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This paper presents a Java-like core language with primitives for object-oriented distribution and
explicit code mobility. We apply our formulation to prove the correctness of several optimisations

for distributed programs. Our language captures crucial but often hidden aspects of distributed

object-oriented programming, including object serialisation, dynamic class downloading and re-
mote method invocation. It is defined in terms of an operational semantics that concisely models

the behaviour of distributed programs using machinery from calculi of mobile processes. Type

safety is established using invariant properties for distributed runtime configurations. We argue
that primitives for explicit code mobility offer a programmer fine-grained control of type-safe

code distribution, which is crucial for improving the performance and safety of distributed object-
oriented applications.
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1. INTRODUCTION

Language features for distributed computing form an important part of modern
object-oriented programming. It is now common for different portions of an ap-
plication to be geographically separated, relying on communication via a network.
Distributing an application in this way confers many advantages to a programmer
such as resource sharing, load balancing, and fault tolerance. However this comes at
the expense of increased complexity for that programmer, who must now deal with
concerns—such as network failure—that did not occur in centralised programs.

Remote procedure call mechanisms attempt to simplify such engineering practice
by providing a seamless integration of network resource access and local procedure
calls, offering the developer a programming abstraction familiar to them. Java
Remote Method Invocation [Microsystems Inc. 2005] (RMI) is a widely adopted
remote procedure call implementation for the Java platform, building on the cus-
tomisable class loading system of the underlying language to further hide distri-
bution from the programmer. When objects are passed as parameters to remote
methods, if the provider of that method does not have the corresponding class file,
it may attempt to obtain it from the sender. Such code mobility is important
as it reduces the need for strong coupling between communicating parties, while
preserving the type safety of the system as a whole.

The implicit code mobility in RMI allows almost transparent use of remote ob-
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jects and services. However when rigorously analysing the dynamics of distributed
programs, or when providing programmers with source-level control over code dis-
tribution [Christ 2000], it becomes essential to model their behaviour explicitly.
This is because elements such as distribution, network delay and partition crucially
affect the behaviour and performance of programs and systems. As an example,
communication-oriented RMI optimisations, often called batched futures [Bogle and
Liskov 1994] or aggregation [Yeung and Kelly 2003; Yeung 2004], use code distribu-
tion as their central element. To analyse these optimisations formally, or to make
the most of them in applications, explicit primitives for code mobility are essential.

This paper proposes a Java-like distributed object-oriented core language with
communication primitives (RMI) and distributed runtime. The formalism exposes
hidden runtime concerns such as code mobility, class downloading, object seri-
alisation and communication. The operational semantics concisely models this
behaviour using machinery from calculi of mobile processes [Milner et al. 1992;
Sangiorgi 1992; Honda and Tokoro 1991]. One highlight is the use of a linear type
discipline [Kobayashi et al. 1996; Honda 1996; Yoshida et al. 2001] to ensure cor-
rectness of remote method calls. Another is the application of several invariant
properties. These are conditions that hold during execution of distributed pro-
grams, and they allow type safety to be established.

Our language supports explicit code mobility by providing primitives that allow
programs to communicate fragments of code—closely related to closures in func-
tional languages—for later execution. This subsumes the standard serialisation
mechanism by sending not only object graphs but also executable code. Code
passing offers a programmer fine-grained control of type-safe code distribution, im-
proving the safety and performance of their distributed applications. For example,
a program fragment accessing a resource remotely could be frozen into a closure.
This code could then be passed to the remote site, co-locating it with that resource.
This effectively turns remote accesses into local accesses, reducing latency and in-
creasing available bandwidth [Christ 2000; Bogle and Liskov 1994; Yeung and Kelly
2003; Yeung 2004].

As an application of our formalism, we show that the RMI aggregation optimi-
sations proposed in [Yeung and Kelly 2003; Yeung 2004] are type- and semantics-
preserving. The generality of the primitive we introduce plays an essential role
in this analysis: one optimisation relies on the use of second-order code passing,
i.e. passing code that in turn passes code itself. Similar optimisations naturally
arise whenever latency and bandwidth are a limiting factor in the performance of
distributed programs, suggesting a wide applicability of this primitive in similar
endeavours.

We summarise our major technical contributions below.

(1) Introduction of a core calculus for a class based typed object-oriented program-
ming language with primitives for concurrency and distribution, including RMI,
explicit code mobility, thread synchronisation and dynamic class downloading.

(2) A technique to systematically prove type safety for distributed networks using
distributed invariants. Not only are they essential for proving type safety but
also they are a useful analytical tool for developing consistent typing rules.

(3) Justification of several inter-node RMI optimisations employing explicit code
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mobility, using a semantically sound syntactic transformation of the language
and runtime. The analysis also demonstrates the greater control that explicit
code mobility offers to programmers.

In the remainder, Section 2 informally motivates the present work through concrete
examples of RMI optimisations. Section 3 introduces the syntax of the language.
Sections 4 and 5 respectively discuss the dynamic semantics (reduction) and static
semantics (typing) of the language. Section 6 establishes type safety and progress
properties using the invariants. Section 7 studies contextual congruence of the core
language and applies the theory to justify the optimisations in Section 2. Section
8 discusses related work. Section 9 concludes the paper with further topics.

This paper is a full version of [Ahern and Yoshida 2005b], with complete defini-
tions and detailed proofs. The emphasis is on illustrating correctness of formalising
RMI and a use of the distributed invariants for proving the type safety, and devel-
oping a theory of an observational congruence for a distributed Java. The present
version also gives more examples on dynamic semantics of RMI and comparisons
with related work.

2. MOTIVATION: REPRESENTING AND JUSTIFYING RMI OPTIMISATION

The RMI optimisations introduced in this section are used as running examples,
culminating in their justification by the behavioural theory in § 7. These are (ar-
guably) typical inter-node optimisations of distributed object-oriented programs.
Just as inter-procedure or inter-module optimisations are hard to analyse, RMI
optimisation poses a new challenge to the semantic analysis of distribution. They
also motivate the use of explicit code mobility for fine-grained control of distributed
behaviour and to improve performance.

Original RMI program 1. In optimisations for sequential languages, we can
aim to improve execution times by removing redundancy and ensuring our programs
exploit features of the underlying hardware architecture. In distributed programs
these are still valid concerns, but other significant optimisations exist, in particular
how latency and bandwidth overheads can be reduced. One typical example of
this sort, centring on Java RMI [Flanagan 2000] but which is generally applicable
to various forms of remote communication, is aggregation [Bogle and Liskov 1994;
Yeung and Kelly 2003; Yeung 2004]. We explain this idea using the simple program
in Listing 1.

1 int m1(RemoteObject r, int a) {

2 int x = r.f(a);

3 int y = r.g(a, x);

4 int z = r.h(a, y);

5 return z;

6 }

Listing 1: Original RMI program 1

This program performs three remote method calls to the same remote object r
with eight items transferred across the network (counting each parameter and

return value as one). x is returned as the result of the call to f from the remote
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server, but is subsequently passed back to the server during the next call. The same
occurs with the variable y. These variables are unused by the client, and are merely
returned to the remote object r (where they were created) as parameters to the
next call. We can immediately see that there is no need for x or y to ever be passed
back to the client at all. Hence these three calls can be aggregated into a single
call, reducing by a factor of three the network latency incurred by the method m1
and approximately reducing by a factor of four the amount of data that must be
shipped across the network.

This optimisation methodology is implemented in the Veneer virtual Java Virtual
Machine (vJVM) [Yeung and Kelly 2003; Yeung 2004], where sequences of adjacent
calls to the same remote object are grouped together into an execution plan in
bytecode format. This is then uploaded to and executed by the server, with the
result of the computation being returned to the client. This simple idea—remote
evaluation of code [Stamos and Gifford 1990]—can speed up distributed programs
significantly, especially when operating across slower networks or when significant
amounts of data may be transmitted otherwise. As a concrete example, in [Yeung
and Kelly 2003] the authors reported that over a moderate bandwidth and moderate
latency ADSL connection, call aggregation yields a speedup over a factor of four
for certain examples [Flanagan 2000].

Optimised program 1. Call aggregation implicitly uses code passing: we first
collect all the code that can be executed at a remote site and then send it, in one
bundle, for execution there. This aspect is hidden as the transfer of bytecode in
the implementation of [Yeung and Kelly 2003; Yeung 2004], but requires explicit
modelling if one wishes to discuss its properties or justify that it preserves the
original program semantics. For this purpose we introduce two primitives, freeze
and defrost. In Listing 2, we illustrate these primitives using the optimised version
of the code of Listing 1.

1 // Client

2 int mOpt1(RemoteObject r, int a) {

3 thunk<int> t = freeze {

4 int x = r.f(a);

5 int y = r.g(a, x);

6 int z = r.h(a, y);

7 z

8 };

9 return r.run(t);

10 }

11 // Server

12 int run(thunk<int> x) {

13 return defrost(x);

14 }

Listing 2: Optimised program 1

Here the client uses the freeze expression of the language to create a frozen
representation of three calls with a closure of free variable a, sending the resulting
“thunk” to the server. thunk<int> says the frozen code contains an expression
of type int. We now make only one call across the network to send the frozen
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Server

Client

r

r.f(a)

x

r.g(a,x)

y

r.h(a,y)

z

r.run(t)

z

r.f(a)

r.g(a,x)

r.h(a,y)

Pale arrows Original calls in the unoptimised program.

Dashed arrows Returns from remote calls.
Thick arrows Represent code mobility.

We annotate call arrows with the method invocation and return arrows with the name of the
variable the client will use to store the return value of the method.

Fig. 1: Example optimisation (1)

expression, by r.run(t). When the server receives the thunked code, it evaluates
it and returns the result typed by int to the client, again across the network.
These mimic primitives found in well-known functional languages, for example the
quotation and evaluation of code in Scheme, or the higher-order functions found in
ML and Haskell.

In Figure 1 we show a diagram of the situation. As can be seen, the original
sequence of calls (the paler arrows) requires 6 trips across the network. By aggre-
gating the calls at the server, where they effectively become local, we see that only
two trips are required (the thicker arrows).

Original RMI program 2. A more advanced form of communication-oriented
optimisation, which reduces latency and uses bandwidth intelligently, is the idea
of server forwarding [Yeung and Kelly 2003; Yeung 2004]. It takes advantage of
the fact that servers typically reside on fast connections, whilst the client-server
connection can often be orders of magnitude slower. Consider the program in
Listing 3.

1 int m2(RemoteObject r1,

2 RemoteObject r2, int a) {

3 int x1 = r1.f1(a);

4 int y1 = r1.g1(a, x1);

5 int z1 = r1.h1(a, y1);

6 int x2 = r2.f2(z1);

7 int y2 = r2.g2(z1,x2);

8 int z2 = r2.h2(z1,y2);

9 return z2;

10 }

Listing 3: Original RMI program 2

The results of the first three calls are used as arguments to methods on another
remote object r2 in a second server. It would be better for the first server to
communicate directly with the second.
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r2.run(t2)z2

Fig. 2: Example optimisation (2)

Optimised program 2. Server forwarding again uses code passing as an ex-
ecution mechanism. Listing 4 lists the optimised code of the original program in
Listing 3. We use closure passing for representing this optimised code, in which
thunked code is nested, i.e. we are using higher-order code mobility. Figure 2 gives
a diagram of the situation.

1 int mOpt2(RemoteObject r1, RemoteObject r2, int a) {

2 thunk<int> t1 = freeze {

3 int x1 = r1.f1(a);

4 int y1 = r1.g1(a, x1);

5 int z1 = r1.h1(a, y1);

6 thunk<int> t2 = freeze {

7 int x2 = r2.f2(z1);

8 int y2 = r2.g2(z1, x2);

9 int z2 = r2.h2(z1, y2);

10 z2;

11 };

12 r2.run(t2);

13 };

14 return r1.run(t1);

15 }

Listing 4: Optimised program 2

Original RMI program 3. The semantics of RMI is different from normal,
local method invocation. Passing a parameter to a remote method (or accepting a
return value) can involve many operations hidden from the end-user; these runtime
features make automatic semantic-preserving optimisation of RMI much harder, in
particular, when calls contain objects as arguments. To observe this, let us change
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the type of a from int to class MyObj as in the code in Listing 5:
Here we have two cases:

(1) MyObj is remote i.e. when MyObj implements the java.rmi.Remote interface
and is therefore remotely callable. In this situation, a is effectively passed by
reference.

(2) MyObj is local i.e. when MyObj is not remotely callable (it does not implement
the Remote interface), a is automatically serialised and passed to the server
where it is automatically deserialised. In this situation, a is effectively passed
by value.

1 int m3(RemoteObject r, MyObj a) {

2 int x = r.f(a);

3 int y = r.g(a, x);

4 int z = r.h(a, y);

5 return z;

6 }

Listing 5: Original RMI program 3

Sending a serialised value to a remote consumer can be thought of as passing an
object by value. Informally, the serialisation process explores the graph under an
object in local memory, copying all objects directly or indirectly referred to. When
passing such local objects as parameters to remote methods, the Java RMI system
automatically performs this copying.

Consider the method m3 above: if the call r.f performs an operation that side-
effects the parameter a, then in the original program this side-effect is lost. The
version of a supplied to the next method r.g is still just a copy of the initial a held
in the client’s memory, which has not changed. If we näıvely apply code passing
optimisations to the problem, we might rewrite method m3 to look a lot like mOpt1.
Unfortunately now the next call r.g no longer has a copy of the original a to work
on: it instead receives the version modified by r.f, potentially altering the meaning
of the program and rendering the optimisation incorrect.

By applying explicit serialisation we can simulate the original program behaviour.
By insisting each method call in the server operates on a fresh copy of the original
a, we regain correctness as is shown below.

Optimised program 3. We show the case when MyObj is a local class. If
there are no call-backs from the server to the client (discussed next), then the
original RMI program has the same meaning as passing the code in Listing 6.
First the client creates three copies of serialised object a by applying the explicit
serialisation operator serialize. We write serialize as shorthand for the idiom
in Java that involves writing objects to an instance of ObjectOutputStream. The
server immediately deserialises the arguments, creating three independent object
graphs, thus avoiding problems with methods that alter their parameters (we write
deserialize in place of reading from an ObjectInputStream). In the code in
Listing 6, the declaration ser<MyObj> b1 says that b1 is a serialised representation
of an object of class MyObj.
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1 int mOpt3(RemoteObject r, MyObj a) {

2 ser<MyObj> b1 = serialize(a);

3 ser<MyObj> b2 = serialize(a);

4 ser<MyObj> b3 = serialize(a);

5 thunk<int> t = freeze {

6 int x = r.f(deserialize(b1));

7 int y = r.g(deserialize(b2), x);

8 int z = r.h(deserialize(b3), y);

9 z

10 };

11 return r.run(t);

12 }

Listing 6: Optimised program 3

Two further problems. We have seen that code passing primitives can help
us to cleanly represent communication-based optimisation of RMI programs. Anal-
ysis of the code above immediately suggests two further problems that must be
addressed.

(1) Sharing between objects and call-backs: the above copying
method should not be applied näıvely, since marshaling should preserve sharing
between objects. It also may not be applicable if a call by the client to the server
results in the server calling the client.

(2) Overhead of class downloading: if the server location does not contain the
byte-code for MyObj, RMI automatically invokes a class downloading process
to obtain the class from the network. In addition, verifying that the received
class is safe to use may require the downloading of many others (such as all
superclasses of MyObj and classes mentioned in method bodies and so on),
which may incur many trips across the network, increasing the risk of failures
and adding latency.

To illustrate the first problem, consider the following simple code with r remote
and x and y local:

1 x.f = y; r.h(x, y);

The content of y is shared with x in the original code, but if we apply the copying
method then the server creates independent copies of x and y, breaking the original
sharing structure.

For the second point of (1), imagine that the body of remote method f invoked
at line 2 of the original program involves some communication back to the local
site. Then it is possible for the value of a to be modified at the client side and so
the optimised program is no longer correct: because in our optimised program, a is
serialised in line 4 before r.f is performed, any effect that a call-back would have
on a is lost, when it should be visible to the call r.g.

The second problem, class downloading, is more subtle from the communication-
based optimisation viewpoint. Although the aim of this optimisation is to reduce
the number of trips across the network, if there is a deep inheritance hierarchy above
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MyObj, sending code may not yield the performance benefit that the programmer
expects. This is because many requests over the network may be required to obtain
all the required classes.

As an example, if MyObj has a chain of n-superclasses such that MyObj <: MyObj2
<: · · · <: MyObjn, and none of these are present at the server, there are at least n
class downloads even with “verification off” in the framework of type safe dynamic
linking [Liang and Bracha 1998; Qian et al. 2000]. With “verification on”, this
could be even more.

These hidden features of RMI make reasoning about the behaviour of a program,
and establishing a clear optimisation, hard.

Challenges. Having provided the source-level presentation of several features
necessary to discuss RMI optimisations, we may ask the following questions:

Q1. How can we precisely model this dynamic runtime behaviour, including code
passing, serialisation and class downloading?

Q2. How can we verify the correctness of the optimised code, in the sense that the
original code and the optimised code have the same contextual behaviour?

Q3. Having studied the optimisations above, can we improve our code mobility
primitives to make them generally useful to application programmers?

A satisfactory solution to Q1. is a prerequisite for Q2. due to the interleaving of
communication events which affect the observational behaviour of distributed pro-
grams. Various elements inherent in distributed computing make the semantic
correctness of optimisations more subtle than in the sequential setting. The be-
haviour, hence the final answer, may differ depending on sharing of objects, timing
and class downloading strategies, as well as network failure. In our paper, Q1.
will be answered by giving a clean formal semantics for distributed object-oriented
features usually hidden from a programmer. We shall distill key runtime features,
including class downloading and serialisation, so that important design choices (for
example various class downloading and code mobility mechanisms) can be easily re-
flected in the semantics. Q2. will be answered by semantic justification of the above
optimisations using the theory of mobile processes [Milner et al. 1992; Sangiorgi
1992; Honda and Tokoro 1991]. For Q3., we summarise our proposal below.

Optimised program 4. Class downloading is a fundamental mechanism in dis-
tributed object-oriented programming. Yet so far we have treated it as a behind-
the-scenes feature and left it as an implementation detail. However, by augmenting
our primitives with a mechanism to control class downloading, a programmer is
able to write down different strategies explicitly. This explicit control allows us to
mitigate some of the problems class downloading induces that were explained in the
previous section. For example, to represent one basic strategy of class downloading,
we attach the tag eager to freeze in the original code 3 in Listing 5.

1 int mOpt4(RemoteObject r, MyObj a) {

2 ... // as in mOpt3

3 thunk<int> t = freeze[eager] {

4 ... // as in mOpt3

5 }
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Listing 7: Optimised program 4

The tag eager in freeze[eager] controls the amount of class information sent
along with the body of the thunk by the user. With eager, the code is automatically
frozen together with all classes that may be used. In the above case all classes
appearing in MyObj and all their superclasses are shipped together with the code
(see § 4.6 for the definition). Another option is for the user to select lazy which
essentially leaves class downloading to the existing RMI system. Further the user
might write a list of specific classes ~C to be shipped. For example, the following
program is able to notice when it is in a high latency situation and act accordingly.

1 // Client

2 thunk<int> t;

3 if (pingTime() > 1000) {// milliseconds

4 t = freeze[eager] {...};

5 } else {

6 t = freeze[lazy] {...};

7 }

Listing 8: Optimised program 5

If we imagine that the latency is very high, then it may be the case that the time
to iteratively download all the superclasses exceeds the actual execution time of
the frozen code being sent to the server. Because of this, the program is able to
switch to the eager mode of class downloading, allowing improved performance.
Moreover, from a point of view of failure there are fewer trips across the network
with the eager policy, reducing the risk of a transient problem, such as a temporary
network partition, disrupting the class downloading process.

The formal semantics for both implicit and explicit code mobility is given from
the next section as part of the core language.

3. LANGUAGE

3.1 User syntax

The syntax of the core language, which we call DJ, is an extension of FJ [Igarashi
et al. 2001] and MJ [Bierman et al. 2003], augmented with basic primitives for
distribution and code-mobility, along with concurrent programming features that
should be familiar to Java programmers. The syntax comes in two forms, and is
given in Figure 3. The first form is called user syntax, and corresponds to terms
that can be written by a programmer as source code. The second form is called
runtime syntax. It extends the user syntax with constructs that only appear during
program execution, and these are distinguished in the figure by placing them in
shaded regions. We briefly discuss each syntactic category below.

Types. T and U range over types for expressions and statements, which are
explained in § 5. C,D,F range over class names. ~f denotes a vector of fields, and
~T ~f is short-hand for a sequence of typed field declarations: T1f1; . . . ;Tnfn. We
assume sequences contain no duplicate names, and apply similar abbreviations to
other sequences with ε representing the empty sequence. T → U denotes an arrow
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Syntax occurring only at runtime appears in shaded regions.

(Types) T ::= boolean | unit | C | T → U
(Returnable) U ::= void | T

(Classes) L ::= class C extends D {~T ~f ; K ~M}
(Constructors) K ::= C(~T ~f){super(~f); this. ~f = ~f}

(Methods) M ::= U m(C x){e}
(Expressions) e ::= v | x | this | if (e) {e} else {e} | while (e) {e} | e.f | e; e

| x = e | e.f = e | new C(~e) | e.m(e) | T x = e
| return e | return | freeze[t](T x){e} | defrost(e; e) | fork(e)

| sync (e) {e} | e.wait | e.notify | e.notifyAll | new Cl(~e)

| download ~C from l in e | resolve ~C from l in e | await c

| sandbox {e} | insync o {e} | ready o n | waiting(c) n | Error

(Tags) t ::= eager | lazy | ~C

(Values) v ::= true | false | null | () | o | λ(T x).(ν ~u)(l, e, σ, CT) | ε

(Class Sig.) CSig ::= ∅ | CSig · [C 7→ [remote] C ~T ~f {mi : Ci → Ui}]

(Identifiers) u ::= x | o | c

(Threads) P ::= 0 | P1 |P2 | (ν u)P | forked e | go e with c | e with c

| go e to c | return(c) e | Error

(Configurations) F ::= (ν ~u)(P, σ, CT)

(Networks) N ::= 0 | l[F ] | N1 |N2 | (ν u)N

(Stores) σ ::= ∅ | σ · [x 7→ v] | σ · [o 7→ (C, ~f : ~v, n, {~c})]

(Class tables) CT ::= ∅ | CT · [C 7→ L]

Fig. 3: The syntax of the language DJ.

type, which is assigned to frozen expressions that expect a parameter of type T and
return a value of type U . We abbreviate the type of thunked frozen expressions
as thunk〈U〉 def= unit → U . We associate the type ser〈U〉 with frozen values. If a
value v has type U is frozen then the result has the type ser〈U〉.

Expressions. The syntax is standard, including the standard synchronisation
constructs of the Java language, except for two code passing primitives. The first
primitive, freeze[t](T x){e} takes the expression e and, without evaluating it,
produces a flattened value representation parameterised by variable x with type T .
Any parts of the local store required by the expression (such as the information held
in variables free in e) are included in this new value, along with class information
it may need for execution.

The tag t is a flag to control the amount of this information sent along with e by
the user. If he specifies eager, then the code is automatically frozen together with
all classes that may be used. If the user selects lazy, it is the responsibility of the
receiving virtual machine to obtain missing classes. The third option is called user-
specified information, and allows the programmer to supply a list of class names.
Only these classes and their dependents (such as superclasses) are included with
the frozen value.
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Dual to freezing, the action defrost(e0; e) expects the evaluation of expres-
sion e to produce a piece of frozen code. This code is then executed, substitut-
ing its parameter with the value obtained by evaluating e0, much like invoking a
method. We abbreviate freeze and defrost expressions that take no parameters as
freeze[t]{e} def= freeze[t](unit x){e} (x /∈ fv(e)) and defrost(e) def= defrost((); e)
respectively. Note that () denotes a constant of unit type.

To simplify the presentation, we only allow single parameters to methods and to
frozen expressions. This does not restrict the expressiveness of programs written
in DJ, as there is a semantics and type-preserving mapping from programs with
multiple parameters to this subset. See Proposition 7.1 § 7 for the formal proofs.

For clarity, we introduce two derived constructs that are syntactic sugar for
serialisation and deserialisation.

serialize(e) def= freeze[lazy]{e} and deserialize(e) def= defrost(e)

Class Signatures. A class signature CSig is a mapping from class names to their
interface types (or signatures). We assume CSig is given globally, as a minimum
agreed interface between remote parties, unlike class tables which are maintained
on a per-location basis. Attached to each signature is the name of a direct super-
class, as well as the declaration “remote” if the class is remote. For a class C,
the predicate remote(C) holds iff “remote” appears in CSig(C); otherwise local(C)
holds. Class signatures contain only expected method signatures, not their im-
plementation. This provides a lightweight mechanism for determining the type of
remote methods.

3.2 Runtime syntax

Runtime syntax extends the user syntax to represent the distributed state of mul-
tiple sites communicating with each other, including remote operations in transit.

Expressions. Location names are written l,m, . . . and can be thought of as IP
addresses in a network. new Cl(~v), download ~C from l in e and resolve ~C from l in e
define the machinery for class downloading, which will be explained along with the
operational semantics in § 4.1 and § 4.2. The key expression is new Cl(~e), indicating
that the definition of class C can be obtained from a location called l should it need
to be instantiated. We write C when the treatment of class name C is independent
of whether it is labelled or not. await c is fundamental to the model of method
invocation and can be thought of as the return point for a call. sandbox {e} rep-
resents the execution environment of some code e that originated from a frozen
expression.
insync o {e} denotes that expression e has previously acquired the lock on object

o. When an expression contains ready o n as a sub-term it indicates that it is
ready to re-acquire the lock on object o. The expression waiting(c) n denotes
an expression waiting for notification on channel c, at which point it may try to
re-acquire a lock it was holding. n indicates the number of times that this waiting
thread had entered its lock before yielding. Finally, the expression Error denotes
the null-pointer error.

Values. v is also extended with runtime terms. Object identifiers o denote
references to instances of classes as well as the destination of RMI calls. We shall
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often write “o-id” for brevity. Channels c are fundamental to the mechanism of
method invocation and determine the return destination for both remote and local
method calls, as illustrated in the operational semantics later. We call o and c
names.

The most interesting extended value is a frozen expression, a piece of code or
data that can be passed between methods as a value. Later, it can be “defrosted”
at which point it is executed to compute a value. λ(T x).(ν ~u)(l, e, σ, CT) denotes an
expression e frozen with class table CT created at l. Expression e is parameterised
by variable x with type T , and σ contains data local to the expression that was
stored along with it at “freezing time”. The identifiers ~u correspond to the domain
of σ. x and ~u occur bound. CT ships class bodies that may be used during the
execution of e. If it is empty and the party evaluating e lacks a required class,
it should attempt to download a copy from l. If σ or CT is empty, then we shall
omit writing them entirely for clarity. Finally, the value ε serves as a constant that
appears at runtime as the return value of void methods.

Threads. P |Q says P and Q are two threads running in parallel, while (ν u)P
restricts identifier u local to P . 0 denotes an empty thread. This notation comes
from the π-calculus [Milner et al. 1992]. It also includes Error which denotes the
result of class downloading and communication failure. The expression forked e
says that expression e was previously forked from another thread. The remaining
constructs of P are used for representing the RMI mechanism, and are illustrated
when we discuss the operational semantics in § 4.

Configurations and Networks. F represent an instance of a virtual machine.
A configuration (ν ~u)(P, σ, CT) consists of threads P , a store σ containing local
variables and objects, and a class table CT. Networks are written N , and comprise
zero or more located configurations executing in parallel. 0 denotes the empty
network. l[F ] denotes a configuration F executing at location l. N1 |N2 and (ν ~u)N
are understood as in threads.

A store σ consists of a mapping from variable names to values, written [x 7→ v],
or from object identifiers to store objects, written [o 7→ (C, ~f : ~v, n, {~c})]. This
indicates an identifier o maps to an object of class C with a vector of fields with
values ~f : ~v. The set of channels {~c} contains identifiers for threads currently
waiting on o, i.e. those that have executed o.wait and have not received notification.
The number, n, indicates how many times the lock on this object has been entered
by a thread.

Finally, class tables CT, are a mapping from unlabelled class names to class
definitions (metavariable L in Figure 3). Throughout the paper we write FCT for
the foundation class table that contains the common classes that every location in
the network should possess, roughly corresponding to the java.* classes.

Auxiliary functions. Several auxiliary functions are defined over the syntax of
DJ. dom returns the domain of a store and a class table. We also write dom(F )
etc. to denote a domain of stores which appear in F . The set of free variables
fv(N) and names fn(N) are standard. We also use fnv(N) def= fv(N) ∪ fn(N). The
full definitions is given in the Appendix A.

The set of free class names for a given term is given by the function fcl which
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is defined over expressions, threads, configurations and class table entries. The
free class names of a value v is defined as fcl(v) = ∅. The free class names of an
expression and threads are defined recursively as the union of the free class names
of all sub-expressions, with the exception that:

fcl(new C(~e)) =
⋃

fcl(ei) ∪ {C} and importantly: fcl(new Cl(~e)) =
⋃

fcl(ei)

For class tables, we retrieve the free class names appearing in the bodies of methods:

fcl(class C extends D {~T ~f ; K ~M}) =
⋃

fcl(ei) where Mi = Ui mi(Ci xi){ei}

For stores, we set fcl(σ) = {C | [o 7→ (C, . . .)] ∈ σ}.

4. OPERATIONAL SEMANTICS

This section presents the formal operational semantics of DJ, extending the stan-
dard small step call-by-value reduction of [Pierce 2002; Bierman et al. 2003]. There
are two reduction relations. The first is defined over configurations executing
within an individual location, written F −→l F

′, where l is the name of the lo-
cation containing F . The second is defined over the networks, written N −→ N ′.
F −→l F

′ promotes to l[F ] −→ l[F ′]. Both relations are given modulo the standard
structural equivalence rules of the π-calculus [Milner et al. 1992], written ≡ and
given in Appendix B. We define multi-step reductions as: →→def= (−→ ∪ ≡)∗ and
→→l

def= (−→l ∪ ≡)∗.

4.1 Local expressions

The rules for the sequential part of the language are standard [Igarashi et al. 2001;
Bierman et al. 2003]. We list the reduction rules in Figure 4. When allocating a
new object by New, we explicitly restrict identifiers, which represents “freshness”
or “uniqueness” of the address in the store. The auxiliary function fields(C) is given
in Figure 5. It examines the class signature and returns the field declarations for
C. We assume the existence of a distinguished class Object that is at the top of
the inheritance hierarchy and contains no methods and no fields (written •).

Tagged class creation takes place in NewR and NewL. The former rule is applied
whenever execution attempts to instantiate an object of a tagged class whose body
is not present in the local class table. Instead of immediately allocating a new
object, it first attempts to download the actual body of the class from the labelled
location. This is discussed in detail in § 4.2. NewL is applied when an attempt is
made to instantiate a tagged class whose body is already available locally. In this
case the statement reduces to a normal untagged instantiation.

To reduce the number of computation rules, we make use of the evaluation con-
texts in Figure 6 and the congruence rule Cong. Contexts contain a single hole,
written [ ] inside them. E[e] represents the expression obtained by replacing the
hole in context E with the ordinary expression e. The evaluation order of terms in
the language is determined by the construction of these contexts.

4.2 Class downloading

Class mobility is very important in Java RMI systems, since it reduces unnecessary
coupling between communicating parties. If an interface can be agreed, then any
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Var
x, σ, CT −→l σ(x), σ, CT

Cond
if (true) {e1} else {e2}, σ, CT −→l e1, σ, CT

if (false) {e1} else {e2}, σ, CT −→l e2, σ, CT
While
while (e1) {e2}, σ, CT −→l if (e1) {e2; while (e1) {e2}} else {ε}, σ, CT

Fld
σ(o) = (C, ~f : ~v)

o.fi, σ, CT −→l vi, σ, CT

Seq
e1, σ, CT −→l (ν ~u)(v, σ′, CT′)

e1; e2, σ, CT −→l (ν ~u)(e2, σ′, CT′)
~u /∈ fnv(e2)

Ass
x = v, σ, CT −→l v, σ[x 7→ v], CT

FldAss
σ′ = σ[o 7→ σ(o)[f 7→ v]]

o.f = v, σ, CT −→l v, σ′, CT
o ∈ dom(σ)

New
fields(C) = ~T ~f

new C(~v), σ, CT −→l (ν o)(o, σ · [o 7→ (C, ~f : ~v, 0, ∅), CT)

NewR
new Cm(~v), σ, CT −→l download C from m in new Cm(~v), σ, CT C /∈ dom(CT)

NewL
new Cm(~v), σ, CT −→l new C(~v), σ, CT C ∈ dom(CT)

Dec
T x = v; e, σ, CT −→l (ν x)(e, σ · [x 7→ v], CT) x /∈ dom(σ)

Cong
e, σ, CT −→l (ν ~u)(e′, σ′, CT′)

E[e], σ, CT −→l (ν ~u)(E[e′], σ′, CT′)
~u /∈ fnv(E)

Fig. 4: Local expressions

(Field lookup)

fields(Object) = •
CSig(C) = D ~T ~f {mi : Ci → Ui} fields(D) = ~T ′ ~f ′

fields(C) = ~T ′ ~f ′, ~T ~f
(Method body lookup)

CT(C) = class C extends D {~T ~f ; K ~M}
U m(C x){e} ∈ ~M

mbody(m, C, CT) = (x, e)

CT(C) = class C extends D {~T ~f ; K ~M}
U m(C x){e} /∈ ~M

mbody(m, C, CT) = mbody(m, D, CT)

(Method signature lookup)

CSig(C)=[remote] C extends D ~T ~f {mi:Ci→Ui}

mtype(mi, C) = ~Ti
′ → U ′

i

CSig(C)=[remote] C extends D ~T ~f {mi:Ci→Ui} m/∈{~m}

mtype(m, C) = mtype(m, D)

Fig. 5: Lookup functions
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E ::= [ ] | if (E) {e} else {e} | E.f | E; e | x = E | E.f = e | o.f = E

| new C (~v, E,~e) | E.m(e) | o.m(E) | T x = E | defrost(e; E) | defrost(E; v)

| sync (E) {e} | E.wait | E.notify | E.notifyAll | sandbox {E} | insync o {E}
| forked E | go E with c | E with c | go E to c | return(c) E

Fig. 6: Evaluation contexts

Resolve
CT(Ci) = class Ci extends Di {~T ~f ; K ~M}

resolve ~C from l′ in e, σ, CT −→l download ~D from l′ in e, σ, CT

Download
{ ~D} = { ~C} \ dom(CT1) {~F} = fcl(CT2( ~D)) CT′ = CT2( ~D)[~F l2/~F ]

l1[E[download ~C from l2 in e] |P, σ1, CT1] | l2[P2, σ2, CT2]

−→ l1[E[resolve ~D from l2 in e] |P, σ1, CT1 ∪ CT′] | l2[P2, σ2, CT2]

DNothing
download ~C from l′ in e, σ, CT −→l e, σ, CT Ci ∈ dom(CT)

Err-ClassNotFound
∃Ci ∈ ~C.Ci /∈ dom(CT1) ∪ dom(CT2)

l1[E[download ~C from l2 in e] |P, σ1, CT1] | l2[P2, σ2, CT2]
−→ l1[E[Error] |P, σ1, CT1] | l2[P2, σ2, CT2]

Fig. 7: Class resolution and downloading

class that implements the interface can be passed to a remote consumer and type-
safety will be preserved. However this only works if sites are able to dynamically
acquire class files from one another. This hidden behaviour is omitted from known
sequential formalisms, as it is not required in the single-location setting, and so the
formalisation of class downloading is one of the key contributions of DJ.

The rules for class downloading in DJ are given in Figure 7 and approximately
model the lazy downloading mechanism found in JDK 1.3 without verification
[Drossopoulou and Eisenbach 2002]. The download expression is responsible for
the transfer of class table entries from a remote site. Download defines the se-
mantics for this operation. For a download request download ~C from l in e we
first produce ~D by removing the names of any classes locally available (and thus
eliminating duplication). We then compute vector ~F from all the free class names
mentioned in the bodies of the classes in ~D. Finally, the classes named in ~D are
downloaded and added to the local class table. Any occurrence of a member of ~F
in a newly downloaded class body is tagged with the name of the remote site (l2
in this case). Resolution, defined by Resolve, is the process of examining classes
for unmet dependencies and scheduling the download of missing classes. Informally
this amounts to downloading immediate superclasses.

The Download and Resolve rules work together to iteratively resolve all class
dependencies for a given object. Once all dependencies have been met, normal
execution continues after DNothing.

We model a failure in this process by the last rule. The rule Err-ClassNotFound
approximates ClassNotFoundException that would occur in the case of the site l2
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not possessing some class requested by l1. In this case, the code attempting the
download will reduce to the Error expression.

In this paper we chose the option of class loading without verification as it allows
significantly simpler presentation. However, our formalisation of class downloading
is intended to be modular: it is possible to model different class loading mechanisms
by adjusting the reduction rules for downloading and resolution and the class de-
pendency algorithm introduced in Algorithm 4.2. For example, in rule Resolve the
vector ~D is constructed from the direct superclasses of the classes being resolved.
One aspect of Java verification is that it checks subtypes for method arguments.
By inspecting the body of methods in the classes being resolved, we could extend
~D to reflect these checks as a first approximation.

Following on from this we observe that, with verification on, the overhead induced
by Java’s lazy class loading policy is increased—since verifying a class typically
requires the loading of more classes than just the direct superclass—making an
even stronger case for eager code passing.

4.3 Serialisation and deserialisation

One of the contributions of DJ is a precise formalisation of the semantics of seri-
alisation using the frozen expressions which are detailed in § 4.6 (for the encod-
ing, see § 3.1). Serialisation occurs in two instances. In the first, the expressions
serialize(v) and deserialize(e) allow explicit flattening and re-inflation of ob-
jects by the programmer, whereas the second instance occurs when values must be
transported across the network.
serialize(v) and deserialize(e) must appear automatically as runtime ex-

pressions to serialise parameters and return values of remote method invocations.
This is because instances of local classes—those classes without the remote keyword
in their signature—are incapable of remote method invocation, and so cannot be
passed by reference as parameters or as return values to remote methods. Should
this occur, the remote party would receive the identifier of an unreachable object.
Avoiding this problem involves making a deep clone of the local object, and we see
this in action in § 4.4.

4.4 Method invocation

Unlike sequential formalisms, DJ describes remote method invocation. To accommo-
date RMI, the rules for method call take a novel form employing concepts from the
π-calculus, representing the context of a call by a local linear channel. While this
technique is well-known in the π-calculus [Milner et al. 1992], DJ may be the first
to use it to faithfully capture the semantics of RMI in a Java-like language. Among
other benefits, it allows us to define the semantics of local and remote method calls
concisely and uniformly: a method call is local when the receiver is co-located with
the caller; whereas it becomes remote when the receiver is located elsewhere. Re-
mote calls also differ from local ones because of the need for parameter and return
value serialisation, which is reflected as several extra reduction steps.

We summarise the general picture of a remote method invocation in Figure 8(a),
which starts from dispatch of a remote method and ends with delivery of its return
value. The corresponding formal rules are given in Figure 8(b).

We start our illustration from local method calls. For a method call o.m(v), if
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go ewith c ewith c

return(c) v

go v to creturn(c) v

Network boundary

serialize deserialize

serializedeserialize

(a) Evaluation steps for a remote call

MethLocal
E[o.m(v)] |P, σ, CT −→l (ν c)(E[await c] | o.m(v) with c |P, σ, CT) c fresh, o ∈ dom(σ)

MethRemote
E[o.m(v)] |P, σ, CT −→l (ν c)(E[await c] | go o.m(serialize(v)) with c |P, σ, CT)

c fresh, o /∈ dom(σ)

MethInvoke
σ(o) = (C, . . . ) mbody(m, C, CT) = (x, e)

o.m(v) with c, σ, CT −→l (ν x)(e[o/this][return(c)/return], σ · [x 7→ v], CT)

Await
E[await c] | return(c) v, σ, CT −→l E[v], σ, CT

SerReturn
l[return(c) v |P, σ, CT] −→ l[go serialize(v) to c |P, σ, CT] c /∈ fn(P )

Leave
l1[go o.m(v) with c |P1, σ1, CT1] | l2[P2, σ2, CT2]

−→ l1[P1, σ1, CT1] | l2[o.m(deserialize(v)) with c |P2, σ2, CT2]
o ∈ dom(σ2)

Return
l1[go v to c |P1, σ1, CT1] | l2[P2, σ2, CT2]

−→ l1[P1, σ1, CT1] | l2[return(c) deserialize(v) |P2, σ2, CT2]
c ∈ fn(P2)

Err-LostCall
go o.m(v) with c, σ, CT −→l Error, σ, CT

Err-LostReturn
go v to c, σ, CT −→l Error, σ, CT

(b) Reduction rules

Fig. 8: Remote method invocation

o ∈ dom(σ) then the rule MethLocal is applied. A new channel c is created
to carry the return value of the method; the return point of the method call is
replaced with the term await c corresponding to a receiver waiting for the return
value supplied on channel c. The method call itself is spawned in a new thread as
o.m(v) with c carrying channel c.

The next stage is the application of the method invocation rule MethInvoke.
Both remote and local invocations apply this rule. The auxiliary function mbody(m,C, CT)
is given in Figure 5, and is responsible for looking up the correct method body in
the local class table. It returns a pair of the method code and the formal parameter
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name. The receiver is substituted [o/this] and a new store entry x is allocated for
the formal parameter v. We apply the substitution e[return(c)/return] to indicate
that the return value of the method must be sent along channel c. The rule Await
is used to communicate the return value to its caller.

When o /∈ dom(σ) the method invocation is remote. The rule MethRemote is
applied, with care being taken to automatically serialise the parameter v if it is a
local object identifier. We note that frozen values are also transferred to the remote
location without modification (like base values).

After serialisation, we are left with a thread of the form go o.m(w) with c where
w is the serialised representation of the original parameter v. At this point, the
network level rule Leave triggers the migration of the calling thread to the location
that holds the receiving object in its local store. After transfer over the network,
the parameter is automatically deserialised and MethInvoke applied. Again, the
return value must be automatically serialised using SerReturn. Then it crosses
the network by application of Return. After returning to the caller site, it is again
deserialised.

The last two rules present instances of network failure. In the case of Err-LostCall,
the network becomes partitioned such that a remote method call attempting to
reach its destination cannot. Likewise, in Err-LostReturn, the return value
from a remote method call is lost. Both cases reduce to Error.

4.5 Multi-threaded programs

DJ contains several concurrency primitives that should be familiar to Java pro-
grammers. The reduction rules are given in Figure 9. We shall focus on the most
important rules.

The rule Fork defines a simple command for creating a new thread. When
evaluated, a new thread in the current location is started and begins executing an
expression.

The rule Sync defines a basic monitor construct. When executing E[sync (o) {e}],
we are attempting to acquire the lock on the object identified by o. To determine
whether a lock is taken, the function getLock(σ, o) returns the number of entries
to the monitor on object o in store σ. If this count is non-zero, then the predicate
insync(o,E) is used to determine whether it is the current thread that owns the
monitor (since Java allows re-entrant monitors). If this is the case then execution
proceeds by incrementing the entry count using the function setLock(σ, o, n′) with
n′ = n + 1, otherwise execution blocks. The predicates are formally defined as
follows.

Definition 4.1. (Lock functions and predicates)

insync(o,E) ⇐⇒ ∃E1, E2 such that E = E1[insync o {E2[ ]}]

Suppose σ(o) = (C, ~f : ~v, n, {~c}). Then we define:

getLock(σ, o) = n blocked(σ, o) = {~c}
setLock(σ, o, n′) = σ[o 7→ (C, ~f : ~v, n′, {~c})]

block(σ, o, c) = σ[o 7→ (C, ~f : ~v, n, {~c} ∪ {c})]
unblock(σ, o,~c′) = σ[o 7→ (C, ~f : ~v, n, {~c} \ {~c′})]
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Fork
E[fork(e)], σ, CT −→l E[ε] | forked e, σ, CT

ThreadDeath
forked v, σ, CT −→l 0, σ, CT

Sync

getLock(σ, o) =

(
0 setLock(σ, o, 1) = σ′

n > 0 insync(o, E) =⇒ setLock(σ, o, n + 1) = σ′

E[sync (o) {e}], σ, CT −→l E[insync o {e}], σ′, CT

Wait
insync(o, E) getLock(σ, o) = n setLock(σ, o, 0) = σ′′ block(σ′′, o, c) = σ′

E[o.wait] |P, σ, CT −→l (ν c)(E[waiting(c) n] |P, σ′, CT)

Notify
insync(o, E) c ∈ blocked(σ, o) unblock(σ, o, c) = σ′

E[o.notify] |E1[waiting(c) n], σ, CT −→l E[ε] |E1[ready o n], σ′, CT

NotifyAll
insync(o, E) blocked(σ, o) = {~c} m ≥ 0 unblock(σ, o,~c) = σ′

E[o.notifyAll] |E1[waiting(c1) n1] | · · · |Em[waiting(cm) nm], σ, CT

−→l E[ε] |E1[ready o n1] | · · · |Em[ready o nm], σ′, CT

NotifyNone
insync(o, E) blocked(σ, o) = ∅
E[o.notify], σ, CT −→l E[ε], σ, CT

Ready
getLock(σ, o) = 0 setLock(σ, o, n) = σ′

ready o n, σ, CT −→l ε, σ′, CT

LeaveCritical
getLock(σ, o) = n setLock(σ, o, n− 1) = σ′

insync o {v}, σ, CT −→l v, σ′, CT
insync o {return(c) v}, σ, CT,−→l return(c) v, σ′, CT

Fig. 9: Concurrency primitives

To temporarily release a lock held on an object o, the command o.wait can be
used with semantics as in Wait. First, a new channel c is created and its name is
added to the blocked set for the object o by application of the function block(σ, o, c).
The currently executing thread then enters a sleeping state, written waiting(c) n
where n indicates the number of times the thread had entered the monitor on o
before now. The lock count for o is then set to 0.

To wake sleeping threads, the commands o.notify and o.notifyAll are provided.
They differ in that the former non-deterministically wakes only one of the threads
waiting on o, whereas the latter wakes them all. We shall focus on the rule Notify.
When notifying a thread, that thread must be waiting on some channel c which
is held in the blocked set for o. This channel is then removed from the blocked
set by the function unblock(σ, o, c). The woken thread then moves to the state of
being ready o n, which means it is ready to re-acquire the lock on o, n times. It
cannot immediately acquire this lock, since necessarily the thread that performs
the notification is still within its critical section. However, as soon as that thread
leaves its critical section the newly woken party can compete to acquire the lock.

4.6 Direct code mobility

Frozen expressions offer a direct way to manipulate code and data. They permit
the storing of unevaluated terms that can, for example, be shipped to remote loca-
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Freeze

{~y} = fv(e) \ {x} σy =
[

σ(yi) σ′ = og(σ, fn(e) ∪ fn(σy)) ∪ σy {~u} = dom(σ′)

CT′ =

8><>:
cg(CT, fcl(e) ∪ fcl(σ′)) t = eager

cg(CT, ~C) t = ~C

∅ t = lazy

{~F} = fcl(e) \ dom(CT′)

freeze[t](T x){e}, σ, CT −→l λ(T x).(ν ~u)(l, e[ ~F l/~F ], σ′, CT′), σ, CT

Defrost
{~F} = fcl(σ′) \ dom(CT′)

defrost(v; λ(T x).(ν ~u)(m, e, σ′, CT′)), σ, CT

−→l (ν x~u)(download ~F from m in sandbox {e}, σ ∪ σ′ · [x 7→ v], CT ∪ CT′)

LeaveSandbox
sandbox {v}, σ, CT −→l v, σ, CT

Fig. 10: Creating and executing frozen expressions

tions for evaluation or merely saved for future use. As we have seen in § 3.1, our
formulation of the primitives subsumes the serialisation operations found in Java
that were explained in § 4.3.

As introduced in Figure 3, there are two operations associated with frozen values—
for their creation and use—called freezing and defrosting respectively. Their rules
are given in Figure 10.

Freezing is given by Freeze, and has modes lazy, eager, and user-specified. Its
operation is divided into two steps. The first step in any mode is to determine the
store locations used by the expression e. We do this by examining the expression
for any free variables, excluding the formal parameter x. The store entries for
each variable are copied, σy. Next, we search for all the free object identifiers in
e, written fn(e). Because variables may hold references to objects, we must then
examine the store fragment σy for any object identifiers held in the co-domain
of variable mappings. Finally, objects have internal structure, so we apply the
object graph function given in Algorithm 4.1 to copy all local objects transitively
referenced by e or its variables, resulting in σ′. Base values stored in variables are
copied “as-is”.

In the second step the freezing mode matters because it directly affects the
amount of class information included in CT′. For the lazy case, no extra classes
are provided with the expression, so the result of applying Freeze is a value of the
form λ(T x).(ν ~u)(l, e, σ, ∅).

When the case is eager, the creator of the frozen expression takes responsibility
for including all classes that e depends upon. In the case that the user specifies
a list of classes ~C, only those classes and their dependencies are included. In
either situation, we must use the class dependency algorithm in Algorithm 4.2 to
determine the classes that the expression (or the user-specified classes) rely upon.

Finally Figure 11 lists the reduction rules for threads and networks. They are
standard using contexts and the structure rules.
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4.7 Algorithms

4.7.1 Object graph. An object graph is defined as the set of all mappings from
an object identifier to store object for every local object transitively referenced by
local object identifier v. The lock count, n, for each object is reset to zero when
copied and the blocked set ~c emptied to preserve linearity. If the value v refers to
a remote object, or a base value such as a boolean, then the object graph is empty.

Algorithm 4.1. (Object graph calculation) The function og(σ, v) which com-
putes the object graph of value v in store σ is defined as follows.

og(σ, v) =

{
∅ if v /∈ dom(σ) ∨ remote(C)
[v 7→ (C, ~f : ~v, 0, ∅)]

⋃
og(σi, oi) otherwise

where σ(v) = (C, ~f : ~v, n, {~c}), {~o} = fn(~v), σ1 = σ \ {v} and σi+1 = σi \
dom(og(σi, oi)).

See [Ahern and Yoshida 2005a, Example 4.9] for an example of the algorithm. In
the full Java language, fields may be marked transient. Such fields are never
serialised (for example they may contain a value that can be derived from other
fields, or a reference to a non-serialisable object). Similarly, the Emerald language
[Hutchinson et al. 1991] supports a qualifier called “attached” that indicates which
of an object’s fields should be brought along it when it is copied. To support these
extra features in DJ would involve the straightforward extension of syntax and a
trivial modification to the object graph algorithm.

4.7.2 Class dependencies. An expression e directly depends upon a class C when
C ∈ fcl(e). e indirectly depends upon a class C when ∃D ∈ fcl(e) and D is a
subclass of C, or C appears free in the body of a method declared in D. Informally,
dependency occurs when execution of an expression may at some point trigger
instantiation of a class.

In order to calculate sets of dependencies we define an algorithm as follows:

Algorithm 4.2. (Class dependency set calculation)

cg(CT, ~M) =
⋃

cg(CT, fcl(ei)) with Mi = Ui mi(Ci xi){ei}

cg(CT, C) =

{
∅ if C /∈ dom(CT) ∨ C ∈ dom(FCT)

cg(CT, CT(C)) otherwise
cg(CT, ~C) =

⋃
cg(CT, Ci)

cg(CT, L) = cg(CT \ C,D) ∪ cg(CT \ C, ~M) ∪ [C 7→ L]

where L = class C extends D {~T ~f ; K ~M}

4.7.3 Correctness of algorithms. In this subsection we show one of the key re-
sults that are used in the proof in § 6, the correctness of the graph algorithms.

First we define the predicate reachable(σ, o, o′) to hold if there exists a path in
store σ from the object with identifier o to the object with identifier o′. This can
be an immediate link (when o′ is stored in a field of o), or it can be via the fields
of one or more intermediaries. This is defined as follows, where σ(o) = (C, ~f : ~v):

reachable(σ, o, o′) ⇐⇒ (o′ ∈ fn(~v) ∨ ∃o′′ ∈ fn(~v).reachable(σ, o′′, o′))
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We extend this predicate to arbitrary thread P :

reachable(σ, P, o) ⇐⇒ ∃o′ ∈ {~o}.reachable(σ, o′, o)

where {~x} = fv(P ) and {~o} =
⋃

fn(σ(xi)) ∪ fn(P ).
With this predicate we define the relation RCH(σ) which contains all reachable

pairs of objects in a store σ as follows:

RCH(σ) = {(o, o′) | ∀o, o′ ∈ dom(σ).o 6= o′ ∧ reachable(σ, o, o′)}

Our object graph algorithm must, to be correct, preserve the tree structure of the
store when copying objects, hence it must preserve this reachability relation.

For a store σ and an object graph σg computed from that store, the predi-
cate ogcomp(σ, σg) (completeness of an object graph) holds if the computed graph
preserves the reachability relation for all object identifiers in its domain. Given
RCH(σ) and RCH(σg), we define:

ogcomp(σ, σg)
def= ∀o ∈ dom(σ) ∩ dom(σg).(o, o′) ∈ RCH(σ) ⇐⇒ (o, o′) ∈ RCH(σg)

This property ensures all links are correctly copied to the graph σg, and no new
links are created.

4.7.4 Class dependency algorithm. The correctness of the class dependency al-
gorithm relies upon the definition of the following predicate:

comp(C, CT) def= ∀D C <: D.D ∈ dom(CT)

which is read: class table CT is complete with respect to class C. When C is actually
used, the class table CT at that location should be complete w.r.t. C. We extend
the notion of completeness to entire class tables: we say a class table CT is complete
if the following predicate holds:

ctcomp(CT) def= ∀D ∈ dom(CT).comp(D, CT)

This means for every class D ∈ dom(CT), every superclass of D is also available in
CT.

With these preliminaries dealt with, we have the following lemma:

Lemma 4.1. (Correctness of algorithms)

(1 ) Γ;∆ ` σ : ok and σ′ = og(σ, o) implies Γ; ∅ ` σ′ : ok; for all o′ ∈ dom(σ′),
we have σ′(o′) = (C, . . .) with local(C); and for all o′ ∈ (fn(σ′) \ dom(σ′)),
Γ ` o′ : C with remote(C).

(2 ) σ′ = og(σ, v) implies ogcomp(σ, σ′).
(3 ) Suppose ` CT : ok with Ci ∈ dom(CSig). Then we have ` cg(CT, ~C) : ok.
(4 ) ctcomp(CT) and CT′ = cg(CT, C) imply ctcomp(CT′ ∪ FCT).

Proof. See Appendix C.

4.8 Examples of executions

This subsection gives three small examples of the dynamic semantics, focusing on
distributed primitives. Since no concurrent threads exist, we omit the counter 0
and an empty queue ∅ from store entries [o 7→ (C, .., 0, ∅)].



24 ·

RC-Par
P1, σ, CT −→l (ν ~u)(P ′

1, σ′, CT′)

P1 |P2, σ, CT −→l (ν ~u)(P ′
1 |P2, σ′, CT′)

~u /∈ fnv(P2)

RC-Str
F ≡ F0 −→l F ′

0 ≡ F ′

F −→l F ′

RC-Res
(ν ~u)(P, σ, CT) −→l (ν ~u′)(P ′, σ′, CT′)

(ν u~u)(P, σ, CT) −→l (ν u~u′)(P ′, σ′, CT′)

RN-Conf
F −→l F ′

l[F ] −→ l[F ′]

RN-Par
N −→ N ′

N |N0 −→ N ′ |N0

RN-Res
N −→ N ′

(ν u)N −→ (ν u)N ′

RN-Str
N ≡ N0 −→ N ′

0 ≡ N ′

N −→ N ′

Fig. 11: Network and thread

Freeze and Defrost. First we demonstrate freeze and defrost. After executing
the program in Listing 9, at location l, we should obtain a frozen expression of the
form:

λ(int x).(ν o1, o2, y)(l, x+ y + o1.f, σ1, CT1)
where σ1 = [o1 7→ (A, f : 5, g : o2)] · [o2 7→ (B, . . .)] · [y 7→ 6] and CT1 = [B 7→ . . . ]

1 class A {

2 int f; B g;

3 A(int f, B g) { this.f = f; this.g = g; }

4 }

5 class B { }

6 // Program

7 int y = 6; A o1 = new A(5, new B());

8 freeze[B] int x){x + y + o1.f};

Listing 9: Example of a program using freeze

To defrost a frozen value λ(T x).(ν ~u)(m, e, σ1, CT1) we apply Defrost. Firstly,
any classes supplied with the frozen value are appended to the current class table.
Any class names appearing free in e are tagged with their originating location:
new C(~e) becomes new Cl(~e). During execution of the newly defrosted code, when
an expression such as the above new Cl(~v) is encountered then NewR is applied if
the body of C has not been downloaded to the execution location.

The second stage is to merge the data shipped with the value, σ1, into the local
store. It is not possible to merely append this to the local store, since this could
cause a name clash (for example two entries for variable x in the same scope).
Therefore we create new memory locations for the formal parameter of the frozen
expression, as well as for every element in the domain of the accompanying store
entries. This is written (ν x~u). It is then safe to append the new store and allocate
space for the formal parameter. We write the new store at the location as σ∪σ1·[x 7→
v].

The final aspect of the defrost rule is to download the classes for all the objects
added to the store in the previous step, because we may have added instances of
classes not present at this location. This means instead of immediately evaluating e
we call download ~F fromm in sandbox {e}. This accurately mimics the mechanism
employed by the RMIClassLoader class used in Java RMI. When sending marshaled
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objects, RMI implementations annotate the data stream for classes with a codebase
URL. This is a pointer to a remote directory that the RMIClassLoader can refer
to download classes that are not available at the current location.

After class downloading has completed, we are left with an expression of the
form sandbox {e}. Execution inside the sandbox then proceeds until a value is
computed, which is then propagated to the enclosing scope according to the rule
LeaveSandbox. Take the frozen expression computed in the example previously
and call it t. We now give another example of defrosting this time at a location l,
where it is important to notice that a variable y is already in scope: ν -operator will
be used to avoid collision of bound variables and names. We abbreviate download
to dl and sandbox to sb in the following:

defrost(5; t), [y 7→ true], CT

−→m (ν x, o1, o2, y2)(dl A from l in sb {x + y2 + o1.f}, σ2, CT2)

with σ2 = [y 7→ true] · [o1 7→ (A, f : 5, g : o2)] · [o2 7→ (B, ε)] · [y1 7→ 6] · [x 7→ 5]

and CT2 = CT · [B 7→ . . . ]

−→m (ν x, o1, o2, y1)(resolve A from l in sb {x + y1 + o1.f}, σ2, CT3)

with CT3 = CT2 · [A 7→ . . . ]

Assuming that the superclass of A is Object, this should already be present in the
local class table.

−→m (ν x, o1, o2, y1)(dl Object from l in sb {x + y1 + o1.f}, σ2, CT3)

−→m (ν x, o1, o2, y1)(sb {x + y1 + o1.f}, σ2, CT3)

→→m sb {16}, [y 7→ true], CT3 −→m 16, [y 7→ true], CT3

In the final steps, we garbage-collect the store entries added by the frozen expression
since they are now no longer required.

Class downloading. To illustrate the different class loading mechanisms, we
change the above example as follows and investigate the cases when we change B
in freeze to eager or lazy.

1 class A extends C{ ...}

2 class B { }

3 class C {D m(){return new D()}}

4 class D { }

Listing 10: Example of eager and lazy class downloading

- In the case of eager, the frozen expression ships all classes (A,B,C,D). Hence
there is no downloading required after defrost.

- In the case of lazy, the frozen expression ships no classes. When defrosting,
it downloads A and B. When resolving them at the next step, A’s superclass
C is called to be downloaded. After C is downloaded, the final class table
becomes CT5 = CT3 · [C 7→ class C {D d(){return new Dl()}}]. Note that D is
not downloaded: hence it is renamed to Dl so that if D requires instantiation,
NewR will be applied and D downloaded from l.
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Remote method invocation. The last example is RMI. We replace class B in
location l in Listing 9 with the one below. We assume location m has the remote
class R and classes A and B are local.

1 // location l

2 class B { }

3 // Program

4 A o1 = new A(5, new B()); return r.f(o1);

5 // location m

6 class R { Integer f(A x){ return x.f +1}}

Listing 11: Example of remote method invocation

After the execution at the location l, we obtain the method invocation of the
form:

(ν o1, o2)(E[return r.f(o1)], σ′1, CT
′
1)

with CT′1 = [A 7→ ...] · [B 7→ ...] and σ2 = [o1 7→ (A, f : 5, g : o2)] · [o2 7→ (B, ε)]. This
reduces to:

−→l (ν o1, o2, c)(E[await c] | go r.f(serialize(o1)) with c, σ′1, CT
′
1)

−→l (ν o1, o2, c)(E[await c] | go r.f(v) with c, σ′1, CT
′
1)

with v = λ(unit x).(ν o1, o2)(o1, σ′1). When the remote method invocation hap-
pens, the argument o1 is serialised and frozen value v is created. Now go r.f(v) with c
moves to the location m by Leave, opening the scope of c. After the message
reaches to the location m, v is deserialised, starting downloading classes A and B
as follows. Below we assume CT′2 = [R 7→ ...] and σ′2 = [r 7→ (R, ∅)]:

r.f(deserialize(v)) with c, σ′2, CT
′
2

−→l (ν o1, o2)(r.f(o1) with c, σ′1 · σ′2, CT′2)
−→l (ν o1, o2)(r.f(dl A, B from l in sb {o1}) with c, σ′1 · σ′2, CT′2)
→→l (ν o1, o2)(r.f(o1) with c, σ′1 · σ′2, CT′2 · CT′1)
−→l (ν o1, o2, x)(return(c) x.f(o1) + 1, σ′1 · σ′2 · [x 7→ o1], CT

′
2 · CT′1)

→→l return(c) 6, σ′2, CT
′
2 · CT′1 −→l go 6 to c, σ′2, CT

′
2 · CT′1

Next “go 6 to c” can safely return to the location l (since there exists only one
await c) changing its form to “return(c) 6” by Return. Finally we get E[6] by
Await, as required.

5. TYPING SYSTEM

This section presents the key typing rules for DJ, focusing on the linear channel
types and the use of invariants for typing runtime expressions and the new primi-
tives. First we introduce the syntax of types and environments in Figure 12.
T represents expression types: booleans, class names, frozen expressions that

take a parameter of type T and return elements of type U and the unit type. The
metavariable U ranges over the same types as T but is augmented with the special
type void with the usual empty meaning. We write C <: D when class C is a
subtype of class D. Our notion of subtyping is mostly standard (we assume <:
causes no cycle as in [Igarashi et al. 2001; Bierman et al. 2003]). It is given in
Figure 12. The arrow type is standard.
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T ::= boolean | unit | C | T → U (Types)

U ::= void | T (Returnable types)

Extended types not appearing in program text:

S ::= U | ret(U) (Return types)

τ ::= chan | chanI(U) | chanO(U) (Channel types)

Γ ::= ∅ | Γ, x : T | Γ, o : C | Γ, this : C (Expression environment)

∆ ::= ∅ | ∆, c : τ (Channel environment)

T <: T
C <: D D <: E

C <: E

U ′
i <: Ui 0 ≤ i < n

~U ′ <: ~U

T ′ <: T U <: U ′

T → U <: T ′ → U ′

U ′ <: U

ret(U ′) <: ret(U)

CSig(C) = C extends D ~T ~f {mi : Ci → Ui}
C <: D

Fig. 12: Types and subtyping

Two runtime types (which do not appear in programs) are newly introduced.
Return types are ranged over by S are used to denote the type of value returned by
a method invocation (U m(C x){e} is well-typed if e has the type ret(U)). Channel
types are ranged over by metavariable τ and represents the types for channels used
in method calls, which is explained in the next subsection.

There are two different kinds of environment. The environment for typing ex-
pressions, written Γ, is a finite map from variables, o-ids and this to types ranged
over by T . ∆ is a finite map from channel names to channel types, and appears
in judgements for method calls and those involving multiple threads and locations.
We often omit empty environments from judgements for clarity of presentation.

5.1 Linear channel types

One of the key tasks of the typing rules is to ensure linear use of channels. This
means that for every channel c there is exactly one process waiting to input from c
and one to output to c. In terms of DJ, this ensures that a method receiver always
returns its value (if ever) to the correct caller, and that a returned value always
finds the initial caller waiting for it. In Figure 12, chanI(U) is linear input of a
value of type U ; chanO(U) is the opponent called linear output. The type chan is
given to channels that have matched input and output types. chanI(U) is assigned
to await, while chanO(U) is to threads with/to c (either return(c) e, e with/to c,
or go e with/to c).

To see the use of linear types, consider the following network; the return ex-
pression cannot determine the original location if we have two awaits at the same
channel c, violating the linearity of c.

l1[E1[await c], σ1, CT1] | l2[E2[await c], σ2, CT2] | l3[go v to c, σ3, CT3] (1)

The uniqueness of the returned answer is also lost if return channel c appears twice.

l1[return(c) e1, σ1, CT1] | l2[return(c) e2, σ2, CT2] (2)
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The aim of introducing linear channels is to avoid these situations during execu-
tion of runtime method invocations. The following binary operation � is used for
controlling the composition of threads and networks.

Definition 5.1. The commutative, partial, binary composition operator on chan-
nel types, �, is defined as chanI(U) � chanO(U) def= chan. Then we define the
composition of two channel environments ∆1 �∆2 as:

{∆1(c)�∆2(c) | c ∈ dom(∆1) ∩ dom(∆2)} ∪∆1 \ dom(∆2) ∪∆2 \ dom(∆1)

Two channel types, τ and τ ′ are composable iff their composition is defined: τ �
τ ′ ⇐⇒ τ � τ ′ is defined. Similarly for ∆1 � ∆2.

Note that � and � are partial operators. Hence the composition of other com-
binations is not allowed. Once we compose linear input and output types, then
it is typed by chan, hence it becomes uncomposable because chan 6� τ for any τ .
Intuitively if P is typed by environment ∆1 and Q by ∆2, and if ∆1 � ∆2, then we
can compose P and Q as P |Q safely, preserving channel linearity. Hence (1) is un-
typable because of chanI(U) 6� chanI(U) at c. (2) is too by chanO(U) 6� chanO(U)
at c.

5.2 Well-formedness

Well-formedness is defined for types, environments, stores and class tables in Fig-
ure 13. There are six kinds of judgement, and all are interrelated. In the following
we assume α ranges over either τ, S, U or C extends D ~T ~f {mi : Ci → Ui}.

Γ;∆ ` Env Γ;∆ are well-formed environments.
` α : tp α is a well-formed type.

Γ;∆ ` σ : ok σ is a well-formed store in Γ;∆.
` CSig : ok CSig is a well-formed signature.
` CT : ok CT is a well-formed class table.

The judgements are standard. Note that CSig only contains well-formed types; and
C is well-formed if its CSig entry is so.

5.3 Value and expression typing

Types are assigned to values and expressions using only the expression environment
Γ. They have judgements of the form:

Γ ` e : α e has type α in expression environment Γ.

where α ranges over T , U and S, and the typing rules are given in Figure 14.
The typing judgement is lightweight or local in the sense that it does not require
knowledge about method bodies held at other locations, requiring only the declared
signature of the method. This is possible by the use of the class signatures and
invariants as explained later.

First we focus on the key typing rule for frozen expressions, TV-Frozen. In
order for such a value to be well-typed we must ensure that the store σ and CT
are well-typed, and that the expression e computes a result of the expected type
when supplied its formal parameter. The simplicity of this rule comes from the
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(Environments)

∅ ` Env
Γ ` Env ` T : tp x /∈ dom(Γ)

Γ, x : T ` Env

Γ ` Env ` C : tp this /∈ dom(Γ)

Γ, this : C ` Env

Γ ` Env ` C : tp o /∈ dom(Γ)

Γ, o : C ` Env

Γ ` Env

Γ; ∅ ` Env

Γ;∆ ` Env ` τ : tp c /∈ dom(∆)

Γ;∆, c : τ ` Env

(Types)

` boolean : tp
` void : tp

` chan : tp

` U : tp ∨ U ∈ CSig

` chanI(U) : tp
` chanO(U) : tp

` ret(U) : tp

∀C ∈ dom(CSig) ` C : tp

` CSig : ok

` CSig(C) : tp

` C : tp

` D : tp ∀S ∈ { ~C, ~U} ` S : tp ∨ S ∈ dom(CSig)

fields(C) = ~T ~f mi ∈ CSig(D) =⇒ mtype(mi, C) <: mtype(mi, D)

` [remote] C extends D ~T ~f {mi : Ci → Ui} : tp

(Stores)

Γ;∆ ` Env

Γ;∆ ` ∅ : ok

Γ;∆ ` σ : ok

Γ ` x : T x /∈ dom(σ)

Γ ` v : T ′ T ′ <: T

Γ;∆ ` σ · [x 7→ v] : ok

Γ ` o : C Γ;∆ ` σ : ok o /∈ dom(σ)

Γ;∆ ` (C, ~f : ~v, n, {~c}) : ok

Γ;∆ ` σ · [o 7→ (C, ~f : ~v, n, {~c})] : ok

Γ ` ~v : ~T ′ ~T ′ <: ~T fields(C) = ~T ~f n ≥ 0 Γ;∆ ` ci : chanO(void)

Γ;∆ ` (C, ~f : ~v, n, {~c}) : ok

(Class tables)

this : C, x : D ` e : ret(U ′)
mtype(m, C) = D → U U ′ <: U

this : C ` U m(D x){e} : ok in C

this : C ` ~M : ok in C

fields(D) = ~T ′ ~f ′ fields(C) = ~T ~f

K = C (~T ′ ~f ′, ~T ~f){super(~f ′); this. ~f = ~f}
` class C extends D {~T ~f ; K ~M} : ok

` ∅ : ok

L = class C extends D {~T ~f ; K ~M}
` L : ok ` CT′ : ok

` CT′ · [C 7→ L] : ok

Fig. 13: Well-formedness

assumption that runtime values are created under the invariants defined in § 6. By
combining with the invariants, we shall see:

- Instances of remote classes are not contained in σ, i.e. if o ∈ dom(σ), then we
have σ(o) = (C, . . .) with local(C). This is guaranteed by the combination of
invariants from Inv(4) to Inv(8) in § 6.1.2.

- The closure contains no free variables and no local object-identifiers: for exam-
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TV-Basic
Γ ` Env

Γ ` true : boolean

false : boolean

() : unit
ε : void

TV-Null
Γ ` Env ` C : tp

Γ ` null : C

TV-Oid
Γ, o : C, Γ′ ` Env

Γ, o : C, Γ′ ` o : C

TV-Frozen
Γ, x : T, ~u : ~T ` e : U Γ, ~u : ~T ; ∅ ` σ : ok ` CT : ok

Γ ` λ(T x).(ν ~u)(l, e, σ, CT) : T → U

TE-Var
Γ, x : T, Γ′ ` Env

Γ, x : T, Γ′ ` x : T

TE-This
Γ, this : C, Γ′ ` Env

Γ, this : C, Γ′ ` this : C

TE-Cond
∃S : S1 <: S ∧ S2 <: S

Γ ` e : boolean

Γ ` e1 : S1 Γ ` e2 : S2

Γ ` if (e) {e1} else {e2} : S

TE-While
Γ ` e1 : boolean

Γ ` e2 : void

Γ ` while (e1) {e2} : void

TE-Fld
Γ ` e : C ` C : tp

e 6= this, o =⇒ local(C)

fields(C) = ~T ~f

Γ ` e.fi : Ti

TE-Seq
Γ ` e1 : U Γ ` e2 : S

Γ ` e1; e2 : S

TE-Ass
Γ ` e : T ′ T ′ <: T

Γ ` x : T

Γ ` x = e : T ′

TE-FldAss
Γ ` e.f : T T ′ <: T

Γ ` e′ : T ′

Γ ` e.f = e′ : T ′

TE-New
fields(C) = ~T ~f T ′i <: Ti

Γ ` ei : T ′i ` C : tp

Γ ` new C (~e) : C

TE-Meth
mtype(m, C) = D → U

Γ ` e0 : C

Γ ` e : D′ D′ <: D

Γ ` e0.m(e) : U

TE-Dec
Γ ` e : T T <: T ′

Γ, x : T ` e0 : S

Γ ` T ′ x = e; e0 : S

TE-Return
Γ ` e : U

Γ ` return e : ret(U)

TE-ReturnVoid
Γ ` Env

Γ ` return : ret(void)

TE-Freeze
Γ, x : T ` e : U

Γ ` freeze[t](T x){e} : T → U

TE-Defrost
Γ ` e0 : T ′ T ′ <: T

Γ ` e : T → U

Γ ` defrost(e0; e) : U

TE-Fork
Γ ` e : S

Γ ` fork(e) : void

TE-Sync
e 6= this, o =⇒ local(C)
Γ ` e1 : C Γ ` e2 : S

Γ ` sync (e1) {e2} : S

TE-Monitor
e 6= this, o =⇒ local(C)

Γ ` e : C

Γ ` e.wait : void

e.notify : void
e.notifyAll : void

TE-ClassLoad
Γ ` e : U ` ~C : tp

Γ ` download ~C from l in e : U

resolve ~C from l in e : U

TE-InSync
Γ ` o : C Γ ` e : S

Γ ` insync o {e} : S

TE-Sandbox
Γ ` e : U

Γ ` sandbox {e} : U

TE-Ready
Γ ` o : C n > 0

Γ ` ready o n : void

TE-Hole
` U : tp

Γ ` [ ]U : U

Fig. 14: Value and expression typing rules
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ple, by the combination of the invariants from Inv(4) to Inv(14) in § 6.1.4, we
know σ(oi) = vi is closed so that we can ensure that the resulting frozen value
is closed again.

The assumption for the initial class table is more complicated as shall be explained
in the next section.

5.3.1 Locality for field and thread synchronisation. There are two important re-
strictions which we should impose in correspondence with the current Java im-
plementation. The first constraint is to disallow field access and assignment to a
remote object in a different location. Hence the following should be prohibited even
if class C is remote.

l[E[o.f ]|P, σ1, CT1] |m[Q, σ2 · [o 7→ (C, . . .)], CT2] (3)

However we wish to allow to type the following with class C remote:

l[E[o.f ]|P, σ1 · [o 7→ (C, . . .)], CT1] |m[Q, σ2, CT2] (4)

An early version of the work simply replaced the typing rule for field access with
one that prevented it on any instance of a remote class. While safe this was overly
restrictive, since even at the location where the remote object was held in store, no
update to any of its fields could ever take place, hence (4) above was untypable.

In order to propose a typing rule to prevent remote field access statically but
allow field access on remote objects locally, we require a combination of the locality
invariants in § 6.1.2, the rule TE-Fld and also the initial conditions explained in
Definition 6.3. The rule TE-Fld restricts field accesses only for local classes if e
is neither this or o. The special expression this is allowed to have a remote class
because this is always instantiated by an object identifier o that is present in the
local store (see MethInvoke). This constraint, together with our initial conditions
guarantees that field access is always local.

The second restriction with respect to Java implementation is on thread syn-
chronisation: performing thread synchronisation on a remote object is undefined
behaviour. In Java it is possible to synchronise on the stub to a remote object,
but this is not the same as synchronising on the actual remote object, since it does
not acquire the lock on the underlying object held at the remote site and does not
prevent other clients in the network from accessing that resource.

1 // Client 1 in Location 2

2 // ... import reference to r via RMI registry

3 synchronized (r) {

4 r.set(1);

5 return r.get();

6 }

7 // Client 2 in Location 3

8 // ... import reference to r via RMI registry

9 synchronized (r) {

10 r.set(2);

11 return r.get();

12 }

Listing 12: Incorrect synchronisation program
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In the above, suppose we have the remote class which contains synchronised meth-
ods set and get in location 1 and two clients in locations 2 and 3. In this example
the clients happen to be aware that their server is providing a shared resource, so
they try to guarantee a “transaction” by “locking” the remote object. However this
only locks the local stub objects, and does not prevent interleaving of operations:
hence it is possible for client 1 to return 2 and client 2 to return 1. To avoid this
situation by type-checking, we can just put the same condition as the field access as
defined in TE-Sync. Combining the invariants of locality, then we can now detect
the above situation.

To implement a server-side locking solution would require engineering effort and
an agreed protocol between clients. For instance, we consider a semaphore-style
arrangement to guarantee the atomicity of a “transaction” in the following example:

1 // Client 1 in Location 2

2 // ... import reference to r via RMI registry

3 r.down();

4 r.set(1);

5 int v = r.get();

6 r.up();

7 return v;

8

9 // Client 2 in Location 3

10 // ... import reference to r via RMI registry

11 r.down();

12 r.set(2);

13 int v = r.get();

14 r.up();

15 return v;

Listing 13: Correct synchronisation program

This would require synchronised down() and up() methods to be installed in the
remote object r, and would be very fragile since it relies on the good behaviour
of clients to correctly signal the semaphore upon leaving the critical section. This
option would be typable by our system, since it does not require synchronisation
on the remote object r.

5.4 Thread and network typing

Threads, configurations and networks are assigned types under both the expression
environment Γ and the channel environment ∆. The judgements take the following
forms:

Γ;∆ ` P : thread P is a well-typed thread in environment Γ; ∆.
Γ;∆ ` F : conf F is a wt. configuration in environment Γ; ∆.
Γ;∆ ` N : net N is a wt. network in environment Γ;∆.

The typing rules are given in Figure 15. The most important rule for threads
is TT-Par; we type a parallel compositions of threads if a composition of their
respective channel environments preserves the linearity of channels. This is checked
by ∆1 � ∆2.
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TT-Nil
Γ; ∅ ` Env

Γ; ∅ ` 0 : thread

TT-Par
Γ;∆i ` Pi : thread

∆1 � ∆2

Γ;∆1 �∆2 ` P1 |P2 : thread

TT-Await
Γ;∆ ` E[ ]U : thread c /∈ dom(∆)

Γ;∆, c : chanI(U) ` E[await c]U : thread

TT-Res
Γ;∆, c : chan ` P : thread

Γ;∆ ` (ν c)P : thread

TT-Return
Γ ` e : ret(U ′) U ′ <: U

Γ; c : chanO(U) ` e[return(c)/return] : thread

TT-Waiting
Γ;∆ ` E[ ]void : thread c /∈ dom(∆) n > 0

Γ;∆, c : chanI(void) ` E[waiting(c) n]void : thread

TT-Forked
Γ ` e : S

Γ; ∅ ` forked e : thread

TT-GoSer
Γ ` o : C remote(C) Γ ` o.m(v) : U

Γ; c : chanO(U) ` go o.m(serialize(v)) with c : thread

TT-MethWith
Γ ` o.m(v) : U

Γ; c : chanO(U) ` o.m(v) with c : thread

TT-DeserWith
Γ ` v : unit→ D′ Γ ` o : C D′ <: D remote(C) mtype(m, C) = D → U

Γ; c : chanO(U) ` o.m(deserialize(v)) with c : thread
go o.m(v) with c : thread

TT-ValTo
Γ ` v : U ′ U ′ <: U

Γ; c : chanO(U) ` go serialize(v) to c : thread
go v to c : thread

TC-Weak
Γ;∆ ` F : conf c /∈ dom(∆)

Γ;∆, c : chan ` F : conf

TC-ResC
Γ;∆, c : chan ` F : conf

Γ;∆ ` (ν c)F : conf

TC-ResId
Γ, u : T ;∆ ` F : conf

u ∈ dom(F )

Γ;∆ ` (ν u)F : conf

TC-Conf
Γ;∆1 ` P : thread Γ;∆2 ` σ : ok
` CT : ok FCT ⊆ CT ∆1 � ∆2

Γ;∆1 �∆2 ` P, σ, CT : conf

TN-Nil
Γ; ∅ ` Env

Γ; ∅ ` 0 : net

TN-Conf
Γ;∆ ` F : conf

Γ;∆ ` l[F ] : net

TN-Par
Γ;∆i ` Ni : net dom(N1) ∩ dom(N2) = ∅

∆1 � ∆2 loc(N1) ∩ loc(N2) = ∅
Γ;∆1 �∆2 ` N1 |N2 : net

TN-Weak
Γ;∆ ` N : net
c /∈ dom(∆)

Γ;∆, c : chan ` N : net

TN-ResId
Γ, u : T ;∆ ` N : net

u ∈ dom(N)

Γ;∆ ` (ν u)N : net

TN-ResC
Γ;∆, c : chan ` N : net

Γ;∆ ` (ν c)N : net

Fig. 15: Thread and network typing rules

We must make a similar check in TC-Conf, since the blocked queue of threads
waiting for locks requires the use of a channel environment to type the store σ. A
configuration is then well-typed in an environment Γ; ∆1�∆2 if its threads, P , are
well typed in the environment Γ; ∆1 and its store σ is well-typed under Γ;∆2 with
∆1 � ∆2. The class table must also be well-formed, and must contain a copy of the
foundation classes FCT. The rule TN-Conf promotes configurations to the network
level. For the rule TN-Par, we use the set of location names in a network N are
given by the function loc(N), defined as: loc(0) = ∅, loc(l[F ]) = {l}, loc(N1 |N2) =
loc(N1) ∪ loc(N2) and loc((ν u)N) = loc(N). We also use ∆1 � ∆2 as TC-Conf
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to check the composability.

6. NETWORK INVARIANTS AND TYPE SOUNDNESS

This section presents the main technical results of the present paper. We first
introduce several runtime invariants and show that if an initial network satisfies
certain conditions then reductions always preserve these runtime invariants. Next
we establish subject reduction by the use of invariants. Finally combining subject
reduction and invariants, we derive progress and other safety guarantees.

6.1 Network invariants

We start from the definition of a property over networks, given in Definition 6.1.

Definition 6.1. (Properties) Let ψ denote a property over networks (i.e. ψ is a
subset of networks). We write N |= ψ if N satisfies ψ (i.e. if N ∈ ψ); we also
write N 6|= ψ if N does not satisfy ψ. We define the error property Err as the
set of the networks which contain Error as subexpression, i.e. Err = {N | N ≡
(ν ~u)(l[E[Error] |P, σ, CT] |N ′)}. We say ψ is a network invariant with an initial
property ψ0 if ψ = {N | ∃N0.(N0 |= ψ0, N0 →→ N, N 6|= Err)}

The following lemma is needed to formulate the network invariants of DJ. This
concerns the canonical forms: every typable network can be written in such a form.
Intuitively, a canonical form is one in which all restricted identifiers are moved out
to the network level.

Lemma 6.1. (Canonical forms) Suppose that Γ;∆ ` N : net then we have N ≡
(ν ~u)(

∏
0≤i<n li[Pi, σi, CTi]) where n denotes the number of locations in N .

Proof. By induction on the number of networks in parallel, n.

The following lemma states that the typability is preserved under the structure
rules. By this and the above lemma, we only have to consider the canonical forms
for defining the network invariants.

Lemma 6.2. (Structural equivalence preserves typability)

(1 ) If Γ;∆ ` F : conf and F ≡ F ′ then Γ;∆ ` F ′ : conf.
(2 ) Assume Γ;∆ ` P : thread and P ≡ P ′, then we have Γ;∆ ` P ′ : thread.
(3 ) If Γ;∆ ` N : net and N ≡ N ′ then Γ;∆ ` N ′ : net.

Proof. By induction on typing derivations paying attention to the last rule
applied. See Appendix D.3.

In order to ensure the correct execution of networks and the preservation of safety,
we require certain properties to remain invariant.

Definition 6.2. (Network invariants) Given network N ≡ (ν ~u)(
∏

0≤i<n li[Fi])
with Fi = (Pi, σi, CTi), and assuming 0 ≤ j < n, i 6= j where required, we define
property Inv(r) as a set of networks which satisfy the condition r (with 1 ≤ r ≤ 17)
as defined below.

The majority of these properties fall into one of three important categories: class
availability, locality and linearity. Each invariant has a clear operational (and
arguably engineering) meaning.



· 35

6.1.1 Class availability

Inv(1) FCT ⊆ CTi

Inv(2) Pi ≡ E[new C(~v)] |Qi =⇒ comp(C, CTi)

Inv(3) C ∈ dom(CTi) ∩ dom(CTj) =⇒
CTi(C) = CTj(C) ∨ CTi(C) = CTj(C)[ ~Dli/ ~D] with fcl(CTi(C)) = { ~D}

Key invariant properties in the presence of distribution are those of class availability.
For example when a class is needed, it and all its superclasses must be present in
the local class table. This requirement eliminates erroneous networks containing
locations such as: l[E[new C(~v)], σ, ∅] where class C is not present in l’s empty
class table, so the initial step of execution will cause a crash. Note that even if
C is present, if its superclass D is not then this is also an unexpected state. For
example, in our system Inv(2) says that if we attempt to instantiate C, we need to
have all its superclasses.

Inv(3) models the strict default class version control of the Java serialisation API.
For example suppose we serialise an instance of the following class:

1 class A implements java.io.Serializable {

2 private int i;

3 private int j = 0;

4 A(int i) { this.i = i; }

5 }

If we then pass this to a remote consumer who has also has a class A, then deseri-
alisation is not guaranteed to succeed, even if they have a binary compatible copy
of the class:

1 class A implements java.io.Serializable {

2 private int i;

3 A(int i) { this.i = i; }

4 }

This is because it is impossible to recreate the original A at the new site without
special low level programming. Moreover the serialVersionUID—a long integer
hash value computed from the structure of a class file—will differ between the
serialised object and the version of A held by the consumer [Greanier 2005].1

6.1.2 Locality

Inv(4) fv(Pi) ⊆ dom(σi) ⊆ {~u}
Inv(5) dom(σi) ∩ dom(σj) = ∅
Inv(6) o ∈ fn(Fi) ∩ fn(Fj) =⇒ ∃!k. σk(o) = (C, . . .) ∧ remote(C)

Inv(7) o ∈ fn(Fi) ∧ ∃k. σk(o) = (C, . . .) ∧ local(C) =⇒ k = i

Inv(8) o ∈ fn(Fi) =⇒ ∃k 1 ≤ k ≤ n. o ∈ dom(σk)

1It is possible to override this value at the programmer level, however we do not consider such
advanced techniques for versioning serialised objects.
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Inv(9) Suppose

Ri ∈ { o.m(e) with c, E[o.f ], E[o.f = e], E[sync (o) {e}],
E[insync o {e}], E[o.notify], E[o.notifyAll], E[o.wait], E[ready o n] }

Then Pi ≡ Qi |Ri =⇒ σi(o) = (C, . . .) ∧ comp(C, CTi)

An important property in the system is the locality of store entries such as local
variables and object identifiers, captured by these invariants. For instance, com-
bining Inv(4) and Inv(5), we can derive fv(Pi) ∩ fv(Pj) = ∅, which ensures that
local variables are not shared between threads at different locations. In Inv(9) we
ensure that non-remote operations like field access and thread synchronisation are
not attempted on remote object references. This particular situation highlights the
necessity of the invariants, since we cannot guarantee this property alone in the
typing system as we discussed in § 5.3.

6.1.3 Linearity invariants. Below we say thread P inputs at c if P ≡ E[await c] |R
or P ≡ E[waiting(c) n] |R for some E and R; dually thread P outputs at c if
P ≡ R |Q with R ≡ return(c) e or R ≡ go e/e with/to c for some Q and e.

Inv(10) Pi ≡ Qi |Ri and Qi inputs at c =⇒ neither Ri nor Pj inputs at c.
Inv(11) Pi ≡ Qi |Ri and and Qi outputs at c =⇒ neither Ri nor Pj outputs at c.

Linearity of channel usage ensures the determinacy of method calls and returns and
also the notification of blocked threads. This is ensured by the linear type checking.

6.1.4 Closure and lock invariants

Closures
Inv(12) Pi ≡ E[v] |Qi then fv(v) = ∅
Inv(13) σi(x) = v =⇒ fv(v) = ∅
Inv(14) σi(o) = (C, ~f : ~v) =⇒ fv(vj) = ∅
Inv(15) Pi ≡ E[λ(T x).(ν ~u)(l, e, σ, CT)] |Qi and fn(λ(T x).(ν ~u)(l, e, σ, CT)) = {~u′}
implies ∃k.σk(u′j) = (Cj , . . .) with remote(Cj).
Locks
Inv(16) Pi ≡ E[ready o n] |Qi =⇒ insync(o,E) ∧ n > 0
Inv(17) Pi ≡ E[waiting(c) n] |Qi =⇒ ∃!o.c ∈ blocked(σi, o)∧ insync(o,E)∧n > 0

The closure invariants ensure that values and store entries do not contain any
unbound variables. This is important to guarantee that newly created frozen ex-
pressions are similarly closed.

The lock invariants ensure the correct behaviour of the locking primitives at
runtime. Inv(16) ensures that a thread that is ready to reacquire a lock will set
that lock’s count to a non-zero number. Inv(17) ensures that a thread does not wait
for a non-existent lock.

6.2 Initial network

Before proving the network invariant, we define the initial network configurations.
Roughly speaking an initial configuration contains no runtime values and expres-
sions except o-ids. It can, however, contain parallel threads distributed among
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locations; these have been generated by compiling multiple user-defined main pro-
grams. Definition 6.3 states these conditions formally.

Definition 6.3. (Initial network) We call networkN ≡ (ν ~u)(
∏

0≤i<n li[Pi, σi, CTi])
an initial network if it satisfies the following conditions (called initial properties):

- it contains no runtime expressions or values except o-ids and parallel com-
positions of return(c) e; and freeze[t](T x){e} does not contain free o-ids,
i.e. fn(e) = ∅.

- it satisfies all properties Inv(i) except Inv(2), which is replaced by:
(a) fcl(Pi) ⊆ dom(CTi),
(b) C ∈ fcl(CTi) ∪ dom(CTi) =⇒ comp(C, CTi) and
(c) σi(o) = (C, . . . ) =⇒ comp(C, CTi).

- we also strengthen the Inv(9) by replacing the reduction context E by the
arbitrary context C in Ri.

We denote the set of networks satisfying these conditions by Init.

The extra requirement states that all initial class tables are complete w.r.t. classes
in the program and stores. For example, suppose

new A().m(), ∅, CT
with CT(A) = class A extends B {; void m(){new C(); return}}

First A should be defined in CT (this is ensured by (a) in Inv(2′)); secondly B should
be also defined in CT (this is ensured by (a) and (b): since A ∈ dom(CT), we have
comp(A, CT), which implies B ∈ dom(CT)); and thirdly, C should be defined in
CT too since new C() appears after the method invocation at m. This condition is
ensured by (b) since C ∈ fcl(CT). The condition (c) is similarly understood. We also
note that during runs of programs, the initial properties may not be satisfied since
classes can be downloaded lazily. Later we formalise this situation in Lemma 6.3
and prove the invariant Inv(2). The initial condition of Inv(9) is similarly understood
as (c).

6.3 Type soundness and progress properties

To prove some cases of the subject reduction theorem, we require some invariants to
hold in the assumptions. Therefore the proof routine for type soundness is divided
into the following three steps:

Step 1 We prove one step invariant property for a typed network starting from the
initial properties. This step has two sub-cases:
(i) Assume Γ;∆ ` N0 : net and N0 satisfies the initial properties. Then
N0 −→ N1 implies N1 |= Inv(r) for each 1 ≤ r ≤ 17 if N1 6|= Err.
(ii) Assume Γ;∆ ` Nm : net (m ≥ 1) and Nm |= Inv(r) for all 1 ≤ r ≤ 17.
Then Nm −→ Nm+1 implies Nm+1 |= Inv(r) for each 1 ≤ r ≤ 17 if Nm+1 6|= Err.

Step 2 We prove the subject reduction theorem using Step 1, i.e. Γ; ∆ ` N : net and
N −→ N ′ implies Γ; ∆ ` N ′ : net.

Step 3 Then invariant of Inv(r) is a corollary of Steps 1 and 2.
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The proof of Step 1 is given in the next subsection. Then assuming this holds,
the proof of Step 2 proceeds by induction on the derivation of reduction with a
case analysis on the final typing rule applied. It is given in § 6.5.

6.4 Proofs of network invariants

This subsection lists the key additional invariants related to dynamic downloading
of classes and synchronisations which are used for the main proofs of class invariants,
lock invariants and progress, respectively. We shall use the notation Pim to denote
the threads at location i after m reduction steps. For proofs, see Appendix E.

Lemma 6.3. (Class table properties) Assume:

Γ;∆ ` Nk : net for 0 ≤ k ≤ m, N0 ∈ Init, Nk ∈ Inv(r) for k > 0, 1 ≤ r ≤ 17
N0 →→ Nm −→ Nm+1 ≡ (ν ~um+1)(

∏
0≤i<n li[Pim+1, σim+1, CTim+1]) with m > 0

Then we have:

(1 ) CTim ⊆ CTim+1.
(2 ) C ∈ fcl(Pim+1) implies C ∈ dom(CTim+1).
(3 ) Assume reachable(σim+1, Pim+1, o) and σim+1(o) = (C, . . .). Then we have

either
(a) comp(C, CTim+1) or
(b) either Pim+1 ≡ E[download ~C from lj in e] |Qim+1 or

Pim+1 ≡ E[resolve ~C from lj in e] |Qim+1

where ∃D ∈ ~C.C <: D and ¬reachable(σim+1, Qim+1, o)

(4 ) ∃Nk ≡ (ν ~uk)(
∏

0≤i<n li[Pik, σik, CTik]) with Pik ≡ E[download ~C from lj in e] |Qik

and 0 ≤ j < n implies

∀Cz ∈ {~C}.∀C ′.Cz <: C ′.∃Nm.Nk →→ Nm and

Pim ≡ E[resolve ~D from lj in e] |Qim with C ′ ∈ { ~D} and C ′ ∈ dom(CTim)

Lemma 6.3 says (1) the class table at each location always increases; (2) if a class
name appears free in a thread, then it is always in the domain of the class table;
(3) if a free name or variable in Pim+1 is reachable to o through store σim+1, then
the class of o is complete otherwise it is in the middle of downloading. (4) all
superclasses will be eventually downloaded if no error occurs.

The next lemma states that the number of entries by a thread to an object’s
monitor is correctly accounted by said object.

Lemma 6.4. (Lock coherence) Assume Γ;∆ ` Nk : net(0 ≤ k ≤ m), N0 satisfies
the initial network conditions and Inv(r) |= Nk for the invariants indexed over by r.
Assume N0 −→ N1 −→ · · · −→ Nm+1 ≡ (ν ~um+1)(

∏
0≤i<n li[Pim+1, σim+1, CTim+1])

with Err 6|= Nk.

(1 ) If Pim+1 ≡ E1[insync o {. . . Ep[insync o {e}] . . . }] |Qim+1∧ e 6= E′[insync o {e′}]
then:
(a) e 6= E[waiting(c) n′] with c ∈ blocked(o, σim+1) and e 6= E[ready o . . . ].

implies getLock(σim+1, o) = p,
(b) e = E[ready o n′] =⇒ p = n′,
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(c) e = E[waiting(c) n′] with c ∈ blocked(o, σim+1) implies p = n′.
(2 ) Suppose getLock(σim+1, o) = p and p > 0. Then:

Pim+1 ≡ E1[insync o {. . . Ep[insync o {e}] . . . }] |Qim+1∧ e 6= E′[insync o {e′}]

Summary of the one-step invariant proof. We summarise the proofs of
Step 1 for each invariant. We use the induction on the number of reduction steps,
examining the last applied reduction rule. The proof requires a careful case analysis
since several invariants and typing rules are mutually related. Below “we use Inv(r)”
means that “we assume Inv(r) holds at the inductive step m”; and “the case of the
rule (r)” means that “the case when the last applied rule is (r)”.

Inv(1) and Inv(2) use Lemma 6.3 (1). For Inv(3), we analyse two rules, Download
and Defrost, which changes the class table. Inv(4) requires a case analysis on the
three rules, Dec, MethInvoke and Defrost, with which the set of free variables
of a term changes. For all cases, we use Inv(12). Inv(5) only requires examination
of the case of Defrost. For Inv(6), we analyse MethRemote and Return, as-
suming Inv(8), Inv(5) and Inv(15). The interesting case for Inv(7) is when o newly
appears at the m+ 1-step. We have four such cases, New, Defrost, Leave and
MethRemote. For all cases, we use Inv(15). Inv(8) is mechanical by examina-
tion of the rules for structural equivalence. Inv(9) is one of the most non-trivial
invariants. We derive it from Lemma 6.3 (1, 3), assuming Inv(2), Inv(8) and Inv(7)
hold at the mth-step. Inv(10) and Inv(11) are straightforward by the definition
of ∆1 � ∆2. Inv(12) requires investigation of the cases where a value comes into
a redex position. We have five cases, and use Inv(13) and Inv(14). For Inv(13),
we check the cases where new variable mappings are added to the store, or when
an existing mapping is changed. We have three cases, Dec, Defrost and Ass,
and all use Inv(12). Inv(14) needs to check New, Defrost and FldAss. All are
straightforward by application of Inv(12). For Inv(15), the only interesting case is
Freeze, and we use Lemma 4.1. For Inv(16) and Inv(17), we use Lemma 6.4.

6.5 Proofs of type soundness

We first prove the following standard substitution lemma. Below α denotes either
U or T .

Lemma 6.5. (Substitution and context lemma)

(1 ) Assume Γ, x : T ` e : α and Γ ` v : T ′. Suppose that e does not contain x = e′

or T x = e′ as its subterm. Then we have Γ ` e[v/x] : α′ for some α′ <: α.
(2 ) Γ, this : C ` e : α and Γ ` o : C ′ with C ′ <: C imply Γ ` e[o/this] : α′ for

some α′ <: α.
(3 ) Γ ` E[ ]U : α and Γ ` e : U ′ with U ′ <: U iff Γ ` E[e]U : α.

Proof. (1,2) By induction on the structure of the expression e using Lemma 6.2.
See Appendix F.1. (3) is by induction on the structure on E. All proofs are
mechanical.

Now we achieve the main theorem.

Theorem 6.1. (Subject reduction)
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(1 ) Assume Γ, ~u : ~T ` e : α, Γ, ~u : ~T ` σ : ok and ` CT : ok. Suppose
(ν ~u)(e, σ, CT) −→l (ν ~u′)(e′, σ′, CT′) and e′ 6|= Err. Then we have
Γ, ~u′ : ~T ′ ` e′ : α′ for some α′ <: α, Γ, ~u′ : ~T ′ ` σ′ : ok and ` CT′ : ok.

(2 ) Assume Γ;∆ ` F : conf, F −→l F
′ and F ′ 6|= Err. Then we have

Γ;∆ ` F ′ : conf.
(3 ) Assume Γ;∆ ` N : net, N −→ N ′ and N ′ 6|= Err. Then we have

Γ;∆ ` N ′ : net.

Note that the above theorem guarantees type safety: if there is neither a null
pointer error nor an unavoidable network error (i.e. N ′ 6|= Err), then the typability
ensures that an execution does not go wrong.

As a corollary we derive:

Corollary 6.1. (Network invariant) ∧1≤r≤17 Inv(r) is a network invariant
with the initial network properties Init defined in Definition 6.3.

6.6 Progress and Linearity Properties

Finally we can derive the following advanced progress and linearity properties.

Definition 6.4. (Progress invariants) Given networkN ≡ (ν ~u)(
∏

0≤i<n li[Pi, σi, CTi]),
and assuming 0 ≤ k < n, we define property Prog(r) as a set which satisfy the fol-
lowing conditions.

Prog(1) Pi ≡ E[new C(~v)] |Qi =⇒ C ∈ dom(CTi)
Classes are always available for instantiation.

Prog(2) Pi ≡ E[download ~C from lk in e] |Qi =⇒ ~C ∈ dom(CTi) ∪ dom(CTk)
Download operations always succeed in retrieving the required classes from the
specified location.

Prog(3) Pi ≡ E[resolve ~C from m in e] |Qi =⇒ ~C ∈ dom(CTi)
No attempt is made to resolve classes that are not available in the local class
table.

Prog(4) Pi ≡ E[o.fj ] |Qi =⇒ [o 7→ (C, . . .)] ∈ σi ∧ fields(C) = ~T ~f
No attempt is made to invoke a field access on the store if the class of the store
does not provide that field.

Prog(5) Pi ≡ E[o.fj := v] |Qi =⇒ [o 7→ (C, . . .)] ∈ σi ∧ fields(C) = ~T ~f
No attempt is made to invoke a field access on the store if the class of the store
does not provide that field.

Prog(6) Pi ≡ E[x] |Qi =⇒ x ∈ dom(σi)
Expressions only access variables they are local to.

Prog(7) Pi ≡ E[x := v] |Qi =⇒ x ∈ dom(σi)
Expressions only assign to variables they are local to.

Prog(8) Pi ≡ o.m(v) with c |Qi ∧ σi(o) = (C, . . .) =⇒ mbody(m,C, CTi) defined
No attempt is made to invoke a method on an object of a given class if that
class does not provide that method.

Prog(9) Pi ≡ go o.m(v) with c |Qi =⇒ ∃!k. o ∈ dom(CTk)
Remote method invocations always refer to a unique live location in the net-
work.
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Prog(10) Pi ≡ go v to c |Qi ∧ c ∈ {~u} =⇒ ∃!k. Pk ≡ E[await c] |Qk

If a method return exists, there must be exactly one location waiting for it on
that channel.

Theorem 6.2. (Progress, locality and linearity)
∧1≤r≤10 Prog(r) is a network invariant with the initial network properties Init

defined in Definition 6.3.

Proof. Immediately Prog(1) is derived from Inv(2). Prog(2) is by the mono-
tonicity of the class tables proved in Lemma 6.3 (1). Prog(3) is obvious by Download.
Prog(4) and Prog(5) are proved by Inv(9). Prog(6) and Prog(7) are obvious by
Inv(4). Prog(8) is derived from Inv(9). Prog(9) is by combining Inv(8) and Inv(5).
Prog(10) is straightforward by combining Inv(10) and Inv(11).

6.7 Progress with synchronisation and normal forms

In this last subsection, we first investigate a simple progress property in the presence
of the synchronisation primitives. Then we will show the normal form of DJ—the
form of a whole network when computation terminates. We start from the first
proposition which says that one monitor is held by only one thread.

Proposition 6.1. (Mutual exclusion) For a location l[P, σ, CT], suppose

if P ≡ E1[insync o {e1}] | · · · |En[insync o {en}] |Q
then ∀j.1 ≤ j ≤ n. (ej = E′

j [waiting(c) ...] ∨ ej = E′
j [ready o . . . ])

or ∃!j.1 ≤ j ≤ n. (ej 6= E′
j [waiting(c) . . . ] ∧ ej 6= E′

j [ready o . . . ]

with c ∈ blocked(o, σ).

Proof. See Appendix E.4.

Below we list a simple progress property. (1) states if expression e which holds
a monitor is neither error nor a synchronisation expression, then e can always
progress; and (2) says that a thread can exit the monitor if the monitor is only hold
by threads who are going to exit.

Proposition 6.2. (Progress with synchronisation) For a location l[P, σ, CT],

(1 ) Suppose P ≡ E[insync o {E′[e]}] |Qi, e |Q, σ, CT −→ e′ |Q′, σ′, CT′, and e 6∈
{insync o′ {e′}, waiting(c) n, ready o n, sync (o′) {e′}, Error}. Then we have
E[insync o {E′[e]}] |Q, σ, CT −→ E[insync o {E′[e′]}] |Q′, σ′, CT′.

(2 ) Suppose P ≡ E[ready o n] |Q. Assume if Q ≡ E[insync o {e′}] |Ri then e′ ∈
{E′[ready o n′], E′[waiting(c) n′]}. Then we have: E[ready o n] |Q, σ, CT −→
E[ε] |Q, σ, CT

Proof. (1) If Pi satisfies the assumption, then by Proposition 6.1, E[insync o {E′[e]}]
is only the thread which holds the monitor o. Hence progress is obvious by the def-
inition of −→. (2) is by getLock(σ, o) = 0.

In the presence of synchronisation, there would be no progress in the program
even if it is well-typed and does not reach an error state. For example, threads may
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deadlock naturally by requesting monitors in a certain order, stopping them from
proceeding forever: a simple example is
E[insync o {sync (o) {e}}]. Also waiting processes waiting(c) n may not proceed
forever because of a lack of “notify” (i.e. lost-wakeup). Then, as its consequence,
ready o n may never exit. We can define the states of deadlock and liveness, and
prove a general progress property under a certain kind of scheduling. We shall
leave this topic to a forthcoming exposition. We now concludes the normal form
theorem.

Theorem 6.3. (Normal forms) Assume N0 |= Init and N0 →→ N 6−→ and
N 6|= Err. Then we have N ≡ (ν ~u)(

∏
0≤i<n li[

∏
0≤ji<ni

Pji
, σi, CTi]) with Pji

is ei-
ther go v to c or E[insync o {e}] with e ∈ {waiting(o) n, ready o n, sync (o′) {e′}}.

Proof. By induction on N . By the initial condition Init, we can set ∆ = ~c′ :
~chan ∪ ~ci : chanO(~Ui). The proof is direct from the progress properties. We only

investigate the cases that the reduction happens across different networks. Suppose,
for example, by contradiction, that N 6−→ but there exists Pi such that Pi ≡
o.m(~v) with c |Qi. If o is the local object id, then N −→ N ′ by Prog(8). Assume
that o is a remote o-id and o 6∈ dom(σi). This time by MethRemote, N −→ N ′,
contradiction. Next suppose there exists Pi such that Pi ≡ go v to c |Qi with
c ∈ {~u} or c : chan ∈ ∆. Then by Prog(10), there exists k such that Pk ≡
E[await c] |Qk. Then we can apply Return, hence a contradiction. The unicity
of go vji

to cji
is derived by Inv(11).

7. JUSTIFICATION OF OPTIMISATION

We prove the correctness of the optimised code in § 2 using sound syntactic trans-
formation rules over programs and runtime. The key idea is a use of the following
noninterference property [Jones 1993; Reynolds 1978] to justify the correctness of
these rules. Let us write N 7→ N ′ for a transformation rule of the optimisation
from N to N ′. Once we check N 7→ N ′ is type-preserving and satisfies the follow-
ing noninterference property then N and N ′ are immediately observationally equal,
hence the transformation is semantics-preserving.

if N →→ N1 and N 7→∗ N2, then N1 ≡ N2 or there exists N ′ such that
N1 7→∗ N ′ and N2 →→ N ′.

For tractable reasoning, we introduce several syntactic transformation rules satis-
fying this property. By the use of these equational laws, which come from those
of the linear types of mobile processes [Kobayashi et al. 1996; Yoshida et al. 2001],
justifications are carried out syntactically using 7→.

7.1 Observational congruence

We define an observational congruence over the typed language and runtime by ap-
plying the equational theory of process algebra [Honda and Yoshida 1995]. Hereafter
we assume all networks are typed and started executing from the initial condition
Init in Definition 6.3.

Definition 7.1. (Typed relations) A relation R over networks is typed when
Γ1;∆1 ` N1 R Γ2;∆2 ` N2 implies Γ1 = Γ2 and ∆1 = ∆2. We write Γ;∆ `
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N1 R N2 when Γ; ∆ ` N1 and Γ;∆ ` N2 are related by a typed relation R. A typed
congruence is a typed relation R which is an equivalence closed under all typed
contexts and the structure rules, i.e. ≡⊆ R.

By the subject reduction theorem, we immediately know −→ is a typed relation.
The formulation of behavioural equality is based on two conditions: reduction-

closedness and an observational predicate. In the distributed setting, terms can
effectively change meaning (for example by side-effecting a store), so we define
“equality” to mean that two equated programs go to an equated state again. The
second condition comes from the concept of observation in mobile process theory
[Honda and Yoshida 1995]. For an observation, we take the output (“go”) to channel
c.

Definition 7.2. (Reduction-closedness and the observational predicate)

- A typed congruenceR on networks is reduction-closed whenever Γ; ∆ ` N1 RN2,
N1 →→ N ′

1 6|= Err implies, for some N ′
2, N2 →→ N ′

2 with Γ;∆ ` N ′
1 R N ′

2; and
its symmetric case.

- We define the observational predicate ↓c and ⇓c as follows.

N ↓c if N ≡ (ν ~u)(l[go v to c |P, σ, CT] |N ′) with c /∈ {~u}
N ⇓c if ∃N ′.(N →→ N ′ ∧N ′ ↓c)

We sayR respects the observational predicate if Γ;∆ ` N1 RN2 with c : chanO(U) ∈
∆ implies N1 ⇓c iff N2 ⇓c.

Now we define the observational congruence.

Definition 7.3. (Observational congruence) A typed congruence R is sound if it
is reduction-closed and respects the observational predicate.

- We write ∼= for the maximum sound equality over a network invariant, i.e. ∼= is
defined over a set which excludes the error states {N | ∃N0.(N0 |= Init, N0 →→
N, N 6|= Err)}.

- We write ∼=• for the maximum sound equality over untyped networks which
include error states.

7.2 Transformation

We introduce a set of tractable conversion rules which can quickly check the equiva-
lence of distributed networks. First we formally define the noninterference property.

Definition 7.4. Let us assume 7→ is a typed relation closed under name restric-
tion, parallel composition and the structure rules. We say 7→ satisfies a noninter-
ference property, i.e. if N →→ N1 and N 7→∗ N2, then N1 ≡ N2 or there exists N ′

such that N1 7→∗ N ′ and N2 →→ N ′.

Lemma 7.1. Suppose 7→ satisfies a noninterference property and 7→ respects the
observational predicate. Then N1 7→ N2 6|= Err implies N1

∼= N2.

Proof. By taking R = {(N,M) | N 7→∗ M 6|= Err} and showing it is sound. By
the assumption, we know 7→ respects the action predicate and so does 7→∗. Then it
remains to show that R is reduction closed. Suppose NRM and N →→ N ′ then by
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the definition of noninterference, N ′ ≡M or M →→M ′ such that N ′ 7→∗ M . Since
≡⊂7→∗⊂ R, this completes the case. Now suppose NRM and M →→ M ′ then by
Definition 7.3 we have that NRM →→M ′ and so N →→ N ′ ≡M ′.

Code that can move safely. The transformation rules should reduce the num-
ber of communications and class downloadings, while preserving meaning. For this,
we need to identify what kinds of code and programs can safely move from one loca-
tion to another. Below predicate MobileΓ(e) is true if fv(e) = ∅ and o ∈ fn(e) implies
Γ ` o : C with remote(C); i.e. e does not contain any free variables or local o-ids
under environment Γ; in addition it does not contain any of the following terms as
a subterm (since they break the locality invariants, see § 5.3.1 and § 6.1.2).

{o.f, o.f = v, sync (o) {e′}, insync o {e′}, o.notify, o.notifyAll, o.wait, ready o n }

If MobileΓ(e), e can move from one location to another preserving its meaning.

Transformation Rules. We define the key translation rules below, assuming
that the right hand side is typed under Γ; ∆. We omit surrounding context where
it is unnecessary. Assume the right hand side is typed under Γ; ∆. We omit the
surrounding context where it is unnecessary.
Linearity
(l1) return(c) E[sandbox {e1; . . . ; en}] 7→ e1; . . . ; return(c) E[en]
(l2) E[await c] | e[return(c)/return] 7→ E[sandbox {e[e′/return e′]}]
(l1) is standard. (l2) means that a method body e can be evaluated inline. This is
ensured by linearity of channel c.
Class
(cm) l[P, σ, CT] 7→ l[P, σ, CT ∪ CT′] ctcomp(CT′), ` CT′ : ok
(cm) says that a complete class table can always move.
Closed
(cr) (ν x)(E[x] |P, σ · [x 7→ v]) 7→ (E[v], σ) when {x := e} /∈ P ∪ E[ ]
(fr) (ν ~u)(E[freeze[t](T x){e}] |P, σ, CT) 7→ (ν ~u)(E[λ(T x).(ν ~u)(l, e, σ′, CT′)] |P, σ, CT)
where in (fr), dom(σ′)∩(fnv(P )∪ fnv(E)) = ∅ and fnv(σ′) ⊆ dom(σ′) and σ′ and CT′

are given following Freeze. (cr) says that the timing of reading a value is unim-
portant if x only does not write in its scope. (fr) means that the timing of freezing
an expression is ignored, provided it shares no information with other parties. Note
“ν x” in (cr) and “ν ~u” in (fr) ensure x and ui are not shared.
Method Invocation
(mi) l[E[o.m(v)], σ, CT] |m[Q, σ′, CT′]

7→ l[E[defrost(v; λ(T x).(m, e[o/this], ∅, ∅))], σ, CT] |m[Q, σ′, CT′]
where MobileΓ(e[v, o/x, this]), MobileΓ(v), [o 7→ (C, . . .)] ∈ σ′, mtype(m,C) = T →
U , and mbody(m,C, CT′) = (x, e). This rule means we can fetch a closure of the
mobile method body from the remote site safely.
Mobile Method Bodies
(rm) l[E[await c] |P, σl] |m[(ν ~x)(R |Q, σm · [~x 7→ ~v])]

7→ l[(ν ~x)(E[await c] |R |P, σl · [~x 7→ ~v], CTl)] |m[Q, σm]
where MobileΓ(e[~v/~x]), MobileΓ(vi), R ≡ e[return(c)/return] and ~x /∈ fv(Q). This
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rule says a mobile thread with a store can move from the remote site safely.
Synchronisation
Suppose P and E does not include notify, notifyAll, wait or ready. Then:
(sync) l[P |E[insync o {e}] |P, σ2, CT] 7→ (ν ~u)l[E[insync o {e′}] |P, σ′2, CT′]

if l[E[e] |P, σ1, CT] −→ (ν ~u)l[E[e′] |P, σ′1, CT′],
σ2 = setLock(σ1, o, getLock(σ, o) + 1), σ′2 = setLock(σ′1, o, getLock(σ, o) + 1)

The reduction under synchronisation is deterministic if there is no wait, notify and
notifyall in the program.
Deterministic Rule
(ni) N −→ N ′ =⇒ N 7→ N ′

if the last reduction rule applied was not generated by variable read (Var), vari-
able assignment (Ass), field access (Fld), field assignment (FldAss), freezing
(Freeze), the signal to a waiting thread (Notify), monitor entry (Sync) or the
reduction for reacquiring a monitor (Ready). The transformation rule N 7→ N ′

is defined as a binary relation generated by the above rules closed under parallel
composition, restriction and structure rules (as in Figure 11).

Theorem 7.1.

(1 ) (noninterference) 7→ satisfies a noninterference property and respects the
observational predicate under a network invariant.

(2 ) (type preservation) Assume Γ;∆ ` N : net and N 6|= Err. Then N 7→ N ′

implies Γ;∆ ` N ′ : net.
(3 ) (semantic preservation) N 7→ N ′ implies N ∼= N ′.

Proof. (1) is mechanical by investigating each of the above rules in turn. The
most interesting rule is (mi), which is derived by (ni, rm, l2). (sync) is by Propositon
6.2 (1). (2) is straightforward by noting that −→ is a typed relation, and that
transformed terms can be related by it. (3) uses (1) and (2) together with Lemma
7.1.

Note that by Definition 6.1, Theorem 7.1 excludes the error statement. This is
because the transformation is not sound if an error occurs during execution, as we
shall discuss in the next subsection. More formally, N 7→ N ′ does not always imply
N ∼=• N ′.

Proposition 7.1.

(1 ) freeze[t](T x){e} ∼= freeze[t′](T x){e}.
(2 ) There is a fully abstract embedding [[N ]] of networks N that contain methods

m(~e) and frozen expressions freeze[t](~T ~x){e} with multiple parameters into
networks with methods and frozen expressions with only single parameters.

Proof. (1) Use Lemma 7.1 and (cm). (2) A translation of freeze is standard
by currying. We encode methods with multiple parameters into those with just a
single parameter in the most intuitive manner. Each method, instead of taking a
vector ~T ~x of parameters, takes a single parameter of a newly created class C. C
contains fields T1 f1; . . . ;Tn fn; where field fi corresponds to the ith parameter
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of the original method definition. Then, all call sites for a particular method are
replaced with a constructor call to an instance of the correct “parameter class”, so
o.m(~v) becomes o.m(new C(~v)) for some C. We then prove that N ∼= [[N ]]. See
Appendix G for the encoding and proofs.

Call-backs. Before proving the main theorem, we formalise the notion of call-
backs between two locations.

Definition 7.5. Let us write c c′ if there exists a chain of channels such that

return(c) E1[await c1] | return(c1) E2[await c2] · · · | return(cn) En[await c′]

Suppose

N →→ (ν ~u)(l1[go o.m(~v) with c |E[await c] |P, σ1, CT1] | l2[Q, σ2, CT2] |M) def= N ′

with o ∈ dom(σ2). We say there exists a call-back from l1 to l2 if we have:
N ′ →→ (ν ~u)(l1[E[await c] |P ′, σ′1, CT

′
1] | l2[go o′.m′(~v′) with c′ |Q′, σ′2, CT

′
2] |M ′)

where o′ ∈ dom(σ′1) and there exists c c′ in Q′.

The definition means: suppose “E[await c]” is created in l1 by the remote method
invocation “o.m” to l2. Then the computation of E[await c] is blocked until some
method invocation “o′.m′” returned from l2. The equation between the third RMI
program (RMI3) in Listing 5 in § 2 and the third optimal program (Opt3) in Listing
6 holds if there is no call-back as explained in § 2. Our framework can also justify
the incorrectness of the optimisation between (RMI3) and (Op3) in the presence of
call-back. Note that there is no guarantee that the caller and the call-back can be
synchronised correctly in a näıve program, as they cannot hold the same lock (see
§ 5.3.1). For this reason, since most RMI programs do not use call-backs, we do
not investigate them.

7.3 Correctness of the optimisations

We now prove the correctness of the optimised programs in § 2. We transform one
program to another using the transformation rules defined above.

We first demonstrate how to transform the optimised program 1 (Opt1) in Listing
1 to the original program 1 (RMI1) in Listing 2. Let us assume e is a program from
line 2 to 4 in (RMI1). We omit the surrounding context as there is no class loading
in this example. After the method invocation by o.mOpt1(r, n) with c,

(ν a)(thunk〈int〉 t = freeze[lazy]{e; z}; return(c) r.run(t), [a 7→ n])

Let v = λ(unit x).(ν a)(l, e; z, [a 7→ n], ∅). Then the above configuration is trans-
formed to:

7→ (ν a)(thunk〈int〉 t = v; return(c) r.run(t), [a 7→ n]) (fr)
7→+ (ν t)(return(c) r.run(t), [t 7→ v]) (ni)
7→ return(c) r.run(v), ∅ (cr)
7→ return(c) defrost(v; λ(T x).(l, defrost(x), ∅, ∅)), ∅ (mi)
7→+ (ν a)(return(c) sandbox {e; z}, [a 7→ n]) (ni)
7→ (ν a)(e; return(c) z, [a 7→ n]) (l1)

The last line is identical to (RMI1) after the method invocation by o.m1(r, n) with c.
Note that defrost and sandbox do not affect other parties, so that the reduction
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(ni) satisfies a noninterference property, hence this reduction preserves the seman-
tics. Because we have Mobile∅(v), we can apply (mi) in the forth line. Hence (Opt1)
is transformed to (RMI1).

The correctness of (Opt2) in Listing 4 is also straightforward by repeating the
same routine twice.

We show (RMI3) in Listing 5 is equivalent with (Opt3) in Listing 6 under
the assumption there is no call-back. Then the body of (Opt3) is equivalent to
return r.run(freeze[eager](T x){e[~e′/~b]; z}) and e′i = deserialize(vi) where
vi = λ(unit x).(ν ~u)(l, a, σi) is a serialised value at line i (3 ≤ i ≤ 5) in (Opt3).
Then we apply a similar transformation with the above to derive (RMI3). See
Appendix H for the detailed proofs.

Note that our freezing preserves sharing between objects (Point 1 in (Opt3) in
§ 2), hence we can prove the following equation:

x.f = y; r.h(x, y) ∼= x.f = y; r.run(freeze{r.h(x, y)}).

Finally by Proposition 7.1 (1), we can derive (Opt4) from (Opt3), hence (Opt4)
is equivalent to (RMI3). Not all equations are valid if a network error occurs
during executions. For example, eager and lazy are not equal in the presence of
Err-ClassNotFound, hence Proposition 7.1 (1) is not applicable. To summarise,
we have:

Theorem 7.2. (Correctness of the Optimisations)

(1 ) (RMI1) and (Opt1) are equivalent up to ∼=.
(2 ) (RMI2) and (Opt2) are equivalent up to ∼=.
(3 ) (RMI3) and (Opt3) are equivalent up to ∼= without call-back.
(4 ) (Opt3) and (Opt4) are equivalent up to ∼=, hence (RMI3) and (Opt4) are equiv-

alent up to ∼= without call-back.
(5 ) None of them are equivalent up to ∼=•.

8. RELATED WORK

Class loading and downloading. Class loading and downloading are crucial to
many useful Java RMI applications, offering a convenient mechanism for distribut-
ing code to remote consumers. The class verification and maintenance of type safety
during linking are studied in [Liang and Bracha 1998; Qian et al. 2000]. Our for-
mulation of class downloading is modular, so it is adaptable to model other linking
strategies [Drossopoulou and Eisenbach 2002; Drossopoulou et al. 2003], see § 4.2.
We set the class invariant Inv(3) in Definition 6.2. This is because the Java seri-
alisation API imposes the strict default class version control discussed in § 6.1.1.
Another solution is to explicitly model the Java exception InvalidClassException
to check for mismatch between downloaded and existing classes. This dynamic ap-
proach leads to the same invariant to prove the subject reduction theorem.

Most of the literature surrounding class loading in practice takes the lazy ap-
proach. As we discussed earlier, in the setting of remote method invocation lazi-
ness can be expensive due to delay involved in retrieving a large class hierarchy
over the network. Krintz et al [Krintz et al. 1999] propose a class splitting and
pre-fetching algorithm to reduce this. Their specific example is applet loading: if
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the time spent in an interactive portion of an applet is used to download classes
that may be needed in future, we can fetch them ahead of time so that the user does
not encounter a large delay, sharing the motivation for our (eager) code mobility
primitive. The partly eager class loading in their approach is implicit, but requires
control flow information about the program in question to determine where to in-
sert instructions to trigger ahead-of-time fetching. This framework may be difficult
to apply in a general distributed setting, since clients may not have access to the
code of a remote server. Also their approach merely mitigates the effect of network
delay rather than removing it; it still requires the sequential request of a hierar-
chy of superclasses. We believe an explicit thunk primitive as we proposed in the
present work may offer an effective alternative in such situations.

Distributed objects. Obliq [Cardelli 1994] is a distributed object-based, lexically
scoped language proposed by Cardelli. One key feature of the language is that
methods are stored within objects—there is no hierarchy of tables to inspect as
in most class-based languages. Merro et al [Merro et al. 2002] encode a core part
of Obliq into the untyped π-calculus. They use their encoding to show a flaw in
part of the original migration semantics and propose a repair. Later Nestmann et
al [Nestmann et al. 2002] formalised a typing system for a core Obliq calculus and
studied different kinds of object aliasing. Briais and Nestmann [Briais and Nest-
mann 2002] then strengthened the safety result in [Merro et al. 2002] by directly
developing the must equivalence at the language level (without using the transla-
tion into the π-calculus). They also apply a noninterference property to show the
two terms (with and without surrogation) are must-equivalent. DJ models two im-
portant concerns in distributed class-based object-oriented languages missing from
Obliq, that is object serialisation and dynamic class downloading associated with
inheritance in Java (note that the same term “serialisation” used in [Cardelli 1994]
refers to one in the sense of transaction theory). These features require a consistent
formulation of dynamic deep copying of object/class graphs. As we have seen in
§ 7, detailed analysis of these features is required to justify the correctness of the
optimisation examples in § 2. The proof method using syntactic transformations
in § 7 is also new.

Emerald [Hutchinson et al. 1991] is another example of a distributed object-based
language. It supports classes represented as objects, however there is no concept
of class loading as in DJ—information about inheritance hierarchies is discarded at
compile-time. Objects in Emerald may be active in that they are permitted their
own internal thread of control that runs concurrently with method invocations on
that object. Such objects may explicitly move themselves to other locations by
making a library call. In DJ the fundamental unit of mobility is arbitrary higher-
order expressions: this general code freezing primitive can represent object mobility
similar to Emerald when it is combined with standard Java RMI. Finally, there has
been no study of the formal semantics of Emerald.

Gordon and Hankin [Gordon and Hankin 1999] extend the object calculus [Abadi
and Cardelli 1996] with explicit concurrency primitives from the π-calculus. Their
focus is synchronisation primitives (such as fork and join) rather than distribution,
so they only use a single location. Jeffrey [Jeffrey 2000] treats an extension of
[Gordon and Hankin 1999] for the study of locality with static and dynamic type
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checking. The concurrent object calculus is not class-based, hence neither work
treats dynamic class loading or serialisation (though [Jeffrey 2000] treats transac-
tional serialisation as in [Cardelli 1994]), which are among the key elements for
analysis of RMI and code mobility in Java.

Scope and runtime formalisms for Java. Zhao et al [Zhao et al. 2004] propose a
calculus with primitives for explicit memory management, called SJ, for a study of
containment in real-time Java. The SJ calculus proposes a typing discipline based
on the idea of scoped types—memory in real-time applications is allocated in a
strict hierarchy of scopes. Using the existing Java package structure to divide such
scopes, their typing system statically prevents some scope invariants being broken.
Their focus is on real-time concurrency in a single location, while ours is on dy-
namic distribution of code in multiple locations. DJ also guarantees similar scoping
properties by invariants, for example Inv(6) in Definition 6.2 ensures that identifiers
for local objects do not leak to other locations in the presence of synchronisation
primitives.

The representation of object-oriented runtime in formal semantics is not limited
to distributed programs, as found in study of execution models of the .NET CLR
by Gordon and Syme [Gordon and Syme 2001] and Yu et al [Yu et al. 2004].

The JavaSeal [Vitek et al. 1998] project is an implementation of the Seal calculus
for Java. It is realised as an API and run-time system inside the JVM, targeted as a
programming framework for building multi-agent systems. The semantics of these
APIs depend on distributed primitives in the implementation language, which are
precisely the target of the formal analysis in the present paper. JavaSeal may offer
a suggestion for the implementation and security treatment of higher-order code
passing proposed in the present paper.

Functions with marshaling primitives. Ohori and Kato [Ohori and Kato 1993]
extend a purely functional part of ML with two primitives for remote higher-order
code evaluation via channels, and show that the type system of this language is
sound with respect to a low-level calculus. The low-level calculus is equipped with
runtime primitives such as closures of functions and creation of names. Their focus
is pure polymorphic functions, hence they treat neither side-effects nor (distributed)
object-oriented features. Acute [Acute 2005] is an extension of OCaml equipped
with type-safe marshaling and distributed primitives. By using flags called marks,
the user can control dynamic loading of a sequence of modules when marshaling his
code. This facility is similar to our lazy and eager class loading. The language also
provides more flexible way to rebind local resources and modules. An extension of
our freeze operator for fine-grained rebinding is an interesting topic, though as we
discussed in § 6.1.1, it is not suitable in practice due to the Java serialisation API.

Staged computation and meta-programming. Taha and Sheard [Taha and Sheard
1997] give a dialect of ML containing staging annotations to generate code at run-
time, and to control evaluation order of programs. The authors give a formal
semantics of their language, called MetaML, and prove that the code a well-typed
program generates will itself be type-safe.

The freeze and defrost primitives in DJ can be thought of as staging anno-
tations, and also guarantee that frozen expressions should be well-typed in any
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context. However we study distribution and concurrency in an imperative setting,
with strong emphasis on runtime features. These features are not discussed in
MetaML as it is a functional language, nor the problems associated with classload-
ing we address.

Kamin et al [Kamin et al. 2003] extend the syntax of Java with staging anno-
tations and provide a compiler for a language called Jumbo. They allow creation
of classes at runtime, focusing on single-location performance optimisation: there
is no discussion of use in distributed applications, a main focal point of our work.
They give no static guarantees about type safety of generated code, nor do they
allow code to be generated in fragments smaller than an entire class. They do
not consider higher-order quotation, permitting only one level of quotation and
anti-quotation.

Zook et al [Zook et al. 2004] propose Meta-AspectJ as a meta-programming
tool for an aspect-oriented language. They implement a compiler that takes code
templates—containing quoted Aspect-J code—and turns them into aspect declara-
tions that can be applied as normal to Java programs. Their system is more focused
on compile-time code generation, and offers weaker static guarantees: well-typed
generators do not guarantee type safety of the generated aspects.

9. CONCLUSIONS AND FURTHER WORK

This paper introduced a Java-like core language for RMI with higher-order code
mobility. It models runtime for distributed computation including dynamic class
downloading and object serialisation. Using the new primitives for code mobility,
we subsumed the existing serialisation mechanism of Java and were able to precisely
describe examples of communication-based optimisations for RMI programs on a
formal foundation. We established type soundness and safety properties of the
language using distributed invariants. Finally, by the behavioural theory developed
in § 7, we were able to systematically prove the correctness of the examples in § 2.

Explicit code mobility as a language primitive gives powerful control over code
distribution strategies in object-oriented distributed applications. This is demon-
strated in the examples in § 2. In [Bogle and Liskov 1994; Yeung and Kelly 2003;
Yeung 2004], these optimisations are informally described as implementation de-
tails. Not only is source-level presentation necessary for their semantic justification,
but also explicit treatment of code mobility gives programmers fine-grained con-
trol over the evaluation order and location of executing code. It also opens the
potential for source-level verification methodologies for access control, secrecy and
other security concerns, as briefly discussed below. Note current customised class
downloading mechanisms do not offer active code mobility and algorithmic control
of code distribution (as in the last example of § 2).

Further, the fine-grained control of code mobility has a direct practical signif-
icance: the optimisation strategy in [Yeung and Kelly 2003; Yeung 2004] cannot
aggregate code in which new object generation is inserted, such as:

1 int m3(RemoteObject r, MyObj a) {

2 int x = r.f(a);

3 int y = r.g(new MyObj(x));

4 int z = r.h(a, y);
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5 return z;

6 }

where MyObj is a local class in the client. This is because we need active class code
delivery if this code is to be executed in a remote server. In contrast, the freeze
primitive in our language can straightforwardly handle aggregation of this code.
We also believe that, in comparison with direct, byte-code level implementation in
[Yeung and Kelly 2003; Yeung 2004], the use of our high-level primitives may not
jeopardise efficiency but rather can even enhance it by e.g. allowing more flexible
inter-procedure optimisation.

The complexity of the third program optimisation poses the question of whether
the original copying semantics of Java RMI are themselves correct in the first place:
making a remote call can entail subtly different invocation semantics to calling a
local method. Our code freezing primitive allows us to make the call semantics
explicit, and also allows us to support more traditional ideas about object mobility
[Hutchinson et al. 1991; Cardelli 1994], such as side-effects in calls at the server
side.

The class-based language considered in the present work does not include such
language features as casting [Igarashi et al. 2001; Bierman et al. 2003], exceptions
[Ancona et al. 2002] and parametric polymorphism [Igarashi et al. 2001]; although
these features can be represented by extension of the present syntax and types,
their precise interplay with distributed language constructs requires examination.

An important future topic is enrichment of the invariants and type structures to
strengthen safety properties (e.g. for security). Here we identify two orthogonal
directions. The first concerns mobility. As can be seen in the second example in
§ 2, the current type structure of higher-order code (e.g. thunk<int>) tells the
consumer little about the behaviour of the code he is about to execute, which
can be dangerous [McGraw and Morrisett 2000; Bogle and Liskov 1994]. In Java,
the RMISecurityManager can be used with an appropriate policy file to ensure
that code downloaded from remote sites has restricted capability. By extending
DJ with principals, we can examine the originator of a piece of code to determine
suitable privileges prior to execution [Wallach et al. 1997]. To ensure the integrity
of resources we can dynamically check invariants when code arrives (e.g. by adding
constraints in Defrost), or we could allow static checking by adding more fine-
grained information about the accessibility of methods in class signatures, along
the lines of [Yoshida 2004].

The second direction is to extend the syntax and operational semantics to al-
low complex, structured, communications. For this purpose we have been studying
session types [Honda et al. 1998; Vasconcelos et al. 2004] for ensuring correct pat-
tern matching of sequences of socket communications, incorporating a new class of
channels at the user syntax level. Our operational semantics for RMI is smoothly
extensible to model advanced communication protocols. Session types are designed
using class signatures, and safety is proved together with the same invariance prop-
erties developed in this paper.

Study of the semantics of failure and recovery in our framework is an important
topic. So far we have incorporated the possibility of failures in class downloading
and remote invocation due to network partition (defined by Err-rules in § 4). When
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a message is lost, some notion of time-out is generally used to determine whether
to re-transmit or fail. Such error recovery can be investigated by defining different
invocation semantics (for example at-most-once [Microsystems Inc. 2005]) and
adding runtime extensions to DJ. This point is also relevant when we consider
socket-based communication instead of RMI.

We have implemented an initial version of our new primitives for code mobility
[Tejani 2005]. This takes the form of a source-to-source translator, compiling the
freeze and defrost operations into standard Java source. Eager class loading
via RMI requires modification to the class loading mechanism, which is achieved
by installing a custom class loader working in conjunction with our translated
source. This approach has the advantage that we can use an ordinary Java compiler
and existing tools, and that the JVM would not need modification. However a
more direct approach (for example extending the virtual machine) may yield better
performance.

The examples in § 2 and the transformation rules in § 7 lead to the question of how
to automatically translate from RMI source programs to programs exploiting code
mobility for added efficiency. Developing a general theory and an integrated tool
is non-trivial due to an interplay between inter node and procedure optimisations.
Furthermore we need to formalise a cost theory for distributed communication
with respect to the distance of the locations and the size of code and class tables
transferred. DJ can be used as a reference model to define efficiency since it exposes
distributed runtime explicitly by means of syntax and reduction rules. For example,
we can add marshaling costs to the Freeze rule with respect to the size of the frozen
expression; we can investigate the cost of class downloading with respect to the size
of a downloaded class table CT′ and a distance between location l1 and location
l2, using rule Download. An interesting further topic is an application to DJ of
the cost-preoder theory developed for process algebra [Arun-Kumar and Hennessy
1992] to compare program performance.
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A. AUXILIARY DEFINITIONS

This appendix contains the full definitions of some of the functions used in the main
sections.

A.1 Domains

The function dom returns the domain of a mapping. It is defined over stores, class
tables, class signatures and configurations, and is given as follows.

dom(∅) = ∅, dom(σ · [x 7→ . . . ]) = dom(σ) ∪ {x}, dom(σ · [o 7→ . . . ]) = dom(σ) ∪ {o}
dom(CT · [C 7→ . . . ]) = dom(CT) ∪ {C}
dom(CSig · [C 7→ . . . ]) = dom(CSig) ∪ {C}
dom((ν ~u)(P, σ, CT)) = dom(σ) \ {~u}
dom(0) = ∅, dom(l[F ]) = dom(F ), dom(N1 |N2) = dom(N1) ∪ dom(N2)
dom((ν u)N) = dom(N) \ {u}

A.2 Free variables and names

The functions for determining free variables fv and free names fn are defined as
follows. For classes and methods:

fv fn

class C extends D {~T ~f ; K ~M}
S

fv(Mi)
S

fn(Mi)
U m(C x){e} fv(e) \ {x} fn(e)

For values:

fv fn
true, false, (), null, ε ∅ ∅
o ∅ {o}
λ(T x).(ν ~u)(l, e, σ, CT) ((fv(e) \ {x}) ∪ fv(σ) ∪ fv(CT)) \ {~u} (fn(e) ∪ fn(σ) ∪ fn(CT)) \ {~u}

For expressions we omit the cases where the free variables (resp. names) of a term
are merely the union of the free variables of its subterms.

fv fn
x {x} ∅
this ∅ ∅
x = e {x} ∪ fv(e) fn(e)
T x = e0; e1 fv(e0) ∪ (fv(e1) \ {x})

S
fn(ei)

return ∅ ∅
freeze[t](T x){e} fv(e) \ {x} fn(e)
await c ∅ {c}
insync o {e} fv(e) {o} ∪ fn(e)
ready o n ∅ {o}
waiting(c) n ∅ {c}
Error ∅ ∅
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(Configurations)

(ν u)P, σ, CT ≡ (ν u)(P, σ, CT) u /∈ fn(σ) ∪ fn(CT)

(ν u)(ν u′)F ≡ (ν u′)(ν u)F

(ν x)(P, σ · [x 7→ v], CT) ≡ P, σ, CT x /∈ fv(P )

(ν o)(P, σ · [o 7→ (C, . . .)], CT) ≡ P, σ, CT o /∈ fn(P ) ∪ fn(σ)

(Threads) (Networks)

P |0 ≡ P N |0 ≡ N

P |P0 ≡ P0 |P N |N0 ≡ N0 |N
P | (P0 |P1) ≡ (P |P0) |P1 N | (N0 |N1) ≡ (N |N0) |N1

(ν u)(P |P0) ≡ (ν u)P |P0 u /∈ fn(P0) (ν u)(N |N0) ≡ (ν u)N |N0 u /∈ fnv(N0)

(ν c)0 ≡ 0 (ν c)0 ≡ 0

(ν u)(ν u′)P ≡ (ν u′)(ν u)P (ν u)(ν u′)N ≡ (ν u′)(ν u)N

return(d) ε ≡ return(d) l[(ν u)(F )] ≡ (ν u)l[F ]

ε; e ≡ e

return ε ≡ return

Fig. 16: Structural equivalence

For threads:

0 ∅ ∅
P1 |P2

S
fv(Pi)

S
fn(Pi)

(ν u)P fv(P ) \ {u} fn(P ) \ {u}
forked e fv(e) fn(e)
[go] e with/to c fv(e) {c} ∪ fn(e)
return(c) e fv(e) {c} ∪ fn(e)
(ν ~u)(P, σ, CT) (fv(P ) ∪ fv(σ) ∪ fv(CT)) \ {~u} (fn(P ) ∪ fn(σ) ∪ fn(CT)) \ {~u}

For networks:

0 ∅ ∅
l[F ] fv(F ) fn(F )
N1 |N2

S
fv(Ni)

S
fn(Ni)

(ν u)N fv(N) \ {u} fn(N) \ {u}
∅ ∅ ∅
σ · [x 7→ v] {x} ∪ fv(v) ∪ fv(σ) fn(v) ∪ fn(σ)

σ · [o 7→ (C, ~f : ~v, n, {~c}) fv(~v) ∪ fv(σ) {o,~c} ∪ fn(~v) ∪ fn(σ)
∅ ∅ ∅
CT · [C 7→ L] fv(L) ∪ fv(CT) fn(L) ∪ fn(CT)

B. STRUCTURAL EQUIVALENCE

This section defines the structural equivalences for DJ. They are defined for threads,
networks and configurations in Figure 16. Formally, ≡ is an equivalence relation
which includes α-conversion and is generated by the equations in Figure 16.

The last two rules for configurations define garbage collection of useless store
entries, while the last three rules for threads are used to erase runtime value ε of
the void type. Others rules, including scope opening, are inherited from those of
the π-calculus [Milner et al. 1992], and so are standard.
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C. PROOFS FOR THE CORRECTNESS OF THE ALGORITHMS

This section lists the proofs for Lemma 4.1. We show (1, 2) by induction on the
length of σ, and (3, 4) by induction on the length of CT.

In the subsequent proofs, we use length functions for stores and class tables
defined by:

length(∅) = 0 length(σ · [o 7→ (C, . . .)]) = length(σ · [x 7→ v]) = length(σ) + 1

length(∅) = 0 length(CT · [C 7→ class C extends D {~T ~f ; K ~M}]) = length(CT) + 1

(1) By induction on length(σ). For the base case assume length(σ) = 0. Then
σ = ∅ and Γ; ∅ ` ∅ : ok immediately. The two conjunctions hold vacuously, therefore
this case is complete.

For the inductive case, we assume that the property holds for length(σ) < n and
prove for length(σ) = n. Examining the algorithm, there are two sub-cases. If
v /∈ dom(σ) or v ∈ dom(σ) and v is an instance of a class C such that remote(C),
then σ′ = ∅. Then, as in the base case, the property holds straightforwardly.

Now for the second sub-case, i.e. og(σ, o) = [v 7→ (C, ~f : ~v, 0, ∅)] ∪ og(σi, oi),
examining Algorithm 4.1, we have:

σ(v) = (C, ~f : ~v, n, {~c}) with local(C), {~o} = fn(~v) (5)
σ1 = σ \ {v} (6)
σi+1 = σi \ dom(og(σi, oi)) (7)

From because v ∈ dom(σ) and (6) we have that length(σ1) < n. Examining (7),
length(σi) ≤ length(σ1) < length(σ) and so by the inductive hypothesis:

Γ; ∅ ` (σ′i =)og(σi, oi) : ok, ∀o′ ∈ dom(σ′i). σ
′
i(o

′) = (C, . . .) with local(C)
∀o′ ∈ (fn(σ′i) \ dom(σ′i)). Γ ` o′ : C with remote(C)

By applying Lemma D.2 (7), and by set-union we have:

Γ; ∅ ` (σ′′ =)
⋃

og(σi, oi) : ok, ∀o′ ∈ dom(σ′′). σ′′(o′) = (C, . . .) with local(C)

∀o′ ∈ (fn(σ′′) \ dom(σ′′)). Γ ` o′ : C with remote(C)

By typability of σ, we have that Γ; ∆ ` (C, ~f : ~v, n, {~c}) : ok. Therefore we can
straightforwardly deduce: Γ; ∅ ` (C, ~f : ~v, 0, ∅) : ok, and by examination of (5),
{~o} = fn(~v) and any identifiers in ~o that point to instances of local classes will have
been gathered by recursive application of the algorithm, and hence in dom(σ′′).
Thus we finish the case.
(2) Assume σ′ = og(σ, v). The base case is where length(σ) = 0 i.e. σ = ∅.
Examining the algorithm we see that σ′ = ∅. Therefore trivially ogcomp(σ, σ′).

For the inductive step, assume that σ′ = og(σ, v) and ogcomp(σ, σ′) for length(σ) <
n. Now setting length(σ) = n there are two sub-cases:

(a) σ′ = ∅. Trivially, there are no pairs in the reachability relation RCH(σ′) and
so we have ogcomp(σ, σ′) vacuously.

(b) σ′ = [v 7→ σ(v)]
⋃

og(σi, oi), where σ(v) = (C, ~f : ~v), {~o} = fn(~v), σ1 = σ \ {o}
and σi+1 = σi \ dom(og(σi, oi)).
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Clearly, length(σi) < n by the initial removal of o from σ1. Write σ′i =
og(σi, oi). Further examination of the algorithm shows that σ′i+1 is computed
from σi less the elements collected in σ′i. Therefore dom(σ′i)∩dom(σ′i+1) = ∅ so
by the inductive hypothesis ogcomp(σ1,

⋃
og(σi, oi)). Recall that σ1 = σ \ {v}.

By adding [v 7→ σ(v)] to each side, we add the same number of reachable states
and therefore ogcomp(σ, σ′).

(3) By induction on length(CT).
(4) Suppose length(CT0) = 0 then by definition, CT′ is complete. Now, take
length(CTn) = n. Given CT′ = cg(CTn, C) for some C is complete by assump-
tion, we either have that C ∈ dom(CTn) and CT′ 6= ∅, or C /∈ dom(CTn) and CT′ = ∅.
For the inductive step we must show that when the length of the class table is
n + 1 the computed class graph remains complete. Extending the class table can
be achieved by appending a new entry giving CTn+1 = CTn · [C ′ 7→ L] for some
C ′ /∈ dom(CTn). We assume that the superclass of C ′ is present in CTn, otherwise
the new class table would not be complete and so the conclusion would hold by
default. Then given CT′ = cg(CTn+1, C), if C 6= C ′ then again CT′ is complete by
virtue of being empty. If C = C ′ then by our assumption that the class table CTn+1

contains the direct superclass of C ′ then CT′ must also be complete.

D. BASIC PROPERTIES

In this Appendix we shall show some key properties and lemmas that are necessary
for the proof of our network invariance and type soundness theorem. Hereafter we
often write α for U or S. We also adopt the convention that Γ; ∅ can be written as
simply Γ.

D.1 Judgements

Lemma D.1 lists some useful properties about judgements. We write J to stand for
any one of the following judgements:

J ::= Env | σ : ok | e : α | P : thread | F : conf | N : net

Lemma D.1linearity has the useful property of ensuring that any channels appearing
in the channel environment ∆ and not in the judgement J must have the linear type
chan.

Lemma D.1. (Judgements)

(Permutation of environments)
(1 ) Γ;∆, c : τ, c′ : τ ′,∆′ ` J =⇒ Γ;∆, c′ : τ ′, c : τ,∆′ ` J.
(2 ) Γ, u : T, u′ : T ′,Γ′;∆ ` J =⇒ Γ, u′ : T ′, u : T,Γ′;∆ ` J. Similarly for this.
(Linearity of channels)

(3 ) Γ;∆, c : τ,∆′ ` J ∧ c /∈ fn(J) =⇒ τ = chan.
(Weakening)

(4 ) Γ;∆ ` J ∧ c /∈ dom(∆) =⇒ Γ;∆, c : chan ` J.
(5 ) Γ;∆ ` J∧ ` T : tp ∧ x /∈ dom(Γ) =⇒ Γ, x : T ;∆ ` J.
(6 ) Γ;∆ ` J∧ ` C : tp ∧ this /∈ dom(Γ) =⇒ Γ, this : C;∆ ` J.
(Strengthening)
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(7 ) Γ;∆, c : τ ` J ∧ c /∈ fn(J) =⇒ Γ;∆ ` J.
(8 ) Γ, u : T ;∆ ` J ∧ u /∈ fnv(J) =⇒ Γ;∆ ` J.
(Implied judgements)

(9 ) Γ,Γ′;∆,∆′ ` J =⇒ Γ;∆ ` Env.

Proof. By induction on the size of the judgement J. All cases are straightfor-
ward. We only list the proof for weakening with the case J = P1 |P2 : thread.
After applying rule TT-Par we have two cases; we can apply the inductive hy-
pothesis to either the left branch or the right branch of the parallel composition.
For example, choose the left branch. Therefore Γ;∆1, c : chan ` P1 : thread and
∆1, c : chan � ∆2 as c /∈ dom(∆2). Apply TT-Par to yield Γ;∆1, c : chan�∆2 `
P1 |P2 : thread. Then Γ;∆1 � ∆2, c : chan ` P1 |P2 : thread by definition of �.
The other case proceeds similarly.

D.2 Stores

Lemma D.2 states properties about the type-safety of store access. Store access are
defined as adding new variable and object identifier mappings, updating the fields
of objects and the value held by a variable, and also retrieving information from
variables and object fields. Lemma D.2 allows the concatenation of disjoint stores
and is useful in typing the deserialize(e) operation.

Lemma D.2. (Stores) Assuming that Γ;∆ ` σ : ok. Then:

(1 ) If Γ ` v : T ′ with x 6∈ dom(Γ) and T ′ <: T then Γ, x : T ;∆ ` σ · [x 7→ v] : ok.
(2 ) Assume Γ ` x : T and Γ ` v : T ′ with T ′ <: T . Then Γ;∆ ` σ[x 7→ v] : ok.
(3 ) Γ ` x : T implies Γ ` σ(x) : T ′ with T ′ <: T .

(4 ) If Γ;∆ ` (C, ~f : ~v, n, {~c}) : ok and o /∈ dom(Γ) then we have:
Γ, o : C;∆ ` σ · [o 7→ (C, ~f : ~v, n, {~c})] : ok.

(5 ) If Γ ` o : C and Γ ` v : T ′i with fields(C) = ~T ~f and T ′i <: Ti, then we have
Γ;∆ ` σ[o 7→ σ(o)[fi 7→ v]] : ok.

(6 ) Assume Γ ` o.fi : Ti with σ(o) = (C, ~f : ~v). Then Γ ` vi : T ′i where T ′i <: Ti.
(7 ) Suppose Γ,Γ′;∆,∆′ ` σ′ : ok with dom(σ) ∩ dom(σ′) = ∅, then Γ,Γ′;∆,∆′ `

σ ∪ σ′ : ok.
(8 ) Γ;∆ ` σ : ok and σ′ ⊆ σ implies Γ;∆ ` σ′ : ok.
(9 ) Suppose Γ;∆ ` σ : ok and σ′ = block(σ, o, c) with c /∈ dom(∆), o ∈ dom(σ).

Then we have that Γ;∆, c : chanO(void) ` σ′ : ok.
(10 ) Suppose Γ;∆, c : chanO(void) ` σ : ok and σ′ = unblock(σ, o, c) with o ∈

dom(σ) and c /∈ (fn(σ) \ fn(σ(o))). Then we have that Γ;∆ ` σ′ : ok.

Proof. All are mechanical.

We list the standard lemma for the typability of the method body. The proof is
routine.

Lemma D.3. (Method body) Suppose mbody(m,C, CT) = (x, e) and mtype(m,C) =
D → U with ` CT : ok. Then for some C ′ where C <: C ′ and some U ′ where
U ′ <: U then we have x : D, this : C ′ ` e : ret(U ′).
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D.3 Structural equivalence: Proof of Lemma 6.2

An important property to be shown is that the application of the structural equality
rules given in Figure 16 preserves the typing of a term. In order to prove this prop-
erty, the next lemma is important: it yields natural properties for the composability
of environments and is used in many of the later proofs.

Lemma D.4. (Commutativity of composition and composability)

(1 ) ∆1 � ∆2 and (∆1 �∆2) � ∆3 ⇐⇒ ∆2 � ∆3 and ∆1 � (∆2 �∆3).
(2 ) ∆1 � ∆2 and (∆1 �∆2) � ∆3 =⇒ (∆1 �∆2)�∆3 = ∆1 � (∆2 �∆3).

Proof. In both proofs, without loss of generality we consider singleton environ-
ments such that ∆1 = {c : chanI(U)} and ∆2 = {c : chanO(U)} with ∆1 � ∆2 =
{c : chan}. For (1), we show only the left-to-right direction, the opposite direction
is similar. The only interesting case is that ∆1 and ∆2 share the same channels. By
the definition of �, we know c /∈ dom(∆3). Since ∆2 �∆3 = {c : chanO(U)} ∪∆3,
we have that ∆2 � ∆3 as required. We can also easily check ∆1 � (∆2 � ∆3) is
defined, thus by definition of �, we have ∆1 � (∆2 �∆3), as desired. (2) proceeds
in a similar manner to (1), adopting the same singleton environments.

E. PROOF OF INVARIANT PROPERTIES

E.1 Proofs of Lemma 6.3

(1) Straightforward by examining the reduction rules that modify class tables:
Defrost and Download.
(2) Straightforward by examining the reduction rules, starting from the initial
property.
(3) Assume reachable(σim+1, Pim+1, o) with σim+1(o) = (C, . . .).
Then there are four cases.
(a) Suppose reachable(σim, Pim, o) with σim(o) = (C, . . .).
Then by the inductive hypothesis, we have two possible situations:

i. comp(C, CTim), hence by Lemma 6.3 (1) we have comp(C, CTim+1).
ii. Pim ≡ E[download ~C from lj in e] |Qim or Pim ≡ E[resolve ~C from lj in e] |Qim,

with a superclass of C in ~C. Examining the reduction rules, we see that
if the last rule applied was DNothing, then by definition comp(C, CTim+1).
If the last reduction rule applied was Resolve, then we see that Pim+1 ≡
E[resolve ~C ′ from lj in e] |Qim with a superclass of C in ~C ′.

(b) Suppose ¬reachable(σim, Pim, o) with σim(o) = (C, . . .).
Then the last reduction rule applied must have been Return or Leave. We shall
consider the case of the latter; the former is similar. Then we have that Pim+1 ≡
o.m(deserialize(v)) with c |Qim+1. Since o moved from another location, we
can conclude remote(C), hence it must have been created at location li by New,
or was there in the initial network (recall that remote object identifiers cannot leak
to other locations, nor can their store entry be carried in a frozen value).

In the case of New, we had that for some step k (with N0 →→ Nk →→ Nm) when
o was created, comp(C, CTik). Then by Lemma 6.3 (1), comp(C, CTim+1). If o was
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present in the initial network, then by initial conditions and application of this
Lemma again, comp(C, CTim+1).

When o becomes reachable, all objects that it points to (both directly and in-
directly) now become reachable. Suppose without loss of generality that [o 7→
(C, f : o′)] ∈ σim, i.e. we only have one field, that points to a newly reachable
object o′. If o′ /∈ dom(σim), then it must be remote, and so the property holds
immediately.

If o′ ∈ dom(σim), we must investigate further. Suppose there exists some step
k such that Pik ≡ E[new C(o′)] |Qik −→li E[o] |Qik+1. Since o′ is a non-remote
identifier, we have that it was either instantiated by New (hence the class it belongs
to is complete), or it is the result of a defrost operation. By examining the rule
Defrost, before this assignment could take place, we must have downloaded all
superclasses of o′’s class, hence it must be complete. Similarly if Pik ≡ E[o.f =
o′] |Qik.

If o was added to the current location by Defrost, then by the completeness of
the object graph of the frozen object, we had that o′ was also added in the same
step. Hence after downloading all superclasses of o, we must have also downloaded
all superclasses of o′.
(c) Suppose reachable(σim, Pim, o) with o /∈ dom(σim).
For this situation to arise, we have o of some class C such that remote(C). Since
remote object identifiers cannot move, this case is complete by contradiction: no
reduction to Nm+1 can occur.
(d) Suppose ¬reachable(σim, Pim, o) with o /∈ dom(σim).
The last reduction rule applied was Download or New. In the case of the former,
we see that Pim ≡ E[defrost(v; . . . )] |Qim reduces to
Pim+1 ≡ E[download ~C from lj in e] |Qim+1 as required. In the case of the latter,
we had comp(C, CTim) and so by Lemma 6.3 (1) comp(C, CTim+1).
(4) Obvious by repeating Download and Resolve until we reach resolution of C ′.
Note that these reductions terminate as the inheritance relations in a well-formed
class table is acyclic.

E.2 Proofs of Lemma 6.4

Induction on k. Below we assume c ∈ blocked(o, σim+1) in waiting(c) . . . .
(1) (a) The base case is when k = 1. To generate E1[insync o {e}], σi1, it must
have been the case that:

E1[sync (o) {e}], σi0 −→l E1[insync o {e}], σi1

By the initial conditions, getLock(σi0, o) = 0 and so by application of Sync in we
have that getLock(σi1, o) = 1 as required.

For the inductive case, we assume the hypothesis for Nm and show for Nm+1.
Suppose we have a configuration of the form:

E1[. . . Ep[insync o {ep}] . . . ], σim+1,

with ep 6= E′[insync o {e′}], E′[waiting(c) . . . ], E′[ready o . . . ]

Then the last reduction was either e −→l ep for some e or Ep[sync (o) {ep}] −→l
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Ep[insync o {ep}].
By our assumption that ep 6= E′[insync o {e′}], in the first case the only inter-

esting reduction rule to consider is the application of LeaveCritical. Suppose
e ≡ E[insync o {v}], then there are p + 1 nested acquisitions of the monitor o.
By the inductive hypothesis we have that getLock(σim, o) = p + 1. By premise
of LeaveCritical σim+1 = setLock(σim, o, p), and so getLock(σim+1, o) = p as
required. The case for e ≡ E[insync o {return(c) v}] is similar.

For the second case, the last reduction rule applied was Sync. Before application
there are p − 1 levels of nested monitors. By the inductive hypothesis it must be
the case that getLock(σim, o) = p − 1. Then by the premise of Sync we see that
σim+1 = setLock(σim, o, p), and so getLock(σim+1, o) = p as required.
(b) Straightforward using (a) and inspecting Notify.
(c) Establishing that p = n′ is straightforward using (a).
(2) Base case, k = 1. Now suppose: Pi0, σi0, CTi0 −→l Pi1, σi1, CTi1. By the
initial conditions getLock(σi0, o) = 0, and by assumption getLock(σi1, o) = n with
n > 0. As no run-time syntax can exist in the network initially, the reduction rule
applied was Sync. This means that Pi0 ≡ E[sync (o) {e}] |Qi0, and examining the
conclusion of the rule Pi1 ≡ E[insync o {e}] |Qi1. Again by the initial conditions,
e cannot contain insync o {. . . } as a sub-term, completing this case.

For the inductive step, suppose Pim, σim, CTim −→l Pim+1, σim+1, CTim+1. By
assumption getLock(σim+1, o) = p and p > 0. There are four distinct cases:

(1) getLock(σim, o) = 0. The last rule applied to derive Pim could be either Sync or
Ready. To apply the former it must be the case that Pim ≡ E1[sync (o) {e}] |Qim.
By the conclusion of this rule Pim+1 ≡ E1[insync o {e}] |Qim+1 as required.
For application of Ready, we have that

Pim ≡ E1[insync o {. . . Ex[insync o {E[ready o x]}] . . . }] |Qim

with insync o {. . . } not a sub-term of E by 1.(a). Then it remains to show
that x = p, however this is immediate by inspection of the rule Ready.

(2) getLock(σim, o) = p − 1. The only rule applicable in this situation is Sync.
Therefore by the inductive hypothesis:

Pim ≡ E1[insync o {. . . Ep−1[insync o {Ep[sync (o) {e}]}] . . . }] |Qim

with insync o {. . . } not a sub-term of Ep. Examining Sync, we have that:

Pim+1 ≡ E1[insync o {. . . Ep−1[insync o {Ep[insync o {e}]}] . . . }] |Qim+1

By the initial conditions insync o {. . . } cannot be a sub-term of e, so this
completes the case.

(3) getLock(σim, o) = p. Straightforward.
(4) getLock(σim, o) = p+1. Only one rule is applicable in this situation: LeaveCritical.

To apply this, Pim must be E1[insync o {. . . Ep+1[insync o {e}] . . . }] |Qim

with e = v or e = return(c) v. We consider the case for v, the case for a return
is similar. Examining LeaveCritical, Pim+1 must be E1[insync o {. . . Ep+1[v] . . . }] |Qim+1

with insync o {. . . } not a sub-term of Ep+1 by our earlier assumption, com-
pleting this case.
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E.3 Proofs of the Invariant properties

Inv(1) By Lemma 6.3 (1).

Inv(2) Suppose Pim 6≡ E[new C(~v)] |Qim −→li Pim+1 ≡ E[new C(~v)] |Qim, then
one of two possible reduction rules was applied:
(a) We applied Cong. Then Pim ≡ P ′

im |Qim with P ′
im −→li E[new C(~v)].

Then if m = 0, by the initial condition Inv(2)′ and Lemma 6.3 (1) we have
comp(C, CTim+1), irrespective of the reduction rule applied.
Suppose m > 0. Therefore P ′

im ≡ E′[new C(~v)] for some context E′. By the
inductive assumption we have comp(C, CTim) and again by Lemma 6.3 (1) it is
the case that comp(C, CTim+1).

(b) We applied DNothing. Then Pim ≡ E[download ~C from lj in new C(~v) |Qim

with ~C ∈ dom(CTi). Then it must be the case that m > 0 since the download
expression is not permissible runtime syntax in an initial network. In order to
download nothing, it must have been the case that Pik ≡ E[download ~D from lj in e]
with C ∈ ~D and k < m (i.e. class C was downloaded at some point in the past).
Then examining the rules Download and Resolve we can straightforwardly
observe that they iterate until all superclasses of C are downloaded. Therefore
using Lemma 6.3 (1) we have trivially that comp(C, CTim+1).

Inv(3) There are two interesting sub-cases:
(a) The last applied reduction rule was Download. Then

Pim ≡ E[download C from lj in e] |Qim

and Pim −→li E[resolve C from lj in e]

Since downloading did not fail (the assumption that Nm+1 6|= Err), there must
exist a location lj with C ∈ dom(CTjm). By the premise of Download, C ∈
dom(CTim+1) and CTim+1(C) = CTjm modulo class labelling as required.

(b) The last applied reduction rule was Defrost. Then

Pim ≡ E[defrost(v; λ(T x).(ν ~u)(lj , e, σ, CT))]

with CT ⊆ CTjk where k < m. Straightforwardly, by premise of Defrost we
have that CTim+1 = CTim ∪ CT[~Cm/~C] for some classes ~C, and so making a
similar argument to the previous sub-case, any duplicate classes must have the
same definition, modulo class labelling.

Inv(4) The only interesting cases are those where the set of free variables of a term
changes with reduction. There are three such cases. Without loss of generality, we
consider only a single thread containing no free variables for a single location with
an empty store:
(a) The last applied reduction rule was Dec. Then suppose

li[E[T x = v], ∅, CTi] −→≡ (ν x)(li[E[v], [x 7→ v], CTi])

By Inv(12), we have fv(v) = ∅. Before reduction we have fv(E[T x = v]) = ∅,
after reduction we potentially have that fv(E[v]) = {x}, however we see that
dom([x 7→ v]) = {x} and the new identifier is restricted at the network level.
Therefore this case is complete.
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(b) The last applied reduction rule was MethInvoke. Then suppose

li[o.m(v) with c, ∅, CTi] −→≡ (ν x)(li[e[o/this][return(c)/return], [x 7→ v], CTi])

where mbody(m,C, CTi) = (x, e), and again by Inv(12), fv(v) = ∅. We must
show that fv(e) ⊆ [x 7→ v] ⊆ {x}. However by definition of substitution, we
know that fv(e[o/this][return(c)/return]) = fv(e). Given that the network
configuration is well-typed, it must be the case that x : D, this : C ` e :
ret(U), i.e. fv(e) ⊆ {x}. This concludes the case.

(c) The last applied reduction rule was Defrost. Suppose

li[E[defrost(v; λ(T x).(ν ~u)(lj , e, σ, CT))], ∅, CTi]
−→≡ (ν ~ux)(li[E[download ~F from lj in sandbox {e}], σ · [x 7→ v], CT ∪ CTi[~Clj/~C])

where fv(v) = fv(λ(T x).(ν ~u)(lj , e, σ, CT)) = ∅ by Inv(12). Straightforwardly
we have that fv(e) ⊆ dom(σ · [x 7→ v]) ⊆ {~ux} to complete this case.

Inv(5) Here we only need to examine the case when the last applied rule was
Defrost. This case is straightforward: all new identifiers added to the store
during defrosting are restricted with fresh names, therefore there can be no overlap
of store entries between producer and consumer locations. Moreover, by Inv(15),
frozen values contain only remote identifiers, hence the rules MethRemote and
Leave cannot move shared store entries across the network.
Inv(6) For the first case suppose that:

o ∈ fn(Fim+1)∩fn(Fjm+1), o ∈ fn(Fim)∩fn(Fjm), ∃!k.σkm(o) = (C, . . .) with remote(C)

Then by Inv(5) we have that o cannot exist as an entry in more than one store.
By Inv(8) we observe that since o ∈ fn(Fim+1), the entry for o cannot have been
garbage collected. Hence ∃ !k.σkm+1(o) = (C, . . .), and since there are no operations
to change the “remoteness” of a class, remote(C) holds, completing the case.
For the second case suppose that:

o ∈ fn(Fim+1) ∩ fn(Fjm+1), o /∈ fn(Fim) ∩ fn(Fjm) (8)

This indicates that a free name moved between two locations. This can happen in
two ways: by application of MethRemote or Return. We show the case of the
latter, since the former is proved by the same argument. Assume

lj [go v to c] | li[Qim] −→ lj [. . . ] | li[return(c) deserialize(v) |Qim]

By typability of Fim+1 we have that Γ;∆ ` v : unit → D for some class D, i.e.
v is a frozen value. Assume there exists o such that o ∈ fn(v) and (8) holds. By
Inv(8), there exists a store entry for o “somewhere” and by Inv(5) this entry must
be unique. Hence there exists unique k such that σkm+1(o) = (C, . . .). Now by
Inv(15), the only free identifiers in a frozen value must be of remote classes, hence
remote(C). This completes the case.
Inv(7) There are two sub-cases. First assume that

o ∈ fn(Fim+1) ∧ ∃k.σkm+1(o) = (C, . . .) ∧ local(C)

and we shall prove that k = i.
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(a) Suppose o ∈ fn(Fim) ∧ ∃k′.σk′m(o) = (C, . . .) ∧ local(C) ∧ k′ = i. Then by the
inductive assumption we can derive that o ∈ dom(σim). By Inv(8) we have that
o ∈ dom(σim+1) which implies i = k = k′ as required.

(b) Suppose that o /∈ fn(Fim), then the last applied reduction step applied must
have somehow created a new object identifier o. Examining the reduction rules
we have four cases (although two are trivial):
i. The last applied rule was New.

E[new C(~v)] |Qim, σim −→li (ν o)(E[o] |Qim, σim · [o 7→ . . . ])

Then straightforwardly k = i because o ∈ dom(σ)im+1.
ii. The last applied rule was Defrost.

E[defrost(v; λ(T x).(ν ~u)(lj , e, σ, CT))] |Qim, σim −→li (ν ~ux)(E[. . . ] |Qim, σim ∪ σ · [x 7→ v])

Then by Inv(15), the frozen value can contain no free local object identifiers
and so o ∈ ~u which entails that o ∈ dom(σ) and k = i.
iii. The last applied rule was Leave or MethRemote. Then (omitting stores
and class tables for conciseness)

lj [go o.m(v) with c] | li[Qim] −→ lj [. . . ] | li[o.m(deserialize(v)) with |Qim]

By assumption, Γ; ∆ ` N : net and therefore Γ ` v : unit→ D for some class
D. Then by Inv(15), we know that any free names appearing inside v must be
remote object identifiers. Therefore this case holds vacuously.

Inv(8) Assume: o ∈ fn(Fim) ∧ ∃k 1 ≤ k ≤ n. o ∈ dom(σkm) and o ∈ fn(Fim+1).
Then, by examination of the rules for structural equivalence in Figure 16, we see
that the only way to remove an object identifier is when it does not exist in the
free names of the remainder of the network. Since o ∈ fn(Fim+1) by assumption, it
must be the case that ∃k 1 ≤ k ≤ n. o ∈ dom(σkm+1) as required.
Inv(9) Only the cases for Ri ≡ o.m(e) with c and Ri ≡ E[o.f = e] are shown, as
the others use the same basic method.
(a) Suppose Pim+1 ≡ o.m(e) with c |Qim+1. Examining the structure of this
thread, we see that there were two possible rules applied in the last reduction step:
LeaveSandbox or MethLocal.

i. Let Pim ≡ E[o.m(v)] |Qim. Then this is a local method call, and by the
premises of MethLocal, we had o ∈ dom(σim), hence σim = (C, . . .). Then
by Lemma 6.3 (3) we have comp(C, CTim). By monotonicity of stores and class
tables, σim+1(o) = (C, . . .) and comp(C, CTim+1) as required.

ii. Let Pim ≡ Qim. Then this is a remote method call, and by the premises of
Leave, we have o ∈ dom(σim). Then proof proceeds as in the previous case.

(b) Assume Pim+1 ≡ E[o.f = e] |Qim+1. Then we have two main cases. If Pim ≡
E[o.f = e′] |Qim then by the inductive hypothesis, this case is complete. However
suppose Pim ≡ E[e′.f = e] |Qim, then we must perform a case analysis on the step
e′ −→ o.

i. Suppose the last rule applied was New. Then by Inv(2) we have comp(C, CTim),
hence by Lemma 6.3 (1) comp(C, CTim+1).

ii. Suppose the last applied rule was Fld. Then Pim ≡ E[(o′.f ′).f = e] |Qim.
Then by typability of Nm we have that Γ, ~u : ~T ` (o′.f ′).f : C and local(C).
Then by Inv(8) and Inv(7) we have that σim(o) = (C, . . .). Then by Lemma 6.3 (3),
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comp(C, CTim). By monotonicity of class tables and stores, σim+1(o) = (C, . . .)
and comp(C, CTim+1) as required.

iii. Suppose the last rule applied was Var. Then Pim ≡ E[x.f = e] |Qim. By typa-
bility, Γ, ~u : ~T ` x.f : C with local(C). By reduction, we must have that [x 7→
o] ∈ σim and so o is reachable from thread Pim. Again by Inv(8) and Inv(7) we
have that σim(o) = (C, . . .). Then by Lemma 6.3 (3), comp(C, CTim). By mono-
tonicity of class tables and stores, σim+1(o) = (C, . . .) and comp(C, CTim+1) as
required.

iv. Suppose the last rule applied was Ass. Then Pim ≡ E[(x = o).f = e] |Qim.
Then by typability, Γ, ~u : ~T ` x = o : C for some C such that local(C). Hence
by typability Γ, ~u : ~T ` o : C ′ such that C ′ <: C. By our convention, it must
be the case that local(C ′) also. Then this case straightforward as above, by
establishing that o must be in the store due to the locality of its class.

v. Suppose the last rule applied was FldAss. Similar to the case for Ass.
vi. The last rule applied was LeaveSandbox. Then Pim ≡ E[sandbox {o}.f =

e] |Qim. Then this is also straightforward, noting that Γ, ~u : ~T ` o : C with
local(C).

Inv(10) Straightforward by the definition of ∆1 � ∆2.

Inv(11) Straightforward by the definition of ∆1 � ∆2.

Inv(12) We investigate the cases where a value comes into a redex position. Assume
Pim+1 ≡ E[v] |Qim+1, then we perform a case analysis as follows.
(a) The last rule was New. Then this case is trivial.
(b) The last rule was Var. Then Pim ≡ E[x] |Qim, and this case is straightforward

by Inv(13).
(c) The last rule was Fld. Then Pim ≡ E[o.f ] |Qim, and this case is straightfor-

ward by Inv(14).
(d) The last rule was Freeze. Then Pim ≡ E[freeze[t](T x){e}] |Qim. By reduc-

tion, v = λ(T x).(ν ~u)(li, e, σ, CT). Examining the definition of fv, we see that
fv(v) = (fv(e) \ {x}) ∪ fv(σ) ∪ fv(CT). By premises of Freeze, we see that σ
is derived from σim. Hence by Inv(13) and Inv(14), all values must be closed,
so fv(σ) = ∅. Similarly, CT is derived from CTim and so since ` CTim : ok, we
have that fv(CT) = ∅. By typability of Pim, we see that fv(e) ⊆ {x}, so we can
conclude that fv(v) = ∅ as required.

(e) The last rule was DNothing. Then Pim ≡ E[download ~C from lj in sandbox {v} |Qim.
However this situation only arises after a frozen value has been defrosted.
Therefore by the inductive hypothesis, we know that v can contain no free
variables.

Inv(13) For this invariant, we check the cases where new variable mappings are
added to the store, or when an existing mapping is changed. Assume σim+1(x) = v.
Then
(a) Suppose the last reduction rule applied was Dec. Then Pim ≡ E[T x =

v] |Qim. Then by Inv(12) we have that fv(v) = ∅, so this case is straightforward.
(b) The last rule applied was Defrost. Then

Pim ≡ E[defrost(v; λ(T x).(ν ~u)(lj , e, σ, CT))] |Qim. However by Inv(12), we
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have that the frozen value contains no free variables, hence fv(σ) = ∅ and so
any mappings added to σim are closed.

(c) The last rule was Ass. Again straightforward by Inv(12).

Inv(14) For this invariant, check the cases where new object mappings are added
to the store, or when an existing mapping is changed. Assuming σim+1(o) =
(C, ~f : ~v), we investigate when the last rule was New, Defrost or FldAss. All
are straightforward by application of Inv(12).

Inv(15) The only interesting case is when the last applied reduction rule was Freeze.
We show only the case when t = eager, as the others are similar. Suppose:

Pim ≡ E[freeze[eager](T x){e}] |Qim −→li Pim+1 ≡ E[λ(T x).(ν ~u)(l, e, σ, CT)] |Qim

Then by the premises of Freeze we have:

{~y} = fv(e) \ {x} with σy =
⋃
σim(yi), CT′ = cg(CT, fcl(e) ∪ fcl(σ))

σ = og(σim, fn(e) ∪ fn(σy)) ∪ σy with {~u} = dom(σ)

As a preliminary note, by typability of Nm we have that ` CT : ok and so fn(CT) = ∅.
Therefore:fn(λ(T x).(ν ~u)(l, e, σ, CT)) = (fn(e) ∪ fn(σ)) \ {~u}. By Lemma 1 (1), and
that {~u} = dom(σ):

∀u ∈ (fn(og(σim, fn(e) ∪ fn(σy))) \ {~u}). Γ ` u : C ∧ remote(C)

By Lemma 2 (2), all local object identifiers reachable from e or σy must be included
in the computed object graph and hence in ~u. Therefore all remaining free names
in e or σy must point to remote objects. So:

∀u ∈ (fn(e) ∪ fn(σy)) \ {~u}. Γ ` u : C ∧ remote(C) ∧ (9)
=⇒ ∀u ∈ (fn(e) ∪ fn(σ)) \ {~u}. Γ ` u : C ∧ remote(C)
=⇒ ∀u ∈ fn(λ(T x).(ν ~u)(l, e, σ, CT)). Γ ` u : C ∧ remote(C)

Inv(16) Suppose Pim+1 ≡ E[ready o n] |Qim+1. There are only two interesting
cases: the last reduction rule applied was Notify, or it was NotifyAll.
(a) Suppose Pim ≡ E′[o.notify] |E[waiting(c) n] |Qim. By typability of this

term we have that n > 0, and by the premises of Notify we see that c ∈
blocked(σim, o). Then by Lemma 6.4 we have that insync(o,E) with n levels of
nesting.

(b) Suppose Pim ≡ E′[o.notifyAll] |E[waiting(c) n] |Qim. Then this case follows
in the same way as the previous.

Inv(17) Assume Pim+1 ≡ E[waiting(c) n] |Qim+1. Then there is only one inter-
esting case to consider, when Pim ≡ E[o.wait] |Qim. By premise of Wait we have
that insync(o,E), and consequently by Lemma 6.4, n > 0. Since channel c is cre-
ated fresh, we know that it is stored in the blocked queue of at most one object,
and again by the premise of Wait we see that σim+1 = block(σim, o, c), therefore
it exists in exactly one place: the blocked queue of o. This completes the case.
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E.4 Proofs for progress with synchronisation primitives

This subsection proves Lemma 6.1.
By induction on the number of threads synchronised on the object o, written

n. The base case is straightforward; take n = 1 then P ≡ E1[insync o {e1}] |Q.
e1 can be of any form and still satisfy the condition that at most one thread can
execute in its critical section.

For the inductive step, we assume that the property holds for n − 1 threads in
parallel. Now we write P as follows:

P ≡E1[insync o {e1}] | · · · |En−1[insync o {en−1}] |En[insync o {en}] |Q (9)

We shall show that either:

∀j.1 ≤ j ≤ n. (ej = E′
j [waiting(c) o. . .] ∨ ej = E′

j [ready o . . . ]) (10)

or ∃!j.1 ≤ j ≤ n. (ej 6= E′
j [waiting(c) o. . .] ∧ ej 6= E′

j [ready o . . . ]) (11)

with c ∈ blocked(o, σ). By the inductive assumption, we have that:

∀j.1 ≤ j ≤ n− 1. (ej = E′
j [waiting(c) o. . .] ∨ ej = E′

j [ready o . . . ]) (12)

or ∃!j.1 ≤ j ≤ n− 1. (ej 6= E′
j [waiting(c) o. . .] ∧ ej 6= E′

j [ready o . . . ]) (13)

For (12) if en = waiting(c) o. . . or en = ready o . . . then we can immediately
conclude (10) as required. Similarly, if en is not of this form then we can safely
conclude (11).

However, if we have the situation (13) then the nature of the new thread is
important—it cannot be executing inside its critical section. If en is waiting or
ready, then (11) is preserved. However consider that en is executing within its
critical section. We shall show that this situation cannot arise by showing a con-
tradiction.

Without loss of generality, consider only two threads executing in their critical
section simultaneously:

E1[insync o {e1}] |E2[insync o {e2}]

Assume neither e1 nor e2 are of the form E′′[waiting(c) o. . .] or E′′[ready o . . . ].
In order to reach such a situation, one thread must have entered its critical section
while the other was still active in its. Therefore:

E1[insync o {e1}] |E2[e′2], σ, CT −→l E1[insync o {e1}] |E2[insync o {e2}], σ′, CT

e′2 can take two shapes: e′2 = ready o . . . or e′2 = sync (o) {e2}. In the first
case, the only reduction rule applicable is Ready, which has getLock(σ, o) = 0 as a
premise. However by Lemma 6.4 we can conclude that getLock(σ, o) > 0, giving rise
to an immediate contradiction. The same argument may be made for the second
form of e′2, where Sync is used.

Using this, it is possible to conclude that en must be of the form E′
n[waiting(c) o. . .]

or E′
n[ready o . . . ], which establishes (11) as required.
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F. PROOFS FOR TYPE SOUNDNESS

F.1 Proofs for Substitution Lemma 6.5

By induction on the structure of the expression e using Lemma 6.2. The proof is
standard, so we only list one case. Suppose Γ, x : T ;∆, c : chanI(U) ` E[await c]U :
thread. Then this is derived from TT-Await with the premise: Γ, x : T ;∆ `
E[ ]U : thread with c /∈ dom(∆). We apply the inductive hypothesis obtain-
ing Γ; ∆ ` E[ ]U [v/x] : thread. Since ∆ is unchanged, the side condition c /∈
dom(∆) still holds, and we can apply rule TT-Await to yield Γ;∆, c : chanI(U) `
E[await c]U [v/x] : thread, as required.

F.2 Proof of Theorem 6.1

(1) The proof proceeds by induction on the length of reduction sequence with a
case analysis on the final reduction rule applied. When σ = σ′ or CT = CT′ we shall
omit them.

Case Var. Use Lemma D.2 (3).

Case Cond. Straightforward by the inductive hypothesis.

Case While. Standard.

Case Fld. Straightforward by Lemma D.2 (6).

Case Seq. Assume e1; e2, σ, CT −→l (ν ~u)(e2, σ′, CT′) with ~u /∈ fnv(e2) and Γ `
e1; e2 : S. To derive this, TE-Seq was applied with the premises that Γ ` e1 : U
and Γ ` e2 : S. By premises of Seq we have e1, σ, CT −→l v, σ

′, CT′, and so by the
inductive hypothesis we have Γ, ~u : ~T ` v : U ′ with U ′ <: U and Γ, ~u : ~T ;∆ ` σ′ : ok,
` CT′ : ok. Then to complete the case we apply weakening to derive Γ, ~u : ~T ` e2 : S.

Case Ass. Straightforward using Lemma D.2 (2).

Case FldAss. Use Lemma D.2 (5).

Case New. Assume new C(~v), σ −→l (ν o)(o, σ · [o 7→ (C, ~f : ~v, 0, ∅)]) and Γ `
new C(~e) : C. To derive this, TE-New must have been applied with premises
fields(C) = ~T ~f , T ′i <: Ti, Γ ` ei : T ′i and ` C : tp. Using this we can derive
that Γ ` (C, ~f : ~v, 0, ∅) : ok. Since o is fresh and therefore not in Γ, we can apply
Lemma D.2 (4) to complete the case.

Case NewR. Similar to the case for New. Assume Γ ` new Cl(~e) : C, we see
TE-New was applied with the important premise that ` C : tp. Then we can apply
TE-ClassLoad to derive Γ ` download C from l in new Cl(~e) : C as required.

Case Dec. Straightforward by Lemma D.2 (1).

Case Cong. Use Lemma 6.5(3).

Case Resolve. By TE-ClassLoad.

Case DNothing. Assume By TE-ClassLoad.

Case Freeze. We shall assume the eager-mode of operation, others are similar.
Assume freeze[eager](T x){e}, σ, CT −→l λ(T x).(ν ~u)(l, e, σ′, CT′), σ, CT and Γ `
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freeze[eager](T x){e} : T → U . To infer this, TE-Freeze was used with premise
Γ, x : T ` e : U . The premises of Freeze are

σ′ = og(σ, fn(e) ∪ fn(σy)) ∪ σy, with {~y} = fv(e) \ {x}, σy =
⋃
σ(yi) (a)

{~u} = dom(σ′) (b)
CT′ = cg(CT, fcl(e) ∪ fcl(σ′)) (c)

From (a) we can apply Lemma 4.1 (1) to obtain

Γ; ∅ ` og(σ, fn(e) ∪ fn(σy)) : ok

By definition, we have σy ⊆ σ. Then by Lemma D.2 (8), Γ; ∆ ` σy : ok. However
σy, by construction, only contains mappings from variables, i.e. there are no store
objects (and hence no channels) in its co-domain, therefore Γ; ∅ ` σy : ok by
Lemma D.1 (strengthening). From this knowledge, we can apply Lemma D.2 (7)
to obtain: Γ; ∅ ` σ′ : ok.

Now considering CT′, by (c) we see that CT′ is constructed using the class depen-
dency algorithm. Trivially if C ∈ fcl(e) ∪ fcl(σ′) then C ∈ dom(CSig). So we apply
Lemma 4.1 (3) to obtain ` CT′ : ok.

Applying TV-Frozen to e, σ′ and CT′, we derive Γ′ ` λ(T x).(ν ~u)(l, e, σ′, CT′) :
T → U where Γ′ is a subset of Γ such that ui /∈ dom(Γ′). Then we apply
Lemma D.1 (weakening) to obtain Γ ` λ(T x).(ν ~u)(l, e, σ′, CT′) : T → U as re-
quired. Since σ and CT are unchanged, this completes the case.

Case Defrost. Assume

defrost(v; λ(T x).(ν ~u)(m, e, σ′, CT′)), σ, CT (b)

−→l(ν x~u)(download ~F from m in sandbox {e[ ~Cm/~C]}, σ ∪ σ′ · [x 7→ v], CT ∪ CT′)

and Γ ` defrost(v; λ(T x).(ν ~u)(m, e, σ′, CT′)) : U . To derive this, the last typing
rule applied was TE-Defrost with premises

Γ ` v : T ′ with T ′ <: T and Γ ` λ(T x).(ν ~u)(m, e, σ′, CT′) : T → U (a)

We shall prove

Γ, x : T, ~u : ~T ` download ~F from m in sandbox {e[ ~Cm/~C]} : U (b)
Γ, x : T, ~u : ∆ ` σ ∪ σ′ · [x 7→ v] : ok (c)
` CT ∪ CT′ : ok (d)

To infer (a), TV-Frozen was applied with the premises

Γ, x : T, ~u : ~T ` e : U Γ, ~u : ~T ` σ′ : ok ` CT′ : ok

Since Cm and C are typed by the same rule, we infer that

Γ, x : T, ~u : ~T ` e[ ~Cm/~C] : U

By application of TE-Sandbox we have Γ, x : T, ~u : ~T ` sandbox {e[ ~Cm/~C]} : U .
By the premise of Defrost, {~F} = fcl(σ′) \ dom(CT′), and in order to judge σ′,

it must be the case that for all Fi, there exists some mapping o : Fi in Γ, ~u : ~T .
Then by Lemma D.1 we have that Γ, ~u : ~T ` Env. To infer this, we must have used
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the rules for well-formedness of environments (Figure 13), and so can deduce that
` Fi : tp for all Fi. Taking this fact, we can apply TE-ClassLoad to obtain (b).
Now to show that the two stores are compatible, we apply Lemma D.2 (7) to derive
Γ, ~u : ~T ` σ ∪ σ′ : ok. Then by application of Lemma D.2 (1) we have (c). (d) then
follows from Inv(3) to complete this case.

(2) Assume Γ;∆ ` F : conf, F −→l F
′ and F ′ 6|= Err. Then we have Γ;∆ `

F ′ : conf. To type a configuration, we apply TC-Conf which has the premises
Γ;∆1 ` P : thread, Γ; ∆2 ` σ : ok, ` CT : ok, FCT ⊆ CT, ∆1 � ∆2 where
∆ = ∆1 �∆2. Proofs proceed from this point, and we omit the store σ and class
table CT when they do not change.

Case LeaveSandbox. Straightforward by the inductive hypothesis.

Case MethLocal. Assume E[o.m(v)] |P −→l (ν c)(E[await c] | o.m(v) with c |P )
and Γ; ∆1 ` E[o.m(v)] |P : thread. To type this, rule TT-Par was applied with
the premises

Γ;∆11 ` E[o.m(v)] : thread Γ;∆12 ` P : thread with ∆11 � ∆12 (a)

To type (a), we applied Lemma 6.5(3) with premises

Γ ` o.m(v) : U Γ;∆11 ` E[ ]U : thread (b)

Pick a fresh channel c, then apply TT-MethWith to (a) to obtain

Γ; chanO(U) ` o.m(v) with c : thread

With the same fresh channel, apply TT-Await to (b) to obtain

Γ;∆11, c : chanI(U) ` E[await c] : thread

By Definition 5.1, we have ∆11, c : chanI(U) � c : chanO(U) with

∆11, c : chanI(U) � c : chanO(U) = ∆11, c : chan. Since c was chosen fresh,
c /∈ dom(∆12) therefore ∆11, c : chan � ∆12 and we can apply TT-Par twice to
get

Γ;∆11, c : chan�∆12 ` E[await c] | o.m(v) with c |P : thread

Then by permutation of the environment (Lemma D.1) we have ∆11, c : chan �
∆12 = ∆1, c : chan. Applying TT-Res yields:

Γ;∆1 ` (ν c)(E[await c] | o.m(v) with c |P ) : thread

as required.

Case MethRemote. Assume

E[o.m(v)] |P −→l (ν c)(E[await c] | go o.m(serialize(v)) with c |P )

with o /∈ dom(σ) and Γ; ∆1 ` E[o.m(v)] |P : thread. This case is similar to the
previous case up to (b). We shall proceed from this point. To type (b), we must
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have applied TE-Meth, with the premise that Γ ` o : C. By the side condition
that o /∈ dom(σ), Inv(8) and Inv(6), we have remote(C). Therefore we can apply
TT-GoSer to derive:

Γ; c : chanO(U) ` go o.m(serialize(v)) with c : thread

Proof then proceeds from this point as in the case for MethLocal to derive Γ;∆1 `
(ν c)(E[await c] | go o.m(serialize(v)) with c |P ) : thread, as required.

Case MethInvoke. Assume

o.m(v) with c, σ −→l (ν x)(e[o/this][return(c)/return], σ · [x 7→ v])

and Γ; ∆1 � ∆2 ` o.m(v) with c, σ : conf. To infer this, we applied TC-Conf
with premises

Γ;∆1 ` o.m(v) with c : thread Γ;∆2 ` σ : ok ∆1 � ∆2

By premises of TT-MethWith, we have Γ ` o.m(v) : U and ∆1 = c : chanO(U).
By application of MethInvoke in the reduction step, and the fact that to infer
the above, we had to apply TE-Meth we have

σ(o) = (C, . . .) mbody(m,C, CT) = (x, e) mtype(m,C) = D → U

Γ ` o : C Γ ` v : D′ D′ <: D (a)

By assumption that ` CT : ok, we can apply Lemma D.3 to (a) to obtain that
x : D, this : C ` e : ret(U ′) with U ′ <: U for a freshly chosen x. By application
of Lemma 6.5 (substitution) followed by Lemma D.1 (strengthening) we have Γ, x :
D ` e[o/this] : ret(U ′). Then by applying TT-Return we have

Γ, x : D; c : chanO(U) ` e[o/this][return(c)/return] : thread

By application of Lemma D.2 (1) we then have that Γ, x : D ` σ · [x 7→ v] : ok. To
complete the case we then apply TC-Conf followed by TC-ResId giving

Γ;∆1 �∆2 ` (ν x)(e[o/this][return(c)/return], σ · [x 7→ v]) : conf

as required.

Case Await. Assume E[await c] | return(c) v −→l E[v] and
Γ;∆1 ` E[await c] | return(c) v : thread. To type this, we applied TT-Par with
premises:

Γ;∆11 ` E[await c] : thread Γ;∆12 ` return(c) v : thread ∆11 � ∆12

(a)

To type the first conjunct of (a), we must have applied TT-Await. To type the
second conjunct, we applied TT-Return. These give us that

Γ;∆′
11 ` E[ ]U : thread with ∆11 = ∆′

11, c : chanI(U)
Γ ` return v : ret(U ′) with U ′ <: U (b)
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To derive (b), we applied TE-Return with the premise that Γ ` v : U ′. By
Lemma 6.5(3) we obtain Γ;∆′

11 ` E[v] : thread. To complete the case we apply
Lemma D.1 (weakening) to the environment ∆′

11 to give Γ;∆1 ` E[v] : thread.

Case Fork. Similar to the above case, using Lemma 6.5(3).

Case ThreadDeath. Trivial.

Case Sync. Assume E[sync (o) {e}], σ −→l E[insync o {e}], σ′ with Γ;∆1 `
E[sync (o) {e}] : thread and Γ; ∆2 ` σ : ok.

To derive this, we applied Lemma 6.5(3) with premises

Γ;∆1 ` E[ ]S Γ ` sync (o) {e} : S (a)

To derive (a), we applied TE-Sync with premises Γ ` o : C and Γ ` e : S. We
can then apply TE-InSync to derive Γ ` insync o {e} : S. Showing the resulting
thread is well-typed, Γ; ∆1 ` E[insync o {e}] : thread, is straightforward from this
point, so all that remains is to show Γ;∆2 ` σ′ : ok. However this is straightforward,
since in the reduction step only the lock count of a store entry is changed. As σ
holds, we see that it must be the case that lock counts cannot be set to a negative
number, and so we can conclude the case.

Case Wait. Assume E[o.wait] |P, σ −→l (ν c)(E[waiting(c) n] |P, σ′) and Γ; ∆1 `
E[o.wait] |P : thread, ∆1 � ∆2 and Γ;∆2 ` σ : ok. To derive this, TT-Par was
applied with premises:

Γ;∆11 ` E[o.wait] : thread Γ;∆12 ` P : thread and ∆11 � ∆12 (a)

To derive the left conjunct of (a), we applied Lemma 6.5(3) with the premise:

Γ;∆11 ` E[ ]void : thread and Γ ` o.wait : void

By the premise of the reduction rule Wait, we have

insync(o,E) getLock(σ, o) = n setLock(σ, o, 0) = σ′′ block(σ′′, o, c) = σ′

By Lemma 6.4, we have that n > 0, and since c is fresh we can apply TT-Waiting
to obtain

Γ;∆11, c : chanI(void) ` E[waiting(c) n]void : thread (h)

Since c is fresh, then by Definition 5.1, ∆11, c : chanI(void) � ∆12. We then
apply TT-Par to yield Γ; ∆1, c : chanI(void) ` E[waiting(c) n] |P : thread.
By Lemma D.2 (9), Γ;∆2, c : chanO(void) ` σ′ : ok. By Definition 5.1 followed
by TC-ResC we can derive Γ; ∆1 � ∆2 ` (ν c)(E[waiting(c) n] |P, σ′) : conf, as
required.

Case Notify. Assume

E[o.notify] |E1[waiting(c) n], σ −→l E[ε] |E1[ready o n], σ′

Γ;∆1 �∆2 ` E[o.notify] |E1[waiting(c) n], σ : conf ∆1 � ∆2



74 ·

To derive the above, we applied TC-Conf with premises

Γ;∆11 �∆12 ` E[o.notify] |E1[waiting(c) n] : thread ∆1 = ∆11 �∆12 (a)
Γ;∆2 ` σ : ok (b)

To derive (a) we applied TT-Par with premises

(i) Γ;∆11 ` E[o.notify] : thread (ii) Γ;∆12 ` E1[waiting(c) n] : thread (c)

To derive (c-i) there were two possible rules applied. Either E contains a return
statement, or E is a forked thread. We show the case of the former (the latter is
similar). Here the typing rule applied was TT-Return and we have that ∆11 =
d : chanO(U) with the premise that Γ ` E′[o.notify] : ret(U ′) with U ′ <: U
(E′ is the context prior to the substitution of return statements). Then we see
that we applied Lemma 6.5(3) with the premise that Γ ` o.notify : void and
Γ ` E′[ ]void : ret(U ′). Then, to derive Γ ` o.notify : C we applied TE-Monitor
with premise Γ ` o : C. To derive (c-ii) we applied TT-Waiting with premises:

Γ;∆′
12 ` E1[ ]void : thread, c /∈ dom(∆′

12) n > 0 ∆12 = ∆′
12, c : chanI(void)

(d)

Since Γ ` ε : void, we can safely conclude that Γ; ∆11 ` E[ε] : ret(U ′). Then since
Γ ` o : C and n > 0 we can apply TE-Ready to deduce Γ ` ready o n : void.
Then taking this fact and (d), we can fill the whole in context E1 to obtain

Γ;∆′
12 ` E1[ready o n] : thread

Now by the premise of the reduction rule Notify, we have that c ∈ blocked(σ, o),
therefore by typability of (b), we have that c : chanO(void) ∈ ∆2. Since ∆1 � ∆2

we cannot have another output on channel c in ∆11, therefore we can safely say
that ∆11 � ∆′

12, and then apply TT-Par to obtain

Γ;∆11 �∆′
12 ` E[ε] |E1[ready o n] : thread

Now we must show that the new store, σ′ is safe. Taking ∆2 = ∆′
2, c : chanO(void)

we have by Lemma D.1 that Γ;∆2 ` Env, and so c /∈ dom(∆′
2). By premise of the re-

duction rule, we have that σ′ = unblock(σ, o, c), and so by applying Lemma D.2 (10)
it must be the case that Γ;∆′

2 ` σ′ : ok. Trivially we have (∆11 �∆′
12) � ∆′

2, and
can apply TC-Conf to yield (where ∆′

1 = ∆′
11 �∆′

12)

Γ;∆′
1 �∆′

2 ` E[ε] |E1[ready o n], σ′ : conf

Finally we apply TC-Weak to add the channel c that was removed to obtain
Γ;∆1 �∆2 ` E[ε] |E1[ready o n], σ′ : conf.

Case NotifyAll. Similar to the case for Notify.

Case NotifyNone. Straightforward.



· 75

Case Ready. Assume this should be in expressions ready o n, σ −→l ε, σ
′ with

Γ ` ready o n : void and Γ; ∆2 ` σ : ok. Trivially, Γ ` ε : ok, therefore it remains
to show that Γ;∆2 ` σ′ : ok. However since to derive ready o n, we had to apply
TE-Ready which has the premise that n > 0, then we can trivially conclude that
Γ;∆2 ` σ′ : ok.

Case LeaveCritical. We shall consider the case for return, as the other case is
similar. Assume insync o {return(c) v}, σ −→l return(c) v, σ′ with Γ; c, chanO(U) `
insync o {return(c) v} : thread and Γ;∆2 ` σ : ok. To derive the first judgement,
we applied TT-Return with the premise that Γ ` insync o {return v} : ret(U ′)
with U ′ <: U . Therefore we conclude TE-InSync was applied with premises
Γ ` o : C and Γ ` return v : ret(U ′). Then by applying TT-Return we
deduce Γ; chanO(U) ` return(c) v : thread, as required. By the premise of
LeaveCritical we have that getLock(σ, o) = n and setLock(σ, o, n − 1) = σ′,
and by the assumption of σ, we have that n ≥ 0. By Lemma 6.4 we have that
n 6= 0 i.e. n > 0. When creating σ′, we know that the new lock count can not be
negative, therefore we have Γ;∆2 ` σ′ : ok as required.

Case RC-Par. Assume P1 |P2, σ, CT −→l (ν ~u)(P ′
1 |P2, σ

′, CT′) with ~u /∈ fnv(P2)
and Γ;∆1 ` P1 |P2 : thread with ∆1 � ∆2, Γ; ∆2 ` σ : ok and ` CT : ok. To derive
P1 |P2, TT-Par was applied with premises

Γ;∆11 ` P1 : thread, Γ;∆12 ` P2 : thread, ∆11 � ∆12 ∆11 �∆12 = ∆1 (a)

By the premise of RC-Par we have that P1, σ, CT −→l (ν ~u)(P ′
1, σ

′, CT′). Since
∆11 � ∆12, (∆11 � ∆12) � ∆2 then by Lemma D.4, ∆11 � ∆2. So applying
the inductive hypothesis to P1 we obtain Γ; ∆11 � ∆2 ` (ν ~u)(P ′

1, σ
′, CT′) : conf.

By virtue of the fact that ~u /∈ fnv(P2), we can apply weakening to (a), ensuring
that thread P2 is well typed in the new environment. This allows us to conclude
Γ;∆1 �∆2 ` (ν ~u)(P ′

1 |P2, σ
′, CT′) : conf, as required.

Case RC-Str. Straightforward by Lemma 6.2.

Case RC-Res. We shall prove the case when u is a channel name. The others are
similar. Assume (ν c~u)(P, σ, CT) −→l (ν c~u′)(P ′, σ′, CT′) and Γ; ∆ ` (ν c~u)(P, σ, CT) :
conf. There are two cases: the last applied typing rule was TC-Weak, or it was
TC-ResC. In the case of the former, this rule has the premises

Γ;∆′ ` (ν ~u)(P, σ, CT) : conf with ∆ = ∆′, c : chan. Then by the induc-
tive hypothesis, Γ; ∆′ ` (ν ~u′)(P ′, σ′, CT′) : conf. Applying TC-Weak we have
Γ;∆ ` (ν c~u′)(P ′, σ′, CT′) : conf as required. When the last reduction rule was
TC-ResC, we have the premises: Γ;∆, c : chan ` (ν ~u)(P, σ, CT) : conf. Then
again by the inductive hypothesis, Γ;∆, c : chan ` (ν ~u)(P, σ, CT) : conf and we can
apply TC-ResC to conclude the required result.

(2)

Case RN-Conf. By the premises of RN-Conf, F −→l F
′. From the structure

of N , we see that the last typing rule applied must have been TN-Conf with
premise Γ;∆ ` F : conf. Given this and the assumption that F −→l F

′ we can
apply Theorem 6.1 (1) to obtain Γ;∆ ` F ′ : conf. We can then re-apply TN-Conf
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to deduce Γ; ∆ ` l[F ′] : net as required.

Case Download. Assume l1[E[download ~C from l2 in e] |P, σ1, CT1] | l2[P2, σ2, CT2]
−→ l1[E[resolve ~D from l2 in e] |P, σ1, CT1 ∪ CT′] | l2[P2, σ2, CT2] and
Γ;∆ ` l1[E[download ~C from l2 in e] |P, σ1, CT1] | l2[P2, σ2, CT2] : net. To derive
this, we applied TN-Par with premises:

Γ;∆1 ` l1[E[download ~C from l2 in e] |P, σ1, CT1] : net∆1 � ∆2 (a)
Γ;∆2 ` l2[P2, σ2, CT2] : net

To type the network location in (a), we had to apply TE-ClassLoad at some point,
with the premises that Γ ` e : U and ` ~C : tp. Then by examination of the premises
of reduction rule Download, we have that ~D ⊆ ~C and so trivially ` ~D : tp. Thus
we can apply TE-ClassLoad again to derive that Γ ` resolve ~D from l2 in e : U
as required. Now it remains to show that ` CT1 ∪ CT′ : ok. Again by inspecting the
premises of Download, we see that CT′ is a subset of CT2 with some substitutions
applied. Since these do not affect well-formedness, we deduce that ` CT′ : ok. By
Inv(3) we see that if dom(CT1)∩dom(CT′) 6= ∅, any shared classes will have the same
definition. This means we can immediately derive ` CT1 ∪ CT′ : ok. After this, to
complete the case there is merely the mechanical rebuilding of the derivation of the
following required result:

Γ;∆ ` l1[E[resolve ~D from l2 in e] |P, σ1, CT1 ∪ CT′] | l2[P2, σ2, CT2] : net

Case Leave. Assume l1[go o.m(v) with c |P1, σ1, CT1] | l2[P2, σ2, CT2]
−→ l1[P1, σ1, CT1] | l2[o.m(deserialize(v)) with c |P2, σ2, CT2] and
Γ;∆ ` l1[go o.m(v) with c |P1, σ1, CT1] | l2[P2, σ2, CT2] : net. In this derivation,
we had to judge Γ; c : chanO(U) ` go o.m(v) with c : thread. This is typed
by TT-DeserWith, as is o.m(deserialize(v)) with c. Therefore it remains
to show that the channel environments can be safely composed, however this is
straightforward by Lemma D.4 and noting that the operator � and predicate � are
commutative. Hence we obtain

Γ;∆ ` l1[P1, σ1, CT1] | l2[o.m(deserialize(v)) with c |P2, σ2, CT2] : net

as required.

Case Return. Similar to case Leave.

Case SerReturn. Assume l[return(c) v |P, σ, CT] −→ l[go serialize(v) to c |P, σ, CT]
and Γ; ∆ ` l[return(c) v |P, σ, CT] : net. To type this, we applied TN-Conf with
premise Γ; ∆ ` l[. . . ] : conf. To type this, we applied, TC-Conf. This has the
following premises (we omit stores and class tables, since they are invariant under
this reduction and therefore trivially well-typed

Γ;∆11 ` return(c) v : thread ∆ = ∆1 �∆2 ∆1 = ∆11 �∆12 (a)
Γ;∆12 ` P : thread ∆11 � ∆12

To infer (a), we applied TT-Return with premise

Γ ` return v : ret(U ′) U ′ <: U ∆11 = c : chanO(U) (b)
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To type (b), we applied TE-Return, with the premise that Γ ` v : U ′. Then by
applying TT-ValTo we have Γ, c : chanO(U) ` go serialize(v) to c : thread.
To complete the case we rebuild the network by applying TC-Conf and TN-Par
and obtain Γ; ∆ ` l[go serialize(v) to c |P, σ, CT] : net.

Case RN-Par. Straightforward by the inductive hypothesis.

Case RN-Res. We consider the case when the restricted name is a channel.
Assume (ν c)N −→ (ν c)N ′ and Γ; ∆ ` (ν c)N : net. To derive this, we applied
TN-ResC with the premise Γ;∆, c : chan ` N : net. By premise of RN-Res,
N −→ N ′ and so by the inductive hypothesis we have that Γ;∆, c : chan ` N ′ : net.
Then applying TN-ResC we obtain Γ; ∆ ` (ν c)N ′ : net as required.

Case RN-Str. Straightforward using Lemma 6.2.

G. PROOFS OF PROPOSITION 7.1 (2)

We define the encoding from DJ with the methods with multiple parameters into
those with a single parameter. The mapping forms [[·]]Γ~x,z where ~x is multiple pa-
rameters of the source language, while z is a single parameter of the target one. Γ
is an environment.

[[CT · [C 7→ L]]]
def
= [[CT]] · [C 7→ L′] ∪ CT

′ where (L′, CT′) = [[L]]

[[CSig · C : extends D [remote] ~T~f {mi : ~Ti → Ui}]]
def
= [[CSig]] · C : extends D [remote] ~T~f {mi : Cmi → Ui} · Cmi : ~Ti ~fi

[[class C extends D {~T ~f ; K ~M}]]
def
= (class C extends D {~T ~f ; K ~M ′}, CT) where ( ~M ′, CT) = [[ ~M ]]this:C

[[U m (~T~x){e}]]this:C
def
= (U m (Cm z){e′}, [Cm 7→ class Cm{~T ~f ; K }] ∪ CT)

where (e′, CT) = [[e]]~x,z

this:C,~x:~T

[[λ(T x).(ν ~u)(l, e, σ, CT)]]
def
= λ(T x).(ν ~u)(l, e′, σ′, CT ∪ CT

′)

where (e′, CT0) = [[e]]
~x:~T ,~u:~T ′ , (σ

′, CT1) = [[σ]]
~x:~T ,~u:~T ′ , CT

′ = CT0 ∪ CT1

The encoding of other values are identical. Next we define the main rules for the
expressions. Others are just homomorphic like e0; e1 below. We let (e′i, CTi) =
[[ei]]

~x,z
Γ for i ≥ 0 in the following.

[[y]]x1,...,xn,z
Γ

def
=

(
(z.fi, ∅) if y = xi

(y, ∅) otherwise
[[this]]~x,z

Γ

def
= (this, ∅)

[[y := e0]]
x1,...,xn,z
Γ

def
=

(
(z.fi := e′0, CT0) if y = xi

(y := e′0, CT0) otherwise
[[e0; e1]]

~x,z
Γ

def
= (e′0; e

′
1,

S
CTi)

[[e0.m(e1, . . . , en)]]~x,z
Γ

def
= (e′0.m(new Cm(e′1, . . . , e

′
n)),

S
CTi ∪ [Cm 7→ class Cm{~T ~f ; K }])

where Γ ` e0 : C
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The mapping of a configuration, threads and stores are defined as follows.

[[(ν ~o~c)
Q

li[(ν ~xi)(Pi, σi, CTi)]]]
def
= (ν ~o~c)

Q
li[[[(ν ~xi)(Pi, σi, CTi)]]~o:~C

]

[[(ν ~x~x1 . . . ~xn)(Q |
Y

j

Pj , σ ∪
[

σj , CT))]]Γ
def
= (ν ~x~y~o)(Q′ |

Y
j

P ′
j , σ

′ ∪
[

σ′j , CT ∪ CT
′)

with [[Q]]
Γ,~x:~T

= (Q′, CT1) [[Pj ]]
~xj ,yj

Γ,~xj :~Tj
= (P ′

j , CTj) [[σ]]
Γ,~x:~T

= (σ′, CT0)

[[σj ]]
~xj ,oj ,m,C

Γ,~xj :~Tj
= (σ′j , CT0j) CT

′ =
[

CT0j ∪
[

CTj ∪ CT1 ∪ CT0

[[∅]]Γ
def
= [[∅]]~x,y,o,m,C

Γ

def
= (∅, ∅)

[[σ · [x 7→ v]]]Γ
def
= (σ′ · [x 7→ v′], CT′ ∪ CT)

[[σ · [o 7→ (C, ~f : ~v)]]]Γ
def
= (σ′ · [o 7→ (C, ~f : ~v′)], CT′ ∪ CT)

[[σ · [~x 7→ ~v]]]~x,y,o,m,C
Γ

def
= (σ′ · [y 7→ o] · [o 7→ (Cm, ~f : ~v′)], CT′ ∪ CT)

[[σ · [o′ 7→ (C, . . .)]]]~x,y,o,m,C
Γ

def
= [[σ]]~x,y,o,m,C

Γ

with [[v]]Γ = (v′, CT′) and [[σ]]Γ = (σ′, CT). LetR = {((ν ~u)(N |M), (ν ~u)([[N ]] |M))}.
Then we prove R respects the action predicate and reduction-closed up to 7→, i.e.

- if (ν ~u)(N |M) −→ N1, then there exists N2 s.t. (ν ~u)([[N ]]Γ |M) 7→∗−→7→∗ N2

with N1 ≡ (ν ~u′)(N ′ |M ′) and N2 ≡ (ν ~u′)([[N ′]]Γ |M ′) for some ~u′, N ′ and M ′.
- (a) if (ν ~u)([[N ]]Γ |M) −→ N2, then there exists N1 s.t. (ν ~u)(N |M) −→ N1

with N1 ≡ (ν ~u′)(N ′ |M ′) and N2 7→∗ (ν ~u′)([[N ′]]Γ |M ′) for some ~u′, N ′

and M ′; or
(b) if (ν ~u)([[N ]]Γ |M) 7→ N2, then there exists N1 s.t. (ν ~u)(N |M) −→ N1

with N1 ≡ (ν ~u′)(N ′ |M ′) and N2 −→7→∗ (ν ~u′)([[N ′]]Γ |M ′) for some ~u′, N ′

and M ′

The key cases are variable-read [[z]]x1,...,xn,z
Γ and variable-write [[z := v]]x1,...,xn,z

Γ , for
which we can directly use (cr) in the transformation rule in § 7.2. Since 7→⊆∼=, we
have N ∼= [[N ]]Γ, as desired.

H. PROOFS OF THEOREM 7.2 (3)

This section proves that (RMI3) is equivalent to (Opt3) under the assumption there
is no call-back. Let e′i = deserialize(vi) where vi = λ(unit x).(ν ~u)(l, a, σi) is
a serialised value at line i in (Opt3) (3 ≤ i ≤ 5). We show the body of (Opt3) is
equivalent with return r.run(freeze{e[~e′/~b]; z}). With out loss of generality, we
firstly simplify the program with two arguments as follows:

1 int m3(RemoteObject r, MyObj a) {

2 return r.g(a, r.f(a));

3 }

The corresponding optimised program is:

1 int mOpt3(RemoteObject r, MyObj a){

2 ser<MyObj> b1 = serialize(a);
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3 ser<MyObj> b2 = serialize(a);

4 thunk<int> t = freeze {

5 r.g(deserialize(b2), r.f(deserialize(b1)));

6 };

7 return r.run(t);

8 }

First by Proposition 7.1 (1), we can ignore an effect of the class downloading.
Since there is no call-back, we can also ignore an effect of the method invocation
“r.f” to the timing of the serialisation “b2 = serialize(a)”. Hence there is no
interleaving between “b1” in Line 2 and “b2” in Line 3 from the location m. Thus
we apply (ni) to the optimised code, and it is equated to:

P
def= return(c) r.run(freeze{r.g(deserialize(v2), r.f(deserialize(v1)))})

where vi = λ(unit x).(ν ~u)(l, a, σi) is a serialised value at bi in (Opt3) above. Note
that if the method invocation r.f does not terminate in m3, then the both programs
m3 and mOpt3 diverge, thus they are trivially equivalent. Hence we assume the case
the method invocation r.f terminates.

First we execute the original program. We omit a surrounding context where
it is unnecessary. We also assume the location m (server) contains a store which
includes [r 7→ (C, ..)] and a class table of class C which contains methods f and g.
We also omit C and channel restriction of c and c1.

l[return(c) r.g(a, r.f(a))] |m[0]
7→ l[return(c) r.g(a, await c1) | go r.f(serialize(a)) with c1] |m[0] (ni)
−→ l[return(c) r.g(a, await c1) | go r.f(v1) with c1] |m[0] (s1)
7→+ l[return(c) r.g(a, await c1)] |m[r.f(deserialize(v1)) with c1] (ni)
7→+ l[...] |m[(ν ~u)(r.f(a) with c1, σ1)] (ni)
→→ l[...] |m[return(c1) n] (‡)
7→+ l[return(c) r.g(a, n)] |m[0] (rm,l2,ni)
7→−→7→+ l[return(c) await c′] |m[r.g(deserialize(v2), n) with c′] (ni,s2,ni)
7→+ l[return(c) await c′] | (ν ~u)(m[return(c′) r.g(a, n), σ2]) (ni)

At (‡), we assume the method invocation r.f terminates and returns the answer
n. If r.f does not terminate in m3, as seen in the following, mOpt3 diverges, thus
they are trivially equivalent. Now we look at execution of the optimised code.

l[P ] |m[0]
7→ l[return(c) r.run(λ().(r.g(deserialize(v2), r.f(deserialize(v1)))))] |m[0]
7→+ l[return(c) await c′] | (ν ~u)(m[return(c′) r.g(deserialize(v2), r.f(a)), σ1])
→→ l[return(c) await c′] |m[return(c′) r.g(deserialize(v2), n)] (†)
7→+ l[return(c) await c′] | (ν ~u)(m[return(c′) r.g(a, n), σ2])

In the above, we know that we can get n at (†) if and only if n is obtained at (‡).
Also the serialisation (s1,s2) in the original code can be derived with the assumption
such that v1 and v2 are serialised values in Line 2 and Line 3 in the optimised code.
Since 7→⊆∼=, (RMI3) is equivalent with (Opt3).


