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Abstract
This paper presents a Java-like core language with primitives for
object-oriented distribution and explicit code mobility. We apply
our formulation to prove the correctness of several optimisations
for distributed programs. Our language captures crucial but often
hidden aspects of distributed object-oriented programming, includ-
ing object serialisation, dynamic class downloading and remote
method invocation. It is defined in terms of an operational seman-
tics that concisely models the behaviour of distributed programs
using machinery from calculi of mobile processes. Type safety is
established using invariant properties for distributed runtime con-
figurations. We argue that primitives for explicit code mobility of-
fer a programmer fine-grained control of type-safe code distribu-
tion, which is crucial for improving the performance and safety of
distributed object-oriented applications.

Categories and Subject Descriptors
D.3.1 [Programming Language]: Formal Definitions and Theory;
D.3.3 [Programming Language]: Language Constructs and Fea-
tures; F.3.2 [Theory of Computation]: Semantics of Programming
Languages

General Terms
Languages,Theory

Keywords
Distribution, Java, RMI, Types, Optimisation, Runtime, Code mo-
bility

1. Introduction
Language features for distributed computing form an important part
of modern object-oriented programming. It is now common for
different portions of an application to be geographically separated,
relying on communication via a network. Distributing an applica-
tion in this way confers many advantages to a programmer such as
resource sharing, load balancing, and fault tolerance. However this
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comes at the expense of increased complexity for that programmer,
who must now deal with concerns—such as network failure—that
did not occur in centralised programs.

Remote procedure call mechanisms attempt to simplify such en-
gineering practice by providing a seamless integration of network
resource access and local procedure calls, offering the developer a
programming abstraction familiar to them. Java Remote Method
Invocation [40] (RMI) is a widely adopted remote procedure call
implementation for the Java platform, building on the customisable
class loading system of the underlying language to further hide dis-
tribution from the programmer. When objects are passed as param-
eters to remote methods, if the provider of that method does not
have the corresponding class file, it may attempt to obtain it from
the sender. Such code mobility is important as it reduces the need
for strong coupling between communicating parties, while preserv-
ing the type safety of the system as a whole.

The implicit code mobility in RMI allows almost transparent use
of remote objects and services. However when rigorously analysing
the dynamics of distributed programs, or when providing program-
mers with source-level control over code distribution [11], it be-
comes essential to model their behaviour explicitly. This is be-
cause elements such as distribution, network delay and partition
crucially affect the behaviour and performance of programs and
systems. As an example, communication-oriented RMI optimisa-
tions, often called batched futures [8] or aggregation [47, 46], use
code distribution as their central element. To analyse these opti-
misations formally, or to make the most of them in applications,
explicit primitives for code mobility are essential.

This paper proposes a Java-like distributed object-oriented core
language with communication primitives (RMI) and distributed run-
time. The formalism exposes hidden runtime concerns such as code
mobility, class downloading, object serialisation and communica-
tion. The operational semantics concisely models this behaviour
using machinery from calculi of mobile processes [32, 38, 19]. One
highlight is the use of a linear type discipline [27, 18, 49] to ensure
correctness of remote method calls. Another is the application of
several invariant properties. These are conditions that hold during
execution of distributed programs, and they allow type safety to be
established.

Our language supports explicit code mobility by providing prim-
itives that allow programs to communicate fragments of code—
closely related to closures in functional languages—for later execu-
tion. This subsumes the standard serialisation mechanism by send-
ing not only object graphs but also executable code. Code passing
offers a programmer fine-grained control of type-safe code distri-
bution, improving the safety and performance of their distributed
applications. For example, a program fragment accessing a re-
source remotely could be frozen into a closure. This code could



then be passed to the remote site, co-locating it with that resource.
This effectively turns remote accesses into local accesses, reducing
latency and increasing available bandwidth [11, 8, 47, 46].

As an application of our formalism, we show that the RMI aggre-
gation optimisations proposed in [47, 46] are type- and semantics-
preserving. The generality of the primitive we introduce plays
an essential role in this analysis: one optimisation relies on the
use of second-order code passing, i.e. passing code that in turn
passes code itself. Similar optimisations naturally arise whenever
latency and bandwidth are a limiting factor in the performance of
distributed programs, suggesting a wide applicability of this primi-
tive in similar endeavours.

We summarise our major technical contributions below.

• Introduction of a core calculus for a class based typed object-
oriented programming language with primitives for concur-
rency and distribution, including RMI, explicit code mobil-
ity, thread synchronisation and dynamic class downloading.

• A technique to systematically prove type safety for distributed
networks using distributed invariants. Not only are they es-
sential for proving type safety but also they are a useful ana-
lytical tool for developing consistent typing rules.

• Justification of several inter-node RMI optimisations employ-
ing explicit code mobility, using a semantically sound syn-
tactic transformation of the language and runtime. The anal-
ysis also demonstrates the greater control that explicit code
mobility offers to programmers.

In the remainder, Section 2 informally motivates the present work
through concrete examples of RMI optimisations. Section 3 intro-
duces the syntax of the language. Sections 4 and 5 respectively dis-
cuss the dynamic semantics (reduction) and static semantics (typ-
ing) of the language. Section 6 establishes type safety and progress
properties using the invariants. Section 7 studies contextual con-
gruence of the core language and applies the theory to justify the
optimisations in Section 2. Section 8 discusses related work. Sec-
tion 9 concludes the paper with further topics. Due to space lim-
itations, the detailed definitions and proofs, as well as many ex-
amples, are left to the full technical reports [4, 3] available from:
http://www.doc.ic.ac.uk/˜aja/dcbl.html.

2. Motivation: representing and justifying RMI
optimisation

The RMI optimisations introduced in this section are used as run-
ning examples, culminating in their justification by the behavioural
theory in § 7. These are (arguably) typical inter-node optimisations
of distributed object-oriented programs. Just as inter-procedure or
inter-module optimisations are hard to analyse, RMI optimisation
poses a new challenge to the semantic analysis of distribution. They
also motivate the use of explicit code mobility for fine-grained con-
trol of distributed behaviour and to improve performance.

Original RMI program 1. In optimisations for sequential lan-
guages, we can aim to improve execution times by removing re-
dundancy and ensuring our programs exploit features of the under-
lying hardware architecture. In distributed programs these are still
valid concerns, but other significant optimisations exist, in partic-
ular how latency and bandwidth overheads can be reduced. One
typical example of this sort, centring on Java RMI [14] but which
is generally applicable to various forms of remote communication,
is aggregation [8, 47, 46]. We explain this idea using a simple
program.

1 int m1(RemoteObject r, int a) {
2 int x = r.f(a);
3 int y = r.g(a, x);
4 int z = r.h(a, y);
5 return z;
6 }

This program performs three remote method calls to the same re-
mote object rwith eight items transferred across the network (count-
ing each parameter and return value as one). x is returned as the
result of the call to f from the remote server, but is subsequently
passed back to the server during the next call. The same occurs
with the variable y. These variables are unused by the client, and
are merely returned to the remote object r (where they were cre-
ated) as parameters to the next call. We can immediately see that
there is no need for x or y to ever be passed back to the client at all.
Hence these three calls can be aggregated into a single call, reduc-
ing by a factor of three the network latency incurred by the method
m1 and approximately reducing by a factor of four the amount of
data that must be shipped across the network.

This optimisation methodology is implemented in the Veneer vir-
tual Java Virtual Machine (vJVM) [47, 46], where sequences of
adjacent calls to the same remote object are grouped together into
an execution plan in bytecode format. This is then uploaded to
and executed by the server, with the result of the computation be-
ing returned to the client. This simple idea—remote evaluation of
code [39]—can speed up distributed programs significantly, espe-
cially when operating across slower networks or when significant
amounts of data may be transmitted otherwise. As a concrete ex-
ample, in [47] the authors reported that over a moderate bandwidth
and moderate latency ADSL connection, call aggregation yields a
speedup over a factor of four for certain examples [14].

Optimised program 1. Call aggregation implicitly uses code pass-
ing: we first collect all the code that can be executed at a remote
site and then send it, in one bundle, for execution there. This as-
pect is hidden as the transfer of bytecode in the implementation of
[47, 46], but requires explicit modelling if one wishes to discuss its
properties or show that it preserves the original program semantics.

For this purpose we introduce two primitives, freeze and
defrost. These mimic primitives found in well-known func-
tional languages, for example the quotation and evaluation of code
in Scheme, or the higher-order functions found in ML and Haskell.
We illustrate these primitives using the optimised version of the
code above.

1 // Client
2 int mOpt1(RemoteObject r, int a) {
3 thunk<int> t = freeze {
4 int x = r.f(a);
5 int y = r.g(a, x);
6 int z = r.h(a, y);
7 z;
8 };
9 return r.run(t);

10 }
11 // Server
12 int run(thunk<int> x) {
13 return defrost(x);
14 }

Here the client uses the freeze expression of the language to cre-
ate a frozen representation of three calls with a closure of free vari-
able a, sending the resulting “thunk” to the server. thunk<int>
says the frozen code contains an expression of type int. We now
make only one call across the network to send the frozen expres-



Server

Client

r

r.f(a)

x

r.g(a,x)

y

r.h(a,y)

z

r.run(t)

z

r.f(a)

r.g(a,x)

r.h(a,y)

(a) Aggregation

r1

r2

Server 1

Server 2

Client

r1.f1(a)

x1

r1.g1(a,x1)

y1

r.h1(a,y1)

z1

r2.f2(z1)

x2

r2.g2(z1,x2)

y2

r.h1(z1,y2)

z2

r1.run(t1)

z2

r1.f1(a)

r1.g1(a,x1)

r1.h1(a,y1)

r2.f2(z1)

r2.g2(z1,x2)

r2.h2(z1,y2)

r2.run(t2)z2

(b) Server forwarding

Pale arrows Original calls in the unoptimised program.
Dashed arrows Returns from remote calls.
Thick arrows Represent code mobility.

We annotate call arrows with the method invocation and return
arrows with the name of the variable the client will use to store the
return value of the method.

Figure 2.1: Example optimisations

sion, by r.run(t). When the server receives the thunked code, it
evaluates it and returns the result typed by int to the client, again
across the network.

In Figure 1(a) we show a diagram of the situation. As can be
seen, the original sequence of calls (the paler arrows) requires 6
trips across the network. By aggregating the calls at the server,
where they effectively become local, we see that only two trips are
required (the thicker arrows).

Original RMI program 2. A more advanced form of communication-
oriented optimisation, which reduces latency and uses bandwidth
intelligently, is the idea of server forwarding [47, 46]. It takes ad-
vantage of the fact that servers typically reside on fast connections,
whilst the client-server connection can often be orders of magni-
tude slower. Consider the following program.

1 int m2(RemoteObject r1,
2 RemoteObject r2, int a) {
3 int x1 = r1.f1(a);
4 int y1 = r1.g1(a, x1);
5 int z1 = r1.h1(a, y1);
6 int x2 = r2.f2(z1);
7 int y2 = r2.g2(z1,x2);
8 int z2 = r2.h2(z1,y2);
9 return z2;

10 }

The results of the first three calls are used as arguments to methods
on another remote object r2 in a second server. It would be better
for the first server to communicate directly with the second. In
Figure 1(b) we give a diagram of the situation.

Optimised program 2. Server forwarding again uses code passing
as an execution mechanism. We use closure passing for represent-
ing this optimised code, in which thunked code is nested, i.e. we
are using higher-order code mobility.

1 int mOpt2(RemoteObject r1,
2 RemoteObject r2, int a) {
3 thunk<int> t1 = freeze {
4 int x1 = r1.f1(a);
5 int y1 = r1.g1(a, x1);
6 int z1 = r1.h1(a, y1);
7 thunk<int> t2 = freeze {
8 int x2 = r2.f2(z1);
9 int y2 = r2.g2(z1, x2);

10 int z2 = r2.h2(z1, y2);
11 z2;
12 };
13 r2.run(t2);
14 };
15 return r1.run(t1);
16 }

Original RMI program 3. The semantics of RMI is different from
normal, local method invocation. Passing a parameter to a remote
method (or accepting a return value) can involve many operations
hidden from the end-user; these runtime features make automatic
semantic-preserving optimisation of RMI much harder, in particu-
lar, when calls contain objects as arguments. To observe this, let us
change the type of a from int to class MyObj as in the following
code:

1 int m3(RemoteObject r, MyObj a) {
2 int x = r.f(a);
3 int y = r.g(a, x);
4 int z = r.h(a, y);
5 return z;
6 }

Here we have two cases:

MyObj is remote i.e. when MyObj implements the java.rmi.
Remote interface and is therefore remotely callable. In this
situation, a is effectively passed by reference.

MyObj is local i.e. when MyObj is not remotely callable (it does
not implement the Remote interface), a is automatically se-
rialised and passed to the server where it is automatically de-
serialised. In this situation, a is effectively passed by value.

Sending a serialised value to a remote consumer can be thought of
as passing an object by value. Informally, the serialisation process
explores the graph under an object in local memory, copying all



objects directly or indirectly referred to. When passing such lo-
cal objects as parameters to remote methods, the Java RMI system
automatically performs this copying.

Consider the method m3 above: if the call r.f performs an oper-
ation that side-effects the parameter a, then in the original program
this side-effect is lost. The version of a supplied to the next method
r.g is still just a copy of the initial a held in the client’s memory,
which has not changed. If we naı̈vely apply code passing optimi-
sations to the problem, we might rewrite method m3 to look much
like mOpt1. Unfortunately now the next call r.g no longer has a
copy of the original a to work on: it instead receives the version
modified by r.f, potentially altering the meaning of the program
and rendering the optimisation incorrect.

By applying explicit serialisation we can simulate the original
program behaviour. By insisting each method call in the server
operates on a fresh copy of the original a, we regain correctness as
is shown below.

Optimised program 3. We show the case when MyObj is a local
class. If there are no call-backs from the server to the client (dis-
cussed next), then the original RMI program has the same mean-
ing as passing the following code. First the client creates three
copies of serialised object a by applying the explicit serialisation
operator serialize. We write serialize as shorthand for
the idiom in Java that involves writing objects to an instance of
ObjectOutputStream. The server immediately deserialises
the arguments, creating three independent object graphs, thus avoid-
ing problems with methods that alter their parameters (we write
deserialize in place of reading from an
ObjectInputStream).

1 // Client
2 int mOpt3(RemoteObject r, MyObj a) {
3 ser<MyObj> b1 = serialize(a);
4 ser<MyObj> b2 = serialize(a);
5 ser<MyObj> b3 = serialize(a);
6 thunk<int> t = freeze {
7 int x = r.f(deserialize(b1));
8 int y = r.g(deserialize(b2), x);
9 int z = r.h(deserialize(b3), y);

10 z
11 };
12 return r.run(t);
13 }

In the above code, the declaration ser<MyObj> b1 says that b1
is a serialised representation of an object of class MyObj.

Two further problems. We have seen that code passing primitives
can help us to cleanly represent communication-based optimisation
of RMI programs. Analysis of the code above immediately sug-
gests two further problems that must be addressed.

1. Sharing between objects and call-backs: the above copying
method should not be applied naı̈vely, since marshaling should
preserve sharing between objects. It also may not be appli-
cable if a call by the client to the server results in the server
calling the client.

2. Overhead of class downloading: if the server location does not
contain the byte-code for MyObj, RMI automatically invokes
a class downloading process to obtain the class from the net-
work. In addition, verifying that the received class is safe
to use may require the downloading of many others (such as
all superclasses of MyObj and classes mentioned in method
bodies and so on), which may incur many trips across the
network, increasing the risk of failures and adding latency.

To illustrate the first problem, consider the following simple code
with r remote and x and y local:

1 x.f = y; r.h(x, y);

The content of y is shared with x in the original code, but if we ap-
ply the copying method then the server creates independent copies
of x and y, breaking the original sharing structure.

For the second point of (1), imagine that the body of remote
method f invoked at line 2 of the original program involves some
communication back to the local site. Then it is possible for the
value of a to be modified at the client side and so the optimised
program is no longer correct: because in our optimised program,
a is serialised in line 4 before r.f is performed, any effect that a
call-back would have on a is lost, when it should be visible to the
call r.g.

The second problem, class downloading, is more subtle from the
communication-based optimisation viewpoint. Although the aim
of this optimisation is to reduce the number of trips across the net-
work, if there is a deep inheritance hierarchy above MyObj, send-
ing code may not yield the performance benefit that the program-
mer expects. This is because many requests over the network may
be required to obtain all the required classes.

As an example, if MyObj has a chain of n-superclasses such that
MyObj <: MyObj2 <: · · · <: MyObjn, and none of these are
present at the server, there are at least n class downloads even with
“verification off” in the framework of type safe dynamic linking
[29, 36]. With “verification on”, this could be even more.

These hidden features of RMI make reasoning about the be-
haviour of a program, and establishing a clear optimisation, hard.

Challenges. Having provided the source-level presentation of sev-
eral features necessary to discuss RMI optimisations, we may ask
the following questions:

Q1. How can we precisely model this dynamic runtime behaviour,
including code passing, serialisation and class downloading?

Q2. How can we verify the correctness of the optimised code, in
the sense that the original code and the optimised code have
the same contextual behaviour?

Q3. Having studied the optimisations above, can we improve our
code mobility primitives to make them generally useful to
application programmers?

A satisfactory solution to Q1. is a prerequisite for Q2. due to the in-
terleaving of communication events which affect the observational
behaviour of distributed programs. Various elements inherent in
distributed computing make the semantic correctness of optimisa-
tions more subtle than in the sequential setting. The behaviour,
hence the final answer, may differ depending on sharing of objects,
timing and class downloading strategies, as well as network fail-
ure. In our paper, Q1. will be answered by giving a clean formal
semantics for distributed object-oriented features usually hidden
from a programmer. We shall distill key runtime features, includ-
ing class downloading and serialisation, so that important design
choices (for example various class downloading and code mobility
mechanisms) can be easily reflected in the semantics. Q2. will be
answered by semantic justification of the above optimisations using
the theory of mobile processes [32, 38, 19]. For Q3., we summarise
our proposal below.

Optimised program 4. Class downloading is a fundamental mech-
anism in distributed object-oriented programming. Yet so far we



have treated it as a behind-the-scenes feature and left it as an im-
plementation detail. However, by augmenting our primitives with
a mechanism to control class downloading, a programmer is able
to write down different strategies explicitly. This explicit control
allows us to mitigate some of the problems class downloading in-
duces that were explained in the previous section. For example, to
represent one basic strategy of class downloading, we attach the tag
eager to freeze in the original code 3.

1 // Client
2 int mOpt4(RemoteObject r, MyObj a) {
3 ... // as in mOpt3
4 thunk<int> t = freeze[eager] {
5 ... // as in mOpt3
6 }

The tag eager in freeze[eager] controls the amount of class
information sent along with the body of the thunk by the user. With
eager, the code is automatically frozen together with all classes
that may be used. In the above case all classes appearing in MyObj
and all their superclasses are shipped together with the code (see
§ 4.5 for the definition). Another option is for the user to select
lazy which essentially leaves class downloading to the existing
RMI system. Further the user might write a list of specific classes
�C to be shipped. For example, the following program is able to
notice when it is in a high latency situation and act accordingly.

1 // Client
2 thunk<int> t;
3 if (pingTime() > 1000) {// milliseconds
4 t = freeze[eager] {...};
5 } else {
6 t = freeze[lazy] {...};
7 }

If we imagine that the latency is very high, then it may be the case
that the time to iteratively download all the superclasses exceeds
the actual execution time of the frozen code being sent to the server.
Because of this, the program is able to switch to the eager mode
of class downloading, allowing improved performance. Moreover,
from a point of view of failure there are fewer trips across the net-
work with the eager policy, reducing the risk of a transient problem,
such as a temporary network partition, disrupting the class down-
loading process.

The formal semantics for both implicit and explicit code mobility
is given from the next section as part of the core language.

3. Language

3.1 User syntax
The syntax of the core language, which we call DJ, is an extension
of FJ [22] and MJ [7], augmented with basic primitives for dis-
tribution and code-mobility, along with concurrent programming
features that should be familiar to Java programmers. The syntax
comes in two forms, and is given in Figure 3.1. The first form is
called user syntax, and corresponds to terms that can be written by
a programmer as source code. The second form is called runtime
syntax. It extends the user syntax with constructs that only appear
during program execution, and these are distinguished in the figure
by placing them in shaded regions. We briefly discuss each syntac-
tic category below.

Types. T and U range over types for expressions and statements,
which are explained in § 5. C,D,F range over class names. �f
denotes a vector of fields, and �T�f is short-hand for a sequence of

typed field declarations: T1 f1; . . . ;Tn fn. We assume sequences con-
tain no duplicate names, and apply similar abbreviations to other
sequences with ε representing the empty sequence. T →U denotes
an arrow type, which is assigned to frozen expressions that expect
a parameter of type T and return a value of type U . We abbreviate
the type of thunked frozen expressions as thunk〈U〉 def= unit→U .
We associate the type ser〈U〉 with frozen values. If a value v has
type U is frozen then the result has the type ser〈U〉.

Expressions. The syntax is standard, including the standard syn-
chronisation constructs of the Java language, except for two code
passing primitives. The first primitive, freeze[t](T x){e} takes the
expression e and, without evaluating it, produces a flattened value
representation parameterised by variable x with type T . Any parts
of the local store required by the expression (such as the informa-
tion held in variables free in e) are included in this new value, along
with class information it may need for execution.

The tag t is a flag to control the amount of this information sent
along with e by the user. If he specifies eager, then the code is
automatically frozen together with all classes that may be used. If
the user selects lazy, it is the responsibility of the receiving virtual
machine to obtain missing classes. The third option is called user-
specified information, and allows the programmer to supply a list
of class names. Only these classes and their dependents (such as
superclasses) are included with the frozen value.

Dual to freezing, the action defrost(e0; e) expects the evalua-
tion of expression e to produce a piece of frozen code. This code is
then executed, substituting its parameter with the value obtained by
evaluating e0, much like invoking a method. We abbreviate freeze
and defrost expressions that take no parameters as freeze[t]{e} def=
freeze[t](unit x){e}, x /∈ fv(e) and defrost(e) def= defrost((); e)
respectively. Note that () denotes a constant of unit type.

To simplify the presentation, we only allow single parameters to
methods and to frozen expressions. This does not restrict the ex-
pressiveness of programs written in DJ, as there is a semantics and
type-preserving mapping from programs with multiple parameters
to this subset. See § 7 for the formal proofs.

For clarity, we introduce two derived constructs that are syntactic
sugar for serialisation and deserialisation.

serialize(e) def= freeze[lazy]{e}
deserialize(e) def= defrost(e)

Class Signatures. A class signature CSig is a mapping from class
names to their interface types (or signatures). We assume CSig is
given globally, as a minimum agreed interface between remote par-
ties, unlike class tables which are maintained on a per-location ba-
sis. Attached to each signature is the name of a direct superclass, as
well as the declaration “remote” if the class is remote. For a class
C, the predicate remote(C) holds iff “remote” appears in CSig(C);
otherwise local(C) holds. Class signatures contain only the types
of fields and expected method signatures, not their implementation.
This provides a lightweight mechanism for determining the type of
remote methods.

3.2 Runtime syntax
Runtime syntax extends the user syntax to represent the distributed
state of multiple sites communicating with each other, including
remote operations in transit.

Expressions. Location names are written l,m, . . . and can be thought
of as IP addresses in a network. newCl(�v), download �C from l in e



Syntax occurring only at runtime appears in shaded regions.

(Types) T ::= bool | unit | C | T →U
(Returnable) U ::= void | T

(Classes) L ::= class C extends D{�T �f ; K �M} (Constructors) K ::= C (�T�f ){super(�f );this.�f= �f}
(Methods) M ::= U m(C x){e}

(Expressions) e ::= v | x | this | if (e) {e} else {e} | while (e) {e} | e.f | e;e | x = e | e.f = e | new C(�e)
| e.m(e) | T x = e | return e | return | freeze[t](T x){e} | defrost(e; e)
| fork(e) | sync (e) {e} | e.wait | e.notify | e.notifyAll

| new Cl(�e) | download �C from l in e | resolve �C from l in e | await c | sandbox {e}
| insync o {e} | ready o n | waiting(c) n | Error

(Tags) t ::= eager | lazy | �C

(Values) v ::= true | false | null | () | o | λ (T x).(ν�u)(l,e,σ ,CT) | ε
(Class Sig.) CSig ::= /0 | CSig ·C : extends D [remote] �T�f {mi : Ci →Ui}
(Identifiers) u ::= x | o | c

(Threads) P ::= 0 | P1 |P2 | (ν u)P | forked e | go e with c | e with c | go e to c | return(c) e | Error
(Configurations) F ::= (ν�u)(P,σ ,CT) (Networks) N ::= 0 | l[F] | N1 |N2 | (ν u)N

(Stores) σ ::= /0 | σ · [x �→ v] | σ · [o �→ (C, �f :�v,n,{�c})] (Class tables) CT ::= /0 | CT · [C �→ L]

Figure 3.1: The syntax of the language DJ.

and resolve �C from l in e define the machinery for class down-
loading, which will be explained along with the operational seman-
tics in § 4.1 and § 4.2. The key expression is new Cl(�e), indicating
that the definition of class C can be obtained from a location called
l should it need to be instantiated. We write C when the treatment
of class name C is independent of whether it is labelled or not.
await c is fundamental to the model of method invocation and can
be thought of as the return point for a call. sandbox {e} represents
the execution environment of some code e that originated from a
frozen expression.
insync o {e} denotes that expression e has previously acquired

the lock on object o. When an expression contains ready o n as a
sub-term it indicates that it is ready to re-acquire the lock on object
o. The expression waiting(c) n denotes an expression waiting for
notification on channel c, at which point it may try to re-acquire
a lock it was holding. n indicates the number of times that this
waiting thread had entered its lock before yielding. Finally, the
expression Error denotes the null-pointer error.

Values. v is also extended with runtime terms. Object identifiers o
denote references to instances of classes as well as the destination
of RMI calls. We shall often write “o-id” for brevity. Channels c are
fundamental to the mechanism of method invocation and determine
the return destination for both remote and local method calls, as
illustrated in the operational semantics later. We call o and c names.

The most interesting extended value is a frozen expression, a
piece of code or data that can be passed between methods as a
value. Later, it can be “defrosted” at which point it is executed
to compute a value. λ (T x).(ν�u)(l,e,σ ,CT) denotes an expression
e frozen with class table CT created at l. Expression e is parame-
terised by variable x with type T , and σ contains data local to the
expression that was stored along with it at “freezing time”. The
identifiers �u correspond to the domain of σ . CT ships class bodies
that may be used during the execution of e. If it is empty and the
party evaluating e lacks a required class, it should attempt to down-

load a copy from l. If σ or CT is empty, then we shall omit writing
them entirely for clarity. Finally, the value ε serves as a constant
that appears at runtime as the return value of void methods.

Threads. P |Q says P and Q are two threads running in parallel,
while (ν u)P restricts identifier u local to P. 0 denotes an empty
thread. This notation comes from the π-calculus [32]. It also in-
cludes Error which denotes the result of class downloading and
communication failure. The expression forked e says that expres-
sion e was previously forked from another thread. The remaining
constructs of P are used for representing the RMI mechanism, and
are illustrated when we discuss the operational semantics in § 4.

Configurations and Networks. F represent an instance of a virtual
machine. A configuration (ν�u)(P,σ ,CT) consists of threads P, a
store σ containing local variables and objects, and a class table
CT. Networks are written N, and comprise zero or more located
configurations executing in parallel. 0 denotes the empty network.
l[F] denotes a configuration F executing at location l. N1 |N2 and
(ν�u)N are understood as in threads.

A store σ consists of a mapping from variable names to values,
written [x �→ v], or from object identifiers to store objects, written
[o �→ (C, �f : �v,n,{�c})]. This indicates an identifier o maps to an
object of class C with a vector of fields with values �f :�v. The set
of channels {�c} contains identifiers for threads currently waiting
on o, i.e. those that have executed o.wait and have not received
notification. The number, n, indicates how many times the lock on
this object has been entered by a thread.

Finally, class tables CT, are a mapping from unlabelled class
names to class definitions (metavariable L in Figure 3.1). Through-
out the paper we write FCT for the foundation class table that con-
tains the common classes that every location in the network should
possess, roughly corresponding to the java.* classes.



New
fields(C) = �T �f C ∈ dom(CT)

new C (�v),σ ,CT −→l (ν o)(o,σ · [o �→ (C,�f :�v,0, /0)],CT)
NewR

C /∈ dom(CT)
new Cm(�v),σ ,CT−→l download C from m in new C(�v),σ ,CT

Figure 4.1: Rules for object creation

E ::= [ ] | if (E) {e} else {e} | E.f | E;e | x = E

| E.f = e | o.f = E | new C (�v,E,�e) | E.m(e) | o.m(E)
| T x = E | defrost(e; E) | defrost(E; v)
| sync (E) {e} | E.wait | E.notify | E.notifyAll

| sandbox {E} | insync o {E} | forked E | go E with c

| E with c | go E to c | return(c) E

Figure 4.2: Evaluation contexts

4. Operational Semantics
This section presents the formal operational semantics of DJ, ex-
tending the standard small step call-by-value reduction of [35, 7].
There are two reduction relations. The first is defined over configu-
rations executing within an individual location, written F −→l F ′,
where l is the name of the location containing F . The second
is defined over the networks, written N −→ N′. F −→l F ′ pro-
motes to l[F] −→ l[F ′]. Both relations are given modulo the stan-
dard structural equivalence rules of the π-calculus [32], written
≡. We define multi-step reductions as: →→def= (−→ ∪ ≡)∗ and

→→l
def= (−→l ∪ ≡)∗. The reduction rules not introduced in this

section are left to the the Appendix.

4.1 Local expressions
The rules for the sequential part of the language are standard [22,
7]. We list only the rules for object creation in Figure 4.1. When
allocating a new object by New, we explicitly restrict identifiers,
which represents “freshness” or “uniqueness” of the address in the
store. The auxiliary function fields(C) examines the class signature
and returns the field declarations for C. Tagged class creation takes
place in NewR. This rule is applied whenever execution attempts
to instantiate an object of a tagged class whose body is not present
in the local class table. Instead of immediately allocating a new
object, it first attempts to download the actual body of the class
from the labelled location. This is discussed in detail in § 4.2.

To reduce the number of computation rules, we make use of the
evaluation contexts in Figure 4.2. Contexts contain a single hole,
written [ ] inside them. E[e] represents the expression obtained by
replacing the hole in context E with the ordinary expression e. The
evaluation order of terms in the language is determined by the con-
struction of these contexts.

4.2 Class downloading
Class mobility is very important in Java RMI systems, since it re-
duces unnecessary coupling between communicating parties. If an
interface can be agreed, then any class that implements the inter-
face can be passed to a remote consumer and type-safety will be
preserved. However this only works if sites are able to dynamically
acquire class files from one another. This hidden behaviour is omit-
ted from known sequential formalisms, as it is not required in the

Resolve
CT(Ci) = class Ci extends Di {�T �f ; K �M}

resolve �C from l′ in e,σ ,CT−→l download �D from l′ in e,σ ,CT

Download
{�D} = {�C}\dom(CT1)

{�F} = fcl(CT2(�D)) CT′ = CT2(�D)[�Fl2/�F]

l1[E[download �C from l2 in e] |P,σ1,CT1] | l2[P2,σ2,CT2]
−→

l1[E[resolve �D from l2 in e] |P,σ1,CT1 ∪CT′] | l2[P2,σ2,CT2]
DNothing

download �C from l′ in e,σ ,CT −→l e,σ ,CT Ci ∈ dom(CT)

Err-ClassNotFound
∃Ci ∈ �C.Ci /∈ dom(CT1)∪dom(CT2)

l1[E[download �C from l2 in e] |P,σ1,CT1] | l2[P2,σ2,CT2]
−→ l1[E[Error] |P,σ1,CT1] | l2[P2,σ2,CT2]

Figure 4.3: Rules for class resolution and downloading

single-location setting, and so the formalisation of class download-
ing is one of the key contributions of DJ.

The rules for class downloading in DJ are given in Figure 4.3
and approximately model the lazy downloading mechanism found
in JDK 1.3 without verification [12]. The download expression is
responsible for the transfer of class table entries from a remote site.
Download defines the semantics for this operation. For a download
request download �C from l in e we first produce �D by removing
the names of any classes locally available (and thus eliminating
duplication). We then compute vector �F from all the free class
names mentioned in the bodies of the classes in �D. Finally, the
classes named in �D are downloaded and added to the local class
table. fcl(CT2(�D)) denotes the union of free class names in class
Di. A class name C is free if it is the subject of an instantiation
operation (written new C(. . .)), or if it appears as the class of an
object in stores ([o �→ (C, ...)]∈ σ ). The function fcl is defined over
expressions, threads, stores and class table entries.

Any occurrence of a member of �F in a newly downloaded class
body is tagged with the name of the remote site (l2 in this case).
Resolution, defined by Resolve, is the process of examining classes
for unmet dependencies and scheduling the download of missing
classes. Informally this amounts to downloading immediate super-
classes.

The Download and Resolve rules work together to iteratively re-
solve all class dependencies for a given object. Once all dependen-
cies have been met, normal execution continues after DNothing.

We model a failure in this process by the last rule. The rule
Err-ClassNotFound approximates ClassNotFoundException
that would occur in the case of the site l2 not possessing some class
requested by l1. In this case, the code attempting the download will
reduce to the Error expression.

In this paper we chose the option of class loading without ver-
ification as it allows significantly simpler presentation. However,
our formalisation is modular: we can model different class loading
mechanisms by adjusting the reduction rules for downloading and
resolution and the class graph algorithm introduced in Definition 2.
For example, in rule Resolve the vector �D is constructed from the
direct superclasses of the classes being resolved. One aspect of
Java verification is that it checks subtypes for method arguments.
By inspecting the body of methods in the classes being resolved,
we could extend �D to reflect these checks as a first approximation.



Following on from this we observe that , with verification on, the
overhead induced by Java’s lazy class loading policy is increased—
since verifying a class typically requires the loading of more classes
than just the direct superclass—making an even stronger case for
eager code passing.

4.3 Serialisation and deserialisation
One of the contributions of DJ is a precise formalisation of the se-
mantics of serialisation, using the frozen expressions which are de-
tailed in § 4.5 (for the encoding, see § 3.1). Serialisation occurs
in two instances. In the first, the expressions serialize(e) and
deserialize(e) allow explicit flattening and re-inflation of ob-
jects by the programmer, whereas the second instance occurs when
values must be transported across the network.
serialize(e) and deserialize(e) must appear automatically

as runtime expressions to serialise parameters and return values
of remote method invocations. This is because instances of lo-
cal classes—those classes without the remote keyword in their
signature—are incapable of remote method invocation, and so can-
not be passed by reference as parameters or as return values to re-
mote methods. Should this occur, the remote party would receive
the identifier of an unreachable object. Avoiding this problem in-
volves making a deep clone of the local object, and we see this in
action in § 4.4.

4.4 Method invocation
Unlike centralised formalisms, DJ describes remote method invo-
cation. To accommodate RMI, the rules for method call take a
novel form employing concepts from the π-calculus, representing
the context of a call by a local linear channel. While this technique
is well-known in the π-calculus [32], DJ may be the first to use it
to faithfully capture the semantics of RMI in a Java-like language.
Among other benefits, it allows us to define the semantics of local
and remote method calls concisely and uniformly: a method call
is local when the receiver is co-located with the caller; whereas it
becomes remote when the receiver is located elsewhere. Remote
calls also differ from local ones because of the need for parameter
serialisation, which is reflected as several extra reduction steps.

We summarise the general picture of a remote method invocation
in Figure 4(a), which starts from dispatch of a remote method and
ends with delivery of its return value. The corresponding formal
rules are given in Figure 4(b).

We start our illustration from local method calls. For a method
call o.m(v), if o ∈ dom(σ) then the rule MethLocal is applied. A
new channel c is created to carry the return value of the method; the
return point of the method call is replaced with the term await c
corresponding to a receiver waiting for the return value supplied on
channel c. The method call itself is spawned in a new thread as
o.m(v) with c carrying channel c.

The next stage is the application of the method invocation rule
MethInvoke. Both remote and local invocations apply this rule.
The auxiliary function mbody(m,C,CT) looks up the correct method
body in the local class table. It returns a pair of the method code and
the formal parameter name. The receiver is substituted [o/this]
and a new store entry x is allocated for the formal parameter v. We
apply the substitution [return(c)/return] to indicate that the re-
turn value of the method must be sent along channel c. The rule
Await is used to communicate the return value to its caller.

When o /∈ dom(σ) the method invocation is remote. The rule
MethRemote is applied, with care being taken to automatically se-
rialise any local object identifiers in the vector of parameters�v. We
note that frozen values are also transferred to the remote location
without modification (like base values).

go e with c e with c

return(c) v

go v to creturn(c) v

Network boundary

serialize deserialize

serializedeserialize

(a) Evaluation steps for a remote call

MethLocal
c fresh,o ∈ dom(σ)

E[o.m(v)] |P,σ ,CT−→l (ν c)(E[await c] |o.m(v) with c |P,σ ,CT)
MethRemote

c fresh,o /∈ dom(σ)
E[o.m(v)] |P,σ ,CT

−→l (ν c)(E[await c] |go o.m(serialize(v)) with c |P,σ ,CT)
MethInvoke

σ(o) = (C, . . .) mbody(m,C,CT) = (x,e)
o.m(v) with c,σ ,CT

−→l (ν x)(e[o/this][return(c)/return],σ · [x �→ v],CT)
Await

E[await c] |return(c) v,σ ,CT −→l E[v],σ ,CT

SerReturn
c /∈ fn(P)

l[return(c) v |P,σ ,CT] −→ l[go serialize(v) to c |P,σ ,CT]
Leave

o ∈ dom(σ2)
l1[go o.m(v) with c |P1,σ1,CT1] | l2[P2,σ2,CT2]

−→ l1[P1,σ1,CT1] | l2[o.m(deserialize(v)) with c |P2,σ2,CT2]

Return
c ∈ fn(P2)

l1[go v to c |P1,σ1,CT1] | l2[P2,σ2,CT2]
−→ l1[P1,σ1,CT1] | l2[return(c) deserialize(v) |P2,σ2,CT2]
Err-LostCall

go o.m(v) with c,σ ,CT −→l Error,σ ,CT

Err-LostReturn

go v to c,σ ,CT −→l Error,σ ,CT

(b) Reduction rules

Figure 4.4: Remote method invocation

After serialisation, we are left with a thread of the form
go o.m(w) with c where w is the serialised representation of the
original parameter v. At this point, the network level rule Leave
triggers the migration of the calling thread to the location that holds
the receiving object in its local store. After transfer over the net-
work, the parameters are automatically deserialised and MethInvoke
applied. Again, the return value must be automatically serialised
using SerReturn. Then it crosses the network by application of
Return. After returning to the caller site, it is again deserialised.

The last two rules present instances of network failure. In the
case of Err-LostCall, the network becomes partitioned such that a
remote method call attempting to reach its destination cannot. Like-



Freeze
{�y} = fv(e)\{x} σy =

⋃
σ(yi)

σ ′ = og(σ , fn(e)∪ fn(σy))∪σy {�u} = dom(σ ′)

CT′ =

⎧⎪⎨
⎪⎩

cg(CT, fcl(e)∪ fcl(σ ′)) t = eager

cg(CT,�C) t = �C

/0 t = lazy

freeze[t](T x){e},σ ,CT −→l λ (T x).(ν�u)(l,e,σ ′,CT′),σ ,CT

Defrost
{�C} = fcl(e)\dom(CT′) {�F} = fcl(σ ′)\dom(CT′)

defrost(v; λ (T x).(ν�u)(m,e,σ ′,CT′)),σ ,CT

−→l (ν x�u)(download �F from m in sandbox {e[ �Cm/�C]},
σ ∪σ ′ · [x �→ v],CT∪CT′)

LeaveSandbox

sandbox {v},σ ,CT −→l v,σ ,CT

Figure 4.5: Rules for creating and executing frozen expressions

wise, in Err-LostReturn, the return value from a remote method
call is lost. Both cases reduce to Error.

4.5 Direct code mobility
Frozen expressions offer a direct way to manipulate code and data.
They permit the storing of unevaluated terms that can, for example,
be shipped to remote locations for evaluation or merely saved for
future use. As we have seen in § 3.1, our formulation of the primi-
tives subsumes the serialisation operations found in Java that were
explained in § 4.3.

As introduced in Figure 3.1, there are two operations associated
with frozen values—for their creation and use—called freezing and
defrosting respectively. Their rules are given in Figure 4.5.

Freezing is given by Freeze, and has modes lazy, eager, and
user-specified. Its operation is divided into two steps. The first
step in any mode is to determine the store locations used by the
expression e. We do this by examining the expression for any free
variables, excluding the formal parameter x. The store entries for
each variable are copied, σy. Next, we search for all the free object
identifiers in e, written fn(e). Because variables may hold refer-
ences to objects, we must then examine the store fragment σy for
any object identifiers held in the co-domain of variable mappings.
Finally, objects have internal structure, so we apply the object graph
function given in Definition 1 to copy all local objects transitively
referenced by e or its variables, resulting in σ ′. Base values stored
in variables are copied “as-is”.

In the second step the freezing mode matters because it directly
affects the amount of class information included in CT′. For the
lazy case, no extra classes are provided with the expression, so the
result of applying Freeze is a value of the form λ (T x).(ν�u)(l,e,σ , /0).

When the case is eager, the creator of the frozen expression
takes responsibility for including all classes that e and σ′ depend
upon. In the case that the user specifies a list of classes �C, only
those classes and their dependencies are included. In either situa-
tion, we must use the class graph algorithm in Definition 2 to deter-
mine the classes that the expression (or the user-specified classes)
depends upon.

DEFINITION 1. The function og(σ ,v) which computes the ob-
ject graph of value v in store σ is defined as follows.

og(σ ,v) =

{
/0 if v /∈ dom(σ)∨ remote(C)
[v �→ (C, �f :�v,0, /0)]

⋃
og(σi,oi) otherwise

where σ(v) = (C,�f :�v,n,{�c}), {�o}= fn(�v), σ1 = σ \{v} and σi+1 =
σi \dom(og(σi,oi)).

The object graph is defined as the set of all mappings from object
identifier to store object for every local object transitively refer-
enced by local object identifier v. The lock count, n, for each ob-
ject is reset to zero when copied and the blocked set �c emptied to
preserve linearity. If the value v refers to a remote object, or a base
value such as a boolean, then the object graph is empty.

In the full Java language, fields may be marked transient.
Such fields are never serialised (for example they may contain a
value that can be derived from other fields, or a reference to a non-
serialisable object). Similarly, the Emerald language [25] supports
a qualifier called “attached” that indicates which of an object’s
fields should be brought along it when it is copied. To support these
extra features in DJ would involve the straightforward extension of
syntax and a trivial modification to the object graph algorithm.

DEFINITION 2. The function cg(CT,T ) computes the class graph
of type T in class table CT as follows:

cg(CT, �M) =
⋃

cg(CT, fcl(ei)) with Mi = Ui mi (Ci xi){ei}

cg(CT,C) =

{
/0 if C /∈ dom(CT)∨C ∈ dom(FCT)
cg(CT,CT(C)) otherwise

cg(CT,�C) =
⋃

cg(CT,Ci)
cg(CT,class C extends D{�T �f ; K �M})

= cg(CT\C,D)∪ cg(CT\C, �M)
∪[C �→ class C extends D{�T�f ; K �M}]

A small example of the freezing process is as follows:

1 class A {
2 int f; B g;
3 A(int f, B g) { this.f = f; this.g = g; }
4 }
5 class B { }
6 // Program:
7 int y = 6; A o1 = new A(5, new B());
8 freeze[B](int x){x + y + o1.f};

After executing the above program at location l, we should obtain
a frozen expression of the form:

λ (int x).(ν o1,o2,y)(l,x +y+o1.f,σ1,CT1)
where σ1 = [o1 �→ (A, f : 5,g : o2,0, /0)] · [o2 �→ (B,ε,0, /0)] · [y �→ 6]

and CT1 = [B �→ . . . ]

To defrost a frozen value λ (T x).(ν�u)(l,e,σ1,CT1) we use Defrost.
Firstly, any classes supplied with the frozen value are appended to
the current class table. Any class names appearing free in e are
tagged with their originating location: newC(�e) becomes newCl(�e).
During execution of the newly defrosted code, when an expression
such as the above new Cl(�v) is encountered then NewR is applied
if the body of C has not been downloaded to the execution location.

The second stage is to merge the data shipped with the value,
σ1, into the local store. It is not possible to merely append this to
the local store, since this could cause a name clash (for example
two entries for variable x in the same scope). Therefore we cre-
ate new memory locations for the formal parameter of the frozen
expression, as well as for every element in the domain of the ac-
companying store entries. This is written (ν x�u). It is then safe to
append the new store and allocate space for the formal parameter.
We write the new store at the location as σ ∪σ1 · [x �→ v].

The final aspect of the defrost rule is to download the classes
for all the objects added to the store in the previous step, because



we may have added instances of classes not present at this lo-
cation. This means instead of immediately evaluating e we call
download �F from l in sandbox {e}. This accurately mimics
the mechanism employed by the RMIClassLoader class used
in RMI. When sending marshaled objects, RMI implementations
annotate the data stream for classes with a codebase URL. This is a
pointer to a remote directory that the RMIClassLoader can refer
to download classes that are not available at the current location.

After class downloading has completed, we are left with an ex-
pression of the form sandbox {e}. Execution inside the sandbox
then proceeds until a value is computed, which is then propagated
to the enclosing scope according to the rule LeaveSandbox.

Take the frozen expression computed in the example previously
and call it t. We now give another example of defrosting this time
at a location m, where it is important to notice that a variable y is
already in scope: here the ν -operator will be used to avoid collision
of bound variables. We abbreviate download to dl and sandbox

to sb in the following:

defrost(5; t), [y �→ true],CT
−→m(ν x,o1,o2,y2)(dl A from l in sb {x +y2 +o1.f},σ2,CT2)
with σ2 = [y �→ true] · [o1 �→ (A, f : 5,g : o2,0, /0)]·

[o2 �→ (B,ε,0, /0)] · [y1 �→ 6] · [x �→ 5]
and CT2 = CT · [B �→ . . . ]

−→m(ν x,o1,o2,y1)(resolve A from l in sb {x +y1 +o1.f},σ2,CT3)
with CT3 = CT2 · [A �→ . . . ]

Assuming that the superclass of A is Ob ject, this should already be
present in the local class table.

−→m(ν x,o1,o2,y1)(dl Ob ject from l in sb {x +y1 +o1.f},σ2,CT3)
−→m(ν x,o1,o2,y1)(sb {x +y1 +o1.f},σ2,CT3)
→→msb {16}, [y �→ true],CT3 −→m 16, [y �→ true],CT3

In the final steps, we garbage-collect the store entries added by the
frozen expression since they are now no longer required.

To illustrate the different class loading mechanisms, we change
the above example as follows and investigate the cases when we
change B in freeze to eager or lazy.

1 class A extends C{ ...}
2 class B { }
3 class C {D d(){return new D()}}
4 class D { }

• In the case of eager, the frozen expression ships all classes
(A,B,C,D). Hence there is no downloading required after
defrost.

• In the case of lazy, the frozen expression ships no classes.
When defrosting, it downloads A and B. When resolving
them at the next step, A’s superclass C is called to be down-
loaded. After C is downloaded, the final class table becomes
CT5 = CT3 · [C �→ class C {D d(){return new Dl()}}].
Note that D is not downloaded: hence it is renamed to Dl

so that if D requires instantiation, NewR will be applied and
D downloaded from l.

4.6 Correctness of graph algorithms
In this subsection we show the correctness of the graph algorithms
that are used in the proof of the results in § 6. The reader may safely
skip this subsection if they wish.

Object graph algorithm. The predicate reachable(σ ,o,o′) holds if
there exists a path in store σ from the object with identifier o to the
object with identifier o′. This can be an immediate link (when o′
is stored in a field of o), or it can be via the fields of one or more
intermediaries. This is defined below, where σ(o) = (C,�f :�v, . . .):

reachable(σ ,o,o′) ⇐⇒
(o′ ∈ fn(�v)∨∃o′′ ∈ fn(�v).reachable(σ ,o′′,o′))

With this predicate, RCH(σ) which contains all reachable pairs of
objects in a store σ , is defined below.

RCH(σ) = {(o,o′) | ∀o,o′ ∈ dom(σ).o �= o′ ∧ reachable(σ ,o,o′)}
Our object graph algorithm must, to be correct, preserve the tree
structure of the store when copying objects, hence it must preserve
this reachability relation.

For a store σ and an object graph σg computed from that store,
the predicate ogcomp(σ ,σg) (completeness of object graph) holds
if the computed graph preserves the reachability relation for all ob-
ject identifiers in its object domain. Given RCH(σ) and RCH(σg),
we define:

ogcomp(σ ,σg) if for all o ∈ dom(σ)∩dom(σg),

(o,o′) ∈ RCH(σ) ⇐⇒ (o,o′) ∈ RCH(σg)

This property ensures all links are correctly copied to the graph σg,
and no new links are created. The algorithm used to compute the
class graph can safely add extra objects into σg without violating
this property iff those objects are unreachable from any other that
should be in the graph.

Class graph algorithm. The correctness of the class graph algo-
rithm relies upon the definition of the following predicate:

comp(C,CT) def= ∀D C <: D.D ∈ dom(CT)

which is read: class table CT is complete with respect to class C.
When C is actually used, the class table CT at that location should be
complete w.r.t. C. We extend the notion of completeness to entire
class tables: we say a class table CT is complete if the following
predicate holds:

ctcomp(CT) def= ∀D ∈ dom(CT). comp(D,CT)

This means for every class D ∈ dom(CT), every superclass of D is
also available in CT.

With these preliminaries dealt with, we have the following lemma:

LEMMA 1. (Correctness of algorithms)

1. σ ′ = og(σ ,v) implies ogcomp(σ ,σ ′).

2. ctcomp(CT) and CT′ = cg(CT,C) imply ctcomp(CT′ ∪FCT).

5. Typing System
This section presents the key typing rules for DJ, focusing on the
linear channel types and the use of invariants for typing runtime
expressions and the new primitives. First we introduce the syntax
of types and environments in Figure 5.1.

T represents expression types: booleans, class names, frozen ex-
pressions that take a parameter of type T and return elements of
type U and the unit type. The metavariable U ranges over the
same types as T but is augmented with the special type void with
the usual empty meaning. We write C <: D when class C is a sub-
type of class D. Our notion of subtyping is mostly standard (we



T ::= bool | unit | C | T →U (Types)

U ::= void | T (Returnable types)

Extended types not appearing in program text:

S ::= U | ret(U) (Return types)

τ ::= chan | chanI(U) | chanO(U) (Channel types)

Γ ::= /0 | Γ,x : T | Γ,o : C | Γ,this : C (Expression environment)

∆ ::= /0 | ∆,c : τ (Channel environment)

Figure 5.1: Syntax of types and environments

assume <: causes no cycle as in [22, 7]), and is judged on the class
signature. The arrow type is standard.

Two runtime types (which do not appear in programs) are newly
introduced. Return types are ranged over by S are used to denote
the type of value returned by a method invocation (U m(C x){e}
is well-typed if e has the type ret(U)). Channel types are ranged
over by metavariable τ and represents the types for channels used in
method calls, which is explained in the next subsection. There are
two different kinds of environment. The environment for typing
expressions, written Γ, is a finite map from variables, o-ids and
this to types ranged over by T . ∆ is a finite map from channel
names to channel types, and appears in judgements for method calls
and those involving multiple threads and locations. We often omit
empty environments from judgements for clarity of presentation.

5.1 Linear channel types
One of the key tasks of the typing rules is to ensure linear use of
channels. This means that for every channel c there is exactly one
process waiting to input from c and one to output to c. In terms
of DJ, this ensures that a method receiver always returns its value
(if ever) to the correct caller, and that a returned value always finds
the initial caller waiting for it. In Figure 5.1, chanI(U) is linear
input of a value of type U ; chanO(U) is the opponent called lin-
ear output. The type chan is given to channels that have matched
input and output types. chanI(U) is assigned to await, while
chanO(U) is to threads with/to c (either return(c) e, e with/to c,
or go e with/to c).

To see the use of linear types, consider the following network;
the return expression cannot determine the original location if we
have two awaits at the same channel c, violating the linearity of c.

l1[E1[await c],σ1,CT1] | l2[E2[await c],σ2,CT2] |
l3[go v to c,σ3,CT3] (1)

The uniqueness of the returned answer is also lost if return channel
c appears twice.

l1[return(c) e1,σ1,CT1] | l2[return(c) e2,σ2,CT2] (2)

The aim of introducing linear channels is to avoid these situations
during execution of runtime method invocations. The following bi-
nary operation � is used for controlling the composition of threads
and networks.

DEFINITION 3. The commutative, partial, binary composition
operator on channel types, �, is defined as chanI(U)�chanO(U) def=
chan. Then we define the composition of two channel environ-

ments ∆1 �∆2 as:

∆1 �∆2
def={∆1(c)�∆2(c) | c ∈ dom(∆1)∩dom(∆2)}
∪∆1 \dom(∆2)∪∆2 \dom(∆1)

Two channel types, τ and τ′ are composable iff their composition
is defined: τ � τ ′ ⇐⇒ τ � τ ′ is defined. Similarly for ∆1 � ∆2.

Note that � and � are partial operators. Hence the composition of
other combinations is not allowed. Once we compose linear input
and output types, then it is typed by chan, hence it becomes un-
composable because chan �� τ for any τ . Intuitively if P is typed
by environment ∆1 and Q by ∆2, and if ∆1 � ∆2, then we can com-
pose P and Q as P |Q safely, preserving channel linearity. Hence
(1) is untypable because of chanI(U) �� chanI(U) at c. (2) is too
by chanO(U) �� chanO(U) at c.

5.2 Value and expression typing
Types are assigned to values and expressions using only the expres-
sion environment Γ. They have judgements of the form:

Γ � e : α e has type α in expression environment Γ.

where α ranges over T , U and S. The judgement is lightweight or
local in the sense that it does not require the current global or local
class table CT such as Γ �CT e : U ; this approach is not suitable
for DJ since during execution, new classes may be downloaded or
discovered. The lightweight judgement is possible by the use of the
class signatures and invariants as explained below.

5.2.1 Freeze and Defrost.
First we focus on the key typing rule for frozen expressions:

TV-Frozen
Γ,x : T,�u : �T ′ � e : U Γ,�u : �T ′; /0 � σ : ok � CT : ok

Γ � λ (T x).(ν�u)(l,e,σ ,CT) : T →U

The rule for typing a frozen expression is given in TV-Frozen. In
order for such a value to be well-typed we must ensure that the
store σ and CT are well-typed, and that the expression e computes
a result of the expected type when supplied its formal parameter.
The simplicity of this rule comes from the assumption that runtime
values are created under the invariants defined in § 6. By combining
with the invariants, we shall see:

• Instances of remote classes are not contained in σ , i.e. if o ∈
dom(σ), then we have σ(o) = (C, . . .) with local(C). This is
guaranteed by the combination of invariants from Inv(4) to
Inv(8) in § 6.1.2.

• The closure contains no free variables and no local object-
identifiers: for example, by the combination of the invariants
from Inv(4) to Inv(14) in § 6.1.4, we know σ(oi) = vi is
closed so that we can ensure that the resulting frozen value is
closed again.

The assumption for the class table is more complicated as shall be
explained in the next section.

We now show the typing rules for the freezing and defrosting
operations:

TE-Freeze
Γ,x : T � e : U

Γ � freeze[t](T x){e} : T →U

TE-Defrost
Γ � e0 : T ′ T ′ <: T

Γ � e : T →U

Γ � defrost(e0; e) : U



5.2.2 Locality for field and thread synchronisation.
There are two important restrictions which we should impose in
correspondence with the current Java implementation. The first
constraint is to disallow field access and assignment to a remote
object in a different location. Hence the following should be pro-
hibited even if class C is remote.

l[E[o.f]|P,σ1,CT1] |m[Q,σ2 · [o �→ (C, . . .)],CT2] (3)

However we wish to allow to type the following with class C re-
mote:

l[E[o.f]|P,σ1 · [o �→ (C, . . .)],CT1] |m[Q,σ2,CT2] (4)

An early version of the work simply replaced the typing rule for
field access with one that prevented it on any instance of a remote
class. While safe this was overly restrictive, since even at the loca-
tion where the remote object was held in store, no update to any of
its fields could ever take place, hence (4) above was untypable.

In order to propose a typing rule to prevent remote field access
statically but allow field access on remote objects locally, we re-
quire a combination of the locality invariants in § 6.1.2, the rule
TE-Fld and also the initial conditions explained in Definition 6.

The rule TE-Fld restricts field accesses only for local classes if e
is neither this or o. The special expression this is allowed to have
a remote class because this is always instantiated by an object
identifier o that is present in the local store (see MethInvoke). This
constraint, together with our initial conditions guarantees that field
access is always local.

The second restriction with respect to Java implementation is on
thread synchronisation: performing thread synchronisation on a re-
mote object is undefined behaviour. In Java it is possible to syn-
chronise on the stub to a remote object, but this is not the same
as synchronising on the actual remote object, since it does not ac-
quire the lock on the underlying object held at the remote site and
does not prevent other clients in the network from accessing that
resource. Suppose we have the remote class which contains syn-
chronised methods set and get in location 1 and two clients in
locations 2 and 3.

1 // Client 1 in Location 2
2 // ... import reference to r via RMI registry
3 synchronized (r) {
4 r.set(1);
5 return r.get();
6 }
7 // Client 2 in Location 3
8 // ... import reference to r via RMI registry
9 synchronized (r) {

10 r.set(2);
11 return r.get();
12 }

In this example the clients happen to be aware that their server is
providing a shared resource, so they try to guarantee a “transaction”
by “locking” the remote object. However this only locks the local
stub objects, and does not prevent interleaving of operations: hence
it is possible for client 1 to return 2 and client 2 to return 1. To avoid
this situation by type-checking, we can just put the same condition
as the field access as defined in TE-Sync. Combining the invariants
of locality, then we can now detect the above situation.

TE-Fld
Γ � e : C

e �= this,o =⇒ local(C)
fields(C) = �T�f

Γ � e.fi : Ti

TE-Sync
Γ � e1 : C

e1 �= this,o =⇒ local(C)
Γ � e2 : S

Γ � sync (e1) {e2} : S

To implement a server-side locking solution would require engi-
neering effort and an agreed protocol between clients. For instance,
we consider a semaphore-style arrangement to guarantee the atom-
icity of a “transaction” in the following toy example:

1 // Client 1 in Location 2
2 // ... import reference to r via RMI registry
3 r.down();
4 r.set(1);
5 int v = r.get();
6 r.up();
7 return v;
8

9 // Client 2 in Location 3
10 // ... import reference to r via RMI registry
11 r.down();
12 r.set(2);
13 int v = r.get();
14 r.up();
15 return v;

This would require synchronised down() and up() methods to
be installed in the remote object r, and would be very fragile since
it relies on the good behaviour of clients to correctly signal the
semaphore upon leaving the critical section. This option would be
typable by our system, since it does not require synchronisation on
the remote object r.

5.3 Thread and network typing
Threads, configurations and networks are assigned types under both
the expression environment Γ and the channel environment ∆. The
judgements take the following forms:

Γ;∆ � P : thread P is a well-typed thread in environment Γ;∆.

Γ;∆ � F : conf F is a wt. configuration in environment Γ;∆.

Γ;∆ � N : net N is a wt. network in environment Γ;∆.

Key typing rules are given below. The most important rule for
threads is TT-Par; we type a parallel compositions of threads if
a composition of their respective channel environments preserves
the linearity of channels. This is checked by ∆1 � ∆2.

We must make a similar check in TC-Conf, since the blocked
queue of threads waiting for locks requires the use of a channel en-
vironment to type the store σ . A configuration is then well-typed
in an environment Γ;∆1 �∆2 if its threads, P, are well typed in the
environment Γ;∆1 and its store σ is well-typed under Γ;∆2 with
∆1 � ∆2. The class table must also be well-formed, and must con-
tain a copy of the foundation classes FCT. The rule TN-Conf pro-
motes configurations to the network level.

TT-Par
Γ;∆i � Pi : thread ∆1 � ∆2

Γ;∆1 �∆2 � P1 |P2 : thread

TN-Conf
Γ;∆ � F : conf

Γ;∆ � l[F] : net

TC-Conf
Γ;∆1 � P : thread Γ;∆2 � σ : ok
� CT : ok FCT⊆ CT ∆1 � ∆2

Γ;∆1 �∆2 � P,σ ,CT : conf

6. Network Invariants and Type Soundness
This section presents the main technical results of the present paper.
We first introduce several runtime invariants and show that if an
initial network satisfies certain conditions then reductions always
preserve these runtime invariants. Next we establish subject reduc-
tion by the use of invariants. Finally combining subject reduction
and invariants, we derive progress and other safety guarantees.



6.1 Network invariants and initial networks
We start from the definition of a property over networks, given in
Definition 4.

DEFINITION 4. Let ψ denote a property over networks (i.e. ψ
is a subset of networks). We write N |= ψ if N satisfies ψ (i.e. if N ∈
ψ); we also write N �|= ψ if N does not satisfy ψ . We define the er-
ror property Err as the set of the networks which contain Error as
subexpression, i.e. Err = {N | N ≡ (ν�u)(l[E[Error] |P,σ ,CT] |N′)}.
We say ψ is a network invariant with an initial property ψ0 if
ψ = {N | ∃N0.(N0 |= ψ0, N0 →→ N, N �|= Err)}
In order to ensure the correct execution of networks and the preser-
vation of safety, we require certain properties to remain invariant.

DEFINITION 5. Given network N ≡ (ν�u)(∏0≤i<n li[Fi]) with
Fi = (Pi,σi,CTi), and assuming 0 ≤ j < n, i �= j where required,
we define property Inv(r) as a set of networks which satisfy the
condition r (with 1 ≤ r ≤ 16) as defined below.

The majority of these properties fall into one of three important
categories: class availability, locality and linearity. Each invariant
has a clear operational (and arguably engineering) meaning.

6.1.1 Class availability.

Inv(1) FCT⊆ CTi

Inv(2) Pi ≡ E[new C(�v)] |Qi =⇒ comp(C,CTi)
Inv(3) C ∈ dom(CTi)∩dom(CT j) =⇒

CTi(C) = CT j(C)∨CTi(C) = CT j(C)[�Dli/�D]
with fcl(CTi(C)) = {�D}

Key invariant properties in the presence of distribution are those of
class availability. For example when a class is needed, it and all its
superclasses must be present in the local class table. This require-
ment eliminates erroneous networks containing locations such as:
l[E[new C(�v)],σ , /0] where class C is not present in l’s empty class
table, so the initial step of execution will cause a crash. Note that
even if C is present, if its superclass D is not then this is also an
unexpected state. For example, in our system Inv(2) says that if we
attempt to instantiate C, we need to have all its superclasses.

Inv(3) models the strict default class version control of the Java
serialisation API. For example suppose we serialise an instance of
the following class:

1 class A implements java.io.Serializable {
2 private int i;
3 private int j = 0;
4 A(int i) { this.i = i; }
5 }

If we then pass this to a remote consumer who has also has a class
A, then deserialisation is not guaranteed to succeed, even if they
have a binary compatible copy of the class:

1 class A implements java.io.Serializable {
2 private int i;
3 A(int i) { this.i = i; }
4 }

This is because it is impossible to recreate the original A at the
new site without special low level programming. Moreover the
serialVersionUID—a long integer hash value computed from
the structure of a class file—will differ between the serialised ob-
ject and the version of A held by the consumer [17].1

1It is possible to override this value at the programmer level, how-
ever we do not consider such advanced techniques for versioning
serialised objects.

6.1.2 Locality.

Inv(4) fv(Pi) ⊆ dom(σi) ⊆ {�u}
Inv(5) dom(σi)∩dom(σ j) = /0

Inv(6) o ∈ fn(Fi)∩ fn(Fj) =⇒ ∃!k. σk(o) = (C, . . .)∧ remote(C)

Inv(7) o ∈ fn(Fi)∧∃k. σk(o) = (C, . . .)∧ local(C) =⇒ k = i

Inv(8) o ∈ fn(Fi) =⇒ ∃k 1 ≤ k ≤ n. o ∈ dom(σk)

Inv(9) Suppose

Ri ∈ { o.m(e) with c,E[o.f],E[o.f= e],E[sync (o) {e}],
E[insync o {e}],E[o.notify],E[o.notifyAll],
E[o.wait],E[ready o n] }

Then Pi ≡ Qi |Ri =⇒ σi(o) = (C, . . .)∧comp(C,CTi)

An important property in the system is the locality of store entries
such as local variables and object identifiers, captured by these in-
variants. For instance, combining Inv(4) and Inv(5), we can derive
fv(Pi)∩ fv(Pj) = /0, which ensures that local variables are not shared
between threads at different locations. In Inv(9) we ensure that
non-remote operations like field access and thread synchronisation
are not attempted on remote object references. This particular sit-
uation highlights the necessity of the invariants, since we cannot
guarantee this property alone in the typing system as we discussed
in § 5.2.

6.1.3 Linearity invariants.
Below we say thread P inputs at c if P ≡ E[await c] |R or P ≡
E[waiting(c) n] |R for some E and R; dually thread P outputs at
c if P ≡ R |Q with R ≡ return(c) e or R ≡ go e/e with/to c for
some Q and e.

Inv(10) Pi ≡ Qi |Ri and Qi inputs at c
=⇒ neither Ri nor Pj inputs at c.

Inv(11) Pi ≡ Qi |Ri and and Qi outputs at c
=⇒ neither Ri nor Pj outputs at c.

Linearity of channel usage ensures the determinacy of method calls
and returns and also the notification of blocked threads. This is
ensured by the linear type checking.

6.1.4 Other invariants.
In the following, the predicate insync(o,E) is true if there exist E1
and E2 such that E = E1[insync o {E2[ ]}]. Intuitively this means
that a thread has previously acquired the lock on object o, although
it may have subsequently released it by calling o.wait.

We also use the following functions. Let σ(o) = (C,�f :�v,n,{�c}).
Then to read the re-entry count for the monitor on o we use
getLock(σ ,o) = n. To obtain the queue of threads waiting on the
monitor of o we use the function blocked(σ ,o) = {�c}.

Closedness

Inv(12) Pi ≡ E[v] |Qi then fv(v) = /0

Inv(13) σi(x) = v =⇒ fv(v) = /0

Inv(14) σi(o) = (C, �f :�v, . . .) =⇒ fv(vi) = /0

Locks

Inv(15) Pi ≡ E[ready o n] |Qi =⇒ insync(o,E)∧n > 0

Inv(16) Pi ≡ E[waiting(c) n] |Qi
=⇒ ∃!o.c ∈ blocked(σi,o)∧ insync(o,E)∧n > 0



The closedness invariants ensure that values and store entries do
not contain any unbound variables. This is important to guarantee
that newly created frozen expressions are similarly closed.

The lock invariants ensure the correct behaviour of the locking
primitives at runtime. Inv(15) ensures that a thread that is ready
to reacquire a lock will set that lock’s count to a non-zero number.
Inv(16) ensures that a thread does not wait for a non-existent lock.

Before proving the network invariant, we define the initial net-
work configurations. Roughly speaking an initial configuration
contains no runtime values and expressions except o-ids. It can,
however, contain parallel threads distributed among locations; these
have been generated by compiling multiple user-defined main pro-
grams. Definition 6 states these conditions formally.

DEFINITION 6. We call network N ≡ (ν�u)(∏0≤i<n li[Pi,σi,CTi])
an initial network if it satisfies the following conditions (called ini-
tial properties):

• it contains no runtime expressions or values except o-ids and
parallel compositions of return(c) e; and freeze[t](T x){e}
does not contain free o-ids, i.e. fn(e) = /0.

• it satisfies all properties Inv(i) except Inv(2), which is re-
placed by:

fcl(Pi) ⊆ dom(CTi),
C ∈ fcl(CTi)∪dom(CTi) =⇒ comp(C,CTi) and
σi(o) = (C, . . .) =⇒ comp(C,CTi).

• We also strengthen the locality invariant Inv(9) by replacing
E by the arbitrary context.

We denote the set of networks satisfying these conditions by Init.

The second extra requirement states that all initial class tables are
complete w.r.t. classes in the program and stores. Note that during
runs of programs, the initial properties may not be satisfied since
classes can be downloaded lazily.

6.2 Type soundness and progress properties
To prove some cases of the subject reduction theorem, we require
some invariants to hold in the assumptions. Therefore the proof
routine for type soundness is divided into the following three steps:

Step 1 We prove one step invariant property for a typed network
starting from the initial properties. This step has two sub-
cases:

(i) Assume Γ;∆ � N0 : net and N0 satisfies the initial proper-
ties. Then N0 −→N1 implies N1 |= Inv(r) for each 1≤ r ≤ 16
if N1 �|= Err.

(ii) Assume Γ;∆ � Nm : net (m ≥ 1) and Nm |= Inv(r) for all
1 ≤ r ≤ 16. Then Nm −→ Nm+1 implies Nm+1 |= Inv(r) for
each 1 ≤ r ≤ 16 if Nm+1 �|= Err.

Step 2 We prove the subject reduction theorem using Step 1, i.e.
Γ;∆ � N : net and N −→ N′ implies Γ;∆ � N′ : net.

Step 3 Then invariant of Inv(r) is a corollary of Steps 1 and 2.

The proof of Step 1 is non-trivial; it requires key additional invari-
ants for runtime expressions related to dynamic class downloading.
Then assuming Step 1 holds, the proof of Step 2 proceeds by in-
duction on the derivation of reduction with a case analysis on the
final typing rule applied. Lemma 1 plays a key role. [3] presents
all proofs as well as the use of invariants.

THEOREM 1. (Subject reduction)

• Assume Γ,�u : �T � e : α , Γ,�u : �T � σ : ok and � CT : ok.
Suppose (ν�u)(e,σ ,CT) −→l (ν�u′)(e′,σ ′,CT′) and e′ �|= Err.
Then we have Γ,�u′ : �T ′ � e′ : α ′ for some α ′ <: α , Γ,�u′ : �T ′ �
σ ′ : ok and � CT′ : ok.

• Assume Γ;∆ � F : conf, F −→l F ′ and F ′ �|= Err. Then we
have Γ;∆ � F ′ : conf.

• Assume Γ;∆ � N : net, N −→ N ′ and N′ �|= Err. Then we
have Γ;∆ � N′ : net.

Note that the above theorem guarantees type safety: if there is nei-
ther a null pointer error nor an unavoidable network error (i.e. N′ �|=
Err), then the typability ensures that an execution does not go wrong.
As a corollary we derive:

COROLLARY 1. (Network invariant) ∧1≤r≤16 Inv(r) is a net-
work invariant with the initial network properties Init defined in
Definition 6.

Finally by each property such as availability and linearity, we can
derive the following advanced progress and linearity properties.

DEFINITION 7. (Progress invariants)
Given network N ≡ (ν�u)(∏0≤i<n li[Pi,σi,CTi]), and assuming 0 ≤
k < n, we define property Prog(r) as a set which satisfy the follow-
ing conditions.

Prog(1) Pi ≡ E[new C(�v)] |Qi =⇒ C ∈ dom(CTi)
Classes are always available for instantiation.

Prog(2) Pi ≡ E[download �C from lk in e] |Qi

=⇒ �C ∈ dom(CTi)∪dom(CTk)
Download operations always succeed in retrieving the required classes
from the specified location.

Prog(3) Pi ≡ E[resolve �C from m in e] |Qi =⇒ �C ∈ dom(CTi)
No attempt is made to resolve classes that are not available in the
local class table.

Prog(4) Pi ≡ E[o.fi] |Qi =⇒ [o �→ (C, . . .)] ∈ σi ∧fields(C) = �T�f
No attempt is made to invoke a field access on the store if the class
of the store does not provide that field.

Prog(5) Pi ≡ E[o.fi = v] |Qi =⇒ [o �→ (C, . . .)]∈ σi∧fields(C) =
�T�f
No attempt is made to invoke a field access on the store if the class
of the store does not provide that field.

Prog(6) Pi ≡ E[x] |Qi =⇒ x ∈ dom(σi)
Expressions only access variables they are local to.

Prog(7) Pi ≡ E[x = v] |Qi =⇒ x ∈ dom(σi)
Expressions only assign to variables they are local to.

Prog(8) Pi ≡ o.m(v) with c |Qi ∧σi(o) = (C, . . .)
=⇒ mbody(m,C,CTi) defined
No attempt is made to invoke a method on an object of a given class
if that class does not provide that method.

Prog(9) Pi ≡ go o.m(v) with c |Qi =⇒ ∃!k. o ∈ dom(CTk)
Remote method invocations always refer to a unique live location
in the network.

Prog(10) Pi ≡ go v to c |Qi ∧ c∈{�u} =⇒ ∃!k. Pk ≡E[await c] |Qk
If a method return exists, there must be exactly one location waiting
for it on that channel.



For the case of synchronisation, see [3].

THEOREM 2. (Progress, Locality and Linearity)
∧1≤r≤10 Prog(r) is a network invariant with the initial network

properties Init defined in Definition 6.

PROOF. Immediately Prog(1) is derived from Inv(2). Prog(2)
is by the monotonicity of the class tables. Prog(3) is obvious by
Download. Prog(4) and Prog(5) are proved by Inv(9). Prog(6)
and Prog(7) are obvious by Inv(4). Prog(8) is derived from Inv(9).
Prog(9) is by combining Inv(8) and Inv(5). Prog(10) is straight-
forward by combining Inv(10) and Inv(11).

7. Justification for optimisations
We prove the correctness of the optimised code in § 2 using sound
syntactic transformation rules over programs and runtime. The key
idea is a use of the following noninterference property [24, 37] to
justify the correctness of these rules. Let us write N

◦−→ N′ for
a transformation rule of the optimisation from N to N′. Once we
check N

◦−→ N′ is type-preserving and satisfies the following non-
interference property, then N and N′ are immediately observation-
ally equal, hence the transformation is semantics-preserving.

if N −→N1 and N
◦−→ N2, then N1 ≡N2 or there exists

N′ such that N1
◦−→ N′ and N2 −→ N′.

For tractable reasoning, we introduce syntactic transformation rules
which satisfy the noninterference property. These equational laws,
that come from those of the linear types of mobile processes [27,
49], allow us to check the optimisations purely syntactically.

7.1 Observational congruence
We define an observational congruence over the typed language and
runtime by applying the equational theory of process algebra [21].
Hereafter we assume all networks are typed and started executing
from the initial condition Init.

A relation R over networks is typed when Γ1;∆1 �N1 R Γ2;∆2 �
N2 implies Γ1 = Γ2 and ∆1 = ∆2. We write Γ;∆ � N1 R N2 (or
N1 R N2 if Γ;∆ is obvious from the context) when Γ;∆ � N1 and
Γ;∆ � N2 are related by a typed relation R. A typed congruence is
a typed relation R which is an equivalence closed under all typed
contexts and the structure rules, i.e. ≡⊆ R.

The formulation of behavioural equality is based on two condi-
tions: reduction-closedness and an observational predicate. In the
distributed setting, terms can effectively change meaning (for ex-
ample by side-effecting a store), so we define “equality” to mean
that two equated programs go to an equated state again. The second
condition comes from the concept of observation in mobile process
theory [21]. For an observation, we take the output (“go”) to chan-
nel c.

• A typed congruence R on networks is reduction-closed when-
ever Γ;∆ � N1 R N2, N1 →→ N′

1 �|= Err implies, for some N′
2,

N2 →→ N′
2 with Γ;∆ � N′

1 R N′
2; and its symmetric case.

• We define the observational predicate ↓c and ⇓c as follows.

N ↓c if N ≡ (ν�u)(l[go v to c |P,σ ,CT] |N′) with c �∈ {�u}
N ⇓c if ∃ N′ (N →→ N′ ∧ N′ ↓c)

We say R respects the observational predicate if Γ;∆ � N1RN2
with c : chanO(U) ∈ ∆ implies N1 ⇓c iff N2 ⇓c.

Now we define the observational congruence.

DEFINITION 8. A typed congruence R is sound if it is reduction-
closed and respects the observational predicate.

• We write ∼= for the maximum sound equality over a network
invariant, i.e. ∼= is defined over a set which exclude the error
states {N | ∃N0.(N0 |= Init, N0 →→ N, N �|= Err)}.

• We write ∼=• for the maximum sound equality over untyped
networks which include error states.

7.2 Transformation rules
We introduce a set of tractable conversion rules which can quickly
check the equivalence of distributed networks. First we formally
introduce the noninterference property.

DEFINITION 9. Let us assume
◦−→ is a typed relation closed

under name restriction, parallel composition and the structure rules.
We say

◦−→ satisfies a noninterference property, i.e. if N −→ N1

and N
◦−→ N2, then N1 ≡ N2 or there exists N′ such that N1

◦−→ N′
and N2 −→ N′.

LEMMA 2. Suppose
◦−→ satisfies a noninterference property

and
◦−→ respects the observational predicate. Then N1

◦−→ N2 �|=
Err implies N1 ∼= N2.

Code that can move safely. The transformation rules should re-
duce the number of communications and class downloads preserv-
ing meaning. For this, we need to identify what kinds of code
and programs can safely move from one location to another. Be-
low predicate MobileΓ(e) is true if fv(e) = /0 and o ∈ fn(e) implies
Γ � o : C with remote(C); i.e. e does not contain any free variables
or local o-ids under environment Γ; in addition it does not con-
tain any of the following terms as a subterm (since they break the
locality invariants, see § 5.2.2 and § 6.1.2).

{o.f,o.f = e,sync (o) {e′},insync o {e′},
o.notify,o.notifyAll,o.wait,ready o n }

If MobileΓ(e), e can move from one location to another preserving
its meaning.

Transformation Rules. We list the key transformation rules. As-
sume the right hand side is typed under Γ;∆. We omit surrounding
context where it is unnecessary.

Linearity

(l1) return(c) E[sandbox {e1; . . . ;en}]
�→ e1; . . . ;return(c) E[en]

(l2) E[await c] |return(c) e �→ E[e]

(l1) is standard. (l2) means that method body e can be evaluated
inline. This is ensured by linearity of channel c.

Class

(cm) l[P,σ ,CT] �→ l[P,σ ,CT∪CT′] ctcomp(CT′), � CT′ : ok

(cm) says that a complete class table can always move.

Closed
(cr) (ν x)(E[x] |P, [x �→ v] ·σ) �→ (E[v],σ) when x /∈ fv(P)∪ fv(E)
(fr) (ν�u)(E[freeze[t](T x){e}] |P,σ ,CT)

�→ (ν�u)(E[λ (T x).(ν�u)(l,e,σ ′,CT′)] |P,σ ,CT)

where in (fr), ui /∈ fv(P)∪ fv(E), fn(σ ′)∪ fv(σ ′) ⊆ dom(σ ′) and σ ′
and CT′ are given following Freeze. These rules mean that the tim-
ing of reading a value or of freezing an expression is unimportant,
provided it shares no information with other parties. Note “ν�u” in
(fr) ensures ui is not shared.



Method Invocation
(mi) l[E[o.m(v)],σ ,CT] |m[Q,σ ′,CT′]

�→ l[E[defrost(v; λ (T x)(m,e, /0, /0))],σ ,CT] |m[Q,σ ′,CT′]
where MobileΓ(e[v/x]), [o �→ (C, . . .)]∈σ ′, mtype(m,C) = T →U ,
and mbody(m,C,CT′) = (x,e). This rule means we can fetch a clo-
sure of the mobile method body from the remote site safely.

We leave other rules to [3]. The transformation rule N �→ N′ is de-
fined as a binary relation generated by the above rules and closed
under parallel composition, name restriction and structure rules.

THEOREM 3.

1. (noninterference) �→ satisfies a noninterference property
and respects the observational predicate under a network in-
variant.

2. (type preservation) Assume Γ;∆ � N : net and N �|= Err.
Then N �→ N′ implies Γ;∆ � N′ : net.

3. (semantic preservation) N �→ N′ implies N ∼= N′.
PROOF. (1) and (2) are mechanical. (3) uses (1) and (2) together

with Lemma 2.

Note that by Definition 4, Theorem 3 excludes the error statement.
This is because the transformation is not sound if an error occurs
during execution, as we shall discuss in the next subsection. More
formally, N �→ N′ does not always imply N ∼=• N′.

PROPOSITION 1.

1. freeze[t](T x){e} ∼= freeze[t ′](T x){e}.
2. There is a fully abstract embedding [[N]] of networks N that

contain methods m(�e) and frozen expressions freeze[t](�T �x){e}
with multiple parameters into networks with methods and
frozen expressions with only single parameters.

PROOF. (1) Use Lemma 2 and (cm). (2) A translation of freeze
is standard by currying. We encode methods with multiple param-
eters into those with just a single parameter in the most intuitive
manner. Each method, instead of taking a vector�T �x of parameters,
takes a single parameter of a newly created class C. C contains
fields T1 f1; . . . ;Tn fn; where field fi corresponds to the ith param-
eter of the original method definition. Then, all call sites for a par-
ticular method are replaced with a constructor call to an instance
of the correct “parameter class”, so o.m(�v) becomes o.m(new C(�v))
for some C. We then prove that N ∼= [[N]]. See [3] for the detailed
proofs.

7.3 Correctness of the optimisations
We now prove the correctness of the optimised programs in § 2. We
transform one program to another using the transformation rules
defined above.

We first demonstrate how to transform the optimised program
1 (Opt1) to the original program 1 (RMI1). Let us assume e is a
program from line 2 to 4 in (RMI1). We omit the surrounding con-
text as there is no class loading in this example. After the method
invocation by o.mOpt1(r,n) with c, (Opt1) becomes:

(ν a)(thunk〈int〉 t = freeze[t]{e;z};return(c) r.run(t), [a �→ n])

Let v = λ (unit x).(ν a)(l,e;z, [a �→ n]). Then the above configu-
ration is transformed to:

�→ (ν a)(thunk〈int〉 t = v;return(c) r.run(t), [a �→ n]) (fr)
◦→→ (ν t)(return(c) r.run(t), [t �→ v])

�→ return(c) r.run(v), /0 (cr)
�→ return(c) defrost(v; λ (T x)(l,defrost(x), /0, /0)), /0 (mi)
◦→→ (ν a)(return(c) sandbox {e;z}, [a �→ n]) (�)

�→ (ν a)(e;return(c) z, [a �→ n]) (l1)

The last line is identical to (RMI1) after the method invocation by
o.m1(r,n) with c. Note that defrost and sandbox do not affect
other parties, so that the reduction at (�) satisfies a noninterference
property, hence this reduction preserves the semantics. Because we
have Mobile /0(v), we can apply (mi) in the forth line. Hence (Opt1)
is transformed to (RMI1).

The correctness of (Opt2) is also straightforward by repeating
the same routine twice.

We show (RMI3) is equivalent with (Opt3) under the assump-
tion there is no call-back.2 Then the body of (Opt3) is equivalent
to return r.run(freeze(e[�e′/�b];z)) and e′i = deserialize(vi)
where vi = λ (unit x).(ν�u)(l,a,σi) is a serialised value at line i in
(Opt3) (3 ≤ i ≤ 5). Then we apply a similar transformation with
the above to derive (RMI3). Hence (RMI3) is equivalent to (Opt3).

Note that our freezing preserves sharing between objects (Point
1 in (Opt3) in § 2), hence we can prove the following equation:

x.f = y;r.h(x,y) ∼= x.f = y;r.run(freeze(r.h(x,y))).

Finally by (erase), we can derive (Opt4) from (Opt3), hence
(Opt4) is equivalent to (RMI3).

Not all equations are valid if a network error occurs during ex-
ecutions. For example, eager and lazy are not equal in the pres-
ence of Err-ClassNotFound, hence (erase) is not applicable. See
[3] for the full proofs. To summarise, we have:

THEOREM 4. (Correctness of the Optimisations)

1. (RMI1) and (Opt1) are equivalent up to ∼=.
2. (RMI2) and (Opt2) are equivalent up to ∼=.
3. (RMI3) and (Opt3) are equivalent up to∼= without call-back.
4. (Opt3) and (Opt4) are equivalent up to∼=, hence (RMI3) and

(Opt4) are equivalent up to ∼= without call-back.
5. None of them are equivalent up to ∼=•.

8. Related Work

Class loading and downloading. Class loading and downloading
are crucial to many useful Java RMI applications, offering a con-
venient mechanism for distributing code to remote consumers. The
class verification and maintenance of type safety during linking are
studied in [29, 36]. Our formulation of class downloading is modu-
lar, so it is adaptable to model other linking strategies [12, 13], see
§ 4.2. We set the class invariant Inv(3) in Definition 5. This is be-
cause the Java serialisation API imposes the strict default class ver-
sion control discussed in § 6.1.1. Another solution is to explicitly
model the Java exception InvalidClassException to check
for mismatch between downloaded and existing classes. This dy-
namic approach leads to the same invariant to prove the subject
reduction theorem.

Most of the literature surrounding class loading in practice takes
the lazy approach. As we discussed earlier, in the setting of remote
method invocation laziness can be expensive due to delay involved
in retrieving a large class hierarchy over the network. Krintz et al
[28] propose a class splitting and pre-fetching algorithm to reduce
this. Their specific example is applet loading: if the time spent in
an interactive portion of an applet is used to download classes that
may be needed in future, we can fetch them ahead of time so that

2The equation holds if there is no call-back as explained in § 2.
Our framework can also justify the incorrectness of the optimisa-
tion between (RMI3) and (Op3) in the presence of call-back. How-
ever, since most RMI programs do not use call-backs, we do not
investigate them.



the user does not encounter a large delay, sharing the motivation for
our (eager) code mobility primitive. The partly eager class loading
in their approach is implicit, but requires control flow information
about the program in question to determine where to insert instruc-
tions to trigger ahead-of-time fetching. This framework may be
difficult to apply in a general distributed setting, since clients may
not have access to the code of a remote server. Also their approach
merely mitigates the effect of network delay rather than removing
it; it still requires the sequential request of a hierarchy of super-
classes. We believe an explicit thunk primitive as we proposed in
the present work may offer an effective alternative in such situa-
tions.

Distributed objects. Obliq [10] is a distributed object-based, lex-
ically scoped language proposed by Cardelli. One key feature of
the language is that methods are stored within objects—there is
no hierarchy of tables to inspect as in most class-based languages.
Merro et al [31] encode a core part of Obliq into the untyped π-
calculus. They use their encoding to show a flaw in part of the
original migration semantics and propose a repair. Later Nestmann
et al [33] formalised a typing system for a core Obliq calculus and
studied different kinds of object aliasing. Briais and Nestmann
[9] then strengthened the safety result in [31] by directly devel-
oping the must equivalence at the language level (without using the
translation into the π-calculus). They also apply a noninterference
property to show the two terms (with and without surrogation) are
must-equivalent. DJ models two important concerns in distributed
class-based object-oriented languages missing from Obliq, that is
object serialisation and dynamic class downloading associated with
inheritance in Java (note that the same term “serialisation” used in
[10] refers to one in the sense of transaction theory). These features
require a consistent formulation of dynamic deep copying of objec-
t/class graphs. As we have seen in § 7, detailed analysis of these
features is required to justify the correctness of the optimisation ex-
amples in § 2. The proof method using syntactic transformations in
§ 7 is also new.

Emerald [25] is another example of a distributed object-based
language. It supports classes represented as objects, however there
is no concept of class loading as in DJ—information about inheri-
tance hierarchies is discarded at compile-time. Objects in Emerald
may be active in that they are permitted their own internal thread
of control that runs concurrently with method invocations on that
object. Such objects may explicitly move themselves to other loca-
tions by making a library call. In DJ the fundamental unit of mobil-
ity is arbitrary higher-order expressions: this general code freezing
primitive can represent object mobility similar to Emerald when it
is combined with standard Java RMI. Finally, there has been no
study of the formal semantics of Emerald.

Gordon and Hankin [15] extend the object calculus [2] with ex-
plicit concurrency primitives from the π-calculus. Their focus is
synchronisation primitives (such as fork and join) rather than distri-
bution, so they only use a single location. Jeffrey [23] treats an ex-
tension of [15] for the study of locality with static and dynamic type
checking. The concurrent object calculus is not class-based, hence
neither work treats dynamic class loading or serialisation (though
[23] treats transactional serialisation as in [10]), which are among
the key elements for analysis of RMI and code mobility in Java.

Scope and runtime formalisms for Java. Zhao et al [51] propose
a calculus with primitives for explicit memory management, called
SJ, for a study of containment in real-time Java. The SJ calculus
proposes a typing discipline based on the idea of scoped types—
memory in real-time applications is allocated in a strict hierarchy

of scopes. Using the existing Java package structure to divide such
scopes, their typing system statically prevents some scope invari-
ants being broken. Their focus is on real-time concurrency in a
single location, while ours is on dynamic distribution of code in
multiple locations. DJ also guarantees similar scoping properties
by invariants, for example Inv(6) in Definition 5 ensures that iden-
tifiers for local objects do not leak to other locations in the presence
of synchronisation primitives.

The representation of object-oriented runtime in formal seman-
tics is not limited to distributed programs, as found in study of exe-
cution models of the .NET CLR by Gordon and Syme [16] and Yu
et al [50].

The JavaSeal [44] project is an implementation of the Seal cal-
culus for Java. It is realised as an API and run-time system inside
the JVM, targeted as a programming framework for building multi-
agent systems. The semantics of these APIs depend on distributed
primitives in the implementation language, which are precisely the
target of the formal analysis in the present paper. JavaSeal may of-
fer a suggestion for the implementation and security treatment of
higher-order code passing proposed in the present paper.

Functions with marshaling primitives. Ohori and Kato [34] ex-
tend a purely functional part of ML with two primitives for remote
higher-order code evaluation via channels, and show that the type
system of this language is sound with respect to a low-level cal-
culus. The low-level calculus is equipped with runtime primitives
such as closures of functions and creation of names. Their focus
is pure polymorphic functions, hence they treat neither side-effects
nor (distributed) object-oriented features. Acute [1] is an exten-
sion of OCaml equipped with type-safe marshaling and distributed
primitives. By using flags called marks, the user can control dy-
namic loading of a sequence of modules when marshaling his code.
This facility is similar to our lazy and eager class loading. The lan-
guage also provides more flexible way to rebind local resources and
modules. An extension of our freeze operator for fine-grained re-
binding is an interesting topic, though as we discussed in § 6.1.1, it
is not suitable in practice due to the Java serialisation API.

Staged computation and meta-programming. Taha and Sheard
[41] give a dialect of ML containing staging annotations to generate
code at runtime, and to control evaluation order of programs. The
authors give a formal semantics of their language, called MetaML,
and prove that the code a well-typed program generates will itself
be type-safe.

The freeze and defrost primitives in DJ can be thought of
as staging annotations, and also guarantee that frozen expressions
should be well-typed in any context. However we study distribution
and concurrency in an imperative setting, with strong emphasis on
runtime features. These features are not discussed in MetaML as
it is a functional language, nor the problems associated with class-
loading we address.

Kamin et al [26] extend the syntax of Java with staging annota-
tions and provide a compiler for a language called Jumbo. They al-
low creation of classes at runtime, focusing on single-location per-
formance optimisation: there is no discussion of use in distributed
applications, a main focal point of our work. They give no static
guarantees about type safety of generated code, nor do they allow
code to be generated in fragments smaller than an entire class. They
do not consider higher-order quotation, permitting only one level of
quotation and anti-quotation.

Zook et al [52] propose Meta-AspectJ as a meta-programming
tool for an aspect-oriented language. They implement a compiler
that takes code templates—containing quoted Aspect-J code—and



turns them into aspect declarations that can be applied as normal
to Java programs. Their system is more focused on compile-time
code generation, and offers weaker static guarantees: well-typed
generators do not guarantee type safety of the generated aspects.

9. Conclusions and Further Work
This paper introduced a Java-like core language for RMI with higher-
order code mobility. It models runtime for distributed computa-
tion including dynamic class downloading and object serialisation.
Using the new primitives for code mobility, we subsumed the ex-
isting serialisation mechanism of Java and were able to precisely
describe examples of communication-based optimisations for RMI
programs on a formal foundation. We established type soundness
and safety properties of the language using distributed invariants.
Finally, by the behavioural theory developed in § 7, we were able
to systematically prove the correctness of the examples in § 2.

Explicit code mobility as a language primitive gives powerful
control over code distribution strategies in object-oriented distributed
applications. This is demonstrated in the examples in § 2. In [8,
47, 46], these optimisations are informally described as implemen-
tation details. Not only is source-level presentation necessary for
their semantic justification, but also explicit treatment of code mo-
bility gives programmers fine-grained control over the evaluation
order and location of executing code. It also opens the potential for
source-level verification methodologies for access control, secrecy
and other security concerns, as briefly discussed below. Note cur-
rent customised class downloading mechanisms do not offer active
code mobility and algorithmic control of code distribution (as in
the last example of § 2).

Further, the fine-grained control of code mobility has a direct
practical significance: the optimisation strategy in [47, 46] cannot
aggregate code in which new object generation is inserted, such as:

1 int m3(RemoteObject r, MyObj a) {
2 int x = r.f(a);
3 int y = r.g(new MyObj(x));
4 int z = r.h(a, y);
5 return z;
6 }

where MyObj is a local class in the client. This is because we need
active class code delivery if this code is to be executed in a remote
server. In contrast, the freeze primitive in our language can straight-
forwardly handle aggregation of this code. We also believe that, in
comparison with direct, byte-code level implementation in [47, 46],
the use of our high-level primitives may not jeopardise efficiency
but rather can even enhance it by e.g. allowing more flexible inter-
procedure optimisation.

The complexity of the third program optimisation poses the ques-
tion of whether the original copying semantics of Java RMI are
themselves correct in the first place: making a remote call can en-
tail subtly different invocation semantics to calling a local method.
Our code freezing primitive allows us to make the call semantics
explicit, and also allows us to support more traditional ideas about
object mobility [25, 10], such as side-effects in calls at the server
side.

The class-based language considered in the present work does
not include such language features as casting [22, 7], exceptions
[5] and parametric polymorphism [22]; although these features can
be represented by extension of the present syntax and types, their
precise interplay with distributed language constructs requires ex-
amination.

An important future topic is enrichment of the invariants and type
structures to strengthen safety properties (e.g. for security). Here

we identify two orthogonal directions. The first concerns mobility.
As can be seen in the second example in § 2, the current type struc-
ture of higher-order code (e.g. thunk<int>) tells the consumer
little about the behaviour of the code he is about to execute, which
can be dangerous [30, 8]. In Java, the RMISecurityManager
can be used with an appropriate policy file to ensure that code

downloaded from remote sites has restricted capability. By extend-
ing DJ with principals, we can examine the originator of a piece
of code to determine suitable privileges prior to execution [45]. To
ensure the integrity of resources we can dynamically check invari-
ants when code arrives (e.g. by adding constraints in Defrost), or
we could allow static checking by adding more fine-grained infor-
mation about the accessibility of methods in class signatures, along
the lines of [48].

The second direction is to extend the syntax and operational se-
mantics to allow complex, structured, communications. For this
purpose we have been studying session types [20, 43] for ensuring
correct pattern matching of sequences of socket communications,
incorporating a new class of channels at the user syntax level. Our
operational semantics for RMI is smoothly extensible to model ad-
vanced communication protocols. Session types are designed using
class signatures, and safety is proved together with the same invari-
ance properties developed in this paper.

Study of the semantics of failure and recovery in our framework
is an important topic. So far we have incorporated the possibility of
failures in class downloading and remote invocation due to network
partition (defined by Err-rules in § 4). When a message is lost,
some notion of time-out is generally used to determine whether to
re-transmit or fail. Such error recovery can be investigated by defin-
ing different invocation semantics (for example at-most-once [40])
and adding runtime extensions to DJ. This point is also relevant
when we consider socket-based communication instead of RMI.

We have implemented an initial version of our new primitives for
code mobility [42]. This takes the form of a source-to-source trans-
lator, compiling the freeze and defrost operations into stan-
dard Java source. Eager class loading via RMI requires modifica-
tion to the class loading mechanism, which is achieved by installing
a custom class loader working in conjunction with our translated
source. This approach has the advantage that we can use an ordi-
nary Java compiler and existing tools, and that the JVM would not
need modification. However a more direct approach (for example
extending the virtual machine) may yield better performance.

The examples in § 2 and the transformation rules in § 7 lead to the
question of how to automatically translate from RMI source pro-
grams to programs exploiting code mobility for added efficiency.
Developing a general theory and an integrated tool is non-trivial
due to an interplay between inter node- and procedure optimisa-
tions. Furthermore we need to formalise a cost theory for dis-
tributed communication with respect to the distance of the loca-
tions and the size of code and class tables transferred. DJ can be
used as a reference model to define efficiency since it exposes dis-
tributed runtime explicitly by means of syntax and reduction rules.
For example, we can put marshaling cost in rule Freeze with re-
spect to the size of the frozen expression; we can investigate the
cost of class downloading with respect to the size of a downloaded
class table CT′ and a distance between location l1 and location l2,
using rule Download. An interesting further topic is an application
to DJ of the cost-preoder theory developed for process algebra [6]
to compare program performance.
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Appendix
This appendix contains the reduction rules for DJ that were not introduced
in the main body of the paper. Several auxiliary definitions are omitted due
to space limitations, but these can be found in the long version of this paper
[3].

Field lookup

fields(Ob ject) = •
CSig(C) = extends D �T�f {mi : Ci →Ui}

fields(D) = �T ′�f ′

fields(C) = �T ′�f ′,�T �f

Method type lookup

CSig(C) = extends D [remote] �T�f {mi : Ci →Ui}
mtype(mi,C) = C′

i →U ′
i

CSig(C) = extends D [remote] �T�f {mi : Ci →Ui} m /∈ {�m}
mtype(m,C) = mtype(m,D)

Method body lookup

CT(C)=class C extends D{�T�f ;K �M}
U m(C x){e} ∈ �M

mbody(m,C,CT) = (x,e)

CT(C)=class C extends D{�T�f ;K �M}
U m(C x){e} /∈ �M

mbody(m,C,CT) = mbody(m,D,CT)

[Expression]

Var

x,σ ,CT −→l σ(x),σ ,CT

Cond
if (true) {e1} else {e2},σ ,CT −→l e1,σ ,CT
if (false) {e1} else {e2},σ ,CT −→l e2,σ ,CT

While
while (e1) {e2},σ ,CT

−→l if (e1) {e2;while (e1) {e2}} else {ε},σ ,CT

Fld
σ(o) = (C,�f :�v,n,�c)

o.fi ,σ ,CT −→l vi,σ ,CT

Seq
e1,σ ,CT −→l (ν�u)(v,σ ′,CT′)

e1;e2,σ ,CT −→l (ν�u)(e2,σ ′,CT′)
�u /∈ fn(e2)∪ fv(e2)

Ass

x = v,σ ,CT −→l v,σ [x �→ v],CT

FldAss
σ ′ = σ [o �→ σ(o)[ f �→ v]]

o.f = v,σ ,CT −→l v,σ ′ ,CT
o ∈ dom(σ)

Dec

T x = v;e,σ ,CT −→l (ν x)(e,σ · [x �→ v],CT) x /∈ dom(σ)
Cong

e,σ ,CT −→l (ν�u)(e′,σ ′,CT′)
E[e],σ ,CT −→l (ν�u)(E[e′],σ ′,CT′)

�u /∈ fn(E)∪ fv(E)

The predicate insync(o,E) is true if there exist E1 and E2 such that E =
E1[insync o {E2[ ]}]. We also use the following functions. Let σ(o) =
(C, �f :�v,n,{�c}).

read/update the counter

{
setLock(σ ,o,n′) = σ [o �→ (C, �f :�v,n′,{�c})]
getLock(σ ,o) = n

read/update the queue

⎧⎪⎨
⎪⎩

blocked(σ ,o) = {�c}
block(σ ,o,c) = σ [o �→ (C,�f :�v,n,{�c}∪{c})]
unblock(σ ,o,�c′) = σ [o �→ (C,�f :�v,n,{�c}\{�c′})]

[Synchronisation]

Fork

E[fork(e)] |Q,σ ,CT −→l E[ε ] |forked e |Q,σ ,CT

ThreadDeath

forked v,σ ,CT −→l 0,σ ,CT

Sync

getLock(σ ,o) =

{
0 setLock(σ ,o,1) = σ ′

n > 0 insync(o,E) =⇒ setLock(σ ,o,n+1) = σ ′

E[sync (o) {e}],σ ,CT −→l E[insync o {e}],σ ′ ,CT
Wait

insync(o,E) getLock(σ ,o) = n
setLock(σ ,o,0) = σ ′′ block(σ ′′,o,c) = σ ′

E[o.wait] |Q,σ ,CT −→l (ν c)(E[waiting(c) n] |Q,σ ′ ,CT)
Notify

insync(o,E) c ∈ blocked(σ ,o) unblock(σ ,o,c) = σ ′

E[o.notify] |E1 [waiting(c) n],σ ,CT −→l E[ε ] |E1[ready o n],σ ′,CT
NotifyAll

insync(o,E)
blocked(σ ,o) = {�c} m ≥ 0 unblock(σ ,o,�c) = σ ′

E[o.notifyAll] |E1 [waiting(c1) n1] | · · · |Em[waiting(cm) nm],σ ,CT
−→l E[ε ] |E1[ready o n1] | · · · |Em[ready o nm],σ ′,CT

NotifyNone
insync(o,E) blocked(σ ,o) = /0

E[o.notify],σ ,CT −→l E[ε ],σ ,CT

Ready
getLock(σ ,o) = 0 setLock(σ ,o,n) = σ ′

ready o n,σ ,CT −→l ε ,σ ′,CT
LeaveCritical

getLock(σ ,o) = n setLock(σ ,o,n−1) = σ ′

insync o {v},σ ,CT −→l v,σ ′,CT
insync o {return(c) v},σ ,CT,−→l return(c) v,σ ′ ,CT

[Errors]

Err-Null
null.f,σ ,CT −→l Error,σ ,CT

null.f = v,σ ,CT −→l Error,σ ,CT
null.m(v),σ ,CT −→l Error,σ ,CT

Err-Monitor
¬insync(o,E)

E[o.notify],σ ,CT −→l E[Error],σ ,CT
E[o.notifyAll],σ ,CT −→l E[Error],σ ,CT

E[o.wait],σ ,CT −→l E[Error],σ ,CT

[Threads]

RC-Par
P1,σ ,CT −→l (ν�u)(P′

1,σ
′,CT′)

P1 |P2,σ ,CT −→l (ν�u)(P′
1 |P2,σ ′,CT′)

�u /∈ fn(P2)∪ fv(P2)

RC-Str
F ≡ F0 −→l F ′

0 ≡ F ′

F −→l F ′

RC-Res
(ν�u)(P,σ ,CT) −→l (ν�u′)(P′,σ ′,CT′)

(ν u�u)(P,σ ,CT) −→l (ν u�u′)(P′,σ ′,CT′)

[Network]

RN-Conf
F −→l F ′

l[F ] −→ l[F ′]

RN-Par
N −→ N′

N |N0 −→ N′ |N0

RN-Res
N −→ N′

(ν u)N −→ (ν u)N′

RN-Str
N ≡ N0 −→ N′

0 ≡ N′

N −→ N′


