
Dependent Session Types for
Evolving Multiparty Communication Topologies

Nobuko Yoshida Pierre-Malo Deniélou Andi Bejleri Raymond Hu
Department of Computing, Imperial College London

Abstract

Many application-level distributed protocols and parallel algorithms
are dynamic in nature: the number of participants, messages or rep-
etitions is only known at run-time, and the communication topology
may be altered during the execution. This paper proposes a depen-
dent type theory for multiparty sessions which can statically guaran-
tee type-safe, deadlock-free multiparty interactions among processes
with dynamically evolving communication topologies. We use the
primitive recursion operator from Gödel’s System T along with de-
pendent product types to express a wide range of topologies where
the structure of the multiparty communications depend on numerical
parameters that are instantiated at run-time. To type individual dis-
tributed processes, a parameterised global type is projected onto a
generic generator which represents a class of all possible end-point
types. Termination of the type-checking algorithm is proved with
the full multiparty session types including recursive types. The ex-
pressiveness of our type theory is demonstrated through non-trivial
programming and verification examples with complex communica-
tion topologies taken from distributed parallel algorithms and Web
services usecases.

1. Introduction
As the momentum around communications-based programming and
software grows, the need for effective frameworks to coordinate the
interactions among distributed peers is pressing. Such coordination
typically structures the interactions, with respect to the sequences in
which messages are transmitted and received, their compositions,
choices and repetitions, to form a larger composite, meaningful
multiparty protocol. An aspect that is particularly challenging is
the fact that most actual communication protocols are dynamic, in
the sense that the number of participants, repetitions within the
interactions and the communication topologies cannot be fixed at
design time; rather, the identities of some participants involved in
a protocol and how they are connected may only be determined at
run-time, and may even change as the protocol progresses.

This paper provides a robust type-based verification methodol-
ogy to statically ensure communication-safe, deadlock-free interac-
tions in dynamic multiparty protocols. Our motivation is to be able
to “program” evolving global specifications as a minimal, tractable
extension from multiparty session types [6, 7, 21, 25]. The diverse
applications that feature such dynamic protocols include parallel al-
gorithms for scientific computing (§ 2.5) to Web services (§ 5.1), as
the examples in this paper shall illustrate.

Let us first consider a simple protocol where participant Alice
sends a message of type nat to participant Bob. To develop the code
for this protocol, we start by specifying the global type as

G1 = Alice→ Bob : 〈nat〉.end

where → signifies the flow of communication and end denotes
protocol termination. With agreement on G1 as a specification for
Alice and Bob, each program can be implemented separately. Then
for type-checking,G1 is projected into local session types: one from
Alice’s point of view, !〈Bob, nat〉 (output to Bob with nat-type),

Sequence topology

n // n-1 // . . . // 0

Πn.(R end

λi.λx.W[i+ 1]→ W[i] : 〈nat〉.x
n)

Figure 1. Simple multiparty network topology

and another from Bob’s point of view, ?〈Alice, nat〉 (input from
Alice with nat-type), against which the respective Alice and Bob
programs are checked to be correct.

The first motivation to extend the above approach is to allow
modular specification of protocols, and programming for an arbi-
trary composition of global types. Consider the global type G2 =
Bob → Carol : 〈nat〉.end. The designer may wish to compose G1

and G2 together to build a larger protocol:

G3 = comp(G1, G2)
= Alice→ Bob : 〈nat〉.Bob→ Carol : 〈nat〉.end

We may also need to iterate the composed protocols n + 1-times, as
in foreach(i : [0..n]){comp(G1, G2)}. These kinds of operations
and constructs for the composition and repetition of interaction units
are standard requirements in e.g. multiparty contracts [30].

In order to support the type-based specification and program-
ming of such idioms, we use the primitive recursion operator R
from Gödel’s System T [18]. The basic system of finite session
types is thus extended to allow primitive recursive formulations of
session type sequences from which dependent product types on nat-
ural numbers can be constructed. The following two reduction rules
from System T are added to global program specifications.

R G λi.λx.G′ 0 −→ G

R G λi.λx.G′ n + 1 −→ G′{n/i}{(R G λi.λx.G′ n)/x}
Now we can define the composition and repetition operators

comp(G1, G2) = R G2 λi.λx.G1{x/end} 1

foreach(i : [0..n]){G} = R end λi.λx.G{x/end} n + 1

where we assume that x does not occur in G1 and G, and that G1

and G terminate with end; the encodings substitute x for end. The
composition operator executes G1 and G2 sequentially, while the
repetition operator above repeats G n + 1-times. These definitions
are classic syntactic sugars in functional programming.

Further, we can bind the number of repetitions n by a dependent
product type to build a global specification procedure, as in

Πj.foreach(i : [0..j]){comp(G1, G2)} (1)

where Πj denotes the dependent binder.
Beyond a variable number of exchanges between a fixed number

of principals, the ability to parameterise participant identities en-
ables the representation of many communication topologies found
in the literature. For example, the simple participant index in W[i]
(the i-th worker) creates a parameterised family of workers, and we
can formulate a growing sequence of session types as depicted in
figure 1: neither the number of participants nor the total number of
message exchanges are fixed before execution.

Here we face a couple of immediate questions:

July 26, 2009 1 2009/7/26

• How expressive is this simple approach? Are we able to we
program the main communication topologies found across the
literature for e.g. parallel algorithms and Web services?
• How can we check program correctness? More concretely, how

can we project a parameterised global type to a local type even
when we do not know the exact shape of the topology yet.

For example, in the sequencing topology of figure 1, if n ≥ 2,
then there are three different roles inhabiting this specification: the
initiator, the n − 2 middle workers, and the last worker, each of
which engages in a distinct communication pattern. The number of
roles is also variable; when n = 1, there is only the initiator and
the last worker; and when n = 0, the session does not involve any
communication.

The integration of dependent types and multiparty session types
enables not only the precise description of the communication topol-
ogy of agents and the scale of their interaction patterns, it offers a
powerful tool by which we can write down a generic generator of
end-point local types and implementations that follows the specified
structure and can be statically type-checked. This means that what-
ever concrete topologies are formed by the generated code at run-
time, the participants are always guaranteed to conform to the stip-
ulated global topology and interaction patterns. The ability to treat
the typed interactions among the arbitrary number of participants as
a single multiparty session also leads to clearer prospects regarding
resource usage by these agents.

Contributions of this work
• A new expressive framework for programming global, distributed

specifications, which can elegantly and concisely describe a wide
range of parametric dynamic communication topologies. This
framework is based on the combination of multiparty session
types and the recursion operator for dependent types originating
from Gödel’s System T , and in which the number of participants,
messages and/or repetitions can vary at run-time (§ 2).
• A projection method from a dependent global type onto a generic

end-point generator which exactly captures the interaction struc-
tures of parameterised end-points and which can generate the
class of all possible end-point types (§ 3.1).
• A dependent typing system that treats the full multiparty ses-

sion types integrated with dependent product types with re-
cursors. The resulting static typing system allows decidable
type-checking and guarantees type-safety and deadlock-freedom
for well-typed multiparty processes in dynamic communication
topologies (§ 3).
• Applications featuring various communication topologies, in-

cluding the complex butterfly network for the parallel Fast
Fourier Transform algorithm (§ 2.5,5.2). We prove their typa-
bility, type-safety and deadlock-freedom. We have additionally
applied our framework to public usecases for Web services [3]
(§ 5.1). We also report preliminary benchmark results to demon-
strate the potential benefits of using parameterised dependent
types on efficiency and optimal resource usage (§ 6).

Detailed definitions and additional materials are found at [1].

2. Types and Processes for Multiparty Communi-
cation Topologies

2.1 Global types
The global types allow the description of the parameterised topolo-
gies and conversation scenarios of a multiparty session as a type sig-
nature. We start by defining their grammar. Our type syntax is based
on the three different formulations: (1) the global types from [7]; (2)
dependent types with primitive recursive combinators based on [26];
and (3) parameterised dependent types from a simplified Dependent
ML (DML) [4, 31].

S ::= bool | nat | .. | 〈G〉 Value type
U ::= S | T Message type
i ::= i | n | i + i′ | i− i′ | i ∗ i′ Indexes
P ::= P ∧ P | i ≤ i′ Propositions
I ::= nat | {i :I | P} Index sorts
P ::= Alice | Bob | Worker | . . . Participants
p ::= p[i] | P Principals
G ::= Global types
| p→ p′ : 〈U〉.G Message
| p→ p′ : {li : Gi}i∈I Branching
| µt.G Recursion
| R G λi :I.λx.G′ Primitive Recursor
| t Recursive type variable
| x Recursor type variable
| Πi :I.G Dependent type
| G i Application
| end End

Figure 2. Global types

R G λi :I.λx.G′ 0 −→ G
R G λi :I.λx.G′ n −→ G′{n− 1/i}{(R G λi :I.λx.G′ n− 1)/x}

(Πi :I.G) n −→ G{n/i}

Figure 3. Type reduction

The grammar of global types (G,G′, ...) is given in figure 2. Pa-
rameterised principals p, p′, q, ... are participant constants (Alice,
Bob, ...) that can be indexed by one or more parameters, e.g. Worker[5][i+
1]. Index i ranges over index variables i, j, n, natural numbers n or
arithmetic operations. A global interaction can be a message ex-
change (p → p′ : 〈U〉.G), where p, p′ denote the sending and re-
ceiving principals, U the payload type of the message and G the
subsequent interaction. Payload types U are either value types S
(which contain base types bool, nat, ... and session channel types
〈G〉), or local types T (which correspond to the behaviour of one of
the session participants and will be explained in § 3) for delegation.
Branching (p → p′ : {li : Gi}i∈I) allows to follow the different
Gi paths in the global interaction. Recursion (µt.G) models infinite
interaction. Type variables (t) are guarded in the standard way, i.e.,
type variables only appear under some prefix [28].

The interesting additions are the primitive recursion operator
R G λi : I.λx.G′ from Gödel’s System T [18] and the dependant
global type Πi : I.G from [26]. Their semantics is given in figure 3.
The primitive recursive operator takes as parameters a global type
G, an index variable i with range I , a type variable for recursion x
and a recursion body G′. When applied to an index i, its semantics
corresponds to the repetition i times of the body G′, with the index
variable i value going down one at each iteration, from n − 1 to
0. The final behaviour is given by G when the index reaches 0.
The dependent type Πi : I.G also has a standard semantics: when
applied to an index i, the index is simply substituted. We assume a
call-by value semantics so that the argument is evaluated first. The
index sorts comprise the natural numbers and subset of index sorts,
which are permitted only with respect of a restricted set of predicates
(P, P′, ..). In our case, these are conjunctions of inequalities. We
often omit I and end.

2.2 Examples of multiparty communication topologies

We present some programming examples of global types that specify
typical network topologies found in classical parallel algorithms
textbooks [23].

Ring topology - figure 4(a) The ring topology features n + 1
workers (named by W) that each have exactly two neighbours: the
worker W[i] communicates with the worker W[i − 1] and W[i + 1]
(1 ≤ i ≤ n − 1), with the exception of W[n] and W[0] who share

July 26, 2009 2 2009/7/26

(a) Ring topology (c) Tree topology (d) Mesh topology

n // n-1 // . . . // 0dd

Πn :I.(R W[0]→ W[n] : 〈nat〉.end

λi.λx.W[i+ 1]→ W[i] : 〈nat〉.x
n)

(b) Multicast
Alice

!!DDDDDDDD

zzttttttttt

((PPPPPPPPPPPPPP

m− (n− 1) . . . m− 1 m

Πn.(R end

λi :I.λx.Alice→ W[m− i] : 〈nat〉.x
n)

0 0

1 1

EE�����
0

YY33333

2 3

EE�����
2

OO

1

OO

0

YY33333

.

Πn.

(R end λi.λx.

(R x λj.λy.

W[i+ 1][j + j + 1]→ W[i][j] : 〈nat〉.
W[i+ 1][j + j]→ W[i][j] : 〈nat〉.y

i ∗ i)
n)

//

��

//

��
. . . //

��//

��

//

��

. . . //

��
:

��

:

��

. . . :

��// // . . . //

Πn.Πm.

(R

(R end λk.λz.W[0][k + 1]→ W[0][k] : 〈nat〉.z m)

λi.λx.

(R (W[i+ 1][0]→ W[i][0] : 〈nat〉.x)

λj.λy.

W[i+ 1][j + 1]→ W[i][j + 1] : 〈nat〉.
W[i+ 1][j + 1]→ W[i+ 1][j] : 〈nat〉.y

m)

n)

Figure 4. Multiparty network topologies

a direct link. This global type example is a slight variation from
the sequence presented in figure 1. The type specifies that the first
message is sent by W[n] to W[n − 1], the last being a message from
W[0] back to W[n]. To ensure no self-ring between W[0] to W[0], we set
I = {n : n ≥ 1}.

Multicast - figure 4(b) The multicast session consists of Alice
sending a message to n workers W. The first message is thus sent
from Alice to W[m− (n− 1)], then to W[m− (n− 2)], until W[m].
To ensure the indices are naturals, we set I = {i : m− i ≥ 0}.

Tree topology - figure 4(c) The session from figure 4(c) represents
the propagation of values over a network of 2n − 1 workers organ-
ised in a binary tree topology. The workers are indexed by two pa-
rameters: the first parameter represents the depth, while the second
reflects its width position. The global type specifies messages con-
verging from the leaves towards the root W[0][0].

Mesh topology - figure 4(d) The session from figure 4(c) describes
communication over a mesh topology. In our two dimensional exam-
ple, each worker has four neighbours, except for the ones located on
the first and last rows and columns. Our session takes two parame-
ters n and m which represent the number of rows and the number of
columns. Then we have two iterators that repeat W[i + 1][j + 1] →
W[i][j+1] : 〈nat〉 and W[i+1][j+1]→ W[i+1][j] : 〈nat〉 for all i and
j. These two messages specify that each worker not situated on the
last row or last column sends a message to his neighbours situated
below and on its right. The types W[i + 1][0] → W[i][0] : 〈nat〉 and
R end λk.λz.W[0][k + 1] → W[0][k] : 〈nat〉.z m deal with, respec-
tively, the last column and the last row. As in the tree example, the
messages converge towards W[0][0]. Variants of this topology include
toric meshes and hypercubes.

2.3 Syntax and semantics

Syntax The syntax of expressions and processes is given in fig-
ure 5, extended from [7]. Identifiers u can be variables x or chan-
nel names a. Values v are either channels a, natural number n
or boolean true, false constants. Expressions e are built out of in-
dices i, values v, variables x and operations over expressions (e =
e′, e and e′, not e, . . .). In processes, session are initiated by a
multicast request ū[p0..pn](y).P that is accepted by the partici-
pants through u[p](y).P . Messages are sent by c!〈p, e〉;P to the

u ::= x | a Identifiers
v ::= a | n | true | false Values
e ::= i | v | x | e op e′ Expressions
P ::= Processes
| ū[p0..pn](y).P Multicast Request
| u[p](y).P Accept
| c!〈p, e〉;P Value sending
| c?〈p, x〉;P Value reception
| c!〈〈p, c′〉〉;P Session delegation
| c?〈〈p, y〉〉;P Session reception
| c⊕ 〈p, l〉;P Selection
| c&〈p, {li : Pi}i∈I〉 Branching
| (νa)P Hiding
| def X(x, y) = P in P Recursive definition
| X〈e, y〉 Process call
| 0 Inaction
| P | Q Parallel
| if e then P else Q Conditional
| R P λi.λX.Q Primitive Recursion
| X Process Variable
| λi.P Abstraction
| (P i) Application
| (νs)P Session restriction
| s:h Queues

c ::= y | s[p] Channels
p̂, q̂ ::= p̂[n] | P Principal values
m ::= (q̂,p̂,v) | (q̂,p̂,s[p̂’]) | (q̂,p̂,l) Messages in transit
h ::= ε |m · h Queues

Figure 5. Syntax for user-defined and run-time processes

participant p and received by c?〈p, x〉;P from the participant q.
Delegation, c!〈〈p, c′〉〉;P , allows the end point of a running ses-
sion to be sent to p. Delegated sessions are received by q using
c?〈〈p, y〉〉;P . Selection, c?〈〈p, y〉〉;P , and branching, c&〈q, {li :
Pi}i∈I〉, allow a participant to choose a branch from those supported
by another. Standard language constructs include restriction (νa)P ,
the local definition of recursive processes def X(x, y) = P in P
and their use X〈e, y〉, parallel composition P | Q, conditionals
if e then P else Q and the null process 0. The primitive recursion
operator R P λi.λX.Q takes as parameters a process P , a function

July 26, 2009 3 2009/7/26

(λi.P) n −→ P{n/i} [Beta]

R P λi.λX.Q 0 −→ P R P λi.λX.Q n + 1 −→ P{n/i}{R P λi.λX.Q n/X} [ZeroR, SuccR]

if true then P else Q −→ P if false then P else Q −→ Q [If-T, If-F]

ā[p̂0..p̂n](y0).P0 | a[p̂1](y1).P1 | ...a[p̂n](yn).Pn −→ (νs)(P0{s[p̂0]/y0} | ... | Pn{s[p̂n]/yn} | s : ∅) [Link]

s[p̂]!〈q̂, v〉;P | s : h −→ P | s : h · (p̂, q̂, v) [Send]

s[p̂]!〈〈q̂, s′[p̂′]〉〉;P | s : h −→ P | s : h · (p̂, q̂, s′[p̂′]) [Deleg]

s[p̂]⊕ 〈q̂, l〉;P | s : h −→ P | s : h · (p̂, q̂, l) [Label]

s[p̂]?(q̂, x);P | s : (q̂, p̂, v) · h −→ P{v/x} | s : h [Recv]

s[p̂]?((q̂, y));P | s : (q̂, p̂, s′[p̂′]) · h −→ P{s′[p̂′]/y} | s : h [Srec]

s[p̂]&(q̂, {li : Pi}i∈I) | s : (q̂, p̂, li0) · h −→ Pi0 | s : h (i0 ∈ I) [Branch]

def X(x, y) = P in (X〈v, c〉 | Q) −→ def X(x, y) = P in (P{v/x}{c/y} | Q) [Def]

P −→ P ′ ⇒ P e −→ P ′ e P −→ P ′ ⇒ (νr)P −→ (νr)P ′ P −→ P ′ ⇒ P | Q −→ P ′ | Q [App,Scop,Par]

P −→ P ′ ⇒ def D in P −→ def D in P ′ P ≡ P ′ and P ′ −→ Q′ and Q ≡ Q′ ⇒ P −→ Q [Defin,Str]

e0 −→ e′0 ⇒ E [e0, . . . , ei] −→ E [e′0, . . . , ei] [Context]

Figure 6. Reduction rules

taking an index parameter i and a recursion variableX . Note the dis-
tinction between X〈e, y〉 (infinite repeat) and X (finite repeat). We
often omit 0 and the participant p from the session primitives. Ses-
sion hiding and the FIFO queue appear only at runtime, as explained
below.

Semantics The semantics is defined by the reduction relation −→
presented in figure 6. Some of the run-time syntax is detailed in
figure 5. The metavariables p̂, q̂, .. range over principal values which
are principals where all indices have been evaluated to integers (such
as W[3][5]). The reduction rules feature β-reduction and recursors.
Note that our β-reduction does not take higher-order values but only
numerals. We omit integer and boolean operations.

The most important rule is [Link], which describes the initia-
tion of a new session among n participants that synchronise over
a service name a. The first participant ā[p0..pn](y0).P0 is distin-
guished by the overbar on the service name. His role is to specify
the set of participants, which would be dynamically determined dur-
ing execution. We use contexts (whose definition we omit) to en-
sure the evaluation of indices before session reductions (such as
a[](y).P) and the evaluation of expressions (e.g. op). For exam-
ple, ā[W[0], W[3 + 1], W[2 + 2]](y0).P0 becomes ā[W[0], W[4]](y0).P0

before [Link] is applied. This facility, in combination with the [Beta]
reduction, makes it possible to determine the participant number of
a multiparty session at runtime (see e.g. the sequence example of
figure 1). After the connection, the participants will share the private
session name s, and the queue associated to s, which is initialised as
empty. The variables yp in each participant p will then be replaced
with the corresponding channel with its name, s[p].

The rest of the session reductions are standard [7, 21]. The output
rules [Send], [Deleg] and [Label] push values, channels and labels,
respectively, into the queue of the session s. The rules [Recv], [Srec]
and [Branch] perform the complementary operations. Note that these
operations check that the sender and receiver match. Processes are
considered modulo structural equivalence, denoted by ≡, whose
definition we omit.

2.4 Processes for multiparty communication topologies

We give the process representation for the communication topolo-
gies from the Introduction (§ 1) and § 2.2. There are various ways to

implement end-point processes from a single global type. We show
one instance for each topology below.

Repetition A concrete definition for the protocol (1) in § 1 is:
Πn.(R end λi.λx.Alice→ Bob : 〈nat〉.Bob→ Carol : 〈nat〉.x n)

Then Alice and Bob can be implemented with recursors as follows
(we abbreviate Alice by a, Bob by b and Carol by c).

Alice(n) = ā[a, b, c](y).(R 0 λi.λX.y!〈b, e[i]〉;X n)

Bob(n) = a[b](y).(R 0 λi.λX.y?(a, z); y!〈c, z〉;X n)

We omit Carol, which is also implemented using a recursor. Alice
repeatedly sends a message e[i] to Bob n-times. Then n can be
bound by λ-abstraction, allowing the user to dynamically assign the
number of the repetitions.

λn.((νa)(Alice(n) | Bob(n) | Carol(n))) 1000

Ring topology - figure 4(a) This topology features three distinct
participant roles: the worker W[n] is the starter of the multiparty
interaction, who sends a value and eventually receives a value from
the last worker W[0]. The rest of the workers first receive a value and
then send a value to the next worker. We give a process that generates
all the participants using a recursor.

R ā[W[n]..W[0]](y).y!〈W[n− 1], v〉; y?(W[0], z);P

a[W[0]](y).y?(W[1], z); y!〈W[n], z〉;Q
λi.λX.(a[W[i]](y).y?(W[i− 1], z); y!〈W[i+ 1], z〉; |X) n

Note that n ≥ 1 is ensured by typing.

Tree topology - figure 4(c) There are the three roles represented in
this protocol – the root, the nodes and the leaves. We give a process
for each of them:

Proot = ā[W[0][0]..W[n][n]](y).y?(x1); y?(x2);P

Pnode[i][j] = a[W[i][j]](y).y?(x1); y?(x2); y!〈x1 + x2〉; 0
Pleaf[j] = a[W[n][j]](y).y!〈zj〉; 0

where we omit the participant annotations from sending and receiv-
ing. Here the processes compute the sum of a number of values that
are known to the leaves. A process P is left abstract to represent
the root’s actions using this sum. We can generate all the processes
using a recursor in a similar way to the previous example.

Mesh - figure 4(d) The mesh example is more complex: when
n and m are bigger than 2, there are 9 distinct roles that each have

July 26, 2009 4 2009/7/26

(a) Butterfly pattern
xk−N/2

$$JJJJJJJJ
// Xk−N/2 = xk−N/2 + xk ∗ ωk−N/2N

xk

::ttttttttt // Xk = xk−N/2 + xk ∗ ωkN

(b) FFT diagram

N =
2n

workers

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

log(N) = n steps
x0 //'&%$!"#0

##FFFFFFF
0 //'&%$!"#0

��444444444444
1 //'&%$!"#0

��))))))))))))))))))))))
2 //'&%$!"#0

X0 //

x4 //'&%$!"#1

;;xxxxxxx //'&%$!"#1

��444444444444 //'&%$!"#1

��))))))))))))))))))))))
//'&%$!"#1

X1 //

x2 //'&%$!"#2

##FFFFFFF //'&%$!"#2

EE����������� //'&%$!"#2

��))))))))))))))))))))))
//'&%$!"#2

X2 //

x6 //'&%$!"#3

;;xxxxxxx //'&%$!"#3

EE����������� //'&%$!"#3

��))))))))))))))))))))))
//'&%$!"#3

X3 //

x1 //'&%$!"#4

##FFFFFFF //'&%$!"#4

��444444444444 //'&%$!"#4

JJ���������������������� //'&%$!"#4
X4 //

x5 //'&%$!"#5

;;xxxxxxx //'&%$!"#5

��444444444444 //'&%$!"#5

JJ���������������������� //'&%$!"#5
X5 //

x3 //'&%$!"#6

##FFFFFFF //'&%$!"#6

EE����������� //'&%$!"#6

JJ���������������������� //'&%$!"#6
X6 //

x7 //'&%$!"#7

;;xxxxxxx //'&%$!"#7

EE����������� //'&%$!"#7

JJ���������������������� //'&%$!"#7
X7 //

(c) Global type
G = Πn.

(R ((R end λl.λx.

(R x λi.λy.

(R y λj.λz.

i ∗ 2n−l + 2n−l−1 + j → i ∗ 2n−l + j : 〈nat〉.

i ∗ 2n−l + j → i ∗ 2n−l + 2n−l−1 + j : 〈nat〉.

i ∗ 2n−l + 2n−l−1 + j → i ∗ 2n−l + 2n−l−1 + j : 〈nat〉.

i ∗ 2n−l + j → i ∗ 2n−l + j : 〈nat〉.z

) 2n−l−1

) 2l

) n)

λk.λu.k → k : 〈nat〉.u)

2n

(d) Processes P (n, p, xp, y) =

y!〈p, xp〉;
(R y?〈p, x〉; 0 λl.λX.

if bitn−l(p) = 0

then y?〈p, x〉; y!〈p + 2n−l−1, x〉; y?〈p + 2n−l−1, z〉; y!〈p, x+ z ω
g(l,p)
N 〉;X

else y?〈p, x〉; y?〈p− 2n−l−1, z〉; y!〈p− 2n−l−1, x〉; y!〈p, z + xω
g(l,p)
N 〉;X)

n

where g(l, p) = p mod 2l

Figure 7. Fast Fourier Transform on a butterfly network topology

a different pattern of communication. We only list (1) the centre
workers W[i][j] (1 ≤ i < n, 1 ≤ j < m) who are connected
in all four directions, and (2) the initiator W[n][m] from the top-
left corner. Below f(i, j) represents the expression computed at the
(i, j)-th element.

Pcentre(i, j) = a[W[i][j]](y).y?(W[i+ 1][j], z1); y?(W[i][j + 1], z2);
y!〈W[i− 1][j], f(i− 1, j)〉;
y!〈W[i][j − 1], f(i, j − 1)〉; 0

Pstart(n,m) = ā[W[0][0]..W[n][m]](y).y!〈W[n− 1][m], f(n− 1,m)〉;
y!〈W[n][m− 1], f(n,m− 1)〉; 0

2.5 The butterfly network for Fast Fourier Transformation

This subsection attests the expressiveness of our global specification
language by describing the Fast Fourier Transform (FFT) algorithm
over a butterfly network. The FFT is one of the most widely used al-
gorithms in computer science and engineering. Its application range
from signal processing to big integer multiplication. It is also easily
parallelisable and fast in the parallel domain.

We start by a quick reminder of the discrete fourier transform
definition, followed by the description of an FFT algorithm that im-
plements it over a butterfly network. We then give the corresponding
global session type. From the diagram in (b) and the session type
from (c), it is finally straightforward to implement the FFT as sim-
ple interacting processes.

The Discrete Fourier Transform The goal of the FFT is to com-
pute the Discrete Fourier Transform (DFT) of a vector of com-
plex numbers. Assume the input consists in N complex numbers
~x = x0, . . . , xN−1 that can be interpreted as the coefficients of a
polynomial f(y) =

PN−1
j=0 xj y

j . The DFT transforms ~x in a vector

~X = X0, . . . , XN−1 defined by

Xk = f(ωkN)

with ωkN = eı
2kπ
N a primitive root of unity. The DFT can be seen as

a polynomial interpolation on the primitive roots of unity or as the
application of the square matrix (ωijN)i,j to the vector ~x.

FFT and the butterfly network We present here the radix-2 variant
of the Cooley-Tukey FFT algorithm [16]. Assuming that N is a
power of 2, this FFT algorithm uses a divide-and-conquer strategy
based on the following equation (we use the fact that ω2k

N = ωkN/2):
Xk =

PN−1
j=0 xj ω

jk
N

=
PN/2−1
j=0 x2j ω

jk
N/2 + ωkN

PN/2−1
j=0 x2j+1 ω

jk
N/2

Each of the two separate sums are DFT of half of the original vector
members, separated into even and odd. Recursive calls can then
divide the input set further based on the value of the next binary
bits. The good complexity of this FFT algorithm comes from the
lower periodicity of ωN/2: we have ωjkN/2 = ω

j(k−N/2)
N/2 and thus

computations of Xk and Xk−N/2 only differ by the multiplicative
factor affecting one of the two recursive calls. Figure 7(a) illustrates
this recursive principle, called butterfly, where two different outputs
can be computed in constant time from the results of the same two
recursive calls.

The complete algorithm is illustrated by the diagram from fig-
ure 7(b). It features the application of the FFT on a network of
N = 23 = 8 machines computing the DFT of vector x0, . . . , x7.
Each row represents a single machine at each step of the algorithm.
Each edge represents a value sent to another machine. The dotted
edges represent the particular messages that a machine sends to it-
self to remember a value for the next step. When reading the diagram

July 26, 2009 5 2009/7/26

T ::= !〈p, U〉;T Output
| ?〈p, U〉;T Input
| ⊕〈p, {li : Ti}i∈I〉 Select.
| &〈p, {li : Ti}i∈I〉 Branch.
| µt.T | t Rec.,Var.

| R T λi :I.λx.T ′ Prim. Rec.
| x Type Var.
| Πi :I.T Dep. Type
| T i Application
| end Null

Figure 8. Local types

from right to left, each step consists in merging the results from half
of the inputs, following in this the butterfly pattern: each machine
is successively involved in a butterfly with a machine whose num-
ber differs by only one bit. Note that the recursive partition over the
value of a different bit at each step requires a particular bit-reversed
ordering of the input vector: the machine number p initially receives
xp where p denotes the bit-reversal of p.

This parallel version of the FFT algorithm gives an excellent
O(N) speedup on a butterfly network of N machines when applied
on a vector of size N . It has also the advantage of being able to
compute the DFT inverse by just changing the multiplication factors
of each butterfly. Finally, this algorithm can be implemented easily
on common network topologies such as the hypercube.

Global Types Figure 7(c) gives the global session type correspond-
ing to the execution of the FFT. The size of the network is specified
by the index parameter n: for a given n, 2n machines compute the
DFT of a vector of size 2n. The first iterator R (. . .) λk.λu.k →
k : 〈nat〉.u concerns the initialisation: each of the machines sends
the xp value to themselves. Then we have an iteration over variable
l for the n successive steps of the algorithm. The iterators over vari-
ables i, j work in a more complex way: at each step, the algorithm
applies the butterfly pattern between pairs of machines whose num-
bers differ by only one bit (at step l, bit number n− l is concerned).
Iterators over variables i and j thus generate all the values of the
other bits: for each l, i ∗ 2n−l + j and i ∗ 2n−l + 2n−l−1 + j range
over all pairs of integers from 2n−1 to 0 that differ on the (n− l)th
bit. The four repeated messages within the loops then correspond
exactly to the four edges of the butterfly pattern.

Processes The processes that are run on each machine to execute
the FFT algorithm are presented in figure 7(d). When p is the ma-
chine number, xp the initial value, and y the session channel, the
machine starts by sending xp to itself: y!〈xp〉;. The main loop cor-
responds to the iteration over the n steps of the algorithm. At step l,
each machine is involved in a butterfly corresponding to bit number
n− l, i.e. whose number differs on the (n− l)th bit. In the process,
we thus distinguish the two cases corresponding to each value of the
(n− l)th bit (test on bitn−l(p)). In the two branches, we receive the
previously computed value y?(x); .., then we send to and receive
from the other machine (of number p + 2n−l−1 or p − 2n−l−1,
i.e. whose (n − l)th bit was flipped). We finally compute the new
value and send it to ourselves: respectively by y!〈x + z ω

g(l,p)
N 〉;X

or y!〈z+xω
g(l,p)
N 〉;X . Note that the two branches do not present the

same order of send and receive as the global session type specifies
that the diagonal up arrow of the butterfly comes first.

We show our static type-checking can guarantee communication-
safety and deadlock-freedom for a whole group ofN -processes over
this complex butterfly topology.

3. Typing Multiparty Communication Topologies
This section introduces the type system, by which we can statically
type dynamically changing communication topologies.

3.1 Local types and end-point projections

The first key challenge is to define a projection from a global type
to the local types of individual participants, whose identities and
numbers might only be known at runtime. The syntax of local types

p→ p′ : 〈U〉.G� q = if q=p=p’ then !〈p, U〉; ?〈p, U〉;G � q
else if q=p then !〈p′, U〉;G � q
else if q=p’ then ?〈p, U〉;G � q
else G� q

p→ p′ : {li : Gi}i∈I� q = if q=p then ⊕〈p′, {li : Gi � q}i∈I〉
else if q=p’ then &〈p, {li : Gi � q}i∈I〉
else ti∈IGi � q

(R G λi :I.λx.G′)� q = R (G � q) λi :I.λx.(G′ � q)
(µt.G)� p = µt.G � p

t� p = t
x� p = x

(Πi :I.G)� p = Πi :I.G � p
(G i)� p = (G� p) i
end � p = end

Figure 9. Projection of global types to local types
is given in figure 8. Output expresses the sending to p of a value
or of a channel of type U , followed by the interactions described
in T . Selection represents the transmission to p of a label li chosen
in {li}i∈I followed by Ti. Input and Branching are their dual. The
other types are similar to their global types counterparts. We use the
following macro encoded by a recursor.

(if i then T1 else T2) = R T1 λi.λx.T2 i

where i and x are not free in T2. true is encoded by 0 and false by
any other integer.

End-point projection: a generic projection The relation between
local and global types is formalised by the projection relation: a
global type can be projected to a local type according to each partic-
ipant’s viewpoint. Since the actual participant characteristics might
only be determined at runtime, we cannot straightforwardly use
the definition from [7, 21]. Instead, we use the power of dependent
types: a generic end-point projection of G onto q, written G � q,
represents the family of all the possible local types that a principal q
can satisfy at run-time. Intuitively, we wish to ensure:

if T is semantically equivalent up to the generic end-point
generator, and if P conforms to T , then P is type-safe.

where semantically equivalent might be the β-equality or some
form of contextual congruence (the equivalence relation is defined
formally in § 3.2).

The general endpoint generator is defined in figure 9 using
if then else (defined above). The projection p→ p′ : 〈U〉.G � q
leads to a case analysis: if the participant q is equal to p, then the
local type of q is an output of type U to p′; if participant q is p′ then
q inputs U from p′; else we skip the prefix. The fourth case corre-
sponds to the possibility for the sender and receiver to be identical.
Projecting the branching global type is similarly defined, but for the
operator t explained below.

Mergeability and injection of branching types We first recall the
example from [21], which explains that naı̈ve branching projection
leads to inconsistent end-point types. The usual projection of the
following global type is undefined.

W[0]→ W[1] : {ok : W[1]→ W[2] : 〈bool〉,
quit : W[1]→ W[2] : 〈nat〉}

When we project this type onto W[2], regardless of the choice made
by W[0], both branches have to behave in the same way, as W[2] is
not aware of the chosen branch. If we change the above nat to bool,
the projection of W[2] would then be defined as ?〈W[2], bool〉; end.
This illustrates the fact that the projection of all branches have to be
identical except for the principals involved (which do not appear in
local types).

In our framework this restriction is too strong since each branch
may contain different dynamic interaction patterns. To solve this

July 26, 2009 6 2009/7/26

problem, we propose two methods called mergeability and injection
of branching types. Formally, the mergeability operator ./ is the
smallest congruence relation over local types such that:1

∀i ∈ (I ∩ J).Ti ./ T
′
j ∀i ∈ (I \ J) ∪ (J \ I).li 6= lj

&〈p, {li : Ti}i∈I〉 ./ &〈p, {lj : T ′j}j∈J 〉

When T1 ./ T2 is defined, we define the injection t as a partial
commutative operator over two local types such that:

&〈p, {li : Ti}i∈I〉 t&〈p, {lj : T ′j}j∈J 〉 =

&〈p, {li : Ti t T ′i}i∈I∩J ∪ {li : Ti}i∈I\J ∪ {lj : T ′j}j∈J\I〉

and monomorphic for other types (T t T = T).
The mergeability relation states that two local types are identical

up to their branching types where branches with distinct labels are
allowed to be different. By this extended condition, if we modify
our previous global type example to add ok and quit labels to notify
W[2], we get:

W[0]→ W[1] : {ok : W[1]→ W[2] : {ok : W[1]→ W[2]〈bool〉 },
quit : W[1]→ W[2] : {quit : W[1]→ W[2]〈nat〉}}}

Then W[2] can have the local type &〈W[1], {ok : 〈W[1], bool〉, quit :
〈W[1], nat〉}〉. This local type cannot be generated by the original
projection rule in [7, 21]. This projection is sound up to the branch-
ing subtyping (cf. Lemma 4.2).

3.2 Type system

This subsection introduces the type system. Because free indices
appear both in terms (e.g. participants in session initialisation) and
in types, the formal definition of what constitutes a valid term and
a valid type are interdependent and both in turn require a careful
definition of a valid global type.

Judgements and environments One of the main differences with
previous session type systems is that session environments ∆ can
now be applied to indices and can contain dependent process types.
The grammar of environments and process types are given below.

∆ ::= ∅ |∆, c:T
Γ ::= ∅ | Γ, u : S | Γ,X : S T | Γ, i : I | Γ, P | Γ, X : τ
τ ::= ∆ | Πi :I.τ | τ i κ ::= Type | Πi :I.κ

∆ is the session environments which associates channels to session
types. Γ is the standard environment which associates variables to
sort types, service names to global types, process variables to pairs of
sort types and session types, indices to index sets, predicates to index
variables and term variables to session types. τ is the process type
which is either session environment, dependent type or application
with indices. κ denotes kinding which includes the kind of proper
types or the kind of type families. We write Γ, u : S only if
u 6∈ dom(Γ) where dom(Γ) denotes the domain of Γ. We use the
same convention for other variables.

Following [31], in the typing rules, we assume given two seman-
tically defined judgements:

Γ |= P predicate P is a consequence of Γ
Γ |= i : I i : I follows from the assumptions of Γ

Our type system uses the judgements listed in figure 10. We write
Γ ` J for arbitrary judgements and write Γ ` J, J ′ to stand for both
Γ ` J and Γ ` J ′. In addition, we use two additional judgements for
the runtime systems (one for queues and one for runtime processes)
which are identical with those in [7]; they are not the main focus of
this paper, hence are omitted. The full rules are listed in [1].

Kindings As usual, a term i in the index syntax is well-formed
in Γ if the set of free index variables in i is a subset of the set of
the index variables in Γ. For contexts, we assume that no variable is

1 The idea of meargeablity is introduced informally in the tutorial paper [13];
this paper states the formal properties and proofs.

Γ ` Env well-formed environments
Γ ` κ well-formed kindings
Γ ` α I κ well-formed types
Γ ` α ≡ β type equivalence
Γ ` α ≈ β type isomorphism
Γ ` eB U expression
Γ ` pB Up participant with Up ::= nat | Πi :I.Up
Γ ` P B τ processes

Figure 10. Judgements (α, β, ... range over any local or global type)
bound more than once and that the free index variables appearing in
i : I and P are declared earlier in the context. In figure 11, we only
list kinding rules for global types. Other rules are similarly defined
including those for process types (noting ∆ is a well-formed envi-
ronment if it only contains types T of kind Type).

Γ ` pB nat, p′ B nat Γ ` G′ I Type

Γ ` U I Type ftv(U) = ∅
bKIOc

Γ ` p→ p′ : 〈U〉.G′ I Type

Γ ` pB nat, p′ B nat ∀i ∈ I, Γ ` Gi I Type
bKBRAc

Γ ` p→ p′ : {li : Gi}i∈I I Type

Γ ` G I Type
bKRECc

Γ ` µt.G I Type

Γ ` Env
bKTVARc

Γ ` t I Type

Γ ` G I κ{0/j} Γ, i : I− ` G′ I Type
bKRCRc

Γ ` R G λi :I−.λx.G′ I Πj :I.κ

Γ ` Env
bKVARc

Γ ` x I Type

Γ ` Env
bKENDc

Γ ` end I Type

Γ, i : I ` G I κ
bKPIc

Γ ` Πi :I.G I Πi :I.κ

Γ ` G I Πi :I.κ Γ |= i : I
bKAPPc

Γ ` G i I κ{i/i}

Figure 11. Kinding rules for global types
Rule bKIOc states that if both participants have nat-type, that the
carried type U and the rest of the global typeG′ are kinded by Type,
and that U does not contain any free type variables, then the result-
ing type is well-formed. This prevents these types from being depen-
dent. The rule bKBRAc is similar, while rules bKREC,KTVARc are
standard. Dependent types are introduced when kinding recursors in
bKRCRc and abstractions in bKPIc. In bKRCRc, we need an updated
index range for i in the premise Γ, i : I− ` G′ I Type since the
index substitution uses the predecessor of i. We define I− using the
abbreviation [0..j] = {i :nat | i ≤ j}:

[0..0]− = ∅ and [0..i]− = [0..i− 1]
We use bKAPPc for both index applications. Note that bKAPPc
checks weather the argument i satisfies the index set I .

Type equivalence Since our types include dependent types and
recursors, we need a notion of type equivalence. In order to keep
type-checking decidable, we treat dependent types and recursors by
β-reductions, and separately recursive types by isomorphism: (1) we
reduce the two types G1 and G2 to their weak head normal forms
and check whether they are equal or not, whnf(G1) ≡wf whnf(G2)
(we extend the standard method [4, §2] with the recursor); and (2) we
reduce them to their normal forms and check they are isomorphic.
Formally, we add the following rules for the global type equality
(similarly for other types including the process type). We write ≡
for ≡◦ or ≡�.

Γ ` whnf(G1) ≡wf whnf(G2)

Γ ` G′1 ≡◦ G′2

Γ ` nf(G1) ≈ nf(G2)

Γ ` G′1 ≡� G′2

July 26, 2009 7 2009/7/26

Γ ` Env
bTNATc

Γ ` nB nat

Γ ` Up
bTIDc

Γ ` AliceB Up

Γ ` pBΠi :I.Up Γ |= i :I
bTPc

Γ ` p[i]B Up{i/i}

Γ, i : I−, X : τ{i/j} ` QB τ{i+ 1/j}

Γ ` P B τ{0/j} Γ ` Πj :I.τ I Πj :I.κ
bTPRECc

Γ ` R P λi.λX.QBΠj :I.τ

Γ ` P B τ Γ ` τ ≡ τ ′
bTEQc

Γ ` P B τ ′

Γ, X : τ ` Env
bTVARc

Γ, X : τ ` X B τ

Γ, i : I ` τ
bTFUNc

Γ ` λi.P BΠi :I.τ

Γ ` P BΠi :I.τ Γ |= i ∈ I
bTAPPc

Γ ` P iB τ{i/i}

Figure 12. Process typing (Part 1)

Typing Processes (Index and Recursion) This paragraph and the
next explain a selection of typing rules for processes. We start by the
rules presented in figure 12. Rule bTNATc and bTVARc are standard.
For participants, we check their typing by bTPc and bTIDc in a
similar way as [31]. For the same reason as in bKRCRc, bTPRCRc
needs to deal with the changed index range within the recursion
body. More precisely, we first check τ ’s kind. Then we verify as
the base case (j = 0) that P has type τ{0/j}. Last, we check the
more complex inductive case: Q should have type τ{i+ 1/j} under
the environment Γ, i:I−, X:τ{i/j} where τ{i/j} of X means that
X satisfies the predecessor’s (induction hypothesis) type. Note that
i’s range is I− since i is assigned to the argument’s predecessor. The
rule bTEQc states that typing works up to type equivalence (defined
in the previous paragraph). Rules bTFUNc and bTAPPc correspond
to introduction and elimination rules for the dependent types.

Γ ` u : 〈G〉 Γ ` P B∆, y : G � p0

Γ ` pi B nat Γ |= pid(G) = {p0..pn}
bTREQc

Γ ` ū[p0..pn](y).P B∆

Γ ` u : 〈G〉 Γ ` P B∆, y : G � p

Γ ` pB nat Γ |= p ∈ pid(G)
bTACCc

Γ ` u[p](y).P B∆

Γ ` eB S Γ ` P B∆, c : T
bTOUTc

Γ ` c!〈p, e〉;P B∆, c :!〈p, S〉;T

Γ, x : S ` P B∆, c : T
bTINc

Γ ` c?〈p, x〉;P B∆, c :?〈p, S〉;T

Γ, a : U ` P B∆
bTNUc

Γ ` (νa)P B∆

Γ ` P B∆ Γ ` QB∆′

bTPARc
Γ ` P |QB∆,∆′

Figure 13. Process typing (Part 2)

Typing Processes (Communication) We explain here the commu-
nication part of the typing rules (figure 13). One of the benefits of our
approach is that no modification is needed for most of the commu-
nication rules since indices are only instantiated by λ-application,
but not by communication. The accept and request rules (dealing
with session initiation) must be however modified as their partici-
pant arguments (e.g. i in W[i]) or even the number of participants
(e.g. {p0, .., pn} in ū[p0..pn](y).P) are not statically known.
bTREQc types a session request on shared name u, binding

channel y and requiring participants p0..pn. The premise verify that

the type of y is the first projection of the global type G of u and
that the participants in G (denoted by pid(G)) can be semantically
derived as {p0..pn}. Note that the position of p0 is fixed, but others
can be viewed as a set that can be altered by its evaluation.
bTACCc allows to type the p-th participant to the session initiated

on u. The typing rule checks that the type of y is the p-th projection
of the global type G of u. Note that not only the participant’s name,
but also G itself can contain the free index, permitting the number
of repetitions or the total number of participants to be variable. The
kind rule for Γ ` Env (in [1]) ensures that G is not a dependent type
(i.e. G′’s kind is Type).

Rule bTPARc puts in parallel two processes only if their sessions
environments have disjoint domains. Other rules are standard. We
especially omit inaction, branching/selection, delegation, recursion,
its variable introduction rule and the expression typing rules. The
typing rules for queues are identical with those in [7, 21].

3.3 Typing multiparty communication topologies

We type the process representation for communication topologies
from Introduction and § 2.2.

Repeated protocols this example illustrates the use of recursors to
express a varying number of repetitions. Let the type in (1) in the
introduction as Πn.G(n). We type Alice. Following the projection
rule in figure 9, the projection of (Πn.G(n))n ≡ G(n) to Alice is:

G(n) � Alice = (R end λi.λx.!〈Bob, nat〉; x n)

Let ∆(n) = {y : (R end λi.λx.!〈Bob, nat〉; x n)} and Γ = n :
nat, a : 〈G〉. First we note Γ ` Πj : I.∆(j) I Πj : I.Type
by renaming with I = [0..n + 1]. For the base case, we have:
Γ ` 0 B y : end by bTNULLc (in [1]). For the inductive case,
first we derive, by bTVARc, Γ, i : I−, X : ∆(i) ` X B∆(i). From
this judgement, using bTOUTc, we have:

Γ, i : I−, X : ∆(i) ` y!〈Bob, e[i]〉;X B∆(i+ 1)

From bTPRECc and bTAPPc, Γ ` R 0 λi.λX.y!〈Bob, e[i]〉;X nB
∆(n). Now we can apply bTREQc to obtain Γ ` Alice(n) B ∅.
Similarly for Bob(n) and Carol(n). Finally we can compose by
bPARc, n : nat, a : 〈G〉 ` Alice(n) | Bob(n) | Carol(n) B ∅.
Applying bTNUc and bTFUNc, we have:

∅ ` λn.(νa)(Alice(n) | Bob(n) | Carol(n))BΠn : nat.∅

Ring topology - figure 4(a) The highlight of this example is a type-
equality between the general end-point generator and a role-based
local type (called role-types). The role-type groups the participants
who inhabit in the same parameterised protocol as a single role. We
observe the ring topology consists of the three roles (when n ≥ 1):
one is the starter W[n] who sends the message first and receives the
final message from the final worker W[0], and others are the middle
workers who receive a data and send back to the next worker. The
transformation starts from the general generator of this topology
given below.

R (W[0]→ W[n] : 〈nat〉.end) � p
λi.λx.if p = W[i+ 1] then !〈W[i], nat〉; x

elseif p = W[i] then ?〈W[i+ 1], nat〉; x
elseif x n

First we note the kinding rules bKRCRc and bKAPPc ensure n ≥ 1.
From the figure 4(a), the user would design the local type as follows:

if p = W[n] then !〈W[n− 1], nat〉; ?〈W[0], nat〉;
elseif p = W[0] then ?〈W[1], nat〉;!〈W[n], nat〉;
elseif 1 ≤ i ≤ n− 1 and p = W[i]

then ?〈W[i+ 1], nat〉;!〈W[i− 1], nat〉;
The first case denotes the protocol of the initiator; the second

one corresponds to the last worker, while the third one to one of
the middle workers. The type equality is easily proved by the case
analysis by the induction of the recursor. From these types, the ring

July 26, 2009 8 2009/7/26

processes are straightforwardly implemented and typable using R:
the whole process has type ∆ where ∆ is types for the free sessions
of the initiator and the last worker (note the i-th process under
the recursion should contain no free sessions). We also discuss an
algorithm for the automatic generation of role-types in § 6.

4. Properties of the Typing System

4.1 Basic properties

We prove here a series of consistency lemmas concerning permuta-
tions and weakening. We start with the substitution lemma.

LEMMA 4.1 (Substitution Lemma). 1. If Γ, i : I,Γ′ ` J and Γ |=
n : I , then Γ, (Γ′{n/i}) ` J{n/i}.

2. If Γ, X : ∆0 ` P . τ and Γ ` Q : ∆0, then Γ ` P{Q/X} . τ .
3. If Γ, x : S ` P .∆ and Γ ` v : S, then Γ ` P{v/x} .∆.
4. If Γ ` P .∆, y : T , then Γ ` P{s[p̂]/y} .∆, s[p̂] : T .

Note that substitutions may change session types and environments
in the index case. The application of (1) to process judgements is
especially useful for the Subject Reduction Theorem: if Γ, i : I,Γ′ `
P . τ and Γ ` n . nat with Γ |= n : I , then Γ, (Γ′{n/i}) `
P{n/i} . τ{n/i}.

We also use the following lemma for the branching local types
whose projections are extended by the mergeability operator ./.
Below, ≤ denotes the standard branching subtyping [17, 21] defined
by the selection rule (if ∀i ∈ I ⊆ J.Γ ` Ti ≤ T ′i , then Γ `
⊕〈p, {li : Ti}i∈I〉 ≤ ⊕〈p, {lj : T ′j}j∈J〉) and the dual branching
rule.

LEMMA 4.2 (Soundness of mergeability). Suppose G1 � p ./
G2 � p and Γ ` Gi. Then there exists G such that G � p =
u{T | T ≤ Gi � p (i = 1, 2)} where u denotes the maximum
element with respect to ≤.

This lemma states that mergeability is sound with respect to the
branching subtyping — we can safely replace the third clause
ti∈IGi � q of the branching in figure 9 by u{T | ∀i ∈ I.T ≤
(Gi � q)}. This lemma allows us to prove subject reduction by in-
cluding the subsumption in the runtime typing system as done in
[21, § 5].

Ensuring termination of type-checking with dependent types is
not an easy task since the type equivalences are often defined from
term equivalences. To prove the termination, we first note that by
strong normalisation of System T [18], and the definition of −→,
the relation −→ on global and local types (i.e. G −→ G′ and
T −→ T ′) are strong normalising and confluent on well-formed
kindings. Secondly we note that we do not require to prove the
termination of process reduction since term equivalence is not used
in our typing rules (cf. [31]). Then the termination of the type
equivalence checking is proved by the termination of β-equality (by
recursors and dependent type reductions) and isomorphism checking
(proved decidable in the literature [17]). Below we assume the bound
names and variables in P are annotated (e.g. (νa :〈G〉)P) following
the standard manner [21].

PROPOSITION 4.3 (Termination for Type-Checking). Assuming that
proving the judgements Γ |= J appearing in kinding, equality, pro-
jection and typing derivations is decidable (e.g. in bKPROJc), then
type-checking of Γ ` P B ∅ terminates.

To ensure the termination of Γ |= J , several solutions include the
restriction of predicates to linear equalities over the natural numbers
without multiplications (or to other decidable arithmetic subsets) or
the restriction of indices to finite domains, cf. [31].

4.2 Subject reduction
As session environments record channel states, they evolve when
communications proceed. This can be formalised by introducing a
notion of session environments reduction. These rules are formalised
below modulo ≡.
• {s[p̂] :!〈q̂, U〉;T, s[q̂] :?〈p̂, U〉;T ′} ⇒ {s[p̂] : T, s[q̂] : T ′}
• {s[p̂] : T ;⊕〈q̂, {li : Ti}i∈I〉} ⇒ {s[p̂] : T ;⊕〈q̂, li〉;Ti}
• {s[p̂] : ⊕〈q̂, lj〉;T, s[q̂] : &(p, {li : Ti}i∈I)} ⇒ {s[p̂] : T, s[q̂] : Tj}
• ∆ ∪∆′′ ⇒ ∆′ ∪∆′′ if ∆ ⇒ ∆′.

The first rule corresponds to the reception of a value or channel
by the participant q̂; the second rule treats the case of the choice of
label lj while the third rule propagate these choices to the receiver
(participant q̂). Using the above notion we can state type preserva-
tion under reductions as follows:

THEOREM 4.4 (Subject Congruence and Reduction).
• If Γ ` P .∆ and P ≡ P ′, then Γ ` P ′ .∆.
• If Γ ` P . τ and P −→∗ P ′, then Γ ` P ′ . τ ′ for some τ ′ such

that τ ⇒∗ τ ′.
Note that communication safety [21, Theorem 5.5] and session
fidelity [21, Corollary 5.6] are corollaries of the above theorem.
Progress [21, Theorem 5.6] can be also obtained by a similar method
as the one found in [21].

Proof. We list only the most interesting cases for recursor, which
uses mathematical induction in addition to induction on the deriva-
tion. Case ZeroR: Trivial.
Case SuccR: Suppose Γ ` R P λi.λX.Q n + 1 . τ and
R P λi.λX.Q n + 1 −→ P{n/i}{R P λi.λX.Q n/X}. Then
there exists τ ′ such that

Γ, i : I−, X : τ{i/j} ` QB τ ′{i+ 1/j} (2)
Γ ` P . τ ′{0/i} (3)

Γ ` Πj :I.τ I Πj :I.κ (4)

with τ ≡ (Πi : I.τ ′)n + 1 ≡ τ ′{n + 1/i} and Γ|=n + 1 : I . By
Substitution Lemma (Lemma 4.1 (1)), noting Γ|=n : I−, we have:
Γ, X : τ{i/j}{n/i} ` Q{n/i}B τ ′{i+ 1/j}{n/i}, which means
that

Γ, X : τ{n/j} ` Q{n/i}B τ ′{n + 1/j} (5)

Then there are two cases.
Base Case n = 0: By applying Substitution Lemma (Lemma 4.1
(2)) to (5) with (3), we have Γ ` Q{1/i}{P/X}B τ ′{1/j}.
Inductive Case n ≥ 1: By the inductive hypothesis on n, we as-
sume: Γ ` R P λi.λX.Q n . τ ′{n/j}. Then by applying Substi-
tution Lemma (Lemma 4.1) to (5) with this hypothesis, we obtain
Γ ` Q{n/i}{R P λi.λX.Q n/X}B τ ′{n + 1/j}.
The proof of the communication rules uses the subtyping relation
and the Substitution Lemma (4.1 (3), (4)), together with the subtyp-
ing rule for the extended mergeability (Lemma 4.2). �

5. Web Service Choreography and FFT
This section demonstrates the expressiveness of our type theory. We
first program and type a real-world Web service usecase: Quote Re-
quest (C-U-002) is the most complex scenario described in [3], the
public document authored by the W3C Choreography Description
Language Working Group [30]. We then conclude by typing our im-
plementation of the FFT algorithm and prove its correctness.

5.1 Choreography of Interactions in Web Services

Quote Request usecase The usecase is described below (as pub-
lished in [3]). A buyer interacts with multiple suppliers who in turn

July 26, 2009 9 2009/7/26

Supp[0] oo //
hh

((QQQQQQ
Manu[0] ≡ Manu[0][0]

Buyer oo //
ww

77nnnnnn

ff

&&NNNNNNN Supp[1] gg

''OOOOOOO
Manu[1] ≡ Manu[0][1]

Manu[2][1]

Supp[2] oo //
ww

77ooooooo
Manu[2] ≡ Manu[1][2]

Manu[2][2]
: :

Figure 14. The Quote Request usecase (C-U-002) [3]

interact with multiple manufacturers in order to obtain quotes for
some goods or services. The steps of the interaction are:

1. A buyer requests a quote from a set of suppliers. All suppliers
receive the request for quote and send requests for a bill of
material items to their respective manufacturers.

2. The suppliers interact with their manufacturers to build their
quotes for the buyer. The eventual quote is sent back to the buyer.

3. EITHER

(a) The buyer agrees with one or more of the quotes and places
the order or orders. OR

(b) The buyer responds to one or more of the quotes by modify-
ing and sending them back to the relevant suppliers.

4. EITHER

(a) The suppliers respond to a modified quote by agreeing to it
and sending a confirmation message back to the buyer. OR

(b) The supplier responds by modifying the quote and sending it
back to the buyer and the buyer goes back to STEP 3. OR

(c) The supplier responds to the buyer rejecting the modified
quote. OR

(d) The quotes from the manufacturers need to be renegotiated
by the supplier. Go to STEP 2.

The usecase, depicted in figure 14, may seem simple, but it contains
many challenges. The Requirements in Section 3.1.2.2 of [3] in-
clude: [R1] the ability to repeat the same set of interactions between
different parties using a single definition and to compose them; [R2]
the number of participants may be bounded at design time or at run-
time; and [R3] the ability to reference a global description from
within a global description to support recursive behaviour as de-
noted in STEP 4(b, d). The following works through a parameterised
global type specification that satisfies these requirements.

Modular programming using global types We develop the spec-
ification of the usecase program modularly, starting from smaller
global types. Here, Buyer stands for the buyer, Supp[i] for a sup-
plier, and Manu[j] for a manufacturer. Then we alias manufacturers
by Manu[i][j] to identify that Manu[j] is connected to Supp[i] (so a
single Manu[j] can have multiple aliases Manu[i′][j], see figure 14).
Then, using the idioms presented in § 1, STEP 1 is defined as:

G1 = foreach(i :I){Buyer→ Supp[i] : 〈Quote〉.end}

For STEP 2, we compose a nested loop and the subsequent action
within the main loop (Ji gives all Manu[j] connected to Supp[i]):

G2 = foreach(i : I){comp(G2[i], Supp[i]→ Buyer : 〈Quote〉.end)}
G2[i] = foreach(j : Ji){Supp[i]→ Manu[i][j] : 〈Item〉.

Manu[i][j]→ Supp[i] : 〈Quote〉.end}

G2[i] represents the second loop between the i-th supplier and its
manufacturers. Regarding STEP 3, the specification involves buyer
preference for certain suppliers. Since this can be encoded using
dependent types (like the encoding of if), we omit this part and
assume the preference is given by the (reverse) ordering of I in order

to focus on the description of the interaction structure.

G3 = R t λi.λy.Buyer→ Supp[i] : {
ok : end
modify : Buyer→ Supp[i] : 〈Quote〉

Supp[i]→ Buyer : {ok : end
retryStep3 : y
reject : end}} i

In the innermost branch, ok, retryStep3 and reject correspond to
STEP 4(a), (b) and (c) respectively. Type variable t is for (d). We
can now compose all these subprotocols together. Taking G23 =
µt.comp(G2, G3) and assuming I = [0..i], the full global type is

λi.λJ̃.comp(G1, G23)

where we have i suppliers, and J̃ gives the Ji (continuous) index
sets of the Manu[j]s connected with each Supp[i].

End-point types We show the local type for suppliers, who engage
in the most complex interaction structures among the participants.
The projections corresponding to G1 and G2 are straightforward:

G1 � Supp[n] =?〈Buyer,Quote〉
G2 � Supp[n] = foreach(j : Ji){!〈Manu[n][j], Item〉;

?〈Manu[n][j],Quote〉}; !〈Buyer,Quote〉

For G3 � Supp[n], we use the branching injection and mergeability
theory developed in § 3.1. After the relevant application of bTEQc,
we can obtain the following projection:

&〈Buyer, {ok : end
modify : ?〈Buyer,Quote〉;⊕〈Buyer, {

ok : end
retryStep3 : T
reject : end}〉}〉

where T is a type for the invocation from Buyer:

if n ≤ i then &〈Buyer, {closed : end, retryStep3 : t}〉
elseif i = n then t

To tell the other suppliers whether the loop is being reiterated or if
it is finished, we can simply insert the following closing notification
foreach(j : I \ i){Buyer → Supp[j] : {close :}} before each
end, and a similar retry notification (with label retryStep3) before t.
Finally, each end-point type is formed by the following composition:

comp(G1 � Supp[n], µt.comp(G2 � Supp[n], G3 � Supp[n])))

Following this specification, the local projections can be imple-
mented in various end-point languages (such as CDL or BPEL). We
have implemented this usecase [1] (with the number of participants
bound at runtime) in SJ [22]; see § 6 for further notes on implemen-
tation experience.

5.2 Correctness of FFT processes

We prove here that the processes given in the FFT example in
§ 2.5 are typable against the given global type. Their termination
(i.e. deadlock-freedom) is then obtained as a corollary.

We assume index n to be a parameter as in figure 7. The main
loop is an iteration over the n steps of the algorithm. We first project
the global type given in 7(c) directly, and show how it is equated to
the target end-point type.

Forgetting for now the content of the main loop, the generic pro-
jection for machine p has the following skeleton:

Πn.(R (R end λl.λx.(. . .) n)
λk.λu.if p = k then !〈k, U〉; ?〈k, U〉; u else u) 2n

A simple induction on n gives us the equivalent type:
Πn.!〈p, U〉; ?〈p, U〉; (R end λl.λx.(. . .) n) 2n

We now consider the inner loops. The generic projection gives

July 26, 2009 10 2009/7/26

nested sequences of conditionals of the form:
if p = i ∗ 2n−l + 2n−l−1 + j = i ∗ 2n−l + j then . . .
else if p = i ∗ 2n−l + 2n−l−1 + j then !〈i ∗ 2n−l + j, U〉; . . . else

The above code is translated to the following two branches where
the first one corresponds to the upper part of the butterfly while the
second one corresponds to the lower part in figure 7(a).
if bitn−l(p) = 0
then ?〈p + 2n−l−1, U〉; !〈p + 2n−l−1, U〉; !〈p, U〉; ?〈p, U〉; x
else !〈p− 2n−l−1, U〉; ?〈p− 2n−l−1, U〉; !〈p, U〉; ?〈p, U〉; x
We use an induction over p and simple arithmetic over binary num-
bers to obtain the above type. For programming reasons (as seen
in the processes, the natural implementation starts by sending a
first initialisation message with the xk value), we want to shift the
self-receive ?〈p, U〉; from the initialisation to the beginning of the
loop iteration at the price of adding the last self-receive to the end:
?〈p, U〉; end. The resulting equivalent type up to ≡ is:

Πn.!〈p, U〉;
(R ?〈p, U〉; end λl.λx.

if bitn−l(p) = 0

then ?〈p, U〉; ?〈p + 2n−l−1, U〉; !〈p + 2n−l−1, U〉; !〈p, U〉; x
else ?〈p, U〉; !〈p− 2n−l−1, U〉; ?〈p− 2n−l−1, U〉; !〈p, U〉; x) n

From this local type, implementing and typing the processes defined
in figure 7(c) in § 2.5 becomes straightforward.

Finally we prove type-safety and deadlock-freedom for the FFT
processes. Let Pfft be the following process:

Pfft = λn.(νa)(R ā[p0..pn](y).P (n, p0, xp0 , y)

λi.λY.(ā[pi+1](y).P (i+ 1, pi+1, xpi+1 , y) | Y) n)

As we reasoned above, each P (n, p, xp, y) is straightforwardly ty-
pable by the local type which is equivalent with one projected from
G listed above. Checking the correctness of the projection (which we
obtained by induction) is not easy though: we need here to rely on
the finite domain restriction. We note, however, that once Pfft is ap-
plied to a natural number m, it always terminates as indices strictly
decrease at each recursor application. We finally get:

THEOREM 5.1 (Type Safety and Deadlock-freedom of FFT). For
all m, ∅ ` Pfft m B ∅; and for all Q such that Pfft m −→∗ Q,
we have Q −→∗ 0.

6. Extensions
Role-type projection As we discussed in the ring example in § 2.4,
we have also investigated an alternative role-based approach, for
checking the conformance of processes against global type specifi-
cations. Although this method currently works only if all participants
are parameterised and without index multiplication, we can generate
role-types for participants directly without using type-equality, dis-
pensing with recursors. The projection algorithm returns the distinct
sets of role-types that are possible for a given global type, which
are then used to type-check the processes. Taking the example of
the ring topology defined in §3.3 (figure 4a), one set of role-types
generated by the projection has the following:

Starter , !〈W[n− 1], nat〉; ?〈W[0], nat〉; end@W[n],

Middle , ?〈W[i+ 1], nat〉; !〈W[i− 1], nat〉; end@W[i],

Final , ?〈W[1], nat〉; !〈W[n], nat〉; end@W[0],

where 1 ≤ i ≤ n − 1 and T@W[i] denotes role-type T as-
signed to participant W[i]. The projection algorithm also returns an
(in)equality on n for which each role-type set is valid, e.g. the above
role-types are valid for n ≥ 2. For n = 1, the role-types generated
are only Starter (which becomes W[1]) and Final. For n = 0, the
single role-type generated is !〈W[0], nat〉; ?〈W[0], nat〉; end@W[0], a
different role to the ones defined above. Briefly, this projection algo-
rithm works over 4 stages: calculation of the participant ranges for

each reference to i-indexed participants, intersection of these ranges,
arrangement of actions in a role-type, and concatenation of the role-
types for i = n and i = 0. For the Middle role of the ring example,
the range of W[i] is [W[n−1]..W[0]] since 0 ≤ i ≤ n−1 from the def-
inition of R; the intersection of the ranges between W[i] and W[i+ 1],
i.e. [W[n−1]..W[1]], is defined for n ≥ 2 and denotes the participants
that will perform the actions defined for both W[i] and W[i + 1]; the
actions ?〈W[i+1], nat〉 and !〈W[i−1], nat〉 are arranged in this order
as determined from the global type; and finally x is substituted by
the case for i = 0. Similarly for Starter and Final, and the role-types
for n = 1 and n = 0.

Implementation experience We discuss some preliminary bench-
mark results that demonstrate how the greater expressiveness of de-
pendent multiparty types in comparison to binary sessions permits
significant performance improvement. An overview of parallel algo-
rithm implementation using SJ, [2, 22], an extension of Java for bi-
nary session programming with multicast constructs, was discussed
in [5]. The features of SJ make it a suitable target language for (an
adapted) dependent global type projection, giving the main interac-
tion structures for concrete, executable end-point implementations.

One of the algorithms implemented in [5] is a parallel simulation
of the n-Body Problem [19]. The n-Body simulation features an ad-
vanced interaction structure based on the ring topology, for which
the projection algorithm has been outlined above. ([5] also presents
session-typed implementations of algorithms featuring other topolo-
gies, such as mesh-based Jacobi iteration.) Due to the restrictions of
binary session typing, the direct SJ implementation involves the cre-
ation of one fresh session per simulation step between Starter and Fi-
nal (the final ring link) in addition to the main sessions between each
of the other neighbouring nodes [5]. Without transport-specific run-
time support for reusing old connections, this can become a costly
overhead. However, with dependent global types, we can design the
behaviour of each role clearly within the construction of the whole
multiparty protocol, completely avoiding this nested session prob-
lem. Communication-safety and deadlock-freedom for the resulting
implementation are ensured for any configuration of m > 1 parties.

In the experiment, we compared the performance of the origi-
nal binary session version against the implementations derived from
projection (for the purposes of practical benchmarks, we also make
use of asynchronous communication subtyping [25] after projec-
tion). The benchmark was executed in a low latency cluster environ-
ment (TCP over gigabit Ethernet), varying the number of processes,
simulations steps and particles (distributed evenly). As expected, the
latter, without the nested session overhead, performs significantly
better across all parameter combinations; for instance, with 10 pro-
cesses performing 100 simulations steps on 100 particles each, the
direct SJ implementation took on average 180s whilst the projected
implementation took 103s, an improvement of 43%. The full source
code for the benchmark applications, exact benchmark environment
details and the complete results can be found at [1].

7. Related Work

Dependent types The idea of using primitive recursive function-
als for dependent types comes from Nelson’s T π in [26] for the
λ-calculus, which is (as he stated) a rediscovery of T ∞ by Tait
and Martin Löf [24, 29] for forming infinite sequences of terms and
types. The system [26] can type functions previously untypable in
ML, and the finite representability of dependent types makes it pos-
sible to construct a type-reconstruction algorithm. We also use as-
pects from the DML dependent typing system in [4, 31] where type
dependency is only allowed for index sorts, hence type-checking can
be reduced to a constraint-solving problem over indices. Our design
choice to combine both systems gives (1) the simplest formulation
of finite growing sequences of global and local types and processes

July 26, 2009 11 2009/7/26

based on the recursor; (2) a precise specification for parameters ap-
pearing in the participants based on index sorts; and (3) a clear inte-
gration with the full session types and general recursion, whilst en-
suring decidability of type-checking (if the constraint-solving prob-
lem is decidable). From the basis of these works, our type equiva-
lence does not have to rely on behavioural equivalence between pro-
cesses, but only strongly normalising types represented by recursors.

Dependent types have been also studied in the context of process
calculi, where the dependency centres on locations (e.g. [20]), and
channels (e.g. [32]) for mobile agents or higher-order processes. An
effect-based session typing system for corresponding assertions to
specify fine-grained communication specifications is studied in [9]
where effects can appear both in types and processes. None of these
investigate growing global specifications using dependent types. Our
main typing rules require a careful treatment for type soundness not
found in the previous works, due to the simultaneous instantiation of
terms and indices by the recursor, with reasoning by mathematical
induction (note that type soundness was left open in [26]).

Multiparty session types and other typing systems for processes
The first papers on multiparty session types were [8] and [21]. the
former uses a distributed calculus where each channel connects a
master end-point to one or more slave endpoints; instead of global
types, they use only local types. After [21], several extensions have
been studied in [6, 7, 25, 27]. One of the advantages of our typing
system in the present work is that it can be easily applied to these
previously developed multiparty typing systems since no changes
to the runtime typing components would be needed. The work [12]
presented an executable language for Web interactions in the form
of global processes and provided the framework for projecting to lo-
cal processes. The use of global descriptions as types had not been
developed in [12], and the type disciplines for the two global and lo-
cal process calculi in [12] are based on binary session types; hence
safety and progress for multiparty interactions were not considered,
while the current paper offers safe, parameterised multiparty inter-
actions towards enriching the facility of global types.

Formal theories of contracts using multiparty interaction struc-
tures other than multiparty session types are studied in [14] using
CCS-like processes as a type representation. The recent work [15]
extends [14] with the treatment of mobile and forwarding channels,
comparing its expressiveness with session types. Another recent
work [11] presents a typed calculus for service orientation by ex-
tending the π-calculus with context-sensitive interactions, equipped
with service and request primitives. Our method differs from these
approaches since we start from programming general topologies as
global specifications, hence various dynamic, parameterised com-
munications can be explicitly described for a shared agreement
among multiple peers. Our system allows participant identities to
change during program execution by index instantiation, which is
effective, in particular, for data exchange across complex structures
such as the butterfly topology. The work [10] proposes a distributed
calculus with sessions that incorporates the merging of running ses-
sions; however, type-safety for interleaved sessions is left as an open
problem. Parameterisation and repetition are widely appearing id-
ioms in most parallel algorithms and choreographic interactions, and
with session delegations, they can represent a mechanism for merg-
ing conversations with progress combining with [7]; extensions to
dynamic features such as late joining and a service discovery fa-
cility are interesting research topics. The preceding works do not
treat the main technical problems addressed in the present work —
programming methodology and a formal system for dynamically
changing global specifications and type-safety via a general pro-
jection method in a dependent type format, backed-up by efficient
type-checking and resource usage, and ensuring strong safety prop-
erties for complex topologies based on the parameterised multiparty
session type discipline.

References
[1] An Online Appendix of this paper. http://www.doc.ic.ac.uk/

~yoshida/dependent/.
[2] SJ homepage. http://www.doc.ic.ac.uk/~rhu/sessionj.html.
[3] Web Services Choreography Requirements (No. 11). http://www.

w3.org/TR/ws-chor-reqs/.
[4] D. Aspinall and M. Hofmann. Advanced Topics in Types and

Programming Languages, chapter Dependent Types. MIT, 2005.
[5] A. Bejleri, R. Hu, and N. Yoshida. Session-based program-

ming for parallel algorithms: Expressiveness and performance.
In PLACES’09, 2009. http://www.doc.ic.ac.uk/~ab406/
parallel_algorithms.html.

[6] A. Bejleri and N. Yoshida. Synchronous multiparty session types. In
PLACES’08, ENTCS. Elsevier, 2009. To appear.

[7] L. Bettini et al. Global progress in dynamically interfered multiparty
sessions. In CONCUR’08, volume 5201 of LNCS, 2008.

[8] E. Bonelli and A. Compagnoni. Multipoint session types for a
distributed calculus. In TGC’07, volume 4912 of LNCS, 2008.

[9] E. Bonelli, A. Compagnoni, and E. Gunter. Correspondence Assertions
for Process Synchronization in Concurrent Communications. Journal
of Functional Programming, 15(2):219–248, 2005.

[10] R. Bruni et al. Multiparty Sessions in SOC. In COORDINATION’08,
volume 5052 of LNCS, pages 67–82. Springer, 2008.

[11] L. Caires and H. T. Vieira. Conversation types. In ESOP, volume 5502
of LNCS, pages 285–300. Springer, 2009.

[12] M. Carbone, K. Honda, and N. Yoshida. Structured communication-
centred programming for web services. In ESOP’07, volume 4421 of
LNCS, pages 2–17, 2007.

[13] M. Carbone, N. Yoshida, and K. Honda. Asynchronous session types:
Exceptions and multiparty interactions. In SFM’09, volume 5569 of
LNCS, pages 187–212. Springer, 2009.

[14] G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for
web services. In POPL, pages 261–272, 2008.

[15] G. Castagna and L. Padovani. Contracts for mobile processes. In
CONCUR 2009, LNCS, 2009. To appear.

[16] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation
of complex fourier series. Mathematics of Computation, 19(90):297–
301, 1965.

[17] S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus.
Acta Informatica, 42(2/3):191–225, 2005.

[18] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. CUP, 1989.
[19] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel

Programming with the Message-Passing Interface. MIT Press, 1999.
[20] M. Hennessy. A Distributed Pi-Calculus. CUP, 2007.
[21] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous

Session Types. In POPL’08, pages 273–284. ACM, 2008.
[22] R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed

Programming in Java. In ECOOP’08, volume 5142 of LNCS, pages
516–541, 2008.

[23] F. T. Leighton. Introduction to parallel algorithms and architectures:
arrays, trees, hypercubes. Morgan Kaufmann, 1991.

[24] P. Martin-Lőf. Infinite terms and a system of natural deduction. In
Compositio Mathematica, pages 93–103. Wolters-Noordhoof, 1972.

[25] D. Mostrous, N. Yoshida, and K. Honda. Global principal typing in
partially commutative asynchronous sessions. In ESOP’09, volume
5502 of LNCS, pages 316–332. Springer, 2009.

[26] N. Nelson. Primitive recursive functionals with dependent types. In
MFPS, volume 598 of LNCS, pages 125–143, 1991.

[27] L. Nielsen, N. Yoshida, and K. Honda. Multiparty symmetric sum
types. Technical Report DTR09-8, Computing, Imperial College, 2009.

[28] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[29] W. W. Tait. Infinitely long terms of transfinite type. In Formal Systems

and Recursive Functions, pages 177–185. North Holland, 1965.
[30] Web Services Choreography Working Group. Choreography Descrip-

tion Language. http://www.w3.org/2002/ws/chor/.
[31] H. Xi and F. Pfenning. Dependent types in practical programming. In

POPL, pages 214–227, 1999.
[32] N. Yoshida. Channel dependent types for higher-order mobile

processes. In POPL ’04, pages 147–160. ACM Press, 2004.

July 26, 2009 12 2009/7/26

