas no unwanted side effects. In the rest of this section, resept
highlights and key steps of the full derivation of the judgan(97). Straightforward steps
are mostly omitted, as they can be filled in easily, sinceamiag follows the syntactic
structure of the algorithm precisely.

Reasoning (1): Sorting Disjoint Subarrays. First we focus on Lines 4 and 5 in Figure
13), which sort subarrays by recursive calls. The reasodérgonstrates how the use of
our refined invariance rule offers a quick inference by carmyg two local, extensional
specifications. Concretely, our aim is to establish:

{C1} q(acl,p—1); q(ac,p +1,r) {Ci}@a]l...r]ip (99)
where
C1 def Perm(ablr) A Parted(aclrp’) A Order(c) A Vj<k.QsortBounded(qj) A r—1<k
c, %" perm(ablr) A Sorted(aclr).

Two newly introduced predicates are illustrated below.

QsortBounded(qj) with j of Nat type is used as an inductive hypothesis for recursion.
It is the same afsort(q), given in (98), Page 68, except that it only works for a range n
more thanj and that it replacesEg(ablr)” in the precondition of (98) with Perm(ablr)”,
which is necessary for the induction to go throuBhrted(aclrk) says the subarray @&
from| tor is partitioned at an intermediate indkexv.r.t. the order defined by. Formally
it is given as:

I<k<r A Vji(I<j<k>ce(la[j],lalk])\,T)
Parted(aclrk) oef A
Vj.(k<j<r>ce(lalk],!afj])\.T)

A key feature of these two recursive calls is that neither iffexidepends on subarrays
written by the other. As mentioned already, this featurevesl us tolocalise reasoning:
the specification and deduction of each part has only to mendcal information it is
concerned with. Joining the resulting two specificationthen transparent through the
. . . . . def ~ def
invariance rule and basic laws of content quantificationt &e= a[l..p’ — 1]pi ande3 =
a[p’ + 1..r]pi (which are the parts touched by the first/second calls, otispéy). We now

derive:
R {Co}a(Lp— 1) {C}} @&
R2 {C}q(p'+1,1){C} @&
R3. {C A ['€]Cs} q(1,p'—1); q(p' +1,1) {(!&)C; A Cs} &8
R4. C; 5 30.((1&]C2 A Co A [1885] (CoA (16)C, S C))))
R5. {C1} q(1,p'—1); q(p’+1,r) {C} @&EE (Cons-Aux)
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Line (R.3) useqR.1-2, Seq-l), the first two(AppS). The derivation uses the following
abbreviations.
def

C Eq(abll(p’— 1)) A Order(c) A Vj<k.QsortBounded(q]j)
Ap —1-I<k

C, L' Perm(abll(p' — 1)) A Sorted(acl(p' — 1))

Cs &' Eq(al(p'+1)r) A Order(c) A Vj <k QsortBounded(qj) A
r—(p'+1) <k

C, L' Perm(abl(p/+1)r) A Sorted(ac(p + 1)r)

Note each o€, /C;, andCz/C; mentions only the local subarray each call works with. The
auxiliary variableb’ serves as a fresh copy aimmediately before these calls (we cannot
useb since, e.gPerm(abl(p’ — 1)) does not hold). (R.1-3) are asserted and reasoned using
b, which (R.4) mediates into the judgement bnso that (R.5) only mentionk. The
inference usesjons-Auk our rendition of Kleyman’s Rule from Figure 8. In additiome

need another straightforwardly derived rule:

C D {C}ee(er..6q)=U{C'}@E
A <
APPS =T eler..an) 0 [C} @6
Using these rules ani@eq-], (R.1/2/3/5) are immediate. The remaining step is the deriv

tion of (R.4), the condition fofCons-Auk
First-order logic allows the following entailment

C1 & Ci1 AT .(Eq(ablr) A Dist’) = Ju'.D

where the definition ob is next.

Eq(ablr) A Parted(b'clrp’) A Perm(abllr) A Perm(ablr)

def
D= A

Order(c) A 1 <p <r A Dist’ A Vj < k.QsortBounded(qj)

Now clearly
D = C ANGCs = C A [!éz]Cg,

The former implication being first-order logic which thetéatusing(ua), sinceCé!éZ. Itis
also the case that

D = Parted(b'clrp’) A la[p'] =!b[p’] A Dist’
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1. C NG

2. Perm(abll(p’'—1)) A Perm(ab/(p'+1)r) (1)
3. lap] =!0[p']

4. Perm(abl'lr) (2, 3)
5. Perm(bblr)

6. Perm(ablr) (4,5)
7. Sorted(acl(p’ — 1)) A Sorted(ac(p’+1)r) (1)
8. Parted(bclrp)

9. Sorted(aclr) 4,7,8)

Hence in fact
('a[p] =!b'[p'] A Perm(bbIr) A Parted(bclrp’)) D ((C, A C5) D Cy)
which in turn implies
(Dist’ Alap’] =!b'[p'] A Perm(bbIr) A Parted(bclrp’)) D ((C, A C5) D CY).
To this tautology we add universal content quantificatiothwéspect te d:Efézég to obtain
['8 (Dist’ A la[p'] =!0'[p'] A Perm(bblr) A Parted(bclrp’)) > ((C5 A C5) D CY).

But in view of Dist’, all terms in the premise of that last term, agdriée, hence we apply
Proposition 7.

(Dist’ A la[p'] =!b'[p] A Perm(bblr) A Parted(bclrp’)) o ['& ((C, A C5) D CY).

Now, with Dist’, C} is !&-free, soC, and (!&;)C} are in fact equivalent, using (e4, ea).
That means we can refine that last big implication.

(Dist’ A la[p’] =!b'[p'] A Perm(bblr) A Parted(bclrp)) O [1& (((1&)C, A C5) D CY).
Combining all this, yields the assertion
G D Con[l&]Can[1E (((183)ConCs) D Cy)
which is (R.4) used above.
Reasoning (2): Using Comparison.Next we focus on the use of a comparison procedure

in the while loop inpartition, which is originally passed to Partition as an argument.
We start with the loop invariant.

o Cha A1 <Ip,li<r A Leq(acl(!p—1)pv)
Invar & A
( Geg(ac('po)(ti—1)pv) A (Ip<liDce(la]lp],pv) \\T) )

Leq(aclrv) (resp.Geq(aclrv)) says the entries frorto r in a are smaller (resp. bigger)
thanv. When inside the loop, the valuespfndi differ from the invariant slightly, so that

def . o . ) .
we also make use 0€inigop ='InvarAli < r Ar—li = j. The following assertions specify
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two cases of the conditional branch.
Cthen &ef Cinloop/ACe ('a[li],pv) \\ T C-then &ef Cinloop/ACe ('a[li], pv) \\ F.

We now present the derivation for the if sentence of the ledere the comparison pro-
cedure received as an an argument is used at the conditiatth Below we assume
the conditional body {fbody”) has been verified already and leto be a freshly chosen
variable ofNat-type.

{Invar Ar—li>0} )

(InvarAr—!i>0) > ( ce(!afli],pv) =z
{ce (1alli], pv) \, zA Invar Ar—!i >0} @0

{Invar Ar—!li > 0}
c('afli], pv) :z (AppSimple)

{ce (!a[li], pv) \, zA Invar Ar—!i > 0} @0

{Cthen} ifbody {Invar{li+1/li} Ar=li<])}@a]l...r —1]ip (omitted)

Invar{!i+ 1/} Ar=li < j){a]l..r —1pi}@
Thus reasoning about a conditional branch which involvesllat@ a received procedure
is no more difficult than treating first-order expressionse Test of the verification for
partition is mechanical, so that we reach the following natural judey@m

{Perm(ablr) A Order(c)}
partition(a,c,l,r) 1y )
{Parted(aclrp’) A Perm(ablr) A Order(c) } @a]l..r] pi

(IfThen)

Reasoning (3): Polymorphism.We are now ready to derive the whole specification of
Quicksort (97). As noted, the algorithm is generic in theetyyd data being sorted, so
we conclude with deriving its polymorphic specification. Weed one additional rule for
type abstraction (for further details of treatment of potyphism, see (Honda & Yoshida,
2004)). We also list the rule for “let” which is easily derbla from[Abg and[App through
the standard encoding. Belofty(©) indicates the type variables@, similarly forftv(C).

vide . (C'} X ¢ ftv(l,A) Uftv(C)
{C}VF,A;VX.G U {VXC/}

Let {CIM 5 {Co} @€ {Co} N {C} @€
{C} let x= M in N, {C'} @é¢

TAbg 1C4

We now present the derivation. For brevity we use the follmyvabbreviationsC, def

Perm(ablr) A Sorted(aclr), B’ %' Perm(ablr) A Order(c) AVj < k.QsortBounded(qj) A

r—1<k and BE'B A I<r. We also writegsort’ for gsort in Page 67 without the

first line (i.e. withoutu/A-abstractionsM for q(a,c,|,p'— 1) ; q(a,c,p’+ 1,r) andN for
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q(l,P=1); q(p’ +1,r).

{B} partition(a,c,l,r) :y {Parted(aclrp’) AB} @all..r]pi (Invariance)
{Parted(aclrp’) AB} M {C,} @al]l...r]ip (R.5)
{B} let p’ = partition(a,l,r,c) in N {C,} @a]l...r]ip (Let)
{B'} gsort’ {C,}@a]l...r]ip (IfThen)
{Vj < k-QsortBounded(qj)} A(a,c,l,r).gsort’ :m{QsortBounded(mk)}@0  (Abs)
{T} gsort :y {Qsort(u)} @0 (Rec, Cons)
{T} gsort iy {¥X.Qsort(u)} @0 (TAbs)

This concludes the derivation of a full specification foryrabrphic Quicksort.

10 Conclusion

This paper introduced a program logic for imperative highweter functions with general
forms of aliasing, presented its basic theory, and explisedse for specification and
verification through simple but non-trivial examples. Diguishing features of the pro-
posed program logic include: a general treatment of imperatgher-order functions and
aliasing; its precise correspondence with observatiosralamtics (Greif & Meyer, 1981;
Hennessy & Milner, 1985); provision of structured assert@md reasoning methods for
higher-order behaviour with shared data in the presencbasfirzg; and clean extensibil-
ity to data structures. We expect that compositional pnogi@gics, capturing fully the
behaviour of higher-order programs, will have applicagiot only in specification and
verification of individual programs but also in combinatiwith other engineering activi-
ties for safety guarantees of programs.

The logic is built on our earlier work (Honds al,, 2005), where we introduced a logic
for imperative higher-order functions without aliasing.(Hondaet al., 2005), a reference
type in both the programming and assertion languages isr mawded by another type,
which leads to the lack of aliasing: operationally, in thairky a procedure never received
or returned (and a reference never stored) reference< lohically, equating two distinct
reference names was contradictory. In the present work we ta&en off this restriction.
This leads to substantially richer and more complex progsahaviour, which is met by a
minimal but powerful enrichment in the logic, both in semes(through introduction of
distinctions) and in syntax (by content quantification)eTddded machinery allows us to
reason about a general form of assignmé&ht= N, to treat a large class of mutable data
structures and to reason about many programs of practgmfisance such as Quicksort,
all of which have not been possible in (Honelgal,, 2005). We conclude the paper with
discussions on remaining topics and related work.

10.1 Observational Completeness

A central property of our logic is its precise corresponaewith the observational con-
gruence of the programming language, in the sense that tagrgms are contextually
equivalent iff they satisfy the same set of assertions. \Wa this coincidence between
a programming language and its logibservational completeneds offers foundations
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for modular software engineering, where replacement ofroadule by another with the
same specification does not violate the observable behawidhe whole software, up to
the latter’s global specification.

Theorem 6 (observational completenegs3suming appropriate typing, the following two
statements are equivalent.

e M=N
e ForallC,C: = {CIM ;, {C'}iff = {C}N:, {C'}.

The proof of observable completeness, omitted for breexyends the method used in
(Hondaet al.,, 2005). A detailed proof will be presented in a forthcomiragper on com-
pleteness phenomena.

10.2 Local References

Apart from aliasing and higher-order behaviours, one ofdieal points in reasoning about
(imperative) higher-order functions is new name genenatiolocal references, as studied
by Pitts and Stark (Pitts & Stark, 1998). Its clean logicabtment is possible through a
rigorous stratification on top of the present logic. At theeleof programming language,
the grammar is extended hyew X := M in N with x ¢ fv(M). For its logical treatment,
there are two layers. In one, local references are neveradldo go out of the original
scope (hence they are freshly created and used at each ruprofeam or a procedure
body, to be thrown away after termination or return). In trdse, we do not have to change
the assertion language but only add what corresponds togthdasd proof rule for locally
declared variables. Below we present a simpler case whee namparison is not allowed
in the target programming language.

{C™}Nn {Co}  {(IXCo)[!x/n]} MTAXREIDP 1, {C™)
{C} newx:=NinM"4P: {C}

This rule says that, when inferring ft, we can safely assume that the newly generated
x is distinct from existing reference names, and that thergsgm of the resulting state
and valueC', should not mention this new reference. It is notable thist thle and its
refinement for the restricted form of local references allsato treat the standard param-
eter passing mechanism in procedural languages such asfaeathrough the following
simple translation: a procedure definitiof(%,y) {...}" is transformed into

(100)

AX,Y)newx:=X innewy:=y in....

Sincex andy are freshly generated, they are never aliased with eachmdhevith existing
reference names. This aspect is logically captured by (I0Q)s the (lack of) aliasing in
stack variables can be analysed as a special case of aliagjageral references, allowing
uniform understanding.

In the fully general form of local references, a newly getestareference can be ex-
ported to the outside of its original scope, reminiscentofp® extrusion in tha-calculus
(Milner et al, 1992), and may outlive the generating procedure,Xghew X :=n in X.

A procedure can now have local state, possibly changingvielnaat each run, reflecting
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not only a given argument and global state but also its Ide#d sthe latter invisible to the
environment. This leads to greater complexity in behayidamanding a further enrich-
ment in logics. How this can be handled with a clean and mihéxiension to the present
logic will be discussed in the forthcoming (Yoshidgal., 2006).

10.3 Related Work

A detailed historical survey of the last three decades’ vasrlprogram logics and reason-
ing methods which treat aliasing is beyond the scope of tasgnt paper. Instead we focus
on some pioneering and directly related Hoare-like progi@gits for aliasing. Janssen
and van Emde Boas (Janssen & van Emde Boas, 1977) first ingatistinctions between
reference names and their content in the assertion mettedagsignment rule based on
semantic substitution is discussed by Cartwright and Opantwright & Oppen, 1981),
Morris (Morris, 1982b) and Trakhtenbrot, Halpern and Meff@akhtenbrogt al,, 1984).
The work by Cartwright and Oppen (Cartwright & Oppen, 198dgsented a (relative)
completeness result for a language with aliasing and proesdMorris (Morris, 1982b)
gives extensive reasoning examples. The work by Cartwri@ppen and Morris is dis-
cussed in more detail below. Bornat (Bornat, 2000) furthgri@red Morris’s reasoning
method. Trakhtenbrot et al. (Trakhtenbebtl., 1984) also propose an invariance rule rem-
iniscent of ours, as well as using the dereference notatitingi assertion language for the
firsttime. As arrays and other mutable data structuresduire aliasing between elements,
studies of their proof rules such as (Gries & Levin, 1980;kham & Suzuki, 1979; Apt,
1981) contain logical analyses of aliasing (which goes hadiicCarthy, 1962)). More
recently Kulczycki et al. (Kulczycket al., 2003) study possible ways to reason about alias-
ing induced by call-by-reference procedure calls.

Cartwright and Oppen. Cartwright and Oppen (Cartwright & Oppen, 1978; Cartwright
& Oppen, 1981) show how to use distinctions on reference saame semantic update
as part of Hoare Logic’s standard assertion language. Thesept a formal result which
decomposes semantic update into reference name (in)egsiafihey treat a programming
language with multiple assignment, (recursive) first-oq@®cedures and pointers. Their
assertion language uses a specific predicate which saysmeéenameper seare distinct,
rather than having an explicit dereference operator. Thietiying model is inspired by
McCarthy’s articulation of imperative computation (Mc@ar, 1962) and (Cartwright &
Oppen, 1978; Cartwright & Oppen, 1981) present two relatgitk.

e First, a logic where the above “distinct” predicate and seticaupdate are present,
but the programming language has no pointers (hence nangiescept that coming
from arrays). After observing this semantic update to ddimevith syntactic update
in the absence of aliasing, they establish soundness aativeetompleteness of
their proof rules.

e The second logic extends the first with pointers, at the le¥dloth programs and
assertions. For assignmert+ e (in our notation), it is observed that the assignment
rule {C{e/!!x} }!x:= e{C} (again our notation) suffices, but semantic update is no
longer replaceable by a syntactic counterpart. Then a ceitiqoal translation of the
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semantic update is presented which uses the “distinct’igaesl They also propose
a rule for procedures which allow pointer passing and dséisssoundness and
completeness.

Despite complexity in presentation, their work is a milegtn the treatment of aliasing in
Hoare’s logic, by (1) distinguishing reference names andert, (2) introducing semantic
update in the assertion language, and (3) showing how semgate can be eliminated
through decomposition into (in)equations of referenceemmlote that (3) is fundamental
for keeping compositional proof rules syntactic in prineip

In the introduction, we already discussed a basic issueefapic(s) in (Cartwright
& Oppen, 1978; Cartwright & Oppen, 1981): while semantic agechecomes “syntactic”
by decomposition, in practice it is hard to carry out reaidaficalculation. This problem
is acknowledged in (Cartwright & Oppen, 1978; Cartwright &p&n, 1981). Another
problem was the lack of structured reasoning principlesulbatensional behaviour of
aliased programs (Cartwright & Oppen, 1978; Cartwright &®p, 1981). Treatment of
a higher-order procedures and various data structureslfwtws beyond the state of the
art at the time) is also left as a future issue. The presenk addresses these issues by
clarifying the logical status of semantic update througtdael@mperators and integrating
them with a standard assertion language. At the level of i8pdar use of distinctions in
models arguably also contributes to the present logic'piity.

Morris. Independently, Morris, in a sequence of works (Morris, 188dorris, 1982d;
Morris, 1982c), presented essentially the same ideas dw/@grt and Oppen, but in a
syntactically more tractable and uniform framework withatment of general data struc-
tures including pointers. His approach is an elegant eidansf Hoare logic based on
conditional update. Morris also distinguishes a refererarae and its content, usixg to
denote the address {which is symmetric to the pointer notatiarf in Pascal). His tech-
nical treatment centres on the conditional expressioreratitan semantic update. He starts
from a notion of conditional substitution given as follovassuming« andy are reference
names of the same type in a given program.

y{e/x} o if X |=Yy| theneelsey

Here a term of typ®&ef(a) denotes its content in the assertion language, hence (aljgg
of names proceeds by taking their addresses. Morris shaweygh examples, that his
conditional update is extensible to complex expressiamsalprecise axiomatic treatment
is first given by Bornat in (Bornat, 2000). We reproduce onkistalculations below (fol-
lowing the original presentation in using Pascal-like fistdlection notation and omitting
obvious|’s):

(p.s.s){v/u.s}
= ((p.s){v/u.s}.s){v/u.s}
= (if u=pthenvelse p.ss){v/u.s}
= if u=pthen (if v=UthenVelseV.s)else (if p=UthenVelse p.S.9)

One may observe that the above inference assumes the dataistrallows recursive typ-
ing. Sincep.s.sis written (!(!p.s)).s in imperative PCFv, this calculation corresponds to



78 M. Berger K. Honda N. Yoshida

(m= (1('p.s)).9){v/! (tu.)}} in the present logic, though in many cases either such ex-
pansion is unnecessary or partial expansion suffices. Sileoagperation easily extends to
formulae, we can now express a corresponding general axiom:

{C{€/e}}e:=€ {C}

which, because of the definition of conditional update aboveans the same thing as
{C{€/'e}} e:= € {C} in our notation.

Morris’s approach is equivalent to Cartwright and Oppen’shie sense that formulae
with conditional expressions are easily decomposabldiiatee without it using (in)equations
on reference names. Morris’s approach is more syntactitsgmésented purely in the set-
ting of the first-order logic with equality. Morris (Morri4,982a; Morris, 1982d; Morris,
1982c) further extends his method with axioms for linkeds|lind used the resulting
framework for verification of a Schorr-Waite algorithm.

Separation Logic. A different approach to the logical treatment of aliasingsdd on
Burstall's early work, isSeparation Logidoy Reynolds, O'Hearn and others (Reynolds,
2002; O'Hearret al,, 2004). They introduce a novel conjunctietthat also stipulates dis-
jointness of memory regions. Separation Logic uses thestiesand rules of Hoare logic
for alias-free stack-allocated variables while introdhgcalias-sensitive rules for variables
on heaps. We discuss their work in some detail since it cehtnderestingly with ours,
both philosophically and technically. Their logic stantsrh a resource-aware assignment
rule (Reynolds, 2002fe— —} [g] := € {e+— €} wheree and€ do not include deref-
erence of heap variables and* —" stands fordi.(x — i)". The rule demandghat a
memory cell be available at addressdemonstrating the resource-oriented nature of the
logic (motivated by reasoning for low-level code). Consenfly, {T} [€] := [e] {T} is un-
sound in their logic. This command correspondsz te !x in our notation{T} x:=Ix{T}

is trivially sound in original Hoare logic (Hoare, 1969) amars.

On the basis of these resource-oriented proof rules, (Régna002; O’Hearret al.,
2004) propose a variant of the invariance rule.

{C}P{C'} (Co)Nmodify(P)=0

{CxCo} P {C'xCp}

The second premise is standard side condition in Hoare logidify(P) is the set of all
stack-allocated variables whiéhmay write to). Apart from this side condition, soundness
of this rule hinges on the resource-oriented assignmenefleience rules described above,
by which all the variables (addresses) in the heap wiRiamnay write to are explicitly
mentioned irC. Like the standard invariance rule, this rule is intendedeore as an aid
for modular verification of program correctness.

Separation Logic’s ability to reason about aliased refegercrucially depends on its
resource-oriented nature, the separating conjunetiamd a special predicate to repre-
sent content of memory cells. In contrast, the present wionk at a precise logical artic-
ulation of observational meaning of programs in the tradgi of both Hennessy-Milner
logic and Hoare logic, as exemplified by Theorem 6. Anoth#edince is that our logic
aims to make the best of first-order logic with equality toresent general aliasing sit-
uations. These differences come to life for example in[theariancé rule of Section

(101)
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7, which plays a role similar to (101). Our rule relies on pyi@@mpositional reasoning
about observable behaviour, which, as examples in thequs\section may suggest, con-
tributes to tractability in reasoning. A concrete deriwatmay elucidate the difference, for
example the inference below far.= 2;y :=!z through a direct application of (101) and
[Assign, Inv, Seq, Cohs

{x— —=}x:=2{x—2}
{y——Az—i}y:=lz{y—i A z—i}
{X—= =%y — ANz )} xi=2)y:=1z{Xx—2x Ji.(y—i A z—i)}

For the same program, a direct application of our invariante[Seq-] gives:
{T} x:=2{Ix=2} @x (Assign)
{Ty:=lz{ly=1z} @y (Assign)
{Tx:=2y:=1z{{ly)Ix=2A ly=1zZ} @xy (Seq-l)

Reflecting observational nature, the pre-condition singpdys empty. Our inference does
not requirex andy to be distinct:(ly)Ix=2 A ly =lzis equivalent to(x # y D!x =

2) A ly =!z, which is more general thaxn— 2 x Ji.(y+— i A z+ i). Intuitively this

is because content quantification, héing, offers a more refined form of protection from
sharing/aliasing.

These examples suggest a gain in generality by using the@pedgdogical framework for
representation of sharing and disjointness of data strestWhileC; x C, is practically
embeddable af&)]C; A ['&]C, where€ exhausts active dereferences@f the exam-
ples argue that the use of write sets in located judgemeaststions offers a more precise
description and smooth reasoning. On its observationé g present logic may incor-
porate resource-sensitive aspects through separategiesi{e.g. a predicatélocated(e)
may saye of a reference type is allocated). Because of differencesémtation, we expect
a fruitful interplay between Separation Logic and our preado

One example of such interplay, applying the analytical poefehe present logic, is
a simplification and generalisation of a refined invariande involving procedures by
O’Hearn, Yang and Reynolds (O’Heagehal,, 2004). Their rule has several side conditions
about the behaviour of programs, including an operatioaatlition on write effects, and
restrictions on the use of formulae: below we present theesponding rule in our logic.

Cy !%free {Co} N{ChxC1l@% {C A {Co}f{Cll@%} M, {Cr@X
{CACi}let f =A()NinM:, {C'ACi} @XF

Here f should beephemeraln the sense that it occurs M only in the shape of () and
never undeA-abstraction. This is easily checkable by typing. The ralgssf a program

M uses a procedureassuming that it only alters and under that conditiod only alters

the content ok, then if we instantiatd to a real program and it touches reference names
distinct fromxX’but maintains the invariance at those reference namesirtsiamtiating that
procedure maintains the invariance. Ephemeralitf isfneeded, for if we storé or place

it under abstraction, the invariance in stored/abstraotddviour cannot be maintained: in
contrast, in the above case, we can adjust the invariante dinte of instantiation once
and for all. In comparison with the rule in (O’Heagbal,, 2004), (102) differs in that it is

(102)
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purely compositional, i.e. does not demand conditions drabieurs ofM andN outside
of judgements. Further, our rule does not restrict the ustooéd higher-order procedures
etc. in non-ephemeral procedure labels. This generalibpiained because we can now
identify precisely why strengthening of invariance is pblesin the specific setting the
invariance rule in (O’'Hearet al,, 2004) deals with.

Further Related Work. There are other reasoning methods for programs with afjasin
that are not directly about compositional program logiogthiis category we find, for ex-
ample, operational reasoning methods studied by Masonqivi&dalcott, 1991) and Pitts
and Stark (Pitts & Stark, 1998) (both also deal with locaérefces). These approaches
are complementary and their integration with logical me#hsuch as ours an interesting
subjects for further studies.

Aliasing is an essential feature in low-level code and systevel software. Apart from
Separation Logic, there are several recent approachesatidress formal safety guaran-
tee of low-level code addressing higher-order procedurdsfiasing in an organised way.
An example of work in this direction is (Hamid & Shao, 2004 eve integration of typed
assembly code (Morrisett al,, 1999) and Floyd-Hoare logic is studied to offer a formal
framework to guarantee expressive safety properties &mmably code with references to
higher-order code. How the present approach may be usatiidomier level languages is
currently being investigated.

One issue not discussed herdéga hiding for example a calputchar(buff,c) might,
form the client’s point of view, affect only the abstract farfouff. But from the system’s
perspective the buffer implementation and the preciseeffescription would be compli-
cated. The problem is that the system’s perspectivewrechar is hidden from the user.
With this constraint, is it possible to obtain preciggecificationseven at the user level
without revealing implementation detail? To achieve a stmaaterplay between specifi-
cation and hiding Leino and Nelson (Leino & Nelson, 2002)pargeabstraction depen-
denciesa new construct that allows to specify how the user-leveiwof effects relates
to the implementation view, but without sacrificing on thedularity afforded by hiding.
Since the aliasing problem becomes more complicated withdiverging perspectives on
software introduced by hiding, studying content quantificain this setting is sure to be
interesting.

In (Ahmedet al, 2005), Ahmed, Morrisett and Fluet present a framework engu
type-safety for a higher-order call-by-value imperatizeduage in the presencesifong
update i.e. the update of a variable which can change its type. iflaig be considered an
extreme form of aliasing. We believe that content quantificecan be generalised to allow
compositional and observationally complete logical reaspeven with strong update.
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