Structured Global Programming for Communication
Behaviour

Marco Carbont Kohei Hondd Nobuko Yoshida

1Queen Mary, University of London, UK
2 Imperial College, London, UK

Abstract. This paper presents twoftBrent paradigms of description of commu-
nication behaviour, one focussing on global message flows and another on end-
point behaviours, as formal calculi based on session types. The global calculus
originates from Choreography Description Language, a web service description
language developed by W3C WS-CDL working group. The end-point calculus is
a typedn-calculus. The global calculus describes an interaction scenario from a
vantage viewpoint; the endpoint calculus precisely identifies a local behaviour of
each participant. After introducing the static and dynamic semantics of these two
calculi, we explore a theory of endpoint projection which defines three principles
for well-structured global description. The theory then defines a translation under
the three principles which is sound and complete in the sense that all and only
behaviours specified in the global description are realised as communications
among end-point processes. Throughout the theory, underlying type structures
play a fundamental role.

1 Introduction

Communication-Centred Programming. The explosive growth of Internet and World
Wide Web in the last decades led to, in the form of de facto standards, an omnipresent
naming scheme (URURL), omnipresent communication protocols (HTTP and TP

and an omnipresent message format (XML). These three elem@eaitsre key infras-
tructural bases for application-level distributed programming. The software systems
which make use of these and other common web standards for distributed communi-
cations are often calledeb servicesWeb services are an active area of infrastructural
development, involving two major standardisation bodies, W3C and Oasis, and other
private and public organizations.

One of the application domains which can naturally exploit the infrastructural ba-
sis of web services is the so-called business protocols. A business protocol is a series
of structured and automated interactions among two or more business entities used
for achieving their goals. Business protocols are inherently inter-domain, are often
regulation-bound, and demand clear shared understanding about its meaning among
multiple organisations with possibly conflicting interests. Numerous business protocols
will be designed and implemented. Some business protocols such as industry standard
will last long once specified; others would arise from temporary business needs and may
undergo frequent updates. Because of its inherent inter-organizational nature, there is a
strong demand for a common standard for specifying well-founded and correct business
protocols.

Global Description of Interaction. One of the standardisatiofferts for a language

to specify business protocols is the Web Services Choreography Description Language
(WS-CDL) [39], developed by W3C’'s WS-CDL Working Group since 2004 in col-
laboration withsr-calculus experts as scientific advisors. WS-CDL is a specification
language which directly describes global information flows and their structures, close
to, for example, the standard notation for cryptographic protocols [25], UML sequence
diagrams [26] and message sequence charts (MSC) [20]. Unlike these predecessors,
in order to enable precise description and specification of complex business protocols,
WS-CDL dfers a fully expressive description language for channel based communi-
cation, equipped with standard control constructs (e.g. sequencing, conditionals and
loops) and is conceived with potential for type-based and other formal validation. The
underlying intuition behinghoreographycan be summarised as follows.

“Dancers dance following a global scenario without a single point of control.”

WS-CDL is a language for describing such a “global scenario” for business protocols.
The description can then be executed by individual distributed processes without a sin-
gle point of controf Another significant feature of WS-CDL is its use sdssiongor
organizing communication behaviour: at the outset of each unit of a business protocol,
a session is established between each pair of communication parties so that involved
communications can be distinguished from any other instances of business protocols.

Endpoint Projection. A global description of communication behaviour arguably of-
fers conceptual clarity not found in endpoint-based descriptions, partly because a global
interaction flowis often the central objective a communication-based application is in-
tended to realise. Real execution of the description, however, is always through commu-
nication among endpoints which (as the notion of choreography dictates) may as well
involve no centralised control. Thus we ask:

How can we project a global description to endpoint processes so that their
interactions precisely realise the original global description?

Such a projection may be calleshdpoint projection (EPRYhe term originating from
WS-CDL WG.

What are criteria for a good EPP? We naturally desire an EPP wpbedand
completein the sense that all and only globally described behaviour is realised as com-
munications among endpoints. We may regard such an EPP as giving the semantics of
a global description.

An appropriate notion of EPP leads to significant engineering usage of a global
description:

1. (code generation) For a global description with full algorithmic details, we can
create a (perhaps multi-languagemplete distributed applicatidny projecting it
to each of its endpoints.

1 An contrasting idea in web service dschestrationwhere one master component, “conduc-
tor”, directly controls activity of one or more slave components, which is useful in the intra-
organisational applications.

2. (prototype generation) Projection can also be used for generaskgl@eton code
for each endpoint which only contains basic communication behaviour, to be elab-
orated to full code.

3. (conformance) A team of programmers initially agree on a shared global specifica-
tion for interactions among endpoints: duriafjer programming, each programmer
can check if hehis code conforms to the specification by conformance checking
against projection. This scheme also applies to conformance of existing sgirvices
braries to a given scenario.

4. (runtime monitoring, testing and debugging) At runtime, each endpoint can check
if ongoing communications at hieer site conform to the global description by
checking against its projection to that endpoint. The monitoring can also be used
for debugging and testing existing code.

5. (property validation) Various static analyfegical validation can be done for a
global description so that they make sense for each endpoint through EPP.

Many of these ideas come from discussions in WS-CDL working group and are partly

already realised in an open-source reference implementation of WS-CDL [27]. For ex-

ample, runtime monitoring is a basic expected use of WS-CDL with relevance to reg-

ulatory concerns, especially for financial protocols. For all of these uses, EPP should
be built on a clear, precise understanding of semantics of global and local descriptions,
guaranteeing exact match between them.

This Work. The present paper introduces two typed calculi for interaction, one being a
distillation of WS-CDL and another an applied version of #iealculus, and develops

a theory of endpoint projection. Our central contribution is the identification of natu-
ral descriptive principles for global descriptions which induce a type-preserving EPP
that is sound and complete with respect to their operational semantics. There are three
principles:

— Connectedness basic local causality principle.

— Well-threadedness stronger locality principle based on session types [10, 14, 15,
17, 36, 38].

— Coherencea consistency principle for description of each participant in a global
description.

These principles are stipulated incrementally on the basis of well-typedness. They not
only enunciate natural disciplines for well-structured global description, but &leo o
gradually deeper analysis of global descriptions. The EPP has the following shape:

|~ AP I BQ ICR |

wherel is a global descriptiord, B andC areparticipantsto the protocol ané, Q and
R are projections of onto A, B andC respectively. When applied to well-structured
interactions, the mapping thus defined satisfies the following three properties:

— Type preservatiorthe typing is preserved through EPP.
— Soundnessothing but behaviours (reductions)limre in the image of its EPP.
— Completenessaall behaviours irl are in the image of its EPP.

The EPP theory is intended as a theoretical basis of global description languages in-
cluding, but not limited to, WS-CDL. The theory opens a conduit between global de-
scriptions and accumulated studies on process calculi, allowing the exploitation of rich
theories for engineering concerns. A version of EPP theory will be published as an
associated document of WS-CDL 1.0, and will form a part of an open-source imple-
mentation of WS-CDL [27].

Related Works. As far as we know, this work is the first to present the typed calcu-
lus based on global description of communication behaviour, integrated with the the-
ory of endpoint projection. Global methods for describing communication behaviour
have been practiced in severaffdirent engineering scenes in addition to WS-CDL
(for which this work is intended to serve as its theoretical underpinning). Representa-
tive examples include the standard notation for cryptographic protocols [25], message
sequence charts (MSC) [20], and UML sequence diagrams [26]. These notations are in-
tended to ffer a useful aid at the desitppecification stage, and do nafer full-fledged
programming language, lacking in e.g. standard control structur¢sraradue passing.
Petri-nets [37] may also be viewed afaving a global description, though again they
are more useful as a specificatianalytical tool.

DiCons (which stands for “Distributed Consensus”), which is independently con-
ceived and predates WS-CDL, is a notation for global description and programming of
Internet applications introduced and studied by Baeton and others [4]. DiCons chooses
to use programming primitives close to user’s experience in the web, such as web server
invocation, email, and web form filing, rather than general communication primitives.
Its semantics is given by either MSCs or direct operational semantics. DiCons does not
use session types or other channel-based typing. An analogue of the theory of endpoint
projection has not been developed in the context of DiCons.

The present work shares with many recent works its direction towards well-structured
communication-centred programming using types. Pict [30] is the programming lan-
guage based on thecalculus, with rich type disciplines including linear and polymor-
phic types (which come from the studies on types forstkealculus discussed in the
next paragraph). Polyphonidi(5] uses a type discipline for safe and sophisticated ob-
ject synchronisation. Compagnoni, Dezani, Gay, Vasconcelos and others have studied
interplay of session type disciplines witHigirent programming constructs and program
properties [10, 14, 15, 17, 36, 38]. The EPP thedfgrs a passage through which these
studies (all based on endpoint languages and calculi) can be reflected onto global de-
scriptions, as we have demonstrated for session types in the present work. In the context
of session types, the present work extends the session structure with multiple session
names which is useful for having parallel communications inside a session.

Many theories of types for the-calculus are studied. In addition to the study of
session types mentioned above, these include fopigut types [23, 29], linear types
[16, 21], various kinds of behavioural types [3, 6, 7,18, 19, 34, 35, 40] and combination
of behavioural types and model checking for advanced behavioural analysis [31, 32],
to name a few. Among others, behavioural typ&groan advanced analyses for such
phenomena as deadlock freedom. We are currently studying how these advanced type-
based validationon techniques on the basis of the present simple session type discipline

will lead to dfective validation techniques. Again these theories would become appli-
cable to global descritpions through the link established by the EPP theory.

Gordon, Fournet, Bhargavan and Corin studied security-related aspects of web ser-
vices in their series of works (whose origin lies in the security-enhanced pi-calculus
called spi-calculus [2]). In their recent work [8], the authors have implemented part of
WS-Security libraries using a dialect of ML, and have shown how annotated application-
level usage of these security libraries in web services can be analysed with respect to
their security properties by translation into thealculus [9]. The benefits of such a tool
can be reflected onto the global descriptions through the theory of EPP, by applying the
tool to projections.

Laneve and Padovani [22] give a model of orchestrations of web services using an
extensions ofr-calculus to join patterns. They propose a typing system for guaranteeing
a notion of smoothness i.e. a constraint on input join patterns such that their subjects
(channels) are co-located in order to avoid a classical global consensus problem dur-
ing communication. Reflecting the centralised nature of orchestration (cf. footnote 1),
neither a global calculus nor endpoint projection is considered. A bisimulation-based
correspondence between choreography and orchestration in the context of web services
has been studied in [11] by Busi and others, where a notion of state variables is used in
the semantics of the orchestration model. They operationally relate choreographies to
orchestration. Neither strong type systems nor disciplines for end-point projection are
studied in their work.

Outline. Section 2 previews the key technical ideas using concrete examples. Sections
3 and 4 outline the global and endpoint calculi, introducing their static and dynamic
semantics. Section 5 develops the theory of endpoint projection. Section 6 summarises
further results and applications of end-point projection. Section 7 concludes with further
topics. The appendix lists the omitted definitions, additional illustrations and a larger
example. Many examples and the full technical developments of the theory are found
in the full versions [12, 13].

Acknowledgements. The present work is part of ongoing collaboration between W3C
WS-CDL working group and a team safcalculus experts, led by Robin Milner. Its de-
velopment has benefitted from the extensive discussions with WS-CDL working group
members. In particular we thank Steve Ross-Talbot and Gary Brown for our many fas-
cinating (and ongoing) conversations.

2 Preview of Key Technical Ideas

2.1 Buyer-Seller Protocol.

This section gives an outline of key technical ideas. Throughout we consider a simple
business protocol from [33], which we call “Buyer-Seller Protocol”, and its variations.
In the core protocol, the participants involved are a Buyer, a Seller and a Shipper. We
first describe the protocol in the following sequence diagram.

Buyer Seller Shipper

quoteCh

Quote

Accept
Choicd Reject

delivCh
DeliveryDetails

DeliveryDetails

In words, the protocol consists of the following actions.

(1) Buyer asksSeller, through a specified channel, tier a quote (denotegliote) for
buying a specific good;
(2) Seller replies with a quote;
(3) Buyer then answers with either an accept or a reject.
(4) In the case of acceptance,
(4-1) Seller sends the order to ti&hipper;
(4-2) Shipper sends the delivery details back to theller.
(4-3) Seller forwards them tdBuyer: the protocol terminates.
(5) Inthe case of rejectigrthe protocol terminates.

Note the diagram is ambiguous on the branching Actions (4) and (5): the purpose of
such diagrams is toffer an informal overview rather than precise specification. Nev-
ertheless, protocols tend to be complex, with nondeterministic and conditional choices,
loops, timeout and other elements. This motivates a needsghtactic meand.e. a
language, for describing such protocols.

Some of the central elements of such a language (WS-CDL is one example) may be
determined by observing that the whole intention of specifying such protocolsnis to
stantiate it repeatedlyincluding its shared usage (e.g. the Buyer role can be assumed by
any potential and possibly concurrent buyers). This consideration leads to the following
two simple engineering principles.

Service Channel Principle (SCP): Invocation channels (e.g. a channel at whciyer
first communicates t8eller, similarly Seller to Shipper) can be shared and invoked
repeatedly.

Session Principle (SP):A sequence of conversations belonging to a protocol should
not be confused with other concurrent runs of this or other protocols by the par-
ticipants: in other words, each such sequence should form one logical unit of a
conversation, or aession

(SCP) does not preclude a channel is only known to a closed number of participants. It
corresponds to a replicated channel in #healculus, or, more accurately, a replicated

channel which is not prefixed by other input prefixes (such channels are gaifednly
receptivein [34] andserver channelg [6]. (SP) can have complex forms, but a most
basic one is a dyadic one which allows simple and robust type abstraction with tractable
type checking [14, 17, 38F These two principles are central for the whole technical
development in the paper.

2.2 A lLanguage for Global Description of Communication.

The following presents the full description of Buyer-Seller Protocol ingledal cal-
culus whose syntax and semantics we shall formally introduce later.

1. Buyer — Seller : quoteCh(v 9).
2. Seller— Buyer : {Quote, 300, X). {
{Buyer — Seller : s{Accept).
Seller — Shipper : delivCh(vt).
Shipper— Seller : t(DelivDetails, Vjetails,» Xdetails)-
Seller — Buyer : {DelivDetails, Xgetails, Ydetails)> O}
+
{Buyer — Seller : s(Reject). 0}
}

© N AW

Line 1 describes Action (1) in the previous informal description of the protocol. The
quoteCh is aservice channelwhich may be considered as a publicly known URL for a
specific service. The invocation marks the start of a session between the buyer and the
seller: thev-boundsis asession name fresh name that will be used for later commu-
nication in this session. Unlike standard process calculi, the syntax no longer describes
input and output actions separately: the information exchange is directly described.

Line 2 describes Action (2) in the scenar8eller’s reply toBuyer. The session has
already been started and now the two participants communicate using the session name
s. In addition, three factors involve®@uote identifies the particular operation used in
this communication (i.e. request of quote), 300 is the quote sebelsr; x is a variable
located aBuyer where the communicated value will be stored.

Lines 38 describe Action (3), wherBuyer communicates its choice\¢cept or
Reject) to Seller throughs. Two series of actions which follow these choices are com-
bined by+ in Line 7. If Accept is chosenSeller sendsShipper the Buyer’s details
via the service channelelivCh of Shipper, creating a fresh session namgLine 4).
Then in Line 5,Shipper sends back the shipping details througFkinally Seller for-
wards the details tBuyer in Line 6, where the protocol terminates. In LineBjyer
communicatefeject, in which case the protocol immediately terminates.

The code abovefters a precise global description of the informal scenario above,
drawing on BCP) and SP). Sessions fder logical grouping of threads of interactions,

2 In implementations of web services, sessions are implemented using so-c@ltetition
identities (which may be considered as nonces in cryptographic protocols). This and the
channel-based representation usually employed in the study of session types are logically
equivalent, as discussed in [2].

where each thread starts with a procedure-call-like service invocation. This last feature
can be seen more clearly in the following refinement of the code above.

Buyer — Seller : quoteCh(v s).
rec X. {
Seller — Buyer : s{Quote, g, X).
if reasonable(X)@Buyer then
{Buyer — Seller : s{Accept).
Seller — Shipper : delivCh(vt).
Shipper— Seller : t(DelivDetalils, Vgetails, Xdetails)-
Seller — Buyer : (DelivDetails, Xgetails Ydetails)s O}
else
{Buyer — Seller : (Reject). q:=q—-1@Seller. X } }
}

CoNO~WNE

el
P o

Above if Buyer choosesReject, the protocol recurs to Line 3 after decrementing the
quote. In Line 4, we assume a unary predicatesonable(x) evaluated aSeller (“@"
indicates a location, similarly in Line 10). Note the session notation makes it clear that
all Quote-messages fronseller to Buyer in the recursion are done within a single
session. Later in this preview we shall present another example where such session
information plays a crucial role in tractable endpoint projection.

For comparison we present the endpoint counterpart of the first simple global code.
The first is the endpoint code Blyer.

Buyer[QuoteCh(vs). s> Quote(X). {
{ s<1 Accept. s> DeliveryDetails(Vgetai1s). 0} +
{s<Reject. 0} }]

Above Buyer[P] indicates a participant (a named agent) whose behaviour is given by
P. TheSeller’s code is given as:

Seller[! QuoteCh(s). S <1 Quote(300). {
{ s> Accept.

DeliveryCh(vt). t > DeliveryDetails(Xgetails)-
S < DeliveryDetails{Xgetai1s)- 0} +
{Reject. 0} }]

The code ofShipper is similar. Observe endpoint descriptions clearly depict local
communication behaviour. However they do not directly describe how interaction pro-
ceeds globally, which may often be the central concern of the designers and users of a
communication-centred application. The two service chan@eis{eChandDeliverCh
are replicated and ready to receive invocations, followBGH).

As may be seen above, extraction of behaviour from a global description relies on
session information. We illustrate this point further. Consider the following snippet of

global description, whera andb are used to indicate the lack of session information.

Buyer — Seller : a(QuoteReq, pnamd, pnamd).
Seller — Buyer : b(QuoteRes, quotel, quotel).
Buyer — Seller : a(QuoteReq, pname, pname).
Seller — Buyer : b{QuoteRes, quote2, quote). |

Here Buyer requests a quote twice: it may look that the behavioBeltdr is such that
it allows a consecutive quote requests in one go. This ambuity is resolved if we put a
session information:

Buyer — Seller : ch(s){QuoteReq, pnamd, pnamd).
Seller — Buyer : s(QuoteRes, quotel, quotel).
Buyer — Seller : ch(t)(QuoteReq, pname, pname).
Seller — Buyer : t{QuoteRes, quote, quote). |

(1)

(Above we use a construct which combines a session initiation and an in-session com-
munication. This is convenient for practice: our theoretical treatment in the present
paper separates these two for clearer formal presentation, with no loss of generality via
a simple encoding.) Using the session information, we infer:

Ich(s)[{QuoteReq)(pname.5QuoteRes)(quote.P]

Note the endpoint behaviour would have been quiiedént if we represent all request-
replies as belonging to a single session.

2.3 Disciplines for Global Description.

Even if a global flow of interaction is the primary concern of an application designer,
in implementation, a global scenario has to be realised by distributed end-points com-
municating with each other. Thus we need to bridge the world of global description to
endpoint descriptions. Our ultimate aim is to have global descriptions such that their
operational content, or endpoint realisation, is transparent from these descriptions.
Having such a bridge is non-trivial because a global calculus alttessription of
communication behaviour that does not make sense at endphdrttse first such issue,
let us consider the following code snippet for global description:

Buyer — Seller : chy(v s).
Shipper — Depot : chy(vt). 0

Above Shipper is supposed to contaciepot only after Buyer performed a request
to Seller. Implementing such a system demargtspper is notified once the initial
communication is performed, i.e. there is an implicit communication fBetter to
Shipper:

Buyer — Seller : chy(v).
Seller — Shipper : ch(v).
Shipper — Depot : chy(vt). 0

With this insertion, the description is realisable purely through explicitly specified mes-
sage exchanges. The criteria which says each participant acts only as a result of its local
event (such as reception of a message) is calbethectednesdVe shall give its formal
definition in Section 5.

Connectedness is an intuitive idea for well-structured global description. The next
condition is more subtle. Consider the following (connected) interaction:

Buyer — Seller : chy(v s).
Seller — Shipper : chp(vt).
Shipper — Buyer : chg(v u).
Buyer — Seller : s{op, Vv, X). |

Above we assumBuyer offers a service channehs which is useful forShipper. We
claim that this global code (regardless of ensuing interactiok) & unrealisable at
endpoints, at least under the natural type discipline and code organisation.

The first action tells that there is a threadBimyer which invokesSeller. This thread
becomes inactive in the second line. In the third line, a serviahain Buyer is in-
voked. In the final lineBuyer communicates t&eller via a session namgopened in
the first action. So, at the endpoint, we should have the following two chunks of the
code:

chy(vs). <1 op(W).P | !chg(t).Q

The first chunk is for the initial invocation and ensuring receptiommin the same
session, while the second is a servicelat(by (SCP) this channel should be ready to
receive invocations). Note that, By op(v) belonging to a sessias this action cannot
be located undechs. On the other hand, the code $¢ller should be:

I chy(s). chp(vt). t > op(X)
Finally, the code oShipper becomes:
I chy(t). chs(vu).R

We can now have the three endpoint processes get engaged in communications: First,
Buyer invokeschy, thenSeller invokesch, of Shipper: up to here the interaction follows

the original global scenario. However, at this point, the actionop(X) is free to react

with its dual actiors < op(v), beforeShipper invokesSeller’s the other component, the
service athg. Thus the sequencing in the global description can be violated.

The fundamental issue here is that the given global code assumes a false (unrealis-
able) dependency among actions: the last action belongs to a thread which started from
the invocation othy, while the description says it should take place as the direct result
of the third action at a distinct thread which has been opened by the invocatibsn at
If a global description is free from such false dependency, we sawieisthreaded
We shall see in Section 5 that checking well-threadedness is simple and mechanical.

Well-threadedness not only eliminates false dependency but also allows consistent
extraction of threads (i.e. sequences of actions) from a given global code. These threads

10

become the constituents of endpoint processes in EPP. The final well-structuring princi-
ple is concerned with this composition. It is often necessamemethreads to obtain

the final endpoint behaviour of a single servic8onsider the following parallel com-
position:

Buyer — Seller : ch(v). Seller — Buyer : s{opy, € X1). I1 |
Buyer — Seller : ch(vt). Seller— Buyer : t{op;, €, X2). |2

whereop;, # op,. HereBuyer invokesSeller's service athtwice in parallel. Now con-
sider constructing the code for this service at chachethen we need to merge these
two threads into one endpoint behaviour. But the global description is contradictory,
since in one invocation the service reacts vatt, while in another the service reacts
with op,. The description is not self-consistent.

A central issue is that, in a global description, the descriptions of a single endpoint
behaviour (especially a service at a service channel) cacédttered in dferent por-
tions of the codeThus, without these scattered descriptions being consistent with each
other, we cannot merge them into a single behaviour. We call such mergeatuility,
herence coherence is not simply about identity of the behaviour, as in the above case,
since distinct input branches may be described {fedint portions of a global code.
The details are given in Section 5. Coherence can again be checked mechanically.

With coherence as the final well-structuredness condition, we can now project a
global code to endpoint behaviours that precisely realise the original global scenario.

3 The Gobal Calculus

3.1 Syntax

The syntax of the global calculus is given by the following BINF/, .. . denoteterms
of the calculus, also callethteractions Below ch,ch' ... range overservice chan-
nels intuitively denoting the shared channels of (web) servieds; .. range oveses-
sion namesS indicates a vector of session nam@sB, C, . .. range oveparticipants

X, Y,z ... over local variables in each participant; X’,... overterm variables and
e €,...over arithmetic and other first-order expressions.

Il = A->B:ch¥9.l (init)
| A—>B: op, €). | (comm)
| X@A = e | (assign)
RERRP! (par)
| if @A then |4 else |, (ifthenelse)
[11+ 15 (sum)
| (v9) | (new)
| X (recvar)
| uX. | (rec)
|0 (inaction)

3 This merging already takes place in the extraction of code in (1) above, though in a trivial way.

11

Table 1 Reduction Relation for the Global Calculus

- o =o[x@B—V] ocre@Alv

N A S B o905 009D % G ASE Sop. e 0.)= . D)
o =o[x@A— V] ocre@AlvV i=12
CAN — @A =enow@. D Mo TS e n
orFe@A|tt o+ e@A | ff
(G-IeT) (o, if e@Athen I else |,) — (o, 11) (G-IrF) (o, if e@Athen |y else I5) — (o, 1)
(G-hw) T W2 1) (G-Res) — 2 D= 1)

(@, (9 1) = (o7, (V9 1)

(o, I[uX1/X]) —= (o7, I') I=1" (oo) (o, 1)) I"=1"
(o, pX) = (o, I') (G-Srrucr) (o 1) S (o, 17)

(0-’ ll | IZ) - (0—17 l:/|_ | |2)

(G-Rec)

The term (init) denotes a session initiation Ayo B on service channalh with fresh
session channelsdhd continuatior. The interaction (com) is the in-session commu-
nication over a session chanreNote thaty is free and does not birld The operators
| and+ denote respectively parallel and choice operatprs). | is ther-calculus-like
name restriction, binding in 1. (ifthenelse) and (assign) are the standard conditional
and assignmene@A indicatese is located afd). uX. | is recursion, where the variable
X'is bound inl. 0 denotes termination. The free and bound session channels and term
variables are defined in the usual way.

The presented syntax is intended as the minimum one for presenting examples and
for the EPP theory. Section 6 discusses natural additional syntactic constructs.

3.2 Dynamics

The dynamics of the global calculus is given by reduction relation close to that of im-
perative languages. stateo- assigns a value to the variables located at each participant.
We shall writeo@A to denote the portion af local toA, ando[y@A +— V] to denote a
new state which is identical witlr except that” @A(y) is equal tov. The reduction is

the binary relation» generated by the rules in Table 15%(1) — (o”, I’)” says that

| in the stater performs one-step computation and becomegth the new state'.

Rule (Init) is for session initiation: afteA initiates a session witl8 on service
channelch, A and B shares’locally (indicated by bindingv3)), and the next is
unfolded. The initiation channeh will play an important role for typing and the end-
point projection later. (Gm) is a key rule: the expressianis evaluated intos in the
A-portion of the stater and then assigned to the variabldocated atB resulting in
new the stater[x@B +— V]. Note that the same variable (say can be located at
different participants, so that@A(X) ando@B(x) are distinct. Similarly to the session
initiation, the session channelis attached. The rule {8uct) makes use of structural
congruence. The structural congruence relation is the least congruence relatidn

12

Table 2 Typing Rules for Global Calculus

I, ch@B:(a+ | >4-5[B A]:«

(G-Tlnr) I, ch@B:(YarA— B:ch(vd.l >4

I'rl>4-5[ABliaj I'-e@A:0; I'+x@B:0; se{8 jel
I' - A->B:s(op;, & X).| > 4-5[A B]:s < Zi;0pi(6). ai

(G-TCom)

I'v1>4-5[BA:aj I're@A:0; I'rx@B:6; se{f jel
I' + A>B:s(op;, & x).1 > 4-5[B,A]l:s» Zic;0pi(6). ai

(G-TComlinv)

I'-Xx@A:06 Tre@A:6 Trlp>4

(G-TAsa) I'rx:=e@A.|l >4

I'rlid Trlo>4a I're@A:bool Trli>A4 Trly>4a4

(C-TSwM) —F 57,54 (G-Tir) I+ ife@Athen I, else I, > 4
I'tlid, Trly> 4, T'r >4, §s5[AB]:a
G-Th G-TRes1
G — T e ey ¢ V09154 851
I'rl>4, §s5:L I'rl>d, 6L
(G-TRes2) —— =D A% L (G qReg) L 2L 8L
F'r(vs)l >4, §5:L 'r(vs)l >4
I Xidarl>4 I, X:4 well-formed
TRec) — 22 P2 GV,
CTRe) T xoa G e

I well-formed Vi # j. {§)N {5} =0
'+ 00 U §[A, Blend

(G-TZero)

such thaj and+ are commutative monoids and such that it satisfies alpha-conversion
and the rulgvs) 11|, = (vs) (11]12) for s ¢ fn(l>).
Consider, for instance, the interaction

Buyer — Seller : QuoteCh(v s).
Seller — Buyer : {Quote, 30Q x). |’

and let us evaluate it in the stateBy applying rule (kit), we get the paird, (vs) Seller —
Buyer : {Quote, 300, x). 1”). Now, by applying rules (&) and (Gm) together in the
stateo- we get the pair€[x@Buyer — 300], (vs) I').

3.3 Typing

We use a generalisation of session types [17] as the type discipline for the global calcu-
lus. The grammar of types follows.

a = s»opi(f). i | s<iopi(8). ai
| ale | end | utia | t

13

whered, ¢, ... range ovewalue typesa,a’,... aresession typess » Ziopi(6). «;

is a branching input typeat session channe indicating possibilities for receiving
any of the operators fromp; (which are pairwise distinct) with a value of type

s <« Zijopi(). @i, a branching output typeat s, is the exact dual of the above. The
type ay | a; is aparallel composition ofr; and «,, abstracting parallel composition of
two sessions. We takego be commutative and associative, wétld, theinaction type
indicating session termination, being the identity. We demand session chanegls in
and those inx, to be disjoint: this will guarantee a linear use of session channgs.
atype variable while ut.« is arecursive typewhereut binds free occurrences bin

a. In recursive types, we assume each recursion is guarded, iig.qiry is ann-ary
parallel composition of inpybutput types. Recursive types are regarded as regular trees
in the standard way [28].

Note that session channels occur free in session types: this is necessary to allow
multiple session channels to appear in a single session in parallel. Thus, we can faith-
fully capture the behaviour of web services where it is possible to exchafigesdi
data simultaneously, leading to a generalisation of session types in the literature. Let us
show a simple example:

S €4 Quote(int). end | S « Extra(String). end

Here a participant is sending a quote (integers and extra information about the
product ats’ in a single session: without using distinct session channels, two commu-
nications can get confused.

The duality for session types plays the key role to guarantee dyadic interaction [17].
Theco-type or dual, of a, writtena, is given as follows.

s € Zjopi(6). @i = s» Zjopi(6). @i
s» Ziopi(6). @i = s < Zjopi(6). @i
utoa =put.a t=t end = end

For instance, the co-type afi- Quote(int). end is s « Quote(int). end, exchanging
input and output.

Each time a session is initiated via a service channel, session channels are freshly
generated. Thus, the interface of a service should indicate a vector of session names to
be exchanged, in addition to how they are used. This is representestbyiee typein
which concrete instances of session names in a session type are abstracted, gitten: (7
wheresis a vector of pairwise distinct session channels covering all session channels in
a, anda does not contain free type variables). lfinds occurrences of session channels
in §in a, which induces the standard alpha-equality.

A typing judgemenhas the following form:

vl >4

wherer is service typingand4 session typing4 maps session channels to their loca-
tions and session types andocated service channels and recursive variables to service
types and session typing, respectively. The grammar of s¢seiggion typings follow.

14

Below in § A, B] we assumeA = B.
r =0|I, ch@A:(Ha | T, x@A:0|T, X:4
A4 =014, §ABl:a |4, 8L

In a service typing, three forms of assignments are us#@A: (8« says that a service
channelchis located atA and dfers a service interface represented by a service type
(a; x@A: 0 says that a variablelocated atA may store values of typ& finally, X: 4
is for recursion i.e. when the interaction recurs<iathe behaviour will own a session
typing 4.

A session typing uses the primary form of assignmsfAtf B] : @ which says that a
vector of session channetsall belonging to a same session which is betwéeand
B, has the session typewhen seen from the viewpoint & We write 'y, I'; (41, 42)
if there is no overlap between the free variaptasnes inl"y (41) and 'y (4,). The
notationfsc(4) denotes the set of free servisession channels ih

The typing rules are given in Table 2. Rule (G-0MJ states that should contain a
session type; betweenA andB such that its session channels contifthe commu-
nicated valuee is typed in the source) while the variablex is typed in the targets),
with the same typé;. In the conclusion, a branching type should include the operator
op; whose value type ig;. In (G-TCom), the session type in focus is given with the
direction fromAto B, i.e. it abstracts the structure of the interaction in this session from
the viewpoint ofA. While this is consistent, we may also regard it from the receiver
viewpoint (B). Thus we have the symmetric variant (G-h@nv).

Rule (G-TRRr) uses the linearity condition found in [17]. This is done by the oper-
atore whereg A, B] : a € 41 o 4, iff either

1. §[A, B] taq € 41, {§}[A, B] Tap €ds anda = ay | ay;
2. §A, B]: @ € 41 and{§} nfsc(4,) = 0, or its symmetric case;

Note diferent session channels can be used in parallel, while service channels can be
shared by multiple threads of interactions.

Rule (G-Thir) types session initiation. Sineeis'to be abstracted as session chan-
nels belonging to a single session, we demand that thereh@&: (S)« in the typing
environment. Since is directed fromB to A, a designates a session type seen from
B's viewpoint resulting ins[B, A] : @« where bothA and B need be mentioned since a
session is always between two parties. Note the®dB : (S« is also assumed in the
premise sinceh may have already been used elsewhere (as a service channel can be
shared).

In (G-TResl), hiding of session names is introduced after the session initiation so
that they can no longer be abstracted by (Gsi)l « is no longer necessary, so we
replace it with L. Rule (G-TRis2) is used for removing unnecessary hidden session
names one by one: whexis'empty, we take it fi with (G-TRes3).

In Rule (G-TZro) we demand each session type used in the conclusion is a dis-
tinct vector of session channels afids well-formed. A service typé& is well-formed
whenevech@A; : (§)a; € I' (i = 1,2) impliesA; = A; and §;)a: = (5)ae. Moreover,

X@A :6;, X:4i € I'impliesf; = 6, Ay = A, and4; = 4,. Similarly, a session typing
is well-formedwhen for all$;[Aq, Bi]a; and$3[Ay, Bo]as in 4 such thaf3;} N {5} # 0
we haves; = , A = Ay, B; = B, anda; = as.

15

Proposition 1. I' + | > 4 impliesl” and4 are well-formed.

As a simple example, we type the Buyer-Seller interadti@ervice channé&uoteCh
is assigned with service type

(s) s €« Quote(integer). (
s » QuoteAccept(null). s « DeliveryDetails(null). end +
s » QuoteReject(string). end)

Instead, service channekliveryCh has service type
(t) t « DeliveryDetails(string). end

Denoting two types byd)a; and), respectively, we can prov@uoteCh: (S)a;, DeliveryCh:
Baz v | > 0.

The type discipline has also a minimal typing. To formulate minimality, we use the
inclusion ordering<, defined based on simulation as in [15] with the key justifying
rules being:

JcJ Vieda <a
S» Zicjop(6). @i < s» Zicyop(6). af
JcJ Vieda <o

S € Zic0p(6). @i < S <4Zicyop(B).

The relation< is extended pointwise to session typings and service typings. In brief,
a < o indicatese is the result of cutting § some branches from” at zero or more
points. We now observe:

Proposition 2. Letl" + | > 0 for somel'. Then there exist5y such that'y + | and
whenever” + | > @ we havelg < I'".

Theorem 3 (Subject Reduction). Assumd™ + o. Thenl" + | >4 and(o, 1) — (o7, ")
implyl"+ o’ andl” + | > A’ for somed’ such thatfsc(4’) c fsc(4).

4 The End-Point Calculus

4.1 Syntax

The end-point calculus is an applied version of thealculus [24]. The main syntactic
terms areprocesse$P, Q, ...) andnetworkgM, N, ...) and are defined by the following
grammar.
P:= 1ch(®.P | ch(vd.P | s> Zop(%).P;
|S<op(&.P | x:=e P | ifethenPelse P,
|[PeP | PIQ | wP | X | uXc.P | O
N:i= AIP], | NIN | (»9N | €

16

Table 3 Semantics of the End-Point Calculus

Al ch(®.PIP], 1 B[ch(v®.QIQ] — ("9 (Al!ch(d.PIPIP],1B[QIQ 1)

(EP-IntT)

ocrelv

(EP-OoM) S5 Sion ()P [P 1, B[5 0p(@Q1Q I, = ALP; 1P lpowy 1B[QIQ 1,

ocrelv

EP-AssioN
() Al x:=eP|P], = ALP|P Jixy

The first two productions for processes describe terms meant for session initiation and
the following two are for communication. This is in the style of [17], excgph the
second construct (branching input) dotinduce bindersx := e. P assigns a valug

to x in its store and then continues BsThe rest is all standard. Networks are paral-

lel composition of participants. The latter are represented by the Agrfr], which
indicates a participark whose behaviour is given By and whose local state is.

4.2 Reduction

The reduction semantics for the end-point calculus followsntlvalculus. We report
the full definition in [1], but list the three key rules in Table 3.

(EP-hnir) defines the session initiation: two participaktand B will synchronize
starting a session whenever they are executing a serffiee oh(8). P and a request of
servicech(v3). Q respectively. The synchronisation will result into sharing fresh session
namesslocal to A andB. These session names are then used in (&#-€@r commu-
nication. In (EP-Gm), we use assignment to local variables rather than value passing
for correspondence with the global calculus. (ER#) updates the store associated
in each participant.

4.3 Session Types for the End-Point Calculus

As mentioned above, the aim of the end-point calculus is to give a model on which we
can project the global calculus. For this reason we need to define session types [17] as
well. We use the same set of session and service types as the global calculus.

In the end-point calculus, we have the two type judgements

I''tpa P> 4 '+ Mp 4

respectively for processes and networkgéservice typing) and (session typing) above
are given by the following grammar.

I' == 0|, ch@A: (3a | I, ch@A: (da
|, X@A:08|T, X:4
A:=0 | 4,85@A:a | 4,51

17

Table 4 Session Types for Processes in the End-Point Calculus

KcJ ses§ Fl—Xj:Hj Fl—APjDA'g@A:(IJ‘
I F st Zicjopi(%).Pi > 4-5@A: s» 2ickop;(6). a;

(EP-TB)

jedJcK I're:6 I +a P> 4-5@A:0q;
I' Fa S<op(e).P > 4-3@A: s 4 Zixop;(6). ai

(EP-TS)

I' vra P> S@A: «

EPTSRY) @A (9 72 Tch(®.P = 0

I,ch@B:(3a +a P> 4-3@A: a

(EP-TRQ) ——= —
I, ch@B: (9a +a ch(v).P > 4

FiI-APiI>Ai I'i=<Iy A1=<4,

EP-TR
(R) I +p P1|Q2\>A1®A2

As before, we stipulate that, whenever we write &.g9.0 7, there areno free channel-
g/variables shared between two typings. The selected rules for the typing processes are
given in Table 4.

The rule (EP-TRBancH) for input in-session communication involves branching with
distinct operators: the typing can have less branches than the real process, so that the
process is prepared to receive any operator specified in the type. Rule (EPE'S
its dual: the typing can have more branches than the real process, so that the process
invokes with operators at most those specified in types. Combining (EP-TB) and (EP-
TS), an output never tries to invoke a non-existent option in its matching input.

Rule (EP-T&rv) is for typing the inputting side of initialisation. Note we do not
allow those session channels other than the target of initialisation to be present as the
session typing in the premise: this preveinée session channels to be under the repli-
cated input, guaranteeing their linear usage. The typing in the conclusion means (by our
convention) thath or ch does not occur iff". The outputting side of initialisation (rule
(EP-TRq)) is analogous, except that the linearity constraint needs not be specified. We
assume thaf and B are not identical. The fact we allosh@B : (8)a to occur in the
premise means an invocation to a service can be done as many times as needed (as far as
it is type correct). (EP-TR) uses the operatorssando: 4; < 4, means two channels
of the same domain have a dual type each other [17]; and the result of the composition
of the dual types become, which denotes the same channel cannot be composable
further. This operation guarantees a linear use of session channels. The full definition
can be found in [1].

As an example, we type the end-point process of the seller, seen in Section 2. If we
consider the service types); and ¢)a in the previous example in Section 3.3, we
have

QuoteCh:(S)a1, DeliveryCh: (t)a, + Seller[Protocol], > 0

18

Note that, in the end-point types the service chamiveryCh is overlined: this is
because the channel is located at the shipper’s. This is not the case in the global calculus
as we only have a global view of channels. With well-formedness similar to the global
calculus, we have:

Proposition4. I + M > 4 impliesI” and4 are well-formed.

For the end-point calculus, we consider a subtyping relation on session types following
[15]. 4 This relation plays a basic role in our subsequent technical development. The
subtyping is written < B. Intuitively, a1 < a3 indicates thaty; is more gentle, or
dually a5 is less constrained, in behaviour. The subtyping relation is given based on
simulation following [15], whose key justifying rules are:

5 a<p
S» 2ici0p(6). @i < S» Zicyop(6). Bi

which says that if the initial inputfers more options, and if subsequent behaviours are
more gentle, then it is more gentle.

JcJ a <p
S €4 2icy0p(6). ai < S 4 Zicyop(6). Bi

which says that if the initial output has less emissions and if subsequent behaviours
are more gentle then it is more gentle. Note this relationfiedint from the inclusion
ordering< in §3.3.

The following result says that we can always find a representative typing for a given
process, and, moreover, we can do fleaively. Such a type is minimum among all
assignable typings w.r.t. the subtyping relation, so that we call ininémal typingof a
given term. Below and henceforth we write- M for I' + M > 0, similarly forI" - P.

Definition 5 (minimal typing). Letlo v M. We calll'y the minimal service typing of
M whenever for all” such thatl” + | we havel'y < I', wherex is taken pointwise at
each channels.

Proposition 6 (existence of minimal typing). For each typable M, its minimal service
typing 'y exists. Further suclhy is algorithmically calculable from M.

Theorem 7 (subject reduction).If ' + N> 4 and N— N’ thenl" + N’ > 4.

Unlike the global calculus, the untyped end-point calculus can have communication
error. Its absence is guaranteed by the type system. Let Ud $&s acommunication
error when:

M = C[A[st> Ziop;(X)-PilR]+|B[S <1 op(€).Q|S]]

where in both casesp ¢ {op;} andC[] is a reduction context (i.e. a context whose hole

is not under a prefix). That is/ has a communication error when it contains an input
and an output at a common channel which however do not match in operator names. A
basic corollary of Theorem 7 follows.

Corollary 8 (lack of communication error). If I' + Ni>4 and N—* M, then M never
contains a communication error.

4 The direction of the subtyping is converse to (and consistent with) [15].

19

5 The End-Point Projection

This section establishes a formal link from the global calculus to the end-point calcu-
lus: a global description which conforms to the three propertiesnectedness, well-
threadedness and cohererman be mapped to the end-points preserving the three desir-
able propertiestype preservationandsoundnesandcompletenesef the operational
semantics. Throughout we only consider well-typed terms for both the global and end-
point calculi.

5.1 Connectedness

To define connectedness, we need to say which participant initiates an action in a given
interactionl: this participant should be the place where the preceding event happens.
First assume we annotate recursion variable with a participant namgXé.d. etc.

Definition 9 (initiating participants). Given a hiding-free interaction I, itgitiating
participantsdenotedop(l), is inductively given as follows:

(Al ifl €2
def 0 ifl =0
op() = 9 iopa) if | = XA I

tOp(ll) UtOp(lg) ifl =l lhorly+1,

where Z= {if e@A then |, else 1,,A— B:ch(v§).l’, A-B: op, € X). |, X@A =
e l’, XA} . If A e top(l), we say A is amitiating participant ofl.

The mapop(l) generates a set of participants that initiates the first action\6® can
now present the definition of connectedness.

Definition 10 (connectedness)lhe collection otonnected interactionSon is induc-
tively generated as follows.

1. {0, XA} C Con.

2. A—» B:ch(v9).l’,A=B: s(op, & X). 1", uXB. 1” andx@B := e. | are inCon if
I” € Con andtop(l’) = {B}.

3. ife@Athenlielsel,, |1 + 1, andly | I, are inCon if 14, I, € Con and{A} =
top(l1) = top(l2).

Connectedness says that, in communication actions, only the message reception leads to
activity (at the receiving participant), and that such activity should immediately follow
the reception of messages. We note connectedness enjoys a subject reduction property,
shared by well-threadedness and coherence.

5.2 Well-Threadedness

In order to formally introduce the notion of well-threadedness, we need to annotate a
global interaction with threads.

20

Definition 11 (annotated interaction). Annotated interactionglenoted byA, A’, .. .,
are given by the following grammar.

A= At > B?2:ch(v§. A | x@A :=e A | ALl Az
| A" B2 s(op, € Y).A| fXANA | A1 +7 Ay
| if @A™ then A; else A, | X2 0

wherer; € N (calledthread andr; # 7, in the first two lines.

In the abstract syntax tree of the terms in the global calculus, each node is annotated
with threads (given as natural numbers). The notions such as connectedness easily ex-
tend to annotated interactions. The following is an annotated interaction of a previous
example:

Buyer! — Seller? : chy(v s). Seller> — Buyer® : chy(vt).
Buyer® — Seller? : t(op, V1, X).
Seller2—>Buyer1 s 0Pz, Vo,)

Our task now is to find a notion of “consistent annotation” for annotated interactions, so
that causality specified globally can be precisely realisable locally. For this purpose itis
convenient to consider eaghas an inverted abstract syntax tree. Each node bas-a
structorwhich is annotated by either one thread or, if it is initiation or communication,
an ordered pair of threads.

Definition 12. 1. If a node inA is initialisation or communication frorB to C and
is annotated by, 72), thent; (resp.r,) is theactive (resp. passive) thread by B
(resp. by C)f that node. If the node has other constructors, its annotating thread is
both active and passive.
2. Ifanode occurs (resp. directly) above some node, then the forméreisga direct)
predecessoof the latter. Symmetrically we defir{direct) successor

Note if a node is a predecessor of another then the former execution should temporarily
precedes that of the latter. We can now introduce the consistency condition for thread
annotation. Below in (G2) we assume the bound name condition for session names.

Definition 13. An annotated connected interactignis globally consistenbr simply
consistentf the following conditions hold.

(G1) Freshness Condition: For each node ofi, if it starts with initialisation, then its
passive thread should be fresh w.r.t. all of its predecessors (if any).

(G2) Session Consistencylf a node ofA starts with a communication betweBrand
C via (say)sand another node of starts with a communication visor an initial-
isation which opens, then the thread b (resp. byC) of the former node should
coincide with the thread bR (resp. byC) of the latter node.

(G3) Causal Consistency:If a node ofA is the direct successor of another nodelof
then the latter’s active thread should coincide with the former passive thread.

21

(G1) says a fresh thread starts when a service is invol®d) says two distinct in-
teractions in the same session (which are, by typing, always between the same pair of
participants) should be given the same threads w.r.t. each partigi@@says ifA has
an input annotated as a (passive) thread then its immediately following output should
be annotated by the same (but this time active) thread.

Below we sayl has an annotatiomd when removing all annotations frovh coin-
cides withl.

Definition 14 (well-threaded interactions). | is well-threadedwhen it is connected
and has a consistent annotation.

Note well-threadedness implies connectedness (hence well-typedness). In [1], we
give a type discipline accepting all and only well-threaded interactions, from which we
can derive a sound and complete inductive algorithm to check well-threadedness.

5.3 Coherence and End-Point Projection

We now define coherence and then end-point projection. First, we give the notion of
mergeability of threads. In the rest of the papdymed term(in the end-point calculus)

is a typed sequerft +o P > dorI” + M > 4. Moreover, a relation over typed
processes or networks (in the end-point calculusypedif each related pair of typed
terms have the same typing.

Definition 15 (mergeability). Mergeability relation denoted~, is the smallest typed
equivalence over terms up toclosed under all typed contexts and the rule:

VieJNnK P Q VjeJ\K keK\J op; #o0pn
st> 250p;(X;). Pj = s> Zk0pc(X)- Q«

WhenP = Q, we sayP and Q are mergeable

The relation< checks whether two given processes behave without contradicting when
they come to the same course of interactions, i.e. when the same input branch is selected
by the interacting party. Thus the rules above say that we can alffsvetices in input
branches which do not overlap, but we do demand each pair of behaviours with the
same operation to be identical.

Definition 16 (merge operator).L is a partial commutative binary operator on pro-
cesses, such that it is an isomorphism apart fsordic op; (Vi) Pi L S>> Zick op; (Vi) Qi
equal to

Zicankop;(yi). (Pi L Q) + Zieawopi(yi)- Pi +
+ Ziek\30p; (Vi)- Qi

where we assume that every timés applied to two processes, sByandQ, we have
P > Q. When this condition is not satisfied, the operation is undefined.

Definition 17 (thread projection). Let A be consistently annotated. Then the partial
operationTP(A, 7) is defined as follows:

22

— TP(A™ — B : b(r§. A, 7) &'

b(v3). TP(A, 11) if =11
Ib(3). TP(A,1p) if T =15
TP(A, 1) otherwise
— TP(A" —B™ : S(op;, &, X). A,7) &'
S<ope). TP(A,1) ifr=1,
s> opi(X). TP(A,7) if T =15
TP(A, 1) otherwise
— TP(if 6@A" then A, else Ay, 7) &'
if ethen TP(A1,7’) else TP(Ap,) if T =1/

TP(A1,7) U TP(A2, 7) otherwise

— TP{X@ATl =e A1) def

Xx:=eTPUA,T)ifr=17
TP(A, 1) otherwise

- TP{Al ** Ap 1) &

TP(A1, 7)) x TP(A, ') if T =17
TP(A1,7) UTP(A,, 7) otherwise

— TP(u™ XA, A, 1) d:ef,uX. TP(A, 7), TP(XA, 1) def X, TP(0,7) def 0

wherex € {®, |}. If TP(A, 7) is undefined theP(A, 7) =L.

The thread projection already uses the definednessTfe notion of coherence as-
sumes this thread-level mergeability, extending it to inter-thread consistency. As noted
in §2, the need for inter-thread consistency arises because the description of the be-
haviour of a service may as well be scattered over more than one places in a global
description. Since each service chancieuniquely defines a service, we can collect
all threads contributing to its behaviour by taking the passive thread of each session
initialisation atch. Below, givenA, we writet; =4 7, wheneverr; andr, in A belong
to the same service channel.

Definition 18 (coherence) We sayA is coherentf it is consistently annotated (hence
well-threaded) and satisfies:

1. For each thread in A, TP(A, 1) is well-defined.
2. For each pair of threads, 72 in A with 71 =4 75, we haveTP(A, 71) < TP(A, 72).

Proposition 19. Given a well-typed I, it is decidable whether | is coherent (hence con-
nected and well-threaded) or not.

We can now define the endpoint projection.Below we call an interattistriction-
freewhenever it contains no terms of the fofws) I’ as its subterm.

Definition 20 (end-point projection). Let | be a restriction-free and coherent interac-
tion with free session namesafnd letA be one of its consistent annotations. Then the
end point projection ofvs) | undero, denotecEPP((v§) I, o), is given as the following
network.
08) acpariey AL 1Ty || TP(AT) loa
7'€[7]

wherepart(l) denotes the set of participants mentioned.in

23

5.4 Pruning and Main Theorems

Suppose we have an interaction composed by two branches where the first two interac-
tions areBuyer — Seller : ch(v s). Seller — Buyer : s{ack) and then in one branch we
haveBuyer — Seller : 5{go) and in the otheBuyer — Seller : s(stop). We then get that

Buyer andSeller are respectively projected as

ch(vs).s> ack().5 <1 go{) ® ch(vs).st> ack().s <1 stop()
I'ch(s).s < ack().(st> ok() + st stop())

By the dynamics of the choice operator, dropping one branch reducgslies —
Buyer : s{ack). Buyer — Seller : s{go). Its end-point projection is the network:

Buyer| ch(vs).s> ack().5 < go() lo@uyer | @
Seller[! ch(s).s <1 ack().s> go() l,@seller

However the original end-point projection reduces as:

Buyer[ch(vs).s> ack().5 <1 9o() |,@auyer | 3)
Seller[! ch(s).s <1 ack().(s> go() ® s> stop())]-@seller

There is discrepancy between (2) and (3): the formerlbsisone branch, while (3)
keeps it. Notice this lost branch is inessential from the viewpoint of the internal dy-
namics of the configuration: “stop” is hever used the global description obtained from
reduction.

This example shows that a global interaction can lose information during reduction
which is still kept in the corresponding reduction in its EPP, due to persistent behaviour
at service channels. This motivates the introduction of the asymmetric relatwaref
ing that we shall use to state a property of the end-point projection. Below we\Rrite
whenRis an-fold composition of replications.

Definition 21 (pruning). Assumel” +ao P > 4, I, I’ rao Q > 4 and, moreover,
I' +p P > 4is aminimal typing. If further we hav® = Qo|!'Rwherel" + Qg > 4,
I'" +A RandP = Qp, then we writel" ro P<Q > 4 or P < Q for short; and say
prunes Q

The pruningP < Q indicatesP is the result of cutting “unnecessary branches” of
Q, in the light of P's own typing. < is in fact a typed strong bisimulation in the sense
that P < Q means they have precisely the same observable behawrcept for the
visible input actions at pruned inputs, either branches or replicated channklss in
particular it satisfies the following condition.

Lemma 22 (pruning lemma). < is a strong reduction bisimulation in the sense that
it satisfies the following two clauses:

1. fM <N and M— M’ then N— N’ such that M < N’.
2. If M <N and N— N’ then M— M’ such that M < N’.

Further < is transitive.

24

As noted < satisfies a stronger property of being a strong bisimulation w.r.t. typed
transitions under the minimal typing of the l.h.s. processes. We have finally arrived at
the main results of this paper.

Theorem 23 (End-Point Projection). Assume | is coherent. Assume further 1 >4
andl" + o. Then we have:

1. (type preservationf I" + | > 4 is the minimal typing of I, thef + EPP(l,0) > 4’
where’ is the result of replacing each occurrence of type assignmedt say
S@A: a, with§: L. In particular, if ' + | thenI” + EPP(l, o).

2. (soundnessif EPP(I,0) — N then there exists kuch that(o, 1) — (¢, 1) and
EPP(I’,0’) < N.

3. (completenesdj (o, 1) — (07, I’) thenEPP(l, o) — N such thaEPP(l’,o”’) < N.

Proof Outline. For (1), type preservation, we use an auxiliary typing system for anno-

tated interactions that infers a minimal typing for each thread. This per-thread minimal

typing coincides with the minimal typing of the projection of the corresponding thread

in the endpoint calculus. Further the minimal typing of the whole global term is the re-

sult of merging all of its per-thread minimal typings, similarly for the endpoint calculus.
For (2) and (3), consider coherdnt 77;1; and its projection:

M =" Al(PieL] | B Qmlmeml | LR nenore

Above for simplicity we consider only three participants, ignore hiding, and let each
P, etc. be a thread projection (the reasoning is similar in the general case). For (2),
soundness, assumié — M’. By induction there is the corresponding redex.iThe

rest is case analysis of the redex, taking the results of redljoirfig and either a thread

(if it is not interaction) or a pair of threads (if it is). We then collect all threads again
and compare the results. As a simple cﬁéj,—?f x:=e.P| results inP{ with an altered
state, whilel; &' X@A:=e.l/ results inl/ with the same state. The projectionlpfs the
same as the projection gfexcept it losex := e from the corresponding thread, in this
caseP), that is we geP,. For all other cases it is possible the projection can lose some
branches or the whole replicated process, which we equate hi3), completeness, is

by a similar reasoning. For details, see [13]. O

By Corollary 8 and lemma 22, Theorem 23 immediately implies:
Corollary 24.
1. (error freedom)f I' + | and I + o, thenEPP(I, o) has no communication error.
2. (soundnessif EPP(I,o) —" N then there exists' Isuch that(o, 1) =" (¢, I')

andEPP(I’,0”’) < N.
3. (completenesdj (o, 1) =" (¢, I’) thenEPP(l, o) =" N such thaEPP(I’,c’) < N.

25

6 Extensions and Applications of EPP Theory

6.1 Local variable declaration.

We consider extensions and applications of the theory of EPP. First, we augment the
syntax of globalocal calculi with one useful construdgcal variable declaration

newvar X@A :=ein| newvar X:=einP

This construct is indispensable especially for repeatedly invocable behaviours, i.e. those
of services. Suppose a bookseller is invoked by two buyers simultaneously, each asking
a quote for a dterent book. If these two threads share a variable, these two requests
will get confused. The use of local variable declaration can avoid such confusion. The
dynamics and typing of this construct are standard [28]. For endpoint projection, it is
treated just as assignment.

6.2 Intra-Participant Interaction.

In §3.3, we demanded that, in the grammar of service typg, B in §A, B]. This
means well-typed global terms never have an intra-participant interaction. This is a nat-
ural assumption in a business protocol which primarily specifies inter-organisational in-
teractions: however it can be restrictive in other contexts. Under connectedness (whose
definition does not change), we can easily adapt the EPP theory to the inclusion of intra-
participant interactions. First, the typing rules in Table 2, page 13, tdkéS-d ComlInv)

and refines (G-T@wm) so that the typingA, B] : a always reflects the direction of the
interaction just inferred. This allows us to treat the case whandB are equal. The key
change is in well-threadedness. Wher: B, the condition (G2) (session consistency)

in Definition 13 is problematic since we do not know which of the two threads should
be given to which participant. However stipulating the following condition solves this
ambiguity:

Local Causal Consistency: If there is a downward sequence of actions which starts from
an active threadr and ends with an action in whichoccurs for the first time (i.ec
occurs in no intermediate actions in the sequence), then the latiecurs passively.

We also note this condition is @onsequencef (G1-3) in the theory without intra-

participant interaction so that we are not adding any extra constraint to inter-participant
interactions.

6.3 Name Passing.
An extension which is technically significant and practically useful is the introduction

of channel passingChannel passing is often essential in business protocols. As an
example, consider the following refinement of Buyer-Seller Protocol.

26

Buyer wants to buy a hardware fror8eller, but Buyer knows noSeller's ad-
dress on the net, i.e. it does not knSealler's service channel. The only thing
Buyer knows is a service channkardware of a DirectoryService, which will
send back the address ofSeller to Buyer which in turn interacts with that
Seller through the obtained channel.

In such a situationBuyer has no prior knowledge of not only the seller's channel but
also the participant itself. In a global description including its typing, participant names
play a basic role. Can we leave the name of a participant and its channels unknown and
still have a consistent EPP theory? This has been an open problem left in WS-CDL's
current specification (which allows channel passing only for a fixed participant). Below
we restrict our attention to service channel passing, excluding session name passing
(which poses an additional technical issue [17]).

First, at the level of he endpoint calculus, itistes to use the channel passing in
the standara-calculus.

DirectoryService(s).s(y).y(t).P

which describes the initial behaviour Bliyer. Notey is an imperative variable, so that
y(t).P first readsthe content ofy then uses it for communication. The typing rules are
extended accordingly.

In the global calculus, we introduce a syntactic variablecalled aparticipant
placeholderfor denoting anonymous participants. For example we can write:

A->Y:x(v9.l Y=Y :sop, € Y.l
The newly added\ — Y : x(v §). | intuitively says:

A starts a session with session nandesn the service channel stored in x at
the location A.

The participant at which the service ifered is left unknown by placing a placeholder
Y. However this will be instantiated once the variabbkt A is inspected. For example, if
X is evaluated te¢h@B in the store, the interaction takes place ag\irm» B: ch(v §). I.

As an example, we present the buyer-seller-directory scenario discussed above:

Buyer — Directory : hardware(v).
Directory — Buyer : s(sell, hware@amazon.co.uk, X).
(Buyer — Y : x(vS). Y—Buyer : S{OK, data, y) |
Buyer — Directory : s(more, ™, 2).
Directory — Buyer : s(sell, hardware@pcworld.co.uk, X).

Buyer — Y’ : x(vS”). Y — Buyer : s’(OK, data, y))

Note that, depending on the channel sent firectory, Y and Y’ are assigned to
different participants.
The dynamics of the global calculus adds the rule which infers:

(0, A= Y:x(rd.1) - (o, (3 1[B/Y])

27

whenever we have @A(X) = ch@B.
For types, we first extend the basic typasith (5)«a. We then add, with the obvious
extension to the syntax of types:

'+ x@W; : (Ja Crl>A4-8[Wo,W]: a
FI-W]_ﬁW2:X(V§).| > A

Other typing rules can be extended to deal with terms containing the participant variable
Y in the same manner.

Finally, for the EPP theory, we need no change in the notion of connectedness. For
well-threadedness, we first annotate placeholders regardingh e-gY : x(v §). | as
the start of a new thread fof, so we annotate it a8™ — Y™ : x(v§). | with 7
fresh. The definition of well-threadedness remains the same. Coherence however needs
additional consideration. The variabt@A can store dferent channels from fierent
participants. For this purpose we use a typing system which records a possible set of
assignment, in the shap@W, : C whereC is a set of channels which may be instan-
tiated intoC. If some concrete channel is @, the behaviour of that channel becomes
constrained by coherence. This €4t inferred, starting from some fixed set, by adding
ch(as inx@W; : Cu{ch@B}) when we infer, e.giW; — W5 : s(op;, ch@B, x). |, where
W, can be either of participants or placeholders.

Leaving the technical details to [1, 13], we give a flavour of how this extension
works by the end-point projection of the example above. We first consider the annotated
interaction for placeholders.

Buyer! — Y3 : x(v). Y- Buyer! : S(OK, data, y)

In the projection of this thread, we have placed a helhich should be substituted
with the appropriate service channels.

TP(A,3) =! (). § < OK(data)

Thus, checking coherence consists in updating the definition of the furtbtiesads

which induces the thread equivalence classes. But what equivalence classes should
threads 3 and 4 belong to? We can use the prediction of all the possible xataes
assume at runtime, i.eware @amazon.co.uk andhardware @pcworld.co.uk. We have

to make sure that thread 3 belongs to ltbtkeads(A, hware) andthreads(A, hardware).

Then, if we are end-point projecting amazon.co.uk we will substitutehware to _in

both thread projections, and if we are end-point projectiagorld.co.uk we will sub-
stitutehardware instead.

6.4 Conformance.

By relating global descriptions to their local counterpart, the presented theory allows us
to make the best of the rich results from the study of process calculi. One such applica-
tion is conformance checkin@nd its dynamic variant, runtime monitoring), discussed

in Introduction. Our purpose is to have a formal criteria to say the communication be-
hvaiour of a progranf? conforms to a global specificatidn

28

Conformance concerns the possibility of checking whether an existing system tal-
lies with a given specification. In process algebra and concurrency in general, this way
of reasoning usually leads to system relations such as (inverse of) simulation or bisimu-
lation. Given an implemented system, $3ythe idea is to check whethBrconforms to
a well-typed specification in the global calculus. Then, using the end-point projection,
we can generate an end-point network (which is in the same language as the given im-
plemented system). This suggests that we must perform our comparison in the end-point
calculus.

One interesting mechanism to be exploited is the typing system: the end-point pro-
jection generates not only a network consistent with the global specification, but also
a type for the generated network. This can already be used for a first comparison with
the given system: if this does not type, then the given system does not conform to the
specification.

Unfortunately, there are cases where types may reveal as conform, systems which
are not. Our solution is to adopt a notion of typed bisimulati®r?]. Thus, the given
system must be simulated by the specification with its minimal type in order conform
toit.

Let us clarify this with an example in the buyer-seller scenario Re¢ the process

QuoteCh(vs). s> Quote(X).
if (X < 100)then S <1 Accept() else S <1 Reject()
Consider now a system (already implemented) with the following end-point processes
(referred to asystem):
Buyer[P] | Seller[! QuoteCh(s). S <1 Quote(300).
s> (Accept() + Reject() + Restart())]
Suppose we want to check that the system almovdormsto a specification given
in the global calculus. The following specification says that the buyer either accepts or
rejects the quote.
Buyer — Seller : QuoteCh(v s).
Seller — Buyer : 5{Quote, 300 X).
Buyer — Seller : s{Accept) + Buyer — Seller : s(Reject)

We recall the end point projection of the specification above (referred$pes::

Buyer[QuoteCh(vs). s> Quote(X).
(S<tAccept{) dS<tReject())] |
Seller[! QuoteCh(s). S <1 Quote(300.
s> (Accept() + Reject())]

Assuming we have a type for the specification, we can deduce, from the projection,
a, the minimal type foQuoteCh, equal to

S € Quote(int). s» (Accept(null) + Reject(null))

29

Notice thatQuoteCh : (S)a, even though it is not minimal, types the netw@ks-
tem as well (its minimal type is instead obtained by adding an extra option to the
branching corresponding to the operativestart). This observation gives a hint that
System is conform to the specification. In fact, this is true as all the options specified in
the type are mimicked by th&pec (so the specification simulates the implementation).

In order to show that checking only the type is not enough, let us consider another
system, sayBystem2, where the buyer’s behaviour is insteBd P. In this case, the
network is still typed byQuoteCh : (S)a but, because dP occurring twice System?2
is not type-simulated bgpec and then not conform to the specification.

In summary, letl be a global description consisting &fand other participants.
SupposeP is a program which implemengss behaviour. Then we can check the con-
formance ofP against the specificationby projectingl to A, which we callS, and
checkP conforms taS; the relation P conforms toS” can be taken as, for example,
the converse of the weak similarity with respect to typed transitions under the mini-
mal typing ofS (for the formal definition, see [13]). We can use this notion via either
hand-calculation (coinduction), model checking (e.g. mobility workbench), mechanical
syntactic approximation, or as a basis of runtime monitoring.

7 Conclusions

This paper introduced a new formalism based on global description of communication
behaviour, and the corresponding appliedalculus. Both calculi are based on a new
extension of session types, which can handle parallel interaction in one session. A the-
ory of endpoint projection is developed, giving the three well-structuredness conditions
on global descriptions. The sound and complete mapping from them to the correspond-
ing endpoint processes is established.

Global descriptions have been practiced in various engineering contexts for a long
time: the present work is a trial to realise its potential as a general programming method,
centring on type structures for communication and the end-point projection. The EPP
theory needs be further explored for all basic concurrent programming primitives, in-
cluding general sequencing, various mutual exclusion operations, exceptions, timeout
and other useful primitives. While channel passing in our language can encode a syn-
chronisation mechanism, a valuable future topic is its interaction with primitives for
locking primitives and software transaction memory, since the notion of atomicity un-
dergoes a fundamental change when we move to communication-centered program-
ming.

References

1. Online appendix. to be posted later at: hftpww.doc.ic.ac.uk-yoshidadtic.

2. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computatiqri48(1):1-70, Jan. 1999.

3. R. Amadio, G. Boudol, and C. Lhoussaine. The receptive distributed pi-calcul®sod¢nof
the FST-TCS '99volume 1738 of NCS Springer-Verlag, 1999.

30

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28

. J. Baeten, H. van Beek, and S. Mauw. Specifying internet applications with DiCo8#Gn
‘01, pages 576-584, 2001.
. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions forAGM
Trans. Program. Lang. Sys26(5):769—-804, 2004.
. M. Berger, K. Honda, and N. Yoshida. Sequentiality andstfealculus. InProc. TLCA'01
2001.
. M. Berger, K. Honda, and N. Yoshida. Genericity and the pi-calculuBréc. FOSSACS’'Q3
2003.
. K. Bhargavan, C. Fournet, and A. Gordon. Verified reference implementations of
WS-Security protocolsTo appear in WS-FM '062006.
. B. Blanchet. An €icient cryptographic protocol verifier based on Prolog rulesC&FW
pages 82-96, 2001.
E. Bonelli, A. B. Compagnoni, and E. L. Gunter. Correspondence assertions for pro-
cess synchronization in concurrent communicatiodsurnal of Functional Programming
15(2):219-247, 2005.
N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration
conformance for system design. GOORDINATION volume 4038 oL NCS pages 63-81,
2006.
M. Carbone, K. Honda, and N. Yoshida. Theoretical basis of communication-centred concur-
rent programming (part one). httpwww.dcs.gmul.ac.yk-carbonentdlpaper, November
2005.
M. Carbone, K. Honda, and N. Yoshida. Theoretical basis of communication-centred concur-
rent programming (part two). httpwww.dcs.gmul.ac.ykcarbonerycdlpaper, June 2006.
M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session Types for
Object-Oriented Languages. Rroceedings of ECOOP’Q&NCS, 2006.
S. Gay and M. Hole. Subtyping for session types in the pi calcullista Informatica
42(2-3):191-225, Nov. 2005.
K. Honda. Composing processes.Rroceedings of POPL'96ages 344-357, 1996.
K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. EBOP '98 pages 122-138. Springer,
1998.
K. Honda, N. Yoshida, and M. Berger. Control in thecalculus. InProc. Fourth ACM-
SIGPLAN Continuation Workshop (CW’'02004.
A. lgarashi and N. Kobayashi. A generic type system for the pi-calcUlbeoretical Com-
puter Science311(1-3):121-163, 2004.
International Telecommunication Union. Recommendation Z.120: Message sequence chart,
1996.
N. Kobayashi, B. Pierce, and D. Turner. Linear types ar@hlculus. InProceedings of
POPL'96 pages 358-371, 1996.
C. Laneve and L. Padovani. Smooth orchestratorsFoSaCS '06LNCS, pages 32—-46,
2006.
R. Milner. The polyadicr-calculus: A tutorial. InLogic and Algebra of Specification
Springer-Verlag, Heidelberg, 1993.
R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, | anidfibrmation
and Computation100(1):1-40,41-77, Sept. 1992.
R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computersCommun. ACM21(12):993-999, 1978.
OMG. Unified modelling language, version 2.0, 2004.
PI4SOA. httpi/www.pi4soa.org.
. B. C. Pierce.Types and Programming Languagd8IT Press, 2002.

31

29

30.
31
32.
33.
34.
35.
36.

37.

38.

39.

40.

. B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile proceddathematical
Structures in Computer Sciend5):409—-453, Oct. 1996.

B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. In
Proof, Language and Interaction: Essays in Honour of Robin MilhWiiT Press, 2000.

J. Rehof. Lacking. IfPOPL, 2004.

J. Rehof. Lacking. IfPOPL, 2004.

S. Ross-Talbot and T. Fletcher. Ws-cdl primer. Unpublished draft, May 2006.

D. Sangiorgi. Uniform receptive. IF'CALP, 2004.

D. Sangiorgi. Modal theory. IICALP, 2005.

K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system.
In PARLE’94 volume 817 oLNCS pages 398-413, 1994.

W. van der Aalst. Inheritance of interorganizational workflows: How to agree to disagree
without loosing controlAnformation Technology and Management Jouyi24B):195-231,
2002.

V. T. Vasconcelos, A. Ravara, and S. J. Gay. Session types for functional multithreading. In
CONCUR '04 LNCS, pages 497-511, 2004.

W3C WS-CDL Working Group. Web services choreography description language version
1.0. httpf/www.w3.0rgTR/2004WD-ws-cdl-10-2004042/7

N. Yoshida, M. Berger, and K. Honda. Strong Normalisation intf@alculus. InLICS’01,

pages 311-322. IEEE, 2001. The full versiordaurnal of Inf.& Comp., 191 (2004) 145—

202, Elsevier.

32

