
Imperial College of Science, Technology and Medicine
Department of Computing

Session Types in Concurrent Calculi:
Higher-Order Processes and Objects

Dimitris Mostrous

SUBMITTED IN PART FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN COMPUTING OF IMPERIAL COLLEGE

November 2009

Abstract

This dissertation investigates different formalisms, in the form of programming language calculi,

that are aimed at providing a theoretical foundation for structured concurrent programming based

on session types. The structure of a session type is essentially a process-algebraic style description

of the behaviour of a single program identifier serving as a communication medium (and usually

referred to as a channel): the types incorporate typed inputs, outputs, and choices which can be

composed to form larger protocol descriptions. The effectiveness of session typing can be at-

tributed to the linear treatment of channels and session types, and to the use of tractable methods

such as syntactic duality to decide if the types of two connected channels are compatible. Linear-

ity is ensured when accumulating the uses of a channel into a composite type that describes also

the order of those actions. Duality provides a tractable and intuitive method for deciding when

two connected channels can interact and exchange values in a statically determined type-safe way.

We present our contributions to the theory of sessions, distilled into two families of programming

calculi, the first based on higher-order processes and the second based on objects. Our work uni-

fies, improves and extends, in manifold ways, the session primitives and typing systems for the

Lambda-calculus, the Pi-calculus, the Object-calculus, and their combinations in multi-paradigm

languages. Of particular interest are: the treatment of infinite interactions expressed with recursive

sessions; the capacity to encapsulate channels in higher-order structures which can be exchanged

and kept suspended, i.e., the use of code as data; the integration of protocol structure directly

into the description of objects, providing a powerful and uniformly extensible set of implemen-

tation abstractions; finally, the introduction of asynchronous subtyping, which enables controlled

reordering of actions on either side of a session. Our work on higher-order processes and on object

calculi for session-based concurrent programming provides a theoretical foundation for program-

ming language design integrating functional, process, and object-oriented features.

3

4

Acknowledgements

First and foremost, I would like to thank my supervisor Nobuko Yoshida, who has been without

doubt the person with the greatest influence in my life during the years of my doctorate studies.

She advised me almost every day, tirelessly, dedicating more time and effort than anyone could

ask from a supervisor. Nobuko, thank you for your support these past few years, and for your

always moderate advice, on both professional and personal issues.

I would also like to thank my second supervisor, Sophia Drossopoulou (Imperial College Lon-

don). I learned from Sophia both as a student and as a collaborator and co-author, and she was

also always there for me in difficult times.

During my time at Imperial, I had the opportunity to work with and interact with some great

people from other institutions. To begin, I would like to express my gratefulness that I worked

with, and learned from, Mariangiola Dezani-Ciancaglini (Università di Torino). Also, I would like

to thank Kohei Honda (Queen Mary, University of London) for our collaborations and discussions,

and also for his frequent advice and encouragement. My warmest thanks go to Vasco Vasconcelos

(Universidade de Lisboa), for his support and advice, and for his detailed feedback on my thesis.

Finally, I am indebted to my examiners for their positive comments and for their proposed correc-

tions which improved the presentation of my work, and to all the reviewers of the papers which I

co-authored.

During my doctorate studies I also received useful advice, not on the technical material it-

self but on various other topics, from Susan Eisenbach (Director of Studies at the Department of

Computing, Imperial College London).

I started to obtain my foundations in theoretical computer science during my Masters at Impe-

rial, and I would like to extend my appreciation to all those that taught me during this time. Also

I would like to thank the Department of Computing for the DTA award which supported my fees

throughout my study, and for providing an excellent environment for students.

Last but not least, I would like to express my gratefulness and love to my family and friends

5

6 Acknowledgements

for their support and friendship during these years. You know who you are!

The PhD is not just a piece of scientific work. It represents the training and ultimately the

transformation of the candidate into a scientist. Thus, it is not just a contribution, but it also leads

to a better way of thinking, and in that sense it seems appropriate to dedicate my work to those

without which it would have been impossible:

I would like to dedicate my work jointly to my family and especially to my grandfathers who

passed away before they could see me complete my degree, and to my supervisor who worked very

hard for me to achieve it.

Contents

Table of Contents 7

List of Figures 11

1 Introduction 13

1.1 Motivation and Objectives . 13

1.2 Contributions . 15

1.3 Publications & Detailed Contribution of the Author 15

1.4 Synopsis . 17

I Background 19

2 Foundations 21

2.1 Higher Order Processes . 21

2.2 Objects . 29

2.3 From Synchronous to Buffered Communication 32

2.4 When things “go wrong” . 36

2.5 Sessions . 38

2.5.1 Session Types . 38

2.5.2 Primitive Support for Establishing Sessions 41

2.6 The Thesis . 45

3 Related Work 47

3.1 Session Typing for Binary Sessions . 47

3.1.1 Sessions in CCS and π-calculus . 47

3.1.2 Sessions in Functional Languages . 48

7

8 CONTENTS

3.1.3 Sessions in Higher-order Processes . 49

3.1.4 Sessions in the Ambient Calculus . 49

3.1.5 Sessions in Object-oriented Languages 49

3.2 Linear Type Theory Techniques in Sessions . 51

3.3 Alternative Formulations . 52

3.4 Asynchronous Communication in Sessions . 54

3.5 Session Subtyping and Polymorphism . 55

3.6 Asynchronous Subtyping . 55

3.7 Progress and Deadlock-Freedom in Sessions . 56

3.8 Correspondence Assertions and Logics for Sessions 57

3.9 Exceptions for Error Handling in Sessions . 58

3.10 Implementations . 58

3.11 Sessions in Industry Specifications . 59

3.12 Multi-Party Sessions: Typing Protocols with Many Participants 59

3.13 Service Oriented Computing . 60

II Session Types and Subtyping in Higher-Order Processes and Objects 63

4 Sessions and Higher-Order Processes 65

4.1 Introduction . 65

4.2 The Higher-Order π-Calculus with Sessions . 66

4.2.1 Syntax . 66

4.2.2 Reduction Semantics . 69

4.2.3 Examples . 72

4.2.4 Example: Business Protocol with Code Mobility 72

4.3 Higher-Order Linear Typing . 74

4.3.1 Types . 74

4.3.2 Subtyping . 77

4.3.3 Linear Higher-Order Typing System . 79

4.3.4 Examples . 85

4.4 Type Soundness and Type Safety . 86

4.4.1 Substitution . 88

4.4.2 Typing the Hotel Booking Example . 102

CONTENTS 9

4.5 Concluding Remarks . 103

5 Asynchronous Session Subtyping 105

5.1 Introduction . 105

5.2 The Higher-Order π-Calculus with Asynchronous Sessions 107

5.2.1 Syntax and Reduction . 107

5.2.2 Example: Optimised Business Protocol with Code Mobility 108

5.3 Higher-Order Asynchronous Subtyping . 111

5.3.1 Some Examples of 6c . 114

5.3.2 The Relation 6c is a Preorder . 117

5.4 Asynchronous Higher-Order Session Typing . 129

5.4.1 Typing the Optimised Mobile Business Protocol 131

5.5 Type Soundness and Communication Safety . 132

5.6 Concluding Remarks . 138

6 Sessions and Objects 141

6.1 Introduction . 141

6.2 The Session Objects Calculus . 142

6.2.1 Syntax . 143

6.2.2 Configurations . 145

6.2.3 Reduction . 145

6.2.4 Example: Instant Messenger . 148

6.3 Typing . 149

6.3.1 Types . 149

6.3.2 Subtypes and Asynchronous Subtyping 152

6.3.3 Judgements and Environments . 155

6.3.4 Typing Rules . 156

6.3.5 Examples: Justification of Types and Typing Rules 159

6.3.6 Session Types and Typing for the Instant Messenger 162

6.4 Typing Runtime Terms . 162

6.4.1 Session Remainder . 163

6.4.2 Heap Typing . 165

6.5 Type Soundness . 166

6.6 Notes on Related Work . 171

10 CONTENTS

6.7 Concluding Remarks . 172

III Conclusion & Future Directions 173

7 Conclusions, Open Questions and Future Work 175

7.1 Summary of Contributions in this Thesis . 175

7.2 Towards an Algorithm for Coinductive Subtyping 177

7.3 Progress in Asynchronous Higher-order Sessions 182

7.4 Algorithmic Type-checking for the Session Object Calculus 182

7.5 Extension to Objects with Self Types . 184

7.6 Implementation of Sessions . 184

7.7 Concluding Remarks . 186

Bibliography 186

List of Figures

2.1 Untyped HOπ Syntax . 22

2.2 Untyped HOπ Reduction . 23

2.3 HOπ Structural Congruence Axioms . 23

2.4 Asynchronous Reduction in HOπ and HOπς . 33

2.5 Session Types . 39

4.1 Syntax . 67

4.2 Free Variables and Free Names . 70

4.3 Structural Congruence . 70

4.4 Reduction . 71

4.5 Sequence Diagram for Hotel Booking . 73

4.6 Types . 75

4.7 Duality of Session Types in π-calculus . 77

4.8 Linear Session Typing: Common and Functional Rules 81

4.9 Linear Session Typing: Processes . 82

5.1 Syntax modifications for Asynchronous Higher-order π-calculus 107

5.2 Reduction . 109

5.3 Standard and Optimised Interaction for Hotel Booking 110

5.4 Session Remainder . 129

5.5 Runtime Typing for Asynchronous Higher-order π-calculus 131

6.1 Syntax . 143

6.2 Reduction . 146

6.3 Example: Instant Messenger . 148

6.4 Types . 150

11

12 LIST OF FIGURES

6.5 Subtyping Rules for Objects . 153

6.6 Typing Rules for the Session Objects Calculus 157

6.7 Session Remainder . 163

6.8 Heap Typing . 166

1 Introduction

1.1 Motivation and Objectives

Concurrency is becoming increasingly pervasive at all levels of computer programming, from low

level and embedded software to operating systems and globally deployed web services. Never-

theless, concurrent programming suffers from the lack of mature and usable typing disciplines

that have proven very successful in sequential programming. Moreover, the majority of concur-

rent software is written using shared memory models and threads, which are widely considered

notoriously difficult to verify and understand. Adding to the above, modern trends in hardware,

pronounced with the emergence of multicore microprocessors many of which utilise distributed

memory models, create a need for new programming languages that can bridge the expanding

chasm between hardware and software architecture. And it is not an exaggeration to say that these

developments in hardware technology testify to the fact that the sequential model of computation

has reached the limits of its scalability.

Presently, communication oriented software is mostly implemented using either sockets, facil-

itating the transmission of arbitrary messages, or with remote method invocation. Sockets provide

untyped stream abstractions, and remote method invocation allows methods to be called in a dis-

tributed setting, using sockets as the underlying transport mechanism. Both have shortcomings:

socket-based code requires a significant amount of dynamic checks and type-casts on the values

exchanged, in order to ensure type safety; remote method invocation does ensure that methods

are used as mandated by their type signatures, but does not capture behaviour arising from the

combination of invocations that may implement a conceptual unit of interaction.

If we consider the type-based methodologies used in mainstream industrial-grade languages,

we see increasingly sophisticated techniques for the verification of functions, objects, and other

sequential constructs. Perhaps paradoxically, there is very little provision for the typing of com-

munication primitives, such as sockets. This shows that most of these languages were not designed

for concurrency and communication: rather, they impose typing demands on programs written us-

13

14 CHAPTER 1. INTRODUCTION

ing their sequential core, and no demands at all when it comes to primitives for the exchange of

messages. Such untyped communications are the weakest link even in otherwise strongly-typed

languages.

The essence of communication in programming can be abstractly captured in the notion of

message passing between independently executing components within a larger software compo-

sition; if there is no communication then there is no need to verify the behaviour at the level of

interaction between the components. When there is interaction through communication, it is intu-

itive to consider not only individual messages, but also the structure and compatibility of a protocol

that implements a complete structured dialogue between components. The basic abstraction for

message passing concurrency is that of a communication channel. Then the central question is,

can we assign types to communication channels, in the way we give types to variables in a pro-

gram? The requirements are different: a variable is a placeholder for a single value at a time, and

its type does not change; a channel is a passageway for possibly heterogeneous values and control

instructions, and if we are to give it a type, this type must facilitate change after each step of an

interaction, so that the correctness of an implementation can be verified statically. When there is

communication, there are normally at least two participants, and therefore we also need to capture

the intended symmetries in communications, in the general sense that when sending a message it

will be received at the other end, and vice versa.

Session typing addresses exactly these requirements, fortifying the communications-oriented

primitives of a language with a type-based verification discipline that can statically ensure that

interactions are indeed well-behaved. Session types enable the validation of programs with struc-

tured communications, assuring both type and communication-safety — not only is the value of

each message correctly typed — but also the sequence of messages that are sent and received via

a channel is performed according to the exact scenario specified by the session type, precluding

communication mismatch. Moreover, session typed code is more concise than using sockets di-

rectly, eliminating the explicit checks which otherwise proliferate in interactions where different

types of values need to be communicated following an evolving protocol. Finally, sessions are

useful as an abstraction for concrete communication mechanisms: the use of sockets directly is

not always desirable, as more efficient shared memory data structures can be used for sessions

taking place within the same memory domain, and this can be done safely and behind the scenes.

This dissertation presents fundamental theories for session typing in programs that utilise the

powerful abstractions of processes, code mobility, and object orientation.

1.2. CONTRIBUTIONS 15

1.2 Contributions

We formalise for the first time session typing for a process language that allows not only data but

also runnable code to be the subject of structured type-safe communications. The ability to ex-

change code is fundamental in concurrent and distributed systems where programs cannot be fully

fixed ab initio and dynamicity is a prerequisite. We then relax the strict compatibility requirements

that govern pairs of interacting processes to allow certain classes of message-passing actions to

be permuted in restricted ways, offering not only greater flexibility in composing programs, but

also guidance toward type-safe optimisations. Finally, we introduce an original session typing

system to a minimal object calculus that can serve as a theoretical foundation for the several disci-

plines of object-orientation, without restricting this powerful style of programming to class-based

languages.

1.3 Publications & Detailed Contribution of the Author

The following publications, presented in reverse chronological order, are in varying degrees the

source of the expanded and improved material presented in this dissertation. We indicate the

main publications relating to each chapter; the remaining have nevertheless contributed to the

understanding and intuition of this work, even if the material does not directly appear in the main

body of the thesis.

Declaration Only the material relating directly to the author’s research appears in this thesis.

Any work, in the form of original ideas, formal systems, writing, and proofs, that have been

contributed by my supervisor and other researchers and that appears in the following joint publi-

cations, has been omitted from the main body.

1. Dimitris Mostrous and Nobuko Yoshida. Session-Based Communication Optimisation for

Higher-Order Mobile Processes. In Pierre-Louis Curien (Ed.), 9th International Conference

on Typed Lambda Calculi and Applications (TLCA’09), volume 5608 of Lecture Notes in

Computer Science, pages 203–218, Springer, 2009 [64].

Author’s Contribution: The ideas, formulations, writing, and proofs of this work are my

own.

Corresponding Part: Chapter 5.

16 CHAPTER 1. INTRODUCTION

2. Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous and Nobuko

Yoshida. Objects and session types. In Information and Computation, number 5, volume

207, pages 595–641, Elsevier, 2009 [30].

Author’s Contribution: This work is an extended and improved version of our previous

work on objects (ECOOP 2006 [31], mentioned below). My contribution in this version

was in the overall improvement, presentation and proofs, and in particular the sections of

introduction, related work, and conclusion, are my own writing. I also contributed in the

proof-reading of the remaining material.

Corresponding Part: This work does not appear in the dissertation because it originates

from research conducted during my Masters degree; it was nevertheless published during

my Doctorate studies.

3. Dimitris Mostrous, Nobuko Yoshida and Kohei Honda. Global Principal Typing in Partially

Commutative Asynchronous Sessions. In Giuseppe Castagna (Ed.), 18th European Sym-

posium on Programming (ESOP’09), volume 5502 of Lecture Notes in Computer Science,

pages 316–332, Springer, 2009 [65].

Author’s Contribution: In this work I have contributed the main technical results in Sec-

tion 3 of the paper, and in particular the theoretical framework for subtyping, the formali-

sation and proof of a coinductive subtyping system for multiparty sessions, and some con-

tributions to the algorithmic subtyping system. The major part of the algorithmic typing

system, and the second major contribution of the paper, which consists of a global approach

to typing, were not developed by myself.

Corresponding Part: This work does not appear directly in the dissertation because my

part was highly technical and it was further developed in the TLCA 2009 paper mentioned

above. My contribution to this work has motivated my further work presented in Chapter 5,

but in this way only my own research is presented in the dissertation.

4. Dimitris Mostrous and Nobuko Yoshida. Two Session Typing Systems for Higher-order

Mobile Processes. In S. Ronchi Della Rocca (Ed.), 8th International Conference on Typed

Lambda Calculi and Applications (TLCA’07), volume 4583 of Lecture Notes in Computer

Science, pages 321–335, Springer, 2007 [63].

Author’s Contribution: This work presents two systems for session typing higher-order

processes. My contribution is the ideas, design, and proofs of the primary system, which is

1.4. SYNOPSIS 17

the one presented in this thesis. The second system is referred to in related work.

Corresponding Part: Chapter 4.

5. Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida and Sophia Drossopoulou.

Session Types for Object-Oriented Languages. In Dave Thomas (Ed.), The 20th European

Conference on Object Oriented Programming (ECOOP’06), volume 4067 of Lecture Notes

in Computer Science, pages 328–352, Springer, 2006 [31].

Author’s Contribution: In this work my contribution is in the theoretical framework, the

formalisation, and the proofs of the main system. It was conducted during my Masters

degree at Imperial (final project).

Corresponding Part: This work does not appear in my thesis, because the research took

place during my Masters degree. However it has influenced my intuition and interest in

subsequent work on object languages, which is independent and appears in Chapter 6.

Electronic versions are available at http://www.doc.ic.ac.uk/˜mostrous.

1.4 Synopsis

The dissertation is divided into three parts, covering the foundations and related work, the main

theories, and the future directions.

Part I: Background

Chapter 2 motivates the choice of languages and demonstrates, in an untyped setting, the

power of processes with code mobility and the integration with object-oriented struc-

turing. Session types are introduced with reference to desirable and undesirable com-

positions of processes.

Chapter 3 provides an extended review of the session typing literature and of closely re-

lated approaches.

Part II: Session Types and Subtyping in Higher-Order Processes and Objects

Chapter 4 introduces sessions into a synchronous higher-order process language with code

mobility manifested through the exchange of functions.

Chapter 5 extends the language and typing discipline of the previous chapter to allow cer-

tain communications to be partially permuted, a feature enabled by non-blocking se-

mantics for buffered communication.

http://www.doc.ic.ac.uk/~mostrous

18 CHAPTER 1. INTRODUCTION

Chapter 6 integrates sessions into a foundational object language with imperative seman-

tics and buffered communication.

Part III: Conclusion & Future Directions

Chapter 7 focuses on important future work which can pave the way to practical imple-

mentations based on the fundamental theories developed in the main part.

Part I

Background

19

2 Foundations

Overview In this chapter we lay the foundations of the work in this thesis, placing it in the

context of the different theories that are used in the formal systems defined later. It follows a

slightly informal style aiming at exposing the subtleties in modelling and expressing systems in

process and object based programming calculi. We motivate and justify the main concepts of

session typing as a discipline that allows desirable programs, rejecting behaviours we identify

as unsafe.

2.1 Higher Order Processes

A significant part of the formal study of concurrency develops around the notion of processes.

By process we mean a unit of execution that can interact with other processes, by way of com-

munication, that is, by sending and receiving values over channels. Several process calculi have

been formalised — early examples are Milner’s CCS [58] and Hoare’s CSP [46], followed by the

π-calculus [61, 62] by Milner et al., which extends CCS with the ability to form dynamic link

topologies — and we are interested in an extension of the π-calculus, Sangiorgi’s Higher-order

π-calculus [79], or HOπ, which integrates π-calculus with λ-calculus. The standard reference for

λ-calculus is Barendregt’s book [6]. Sangiorgi and Walker’s book [80] is a complete reference of

the fundamentals of π-calculus and Higher-order π-calculus.

By combining the foundational theories of processes (π-calculus) and functions (λ-calculus),

HOπ facilitates not only communication and link mobility, but also code mobility, which is rep-

resented as the communication of a function. As Sangiorgi [78] has shown, at the semantic level

the π-calculus is already higher-order, in the sense that HOπ can be encoded into first-order π, but

as a basis for programming language design we are interested in adopting a formalism that can

directly represent the essential elements of concurrent and distributed computation, where typi-

cally we encounter a combination of functions and communications. For instance, mobile code

is necessary when modelling or implementing remote code installation which is very common in

mobile devices and in personal computers, even at the operating system level.

21

22 CHAPTER 2. FOUNDATIONS

First, we briefly introduce the main constructs of an untyped Higher-order π-calculus.

HOπ in a Nutshell

The syntax for the untyped HOπ variant that we use is shown in Figure 2.1. The reduction rules

are in Figure 2.2. Structural equivalence axioms are in Figure 2.3. We denote processes with P,

Q, R. Variables range over x, y, z, but we also use f in examples. Values V can be functions,

communication channels ranging over a, b, or the constant unit, written ().

Identifiers

u,v ::= x,y,z variables
| a,b,c channels

Values

V,V ′ ::= u,v identifier
| () unit
| λx .P function
| µx .λy .P recursion

Terms

P,Q,R ::= V value
| u?(x).P input
| u!〈V 〉.P output
| uB{l1 :P1, . . . , ln :Pn} branching
| uC lm .P selection
| P |Q parallel
| (νa) P restriction
| P ·Q application
| 0 nil

Figure 2.1: HOπ Syntax

Functions The term λx . P is a function with argument x and body P. The notation (λx . P) ·V

denotes function application, where the value V takes the place of the variable x in the function

body P, written P{V/x}, which can then use it to produce a result. We write µz . λx . P for a

recursive function which is defined like λx .P with the difference that (µz .λx .P) ·V results in P

2.1. HIGHER ORDER PROCESSES 23

(beta)
(λx .P) ·V −→ P{V/x}

(rec)
(µy .λx .P) ·V −→ P{V/x}{µy.λx.P/y}

(comm)
a?(x) .P | a!〈V 〉 .Q −→ P{V/x} | Q

(label)
aB{l1 :P1, . . . , ln :Pn} | aC lm.P −→ Pm | P 1≤ m≤ n

(app-l)
P−→ P′

P ·Q−→ P′ ·Q
(app-r)

Q−→ Q′

V ·Q−→V ·Q′
(par)

P−→ P′

P |Q−→ P′ |Q

(resc)
P−→ P′

(νa) P−→ (νa) P′
(str)

P≡ P′ −→ Q′ ≡ Q
P−→ Q

Figure 2.2: HOπ Reduction

P =α Q ⇒ P≡ Q Renaming of bound variables

P |Q≡ Q |P Commutativity of parallel composition
(P |Q) |R≡ P |(Q |R) Associativity of parallel composition
P |0≡ P Inaction and parallel composition

(νa) P |Q≡ (νa) (P |Q) a 6∈ fn(Q) Scope extrusion
(νa) (νb) P≡ (νb) (νa) P Exchange
(νa) 0≡ 0 Inaction and restriction

Figure 2.3: HOπ Structure Congruence

24 CHAPTER 2. FOUNDATIONS

with V for x and µz .λx .P for z. In other words, when this function is applied, it has access to its

own definition through the recursion variable z, and can therefore reuse itself within its body P.

We also make use of the following abbreviated forms for function application:

P ; Q def= let z=P in Q if z does not occur in Q

with let z=P in Q def= (λz .Q) ·P

Note that in the above, if P does not reduce to a value, the computation becomes stuck.

Processes The process 0 represents inaction. The prefix form a!〈V 〉 . P consists of the sending

of a value V on channel a, followed by whatever P specifies. Similarly to a function, a?(x) . P

can receive a value (say, V) via a and then do P but with V taking the place of x. With P | Q the

processes P and Q are executed concurrently, hence in a!〈V 〉 . P1 | a?(x) . P2 a communication on

a can be performed, followed by the remaining actions P1 | P′2 where P′2 is P2 with V for x. The

notation (νa) P means that the communication channel a is private to P, thus, a can be thought of

as being freshly created in (νa) P. Consequently, in (νa) (a!〈V 〉 . P) | a?(x) . Q, the instances of

a in a!〈V 〉 .P and a?(x) .Q are considered distinct, and no communication can take place on a. To

avoid obscuring the presentation, we just show the main use of fresh names through the following

idiomatic example:

(νx) (a!〈x〉 . x!〈V 〉 .0) | a?(z) . z?(y) . x!〈V ′〉 .0

Since instances of x in the left and right processes are meant to be different, we rename the variable

x of the left term to x′, obtaining:

(νx′) (a!〈x′〉 . x′!〈V 〉 .0) | a?(z) . z?(y) . x!〈V ′〉 .0

where we chose some x′ which does not occur in the original term. Then, we can extend the scope

of (νx′) , specified here with parentheses, without causing conflicts, obtaining:

(νx′) (a!〈x′〉 . x′!〈V 〉 .0 | a?(z) . z?(y) . x!〈V ′〉 .0)

Now the communication on a can take place within the new scope of (νx′) , and the fresh channel

x′ will become shared between the two processes, substituting z on the right. After that step, no

other process can interact with the channel x′, therefore we can guarantee the non-interference of

2.1. HIGHER ORDER PROCESSES 25

the subsequent communication on it, in the sense that only the process on the right of | can receive

the value V .

We write uB {l1 : P1, . . . , ln : Pn} for a process offering n alternative behaviours (branches)

indexed by the labels l1 . . . ln. Then, uC lm .Q with 1≤m≤ n represents a selection of the behaviour

indexed by lm, followed by Q. For example, uC l2.Q | uB{l1 : P1, l2 : P2} becomes Q | P2.

The combination of recursion and branching can encode complex repetitive protocols, as we

demonstrate in the next section.

Mobile Processes in Industry

We give evidence to the expressiveness and relevance of HOπ with a set of examples based on a

scenario from industry. The general idea is not fictional: this is how a large corporation processes

photographs in real-time from live events in disparate locations, forwarding the edited versions to

clients such as news websites and publishers. An important aspect of this case study is that mobile

code is not just an optimisation, but rather the enabling factor, the sine qua non for an extensible

implementation.

Real-time Photo Feeds [75]

The physical actors in the scenario are: Photographers, which carry mobile devices that store the

pictures once they are taken; Editors, whose task is to prepare the pictures for publication, by

applying transformations and adding metadata; Image server, where edited pictures are stored in

order to be distributed; Clients, which receive feeds of edited pictures from the server.

For the purposes of this example, we focus on the interaction, at the software level, between

the Editor and Photographer’s systems. We expose this part of the scenario in more detail:

• Image files are large, and the network links between photographers and the editor are slow.

• To achieve good performance, when an Editor has to work on the pictures from an event, it

receives a list of thumbnails instead of the originals.

• The Editor applies transformations on chosen thumbnails, and the same instructions are then

sent to the Photographer’s system, so that the same editing can be applied to the original

picture.

• The edited pictures are sent to the Image server directly from the Photographer. This is

an optimal strategy because many times the transformations reduce the size of an image

26 CHAPTER 2. FOUNDATIONS

dramatically, for example by scaling or cropping, which means that in some cases the whole

process can be completed without the transfer of any large files. Therefore, this is preferred

to the alternative of first moving the originals of chosen thumbnails at the Editor’s location,

then editing and sending from there. Moreover, this strategy avoids the overhead of the

Editor acting as an intermediate transit point between the pictures and the server.

• The transformations for each picture are sent to the Photographer’s system one by one

as they are applied at the Editor, to facilitate maximum concurrency especially for time-

consuming actions.

A Higher-order π-calculus Implementation of the Scenario

We now show how the above case study can be precisely expressed in HOπ. First, we assume some

system provided functions (such as print and DB.load) and constants (such as img42), written in

different typeface. To keep the use of those functions concise, we use the following abbreviated

form:

F(x1, . . . ,xn) = (((F · x1) · x2 . . .) · xn)

We define the process at the Photographer, PhotoSrv(a), as follows:

PhotoSrv(a) def=

a?(x) . x?(image id) .

let img=DB.load(image id) in(
µy .λz . xB{nextFilter : x?(f) . (let z′= f · z in y · z′) ,

done : DB.save(image id, z) ; 0}
)
· img

The definition PhotoSrv(a) is parameterised with the channel a, which can be thought of as the

location of the process. Note that, for simplicity, we do not show how the thumbnail images are

obtained, and assume that when interacting with this code they are known; it is easy to model their

transmission as a series of outputs. First, a new channel is received over a, replacing x, and then it

is used to receive the key image id identifying the picture to be edited. Next, the picture is loaded,

as img, from the local database DB using DB.load. Now a repetitive behaviour is defined: the

prefix µy .λz specifies a recursive function which can access itself using y, taking an argument

for z. This function is applied to the image img which replaces z in its body. The body of this

function is a process that offers the choices nextFilter and done on x. If the first choice is made,

then an image transformation function is received over x, replacing occurrences of f , and then it is

2.1. HIGHER ORDER PROCESSES 27

applied to the image with f · z. The last step is a recursive function application y · z′, which repeats

the process by applying y to the new image z′, so that further transformations can be applied. If

the choice done is made, then the image is saved locally with DB.save(image id, z) and the code

terminates, since there is no recursion here.

Note that for simplicity, we define PhotoSrv(a) so that it can be used only once and then it

vanishes. However, we can easily redefine it, encapsulating it with an additional recursion and

making it available in a persistent way.

Next we define a process Editor1(a) which can interact with PhotoSrv(a):

Editor1(a) def=

(νx) (νack)(
let f =λ img .ack!〈()〉 .P in

a!〈x〉 . x!〈img42〉 .

xCnextFilter . x!〈 f 〉 . xCdone .

ack?(z) .print(“ok”) ; 0
)

This definition begins with a declaration of two fresh channels, unique in every instance of

Editor1(a). The first, declared in (νx) , will be sent over a, facilitating further communications. If

we avoided this apparent indirection and used a directly for all the communications, then another

process in parallel, possessing a, could interfere at any stage (since a is not restricted to some

term), destroying the determinacy of the intended protocol which is between the two processes

only. The initial step in Editor1(a) is the creation of a transformation function λ img . ack!〈()〉 . P

bound to f . The function takes an image as its img argument. When this function is applied, it first

sends an acknowledgement over ack, acting as a confirmation that it is being executed. We then

assume that specific image manipulations are performed in P using img. Next, the fresh channel

x is sent over a, facilitating a unique connection with the receiving process, then img42 is chosen

for editing with the output x!〈img42〉, then the choice xC nextFilter is made followed by the

output of the function f in x!〈 f 〉, followed by the choice xCdone terminating the interaction on

x. The process then blocks waiting to receive the acknowledgement with ack?(z), before printing

a confirmation message.

The above processes can be composed in parallel to obtain:

PhotoSrv(a) | Editor1(a)

28 CHAPTER 2. FOUNDATIONS

implementing the intended interactions. Note that the first step is to rename all the variables to

make them distinct, most importantly by extending the scope of (νx) and (νack) to ensure that x

and ack do not appear in PhotoSrv(a).

An Extended Use Case Suppose that we modify PhotoSrv(a), adding the two more choices

upload and undo, to obtain ExtPhotoSrv(a) defined below:

ExtPhotoSrv(a) def=

a?(x) . x?(image id) .

let img=DB.load(image id) in(
µy .λz . xB{nextFilter : x?(f) . (let z′= f · z in y · z′) ,

done : DB.save(image id, z) ; 0 ,

upload : x?(dest) .dest!〈z〉 . x!〈()〉 . (y · z) ,

undo : let z′=DB.load(image id) in y · z′ }
)
· img

The new functionality allows ExtPhotoSrv(a) to be instructed to send the current image to a given

destination, and also to undo the transformations by reloading the original image from the database

and invoking the recursion with it. Moreover, we can now define:

Editor2(a,b) def=

(νx)(
a!〈x〉 . x!〈img42〉

xCupload . x!〈b〉 . x?(y) . xCdone .

print(“upload complete”) ; 0
)

which uses the new option upload after applying some transformations (which we omit for clarity),

and we can define the composition:

ExtPhotoSrv(a) | Editor2(a,b) | b?(x) .Q

as well as:

ExtPhotoSrv(a) | Editor1(a)

These compositions indicate, as expected, that the extended process ExtPhotoSrv(a) can interact

with a superset of processes compared to the original PhotoSrv(a).

2.2. OBJECTS 29

Remarks

The above industry-inspired example was easily modelled in the untyped HOπ, giving testament

to the expressive power of the calculus, and also to the invaluable contribution of mobile code,

without which the scenario would be impossible to implement both efficiently and extensibly. In

fact, we can postulate that the same strategy applies to many cases where there is a large data

set and we wish to process it from a remote location. We can further distill a useful principle in

deciding when utilisation of mobile code is appropriate or even necessary: When a computation

requires a piece of code and a piece of data which are not co-located, and if optimal performance is

the objective, then the smallest of the two should move, assuming there is sufficient computational

power at the target site, relative to the difference in transfer time induced by the sizes of the code

and the data.

2.2 Objects

The Higher-order π-calculus has the primitives needed to express complex communication pat-

terns, but it does not have much provision for modular structuring and dynamic extensibility of

programs. Moreover, it is evident that the combination of recursion and choice enables the ex-

pression of complex interactive behaviour, and it is natural to ask whether a more high level con-

struction combining all of these capabilities can simplify programming. Also, another matter of

interest is the interplay between communication and imperative constructs.

Objects emerge as a natural candidate, because they combine functions, recursion, and branch-

ing in a compact and powerful abstraction. The untyped imperative object calculus impς of Abadi

and Cardelli [2] is a small formalisation that distills the essential features of object-orientation,

namely objects, methods, and state. A concurrent variant of impς, named concς, with parallel

composition and mutex synchronisation was developed by Gordon and Hankin [43].

For the purposes of this section, we “borrow” the main object-oriented elements from the func-

tional variant of impς — referring to it as ς-calculus hereafter — and integrate them into HOπς, an

adaptation of the simple HOπ of the previous section, reusing definitions as necessary. We do not

attempt a complete formalisation here, but rather provide a model that will make concrete the con-

cepts pertaining to sessions in object languages. Note that the calculus HOπς is original, it does

not appear in the literature, and for this reason we are more precise in our description comparing

to the HOπ of the previous section.

30 CHAPTER 2. FOUNDATIONS

HOπς: An Integration of HOπ and the functional ς-calculus

We remove recursive functions µy .λz .P and the branching construct uB{l1 : P1, . . . , ln : Pn} from

the HOπ of the previous section. We then add the following productions. First, for objects we add

w, defined as:

w,w′ ::= x variables

| [li=ς(xi)Pi
i∈I] objects

An object consists of a collection of methods, and each method begins with a self binder ς(xi), as

in [2]. The self variables xi provide access to the object within its own methods, similarly to the

recursion variable y in µy. There are differences in the typing of self and functional recursion, but

in this untyped context this issue does not concern us; see [2].

We extend values to include objects:

V ::= . . . as before except recursion

| [li=ς(xi)Pi
i∈I] object

Then we extend processes with the following fundamental object primitives:

P,Q,R ::= . . . as before except branching

| w.lm method select

| w.lm ↼↽ ς(x)P method update

| x.w branching

We write w.lm for the selection of method lm of object w. We define the result of performing this

as follows (where −→ denotes reduction):

[li=ς(xi)Pi
i∈I].lm −→ Pm{[li=ς(xi)Pi

i∈I]/xm} if m ∈ I

With Pm{[li=ς(xi)Pi
i∈I]/xm} we denote the capture avoiding substitution of the self variable xm

with the actual object being invoked. Moreover, in this and the following reduction rules, if m 6∈ I,

the term is simply stuck. Next, we write w.lm ↼↽ ς(x) P for method update, where a new method

definition replaces the existing one in the returned copy (in this functional setting) of object w.

This reduction is defined as:

[li=ς(xi)Pi
i∈I].lm ↼↽ ς(x)P −→ [li=ς(xi)Pi

i∈I\m, lm=ς(x)P] if m ∈ I

2.2. OBJECTS 31

Note that in the original ς-calculus there are no functions, since they can be encoded using a spe-

cial “arg” method which is updated with the argument. However, we kept them, because they

allow us to encode sequential protocols which in the ς-calculus can only be encoded with a more

complicated version of method update that computes a value before the update, since in this sim-

pler version the new method is not executed; it just modifies an object’s definition. See [2] for

more details.

Finally, we re-introduce branching to the language with u . w, reducing with the rule (which

uses selection from HOπ):

uC lm .Q | u. [li=ς(xi)Pi
i∈I]

−→

Q | [li=ς(xi)Pi
i∈I].lm if m ∈ I

This reduction simply uses selection to choose the corresponding method that will implement the

branch. Note that as Q can continue to use u, so does the object, if u appears within the method.

The notions of free and bound identifiers are standard, extending to the new constructions, and

we reuse the structural congruence ≡ from the previous section.

A HOπς Implementation of the Scenario

We can write ObPhotoSrv(a), an object-based version of PhotoSrv(a), using a combination of

process, functional, and object-oriented features:

ObPhotoSrv(a) def=

a?(x) . x?(image id) .

let img0 =DB.load(image id) in

xB
[

nextFilter = ς(y)

x?(f) . (let img1 = f · (y.img) in

let y1 =(y.img ↼↽ ς(x1) img1) in x. y1) ,

done = ς(y) let z=y.img in (DB.save(image id, z) ; 0) ,

img = ς(y) img0

]
In this version, the image is stored into the method img of the object. Initially it has the value

img0 from the outside scope, then in every invocation of nextFilter an update is performed on the

self variable y producing a copy y1 of the object with the new value for img. Then branching is

32 CHAPTER 2. FOUNDATIONS

performed on the updated object with x. y1 and the process repeats.

In general, method update can be used to dynamically obtain modified versions of objects:

suppose we call the object used above w, then if we have such an object in a program, we can

update the implementation, for example, with:

let w′=(let orig=w.img in w.img ↼↽ ς(y) lock!〈image id〉 . (orig)) in P

This way another component can be notified when the image is first accessed, perhaps by locking

the local database, and with a similar modification of done, the object can be unlocked. Observe

that after the first access in ObPhotoSrv(a) the method img is internally updated, hence our mod-

ified code is only reduced once. Also note that in the above program fragment we assumed that

image id is known; it could of course be stored in the object. As before we can write:

ObPhotoSrv(a) | Editor1(a)

and obtain the expected behaviour.

Remarks

Objects can be naturally integrated with process-oriented features providing a way to structure and

dynamically manipulate interacting components which is necessary in practical programming. An

untyped formalism such as HOπς, although inherently unsafe, can give insight into the design

requirements of safer variants for concurrent and distributed programming.

2.3 From Synchronous to Buffered Communication

In the context of programming, it is natural to think of communication as asynchronous, in the

sense that sender and receiver need not synchronise on every action between them. Indeed, for

many protocols such synchronisation imposes an undesirable and unnecessary overhead. At the

level of concurrent calculi, it is easy to formalise this way of operation, by adding a basic level

of indirection to communications, in the form of buffers. The idea is that every output action

synchronises not with an input, but instead with a buffer, and similarly for inputs. When a value

is sent, it is appended at the end of the associated buffer; when receiving, the first element in the

buffer is returned. This formulation is a basic model for popular asynchronous transports, such as

TCP.

2.3. FROM SYNCHRONOUS TO BUFFERED COMMUNICATION 33

We implement the idea by adding buffered channels to HOπ, and by extension, to HOπς. First,

we extend the values to include labels, needed for branching:

V ::= . . . as before

| l label

Then, we extend processes with a notion of buffer:

P,Q,R ::= . . . as before

| a :~V buffer

Each buffer holds a vector of values ~V . The empty vector is denoted ε. The reduction rules

(send)

u!〈V 〉.P | u :~V −→ P | u :~VV

(recv)

u?(x).P | u :V~V −→ P{V/x} | u :~V

(sel)

uC l.P | u :~V −→ P | u :~V l

(HOπ-bra)

uB{l1 :P1, . . . , ln :Pn} | u : lm~V −→ Pm | u :~V 1≤ m≤ n

(HOπς-bra)

u. [li=ς(xi)Pi
i∈I] | u : lm~V −→ [li=ς(xi)Pi

i∈I].lm | u :~V 1≤ m≤ n

Figure 2.4: Asynchronous Reduction in HOπ and HOπς

(comm) and (label) of Figure 2.2 are removed, and the rules of Figure 2.4 are added. For branching

there are two alternatives, one for each calculus. The new reductions simply model the movement

of values, including labels, to and from the buffers in an order-preserving way. In this untyped

setting, we do not impose that buffers exist for every name in a process; for example the term

a!〈V 〉 .0 alone is simply stuck, in the same way that this term would be stuck if it appeared without

a matching input in the synchronous calculus. Moreover, the following term can reduce non-

deterministically:

a!〈V 〉 .0 | a :~V1 | a :~V2

34 CHAPTER 2. FOUNDATIONS

It is easy however, to ensure the correspondence of names in action prefixes with buffers, and the

absence of multiple buffers per name, by imposing well-formedness conditions or by typing, but

this is beyond the scope of this Section.

Other modifications are simple. We extend free names as follows:

fn(l) = /0 fn(a :V1 . . .Vn) = (∪i∈1..nfn(Vi))∪{a}

Then we add the following axiom to structural congruence:

(νa) a :ε≡ 0 inaccessible buffer

Modelling in the Asynchronous Calculi One observation that we can make immediately is

that for deterministic behaviour, it is better to use multiple buffered channels and make sure that

each process in a composition uses only one of the input-output capabilities induced by input and

branching, and output and selection, respectively.

For instance, we can define the following processes, drawing as before from our example. We

begin with the asynchronous extended Photographer process, AsyncExtPhotoSrv(a), as follows:

AsyncExtPhotoSrv(a) def=

a?(x1) . x1?(x2) . x1?(image id) .

let img=DB.load(image id) in(
µy .λz . x1B{nextFilter : x1?(f) . (let z′= f · z in y · z′) ,

done : DB.save(image id, z) ; 0 ,

upload : x1?(dest) .dest!〈z〉 . x2!〈()〉 . (y · z) ,

undo : let z′=DB.load(image id) in y · z′ }
)
· img

2.3. FROM SYNCHRONOUS TO BUFFERED COMMUNICATION 35

Then we define an Editor:

AsyncEditor2(a,b,c) def=

(νx1) (νx2)(
a!〈x1〉 . x1!〈x2〉 . x1!〈img42〉

x1Cupload . x1!〈b〉 . x1Cupload . x1!〈c〉 . x1Cdone .

x2?(y) . x2?(z) .print(“upload complete”) ; 0

| x1 :ε | x2 :ε

)

The strategy we employed is to define two private channels with (νx1) and (νx2) , with their corre-

sponding buffers initialised to ε within the scope of the process, and program AsyncEditor2(a,b,c)

to send the first through channel a, and the second through channel x1. The reason for this is

that we want to ensure that once a process receives x1, then the same process will also receive x2,

facilitating two buffered links between the two processes. If we had performed a!〈x1〉 . a!〈x2〉 . . .,

then the two outputs could be read by different processes with access to a. This chaining of out-

puts is in fact the method used to encode the polyadic π-calculus (in which multiple values can

be sent simultaneously) into the monadic π-calculus (in which only a single value is sent at each

communication); for more details on that see [62, 80].

By using the two channels x1 and x2, designing each process so that one does all inputs on x1

and all outputs on x2, and vice versa for the other, we can ensure that the interaction is predictable.

The conclusion is that, in general, when two asynchronous processes need to exchange values in

both directions, two buffered channels are preferred.

One interesting consequence of the asynchronous semantics is that the ordering of outputs in

AsyncEditor2(a,b,c) does not correspond exactly with the ordering of inputs in AsyncExtPhotoSrv(a).

In particular, at AsyncEditor2(a,b,c) we have:

. . .x1Cupload . x1!〈b〉 . x1Cupload . x1!〈c〉 . x1Cdone . x2?(y) . x2?(z) . . .

and, considering that the recursion unrolls twice with x1Cupload from the above, we eventually

have the following communications at AsyncExtPhotoSrv(a):

. . .x1B{nextFilter . . .x1?(dest) x2!〈()〉 . . .x1B{nextFilter . . .x1?(dest) x2!〈()〉 . . .

Observe that in AsyncEditor2(a,b,c) the second x1C upload happens before the expected x2?(y)

36 CHAPTER 2. FOUNDATIONS

that matches the third action of AsyncExtPhotoSrv(a), which is x2!〈()〉. This is not a problem,

as the channels are separate and by the use of buffers there is no need to synchronise at each for

communication to take place.

Next consider a composition of the processes as follows:

(νb1) (νc1) (AsyncEditor2(a,b1,c1) | b1 :ε | c1 :ε)

| AsyncExtPhotoSrv(a) | AsyncExtPhotoSrv(a) | a :ε

| (νb2) (νc2) (AsyncEditor2(a,b2,c2) | b2 :ε | c2 :ε)

An interesting point here is that both instances of AsyncEditor2(a,bi,ci) will interact with an

instance of AsyncExtPhotoSrv(a) each, without interference, validating the strategy of sharing

unique channels between pairs of processes, together with the separation of input-output capabil-

ity between them.

To summarise, the untyped calculi with buffers enable (but do not guarantee) the programming

of complex asymmetric protocols, and different interactions can be shielded from interference with

each other, by a careful sharing of unique channels.

2.4 When things “go wrong”: The Need to Discipline Processes

Until now we have been slightly biased: we designed all our examples so that nothing goes wrong.

In fact there are so many things that can go wrong that we can only provide a small sample. There

is nothing to prevent us from writing terms such as:

IncompleteEditor1(a) def=

(νx) (νack)(
let f =λ img .ack!〈()〉 .P in

a!〈x〉 . x!〈img42〉 . xCnextFilter .0
)

and composing it with PhotoSrv(a) in:

PhotoSrv(a) | IncompleteEditor1(a)

resulting in a stuck computation as PhotoSrv(a) expects more actions on x after nextFilter is

chosen but IncompleteEditor1(a) terminates with 0.

2.4. WHEN THINGS “GO WRONG” 37

Similarly we can write:

PhotoSrv(a) | Editor2(a,b)

and again the computation will eventually get stuck as Editor2(a,b) selects upload which is not

supported by PhotoSrv(a).

In general the ordering, sequencing, and expected values can be different than expected, re-

sulting in stuck computation, and type errors in the case of typed calculi. Moreover, we can write

processes such as:

NonDetEditor1(a) def=

(νx) (νack)(
let f =λ img .ack!〈()〉 .P in

a!〈x〉 . x!〈img42〉 . (xCnextFilter .0 | x!〈img24〉 .0)
)

composed in:

PhotoSrv(a) | NonDetEditor1(a)

in which behaviour becomes non-deterministic, by performing actions in parallel, when PhotoSrv(a)

has a sequential and in fact incompatible protocol, so again this may result in an error or a blocked

communication which has no receiver.

In the asynchronous semantics, consider the case where we define:

BadAsyncEditor2(a,b,c) def=
(νx1) (νx2)(

. . . | x1 :ε | x2 :done

)
in which the buffer where the other process will output contains a choice from the start, or the

following:

NaughtyAsyncEditor2(a,b,c) def=
(νx1) (νx2)(

. . . | x1 :ε | x1 :ε | x2 :ε

)
where buffer x1 occurs twice causing non-determinism. Consider this process:

RudeAsyncEditor2(a,b,c) def=
(νx1) (νx2)(

. . . | x1 :ε

)

38 CHAPTER 2. FOUNDATIONS

in which the channel x2 has no queue and therefore the other process will never be able to com-

municate. Next, consider this case:

CarelessAsyncEditor2(a,b,c) def=
(νx1)(

. . . | x1 :ε | x2 :ε

)
where the channel x2 is not bound and thus another process can interfere with it. Finally, observe

that in a term like the following:

CrazyAsyncEditor2(a,b,c) def=
(νx1) (νx2)(

. . . | λz . x1 :ε | x2 :ε

)
the buffer x1 is trapped in a function, and cannot be accessed.

Therefore, although the calculi described in the previous sections have significant expressive-

ness and desirable features, they allow many classes of bad behaviour, and this motivates our

investigation of a static verification discipline that will accept only safe interaction.

2.5 Sessions

Starting from 1994 with the works of Takeuchi, Honda and Kubo [81], and then Honda, Vas-

concelos and Kubo [48], Sessions and Session types have emerged as a tractable and expressive

theoretical substrate, which offers direct language support for high-level, type-safe and uniform

abstraction subsuming a wide range of communication patterns.

A session is defined as a series of typed communications between two processes which form

a meaningful logical unit, just like a web session between a browser and a server, created when

a human user interacts with an e-commerce site, or like the intended protocol between the Editor

and Photographer’s systems in the case study we described.

There are two components to sessions: session types and the associated typing discipline,

verifying the communication behaviour of a private link between processes, and session primitives

that establish the actual link.

2.5.1 Session Types

Session types model interactions as an abstract structure, a process-like description consisting

sequences of typed inputs, outputs, internal and external choices, and repetition. To facilitate typ-

2.5. SESSIONS 39

S ::= ![U].S output
| ?[U].S input
| ⊕[l1 :S1, . . . , ln :Sn] selection
| &[l1 :S1, . . . , ln :Sn] branching
| t type variable
| µt.S recursion
| end ending

U,T ::= S | . . .

Figure 2.5: Session Types

ing, session types are associated to communication channels, and the behaviour of those channels

throughout a program is verified against a given type. In Figure 2.5 we show a standard definition.

The constructors of session types have a direct correspondence with the process constructors that

implement the respective behaviour. For example, x in an input prefixed process:

x?(y) .P

will be given an input prefixed session type of the shape:

?[U].S

where U is the expected type of y, and S is the session type of x in P. Similarly for an output

prefixed process x!〈V 〉 .Q inducing a type of the shape ![U] .S where U is a type assigned to V and

S is the type of x in Q. Next, a process branching on a channel x, such as:

xB{l1 :P1, . . . , ln :Pn}

induces a type of the shape:

&[l1 :S1, . . . , ln :Sn]

where the type of x in each Pi is equal to Si. Selection on xC lm .P induces a type⊕[li : Si]i∈I where

m ∈ I, and Sm describes the use of x in P. In session typing the term:

λx . x!〈V 〉 .0

40 CHAPTER 2. FOUNDATIONS

will be given a functional (arrow) type of the shape:

![U] . end→ T

where the session type end can be thought of as the session equivalent of the 0 process. Recursive

functions induce recursive session types, typically with branching in order to have a termination

condition, although this is not necessary. As a simple example, the variable x in the term:

µy .λx . x!〈V 〉.(y · x)

can be given a type:

µt.![U] . t

corresponding to the repetitive outputs.

Note that there is no session type S | S corresponding to a parallel composition of communica-

tions over a single channel, which implies that each process possessing a channel must use it in an

inherently deterministic way. Then, as we describe next, the different types assigned to the same

channel in two processes within a session are compared, to determine their compatibility.

Capturing Symmetric Interaction

The essence of session typing is to ensure that the two behaviours associated with a session are

deterministic with respect to each other. This implies that a certain symmetry should be applicable

to the respective types, turning one into the other and vice versa. In the most basic setting we use

a syntactic duality transformation, given a session type S, that produces the dual type S, using the

following rules:

![U].S =?[U].S ?[U].S =![U].S t = t µt.S = µt.S end = end

⊕[l1 :S1, . . . , ln :Sn] = &[l1 : S1, ..., ln : Sn] &[l1 :S1, . . . , ln :Sn] =⊕[l1 : S1, ..., ln : Sn]

Duality is an idempotent operation, that is, S = S, interchanging input and output, and also branch-

ing and selection, and for all other type constructors it is the identity function.

2.5. SESSIONS 41

Example Types for the Scenario

Let us consider the processes PhotoSrv(a) and Editor1(a) from our previous examples. Observing

the structured communications in PhotoSrv(a), we can postulate that the session type of x within

the definition (where it occurs free) will be as follows, assuming the necessary ground types:

S1 =?[String] .µt .&[nextFilter :?[Image→ Image] . t , done : end]

Then, in Editor1(a), again observing the structure, the variable x can be typed with:

S2 =![String] . ⊕ [nextFilter :![Image→ Image] . ⊕ [done : end]]

To achieve syntactic duality between the given types, we need to understand the type S2 as an

instance of S′2, defined as:

S′2 =![String] .µt . ⊕ [nextFilter :![Image→ Image] . t , done : end]

Trivially we have that S′2 = S1. For the comparison between S2 and S′2 to be obtained, we can

consider the infinite expansion of the types, and utilise a coinductive method to verify the cor-

respondence. Pierce’s book [76] contains a detailed overview of the techniques and the math-

ematical background. Coinductive subtyping of recursive session types is first studied in the

work of Gay and Hole [39], adapting the standard methods for IO-subtyping in the π-calculus,

by Pierce and Sangiorgi [77]. Using a coinductive method, we can verify that the session usage in

ExtPhotoSrv(a) is a subtype of the one in PhotoSrv(a), which enables the substitution of the first

process in place of the latter, offering flexibility in programming.

2.5.2 Primitive Support for Establishing Sessions

From the desirable and undesirable process compositions in the previous sections, we can extract

a first principle for safe program behaviour: there needs to be a private link between two com-

municating processes to ensure determinism. Moreover, the inherently deterministic session types

cannot correspond to the non-determinism induced by uncontrolled parallel actions on a channel.

We already saw how this can be achieved: one of the processes can first create a fresh com-

munication channel, unknown to any other process, and then this private channel can be com-

municated to the intended co-process over a known channel. Thus the only communication on

unrestricted channels should be the exchange of a private link, through which all subsequent inter-

42 CHAPTER 2. FOUNDATIONS

actions take place. In process-algebraic terms, this corresponds to the principle of only allowing

bound output over known (unrestricted) channels, where bound output is defined as the output of

a locally restricted name. In π-calculus, we write this as (νc) (a!〈c〉 .P) which can be used as in:

(νc) (a!〈c〉 .P) | a?(x) .Q

The above evolves, modulo alpha-conversion (uniform renaming of both c and instances of c in

a!〈c〉 .P to c′ so that c′ does not appear in Q), to:

(νc) (a!〈c〉 .P | a?(x) .Q)

The scope of (νc) has been extended (scope extrusion) to encompass Q, making c private to both

P and Q. In other terms, this can be thought of as choosing a suitable identity for a private link

between P and Q. Then the communication on a takes place, which is only possible after the scope

of (νc) has been opened to encompass both processes, resulting in:

(νc) (P | Q{c/x})

Now we arrived at a configuration in which c is uniquely shared between P and Q.

We can distill this process of private link creation in session connection primitives for both

synchronous and asynchronous processes, while forbidding other types of interaction over non-

private channels, to establish a principle where all communications except connection initialisation

are performed through private links. Moreover, the explicit constructors make session typing easier

to formalise and implement.

Primitives for Synchronous Sessions

A first attempt First, to separate private and shared channels, let us define a new class of session

channels ranging over s, and redefine the communication rules in HOπ (and HOπς) to be:

(comm)

s?(x) .P | s!〈V 〉 .Q −→ P{V/x} | Q

(HOπ-label)

sB{l1 :P1, . . . , ln :Pn} | sC lm.P −→ Pm | P 1≤ m≤ n

2.5. SESSIONS 43

(HOπς-label)

sC lm .Q | s. [li=ς(xi)Pi
i∈I] −→ Q | [li=ς(xi)Pi

i∈I].lm m ∈ I

Thus, we cannot perform any communication on channels such as a any more, but only on this

new class of session channels.

Then, without resorting to the different notations in the many works on sessions, which are

discussed in the next chapter, we can formulate a basic connection primitive that establishes the

desired private link between two processes, over a shared channel a, with the following dynamic

semantics:

(conn) connect a(x) .P | connect a(z) .Q −→ (νs) (P{s/x} | Q{s/z})

Hence, we arrive at a new formulation where there is a class of shared names a that can only be

used to establish a private link between two processes, with actual communications taking place

using the new class of channels denoted by s.

Undesirable configurations Consider the following process adapted from Dezani et al. [31],

further examined in the work of Vasconcelos and Yoshida [92]:

P = connect a(x) . x?(y) . y!〈V 〉 . x?(y1) .0 | connect a(z) . z!〈z〉 .0

This process can be typed with the following types for x and z, respectively, within the body of the

connections, assuming a type U for V :

Sx = ?[![U] . end] . ?[U] . end

Sz = ![![U] . end] . ![U] . end

Now consider the reductions of P:

P −→ (νs) (s?(y) . y!〈V 〉 . s?(y1) .0 | s!〈s〉 .0)

−→ (νs) (s!〈V 〉 . s?(y1) .0 | 0)

The contractum is now typed with:

Ss = ![U] . ?[U] . end

44 CHAPTER 2. FOUNDATIONS

This typing is unexpected, and breaks the property of type preservation, an issue further discussed

in the aforementioned work. The reason is that we started with two complementary types for x and

z but we ended up with a single type for s, as if a session can exist on its own. We can make an

observation, however, on the cause of the problem, which is that we use the same channel name

in both parallel processes. In session typing the two processes use the channel in different but

complementary ways, but we have to take into account the possibility that they can reduce to a

single process possessing an interleaved usage of the channel. In other words, we need to consider

the possibility of aliasing. Hence, the solution, also present in the study of Gay and Hole [39], is

to distinguish the channel name used at each process in a session, so that the above contractum

can be typed with a type corresponding to the completion of the session (even though the term is

stuck) since type safety is not violated.

A correct solution Let k be defined as either s or s, with s = s. This is equivalent to the use of

polarised channels s+ and s− in the work by Gay and Hole [39]. Next we redefine the rules, as

follows:

(comm)

k?(x) .P | k!〈V 〉 .Q −→ P{V/x} | Q

(HOπ-label)

kB{l1 :P1, . . . , ln :Pn} | kC lm.P −→ Pm | P 1≤ m≤ n

(HOπς-label)

kC lm .Q | k . [li=ς(xi)Pi
i∈I] −→ Q | [li=ς(xi)Pi

i∈I].lm m ∈ I

We then establish connections using the associated channels, providing one to each process:

(conn) connect a(x) .P | connect a(z) .Q −→ (νs,s) (P{s/x} | Q{s/z})

Note that in the above, (νs,s) does not declare two independent channels, but rather the two

endpoints of a single session. Now the typing of P and of all the processes to which P reduces is

correct.

As a final note, an alternative but more restricted solution, in the context of an imperative

class-based language with thread spawning and no parallel composition at the level of user syntax,

is given by Dezani et al. [31].

2.6. THE THESIS 45

Primitives for Asynchronous Sessions

For the asynchronous semantics, we can easily adapt our previously given buffered communication

rules to use the above solution, with a connection rule:

(conn)

connect a(x) .P | connect a(z) .Q −→ (νs,s) (P{s/x} | Q{s/z} | s :ε | s :ε)

Now we also have the two associated buffers initialised to empty, as required.

2.6 The Thesis

Both higher-order processes and objects provide powerful primitives for structuring interactions

in a concurrent setting. A common denominator of many useful protocols is the need to facilitate

private connections between two or more programs, and a deterministic behaviour that is char-

acterised by compatibility of the composed systems. Sessions and session types offer a precise

discipline that can be used to statically verify the correctness of many interesting applications.

However, until our recent work [63], it was not possible to type higher-order processes in which

mobile code may make use of session communications. For example, if ack in Editor1(a) belongs

to a session, then the systems in the literature before our work cannot type the process. In addi-

tion, in an asynchronous setting, before our work [64], it was impossible to type a composition of

processes such as:

AsyncEditor2(a,b,c) | AsyncExtPhotoSrv(a)

where the order of actions is different than expected but safety is not violated, while rejecting

unsafe asynchrony, in a higher-order setting. Finally, we address the question of how to integrate

sessions and objects in a foundational calculus, which has also not been done before.

Session typing is important for concurrent programming, as much as typing theories for func-

tional and object languages have proved to be essential for sequential computation: sessions con-

trol and discipline the power of processes, which is what is needed to incorporate them in practical

settings. Thus, a formalisation of sessions applicable to the fundamental range of primitives found

in functions, mobile processes and objects, can constitute a basis for the development of future

programming languages in which verifiable concurrency is — and it must be — a core feature.

3 Related Work

Overview We present the most important works on sessions in the context of different lan-

guages, as well as closely related approaches, providing an exposition to the state of the art

in this area of type-based structured protocol verification. Moreover, we offer pointers to ref-

erences on implementation-related issues and session-based prototypes, exposing the practical

aspects of sessions.

3.1 Session Typing for Binary Sessions

The genesis of session types can be traced to the work of Honda [47] in 1993. Then, the formu-

lation matured into its present form, starting from 1994 with the works of Takeuchi, Honda and

Kubo [81], and then Honda, Vasconcelos and Kubo [48].

The study of session typing systems is now wide-spread due to the need for structured type-

safe communications in various distributed computing scenarios. Below we give the most closely

related work.

3.1.1 Sessions in CCS and π-calculus

In the original work of Honda [47] we find a formulation built upon the now revived concept of

sessions with generic internal and external choice, and of type compatibility based on a bisimilarity

on a labelled transition system. The language endowed with these sessions is a π-calculus like

process algebra. Interestingly, in this work we can also find the first reference to deadlock-free

sessions, based on a characterisation of terms.

Then, in the work of Takeuchi, Honda and Kubo [81], the process algebra L is presented,

resembling CCS/CSP but with explicit session initiation primitives, deterministic label-indexed

branching (external choice with input of label) and selection (internal choice with output of la-

bel), recursive process definitions, and a primitive for the dynamic creation of parallel processes

(threads). The concept of label-indexed choice resembles record-field selection and method selec-

tion in object languages, and provides a powerful control flow mechanism that retains determinacy

47

48 CHAPTER 3. RELATED WORK

in a simple framework. The types are finite (no recursion), and there is no name passing for ses-

sions, prohibiting certain classes of dynamic topology from being programmed. Finally, the idea

of typing the two usages of a session channel using distinct polarities is introduced in this work.

Honda, Vasconcelos and Kubo [48] address the shortcomings of the aforementioned work, and

present a language based on a polyadic π-calculus, supporting both name passing (where a session

channel is being “thrown”) and recursive sessions (implemented by passing session channels as

arguments to recursive process invocations), in addition to the capabilities of L . One note on

delegation (session passing) is that it is not implemented with substitution, but rather with α-

conversion, hence every communicated name is fixed; this is not a significant restriction but it

does imply a runtime test to convert names if needed.

As we saw in the previous chapter, some systems suffer from a subtle maltreatment of session

channels in typing, and that invalidates the basic theorems of type soundness and type safety. We

already identified the root of the problem in the absence of polarities, combined with the presence

of session delegation which enables the aliasing of sessions that are treated as independent at the

stage of typing. Yoshida and Vasconcelos [92] revisit the previous work [48], which does not suffer

from this problem due to the more limited alpha-conversion based delegation method used which

forbids a free channel from being received in the same scope. They extend the language with the

more powerful form of delegation which causes the problem, and provide a correct formulation

with some additional smaller corrections. Their extension of the original work to allow a more

liberal style of session passing, where the names are not fixed, enables arbitrary session channels

to be received, by utilising polarised endpoints in the style of Gay and Hole [39], thus avoiding

situations where the two ends of a session are merged (aliased). Also, there is no need for runtime

α-conversion. The notion of polarities at the typing level, but not at the term level, is first utilised

in the work of Takeuchi, Honda and Kubo [81].

Recently, Giunti et al. [42] showed that although the polarity-free languages may not enjoy

subject reduction, type safety is not violated. Moreover, they allow unrestricted (non-linear) use

of session channels in some harmless settings, such as when testing the identity of a channel (a

feature not found in other session systems) even after it has been delegated away.

3.1.2 Sessions in Functional Languages

Neubauer and Thiemann [68] encode sessions in Concurrent Haskell. Vasconcelos, Gay and

Ravara [86], add session primitives to a concurrent multi-threaded functional language. Their

language supports sending of channels and higher-order values (not containing free session chan-

3.1. SESSION TYPING FOR BINARY SESSIONS 49

nels), labelled branching and selection, recursive sessions and channel sharing. It has an explicit

multi-threading primitive (fork) and explicit stores. Gay and Vasconcelos [40] define a functional

language with sessions, following substructural techniques as discussed in § 3.2.

3.1.3 Sessions in Higher-order Processes

Sessions have been integrated in a Higher-order π-calculus by Mostrous and Yoshida [63, 64].

The systems in these papers combine the use of linear λ-calculus and standard session typing,

treating free session channels in mobile code as linear components that are only used in one unit of

abstraction, which may include a sequence of session actions identified as a larger usage. Mobile

code with free sessions is then treated as a linear function, ensuring that its contents are used

exactly once.

3.1.4 Sessions in the Ambient Calculus

Garralda, Compagnoni, and Dezani [36], define the language BASS that introduces session types

to boxed ambients, preventing session interruption when an ambient crosses nested boundaries.

Essentially, mobility is forbidden when there are pending sessions between an ambient and its

parent, ensuring that sessions remain safe; otherwise once an ambient boundary is dissolved com-

munications with its original enclosing scope can be lost or become mixed with the new context.

3.1.5 Sessions in Object-oriented Languages

CORBA Vallecillo, Vasconcelos, and Ravara [83] give a preliminary account of how sessions

could be incorporated into CORBA interfaces. Their approach governs the use of remote method

invocations using session typing that mandates the sequencing of calls, facilitating fine-grained

control of remote interfaces. The ideas are expository and not fully formalised, but can inform

further work in the area.

Class-Based Languages There are a number of works on class-based languages with session

typing, which are very related, albeit different, in their approach. We present the most related ones

in chronological order.

Session typing for a multi-threaded Java-like language has been studied in our previous work

by Dezani et al. [31, 30] and its distributed precursor [32]. The language in [31, 30] is more of

an extension rather than an integration of objects and sessions. There are no recursive session

types or linear objects, but on the other hand, in their language the property of progress holds, i.e.,

50 CHAPTER 3. RELATED WORK

there are no deadlocks. Note that due to synchronous semantics this property comes at the cost of

rejecting all session interleavings. Another achievement of this work is a type inference system for

session environments and types. Their sessions are established over shared channels, and session

bodies are not identified with methods. This is one of the reasons session iteration is used, instead

of recursion.

In the extended and updated version of the above work by Dezani et al. [30], we relax the

condition on interleavings, and achieve progress in a setting where in every sequential execution

there can be multiple sessions but only one may perform (blocking) input actions.

Coppo, Dezani, and Yoshida [26] define an asynchronous class-based language with session

typing. Their reduction semantics for input and output use buffers, and their session types are

similar to those of Dezani et al. [31, 30]. The essence of their work is an effect system that decides

if a term has the progress property, restricting certain classes of interleavings.

Drossopoulou, Dezani, and Coppo [33] describe a class-based language in which sessions are

identified with methods. In their approach, session invocation combines a method of an object

(which is spawned) and a block of code that will interact with the method body. Communication

is asynchronous using buffers. Their main primitive is written a.l{b}, which invokes the method

(session) l of object a and places it in parallel to the code b; a fresh session channel is created

and is shared between the method and the code that interacts with it. In their system there is

only one session per scope and the session channel is implicit. Hence, endpoints are not first

class values, although there is a form of delegation resembling synchronised method invocation.

Their branching primitive decides which path to follow based on the class of a received value,

and branches can contain the keyword continue for iteration. However, it is not clear how this

data-driven branching approach would scale to object-oriented recursion, especially as threads are

created for every method call. On the other hand, their sessions enjoy progress like the systems

by Dezani et al. [31, 30] and by Coppo, Dezani, and Yoshida [26]. Capecchi et al. [18] extend the

above work by Drossopoulou, Dezani, and Coppo [33], to include parametric polymorphism, or

generics.

Bettini et al. [8] improve the above work, with the introduction of union types of the shape

U1 ∨ . . . ∨ Un, which are used to drive their class-dependent branching and selection in a more

flexible and compositional way, since a received value can command the choice of a subsequent

selection within a program.

More recently, Gay et al. [41], proposed a modular approach to sessions in distributed class-

based object-oriented programming, building on their previous work on dynamic interfaces [87].

3.2. LINEAR TYPE THEORY TECHNIQUES IN SESSIONS 51

Their system integrates the idea of typestates as a way to type classes that implement sessions:

the availability of methods is non-uniform, but rather follows a set of parameterised states that

specify the visible interface of an object, which changes after every method invocation. In their

system there are no session endpoints (but there are shared channels for the initiation of a session).

The trace of method invocations themselves effectively implements the session, allowing mutually

recursive definitions, and the evolving interface of the object ensures that the session behaves as

required by its type. The operational semantics specify a synchronous communication model.

An interesting aspect of their work is that it is safe to store a session endpoint in an object

field, and in fact this enables different methods to access the session, during a single run. They

allow this because their typing system ensures that the reference to the object is linear and the

object behaves in accordance with its typestates; the use of the stored session channels remains

deterministic. In their language, self-application within methods requires type annotations, reflect-

ing different conditions when dealing with method invocation from inside and from outside of an

object, respectively. In their formulation there are no threads but a “spawn” primitive is provided

that places a new configuration in parallel, with similar operational effect to local threads. Finally,

a decidable typechecking algorithm and a prototype implementation are provided, indicating the

practical usability of the language.

3.2 Linear Type Theory Techniques in Sessions

The precise conditions restricting the usage of sessions within terms have prompted some research

into Linear type theory approaches to session typing. These works draw from the techniques of

Linear λ-calculus, treating session channels similarly to linear variables. See Walker’s exposi-

tion [89] for a detailed account of the techniques for λ-calculus, which are based on the idea of

substructural type environments, where weakening, needed when a variable is not used but ap-

pears in the environment, and contraction, required when a variable is used more than once in the

subterms of a term, are explicitly forbidden.

The use of such linear techniques at the core of a session typed π-calculus is described in

detail in the work of Vasconcelos [85]; for a more extended technical exposition see the article

by Gay and Vasconcelos [40], where the language is a functional calculus with session primitives.

Their typing uses standard linear function types and linear pairs, re-binding session variables after

every action so they can be typed with the remaining session type in the process continuation.

Algorithmic type checking is achieved using the standard linear type theory techniques. The work

52 CHAPTER 3. RELATED WORK

by Gay and Vasconcelos [40] follows an asynchronous, buffered mode of communication; we

return to this later.

A different approach in which sessions are not reduced to linear usages, but where code that

contains free sessions is treated as a linear function, appears in the work for mobile processes by

Mostrous and Yoshida [63, 64], mentioned previously.

3.3 Alternative Formulations

Channel Dependent Sessions The paper by Mostrous and Yoshida [63] provides an alternative

formulation of session typing based on the channel dependent types of Yoshida [91]. Our compar-

ison between the two approaches via [63, Theorem 4.3] which defines the embedding of the linear

typing system into the channel dependent one makes the relationship between controlling usage

of functional variables and effects of channel accessibility clear: the channel dependency system

types more processes, while the linear typing approach is simpler, it requires less type annotations,

and is more tractable. This line of study has not been explored in the previous literature. Moreover,

it can provide insight into the extension to distributed (location-aware) processes such as those of

the SAFEDPI calculus with channel dependency types of Hennessy, Rathke, and Yoshida [45],

developed further in Hennessy’s book [44].

Foundations of Session Types Recently, an alternative formulation was proposed by Castagna et

al. [23]. The session types in this system consist internal and external choice, and also input-output

followed by a continuation of the session. Due to the use of standard choice constructors, where

external choice is not constrained to be input-prefixed (contrary to label-indexed branching in the

standard approach), and internal choice is similarly free from the duty to announce the selection

by starting with an output (of a label in the standard approach), there is a need to precisely de-

scribe more complex dualities than usual. For example, if a process uses a session with type

![int] .end+ ![bool] .end where + denotes external choice (or branching in the standard approach),

then a dual should be able to handle both possible outputs in a type-directed way. The authors

solve this by adding boolean combinators only used to more accurately describe the carried types

of input and output actions, for example ?[int∨bool] . end is the type of a channel that is used to

receive either an int or a bool, and is a suitable co-type for the above external choice. Also, duality

is not syntactic but rather behavioural, and for each session type there can be a (possibly empty)

set of duals. Session types with a non-empty set of dual co-types are called viable, while those

with no duals are undesirable. Note that for higher-order sessions (session passing) the boolean

3.3. ALTERNATIVE FORMULATIONS 53

operators remain applicable, producing extended session types called sieves, and resulting in a rich

language of interactions.

A set-theoretic semantics is given for subtyping based on the interpretation of the session

types based on the values that can inhabit the input-output actions and additionally, the conditions

imposed by boolean operators on those sets of values. Duality is defined using a relation on a

labelled transition system, and the definitions of subsessioning and subsieving (which correspond

to subtyping) are formalised in a coinductive framework. The coinductive and denotational notions

of subsessioning coincide, and the set-theoretic definitions for subsessioning are algorithmically

decidable. Then, a typed π-calculus variant is given, demonstrating that their system can be used to

type sessions in a language without special primitives, consisting standard (internal and external)

choice, and (bound) outputs for establishing sessions. Duality is enforced for the initiation of

a session. The language enjoys the property of progress (absence of deadlock in a constrained

universe of interleaved sessions), by placing restrictions on the use of interleaved inputs which

may block against interleaved outputs appearing in different order.

Session Types at the Mirror Following a similar approach, Padovani [73] defines a system

where the main concept is to denote session types as value-passing CCS processes that describe

precisely, within a labelled transition system, how processes in a term language use a session.

First, the usual linearity constraints of session types are relaxed, allowing a parallel composition

of session usages corresponding to a copied session channel used by multiple processes. Second,

there is internal and external session choice which is not indexed by labels but rather follows the

actual non-deterministic choices in the term language. Third, there is a session type representing

failure, which is used to identify that an undesirable state has been reached. The first and third

points are not present in the previously discussed work by Castagna et al. [23], and for simplicity

in this system there are no sieves consisting boolean combinations of session types. The author

defines a subsessioning relation that acts similarly to subtyping. Well-typed compositions use vi-

able session types, which as before are types for which a co-type exists. The concept of session

completeness captures the familiar concept of duality, as a special case. A typing system is pre-

sented for a π-calculus based process language, for which we can make the following essential

observations. First, a process receiving a session channel can only use that specific channel in the

continuation, for type preservation (this is similar to the receive-and-spawn technique for delega-

tion in the object language by Dezani et al. [31, 30]), since there are no polarities to guard against

typing aliased channels in a contractum. Second, a delegated channel can continue to be used at

54 CHAPTER 3. RELATED WORK

the sender, yielding a parallel non-deterministic usage between sender and receiver. Finally, par-

allel composition of processes demands that both use the same session channels. In general, this

approach views control flow and data communication as different, and (due to parallel-composed

session types) drops the linearity constraints which are the cornerstone of determinism in sessions,

yielding a formalism closer to the behavioural types of Igarashi and Kobayashi [52].

Asymmetric Client Server Interactions Barbanera, Capecchi, and de’ Liguoro [5], inspired by

works on contracts (which we discuss at the end of this chapter), define a session typed π-calculus

in which the client can perform an initial prefix of the expected session with the server. The

prefix relation 0 essentially allows a session with end terminals to be considered compatible to

one where on each ended part there are further actions, implemented with an axiom end 0 S

supported with congruence rules for the other session type constructors, propagating deep into

the session structure. A condition of weak compliance is formulated based on a labelled transition

system, stating that a server may not perform less actions than the client, thus validating the desired

principles of the design.

One possible objection to this design is that some protocols may require a strict correspon-

dence of client-server actions, for example in a banking transaction, and therefore it would be

useful to have allowed session types to be demarcated as requiring full completion, precluding the

use of the prefix relation; anyway, this is an easy addition to their theory, and simplicity outweighs

the benefits of trivially extending it.

3.4 Asynchronous Communication in Sessions

The work of Gay and Vasconcelos [40] defines a functional language with asynchronous sessions,

where the reduction semantics are using buffers, hence message sending is non-blocking. The

two buffered endpoints of a session are associated by explicitly storing an entry for the “other”

endpoint together with the values of each buffer; this functionality is the same as the use of two

polarised session channels for distinguishing two endpoints (similarly to Gay and Hole [39]). An

achievement of their work is that they calculate the upper bound on the size of the queues, with

important ramifications for efficiency and static memory allocation. Several other works discussed

in this chapter utilise buffered semantics, for example by Neubauer and Thiemann [69], Carbone,

Honda, and Yoshida [49], Bonelli and Compagnoni [10], Coppo, Dezani, and Yoshida [26], Bet-

tini [9], Mostrous, Yoshida, and Honda [65], and Mostrous and Yoshida [64].

3.5. SESSION SUBTYPING AND POLYMORPHISM 55

3.5 Session Subtyping and Polymorphism

Session primitives can be smoothly integrated with traditional subtyping of object and functional

languages, to obtain a more flexible behavioural composition that brings sessions frameworks

closer to software engineering. The first study of subtyping in sessions is the work of Gay and

Hole [38, 39]. The authors introduce standard value subtyping, such that for example an output

![U] can be performed instead of ![U ′] when U and U ′ are in a suitable subtype relation. Selection

and branching is subtyped similarly to records, allowing less choices (than those demanded by

the type) to be made in a process, and dually, more branches to be offered. Recursion imposes

a coinductive subtyping method which is first adapted to sessions in their work, following the

standard techniques for IO-subtyping for the π-calculus by Pierce and Sangiorgi [77].

Gay [37] takes the previous work a step further, and introduces bounded polymorphism to

session types. Using this system, types such as &[l (int6 X 6 real) :?[X] . ![X] . end] are allowed,

in this example denoting the reception of a value of some type X which is a supertype of int and

a subtype of real, followed by the sending of a value of the same type. The authors chose to

annotate branching (at the type and term levels) with the bounds declarations, so that the informa-

tion is “piggybacked” onto the communicated label. The basic algorithmic representation of the

bounded subtyping is proved decidable. In conclusion, this system facilitates fine-tuned control

over polymorphic communications.

Following the above work, Capecchi et al. [18] include parametric polymorphism (generics)

into a class based object language with sessions.

3.6 Asynchronous Subtyping

Our recent work by Mostrous, Yoshida, and Honda [65] developed a new subtyping, asynchronous

subtyping, founded on the ordered asynchrony of inputs and outputs, respectively, that arises with

the use of buffered session channels. This subtyping characterises compatibility between classes

of permutations of communications within asynchronous protocols, offering greater flexibility in

programming. The target system is based on the multiparty session calculus of Carbone, Honda,

and Yoshida [49] (discussed later); however, it does not support higher-order sessions (delega-

tion) and higher-order code (code mobility). Both of these features provide powerful abstractions

for structured distributed computing. Mostrous and Yoshida [64] expand the previous theory in a

framework based on the Higher-order π-calculus, allowing the same communication order permu-

tations in the presence of code mobility, effectively incorporating higher-order sessions and linear

56 CHAPTER 3. RELATED WORK

functions into asynchronous subtyping, and therefore addressing the previously open issues. As

a simple example, these theories admit µt . ![U2] . ?[U1] . t as a subtype of µt . ?[U1] . ![U2] . t, but

not the other way around, because moving an input ahead of time might block unless if the dual

endpoint performs the respective output also in advance, which is not guaranteed. Thus, the con-

straints that forbid subtypes that are inhabited by processes that may block can be regarded as a

safety guarantee, protecting the desired invariant that a session should not be blocked on its own,

that is, without depending on another interleaved session. This has practical considerations since

the replacement of a process with one that uses sessions according to subtypes (compared to the

original) will not block if the original process did not also block.

As a final note, a similar concept of session actions appearing in a different than expected (by

duality against the other end of the session) order is seen in the unpublished work of Neubauer

and Thiemann [69], as part of an acceptance relation on traces induced by session types within a

π-calculus based language.

3.7 Progress and Deadlock-Freedom in Sessions

By progress in the context of a session language we mean the deadlock-free execution of multiple

interleaved sessions. A simple counterexample to such progress is the following composition (to

which a well-typed initial program may arrive during reduction):

s1?(x) . s2!〈V1〉 .0 | s2?(z) . s1!〈V2〉 .0

in which both sessions, although type-safe, are waiting on each-other to output a value, ad infini-

tum. This notion of session progress is first considered in the work of Dezani et al. [31, 30], and a

solution is provided in the form of a restriction on the interleaving of sessions.

Coppo, Dezani, and Yoshida [26] reconsider the problem in the context of a class based object

language with buffered communications. In this approach, the authors revisit and successfully

relax the interleaving restriction, allowing some of the interleavings in which only one session

is expecting inputs, but in which many may perform outputs. This is possible due to the use of

buffered semantics for communication, since output becomes a non-blocking action, and hence

one that is sometimes safe to interleave.

Dezani, de’ Liguoro, and Yoshida [29] formulate a new solution in a synchronous π-calculus

setting, defined as an interaction typing system, and utilising a generic label-based ordering that is

used to detect circularities in interleaved binary sessions, as those can lead to a deadlocked state.

3.8. CORRESPONDENCE ASSERTIONS AND LOGICS FOR SESSIONS 57

Contrary to the typing method of Igarashi and Kobayashi [52] (for the π-calculus), the labels

do not originate as annotations in the term language, but rather appear as fresh assignments in

the typing derivation, lessening the programming burden otherwise imposed. Notably, only one

session can input values in any given sequentially executed scope. Bettini et al. [9] extend the

previous methodology to multi-party sessions.

The property of progress is also considered in the typed Conversation calculus of Caires and

Vieira [17]. In this system labels are attached to session actions in a natural way, and are reused in

the progress conditions to ensure acyclicity. Also, a session that has been delegated can continue

to be used at the sender’s continuation, providing an extra degree of flexibility while preserving

the desirable deadlock-freedom properties.

3.8 Correspondence Assertions and Logics for Sessions

The basic systems view sessions as independent entities interleaved within a program, and make

no effort to verify the intended interdependencies between different sessions that may interact to-

gether. For example, ignoring session constructors, consider a simple process a?(x).b!〈x〉.c!〈5〉.0,

and its variation a?(x) .b!〈c〉 .x!〈5〉 .0; session typing does not distinguish the two processes when

the types of x and c coincide. Bonelli, Compagnoni and Gunter [11] address this consideration,

by introducing correspondence assertions to a session-based calculus, offering a system that, for

instance, distinguishes the above terms at the type level. This is achieved by adding constraints to

sessions, such as one mandating that a value received on one session (a from above) is the exact

same value subsequently sent in another (b from above).

Berger, Honda, and Yoshida [7] developed a modal logic for session-typed mobile processes.

Their work studies an extension of Hennessy-Milner logic for typed π-calculi, giving a sound and

complete characterisation of representative behavioural equivalences on typed processes; three

compositional proof systems are obtained, characterising the May/Must testing preorders and

bisimilarity. Using their logical framework, fine-grained properties of processes can be embedded

into the specification (against which the implementation is verified), such as, for example, the

property that in a bank transaction modelled as a session the amounts are as expected after every

action. Using this method, a much finer control of processes is achieved, compared to correspon-

dence assertions.

58 CHAPTER 3. RELATED WORK

3.9 Exceptions for Error Handling in Sessions

Carbone, Honda, and Yoshida [20] introduce exceptions into a process language with sessions,

using a familiar try/catch block structure. Their main contribution is the uniform propagation

of exceptions to all affected processes (due to session nesting) which can be executing asyn-

chronously evolving sessions, and the incorporation of exception types that validate potentially

error-raising protocols. Vieira, Caires, and Seco [88] incorporate similar exception handling in

their Conversation calculus, discussed at the end of this chapter.

3.10 Implementations

Functional Languages Neubauer and Thiemann [68] developed an encoding of sessions in the

type system of Haskell. Mostrous [66] implemented an initial prototype for a subset of OCaml

extended with finite session types (without branching) used for the typechecking of client-server

socket based connections. Corin et al. [27] introduced session types to F], an implementation

of a ML dialect. The work describes a system for ensuring security of multi-role sessions in

the absence of trust. Session types are compiled to cryptographic protocols in a way such that

during execution every party is guaranteed to play their role. Runtime verification is used to detect

behaviour incompatible with a session.

Object Languages The Masters thesis of Hu [50] and the subsequent work by Hu, Yoshida,

and Honda [51] have been investigating the incorporation of session types with Sockets in Java.

Communication is asynchronous and the implementation has been measured to have a very small

performance overhead compared to untyped socket communication. Its language and runtime is

also extended to work under various transports such as shared memory and HTTP/HTTPS [51].

More recently, Gay et al. [41] implemented a prototype of their language for sessions in distributed

class-based object-oriented programming, including a decidable typing algorithm.

An Operating system Fähndrich et al. [34] use general ideas from sessions to facilitate efficient

and reliable message-based communications in the Singularity operating system. Behaviour in

this system is defined in contracts, that contain definitions that form a state machine of desired

message exchange patterns. Messages encapsulate asynchronous method invocation, and consist

of information on which method should be invoked, along with the actual arguments to use, when

the message is received. Values are exchanged using bidirectional channels, where each channel

3.11. SESSIONS IN INDUSTRY SPECIFICATIONS 59

has two explicit endpoints. At the endpoints, the specific methods required for each state of the

contract are defined. Asynchronous transmission is implemented using message queues. Their

system has the property that each endpoint can only be used by a single thread at a time, which

corresponds to the usual conditions of linearity, and messages at the endpoint queues are always

ordered. Also, they allow to send channel endpoints, which corresponds to higher-order sessions.

When different messages can be received, they use a form of switch to group the program be-

haviours for each case. Their contracts are verified statically.

3.11 Sessions in Industry Specifications

At the industry specification level, languages with variants of session types have been used in the

W3C CDL (Choreography Web Description Language) [90, 21, 19] and ISO UNIFI (International

Organization for Standardization ISO 20022 UNIversal Financial Industry message scheme) [82].

From these experiences, we find that not only type checking by session types after writing a pro-

tocol, but also declaring session types before compilation, greatly helps programmers implement

error-free interactions.

3.12 Multi-Party Sessions: Typing Protocols with Many Participants

The first papers formalising sessions and session types with more than two participants are by

Carbone, Honda, and Yoshida [49] (which supersedes a more preliminary version [19]), and by

Bonelli and Compagnoni [10].

In [49], the concept of multi-party session types is introduced, acting as a global specifi-

cation consisting participant-directed messages and selections. For example, the global type

G = p→ p′ : k 〈U〉;G′ says that participant p sends a message of type U to channel k (represented

as a natural number) received by participant p′ and then interactions described in G′ take place.

From the global viewpoint of G, the first prefix represents both an output and an input, and the local

types representing the viewpoint of each participant can be recovered using a projection operator

G�p which, given a participant identity p, produces a type with the (directed subset of the) session

protocol involving p as sender or receiver. For example, (p→ p′ : k 〈U〉;G′) �p = k![U];(G′ �p),

(p→ p′ : k 〈U〉;G′) �p′ = k?[U];(G′ �p′) and (p→ p′ : k 〈U〉;G′) �q = (G′ �q). Thus, local types

represent the ordered use of (possibly multiple) channels by a single process. Session connec-

tions are established between multiple participant processes, using a multi-participant request that

interacts, synchronously, with a number of session acceptance primitives, followed by the instan-

60 CHAPTER 3. RELATED WORK

tiation of a number of buffers used within the protocol. The number of buffers may be different

than the number of processes in a single session. Beyond the usual safety properties, the authors

identify session fidelity as an important property: the actions of a typable process exactly follow

the specification described by the global type.

The work [10] follows a similar approach based on a distributed calculus where each channel

connects a master endpoint and one or more slave endpoints. The authors utilise annotation labels

(like participants above) on (global) session types, and a simplify operator acting similar to pro-

jection. Trace types describe the behaviour of individual participants in a session corresponding

to local types. Contrary to [49], this language does not allow higher-order sessions (delegation).

The basic soundness and safety results hold as expected.

In the recent work by Mostrous, Yoshida, and Honda [65] we generalise the theory of mul-

tiparty session types of Carbone, Honda, and Yoshida [49] with asynchronous communication

subtyping, which allows partial commutativity of actions offering greater flexibility and a way

to identify safe optimisations in message choreography. As a complementing result, we show

a type inference method for deriving the principal global specification from end-point processes

which is minimal with respect to subtyping. The resulting theory allows a programmer to choose

between a top-down and a bottom-up style of communication programming, ensuring the same

desirable properties of typable processes. The top-down approach in multiparty session types is

first studied in the work of Carbone, Honda, and Yoshida [49], but local refinement (asynchronous

subtyping) is not proposed there. The problem of synthesising a global specification from endpoint

behaviours has been an open question since the inception of the notion of global descriptions for

business protocols (see Choreography Description Language [90]), and has been posed as an open

problem in several previous works mentioned above [10, 49, 9]. Inference of principal types for

simplified binary sessions is studied in the work of Mezzina [57], but in the context of Service Ori-

ented Computing languages, discussed in the next section. Finally, we recall that a typing system

offering a strong progress property in multi-party sessions is studied by Bettini et al. [9].

3.13 Service Oriented Computing

Castagna, Gesbert and Padovani [24, 25] study formal theories of contracts specifying and us-

ing multiparty interaction structures other than multiparty session types; specifically, the authors

utilise CCS-like processes as a type representation. The subsequent work by Padovani [72] ex-

tends [24] with a treatment of asynchronous behaviours using orchestrators, through the use of

3.13. SERVICE ORIENTED COMPUTING 61

bounded buffers that control message flows between a client and servers. A defining characteristic

of their approach is that a client can choose to fulfil only some initial part of an interaction with a

server, as long as the corresponding communications agree behaviourally.

Conformance and refinement based on agreement of clients to service specifications is studied

in the work of Bravetti and Zavattaro [14, 15], using a synchronous CCS-based calculus as a

contract language, and testing-preorders to check sub-contract compliance. Neither type-checking

of end-point processes using projected contracts nor a bottom-up strategy is presented there.

The work by Bruni et al. [16] proposes a distributed calculus with sessions, which act as an

enclosing context constraining (intra-session) communications to be between processes belong-

ing to it. Services can be invoked, placing the service instance under the client session, therefore

ensuring multiple subsequent interactions (over otherwise known channels) are between the same

client and service pair. Sessions can be merged, allowing more processes to interact dynamically.

Locations represent logical groupings of processes/services and allow direct intra-site communi-

cations crossing the boundaries of sessions. Reduction is defined via a labelled transition system,

and terms are related by a weak bisimulation, useful for equating abstract specifications and more

concrete implementations. Unlike type-based systems, there are no guarantees that executions are

well-behaved.

The work of Vieira, Caires, and Seco [88] presents the Conversation calculus, a language

for service oriented computing, by extending the π-calculus with context-sensitive interactions,

equipped with service and request primitives and local exceptions. A crucial difference compared

to standard session approaches is that endpoints are not channels, but rather interactive processes

encapsulated within “conversation” contexts (like in the above work by Bruni et al. [16]). Es-

sentially, communication within conversation contexts depends on the identity of the session as-

sociated with the context, and on the relative position of the context in a possibly nested context

hierarchy. Communication has three modes: within a context, between a context and its parent

context (the outer scope), and with the other endpoint of the session to which the context belongs.

The last mode transcends arbitrary contextual boundaries. The identity of the current session can

be dynamically accessed using a special prefix that returns a self-reference. Exceptions are raised

with a throw primitive, and handled within the scope of a try/catch constructor. The behavioural

semantics are checked by defining a strong bisimilarity on the label transition system upon which

reduction is defined. In the follow-up work by Caires and Vieira [17], conversation types are

considered for the aforementioned calculus. One point of interest is the flexibility in typing multi-

participant interactions with an unconstrained, dynamic number of parties. Labels decorate actions

62 CHAPTER 3. RELATED WORK

within a conversation context, facilitating an analysis of progress based on the acyclicity of label

occurrence in traces of actions.

Recently, Laneve and Padovani [54] provided an encoding between session types and con-

tracts, based on a limited session type language without value passing which crucially excludes

session delegation. They prove that under those assumptions the two methods can be used inter-

changeably, and observe that although the encoding of session types to contracts is almost direct,

the other direction from contracts to session types causes an exponential growth of the gener-

ated type with respect to the size of the given contract. The authors attribute this result to the

greater expressiveness of contracts, and indeed, it is intuitively justified considering the expan-

sions needed in order to accommodate for the non-deterministic internal and external choices of

contract languages.

Another work in the intersection of sessions and contracts is that of Boreale et al. [13]. The

authors formalise the Calculus of Sessions and Pipelines (CaSPiS) for service oriented computing,

utilising the context-based sessions used also in the above works. The novelty of this work is the

introduction of a pipelining operator P > Q, which can be used to compose service invocations in

a chain. Special outputs in P, called return messages, can be used to pass values to the context

of the pipeline which can then receive the value, spawning a copy of the pipelined code Q to

handle the invocation. Hence, in this calculus there are two forms of communication, one within

a session, and one from a producer to a consumer in a pipeline of services. Pattern matching can

be used to guide a protocol, operating on input values and channel names. The authors utilise

a compositional termination handling mechanism, which allows complex hierarchies of nested

sessions to terminate consistently; furthermore, the authors define a property called gracefulness,

which holds when all sessions in a composition are equipped with a component that can handle

early termination from either side.

Many of the above languages, specifically those using session contexts of the shape r.P where

r is the session identity and P communicates using an implicit intra-session communication mech-

anism, have evolved from the Service Centred Calculus (SCC) of Boreale et al. [12], developed

within the collaborations in the SENSORIA Project [1].

Part II

Session Types and Subtyping in

Higher-Order Processes and Objects

63

4 Sessions and Higher-
Order Processes

Overview Here we introduce session typing into a process language which models higher-

order mobile code, i.e., one in which a process can be packaged (or “thunked”) into a value

sent to another process. Session types for the HOπ-calculus capture high-level structures of

communication protocols and code mobility as type abstraction, and can be used to statically

verify safe and consistent process composition in communication-centric distributed software.

Integration of arbitrary higher-order code mobility and sessions leads to technical difficulties

in type soundness, because both linear usage of session channels and the completion of sessions

are required in executed code. By using techniques from the linear λ-calculus, we develop a

coherent and tractable session typing system for the HOπ-calculus.

4.1 Introduction

In global computing environments, applications are executed across multiple distributed sites or

devices. The use of mobile code is prominent in such environments, where several participants are

synthesised by communication of not only passive values but also of runnable code: for example

a service can be delegated to different participants, by sending either a channel via which it is

accessible, or code that accesses it; and incoming code may transit through several devices that

alter their computational behaviour or their data through interaction with it.

The Higher-Order π-calculus (HOπ-calculus) [79] is a general formalism of interaction in

which two kinds of mobility, name passing and process passing, are integrated in a simple and

universal form: in this model, processes can be instantiated by names and other processes, just

like a piece of mobile code is instantiated with local capability after migration. This additional ex-

pressiveness inherited from the λ-calculus provides a powerful basis for describing and analysing

dynamic behaviour in global computing scenarios.

While many advanced session types for the π-calculus and programming languages have been

studied, before our work [63] there existed no session typing systems for the HOπ-calculus. In-

corporation of sessions into this language offers a general theoretical basis for examining the

65

66 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

interplay between two non-trivial features in communication-based programming, higher-order

mobility and session-based structured interaction.

This Chapter, based on [63], establishes the first session type theory for the HOπ-calculus

which can statically validate the type safety of complex distributed scenarios with code mobility.

In spite of their simple type syntax, the previous literature have shown that obtaining type sound-

ness for session types is an intricate task because of delegation of sessions [92]. In addition, in the

presence of higher-order process passing, with the instantiation of names within executable code,

preservation of typability becomes even more non-trivial.

4.2 The Higher-Order π-Calculus with Sessions

The Higher-order π-calculus with sessions, HOπs, is a variant of the HO π-calculus [79]. The

main difference is that in HOπs each communication occurs not freely, but in the context of an

initiated session synchronising two processes to perform a prescribed protocol. HOπs encom-

passes two types of mobility: name passing, with which dynamic communication topologies can

be programmed, and code passing, where by transmitting processes a dynamic behaviour can be

achieved. Note that the calculus is monadic, i.e., only one value is sent/received at each commu-

nication step, but this does not affect the results and serves for simplicity.

4.2.1 Syntax

The syntax of HOπs is given in Figure 4.1. The calculus extends the HOπ with a small kernel of

session primitives: a way to initiate a session over a shared channel, a class of session names —

which we call endpoints — used for communications within sessions, and primitives for offering

and making choices indexed by labels.

Identifiers Variables range over x,y,z, Shared channel names, which are used only to initiate

sessions (we describe this in detail further below), are ranged over a,b,c, We write u,v,w, . . . to

represent shared identifiers, that is, those that are either variables or shared channel names. Session

channels, ranged over s, . . . and s, . . ., are the endpoints through which values are communicated

within an established session (which as we shall see is always between exactly two processes).

The name s denotes the dual of s, that is, if one process in a session uses s, the other process

uses s, and in this way each of the two processes possess a unique endpoint. This separation of

endpoints is similar to the use of two polarities in [39, 92]. We define duality to be idempotent,

4.2. THE HIGHER-ORDER π-CALCULUS WITH SESSIONS 67

Identifiers

u,v,w ::= x,y,z variables
| a,b,c shared channels

k ::= x,y,z variables
| s,s session channels

Values

V,V ′,W ::= u,v,w shared identifier
| k,k′,k′′ linear identifier
| () unit
| λ(x : U).P abstraction
| µ(x :U → T).λ(y :U).P recursion

Terms

P,Q,R ::= V value
| u(x).P connect
| u(x).P connect dual
| k?(x).P input
| k!〈V 〉.P output
| kB{l1 :P1, . . . , ln :Pn} branching
| kC l.P selection
| P |Q parallel
| (νa : 〈S〉)P restriction
| (νs)P restriction
| PQ application
| 0 nil process

Abbreviations

pPq def= λ(x :unit).P (x 6∈ fv(P)) thunk

run def= λx.(x()) run

Figure 4.1: Syntax

68 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

thus, we have that s = s. This property of endpoint names is used in the reduction semantics,

where a communication is synchronised over the two endpoints of a session. We write k,k′,k′′, . . .

for linear identifiers, consisting of variables and session channels.

Values We write V,V ′,W, . . . for those terms that may be used as values, that is, as the object

of a communication or as the argument in function application. First, we have identifiers, shared

and linear (as standard). Abstraction, written λ(x : U).P, encapsulates a process P, where x may

occur free, into a function over x (with type annotation U). This is the basic mechanism for the

exchange of processes, and the unit () is useful when we wish to obtain a value from an arbitrary

process P: take a variable x not free in P, then λ(x : unit).P is a value, usually referred to as a

thunk, and abbreviated to pPq. To reveal and execute the process within a thunk, we use the run

function λ(x : unit→ �).(x()) which takes a thunk as argument and applies it to the unit value to

obtain the hidden process.

To facilitate terms that exhibit infinitary behaviour, we introduce a recursive function con-

structor µ(x :U → T).λ(y :U).P. In this fixpoint representation, instances of the variable x within

P represent the function itself.

Terms The terms of the calculus are written P,Q,R, The main constructs are:

Session initialisation u(x).P and u(x).Q are prefixed processes that may synchronise and com-

mence a session. The interactions will adhere to the session type assigned to the shared

identifier u, and since each session consists of two endpoints used in a complementary way,

we distinguish the two different behaviours with respect to this type using u and ū. The

bound variable x is a placeholder for a fresh session endpoint, initialised after the prefixes

react to establish a session.

Input and Output k?(x).P is the standard input prefixed process, with linear subject k and using

x as a placeholder for the received value. k!〈V 〉.P is an output prefixed process, sending

value V over session k.

Branching and Selection kB {l1 : P1, . . . , ln : Pn} offers a set of label-indexed choices li : Pi on

endpoint k, with a process continuation Pi corresponding to each label li. It is often written

kB {li : Pi}i∈I with index set I. The dual (or co-action) of a branch is a process ready to

perform a selection kC l.P where the chosen label is within the domain of the branch set.

Essentially a branching is an input expecting a label and performing case analysis (which

4.2. THE HIGHER-ORDER π-CALCULUS WITH SESSIONS 69

covers all cases) on this label to choose a continuation. Dually, a selection is an output of

a label designating a choice. Clearly, it is undesirable to allow the empty set in branching,

since no selection can be made (that is, there is no effective co-action), and henceforth we

assume that there is at least one branch (and the respective indexing sets, when used, are

non-empty).

Fresh names We write (νa : 〈S〉)P to denote a process P in which the shared channel a (typed by

〈S〉) is unique. With (νs)P we denote that the two endpoints s and s are unique in P, that

is, no external process can perform a session action on either of these endpoints; this gives

non-interference within a session.

Other constructs are the nil process 0, parallel composition P |Q, and functional application PQ,

which are standard from π-calculus and λ-calculus. We often omit 0 and some type annotations

when not relevant.

The bindings are induced by (νa : 〈S〉)P, (νs)P, u(x).P, u(x).P, k?(x).P, λ(x : U).P, and

µ(x : U → T).λ(y : U).P. The derived notions of bound and free identifiers, alpha equivalence

and substitution are mostly standard. We write fv(P)/fn(P) for the set of free variables/names,

respectively; the definition is in Figure 4.2. Moreover, when dealing with proofs we assume the

variable convention, that is, free and bound variables are always chosen to be different, and all

bound variables are distinct; the same applies to names.

4.2.2 Reduction Semantics

We define the standard structural congruence, denoted ‘≡’, as the smallest equivalence relation

which is congruent with respect to the calculus constructors (parallel composition, name restric-

tion, prefixes) and respects the axioms and rules in Figure 4.3. The single-step call-by-value

reduction relation, denoted −→, is a binary relation from closed terms to closed terms, defined by

the rules in Figure 4.4. Rule (beta) is standard from the call-by-value λ-calculus. The case of (rec)

is similar, with the added step of unfolding the recursive function, by substituting it in place of the

variable y within the function body P.

Rule (conn) establishes a new session between two processes a(x).P and a(z).Q ready to syn-

chronise on a. The result of this rewriting is a parallel composition of the session bodies P and Q

with a fresh set of endpoints s and s substituted for the session variables x and z, respectively. The

sidecondition ensures that the new endpoints do not already appear free in either P or Q.

Rule (comm) realises session communication between endpoints k and k: a value is delivered

70 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

Term fv fn

x {x} /0

a /0 {a}
s /0 {s}
s /0 {s}
() /0 /0

λx.P fv(P)\{x} fn(P)
µx.λy.P fv(P)\{x,y} fn(P)
u(x).P/u(x).P fv(u)∪ (fv(P)\{x}) fn(u)∪ fn(P)
k?(x).P fv(k)∪ (fv(P)\{x}) fn(k)∪ fn(P)
k!〈V 〉.P fv(k)∪ fv(V)∪ fv(P) fn(k)∪ fn(V)∪ fn(P)
kB{l1 :P1, . . . , ln :Pn} fv(k)∪ fv(P1)∪ . . .∪ fv(Pn) fn(k)∪ fn(P1)∪ . . .∪ fn(Pn)
kC l.P fv(k)∪ fv(P) fn(k)∪ fn(P)
P |Q/PQ fv(P)∪ fv(Q) fn(P)∪ fn(Q)
(νa : 〈S〉)P fv(P) fn(P)\{a}
(νs)P fv(P) fn(P)\{s,s}
0 /0 /0

Figure 4.2: Free Variables and Free Names

P =α Q ⇒ P≡ Q Renaming of bound variables

P |Q≡ Q |P Commutativity of parallel composition
(P |Q) |R≡ P |(Q |R) Associativity of parallel composition
P |0≡ P Inaction and parallel composition

(νa : 〈S〉)P |Q≡ (νa : 〈S〉)(P |Q) a 6∈ fn(Q) Scope extrusion
(νs)P |Q≡ (νs)(P |Q) s,s 6∈ fn(Q)
(νa : 〈S〉)(νs)P≡ (νs)(νa : 〈S〉)P Exchange
(νa : 〈S〉)(νb : 〈S′〉)P≡ (νb : 〈S′〉)(νa : 〈S〉)P
(νs)(νs′)P≡ (νs′)(νs)P
(νa : 〈S〉)0≡ 0 (νs)0≡ 0 Inaction and restriction

Figure 4.3: Structural Congruence

4.2. THE HIGHER-ORDER π-CALCULUS WITH SESSIONS 71

(beta)
(λ(x : U).P)V −→ P{V/x}

(rec)
(µy.λx.P)V −→ P{V/x}{µy.λx.P/y}

(conn)
a(x).P | a(z).Q −→ (νs)(P{s/x} | Q{s/z}) s,s 6∈ fn(P,Q)

(comm)
k?(x).P | k!〈V 〉.Q −→ P{V/x} | Q k = s or k = s

(label)
kB{l1 :P1, . . . , ln :Pn} | kC lm.P −→ Pm | P k = s or k = s, 1≤ m≤ n

(app-l) P−→ P′
PQ−→ P′Q

(app-r) Q−→ Q′

V Q−→V Q′
(par) P−→ P′

P |Q−→ P′ |Q

(resc) P−→ P′
(νa :〈S〉)P−→ (νa :〈S〉)P′ (ress) P−→ P′

(νs)P−→ (νs)P′
(str) P≡ P′ −→ Q′ ≡ Q

P−→ Q

Figure 4.4: Reduction

from k!〈V 〉.Q to k?(x).P. Due to the self-inverse duality property of endpoints, if k = s then we

have an output from s to s, and if k = s, the output is from s to s. The result is the input process

continuation P{V/x} where the value V is substituted for the variable x, in parallel to the output

continuation Q. When V is a function, we have higher-order code passing; when V is a session

endpoint, we call it higher-order session passing.

Rule (label) is a communication version of case reduction in the λ-calculus. With kB {l1 :

P1, . . . , ln :Pn}, the session on k offers a set of label-indexed choices, and reduces against a selection

of a label on the dual endpoint k, using kC lm.P. The index m of the selected label lm must be in

the branch set as indicated by the sidecondition. Finally, the result is the selected branch Pm in

parallel with the continuation P of the selector process.

In the remaining rules: (app-l) and (app-r) implement a left to right reduction order for functional

application; (par) reduces the leftmost parallel process; (resc) and (ress) are standard and reduce a

process under name hiding. The last rule, (str), introduces standard structural congruence [60] into

the reduction relation. This is necessary for re-arranging terms to match reduction rules.

Remark In our original work [63], processes of the shape a(x).P (called “servers”) were repli-

cated, but this is not needed here as we have introduced recursive functions which can encode

replication.

72 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

4.2.3 Examples

Example 4.2.1 (Encoding Replication). By using recursion, we can represent infinite behaviours

of processes such as, e.g., the definition agent def, or the replication !u(x).P of [59, 92, 48, 63].

Replication on a shared name, useful for defining persistent servers, can be encoded as follows:

!u(x).P def= (µy.λz.z(x).(P | yz))u taking y,z 6∈ fv(P)

Hereafter when writing a replicated connection-prefixed process we shall mean that this encoding

is used. Note that we did not (and by typing we cannot) replicate a session endpoint, since that

would violate linearity. To validate the encoding, we can observe a reduction using a replicated

connection !a(x).P and a suitable co-action a(z).Q:

!a(x).P | a(z).Q

−→ a(x).(P | !a(x).P) | a(z).Q (rec)

−→ (νs)(P{s/x} | !a(x).P | Q{s/z}) (conn)

≡ (νs)(P{s/x} | Q{s/z}) | !a(x).P

Note that in the application of rule (conn), since x is bound in !a(x).P, the substitution {s/x} has

no effect on this subterm. Once a connection is established via (conn), we can apply structural

congruence ≡ to obtain a term where !a(x).P can react again; for this we used the fact that s and

s do not occur free in !a(x).P, which is ensured by the conditions of the previous reduction with

(conn).

4.2.4 Example: Business Protocol with Code Mobility

We show a simple protocol which contains essential features by which we can demonstrate the

expressivity of the code mobility and session primitives for the HOπ-calculus; it consists of a

combination of session establishing, code mobility, session delegation and branching. This extends

a typical collaboration pattern that appears in many web service business protocols [90, 19] to

code mobility. In Figure 4.5, we show the sequence diagram for a protocol which models a hotel

booking: first, Booking Agency and Client initiate interaction at session x over channel a; then

Client starts exchanging a series of information with Agency; during this initial communication,

Agency calculates its Round Trip Time (RTT) between Client and Agency; Agency selects an

appropriate Hotel and creates a new session y over channel b with that Hotel. If the RTT is short

(Figure 4.5 (a)), then Agency delegates to Client its part of the remaining activity with Hotel, by

4.2. THE HIGHER-ORDER π-CALCULUS WITH SESSIONS 73

Figure 4.5: Sequence Diagram for Hotel Booking

sending session channel y; then Client and Hotel continue negotiations by message passing. If

the RTT is long (Figure 4.5 (b)), since many remote interactions increase the communication time

as well as the danger of communication failures, Agency asks back Client to send mobile code

which contains the communication of the Client’s room plan and negotiation behaviour. Agency

sends the code to Hotel, then Hotel runs it locally, finishing a series of interactions in its location.

Finally Agency receives a commission fee (10 percent of the room rate) via session x, concluding

the transaction.

The given scenario is straightforwardly encoded in our calculus, where session primitives

make the structure of interactions clearer. Agency first initiates at a and starts the interactions with

Client; then it initiates at b and establishes session y; next it invokes either label cont or label

move in Client depending on the RTT and sends y (higher-order session passing) to it, and waits

for completion of the transaction between Client and Hotel at x (“if-then-else” can be encoded

using branching, and we use other base types and their operators).

Agency
def= !a(x).x?(area) . . .b(y) .if rtt < 100 then xC cont . x!〈y〉 . x?(z) . .P (4.1)

else xCmove . x!〈y〉 . x?(z) .P (4.2)

Client requests a service at a and starts a series of interactions with Agency, and either continues

the remaining activity with Hotel or sends the code (a thunk in Line 4.4). Note that Client can

safely send back the commission fee to Agency because the return message x〈z×0.1〉 which uses

session channel x is embedded in the thunk.

74 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

Client
def=

a(x).x!〈london〉..xB{ cont : x?(y).yC cont.y!〈roomtype〉.y?(z)...x!〈z×0.1〉 , (4.3)

move : x?(y).yCmove.y!〈py!〈roomtype〉.y?(z)...x!〈z×0.1〉q〉}(4.4)

Hotel performs the interactions with Agency and Client via a single session at y (by the facility

of higher-order session). In Line 4.6, the code sent by Client is run locally.

Hotel
def= !b(y).yB{ cont : y?(z).y!〈roomrate.y?(z)〉...Q ; (4.5)

move : y?(code).(run code | y?(z).y!〈roomrate(z)〉...Q)} (4.6)

This encoding shows a couple of subtle points whose slight modification breaks the session struc-

tures. First, in Line 4.4, if we send code which does not complete the session, then the protocol is

broken: e.g. if we have interactions at y (say y!〈w〉) after sending a thunk in Line 4.4 in Client,

the session at y will appear in three threads (two in Hotel, one in Client), so the session at y

is interfered with and values may get mixed up. Secondly, in Line 4.6, if we have two or more

applications (say run code | run code) instead of one run code, it again breaks the session struc-

ture (both at y and x). Finally, if the code is not activated in Line 4.6 (like (λx.0)code instead of

run code), the receiver y(z) .y!〈roomrate(z)〉...Q cannot find a matching output. Hence the variable

code must appear exactly once and become instantiated into a process exactly once.

4.3 Higher-Order Linear Typing

In this section we present the session typing system which uses techniques from linear typing.

4.3.1 Types

The syntax of types is given on Figure 4.6. It is an integration of the types from the simply typed

λ-calculus with unit and the session types from the π-calculus. Term types range over T , and can

be value types, ranging over U , or the process type �. Value types consist the unit type unit, the

type U → T of shared functions, the type U (T of linear functions, the type S of sessions, and

the shared channel type 〈S〉 which enforces that sessions initiated on the corresponding channel

will follow the protocol defined by S.

The session types are defined inductively as follows. The type ![U].S represents the sending

of a value of type U , followed by the remaining session S. Dually, with ?[U].S the action will

4.3. HIGHER-ORDER LINEAR TYPING 75

Term

T ::= U value
| � process

Value

U ::= unit unit
| U → T shared function
| U (T linear function
| 〈S〉 shared channel
| S session

Session

S ::= ![U].S output
| ?[U].S input
| ⊕[l1 :S1, . . . , ln :Sn] selection
| &[l1 :S1, . . . , ln :Sn] branching
| t type variable
| µt.S recursion
| end ending

Figure 4.6: Types

76 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

be to receive a value of expected type at least U , followed by S as before. The selection type

⊕[l1 : S1, . . . , ln : Sn] signifies that one of the choices l1, . . . , ln will be made (operationally this is

an output of a label), and depending on this label the corresponding session continuation chosen

from S1, . . . ,Sn will take place. The co-type of selection is the branch type &[l1 : S1, . . . , ln : Sn]

corresponding to the reception of a label followed by the corresponding continuation type as in

selection. Recursive session types are written µt.S, where the type variable t is bound and may

occur free in S. We only consider contractive recursive types [35, 92]. Practically, contractiveness

of µt.S means that every free instance of t in S is guarded under at least one input, output, selection

or branching constructor. For example µt.![nat].t is contractive, but µt.µt′.t is not. Moreover, we

only consider tail-recursive session types, therefore types such as µt.![t].end are not well-formed.

To indicate that a session is finished, we use the terminal end.

We write T for the set of types.

Abbreviated Forms We often write &[li : Si]i∈I and ⊕[li : Si]i∈I for branching and selection

types, pTq for unit→ T and pTq1 for unit(T . The terminal end is sometimes omitted.

Example 4.3.1 (Types). Session types can encode many common interactions. For example the

following type can be used to iterate through a list containing elements of type U :

µt.⊕ [hasnext : &[next :?[U].t , finished : end] , finished : end]

The type describes the behaviour of the client process accessing the list: first a choice is made,

either to query the list and discover if it has more elements, by choosing hasnext; or alternatively

the choice finished can be made in which case the protocol reaches its end. If hasnext is chosen,

then the list can respond by choosing next, after which the client can receive a value of type U .

Moreover the type variable t signifies that at this point the protocol is repeated from the point of

definition, that is, from the µ-binder at the beginning. If the list replies by choosing finished, the

protocol is complete.

Duality In the above example (4.3.1) we show the type of the iterator, but not of the list. In

fact the list’s type can be obtained by duality. Each session type S has a dual type, denoted by S,

which describes complementary behaviour. This is inductively defined by the rules in Figure 4.7.

Essentially, dualisation interchanges input (?) with output (!), branching (&) with selection (⊕),

leaving end, type variables and µ binders unchanged. Duality is idempotent. Note that we do not

need to define duality for other types such as the function types, as these are never dualised.

4.3. HIGHER-ORDER LINEAR TYPING 77

![U].S =?[U].S ?[U].S =![U].S t = t µt.S = µt.S end = end

⊕[l1 :S1, . . . , ln :Sn] = &[l1 : S1, ..., ln : Sn] &[l1 :S1, . . . , ln :Sn] =⊕[l1 : S1, ..., ln : Sn]

Figure 4.7: Type Duality

4.3.2 Subtyping

To formalise subtyping in the presence of recursive types a simulation-based (or coinductive)

method is used, in which subtyping is determined by membership of the goal within a binary

relation on types.

First, let us define:

(S,S′)~ = (S′,S)

(T,T ′)~ = (T,T ′) if T,T ′ are not session types

which is used to adjust for the different variance of functional and session types, by reversing

the variance of sessions with respect to the other types. A technically equivalent approach where

the variance is the same for sessions and functions can be applied (see e.g. [39]) but we find that

our approach is more natural for our effect-like typing system and for understanding subtyping in

sessions programming in a way reminiscent of record subtyping.

In the following definition of coinductive subtyping we adapt standard simulation approaches

from [39, 77].

Definition 4.3.1 (Coinductive Subtyping). A relation ℜ∈ T ×T is a type simulation if (T1,T2)∈

ℜ implies that at least one of the following conditions must hold:

1. If T1 = �, then T2 = �.

2. If T1 = unit, then T2 = unit.

3. If T1 =U1→ T ′1 , then T2 =U2→ T ′2 or T2 =U2(T ′2 with (U2,U1)~ ∈ℜ and (T ′1,T
′

2)
~ ∈ℜ.

4. If T1 = U1(T ′1 , then T2 = U2(T ′2 with (U2,U1)~ ∈ℜ and (T ′1,T
′

2)
~ ∈ℜ.

5. If T1 = 〈S1〉, then T2 = 〈S2〉 and (S1,S2) ∈ℜ and (S2,S1) ∈ℜ.

6. If T1 = end, then T2 = end.

78 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

7. If T1 =![U1].S1, then T2 =![U2].S2, (U1,U2)~ ∈ℜ and (S1,S2) ∈ℜ.

8. If T1 =?[U1].S1, then T2 =?[U2].S2, (U2,U1)~ ∈ℜ and (S1,S2) ∈ℜ.

9. If T1 =⊕[li : S1i]i∈I , then T2 =⊕[l j : S2 j] j∈J , I ⊆ J and ∀i ∈ I.(S1i,S2i) ∈ℜ.

10. If T1 = &[li : S1i]i∈I , then T2 = &[l j : S2 j] j∈J , J ⊆ I and ∀ j ∈ J.(S1 j,S2 j) ∈ℜ.

11. If T1 = µt.S, then (S[µt.S/t],T2) ∈ℜ.

12. If T2 = µt.S, then (T1,S[µt.S/t]) ∈ℜ.

The integration of subtyping for higher-order (linear) functions and asynchronous sessions re-

quires a careful formulation: (1,2,6) are standard identity rules. (3) says that an unlimited function

can be used as a linear function. Note that the reverse is unsafe: suppose f = λx.k!〈x〉 with a

linear type nat(�. If we apply the reverse direction, λ(y :nat→�).(y1 | y2) f becomes typable,

destroying the linearity of session k.

Also in (3), when Ui is a session type, we use the relation (S1,S2)~ = (S2,S1) to transpose

the tuple. Session types are dualised since the session channel is going to be used in a process in

a contravariant manner. To see this condition, suppose process P = (λ(x : S).x?(y).x!〈2〉.0)s with

S =?[real].![nat].end. Then P can safely interact with Q = s!〈5〉.s?(z).0 where the type of s is S′ =

![nat].?[real].end. The types S and S′ are not dual, but each subsumes a type which is dual to the

other. For example, taking nat6c real, we can obtain S 6c?[nat].![real].end = S′. This subtyping

is intuitive when we understand S as the actual behaviour of variable x (and consequently of s)

in process P, and all supertypes as the behaviours that P also satisfies. In this example, P can

safely substitute a process that is expected to use s according to ?[nat].![real].end: it can receive

any value of type nat (since it can receive any real) and will send a value that inhabits the type

real (since any nat is also a real). For P to compose with Q we must have S→ �6c S′→ �, with

S 6c S′, that is, the subtype ordering of session types left of→ is covariant. The contravariance

of session types on the right of→ can be justified in the same way. The case when Ti is a session

type is also similarly explained. (4) is similar.

Remark The original session typing system uses a judgement “Γ ` P : Σ” where Γ is a shared

(standard) environment and Σ is a mapping from a session channel to a session type. This means:

P accesses the session channels specified at most by Σ. In contrast, in our typing system defined

in the next section, Σ appears in the left-side position, so that we need to dualise the session types

for subtyping, cf. [91].

4.3. HIGHER-ORDER LINEAR TYPING 79

(5) says that the shared channel type is invariant (as in the standard session types [39, 65, 48]).

(7-8) match the output/input prefixes and check the continuations, as expected. The cases (9-10)

for selection and branching subsume the traditional session branching/selection subtyping. The

last two rules ensure that types are unfolded (or unrolled) adequately for the other rules to be

applicable. We use the notation S[µt.S/t] to mean that all free occurrences of t in S are replaced

by the original type µt.S. The notion of free type variables is simple to define: the only binder is µ,

that is, t is bound in µt.S, and all instances of type variables that are not bound (i.e., do not appear

under a µ binder) within a type are free instances. We omit the formal definition which is trivial.

Our relations contain slightly more elements compared to those of [39] — where unfolding is

done within the other rules — because in our definition all the pairs arising from unfolding are

included in the type simulation. But this is not a significant difference because by the contractive-

ness restriction on types we know that unfolding of a µ-prefixed type does not generate an infinite

relation.

As standard, the coinductive subtyping relation 6c is the union of all type simulations and is

defined, for types T1 and T2, when there exists a type simulation ℜ with (T1,T2) ∈ ℜ. When the

actual relation is not important we write T1 6c T2.

4.3.3 Linear Higher-Order Typing System

Environments

We first define three kinds of finite mappings for environments, needed when typing a term with

free identifiers:

(Shared) Γ ::= /0 | Γ,u : unit | Γ,u : U → T | Γ,u : 〈S〉

(Linear) Λ ::= /0 | Λ,x : U (T

(Session) Σ ::= /0 | Σ,k : S

Γ is a finite mapping, associating shared value types to identifiers. Λ associates variables and

linear function types. There is no need to define mappings here for identifiers such as channels

or session endpoints as these cannot have a linear function type. Σ is a finite mapping from

variables/session channels to session types. Σ,Σ′ and Λ,Λ′ denote disjoint-domain unions. Γ,u :U

means u 6∈ dom(Γ), and similarly for the other environments.

80 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

Typing Judgement

The typing judgement takes the shape:

Γ;Λ;Σ ` P : T

which is read: under a (global) shared environment Γ and a linear function environment Λ, a term

P has type T with session usages described by Σ. We say that a judgement is well-formed if the

environments (pairwise) do not share elements in their domains, that is, when the disjoint union

dom(Γ)]dom(Λ)]dom(Σ) is defined.

Typing Rules

The typing rules for identifiers, subtyping, and functions are given in Figure 4.8. The rules for

processes and sessions are given in Figure 4.9. In each rule, we assume that the environments in

the consequence are defined.

Starting from Figure 4.8, the first group is (Common). First we have a rule for the unit value

(), assigning the type unit. In the conclusion, notice that an arbitrary Γ is allowed, but no recording

of linear variables (Λ = /0), or sessions (Σ = /0). This restriction agrees with the use of weakening

only for shared environments, a condition necessary for the preservation of linearity. (Shared) is

an introduction rule for identifiers with shared types, i.e., not including U (T or S. (LVar) is for

linear variables and (Session) is for session endpoints, recording x :U (T in Λ and k : S in Σ,

respectively. The general strategy is that the environments Λ and Σ record precisely the desired

usages of linear variables/sessions, and then within a derivation these usages are combined using

disjoint union (to ensure that no copying takes place) and prefixing composition in the case of ses-

sions (to ensure that certain separated usages are seen as one largest use). The use of disjoint union

effectively forbids contraction. The absence of weakening guarantees that all linear hypotheses are

actually used.

The group (Subtyping) consists of one subsumption rule, (Sub), introducing the coinductive

subtyping 6c into typing derivations. For example this rule can lift from the shared function

U → T to the linear function U (T . The other direction would be unsafe as it would allow

copying of a linear function by first promoting it to a shared type and then using it as such. We

write Σ6c Σ′ when dom(Σ) = dom(Σ′) and for all k :S ∈ Σ, we have k :S′ ∈ Σ′ with S6c S′. Notice

that subsumption can apply to the session environment, but not to other environments, and it can

also apply to the given type T for the term P. The reason for which 6c should be applicable to

4.3. HIGHER-ORDER LINEAR TYPING 81

(Common)

(Unit)

Γ; /0; /0 ` () :unit

(Shared)

Γ,u :U ; /0; /0 ` u :U

(LVar)

Γ;{x :U (T} ; /0 ` x : U (T

(Session)

Γ; /0;{k :S} ` k : S

(Subtyping)

(Sub)
Γ;Λ;Σ ` P :T Σ6c Σ

′ T 6c T ′

Γ;Λ;Σ
′ ` P :T ′

(Functional)

(Abs)
Γ,x :U ;Λ;Σ ` P :T

Γ;Λ;Σ ` λ(x :U).P :U → T

(AbsL)
Γ;Λ,x :U ;Σ ` P :T

Γ;Λ;Σ ` λ(x :U).P :U → T

(AbsS)
Γ;Λ;Σ,x :S ` P :T

Γ;Λ;Σ ` λ(x :S).P :S→ T

(App)
Γ;Λ1;Σ1 ` P :U (T Γ;Λ2;Σ2 ` Q :U (†)

Γ;Λ1,Λ2;Σ1,Σ2 ` PQ :T

(Rec)
Γ,x :U → T ; /0; /0 ` λ(y :U).P :U → T

Γ; /0; /0 ` µ(x :U → T).λ(y :U).P :U → T

(†) if U = U ′→ T ′ then Σ2 = Λ2 = /0.

Figure 4.8: Linear Session Typing: Common and Functional Rules

82 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

(Process)

(Nil)

Γ; /0; /0 ` 0 :�

(New)
Γ,a :〈S〉;Λ;Σ ` P :�

Γ;Λ;Σ ` (νa :〈S〉)P :�

(News)
Γ;Λ;Σ,s :S,s :S ` P :�

Γ;Λ;Σ ` (νs)P :�

(Conn)
Γ; /0; /0 ` u:〈S〉 Γ;Λ;Σ,x :S ` P :�

Γ;Λ;Σ ` u(x).P :�

(ConnDual)
Γ; /0; /0 ` u:〈S〉 Γ;Λ;Σ,x :S ` P :�

Γ;Λ;Σ ` u(x).P :�

(Recv)
Γ,x :U ;Λ;Σ,k :S ` P :�

Γ;Λ;Σ,k :?[U].S ` k?(x).P : �

(RecvL)
Γ;Λ,x :U ;Σ,k :S ` P :�

Γ;Λ;Σ,k :?[U].S ` k?(x).P : �

(RecvS)
Γ;Λ;Σ,k :S′,x :S ` P : �

Γ;Λ;Σ,k :?[S].S′ ` k?(x).P : �

(Send)
Γ;Λ1;Σ1 ` P : � Γ;Λ2;Σ2 `V : U k :S ∈ Σi i = 1 or i = 2 (†)

Γ;Λ1,Λ2;(Σ1,Σ2)\{k : S} ,k : ![U].S ` k!〈V 〉.P : �

(Par)
Γ;Λ1,2;Σ1,2 ` P1,2 :�

Γ;Λ1,Λ2;Σ1,Σ2 ` P1 | P2 :�

(Bra)
Γ;Λ;Σ,k :Si ` Pi : � (∀i ∈ I)

Γ;Λ;Σ,k : &[li : Si]i∈I ` kB{li : Pi}i∈I : �

(Close)
Γ;Λ;Σ ` P :T k 6∈ dom(Γ,Λ,Σ)

Γ;Λ;Σ,k :end ` P :T

(Sel)
Γ;Λ;Σ,k : S j ` P : � j ∈ I

Γ;Λ;Σ,k :⊕[li : Si]i∈I ` kC l j.P :�

(†) if U = U ′→ T ′ then Σ2 = Λ2 = /0.

Figure 4.9: Linear Session Typing: Processes

4.3. HIGHER-ORDER LINEAR TYPING 83

Σ is that, at some stage, the types of dual endpoints need to be compared syntactically (see rule

(News) in Figure 4.9), and subsumption may be necessary for this, typically for recursive types.

An alternative would be to not have Σ 6c Σ′ in (Sub) and to use 6c directly in (News), but we

preferred to only mention 6c in a single rule.

The second group, (Function), comes from the simply typed linear λ-calculus. There are

three abstraction rules, each depending on the shape of the type U of the argument: (Abs) when

it is a shared type (not linear function or session type); (AbsL) when it is a linear function type;

and (AbsS) when it is a session type. In the conclusion of these rules, we remove x from the

corresponding environment, because it is now λ-bound in the term. (App) is the rule for functional

application; the side condition (†) ensures that when the term on the right is assigned a shared

function type, it does not to contain free session endpoints or linear variables. This is a way of

ensuring that shared functions that are used as arguments do not contain linear terms, as these

unrestricted arguments may be used more than once, breaking linearity, or may not be used at all,

again violating linearity by making endpoints or linear functions disappear. The conclusion says

that the session environments and linear variable sets of P and Q must be disjoint; otherwise, there

is copying (more than one usage) of the respective linear terms, which is forbidden. Note also that

in order to obtain the linear type U(T for P, we may need to use subtyping to promote the type

from U → T . The purpose of defining the rule with a linear type for the function is to avoid the

redundancy of having two similar rules for application, one for each type of function. Rule (Rec)

is similar to (Abs), but with the addition of a hypothesis for x in the premise, representing the

function itself, and used for typing instances of the function within its body. It is required that the

linear function and session environments are empty, since a recursive function may rewrite itself

repetitively copying all its contents.

In Figure 4.9 we have the final group, (Process), for processes integrated with linear func-

tional and session typing. Rule (Nil) types the empty process. (New) and (News) hide a shared

name and a pair of session endpoints, respectively. The latter erases, in the session environment,

complementary communication patterns for the two endpoints s and s, in order to ensure com-

patible dyadic interactions. Subtyping may need to be used to verify that the session usages are

dual.

(Conn) and (ConnDual) are for initiating sessions. In the premises of (Conn), the usage S

of the endpoint x in P has to agree with the type 〈S〉 recorded for the shared identifier u in the

typing environment Γ. Rule (ConnDual) is similar, however the type in the environment Γ is

dual to the usage in the session body P. This is needed in order to indicate which side of the

84 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

session is followed with respect to a shared channel type, since connecting processes must use

their endpoints dually. As in the case of the abstraction rules, there are three rules for input,

depending on the shape of the type of the expected value: (Recv) is for receiving values of a

shared type; (RecvL) types the input of a linear function; and (RecvS) types the input of a session

endpoint. The new session type is composed in the conclusion’s session environment, in a way

that agrees with the protocol, that is, the input is appended before any subsequent actions on k

within P.

(Send) is the most complex rule, integrating session typing and linear typing. First, as in (App),

(†) enforces safety when sending shared functions. Secondly, either Σ1 or Σ2 contains the complete

session k :S, which in practice means that after sending a value, the rest of the session on endpoint

k must appear (and be completed) either in the continuation P of the sending process, or inside

the value V . In the latter case, we can have that V = k which implements higher-order session

passing. The composition Σ1,Σ2 is defined in the conclusion, which entails that no endpoint

appears in both the remaining sender P and the sent value V , because, in that case, we would

have a race condition between the receiver of V and P, in the usage of communications over these

common sessions. The same applies to linear variables free in V and P. If V has a functional type,

all session endpoints within it must be complete, that is, suffixed with end, because they should

not compose further. This is achieved by the necessary use of a suitable instance of (Close). This

rule uniformly generalises the corresponding rules in the session types literature [39, 81, 92, 48].

In the conclusion, we delete k :S where it occurs, either in Σ1 or Σ2, and the updated type for k is

recorded in the conclusion’s session environment, consisting the original type S prefixed with the

output ![U].

In (Par), we parallel-compose two processes, assuming disjointness of linear function and

session environments, as in (App). (Bra) and (Sel) are the standard rules for branching and selection

from [48]. In (Bra) all continuations Pi must have corresponding session usages on k that agree

with the branch type. In (Sel) the continuation P must have a usage S j on k that agrees with the

type corresponding to the selected label l j on the selection type of the conclusion.

Closing sessions In the above rules for session communication, the premises always contain a

hypothesis for the subject of the session action, e.g. k : S appears in Σi located in the premise of the

typing for k!〈V 〉.P. This does not necessarily imply that k appears in P, as the usage {k : end} can

be obtained using (Close). This rule is used to effectively close a session on k by introduction of a

hypothesis k :end, in order for further composition (i.e., more session actions on k) to be rejected.

4.3. HIGHER-ORDER LINEAR TYPING 85

4.3.4 Examples

Here we state a few examples and counter-examples that demonstrate the purpose of the type

system.

1. Session endpoints must not become “forgotten”:

(λ(x :S).0) · s

In the above term, after reduction by the (beta) rule, the endpoint s will not appear any more,

and the session on s might become stuck. This term is only typable if S = end, otherwise

it is not typable because in the premises of rule (AbsS) we require a session hypothesis x :S

which cannot be introduced in the typing of 0 except by use of (Closed).

2. Session endpoints must not be copied:

(λ(x :S).(x!〈V 〉 | x!〈V ′〉)) · s

The above term reduces to:

s!〈V 〉 | s!〈V ′〉

in which we have copied s breaking the condition of linearity, which is undesirable as the

endpoint s will nondeterministically interact with one of the outputs, leaving the other wait-

ing forever. The first term is untypable because typing the body x!〈V 〉 | x!〈V ′〉 with (Par)

requires that the sessions in each parallel process are disjoint, which is not the case here due

to the common presence of x.

3. Abstractions that contain running sessions must be used exactly once:

(a) (λ(x : U).x · ()) · ps!〈5〉.0q U = unit(�

This term is safe, since the thunk which contains s is used exactly once within the

function that receives it. The term is typed using (App) followed by (Abs) and (AbsL)

for the left and right subterms of the application, respectively.

(b) (λ(x : U).0) · ps!〈5〉.0q

This term is unsafe as the thunk which contains s does not appear in the function

that receives it, after reduction. This is an indirect way for an endpoint to become

“forgotten” as before. The typing fails because (AbsL), used for the left subterm of the

86 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

application, requires x : U to appear in the linear function environment of the typing

of 0, which is impossible.

(c) (λ(x : U ′).0) · pa(x).x!〈5〉.0q U ′ = unit→�

This term is safe because, although the thunk will not be used in the function, it does

not contain any linear or session element that needs to be preserved. The term is typed

with (App) followed by (Abs) for the two subterms, respectively.

4.4 Type Soundness and Type Safety

We proceed to show that typed processes enjoy type soundness and type safety. We begin with

a number of auxiliary properties, and then prove the Substitution Lemma (page 88), which is

necessary in proving Type Soundness (page 94); we finish with Type Safety (page 102).

Lemma 4.4.1 (Closed Judgement). If Γ;Λ;Σ ` P : T and x ∈ fv(P) then x ∈ dom(Γ)∪dom(Λ)∪

dom(Σ).

Proof By induction on the typing derivation for P. The interesting cases are the axioms which

form the leaves of a derivation. If the last rule is (Shared), (LVar), or (Session), then P = x and x

appears in one of typing environments, depending on which axiom was applied. The other cases

are easy to obtain using the inductive hypothesis.

We have the standard weakening and strengthening for Γ, but not for Λ and Σ.

Lemma 4.4.2 (Γ-Weakening). If Γ;Λ;Σ ` P : T and x 6∈ dom(Γ,Λ,Σ) then Γ,x :U ;Λ;Σ ` P : T .

Lemma 4.4.3 (Γ-Strengthening). If Γ,x :U ;Λ;Σ ` P : T and x 6∈ fv(P) then Γ;Λ;Σ ` P : T .

The typing rule (Close) can be used to introduce arbitrary, but ended, hypotheses to the session

environment. This is a form of weakening, albeit restricted, and we introduce the following lemma

so that we can strengthen the hypotheses by removing any one introduced by (Close). This lemma

is used in the proof of Structural Congruence.

Lemma 4.4.4 (Σ-Strengthening). If Γ;Λ;Σ,k :end ` P : T and k 6∈ fn(P) then Γ;Λ;Σ ` P : T .

Proof By induction on the typing derivation for P.

Lemma 4.4.5 (Linear Variable Occurrence). If Γ;Λ,x :U (T ;Σ ` P : T then x ∈ fv(P).

4.4. TYPE SOUNDNESS AND TYPE SAFETY 87

Proof By induction on the typing derivation for P. Most cases are straightforward, using the

inductive hypothesis. The interesting case is for (LVar), where P = x, proving the occurrence of

the linear variable.

Lemma 4.4.6 (Endpoint Occurrence). If Γ;Λ;Σ,x :S ` P : T and S 6= end then x ∈ fv(P).

Proof By induction on the typing derivation for P. Most cases are straightforward, using the

inductive hypothesis. The interesting case is for (Session), where P = x, proving the occurrence

of the endpoint. The sidecondition S 6= end serves to exclude the cases where x appears in the

session environment by introduction through (Close).

Lemma 4.4.7 (Ended Session). If Γ;Λ;Σ,x :S ` P : T and x 6∈ fv(P) then S = end.

Proof By induction on the typing derivation for P. Most cases are straightforward, using the

inductive hypothesis. The interesting case is when the last rule applied was (Close), which does

not require x to be free in the term, and also implies that S = end.

Lemma 4.4.8 (Linear Unique Occurrence). If Γ;Λ,x :U (T ;Σ ` P : T , and P = Q1 ·Q2 or

P = Q1 |Q2 or P = k!〈Q1〉.Q2 (in the last case Q1 = V), then x 6∈ fv(Qi) for i = 1 or i = 2.

Proof We proceed by induction on the typing derivation for P. Note that we have x ∈ fv(P)

by Lemma 4.4.5. Suppose x ∈ fv(Q1). Assume Λ,x : U (T ≡ Λ1,Λ2 and Σ ≡ Σ1,Σ2. Let

Γ;Λ1;Σ1 `Q1 : T1 (1) and Γ;Λ2;Σ2 `Q2 : T2 from the I.H. on the premises of the last rule applied;

this was either (App) or (Par) or (Send). From Lemma 4.4.1 we know that since x is free in Q1 it

appears in one of the typing environments of (1), and in particular Λ1 since by the well-formedness

of the assumed judgement for P it cannot appear in Γ or Σ1 ⊆ Σ when it appears in Λ,x :U (T .

Now assume additionally that x ∈ fv(Q2). Then by Lemma 4.4.1 we have that x ∈ dom(Γ,Λ2,Σ2)

which is a contradiction since by the well-formedness of the judgement for P we have that x cannot

appear in Γ or Λ2 ⊆ Λ or Σ2 ⊆ Σ. Hence x 6∈ fv(Q2). The case for x 6∈ fv(Q1) is symmetric.

Lemma 4.4.9 (Endpoint Unique Occurrence). If Γ;Λ;Σ,x : S ` P : T , and P = Q1 ·Q2 or P =

Q1 |Q2 or P = k!〈Q1〉.Q2 (in the last case Q1 = V), then x 6∈ fv(Qi) for i = 1 or i = 2.

Proof The proof is by induction on the typing derivation, and follows the same pattern as in

Lemma 4.4.8. When x 6∈ fv(P), which is a possibility due to (Close), the result is immediate.

When x ∈ fv(P) we proceed as in Lemma 4.4.8.

88 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

4.4.1 Substitution

Then the substitution lemma follows. The subcases of the lemma reflect the possible value substi-

tutions that may take place during reduction.

Lemma 4.4.10 (Substitution Lemma).

1. Suppose Γ,x :U ;Λ;Σ ` P : T and Γ; /0; /0 `V : U. Then Γ;Λ,Σ ` P{V/x} : T .

2. Assume Γ;Λ1,x :U (T ′;Σ1 ` P : T and Γ;Λ2;Σ2 ` V : U (T ′ with Λ1,Λ2 and Σ1,Σ2

defined. Then Γ;Λ1,Λ2;Σ1,Σ2 ` P{V/x} : T .

3. Suppose Γ;Λ;Σ,x : S ` P : T and k 6∈ dom(Γ,Λ,Σ). Then Γ;Λ;Σ,k : S ` P{k/x} : T .

Proof The proof is by induction on the last rule applied in the typing derivation for P. In Part (1)

we do not state cases where substitution has no effect, as these can be shown trivially from the

assumptions with strengthening on the hypothesis for x in Γ,x :U . In Part (2), we assume that

substitution is only applied when x ∈ fv(P), which is correct since in any judgement x ∈ dom(Λ)

implies that x occurs in the term (see Lemma 4.4.5). For Part (3) we cannot assume that x ∈ fv(P),

since usages of the shape x : end can be obtained using (Close) even when x is not free in the term.

Part (1)

Case (Shared) P = x T = U Λ = Σ = /0

We have P{V/x}= V by the hypotheses, then T = U and Λ = Σ = /0. Then we use Γ; /0; /0 `V : U

to obtain the required judgement Γ;Λ,Σ ` P{V/x} : T .

Case (LVar) P = x is excluded because x ∈ dom(Λ) implies x 6∈ dom(Γ) by the well-formedness

of the judgement for P. This case is proved in Part (2).

Case (Session) P = x is excluded because x∈ dom(Σ) implies x 6∈ dom(Γ) by the well-formedness

of the judgement for P. This case is proved in Part (3).

Case (Sub) Trivial to show using the I.H. on the premise followed by an application of (Sub).

Case (Abs) P = λ(z : U1).Q z 6= x T = U1→ T1 Γ′ = Γ,z :U1

From the I.H. on the premises we have Γ′,x :U ;Λ;Σ ` Q{V/x} : T1 (1). With an application of

(Abs) on (1), binding variable z, we obtain Γ,x :U ;Λ;Σ ` λ(z : U1).Q{V/x} : T (2). Now, since by

4.4. TYPE SOUNDNESS AND TYPE SAFETY 89

the substitution we have that x 6∈ fv(λ(z : U1).Q{V/x}), we use strengthening on (2) to remove the

hypothesis for x and obtain the required judgement.

Case (AbsL) , (AbsS), (Rec) very similar to the case for (Abs).

Case (App) P = Q1 ·Q2 Λ = Λ1,Λ2 Σ = Σ1,Σ2

From the premises we obtain Γ,x :U ;Λi;Σi ` Qi{V/x} : Ti with T1 = U ′(T and T2 = U ′. We

then apply (App) with the above judgements in the premises, noting that the sidecondition (†) is

satisfied, and obtain the result. Strengthening to remove the hypothesis for x (which is not free in

the resulting term) is the last step.

Case (Nil) , (New), (NewS) are all straightforward to obtain from the premises using the I.H. fol-

lowed by an application of the respective rule. Removing the hypothesis for x is used as before to

obtain the desired shared environment for the final judgement.

Case (Conn) P = u(z).Q z 6= x T = �

We take the following cases:

1. Suppose u = x. Then we have Γ,x : U ;Λ;Σ ` x(z).Q : � (1). Also V = u′ and from the

assumptions Γ; /0; /0 ` u′ : U (2) with U = 〈S〉. We have P{V/x} = u′(z).Q{V/x}. From (1)

we obtain the premise Γ,x :U ;Λ;Σ,z:S`Q : � (3). Applying the I.H. on (3) we get Γ;Λ;Σ,z:

S`Q{V/x} : � (4). We now apply (Conn) with (2) and (4) to obtain Γ;Λ;Σ` u′(z).Q{V/x} : �

as required.

2. Suppose u 6= x. Then P{V/x} = u(z).Q{V/x}. From the assumption for P we obtain the

premise Γ,x :U ;Λ;Σ ` u : 〈S〉 (5). Then since x 6= u we can strengthen the hypotheses and

obtain Γ;Λ;Σ ` u : 〈S〉 (6). We obtain (4) as before, and apply (Conn) using (4) and (6) to

obtain the required judgement.

Case (ConnDual) is very similar to (Conn).

Case (Recv) , (RecvL), (RecvS) very similar to (Abs).

Case (Send) is similar to (App).

Case (Par) is straightforward to obtain using the I.H. on the premises followed by an application

of (Par).

90 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

Case (Close) is straightforward to obtain using the I.H. on the premises followed by an application

of (Close).

Case (Bra) , (Sel) is easy to prove using the I.H. on the premises. Note that k 6= x by the assumptions

since x is assigned a shared type.

Part (2)

Case (Shared) P = x is excluded because x appears in the linear function environment and there-

fore cannot also be in the shared environment as required by (Shared).

Case (LVar) P = x T = U (T ′ Λ1 = /0 Σ1 = /0

From the assumed judgement for P (note that Λ1 = /0 and Σ1 = /0) we have Γ;{x :U (T ′} ; /0 ` x :

T . Then from the assumed judgement for V we have Γ;Λ2;Σ2 `V : U(T ′ and since P{V/x}=V

and Λ1 = Σ1 = /0, this is the required typing judgement.

Case (Session) P = k = x is excluded because x appears in the linear function environment and

therefore cannot also be in the session environment as required by (Session), by well-formedness.

Case (Sub) As in Part (1), trivial to show using the I.H. on the premise followed by an application

of (Sub).

Case (Abs) P = λ(z : U1).Q z 6= x T = U1→ T1

From the I.H. on the premises of the judgement for P we have (with the hypothesis for x now re-

moved from the linear environment) Γ,z :U1;Λ1,Λ2;Σ1,Σ2 `Q{V/x} : T1 (1). With an application

of (Abs) on (1), binding variable z, we obtain Γ;Λ1,Λ2;Σ1,Σ2 ` λ(z : U1).Q{V/x} : T as required.

Case (AbsL) , (AbsS), (Rec) very similar to the case for (Abs).

Case (App) P = Q1 ·Q2 Σ1 = Σ11,Σ12 Λ1,x :U (T ′ = Λ11,Λ12

From the assumption Γ;Λ1,x :U (T ′;Σ1 ` P : T (1) and Lemma 4.4.5 we have that x ∈ fv(P).

Using P = Q1 ·Q2 with Lemma 4.4.8 on the assumption we also have that x 6∈ fv(Qi) for some

i ∈ {1,2}. We can therefore take two cases:

1. Take x∈ fv(Q1) and x 6∈ fv(Q2). Then P{V/x}= Q1{V/x}·Q2. The last rule applied (modulo

(Sub)) is (App). By the I.H. on the premise Γ;Λ′11,x :U (T ′;Σ11 ` Q1 : U1(T of (1) we

4.4. TYPE SOUNDNESS AND TYPE SAFETY 91

obtain Γ;Λ′11,Λ2;Σ11,Σ2 ` Q1{V/x} : U1(T (2). The other premise of (1) is Γ;Λ12;Σ12 `

Q2 : U1 (3). Now we can apply (App) with (2) and (3) as premises. We also need to respect

the sidecondition (†): this is already satisfied from the premises of the original application

of (App) with respect to (3). We thus obtain the required judgement.

2. The case x ∈ fv(Q2) and x 6∈ fv(Q1) is symmetric. One note is that if U1 is an arrow-type,

then by the sidecondition (†) of (App) we have that Λ12 = Σ12 = /0, and x 6∈ dom(Γ) by

WF of the assumption, hence in that case we have a contradiction since it must hold that

x 6∈ fv(Q2) by Lemma 4.4.1. This verifies our intuition that if a linear variable x appears in

Q2, then Q2 cannot be typed with a shared function type.

Case (Nil) , (New), (NewS) are straightforward using the I.H.

Case (Conn) , (ConnDual) follow a similar pattern to the same cases in Part (1). The proof is

slightly simpler since we have that if P = u(x).Q then since x is a linear function variable u 6= x.

Case (Recv) , (RecvL), (RecvS) very similar to (Abs).

Case (Send) is similar to (App).

Case (Par) is straightforward to obtain, as before, using the I.H. on the premises followed by an

application of (Par).

Case (Close) is straightforward as in the previous part.

Case (Bra) , (Sel) is easy to prove using the I.H. on the premises. Note that k 6= x by the assumptions

since x is assigned a linear type.

Part (3)

Most cases are straightforward as before. For the case (App), (Par), the proof is similar to the other

parts but makes use of Lemma 4.4.9 (instead of Lemma 4.4.8).

Case (Recv) P = k′?(z).Q T = �

We have Γ;Λ;Σ,x :S ` k′?(z).Q : �. Then we take cases on k′.

1. k′ = x. Then P{k/x}= k?(z).Q{k/x} and S =?[U].S′. From the premises of (Recv) we obtain

Γ,z :U ;Λ;Σ,x :S′ ` Q : �. By the I.H. we have Γ,z :U ;Λ;Σ,k :S′ ` Q{k/x} : �. Then with an

application of (Recv) we obtain Γ;Λ;Σ,k :?[U].S′ ` k?(z).Q{k/x} : � as required.

92 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

2. k′ 6= x. Then P{k/x} = k′?(z).Q{k/x} and Σ = Σ′,k′ :?[U].S′. As before by the premises

Γ,z :U ;Λ;Σ′,k′ :S′,x :S ` Q : �. By the I.H. Γ,z :U ;Λ;Σ′,k′ :S′,k :S ` Q{k/x} : �. Then with

an application of (Recv) we obtain Γ;Λ;Σ,k :S ` k′?(z).Q{k/x} : � as required.

Case (RecvL) , (RecvS) very similar to (Recv) above.

Case (Send) P = k′!〈V 〉.Q T = � Σ,x : S = (Σ1,Σ2)\{k′ : S′} ,k′ :![U].S′

Λ = Λ1,Λ2

From the premises of (Send) we have:

Γ;Λ1;Σ1 ` Q : � (1)

Γ;Λ2;Σ2 `V : U (2)

k′ :S′ ∈ Σi i = 1 or i = 2 (3)

if U = U ′→ T ′ then Σ2 = Λ2 = /0. (4)

Then we perform case analysis on k′:

1. Suppose k′ = x. Then S =![U].S′. We now look at the occurrence of x in the session envi-

ronments:

(a) Let x:S′ ∈ Σ1, then Σ1 = Σ′1,x : S′ and P{k/x}= k!〈V 〉.Q{k/x}. Using the I.H. on (1) we

obtain Γ;Λ1;Σ′1,k :S′ `Q{k/x} : � (3). Then we apply (Send) with (3) and (2), with the

sideconditions clearly satisfied from the assumptions, to obtain Γ;Λ;Σ′1,Σ2,k :![U].S′ `

k!〈V 〉.Q{k/x} : � as required.

(b) Let x : S′ ∈ Σ2, then Σ2 = Σ′2,x : S′ and P{k/x} = k!〈V{k/x}〉.Q. From the I.H. on

(2) we have Γ;Λ2;Σ′2,k : S′ ` V{k/x} : U (4). In this case we have U 6= U ′ → T ′

otherwise Σ2 would be the empty set. We now apply (Send) with (1) and (4) to obtain

Γ;Λ;Σ1,Σ
′
2,k :![U].S′ ` k!〈V{k/x}〉.Q : � as required.

2. Suppose k′ 6= x. As above we look at the occurrence of x in the session environments. Since

k′ 6= x we have two cases:

(a) Let x : S ∈ Σ1, then Σ1 = Σ′1,x : S and P{k/x} = k′!〈V 〉.Q{k/x}. By the I.H. on (1),

Γ;Λ1;Σ′1,k :S ` Q{k/x} : � (5). We apply (Send) as before with (5) and (2), the side-

conditions are satisfied (we do not check where k′ occurs in the session environments

Σ′1 and Σ2 as the sidecondition is met by the assumptions), and obtain Γ;Λ;(Σ′1,Σ2,k :

S)\{k′ :S′} ,k′ :![U].S′ ` k′!〈V 〉.Q{k/x} : � as required.

4.4. TYPE SOUNDNESS AND TYPE SAFETY 93

(b) Let x:S∈ Σ2, then Σ2 = Σ′2,x : S and P{k/x}= k′!〈V{k/x}〉.Q. Using the same sequence

of steps as before we obtain the result.

Case (Close)

Suppose (Close) was applied for some k′. Then the premise obtained is:

Γ;Λ;(Σ,x :S)\{k′ :end} ` P : T (1)

We now distinguish two cases:

1. x = k′. Then S = end. Also, x 6∈ dom(Γ,Λ,Σ) by the well-formedness of (1). By Lemma 4.4.1

x ∈ fv(P) implies x ∈ dom(Γ,Λ,Σ) thus we have x 6∈ fv(P). Then P{k/x}= P. From (1) we

obtain:

Γ;Λ;Σ ` P : T (2)

We have k 6∈ dom(Γ,Λ,Σ) by assumption, and we can apply (Close) to obtain:

Γ;Λ;Σ,k :end ` P : T

which is the desired result, since S = end and P{k/x}= P.

2. x 6= k′. Then from (1) we obtain:

Γ;Λ;(Σ\{k′ :end}),x :S ` P : T (4)

By the I.H. on (4) we have:

Γ;Λ;(Σ\{k′ :end}),k :S ` P{k/x} : T (5)

We now consider two cases:

(a) k′ :end ∈ Σ. Then with an application of (Close) on (5) we obtain:

Γ;Λ;Σ,k :S ` P{k/x} : T

as required.

(b) k′ :end 6∈ Σ. Then Σ\{k′ :end}= Σ and the result is immediate from (5).

94 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

The remaining session cases are straightforward.

Lemma 4.4.11 (Shared Value Judgement). If Γ;Λ;Σ`V : U and U ∈ {unit,〈S〉} then Λ = Σ = /0.

Proof Straightforward to show by induction on the typing derivation. There are two cases to

consider: if U = unit then by (Unit) the result is immediate; if U = 〈S〉 then by (Shared) the result

follows. No other typing rule need to be considered for this type of value.

Balanced Session Environments

Before stating the main theorems, we introduce the important notion of balanced session environ-

ments [39]. This formulation is used in theorems, to allow only typings where the two ends of

a channel are of dual types, modulo subtyping; otherwise there could be incompatibilities in the

structure of communications, which is undesirable.

Definition 4.4.12 (Balanced Session Environment). Formally, we say that a session environment

Σ is balanced, written balanced(Σ), if whenever s : S1,s : S2 ∈ Σ, then S1 6c S2.

Theorem 4.4.13 (Type Soundness).

1. Suppose Γ;Λ;Σ ` P : � with balanced(Σ). Then P≡ P′ implies Γ;Λ;Σ ` P′ : �.

2. Suppose Γ; /0;Σ ` P : T with balanced(Σ). Then P −→ P′ implies Γ; /0;Σ′ ` P′ : T with

balanced(Σ).

Proof In both parts the proof is by induction on the typing derivation for P, given by the assumed

judgement, taking cases on the last rule applied, using ≡ in (1), and −→ in (2). Part (1) is

standard, however we present one case which is slightly different. For Part (2) we show the

important cases.

Part (1)

Most cases are standard. We are interested in the case of scope extrusion of session endpoints, that

is, (νs)P |Q≡ (νs)(P |Q) when s,s 6∈ fn(Q). We need to investigate two directions, corresponding

to the two ways in which the rule can be applied.

Case (Scope extrusion (endpoints)⇒) P = (νs)R |Q P′ = (νs)(R |Q) T = �

balanced(Σ) s,s 6∈ fn(Q)

4.4. TYPE SOUNDNESS AND TYPE SAFETY 95

The last rule applied is (Par), then from the premises, with Λ = Λ1,Λ2 and Σ = Σ1,Σ2, we

obtain:
Γ;Λ1;Σ1 ` (νs)R : � (1)

Γ;Λ2;Σ2 ` Q : � (2)

In (1) the last rule applied was (News), and we obtain the premise:

Γ;Λ1;Σ1,s :S,s :S ` R : � (3)

From the well-formedness of (3), we know that s,s 6∈ dom(Σ1). However, even though s,s 6∈ fn(Q),

it is not guaranteed that s,s 6∈ dom(Σ2) because ended hypotheses can be introduced by the use

of (Close). If s or s or both appear in Σ2, we cannot apply (Par) on (3) and (2), because the

Σ-environment will not be defined.

1. Σ2 = Σ′2,s:S1 and s 6∈ dom(Σ′2). By Lemma 4.4.7 we have that S1 = end. Using Lemma 4.4.4

we can obtain

Γ;Λ2;Σ′2 ` Q : � (4)

Then we apply (Par) on (3) and (4) and obtain:

Γ;Λ;Σ1,Σ
′
2,s :S,s :S ` R |Q : � (5)

With an application of (News) we obtain:

Γ;Λ;Σ1,Σ
′
2 ` (νs)(R |Q) : � (6)

Then with an application of (Close) we obtain:

Γ;Λ;Σ1,Σ2 ` (νs)(R |Q) : �

as required.

2. Σ2 = Σ′2,s :S1 and s 6∈ dom(Σ′2). As above.

3. Σ2 = Σ′2,s : S1,s : S1. As before but with two applications of Lemma 4.4.4 and two applica-

tions of (Close) in the end.

4. s,s 6∈ dom(Σ2). Then we apply (Par) followed by (News) and obtain the required result as

before.

96 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

Case (Scope extrusion (endpoints)⇐) P = (νs)(R |Q) P′ = (νs)R |Q T = �

balanced(Σ) s,s 6∈ fn(Q)

The last rule applied was (News). From the premises we obtain:

Γ;Λ;Σ,s :S,s :S ` R |Q : � (1)

Let Λ = Λ1,Λ2 and Σ,s :S,s :S = Σ1,Σ2. The last rule applied was (Par) giving the premises:

Γ;Λ1;Σ1 ` R : � (2)

Γ;Λ2;Σ2 ` Q : � (3)

We now examine the following four cases:

1. Σ1 = Σ′1,s :S,s :S. Then we can apply (News) on (2) followed by (Par) on the result and (3)

to obtain the required judgement.

2. Σ1 = Σ′1,s : S ∧ s 6∈ dom(Σ′1). Then we have Σ2 = Σ′2,s : S and by Lemma 4.4.7 S =

end = S. By Lemma 4.4.4 on (3) we obtain:

Γ;Λ2;Σ′2 ` Q : � (4)

With an application of (Close) on (2) we obtain:

Γ;Λ1;Σ1,s :S ` R : � (5)

With an application of (News) on (5) we obtain:

Γ;Λ1;Σ′1 ` (νs)R : � (6)

Then applying (Par) on (6) and (4) we obtain:

Γ;Λ;Σ′1,Σ
′
2 ` (νs)R : �

which is the required judgement since Σ′1,Σ
′
2 = Σ.

3. Σ1 = Σ′1,s :S ∧ s 6∈ dom(Σ′1). Similar to above.

4.4. TYPE SOUNDNESS AND TYPE SAFETY 97

4. s,s 6∈ dom(Σ1). Similar to the above case but with two uses of Lemma 4.4.4 on (3) and two

applications of (Close) on (2).

Part (2)

The interesting cases are (beta), (conn), and (comm). The case of (rec) is almost identical to (beta),

and simpler due to the absence of hypotheses in the session environment due to the repetitive

actions of the term. Notice that the assumed judgement has an empty linear environment, but this

is not a restriction, because reduction is only defined between closed terms.

Case (beta) P = (λ(x :U).Q)V P′ = Q{V/x} Σ = Σ1,Σ2 balanced(Σ)

The last rule in the derivation for the assumed judgement was (App) from which we obtain the

premises:

Γ; /0;Σ1 ` λ(x :U).Q : U (T (1)

Γ; /0;Σ2 `V : U (2)

Also, by the sidecondition (†), if U = U ′→ T ′ then Σ2 = /0.

From (1) we have that the last rule applied was (Sub), as it is the only rule to introduce the

linear function type, with premise:

Γ; /0;Σ′1 ` λ(x :U).Q : U → T ′ (3)

U → T ′ 6c U (T (4)

Σ′1 6c Σ1 (5)

To accommodate for the different abstraction rules that could have been used to obtain (3), we

will need to take cases on the type U .

1. U ∈ {unit,〈S〉,U1→ T1}. Then the rule used to type (3) was (Abs), and we obtain the

premise:

Γ,x :U ; /0;Σ′1 ` Q : T ′ (6)

Looking at (2), by Lemma 4.4.11, if U ∈ {unit,〈S〉}, we have that Σ2 = /0. By the sidecon-

dition (†), if U = U1→ T1, we also have Σ2 = /0. We can therefore use Lemma 4.4.10, part

(1), to obtain:

Γ; /0;Σ′1 ` Q{V/x} : T ′ (6)

98 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

Using (Sub) with premises (6), (5), (4) we obtain:

Γ; /0;Σ1 ` Q{V/x} : T

which, since Σ2 = /0, is equivalent to:

Γ; /0;Σ ` Q{V/x} : T

with balanced(Σ), from the assumptions, as required.

2. U = U1(T1. Then the rule used to type (3) was (AbsL), and we obtain the premise:

Γ;{x :U} ;Σ′1 ` Q : T ′ (7)

Then using Lemma 4.4.10, part (2), we obtain from (7):

Γ; /0;Σ′1,Σ2 ` Q{V/x} : T ′ (8)

Using (Sub) with premises (8), (5), (4), and since Σ′1,Σ2 6c Σ1,Σ2, we obtain:

Γ; /0;Σ ` Q{V/x} : T

and as before balanced(Σ), as required.

3. U = S. Then the rule used to type (3) was (AbsS), and we obtain the premise:

Γ; /0;Σ′1,x :S ` Q : T ′ (9)

We also have that V = k and Σ2 = {k :S}. Then using Lemma 4.4.10, part (3), we obtain

from (9):

Γ; /0;Σ′1,k :S ` Q{k/x} : T ′ (10)

Using (Sub) with premises (10), (5), (4), and since Σ′1,k :S 6c Σ1,k :S and Σ2 = {k :S}, we

obtain:

Γ; /0;Σ ` Q{k/x} : T

with balanced(Σ) as required.

4.4. TYPE SOUNDNESS AND TYPE SAFETY 99

Case (conn) P = a(x).Q | a(z).R P′ = (νs)(Q{s/x} | R{s/z}) s,s 6∈ fn(Q,R)

T = � Σ = Σ1,Σ2 balanced(Σ)

The last rule applied is (Par), from the premises of which we obtain:

Γ; /0;Σ1 ` a(x).Q : � (1)

Γ; /0;Σ2 ` a(z).R : � (2)

The last rule applied for (1) is (Conn), with premises:

Γ; /0; /0 ` a : 〈S〉 (3)

Γ; /0;Σ1,x :S ` Q : � (4)

The last rule applied for (2) is (ConnDual), with premises:

Γ; /0; /0 ` a : 〈S〉 (5)

Γ; /0;Σ2,z :S ` R : � (6)

Above we used the fact that S = S. Since s,s 6∈ fn(Q,R) we can apply Lemma 4.4.10, part (3), on

(4) and (6), respectively, to obtain:

Γ; /0;Σ1,s :S ` Q{s/x} : � (7)

Γ; /0;Σ2,s :S ` R{s/z} : � (8)

We can now apply (Par) with premises (7) and (8), since Σ1,Σ2,s : S,s : S is defined, followed by

an application of (News), to obtain:

Γ; /0;Σ ` P′ : �

with balanced(Σ) as required.

Case (comm) P = k?(x).Q | k!〈V 〉.R P′ = Q{V/x} | R k = s or k = s

T = � Σ = Σ1,Σ2 balanced(Σ)

The last rule applied was (Par), and from the premises we obtain:

Γ; /0;Σ1 ` k?(x).Q : � (1)

Γ; /0;Σ2 ` k!〈V 〉.R : � (2)

100 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

In (2), the last rule was (send), and we obtain the premises:

Γ; /0;Σ21 `V : U (3)

Γ; /0;Σ22 ` R : � (4)

k :S ∈ Σ2i (5)

Σ2 = (Σ21,Σ22)\
{

k : S
}

,k : ![U].S (6)

U = U ′→ T ′ =⇒ Σ21 = /0 (7)

Since the environment Σ is balanced, and k occurs in Σ1, we have that Σ1 = Σ′1,k :?[U].S. We

now take cases on the shape of U :

1. U ∈ {unit,〈S〉,U1→ T1}. Then the last rule applied in (1) was (Recv), and we obtain the

premise:

Γ,x :U ; /0;Σ′1,k :S ` Q : � (8)

In (3), by Lemma 4.4.11, if U ∈ {unit,〈S〉}, we have that Σ21 = /0. Also, by (7) if U =U ′→

T ′ then again Σ21 = /0. We can now apply Lemma 4.4.10, part (1), on (8) and (3), to obtain:

Γ; /0;Σ′1,k :S ` Q{V/x} : � (9)

We proceed by applying (Par) using (9) and (4) in the premises, and obtain:

Γ; /0;Σ′1,Σ22,k :S ` Q{V/x} : � (10)

Since Σ21 = /0 from (5) we have that k : S ∈ Σ22. Let Σ22 = Σ′22,k : S. Then Σ′1,Σ
′
22 ⊂ Σ and

therefore the final session environment Σ′ = Σ′1,Σ
′
22,k :S,k :S is balanced, as required.

2. U = U1(T1. Then the rule used to type (1) was (RecvL), and we obtain the premise:

Γ;{x :U} ;Σ′1,k :S ` Q : � (11)

We then apply Lemma 4.4.10, part (2), with (11) and (3) to obtain:

Γ; /0;Σ′1,Σ21,k :S ` Q{V/x} : � (12)

4.4. TYPE SOUNDNESS AND TYPE SAFETY 101

Next we apply (Par) with (12) and (4) to obtain:

Γ; /0;Σ′1,Σ21,Σ22,k :S ` Q{V/x} : � (13)

Let Σ′ be the final environment with Σ′ = Σ′1,Σ21,Σ22,k : S. From (5) we have that Σ2 =

Σ′21,Σ
′
22,k : S. Therefore Σ′ = Σ′1,Σ

′
21,Σ

′
22,k : S,k : S and since Σ′1,Σ

′
21,Σ

′
22 ⊂ Σ we have that

Σ′ is balanced as required.

3. U = S′. Then V = k′ and, from (3), Σ21 = {k′ :S′}. The rule used to type (1) was (RecvS),

and we obtain the premise:

Γ; /0;Σ′1,k :S,x :S′ ` Q : � (14)

We then apply Lemma 4.4.10, part (3), with (14) and (3) to obtain:

Γ; /0;Σ′1,k :S,k′ :S′ ` Q{k′/x} : � (15)

Next we apply (Par) with (15) and (4) to obtain:

Γ; /0;Σ′1,Σ22,k :S,k′ :S′ ` Q{V/x} : � (16)

Let Σ′ be the final environment with Σ′= Σ′1,Σ22,k:S,k′ :S′. We consider two cases (recalling

that a session can emit itself):

(a) k = k′. Then using (5), we obtain that S′ = S. The final environment Σ′ becomes

Σ′1,Σ22,k :S,k :S and Σ′1,Σ22 ⊂ Σ hence balanced(Σ′) as required.

(b) k 6= k′. Then from (5) we have Σ22 = Σ′22,k : S. The final environment Σ′ becomes

Σ′1,Σ
′
22,k : S,k : S,k′ : S′ and since Σ21 = {k′ :S′} we obtain Σ′1,Σ

′
22,k : S,k : S,Σ21. We

have Σ′1,Σ
′
22,Σ21 ⊂ Σ therefore balanced(Σ′) as required.

Type safety

We now formalise type safety. First, a k-process is a prefixed process with subject k (such as k?(x)

and k!〈V 〉). Next, a k-redex is a parallel composition of a k-process and a k-process, of the form

(k!〈V 〉P | k?(x)Q) or (kC lm.P | kB {l1 : Q1; · · · ln : Qn}) with 1 ≤ m ≤ n. Then we say P is an

102 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

error if P≡ (ν~a)(ν~s)(Q | R) where Q is, for some k, the |-composition of either a k-process and a

k-process that do not form a k-redex, or two k-processes. The last class of error subsumes the case

of more than two k-processes in parallel. We then have:

Theorem 4.4.14 (Type Safety). A typable process Γ;Λ;Σ ` P : � with balanced(Σ) never reduces

into an error.

Proof By Type Soundness (Theorem 4.4.13), it is enough to show that error processes are not

typable. We prove this by contradiction. Assume P ≡ (ν~a)(ν~s)(Q | R) and let Q be an error

process. We consider two cases depending on the class of the error:

1. Q is the |-composition of a k-process and a k-process that do not form a k-redex. All com-

binations are similar. Take for instance Q = k!〈V 〉.Q1 | kC l.Q2. Then by the typability

of P we have that (Par) can be applied on Q giving Γ;Λ1,Λ2;Σ1,Σ2 ` Q : � (1) and from

its premises we obtain Γ;Λ1;Σ1 ` k!〈V 〉.Q1 : � (2) and Γ;Λ2;Σ2 ` kC l.Q2 : � (3). In (2)

we can apply (Send) and therefore Σ1 = Σ′1,k :![U].S1. In (3) we can apply (Sel) and thus

Σ2 = Σ′2,k :⊕[l1 :S1, . . . , ln :Sn]. Since balanced(Σ) and Σ1,Σ2⊆ Σ we have balanced(Σ1,Σ2).

But then we require ![U].S1 6c ⊕[l1 :S1, . . . , ln :Sn] which is impossible to derive, hence we

arrive to a contradiction. Other combinations that do not form redices are proved similarly.

2. Q is the |-composition of two k-processes. As before all combinations are proved in the

same way. Let Q = k!〈V 〉.Q1 |k?(x).Q2. If we apply (Par) then from the premises we obtain

Γ;Λ1,Λ2;Σ1,Σ2 `Q : � and from the latter’s premises we obtain Γ;Λ1;Σ1 ` k!〈V 〉.Q1 : � and

Γ;Λ2;Σ2 ` k?(x).Q2 : �. We then have that Σ1 = Σ′1,k :![U].S and Σ2 = Σ′2,k :?[U ′].S′ from

typing the premises with (Send) and (Recv) (or (RecvL/S)). But then Σ1,Σ2 is undefined as k

occurs in the domain of both Σ1 and Σ2. Other cases are similar.

4.4.2 Typing the Hotel Booking Example

Using the typing system, we can now type the hotel booking example in § 4.2.4, guaranteeing its

type safety. Agent has the following types at a and b.

a : 〈![string]...⊕ [rtt < 100 : S1 ; rtt≥ 100 : S1]〉, b : 〈![S2].end〉

with S1 = &[cont : ?[S2].![int].end ; move : ?[S2].![int].end]

and S2 = &[cont :![string].?[int]...end ; move :![p�q1].end]

4.5. CONCLUDING REMARKS 103

Note that the type of a is dualised because a is used as the input in Agent (see (Acc)). S1 consists of

higher-order session passing, and the thunk has a linear arrow type. Client and Hotel just have

the dual of Agent’s type at a and the dual of Agent’s type at b, respectively. Note that in Client,

subject y is shared in the sent code V , which is typed by (Send) with a general side condition

k : S1 ∈ Σ2 explained in § 5.4.

4.5 Concluding Remarks

Our typing system is substructural in the sense that for session environments Σ we do not al-

low weakening and contraction, ensuring that a session channel is recorded as having been used

only when it actually occurs in session communication expressions. Similarly no structural trans-

formations can apply to linear variable environments, ensuring that the occurrence of a variable

manifests that it has indeed been used exactly once. Note that, in our system there is no need to

enforce linear usage for other than functional types. Applying the inference techniques of [31, 30]

and [84], with the algorithmic subtyping of [39], it may be possible to construct a type inference

system.

5 Asynchronous Session
Subtyping

Overview Here we introduce session subtyping into a buffered version of the process lan-

guage HOπs of the previous chapter. We define a coinductive subtyping relation between ses-

sion types corresponding to what is intuitively understood as more asynchronous behaviour.

5.1 Introduction

Our recent work [65] developed a new subtyping, asynchronous subtyping, that characterises

compatibility between classes of permutations of communications within asynchronous proto-

cols, offering much greater flexibility. However, an interesting development remained: how to

uniformly introduce communication optimisations in the presence of code mobility [63], incorpo-

rating higher-order sessions and functions into the asynchronous subtyping [65, § 6]. This is the

question we address in the paper [64], which is the basis for the material in this chapter.

Higher-Order Processes with Asynchronous Sessions. We develop a session typing system for

the Higher-order π-calculus [79], an amalgamation of call-by-value λ-calculus and π-calculus, ex-

tending [63]. Code mobility is facilitated by sending not just ground values and channels, but also

abstracted processes that can be received and activated locally, reducing the number of transmis-

sions of remote messages. The simplest code mobility operations are sending a thunked process

pPq via channel s (denoted as s!〈pPq〉), and receiving and running it by applying the unit (denoted

as s?(x).x()). In our calculus, communications are always within a session, established when

accept and receive processes synchronise on a shared channel:

a(x).x!〈5〉.x!〈true〉.x?(y).(y() | R) | a(x).x?(z1).x?(z2).x!〈pPq〉

resulting in a fresh session, consisting two channels s and s, each private to one of the two pro-

cesses, and their associated queues initialised to be empty:

(νs)(s!〈5〉.s!〈true〉.s?(y).(y() | R) | s?(z1).s?(z2).s!〈pPq〉 | s :ε | s :ε)

105

106 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

To avoid conflicts, an output on a channel s (resp. s) places the value on the dual queue s (resp. s),

while an input on s reads from s (resp. for s). Thus, after two steps the outputs of 5 and true are

placed on queue s as follows:

(νs)(s?(y).(y() | R) | s?(z1).s?(z2).s!〈pPq〉 | s :ε | s :5 ·true)

and in two more steps the right process receives and reduces to s!〈pPq{5/z1}{true/z2}〉. Similarly

the next step transmits the thunked process, and R can interact with P locally. The session type

of s, S =?[nat].?[bool].![U].end (where U is the type of pPq), guarantees that values are received

following the order specified by S.

Asynchronous Communication Optimisation with Code Mobility Suppose the size of P is

very large and it does not contain z1 and z2. Then the right process might wish to start transmission

of P to s :ε concurrently without waiting for the delivery of 5 and true, since the sending is non-

blocking. Thus we send pPq ahead as in s!〈pPq〉.s?(z1).s?(z2).0. The interaction with the left

process is safe as the outputs are ordered in an exact complementary way. However the optimised

code is not composable with the other party by the original session system [81] since it cannot

be assigned S. To make this optimisation valid, we proposed the asynchronous subtyping in [65]

by which we can refine a protocol to maximise asynchrony without violating the session. For

example, in the above case, S′ =![U].?[nat].?[bool].end is an asynchronous subtype of S, hence

the resulting optimisation is typable.

The idea of this subtyping is intuitive and the combination of two kinds of optimisations is vital

for typing many practical protocols [82, 90] and parallel algorithms [67], but it requires subtle for-

mal formulations due to the presence of higher-order code. The linear functional typing developed

in [63] permits to send a value that contains free session channels: for example, not only message

s!〈ps′?(x).s′!〈x〉q〉 (for s!〈pPq〉), but also one which contains its own session s!〈ps?(x).s!〈x〉q〉 is

typable (if R conforms with the dual session like R = s!〈7〉.s?(z).0). The first message can go

ahead correctly, but the permutation of the second message (as s!〈pPq〉) violates safety since the

input action s?(x) will appear in parallel with s?(z1).s?(z2), creating a race condition, as seen in:

(νs)(s?(x).s!〈x〉 | R | s?(z1).s?(z2).0 | s :ε | s :5 ·true)

Our paper [64] shows that the combination of two optimisations is indeed possible by establishing

soundness and communication-safety, subsuming the original typability from [63]. The technical

5.2. THE HIGHER-ORDER π-CALCULUS WITH ASYNCHRONOUS SESSIONS 107

challenge is to prove the transitivity of the asynchronous subtyping integrated with higher-order

(linear) function types and session-delegation, since the types now appear in arbitrary contravariant

positions [65]. Moreover the definitions are now exposed more constructively. Another challenge

is to formulate a runtime typing system which handles both stored higher-order code with open

sessions and asynchronous subtyping. We demonstrate all facilities of type-preserving optimisa-

tions proposed in [64] by using an e-commerce scenario.

Terms

P,Q,R ::= . . .

| s :~h queue

Messages

h ::= l label
| V value

Figure 5.1: Syntax modifications for Asynchronous Higher-order π-calculus

5.2 The Higher-Order π-Calculus with Asynchronous Sessions

5.2.1 Syntax and Reduction

We modify and extend the Synchronous Higher-Order calculus of Chapter 4 (HOπs), adding to the

syntax defined in Figure 4.1 the productions of Figure 5.1. We call the new calculus HOπas, the

Asynchronous Higher-Order π-calculus with sessions. The new components are message queues,

also called buffers, and written s :~h. A queue s :~h provides access, via a session that uses s, to the

ordered messages~h. It can be thought of as a network pipe in a TCP-like transport mechanism.

The messages can be values, or labels which are required for selection and branching. The dual

of a queue endpoint s is denoted by s, and represents the other endpoint of the same session. The

operation is self-inverse hence

s = s

Note that queues and session restrictions appear only at runtime. A program is a process which

does not contain runtime terms. Other primitives are standard. We often omit 0.

The bindings remain the same. The derived notions of bound and free identifiers, alpha equiv-

108 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

alence and substitution are standard; see Figure 4.2. Free names, however, are extended to queue

processes (which can contain labels) as follows:

fn(l) = /0 fn(s : h1 . . .hn) = (∪i∈1..nfn(hi))∪{s}

The single-step call-by-value reduction relation, denoted −→, is defined as a modification of

the original rules of Figure 4.4, using the rules in Figure 5.2.

Rule (conn) is modified, to establish a new session between server and client via shared name u,

generating two fresh session channels and the associated empty queues (ε denotes the empty se-

quence). The original (comm) and (label) are removed and replaced with asynchronous rules for

session communication. Rules (send) and (sel) respectively enqueue a value and a label at the tail

of the queue for a dual endpoint k. Rules (recv) and (bra) dequeue, from the head of the queue, a

value or label. (recv) substitutes value V for x in P, while (bra) selects the corresponding branch

for index m.

Since (conn) provides a queue for each channel, these rules say that a sending action is never

blocked (asynchrony) and that two messages from the same sender to the same channel arrive in

the sending order (order preservation). Other rules are standard.

We use the standard structural congruence rules [59], defined in Figure 4.3. We add a non-

standard rule, for garbage collecting queues from completed sessions:

(νs)(s :ε | s :ε)≡ 0 garbage collection

With “�” we denote the multi-step reduction defined as (≡ ∪→)∗.

5.2.2 Example: Optimised Business Protocol with Code Mobility

We show a business/financial protocol interaction from [90, 82] which integrates the two kinds of

type-safe optimisations. We extend the scenario from [63] to highlight the expressiveness gained

using the new method. Figure 5.3 draws the sequencing of actions modelling a hotel booking

through a process Agent. On the left Client behaves dually to Agent; on the right, an optimised

MClient utilises type-safe asynchronous behaviour.

The Agent behaves the same towards both clients: initially it calculates the round-trip time

(RTT) of communication (rtt) and sends it; it then offers to the other party the option to consider

the RTT and either send mobile code to interact with the Agent on its location, or to continue the

protocol with each executing remotely their behaviour. When mobile code (after choice move) is

5.2. THE HIGHER-ORDER π-CALCULUS WITH ASYNCHRONOUS SESSIONS 109

(beta)

(λ(x : U).P)V −→ P{V/x}

(rec)

(µy.λx.P)V −→ P{V/x}{µy.λx.P/y}

(send)

k!〈V 〉.P | k :~h −→ P | k :~h ·V

(recv)

k?(x).P | k :V ·~h −→ P{V/x} | k :~h

(sel)

kC l.P | k :~h −→ P | k :~h · l

(bra)

kB{l1 :P1, . . . , ln :Pn} | k : lm ·~h −→ Pm | k :~h 1≤ m≤ n

(conn)

a(x).P | a(z).Q −→ (νs)(P{s/x} | Q{s/z} | s :ε | s :ε) s,s 6∈ fn(P,Q)

k = s or k = s

(app-l) P−→ P′
PQ−→ P′Q

(app-r) Q−→ Q′

V Q−→V Q′
(par) P−→ P′

P |Q−→ P′ |Q

(resc) P−→ P′
(νa :〈S〉)P−→ (νa :〈S〉)P′ (ress) P−→ P′

(νs)P−→ (νs)P′
(str) P≡ P′ −→ Q′ ≡ Q

P−→ Q

Figure 5.2: Reduction

110 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

rtt

move

hotel

roomtype

rate

creditcard

local

move

hotel

roomtype

rate creditcard

rtt

code code

run code run code

MClientAgentClient

Figure 5.3: Standard (left) and Optimised (right) Interaction for Hotel Booking

received, it is run by the Agent completing the transaction on behalf of the client, in a sequence of

steps. The behaviour of Client is straightforward and complementary to Agent, but MClient has

special requirements: it represents a mobile device with limited processing power, and irrespective

of the RTT it always sends mobile code; moreover, it does not care about money, and provides the

creditcard number (card) before finding out the rate.

To represent this optimised scenario, we start from the process for Agent:

Agent = a(x).x!〈rtt〉.xB{move : x?(code).(run code | Q), local : Q}

Q = x?(hotel).x?(roomtype).x!〈rate〉.x?(creditcard) . . .

The session is initiated over a, then the rtt is sent, then the choices move and local are offered. If

the first choice is made then the received code is run in parallel to the process Q which continues

the agent’s session, performing optimisation by code mobility. As expected, Client has dual

behaviour:

Client = a(x).x?(rtt).xCmove.x!〈px!〈ritz〉.x!〈suite〉.x?(rate).x!〈card〉. . . .q〉

A more interesting optimisation is given by MClient which at first may seem to disagree with the

intended protocol:

MClient = a(x).xCmove.x!〈px!〈ritz〉.x!〈suite〉.x!〈card〉.x?(rtt).x?(rate) . . .q〉

5.3. HIGHER-ORDER ASYNCHRONOUS SUBTYPING 111

After the session is established, it eagerly sends its choice move, ignoring rtt, followed by a

thunk that will continue the session; and another important point is that in the mobile code the

output of the card happens before rtt and rate are received.

Even without subtyping, the typing of sessions in the HOπ-calculus poses delicate condi-

tions [63]; in the present system, we can further verify that the optimisation of MClient does not

violate communications safety (but the similar example in § 1, s!〈ps?(x).s!〈x〉q〉.s?(z1).s?(z2).0,

must be untypable): when values are received they are always of the expected type, conforming to

a new subtyping relation given in the next section.

5.3 Higher-Order Asynchronous Subtyping

This section presents a theory of asynchronous session subtyping: reordered communications

between two processes, in the presence of higher-order values and session mobility, can preserve

the desired type-safety and progress invariants of the original protocol.

A permutation of two inputs or two outputs is not permissible because it violates type-safety.

Suppose P = s!〈2〉.s!〈true〉.s?(x).0 and Q = s?(y).s?(z).s!〈y + 2〉.0. These processes interact

correctly. If we permute the outputs of P to get P′ = s!〈true〉.s!〈2〉.s?(x).0, then the parallel

composition (P′ | Q) causes a type-error. Similarly, an alteration in the order of inputs may cause

deadlock, losing progress in session s. For example, consider exchanging s!〈true〉 and s?(z) in

P1 = s!〈true〉.s?(z).0, and Q1 = s?(y).s!〈2〉.0.

The syntax of types remains the same as in Chapter 4, defined in Figure 4.6 on page 75.

We begin with some preliminary notions. An occurrence of a type constructor not under a re-

cursive prefix in a recursive type is called a top-level action. For example, ![U1] and ?[U2] in

![U1].?[U2].µt.![U3].t are top-level, but ![U3] in the same type is not.

Consider the following types:

S1 = ![U1].?[U2].µt.![U1].?[U2].t

S2 = µt.?[U2].![U1].t

Intuitively, we want to include S1 in the subtypes of S2, because in the infinite expansion of the

types any action of S1 can be matched to one in S2. The first output ![U1] of S1 needs to be matched

with a copy of the same output obtained after unrolling the recursion in S2 once, resulting in:

S′2 =?[U2].![U1].S2

112 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

This unrolling is necessary because under the µ binder, every action has multiplicative effect, and

by unrolling once we can obtain one of the possibly infinite instances of the action. For this

strategy to succeed, we need to obtain the output ![U1] in S′2 which is guarded under the input

action ?[U2]. Then, the input action can be compared, and the remaining types checked, following

a coinductive method similar to the one in Chapter 4.

To summarise, in asynchronous coinductive subtyping we need to formalise both the unfolding

of a type and also the type contexts specifying the top-level actions that may guard an output (or

selection).

We generalise the type unfolding function defined in [39] so that it can be applied to guarded

types, yielding the following definition, based on [65]:

Definition 5.3.1 (n-time unfolding).

unfold0(S) = S for all S unfold1+n(S) = unfold1(unfoldn(S))

unfold1(![U].S) =![U].unfold1(S) unfold1(⊕[li : Si]i∈I) =⊕[li : unfold1(Si)]i∈I

unfold1(?[U].S) =?[U].unfold1(S) unfold1(&[li : Si]i∈I) = &[li : unfold1(Si)]i∈I

unfold1(t) = t unfold1(µt.S) = S[µt.S/t] unfold1(end) = end

For any recursive type S, unfoldn(S) is the result of inductively unfolding the top level recur-

sion up to a fixed level of nesting. For example:

unfold1(?[U].µt.![U ′].t) = ?[U].![U ′].µt.![U ′].t

unfold2(?[U].µt.?[U].µt′.![U ′].t′) =

unfold1(?[U].?[U].µt′.![U ′].t′) =

?[U].?[U].![U ′].µt′.![U ′].t′

From the definition we have that unfold1(unfoldn(S)) = unfoldn(unfold1(S)), even though nor-

mally we apply from the outside. Also, since recursive types are not unfolded until they become

guarded, but only n-times, unfoldn(S) terminates. Moreover, because our recursive types are con-

tractive, there is no need to apply unfolding indefinitely to obtain a guarded type.

Then we proceed to define the contexts corresponding to a nested structure of top-level input

actions (where branching is treated like input in the sense that a label is to be received). The

rationale is that a supertype is less asynchronous than a subtype, hence may consist of input actions

before any outputs that need to be checked first, based on the prefix of the subtype. Thus, the

5.3. HIGHER-ORDER ASYNCHRONOUS SUBTYPING 113

multi-hole asynchronous contexts are defined as follows:

Definition 5.3.2 (Asynchronous Contexts).

A ::= 〈·〉h∈H | ?[U].A | &[li : Ai]i∈I

We write A〈Sh〉h∈H for the context A with holes indexed by h ∈ H, where each hole 〈·〉h∈H is

substituted with Sh. For example, taking H = {1,2} and

A = &[l1 :?[U].〈·〉1∈H , l2 : 〈·〉2∈H]

we obtain

A〈![U ′].Sh〉h∈H = &[l1 :?[U].![U ′].S1 , l2 :![U ′].S2]

We now introduce the main definition, asynchronous communication subtyping, which is a

modification of the coinductive method of Definition 4.3.1:

Definition 5.3.3 (Asynchronous Subtyping). A relation ℜ ∈ T × T is an asynchronous type

simulation if (T1,T2) ∈ℜ implies the following conditions:

1. If T1 = �, then T2 = �.

2. If T1 = unit, then T2 = unit.

3. If T1 =U1→ T ′1 , then T2 =U2→ T ′2 or T2 =U2(T ′2 with (U2,U1)~ ∈ℜ and (T ′1,T
′

2)
~ ∈ℜ.

4. If T1 = U1(T ′1 , then T2 = U2(T ′2 with (U2,U1)~ ∈ℜ and (T ′1,T
′

2)
~ ∈ℜ.

5. If T1 = 〈S1〉, then T2 = 〈S2〉 and (S1,S2) ∈ℜ and (S2,S1) ∈ℜ.

6. If T1 = end, then for some n, unfoldn(T2) = end.

7. If T1 =![U1].S1, then for some n, unfoldn(T2) = A〈![U2].S2h〉h∈H with (U1,U2)~ ∈ℜ and

(S1,A〈S2h〉h∈H) ∈ℜ.

8. If T1 =?[U1].S1, then for some n, unfoldn(T2) =?[U2].S2, (U2,U1)~ ∈ℜ and (S1,S2) ∈ℜ.

9. If T1 =⊕[li : S1i]i∈I , then for some n, unfoldn(T2) = A〈⊕[l j : S2 jh] j∈Jh〉h∈H and ∀h∈H . I⊆ Jh

and ∀i ∈ I.(S1i,A〈S2ih〉h∈H) ∈ℜ.

10. If T1 = &[li : S1i]i∈I , then for some n, unfoldn(T2)= &[l j : S2 j] j∈J , J⊆ I and ∀ j ∈ J.(S1 j,S2 j) ∈ℜ.

114 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

11. If T1 = µt.S, then (unfold1(T1),T2) ∈ℜ.

The coinductive subtyping T1 6c T2 (read: T1 is an asynchronous subtype of T2) is defined when

there exists a type simulation ℜ with (T1,T2) ∈ ℜ. Formally, 6c is the largest type simulation,

defined as the union of all type simulations.

Most cases are similar to the ones in Definition 4.3.1, but in order to facilitate the asynchronous

rules the unfolding of the supertype is performed at each case for some level n. We focus on the

new rules: in (7), an output prefix of T1 can be simulated when T2 can be unfolded to obtain a type

that has an output hidden under an asynchronous context A , which by definition consists of only

inputs and branchings. Therefore, U1 is compared to U2, the first available top-level output. As

before, we adapt the variance based on the shape of Ui. Then the continuation S1 of T1 is compared

with the asynchronous context A〈S2h〉h∈H where the output(s) have been removed, since they were

matched with the output prefix of T1. For the input in (8), we do not use any context, since the

input must appear as the first action after unfolding. No action can appear before the desired

input at the supertype: if there is a branching (which is a form of input, with labels as values)

it is not comparable, and if there is an output or selection then T2 cannot be a supertype of the

input-prefixed type T1.

In (9), selection is defined similarly to output and a label appearing in T1 must be included in

the top level selections of the asynchronous context derived from T2. Note that in the supertype,

each hole in the context may use a different indexing set Ih, but the set I of the subtype is smaller

than all these sets. Dually to selection, in (10), branching is defined like input and any labelled

branch of (the unfolding of) T2 must be supported in T1. Finally (11) forces T1 to be unfolded until

it becomes a guarded type.

5.3.1 Some Examples of 6c

We show four small but representative examples which highlight key points of our subtyping

relation. The first example shows that permuting outputs in advance of inputs in an infinite type

preserves subtyping. The second example demonstrates that in some subtypings, a finite number

of extra outputs can appear in the subtype, and dually, a finite number of extra inputs can appear

in the supertype; this is acceptable when the total outputs remain infinite without losing type

compatibility, and similarly for inputs. The third example demonstrates a case where n-level

unfolding is required. The fourth example which is atypical exposes a class of subtypings that

induce infinite simulation relations, due to asynchronous subtyping.

5.3. HIGHER-ORDER ASYNCHRONOUS SUBTYPING 115

Three typical examples Consider the types given previously:

S1 = ![U1].?[U2].µt.![U1].?[U2].t

S2 = µt.?[U2].![U1].t

It is easy to verify that S1 6c S2 by checking that the following relation is a type simulation:

ℜ = { (S1,S2), (U1,U1), (?[U2].µt.![U1].?[U2].t,?[U2].S2),

(U2,U2), (µt.![U1].?[U2].t,S2)}

It is also straightforward to show that for the following types:

S3 = ![U1].µt.![U1].?[U2].t

S4 = ?[U2].µt.?[U2].![U1].t

It holds that S3 6c S4 using the following simulation:

ℜ = { (S3,S4), (U1,U1), (µt.![U1].?[U2].t,?[U2].S4),

(![U1].?[U2].µt.![U1].?[U2].t,?[U2].S4), (?[U2].µt.![U1].?[U2].t,?[U2].?[U2].S4),

(U2,U2)}

Also easily we can demonstrate that for the following types:

S5 = µt.![U].?[U].&[l1 : t, l2 : t]

S6 = µt1.?[U].µt2.&[l1 :![U].t1, l2 :![U].t1]

We have that S5 6c S6 with the following simulation:

ℜ = { (S5,S6), (U,U), (unfold1(S5),S6), (unfold1(S5),unfold2(S6)),

(?[U].&[l1 : S5, l2 : S5],?[U].&[l1 : S6, l2 : S6]), (&[l1 : S5, l2 : S5],&[l1 : S6, l2 : S6])}

In fact, since as we prove in the next section 6c is transitive, we can also find a simulation

ℜ′ such that (µt.![U1].?[U].&[l1 : t, l2 : t],µt1.?[U].µt2.&[l1 :![U2].t1, l2 :![U3].t1]) ∈ ℜ′ whenever

(U1,U2)~ ∈ ℜ′ and (U1,U3)~ ∈ ℜ′. For this the simulation will support the intermediate results

(µt.![U1].?[U].&[l1 : t, l2 : t],µt1.?[U].µt2.&[l1 :![U1].t1, l2 :![U1].t1]) ∈ ℜ′ and (µt1.?[U].µt2.&[l1 :

![U1].t1, l2 :![U1].t1],µt1.?[U].µt2.&[l1 :![U2].t1, l2 :![U3].t1]) ∈ℜ′.

116 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

A more controversial example Consider the types:

S7 = µt.![U1].t

S8 = µt.![U1].?[U2].t

Perhaps surprisingly, it holds that S7 6c S8, as evidenced by the following simulation:

ℜ = { (U1, U1),

(S7, S8),

(![U1].S7, S8),

(S7, ?[U2].S8),

(![U1].S7, ?[U2].S8),

(S7, ?[U2].?[U2].S8),

(![U1].S7, ?[U2].?[U2].S8),
...

(S7, ?[U2]N.S8),

(![U1].S7, ?[U2]N.S8)}

= {(U1,U1)}

∪ {(S7,?[U2]n.S8), (![U1].S7,?[U2]n.S8) | n ∈ 0 . . .N}

where ?[U2]n.S8 is the type S8 prefixed with a sequence of n input actions ?[U2]. Effectively, the

subtype is sending all the infinite outputs in advance, and never receives any values.

The above example seems slightly pathological: operationally if a process running a session

with the subtype µt.![U1].t takes the place of one typed with the supertype µt.![U1].?[U2].t, its

buffer might grow indefinitely. To see why, assume that the process with session µt.![U1].t inter-

acts, as expected, with a process that runs the session with type S8 = µt.?[U1].![U2].t. Clearly, the

values of type U2 are received in the buffer but not in the program, therefore the buffer increases in

size indefinitely, eventually causing a buffer overflow. However, type safety is not violated since

no value of unexpected type is ever received within a term.

There are many similar examples, where the common denominator in all is the presence,

within a recursion at the subtype, of a greater proportion of output actions (including selection)

compared to the supertype. For instance, µt.![U1].![U1].?[U2].t 6c µt.![U1].?[U2].t also holds and

can be shown with an infinite simulation relation.

5.3. HIGHER-ORDER ASYNCHRONOUS SUBTYPING 117

5.3.2 The Relation 6c is a Preorder

We conclude this section with the main theorem, stating that 6c is a preorder. In inductively

defined subtyping systems, commonly presented as a set of deduction rules, transitivity is a prop-

erty by definition [35, 76]. In a coinductive setting, transitivity cannot be assumed, and not every

simulation is guaranteed to contain the necessary hypotheses; however, we can prove that 6c is

transitive by careful construction of supporting simulations, containing the necessary components

up to unfolding and context manipulation.

If 6c was not transitive, there would not be type safety. The typical explanation is that, if

there exists U1 6c U2 and U2 6c U3 such that U1 66c U3, then from two consecutive applications

of subsumption (such as with rule (Sub) of the previous Chapter) we may provide a value of type

U1 when U3 is expected, which is unsafe when U1 66c U3. For a detailed exposition to the issues

arising from the use of coinductive definitions in subtyping, see Chapter 21 of [76].

The standard method of relational composition [39] is not enough for proving the transitivity

of 6c. Moreover, the asynchronous coinductive subtyping in our previous work [65] does not

work with higher-order and contravariant components in types. The difficulty is that, given S1 6c

S2 and S2 6c S3, we need to find a subtyping relation that includes enough elements to justify

S1 6c S3 directly. However, due to the use of nested n-times unfolding with manipulation of

asynchronous contexts, we only obtain information which cannot be straightforwardly combined

with the hypotheses from S2 6c S3.

Our objective is to discover how to obtain the missing elements, and to achieve it we gradually

formalise a set of extensions on simulations, essentially monotonous functions from simulations

to simulations, and then utilise them to prove the main result, Theorem 5.3.15, stating that 6c is a

preorder.

Overview of Proof Specifically, we perform the following steps:

• We prove as standard that unfolding S1 or S2 or both in S1 6c S2 preserves the subtyping.

We formalise the unfolding extension of a simulation to include such n-times unfoldings.

• We define a class of single-step permutation contexts representing an input/branching pre-

fixed type. Then we formalise rules for moving an output/selection appearing within such

a context (that is, immediately after the initial input/branching), to the position ahead of it.

This represents the finest granularity of permutation since it is not transitive.

• The contextual extension of a simulation is defined, which is a supporting construction. It

118 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

is necessary in order to obtain the subtypings that arise when removing an output/selection

from a single-step permutation context, thus changing its original structure.

• The asynchronous extension of degree n is defined by applying n consecutive single-step

permutations on the subtypes in a simulation relation, and up to contexts A (that is, also

deep within the structure of types). Both the contextual and the unfolding extensions are

necessary to prove that this relation is also a simulation.

• Multi-step permutations that can extract an output/selection from deep within a context

A , placing it ahead of all actions (that is, prefixing A), are shown to be included in the

asynchronous extension of degree N. This is effectively a proof that the transitive application

of nested single-step permutations is included in the asynchronous extension.

• The transitivity connection of two simulations is then defined, utilising a composition of

asynchronous extensions for the given simulations. The proof that the transitivity connection

is a simulation implies that 6c is transitive.

• The relation6c is shown to be a preorder: reflexivity is easy to obtain using straightforward

techniques, and transitivity is proved directly by utilising the result for transitivity connec-

tions.

Lemma 5.3.4. If S1 6c S2 then unfoldn(S1)6c S2.

Proof Let ℜ be a type simulation such that S1 ℜ S2. Let

Un
l (ℜ) =

[
i∈1..n

{
(unfoldi(S′1),S

′
2) | (S′1,S′2) ∈ℜ

}
∪ℜ

Clearly (unfoldn(S1),S2) ∈ Un
l (ℜ), but is has to be shown that Un

l (ℜ) is a type simulation.

For this we need to demonstrate that for any (T1,T2) ∈ Un
l (ℜ) the rules of simulation (Defini-

tion 5.3.3) hold. Since ℜ⊆Un
l (ℜ) and ℜ is a simulation, we only need to examine the cases for

(unfoldi(S′1),S
′
2) ∈Un

l (ℜ) \ℜ, that is, for the new elements for which (S′1,S
′
2) ∈ ℜ holds by our

construction of Un
l (ℜ).

In the following we write 6(11)
c to mean case (11) of Definition 5.3.3.

Case unfoldi(S′1) = end. Then S′1 = µt1 . . .µtz.end for 0 ≤ z ≤ i. We have, by assumption, that

(S′1,S
′
2) ∈ ℜ, therefore after applying 6(11)

c z times we get (end,S′2) ∈ ℜ, and by the rules of

simulation unfoldm(S′2) = end, for some m, as required.

5.3. HIGHER-ORDER ASYNCHRONOUS SUBTYPING 119

Case unfoldi(S′1) =![U1].S10. Without loss of generality let S′1 = µt1 . . .µtz.![U1].S′10 with 0≤ z≤ i.

We have (S′1,S
′
2) ∈ ℜ and after z uses of 6(11)

c we obtain (unfoldz(S′1),S
′
2) ∈ ℜ which can be

written, based on the shape of S′1, as (![U1].S′′10,S
′
2) ∈ ℜ. The type S′′10 is derived from S′10

after the type variable substitutions induced by the z unfoldings on S′1. By the rules of sim-

ulation, from (![U1].S′′10,S
′
2) ∈ ℜ we obtain unfoldm(S′2) = A〈![U2].S2h〉h∈H and (U1,U2)~ ∈ ℜ

and (S′′10,A〈S2h〉h∈H) ∈ ℜ. From the shape of S′1 given previously we have that unfoldi(S′1) =

![U1].unfoldi−z(S′′10) and by our assumptions S10 = unfoldi−z(S′′10). By the construction of Un
l (ℜ)

and (S′′10,A〈S2h〉h∈H) ∈ℜ we have that (unfoldi−z(S′′10),A〈S2h〉h∈H) ∈Un
l (ℜ). Therefore we have

(S10,A〈S2h〉h∈H) ∈Un
l (ℜ). From the definition of Un

l (ℜ) which includes ℜ the above provide us

with (U1,U2)~ ∈Un
l (ℜ) and (S10,A〈S2h〉h∈H) ∈Un

l (ℜ), as required.

Case unfoldi(S′1) = µt1 . . .µtz.S10. Then without loss of generality S′1 = µt′1 . . .µt′i.µt1 . . .µtz.S′10.

The type S10 is derived from S′10 after the type variable substitutions induced by the i unfoldings

on S′1. Since (S′1,S
′
2) ∈ℜ, after i applications of 6(11)

c we obtain (unfoldi(S′1),S
′
2) ∈ℜ and hence

(unfold1(unfoldi(S′1)),S
′
2) ∈ℜ which is the required result since ℜ⊆Un

l (ℜ).

Other cases are similar.

Lemma 5.3.5. If S1 6c S2 then S1 6c unfoldn(S2).

Proof Let ℜ be a type simulation such that S1 ℜ S2. Let

Un
r (ℜ) =

[
i∈1..n

{
(S′1,unfoldi(S′2)) | (S′1,S′2) ∈ℜ

}
∪ℜ

The proof follows a pattern similar to the previous lemma. Clearly (S1,unfoldn(S2)) ∈ Un
r (ℜ),

but is has to be shown that Un
r (ℜ) is a type simulation. For this we need to demonstrate that for

any (T1,T2) ∈Un
r (ℜ) the rules of simulation (Definition 5.3.3) hold. Since ℜ⊆Un

r (ℜ) and ℜ is

a simulation, we only need to examine the cases for (S1,unfoldm(S2)) ∈Un
r (ℜ) \ℜ with m ≤ n,

that is, for the new elements for which (S1,S2) ∈ℜ holds by the construction of Un
r (ℜ).

Interesting cases are:

Case S1 = end. Then (S1,S20) ∈ℜ and S2 = unfoldm(S20) and unfoldz(S20) = end. If z≤ m then

unfoldm(S20) = end as required. If z > m then unfoldz−m(S2) = end as required.

Case S1 =![U1].S′1. Then (S1,S20)∈ℜ and S2 = unfoldm(S20) and unfoldz(S20) = A〈![U2].S2h〉h∈H

and (U1,U2)~ ∈ℜ and (S′1,A〈S2h〉h∈H) ∈ℜ.

120 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

If z≤ m then, using the definition of unfold

S2 = unfoldm−z(A〈![U2].S2h〉h∈H) = A〈![U2].unfoldm−z(S2h)〉h∈H

We have (U1,U2)~ ∈ℜ, then we need (S′1,A〈unfoldm−z(S2h)〉h∈H)∈Un
r (ℜ). From (S′1,A〈S2h〉h∈H)∈

ℜ we obtain (S′1,unfoldm−z(A〈S2h〉h∈H)) ∈Un
r (ℜ), and then from the definition of unfold we ob-

tain unfoldm−z(A〈S2h〉h∈H) = A〈unfoldm−z(S2h)〉h∈H , as required. If z > m then unfoldz−m(S2) =

A〈![U2].S2h〉h∈H and the supporting elements are in ℜ, as required.

Other cases are similar.

Definition 5.3.6 (Unfolding Extension). Given a simulation ℜ, the unfolding extension of ℜ is

defined as follows:

Un(ℜ) = Un
l (ℜ)∪Un

r (ℜ)

Proposition 5.3.1. If ℜ ⊆6c then Un(ℜ) ⊆6c. That is, for any simulation ℜ, the unfolding

extension Un(ℜ) is a type simulation.

Proof Trivial as Un(ℜ) is defined as the union of two simulations.

We now define the single-step permutation transformations for top-level actions, which enable

us to obtain more asynchronous subtypes, as this is needed further on when, given a simulation,

we obtain more asynchronous simulations utilising single and multi-step permutations. There are

two components, permutation contexts C and permutation rules�, defined as follows:

Definition 5.3.7 (Single-step Permutation).

Permutation Contexts

C ::= ?[U].〈·〉h∈H | &[li : 〈·〉h∈H]i∈I

Permutation Rules

S � S

C 〈![U].Sh〉h∈H � ![U].C 〈Sh〉h∈H

C 〈⊕[li : Sih]i∈Ih〉h∈H � ⊕[li : C 〈Sih〉h∈H]i∈I ∀h ∈ H . I ⊆ Ih

Definition 5.3.8 (Contextual Extension). Given a simulation ℜ, the contextual extension of ℜ is

5.3. HIGHER-ORDER ASYNCHRONOUS SUBTYPING 121

defined as follows:

CE(ℜ) = {(?[U1].S1,?[U2].S2) | (U2,U1)~ ∈ℜ ∧ (S1,S2) ∈ℜ}

∪
{

(&[li : S1i]i∈I,&[l j : S2 j] j∈J) | J ⊆ I ∧ ∀ j ∈ J .(S1 j,S2 j) ∈ℜ
}

∪ ℜ

Lemma 5.3.9. If ℜ⊆6c then CE(ℜ)⊆6c. That is, for any simulation ℜ, the contextual extension

CE(ℜ) is a type simulation.

Proof Trivial since the generated pairs in CE(ℜ) are exactly those justified by the conditions in

Definition 5.3.3, cases (8) and (10), with the required assumptions provided in ℜ. We do not need

to examine the ℜ subcomponent as it is a simulation by assumption.

Next we define the asynchronous extension of a simulation, with degree n. The degree rep-

resents the number of single-step permutations, applied successively to all the components of the

given simulation, up to asynchronous contexts A .

Definition 5.3.10 (Asynchronous Extension). Given a simulation ℜ, the asynchronous extension

of ℜ with degree n is defined as follows:

α0(ℜ) = ℜ

αn(ℜ) = CE(UN(αn−1(ℜ)))

∪
{

(A〈S′1h〉h∈H ,S2) | (A〈S1h〉h∈H ,S2) ∈ αn−1(ℜ) ∧ ∀h ∈ H .S1h� S′1h

}
(n≥ 1)

Lemma 5.3.11. If ℜ⊆6c then αn(ℜ)⊆6c. That is, for any simulation ℜ and degree n ∈ N, the

asynchronous extension αn(ℜ) is a type simulation.

Proof We proceed by induction on the degree n. The base case of n = 0 holds because ℜ is a

simulation by assumption. We then prove the inductive case for any n≥ 1.

By the inductive hypothesis αn−1(ℜ)⊆6c, then by Proposition 5.3.1 we have UN(αn−1(ℜ))⊆6c,

and by Lemma 5.3.9 we obtain CE(UN(αn−1(ℜ)))⊆6c. Therefore, it is not necessary to exam-

ine pairs in this subset of αn(ℜ). Then, it remains to examine an arbitrary pair (A〈S′1k〉k∈K ,S2) ∈

αn(ℜ) such that (A〈S1k〉k∈K ,S2) ∈ αn−1(ℜ) with ∀k ∈ K .S1k� S′1k. We proceed by taking cases

on the shape of the context A .

Case A = 〈·〉k∈K . Then let S1 = A〈S1k〉k∈K , and S′1 = A〈S′1k〉k∈K . We have S1� S′1, and proceed

122 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

by examination of the permutation applied.

Subcase S1 = S′1. Trivial.

Subcase S1 = C 〈![U].S1k〉k∈K and S′1 =![U].C 〈S1k〉k∈K . We proceed with cases on C .

If C =?[U1].〈·〉k∈K , then

S1 = C 〈![U].S1k〉k∈K =?[U1].![U].S1k

and

S′1 =![U].C 〈S1k〉k∈K =![U].?[U1].S1k

(S1,S2) ∈ αn−1(ℜ) ⇒ unfoldn(S2) =?[U2].S′2

∧ (U2,U1)~ ∈ αn−1(ℜ)

∧ (![U].S1k,S′2) ∈ αn−1(ℜ)

(![U].S1k,S′2) ∈ αn−1(ℜ) ⇒ unfoldm(S′2) = A1〈![U ′].S2h〉h∈H

∧ (U,U ′)~ ∈ αn−1(ℜ)

∧ (S1k,A1〈S2h〉h∈H) ∈ αn−1(ℜ)

From the definition of n-times unfolding we obtain

unfoldn+m(S2) =?[U2].A1〈![U ′].S2h〉h∈H = A2〈![U ′].S2h〉h∈H

with

A2 =?[U2].A1

Now we proceed to justify the inclusion (S′1,S2) ∈ αn(ℜ). We have (![U].?[U1].S1k,S2) ∈ αn(ℜ).

Also unfoldn+m(S2) = A2〈![U ′].S2h〉h∈H with (U,U ′)~ ∈ αn−1(ℜ)(⊆ αn(ℜ)). We then need to

show that (?[U1].S1k,A2〈S2h〉h∈H) ∈ αn(ℜ) which can be written (?[U1].S1k,?[U2].A1〈S2h〉h∈H) ∈

αn(ℜ). We have (U2,U1)~ ∈αn−1(ℜ) and (S1k,A1〈S2h〉h∈H)∈αn−1(ℜ), hence (?[U1].S1k,A2〈S2h〉h∈H)∈

CE(αn−1(ℜ))⊆ αn(ℜ) as required.

If C = &[li : 〈·〉k∈K]i∈I , then

S1 = C 〈![U].S1k〉k∈K = &[li :![U].S1i]i∈I

5.3. HIGHER-ORDER ASYNCHRONOUS SUBTYPING 123

and

S′1 =![U].C 〈S1k〉k∈K =![U].&[li : S1i]i∈I

(S1,S2) ∈ αn−1(ℜ) ⇒ unfoldn(S2) = &[l j : S2 j] j∈J

∧ J ⊆ I

∧ ∀ j ∈ J .(![U].S1 j,S2 j) ∈ αn−1(ℜ)

⇒ ∀ j ∈ J .unfoldm j(S2 j) = A j〈![U ′].S′2 jh〉h∈H j

∧ (U,U ′)~ ∈ αn−1(ℜ)

∧ ∀ j ∈ J .(S1 j,A j〈S′2 jh〉h∈H j) ∈ αn−1(ℜ)

Let mmax = max j∈J(m j). Then from the unfolding construction of UN(αn−1(ℜ)) we obtain

∀ j ∈ J .(S1 j,unfoldmmax−m j(A j〈S′2 jh〉h∈H j)) ∈UN(αn−1(ℜ))

From the definition of n-times unfolding we obtain

unfoldn+mmax(S2) = &[l j : unfoldmmax−m j(A j〈![U ′].S′2 jh〉h∈H j)] j∈J

= A ′〈![U ′].S′2 jh〉h∈H

with

A ′ = &[l j : unfoldmmax−m j(A j)] j∈J and H =] j∈J (H j)

Now we proceed to justify the inclusion (![U].&[li : S1i]i∈I,S2)∈αn(ℜ). We have unfoldn+mmax(S2)=

A ′〈![U ′].S′2 jh〉h∈H , and (U,U ′)~ ∈αn−1(ℜ). We then need to show that (&[li : S1i]i∈I,A ′〈S′2 jh〉h∈H)∈

αn(ℜ). Since J ⊆ I and ∀ j ∈ J .(S1 j,unfoldmmax−m j(A j〈S′2 jh〉h∈H)) ∈UN(αn−1(ℜ)), we have that

(&[li : S1i]i∈I,&[l j : unfoldmmax−m j(A j〈S′2 jh〉h∈H)] j∈J) ∈ CE(UN(αn−1(ℜ))), as required.

Subcase S1 = C 〈⊕[li : S1ik]i∈Ik〉k∈K and S′1 =⊕[li : C 〈S1ik〉k∈K]i∈I with ∀k ∈ K . I ⊆ Ik. We

proceed with cases on C .

If C =?[U1].〈·〉k∈K , then

S1 = C 〈⊕[li : S1ik]i∈Ik〉
k∈K =?[U1].⊕ [li : S1i]i∈I

and

S′1 =⊕[li : C 〈S1ik〉k∈K]i∈I =⊕[li :?[U1].S1i]i∈I

124 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

(S1,S2) ∈ αn−1(ℜ) ⇒ unfoldn(S2) =?[U2].S′2

∧ (U2,U1)~ ∈ αn−1(ℜ)

∧ (⊕[li : S1i]i∈I,S′2) ∈ αn−1(ℜ)

(⊕[li : S1i]i∈I,S′2) ∈ αn−1(ℜ) ⇒ unfoldm(S′2) = A1〈⊕[l j : S2 jh] j∈Jh〉h∈H

∧ ∀h ∈ H . I ⊆ Jh

∧ ∀i ∈ I .(S1i,A1〈S2ih〉h∈H) ∈ αn−1(ℜ)

From the definition of n-times unfolding we obtain

unfoldn+m(S2) =?[U2].A1〈⊕[l j : S2 jh] j∈Jh〉
h∈H = A2〈⊕[l j : S2 jh] j∈Jh〉

h∈H

with

A2 =?[U2].A1

Now we proceed to justify the inclusion (S′1,S2) ∈ αn(ℜ). We have (⊕[li :?[U1].S1i]i∈I,S2) ∈

αn(ℜ). Also unfoldn+m(S2) = A2〈⊕[l j : S2 jh] j∈Jh〉h∈H with ∀h ∈ H . I ⊆ Jh. We then need to show

that ∀i∈ I .(?[U1].S1i,A2〈S2ih〉h∈H)∈ αn(ℜ) which can be written (?[U1].S1i,?[U2].A1〈S2ih〉h∈H)∈

αn(ℜ). We have (U2,U1)~ ∈αn−1(ℜ) and (S1i,A1〈S2ih〉h∈H)∈αn−1(ℜ), hence (?[U1].S1i,A2〈S2ih〉h∈H)∈

CE(αn−1(ℜ)) as required.

If C = &[li : 〈·〉k∈K]i∈I , then

S1 = C 〈⊕[li : S1ik]i∈Ik〉
k∈K = &[l′ j :⊕[li : S1i j]i∈I j] j∈J

and

S′1 =⊕[li : C 〈S1ik〉k∈K]i∈I =⊕[li : &[l′ j : S1i j] j∈J]i∈I ∀ j ∈ J . I ⊆ I j

(S1,S2) ∈ αn−1(ℜ) ⇒ unfoldn(S2) = &[l′z : S2z]z∈Z

∧ Z ⊆ J

∧ ∀z ∈ Z .(⊕[li : S1iz]i∈Iz ,S2z) ∈ αn−1(ℜ)

⇒ ∀z ∈ z .unfoldmz(S2z) = Az〈⊕[l j : S2z jh] j∈Jh〉h∈Hz

∧ ∀z ∈ z .∀h ∈ Hz . Iz ⊆ Jh

∧ ∀z ∈ z .∀i ∈ Iz .(S1iz,Az〈S2zih〉h∈Hz) ∈ αn−1(ℜ)

Let mmax = maxz∈Z(mz). Then from the unfolding construction of UN(αn−1(ℜ)) we obtain

∀z ∈ Z .∀i ∈ Iz .(S1iz,unfoldmmax−mz(Az〈S2zih〉h∈Hz)) ∈UN(αn−1(ℜ))

5.3. HIGHER-ORDER ASYNCHRONOUS SUBTYPING 125

From the definition of n-times unfolding we obtain

unfoldn+mmax(S2) = &[l′z : Az〈⊕[l j : S2z jh] j∈Jh〉h∈Hz]z∈Z

= A ′〈⊕[l j : S2z jh] j∈Jh〉h∈H

with

A ′ = &[l′z : unfoldmmax−mz(Az)]z∈Z and H =]z∈Z (Hz)

Now we proceed to justify the inclusion (⊕[li : &[l′ j : S1i j] j∈J]i∈I,S2)∈αn(ℜ). We have unfoldn+mmax(S2)=

A ′〈⊕[l j : S2z jh] j∈Jh〉h∈H and from I ⊆ Iz∈Z⊆J ⊆ Jh∈Hz we obtain ∀h ∈ H . I ⊆ Jh. We then need to

show that ∀i ∈ I .(&[l′ j : S1i j] j∈J,&[l′z : unfoldn+mmax(Az〈S2zih〉h∈Hz)]z∈Z) ∈ αn(ℜ). These pairs

are in CE(UN(αn−1(ℜ))) by construction, as required.

Case A =?[U].A ′. From the shape of A we have (?[U].A ′〈S1k〉k∈K ,S2)∈ αn−1(ℜ). By the rules of

simulation, unfoldm(S2) =?[U ′].S′2 and (U ′,U)~ ∈ αn−1(ℜ) and (A ′〈S1k〉k∈K ,S′2) ∈ αn−1(ℜ). By

the construction of αn(ℜ) we have (A ′〈S′1k〉k∈K ,S′2) ∈ αn(ℜ). It is now straightforward to show

that (?[U].A ′〈S′1k〉k∈K ,S2) is justified by the rules of simulation and the above hypotheses.

Case A = &[li : Ai]i∈I . From the shape of A we have (&[li : Ai〈S1k〉k∈K]i∈I,S2) ∈ αn−1(ℜ). By

the rules of simulation, unfoldm(S2) = &[l j : S2 j] j∈J and J ⊆ I and ∀ j ∈ J . (A j〈S1k〉k∈K ,S2 j) ∈

αn−1(ℜ). By the construction of αn(ℜ) we have ∀ j ∈ J . (A j〈S′1k〉k∈K ,S2 j) ∈ αn(ℜ). As before it

is now trivial to justify (&[li : Ai〈S′1k〉k∈K]i∈I,S2) ∈ αn(ℜ).

Corollary 5.3.12 (Multi-step Permutation).

1. If (A〈![U1].S1k〉k∈K ,S2) ∈ αN(ℜ) then (![U1].A〈S1k〉k∈K ,S2) ∈ αN(ℜ)

2. If (A〈⊕[li : S1ih]i∈Ih〉h∈H ,S2) ∈ αN(ℜ) and ∀h ∈H . I ⊆ Ih, then (⊕[li : A〈S1ih〉h∈H]i∈I,S2) ∈

αN(ℜ).

Proof Every context A can be written as a (possibly empty) nested structure of C contexts, such

that A = C 〈Ch〈Chk〈. . .〉...〉h∈H〉k∈K . Every level of asynchronous permutation in αN(ℜ) generates

pairs by applying a transformation on the innermost C contexts of all matching types; in this way

it reduces the depth of the innermost contexts for the generated type pairs, which are matched at

the next level. At every level, the penultimate contexts become last. By induction on the maximum

depth of the nested C -context representation of any A , we can obtain the result formally.

Proposition 5.3.2. If (S1,S2) ∈ αN(ℜ) then (unfoldn(S1),S2) ∈ αN(ℜ)

126 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

Proof Easy to obtain: since � allows the identity permutation, then for all m, αm(ℜ) will in-

clude CE(UN(αm−1(ℜ))) ⊇UN(αm−1(ℜ)) even when there are no more effective permutations

to apply on any type, and up to all contexts. Suppose (S1,S2) ∈ αz(ℜ), take m = z+n+1, and we

obtain the result (unfoldn(S1),S2) ∈ αm(ℜ).

Transitivity Connection

Next is the main definition of this section, the transitivity connection of two relations. It is defined

as the relational composition (taking the union of both directions, needed due to the presence of

contravariant components) of the asynchronous extensions of the given simulations, respectively.

We then prove that the transitivity connection (of simulations) is a simulation, which is, effectively,

a proof of the transitivity of 6c.

Definition 5.3.13 (Transitivity Connection). For type simulations ℜ1 and ℜ2, the transitivity

connection trc(ℜ1,ℜ2) is defined as follows:

trc(ℜ1,ℜ2) = α
N(ℜ1) ·αN(ℜ2) ∪ α

N(ℜ2) ·αN(ℜ1)

Lemma 5.3.14. If ℜi∈{1,2} ⊆6c then trc(ℜ1,ℜ2) ⊆6c. That is, for any two simulations ℜ1 and

ℜ2, the transitivity connection trc(ℜ1,ℜ2) is a type simulation.

Proof We examine an arbitrary (T1,T3) ∈ αN(ℜ1) ·αN(ℜ2) ⊆ trc(ℜ1,ℜ2), taking cases on the

shape of T1. The remaining cases, for membership in αN(ℜ2) ·αN(ℜ1), are symmetric.

Case T1 =![U1].S1. Then (T1,T2) ∈ αN(ℜ1) and (T2,T3) ∈ αN(ℜ2).

5.3. HIGHER-ORDER ASYNCHRONOUS SUBTYPING 127

(![U1].S1,T2) ∈ αN(ℜ1) ⇒ unfoldn(T2) = A1〈![U2].S2h〉h∈H

∧ (U1,U2)~ ∈ αN(ℜ1)

∧ (S1,A1〈S2h〉h∈H) ∈ αN(ℜ1)

(T2,T3) ∈ αN(ℜ2) ⇒ (unfoldn(T2),T3) ∈ αN(ℜ2)

⇔ (A1〈![U2].S2h〉h∈H ,T3) ∈ αN(ℜ2)

Corollary 5.3.12 ⇒ (![U2].A1〈S2h〉h∈H ,T3) ∈ αN(ℜ2)

⇒ unfoldm(T3) = A2〈![U3].S3k〉k∈K

∧ (U2,U3)~ ∈ αN(ℜ2)

∧ (A1〈S2h〉h∈H ,A2〈S3k〉k∈K) ∈ αN(ℜ2)

Ui∈{1,2} = S′i ⇒ (U1,U3)~ = (U3,U1) ∈ αN(ℜ2) ·αN(ℜ1)

∧ (S1,A2〈S3k〉k∈K) ∈ αN(ℜ1) ·αN(ℜ2)

Ui∈{1,2} 6= S ⇒ (U1,U3)~ = (U1,U3) ∈ αN(ℜ1) ·αN(ℜ2)

∧ (S1,A2〈S3k〉k∈K) ∈ αN(ℜ1) ·αN(ℜ2)

Hence (T1,T3) is justified in trc(ℜ1,ℜ2).

Case T1 =?[U1].S1. Then (T1,T2) ∈ αN(ℜ1) and (T2,T3) ∈ αN(ℜ2).

(?[U1].S1,T2) ∈ αN(ℜ1) ⇒ unfoldn(T2) =?[U2].S2

∧ (U2,U1)~ ∈ αN(ℜ1)

∧ (S1,S2) ∈ αN(ℜ1)

(T2,T3) ∈ αN(ℜ2) ⇒ (unfoldn(T2),T3) ∈ αN(ℜ2)

⇔ (?[U2].S2,T3) ∈ αN(ℜ2)

⇒ unfoldm(T3) =?[U3].S3

∧ (U3,U2)~ ∈ αN(ℜ2)

∧ (S2,S3) ∈ αN(ℜ2)

Ui∈{1,2} = S′i ⇒ (U3,U1)~ = (U1,U3) ∈ αN(ℜ1) ·αN(ℜ2)

∧ (S1,S3) ∈ αN(ℜ1) ·αN(ℜ2)

Ui∈{1,2} 6= S ⇒ (U3,U1)~ = (U3,U1) ∈ αN(ℜ2) ·αN(ℜ1)

∧ (S1,S3) ∈ αN(ℜ1) ·αN(ℜ2)

128 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

Hence, as before, (T1,T3) is justified in trc(ℜ1,ℜ2).

Case T1 =⊕[li : S1i]i∈I . Then (T1,T2) ∈ αN(ℜ1) and (T2,T3) ∈ αN(ℜ2).

(⊕[li : S1i]i∈I,T2) ∈ αN(ℜ1) ⇒ unfoldn(T2) = A1〈⊕[l j : S2 jh] j∈Jh〉h∈H

∧ ∀h ∈ H . I ⊆ Jh

∧ ∀ i ∈ I . (S1i,A1〈S2ih〉h∈H) ∈ αN(ℜ1)

(T2,T3) ∈ αN(ℜ2) ⇒ (unfoldn(T2),T3) ∈ αN(ℜ2)

⇔ (A1〈⊕[l j : S2 jh] j∈Jh〉h∈H ,T3) ∈ αN(ℜ2)

Corollary 5.3.12 with I ⊆ Jh∈H ⇒ (⊕[li : A1〈S2ih〉h∈H]i∈I,T3) ∈ αN(ℜ2)

⇒ unfoldm(T3) = A2〈⊕[lz : S2zk]z∈Zk〉k∈K

∧ ∀k ∈ K . I ⊆ Zk

∧ ∀ i ∈ I . (A1〈S2ih〉h∈H ,A2〈S3ik〉k∈K) ∈ αN(ℜ2)

⇒ ∀ i ∈ I . (S1i,A2〈S3ik〉k∈K) ∈ αN(ℜ1) ·αN(ℜ2)

Hence (T1,T3) is justified in trc(ℜ1,ℜ2).

Case T1 = µt.S1. Then (T1,T2) ∈ αN(ℜ1) and (T2,T3) ∈ αN(ℜ2).

(µt.S1,T2) ∈ αN(ℜ1) ⇒ (unfold1(µt.S1),T2) ∈ αN(ℜ1)

⇒ (unfold1(µt.S1),T3) ∈ αN(ℜ1) ·αN(ℜ2)

Thus, (T1,T3) is justified in trc(ℜ1,ℜ2).

Other cases are similar, and in fact simpler, because they make no use of asynchronous contexts

and permutations.

Theorem 5.3.15 (6c is a Preorder). The relation 6c is reflexive and transitive.

Proof For reflexivity it is easy to prove that {(T,T) |T ∈ T } ⊆6c. For transitivity, we have that

whenever (T1,T2) ∈ ℜ1 and (T2,T3) ∈ ℜ2, then (T1,T3) ∈ trc(ℜ1,ℜ2), and trc(ℜ1,ℜ2) ⊆6c by

Lemma 5.3.14.

5.4. ASYNCHRONOUS HIGHER-ORDER SESSION TYPING 129

5.4 Asynchronous Higher-Order Session Typing

The typing system extends the one for the language of Chapter 4, replacing a few rules with

more general versions; for the basic system see Figures 4.8 and 4.9, starting on page 81. New

formulations are needed for the integration of typing at the level of session queues, and for ensuring

that the asynchronous calculus is sound.

Queue Types Due to the presence of labels in session queues, we need to extend the types to

facilitate all buffer components, as follows:

τ ::= U | l

Therefore, every label induces a singleton type identified with the label value.

Session Remainder Type soundness is established by also typing the queues created during the

execution of a well-typed initial program. We track the movement of linear functions and channels

to and from the queue to ensure that linearity is preserved, and we check that endpoints continue

to have dual types up to asynchronous subtyping after each use. To analyse the intermediate steps

precisely, we utilise a session remainder S−~τ = S′ which subtracts the vector ~τ of the queue

types of the values stored in a queue from the complete session type S of the queue, obtaining a

remaining session S′. The rules are formalised below: When S′ is end, then the session has been

completed; otherwise it is not closed yet.

(Empty)

S− ε = S

(Get)
S−~τ = S′

?[U].S−U~τ = S′

(Put)
S−~τ = S′

![U].S−~τ =![U].S′

(Branch)
Sk−~τ = S′ k ∈ I

&[li : Si]i∈I− lk~τ = S′

(Select)
Si−~τ = S′i ∀ i ∈ I

⊕[li : Si]i∈I−~τ =⊕[li : S′i]i∈I

Figure 5.4: Session Remainder

(Empty) is a base rule. (Get) takes an input prefixed session type ?[U].S and subtracts the type

U at the head of the queue, then returns the remainder S′ of the rest of the session S minus the

tail~τ of the queue type. (Put) disregards the output action type of the session and calculates the

130 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

remainder S′ of S−~τ, which is returned prefixed with the original output giving ![U].~τ. Therefore

the output is not consumed. (Branch) is similar with (Get), but it only records the remainder of the

k-th branch with respect to a stored label lk. Dually, (Select) records the remainder of all selection

paths.

Typing System for Terms with Session Queues We first extend the session environment as

follows:

∆ ::= Σ | ∆,s :~τ | ∆,s : (S,~τ)

The typing judgement is also extended with

Γ;Λ;Σ ` l : l

which is used for typing any labels appearing in a session queue. ∆ contains usage information for

queues (s :~τ) in a term, so that the cumulative result can be compared with the expected session

type; for this we use the pairing (s : (S,~τ)) that combines the usage of a channel and the sequence

of types already on its queue. We identify (S,~τ) and (~τ,S).

We define a composition operation � on ∆-environments, used to obtain the paired usages for

channels and queues:

∆1� ∆2 = {s :(∆1(s),∆2(s)) | s ∈ dom(∆1)∩dom(∆2)} ∪ ∆1\dom(∆2) ∪ ∆2\dom(∆1)

The typing rules for runtime are listed in Figure 5.5. (Label) types a label in a queue, while (Queue)

forms a sequence of the types of the values in a queue: we ensure the disjointness of session

environments of values, and apply a weakening of ended session types (Σ0) for closure under the

structure rules. (News) is the main rule for typing the two endpoint queues of a session. Types

S1 and S2 can be given to the queues s and s when the session remainders S′1 and S′2 of S1− ~τ1

and S2− ~τ2 are dual session types up to asynchronous subtyping; more precisely, S′1 must be a

subtype of the dual of S′2, written S′1 6c S′2. Since the session is compatible, we can restrict s. (Par)

composes processes, including queues, and records the session usage by � ; this rule subsumes

(Par) for programs. Note that, as this is a runtime typing system, the set of linear variables is

empty.

5.4. ASYNCHRONOUS HIGHER-ORDER SESSION TYPING 131

(Label)

Γ; /0; /0 ` l : l

(Queue) if τi = U → T then Σi = /0

Γ; /0;Σi ` hi : τi i ∈ 1..n Σ0 = {~s : ~end}
Γ; /0;(Σ0, ..,Σn)� s :τ1..τn ` s :h1..hn : �

(News)

Γ; /0;∆,s :(S1,~τ1),s :(S2,~τ2) ` P :� Si−~τi = S′i i ∈ 1,2 S′1 6c S′2
Γ; /0;∆ ` (νs)P :�

(New)
Γ, a :〈S〉;Λ;∆ ` P :�

Γ;Λ;∆ ` (νa :〈S〉)P :�

(Par)
Γ;Λ1,2;∆1,2 ` P1,2 :�

Γ;Λ1,Λ2;∆1� ∆2 ` P1 | P2 :�

Figure 5.5: Runtime Typing for Asynchronous Higher-order π-calculus

5.4.1 Typing the Optimised Mobile Business Protocol

Using the program and runtime typing systems, we can now type the hotel booking example

of § 5.2.2, in the presence of asynchronous optimisation for higher-order mobility. Agent and

standard Client can be typed, by using the rules in Figures 4.8 and 4.9, as follows:

SAgent =![int].&[move :?[unit(�].S′Agent , local : S′Agent]

where S′Agent =?[string].?[string].![double].?[int].end

and Sclient = SAgent

We then type MClient and obtain:

SMClient =⊕[move :![unit(�].![string].![string].![int].?[int].?[double].end]

Applying Definition 5.3.3 we verify that SMClient 6c SAgent (and SMClient 6c SClient). Then using

typing rules (Conn,ConnDual) we can type both MClient and Agent with a : 〈SAgent〉 ∈ Γ, after

applying (Sub) on the premises of (ConnDual) typing the body of MClient.

We now demonstrate runtime typing; after three reduction steps of MClient | Agent we can

have this configuration:

(νs)(sB{move : s?(code).(run code | . . .), local : . . .} | s :rtt | s :move ·ps!〈ritz〉 . . .q)

with s as the Agent’s queue. Both queues contain values including the linear higher-order code

132 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

sent by MClient (which became 0 after this output). Using (Queue, Label) from Figure 5.5, we

type s :move ·ps!〈ritz〉 . . .q with session environment

{
s : S′MClient, s : move ·unit(�

}
where S′MClient comes from typing the HO code containing s, and:

S′MClient =![string].![string].![int].?[int].?[double].end

and similarly we type s :rtt with:

{s : int}

.

The Agent sB{move : . . . , local : . . .} is typed with (Bra) under session environment:

{
s : &[move :?[unit(�].S′Agent , local : S′Agent]

}
The above session environments can be synthesised using � to obtain:

{
s : (S′MClient,int), s : (&[move :?[unit(�].S′Agent , local : S′Agent],move ·unit(�)

}
Now we use the rules in Figure 5.4 to calculate the session remainder of each queue:

S′MClient − int =![string].![string].![int].?[double].end

&[move :?[unit(�].S′Agent , local : S′Agent] − move ·unit(�= S′Agent

and we have:

![string].![string].![int].?[double].end6c S′Agent

Finally, we can apply (News) and complete the derivation.

5.5 Type Soundness and Communication Safety

This section studies the key properties of our typing system. First, we show that typed processes

enjoy subject reduction and communication safety.

We begin by introducing balanced environments which specify the conditions for composing

environments of runtime processes. Our definition extends the one in [39] to accommodate for the

5.5. TYPE SOUNDNESS AND COMMUNICATION SAFETY 133

presence of buffers, using session remainders.

Definition 5.5.1 (Balanced ∆). balanced(∆) holds if whenever {s : (S1,~τ1),s : (S2,~τ2)} ⊆ ∆ with

S1−~τ1 = S′1 and S2−~τ2 = S′2, then S′1 6c S′2.

The definition is based on (News) in the runtime typing system (Figure 5.5): intuitively, all

subprocesses generated from an initial typable program should conform to the balanced condition.

We next define the ordering between the session environments which abstractly represents an

interaction at session channels.

Definition 5.5.2 (∆ Ordering). Recall � defined in § 5.4. We define ∆vs ∆′ as follows:

s :?[U].S� s : U~τ vs s : S� s :~τ s : &[li : Si]i∈I� s : lk~τ vs s : Sk� s :~τ k ∈ I

s :![U].S� s :~τ vs s : S� s :~τU s :⊕[li : Si]i∈I� s :~τ vs s : Sk� s :~τlk k ∈ I

s : µt.S� s′ :~τ vs s : S′� s′ :~τ′ if s : S[µt.S/t]� s′ :~τ vs s : S′� s′ :~τ′

∆� ∆1 vs ∆� ∆2 if ∆1 vs ∆2 and ∆� ∆1 defined

Note that if ∆1 vs ∆2 and ∆� ∆1 is defined, then ∆� ∆2 is defined; and if balanced(∆) and

∆vs ∆′ then balanced(∆′). Then we have:

Theorem 5.5.3 (Type Soundness). 1. Suppose Γ;Λ;∆ ` P : �. Then P ≡ P′ implies Γ;Λ;∆ `

P′ : �.

2. Suppose Γ; /0;∆ ` P : T with balanced(∆). Then P−→ P′ implies Γ; /0;∆′ ` P′ : T and either

∆ = ∆′ or ∆vs ∆′.

First we prove a number of supporting results; the proof of Type Soundness begins on page 135.

Lemma 5.5.4. If Σ1,Σ2 defined and Σ′1 6c Σ1 and Σ′2 6c Σ2 then Σ′1,Σ
′
2 defined and Σ′1,Σ

′
2 6c

Σ1,Σ2.

Proof. Trivial by the definition of 6c on environments and the fact that it does not change the

domain of an environment.

Lemma 5.5.5. If Γ;Λ,x;Σ ` P :T then x is free in P.

Proof. Since there is no weakening for the Λ set, the only way to introduce x in Λ,x is by applying

the axiom (LVar) with subject x. But whenever a linear variable is bound, it is removed from the

linear set of the conclusion; see (Abs) and (Rec). Hence x appears in P and is not bound.

134 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

Lemma 5.5.6. If Γ;Λ;Σ,k : S ` P :T and k is not free in P then S = end.

Proof. Since there is no weakening for the Σ environment, and k is not free in P, the only way to

introduce a mapping for k in Σ,k : S is by applying the axiom (Nil). But then S = end.

Lemma 5.5.7 (Environment Properties). 1. If ∆� s :~τ1 defined then ∆� s :~τ2 defined for

any~τ1 and~τ2.

2. If ∆� s : S1 defined then ∆� s : S2 defined for any S1 and S2.

3. If ∆,∆′ defined then ∆� ∆′ defined and ∆,∆′ = ∆� ∆′.

4. ∆� ∆′ = ∆′� ∆ and (∆1� ∆2)� ∆3 = ∆1� (∆2� ∆3).

5. If ∆1� ∆2 defined and ∆2 vs ∆3 then ∆1� ∆3 defined.

6. If balanced(∆) and ∆vs ∆′ then balanced(∆′).

Proof. Straightforward from the definitions of balanced(∆), � and vs.

Lemma 5.5.8. If Γ;Λ;Σ� ∆ ` P : T and Σ6c Σ′ then Γ;Λ;Σ′� ∆ ` P : T

Proof. Outline: For each s :S ∈ Σ with s :S′ ∈ Σ′, and with P≡ (ν~a : ~〈S〉)(ν~s)(P1 | . . . | Pn), we take

cases on the free occurrence of s in some Pi. If Pi is not a queue process then by (Sub) we obtain

s :S′ in the session environment of the subderivation for Pi. If Pi is a queue process then it is typed

using (Queue) and we can apply (Sub) as before on the premises. Then using (New), (NewS) and

(Par) we obtain the required judgement.

Lemma 5.5.9 (Queue Subsumption). If Γ;Λ;∆� s:~τ1U1~τ2 `P : T and U16c U2 then Γ;Λ;∆� s:

~τ1U2~τ2 ` P : T

Proof. Last rule applied is (Queue); in the premises we can apply (Sub) on the typing judgement of

the value that corresponds to the U1 typing, then apply (Queue) using the new premise with U2.

We have the standard Weakening (Lemma 4.4.2) and Strengthening (Lemma 4.4.3) for Γ en-

vironments, and the restricted form of Strengthening (Lemma 4.4.4) for Σ.

The Substitution Lemma (4.4.10) remains the same from Chapter 4, noting that we only need

to define substitution for terms that do not contain runtime elements, hence the original Lemma

using Σ environments (and not ∆) is sufficient.

5.5. TYPE SOUNDNESS AND COMMUNICATION SAFETY 135

Proof of Theorem 5.5.3 (Type Soundness)

Part (1). Subject congruence is standard, except for the case of garbage collection. The latter

is easy: first use the restricted weakening environment Σ0 of rule (Queue) to obtain, after � -

composition, the balanced usage pairs (end,ε) for the dual ended queues; then by (NewS) the

ended session can be restricted.

Part (2). For this part we proceed as standard by taking cases on the last reduction rule applied.

For all cases we assume:

Γ; /0;∆ ` P : T (?) balanced(∆) P−→ P′

Case (beta) P = (λ(x :U).Q)V P′ = Q{V/x}

From (?) we have that the judgement for P has as last rule(s) a (possibly empty) sequence of

applications of (Sub), and then (App). We then have by the judgement (?) before (Sub) and the

premises of (App) that:

Γ; /0;Σ1,Σ2 ` P : T ′ (1) Γ; /0;Σ1 ` λ(x :U).Q : U ′(T ′ (2) Γ; /0;Σ2 `V : U ′ (3)

Σ1,Σ2 6c ∆ (4) U ′ 6~
c U (5) T ′ 6~

c T (6)

By (†) if U ′ = U0→ H0 then Σ2 = /0 (7)

Note that the function may have also have the smaller type U (T ′′ with T ′′ 6c T ′.

(a) U = H. To obtain (2) we have (after a possibly empty sequence of (Sub)), an application of

(Abs) with:

Γ,x :U ;Λ;Σ
′
1 ` Q : T ′′ (8) T ′′ 6~

c T ′ (9) Σ
′
1 6c Σ1 (10)

By the sidecondition of (Abs) we have that if U = U1(T1 then Λ = {x} else Λ = /0, since

Λ\ x = /0 in (2). By Lemma 5.5.4 and (10) and since Σ1,Σ2 is defined we have that Σ′1,Σ2 is

defined and:

Σ
′
1,Σ2 6c Σ1,Σ2 (11)

(a-1) x ∈ fv(Q). By (8) and (3) and (5) and (7), using Lemma 4.4.10(1), we obtain:

Γ; /0;Σ
′
1,Σ2 ` Q{V/x} : T ′′ (12)

Finally using (Sub) with (11) and (4) for the session environment and (9) and (6) for

136 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

the result type, we obtain:

Γ; /0;∆ ` Q{V/x} : T

(a-2) x 6∈ fv(Q). If U = U1 (T1 then by (Abs) x ∈ Λ, but then by Lemma 5.5.5 x ∈ fv(Q)

which contradicts the assumption. Otherwise, if U = U1 → T1 or U = 〈S〉 we have

Σ2 = /0. We have P′ = Q and by Lemma 6.5.1 and (8) we obtain:

Γ;Λ;Σ
′
1 ` Q : T ′′ (13)

Then Σ′1 6c ∆ and with an application of (Sub) we obtain the result as before.

(b) U = S. Then V = s. From (3), and (2) with (AbsS), following similar steps as before, we

obtain:

Γ; /0;Σ2 ` s : S′ (14) Γ; /0;Σ
′
1,x : S ` Q : T ′′ (15)

By (5) and ~ we have S6c S′, then by Lemma 4.4.10(2) with (14) and (15) we obtain:

Γ; /0;Σ
′
1,s : S ` Q{V/x} : T ′′ (16)

We have that {s : S′} 6c Σ2 in (14) and hence {s : S} 6c Σ2, then using also (10) with

Lemma 5.5.4 as before we obtain Σ′1,s : S 6c Σ1,Σ2. Then using (4) and (9) and (6) with

(Sub) on (16) we obtain

Γ; /0;∆ ` Q{V/x} : T

Case (send) P = s!〈V 〉.Q | s :~h P′ = Q | s :~h ·V

The last rule applied was (Par) for runtime. From this we have:

Γ; /0;Σ1 ` s!〈V 〉.Q : � (1) Γ; /0;Σ2� s :~τ ` s :~h : � (2) ∆ = Σ1� Σ2� s :~τ (3)

After a possible application of (Sub) on (1), by (Send) and its premises:

Γ; /0;Σ
′
1 ` s!〈V 〉.Q : � (4) Σ

′
1 = (Σ11,Σ12)\{s :S} ,s :![U].S (5) Γ; /0;Σ11 ` Q : � (6)

Γ; /0;Σ12 `V : � (7) s :S ∈ Σ1i i ∈ 1,2 (8) if U = U1→ T1 then Σ12 = /0 (9)

Σ
′
1 6c Σ1 (10)

5.5. TYPE SOUNDNESS AND COMMUNICATION SAFETY 137

Using (8) with Σ11,Σ12 = Σ′11,Σ
′
12,s :S, we get, using (3), (10) and Lemma 5.5.8:

Σ′1� Σ2� s :~τ is defined

(Σ11,Σ12)\{s :S} ,s :![U].S� Σ2� s :~τ is defined

(Σ′11,Σ
′
12,s :S)\{s :S} ,s :![U].S� Σ2� s :~τ is defined

(Σ′11,Σ
′
12,s :![U].S)� Σ2� s :~τ is defined

Then using Lemma 5.5.7(3) on the above, followed by Lemma 5.5.7(1–2), we obtain:

Σ′11� Σ′12� s :S� Σ2� s :~τU is defined (11)

In (2) the last rule applied was (Queue) and combining the premises and adding (7) we obtain, by

a new application of (Queue) (noting also (9) which is needed):

Γ; /0;Σ2� s :~τU ` s :~h ·V : � (12)

where the session environment is defined by (11). Then using (6), (12), and (Par), we obtain:

Γ; /0;Σ11� Σ2� Σ12� s :~τU ` P′ : � (13)

By Lemma 5.5.7(3) we have:

Σ11� Σ12 = Σ11,Σ12 = Σ
′
11,Σ

′
12,s :S = Σ

′
11� Σ

′
12� s :S

and (13) becomes:

Γ; /0;Σ
′
11� Σ

′
12� s :S� Σ2� s :~τU ` P′ : � (14)

By Lemma 5.5.8 since Σ′11� Σ′12 6c Σ1 \ s, we have from (14) that:

Γ; /0;(Σ1 \ s)� s :S� Σ2� s :~τU ` P′ : � (15)

From (10) we have s :![U].S ∈ Σ′1 and by (5) there is s : S′ ∈ Σ1 with ![U].S 6c S′. By the defini-

tion of simulation unfoldn(S′) = A〈![U ′].S′h〉h∈H and U 6~
c U ′ and S 6c A〈S′h〉h∈H . Finally using

Lemma 5.5.8 and Lemma 5.5.9 on (15) we can obtain:

Γ; /0;∆
′ ` P′ : �

138 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

where ∆′ = (Σ1 \ s)� s :A〈S′h〉h∈H � Σ2� s :~τU ′ and it holds that ∆vs ∆′.

Case (recv) is very similar to (beta); the rest are easy to obtain.

We now formalise communication-safety (which subsumes the usual type-safety). First, an

s-queue is a queue process s :~h. An s-input is a process of the shape s?(x).P or s B {li : Pi}i∈I .

An s-output is a process s!〈V 〉.P or sC l.P. Then, an s-process is an s-queue, s-input or s-output.

Finally, an s-redex is a parallel composition of either an s-input and non-empty s-queue, or an

s-output and s-queue.

Definition 5.5.10 (Error Process). We say P is an error if P ≡ (ν~a)(ν~s)(Q | R) where Q is one

of the following: (a) a |-composition of two s-processes that does not form either an s-redex

or an s-input and an empty s-queue; (b) an s-redex consisting an s-input and s-queue such that

Q = s?(x).Q′ | s : lk~h or Q = s B{li :Pi}i∈I | s :V~h; (c) an s-process for s ∈~s with s not free in R or

Q; (d) a prefixed process or application containing an s-queue.

The above says that a process is an error if (a) it breaks the linearity of s by having e.g. two s-inputs

in parallel; (b) there is communication-mismatch; (c) there is no corresponding opponent process

for a session; or (d) it encloses a queue under prefix, thus making it unavailable. As a corollary of

Theorem 5.5.3, we achieve the following general communication-safety theorem, subsuming the

case that P is an initial program.

Theorem 5.5.11 (Communication Safety). If Γ;Λ;∆ ` P : � with balanced(∆), then P never re-

duces into an error.

Proof The proof is very similar to the one for Type Safety in the Synchronous HOπs, stated as

Theorem 4.4.14. The strategy is to show, with case analysis, that no error process is typable. This

is easily demonstrated by contradiction.

5.6 Concluding Remarks

The proof of the transitivity in this work requires a more complex construction of the transitive

closure trc(ℜ1,ℜ2) (Definition 5.3.13) than the one in [65] due to the higher-order constructs.

In spite of the richness of the type structures, we proposed a more compact runtime typing and

proved communication safety in the presence of higher-order code, which is not presented in [65].

Moreover, our new typing system extends naturally the previous linear typing system of Chapter 4

demonstrating a smooth integration of two kinds of type-directed optimisation.

5.6. CONCLUDING REMARKS 139

The subtyping system of [39] does not provide any form of asynchronous permutation, thus

does not need the nested n-times unfolding (Definition 5.3.1). Our transitivity proof and the algo-

rithmic subtyping are significantly more involved than in [39] due to the incorporation with n-time

unfolding, permutation, and higher-order functions.

Our treatment of runtime typing, specifically our method for typing session queues and the

use of session remainders, is more compact than previous asynchronous session works [49, 9, 10]

where they use the method of rolling-back messages – the head type of a queue typing moves to

the prefix of the session type of a process using the queue, and then compatibility is checked on the

constructed types. Our method is simpler, as we remove type elements appearing in a queue from

its typing. On the other hand, our queue typing is more similar to that of the functional language

in [40], where smaller types are obtained after matching with buffer values. Our method works

with queue types rather than with values directly, hence it can be extended smoothly to handle

asynchronous optimisation, which is not treated in [40]. For example we allow a type consisting

an output followed by an input action to be reduced with a type corresponding to the input, leaving

the output prefix intact. Using a more delicate composition between values and queue typing, our

system enables linear mobile code to be stored in the queues.

An analysis of asynchronous session action permutations, encompassing an asynchronous “ac-

ceptance” relation which accommodates for output actions performed in advance, appears in an

unpublished manuscript [69]. The authors suggest that their algorithm is terminating. However,

if their system admits µt.![U1].t as a subtype of µt.![U1].?[U2].t, which as we show on page 116

induces an infinite simulation, then it is unclear how it avoids divergence without any special

provision.

6 Sessions and Objects

Overview Here we introduce asynchronous session typing into the Abadi and Cardelli imper-

ative object calculus. Our system shows how process–oriented programs can be organised in

object units with the structuring benefits that arise from that such as dynamic dispatch, object

subtyping, and self-recursion. The asynchronous subtyping follows an iso-recursive approach.

6.1 Introduction

This Chapter addresses the question of how to design and implement type-safe concurrent pro-

grams communicating via message-passing, in a natural programming style based on objects. We

formalise a small object calculus enabling structured concurrent programming of typed bidirec-

tional protocols via sessions. Our language is typed using both object types and session types.

The formalism extends the first-order imperative object calculus of Abadi and Cardelli [2], adding

queue-based primitives for asynchronous communication where the senders send messages with-

out being blocked (but preserving their order). As before, each session consists of two queues, or

end-points, used in a symmetric way with an output on one corresponding to an input on the other.

Queues are considered linear values, which forbids general aliasing, but we allow controlled en-

capsulation within linear objects, obtaining a powerful and uniform programming paradigm. The

resulting language is small but very expressive, due to the high degree of amalgamation of object

and structured concurrency primitives.

Contributions

While many theoretical works exist, no formalism has successfully integrated all of the main

features appearing in object-oriented languages without classes: imperative constructs, thread

spawning, mutable state, recursion, structural object types, and subtyping. Our choice to aug-

ment session-based communication in an extension of the object calculus distills essential features

of higher-order and object behaviours, offering a theoretical tool to analyse delicate type safety

conditions.

141

142 CHAPTER 6. SESSIONS AND OBJECTS

Compared to class-based calculi, the object-calculus approach to sessions has significant ad-

vantages. First, objects are more primitive, in the sense that different class-based and trait-based

systems can be encoded [2, 22]. In particular, our work can be used to extend languages with

structural object types such as OCaml and also the mainstream class-based languages Java and C#

which use nominal types, as well as languages with classes and traits such as Scala [71]. Sec-

ondly, higher-order structures are naturally expressed as objects, providing a powerful program-

ming style [22] which manifests also in class-based languages that support anonymous classes

defined within expressions. Thus, the object calculus provides a versatile and expressive basis for

object-oriented languages including, but not limited to, those that are class-based.

Our main contributions are summarised as follows:

• Linear objects allow higher-order mobile code to encapsulate active sessions, while mobility

of queue end-points realises higher-order session communication. The feature of linear

higher-order code was not allowed in previous class-based systems [31, 26], in which it

would enable anonymous classes to use endpoints appearing free in their definition.

• We define a new formulation for recursive sessions, naturally integrating session-based

choices with method invocations. This iso-recursive approach to sessions has not appeared

previously in the literature, and it proves natural in the object calculus which follows the

same approach for recursive methods.

• We formulate an iso-recursive version of asynchronous subtyping, capturing the essential

properties in a tractable framework.

• The typing system of our calculus guarantees type soundness and communication safety in

the presence of asynchronous session subtyping.

6.2 The Session Objects Calculus

The sessionς-calculus is based on the imperative object calculus impς [2]. Objects can be invoked,

updated, and cloned; terms can reduce in sequence and also concurrently; session primitives enable

structured interactions based on asynchronous message passing. Concurrency, method arguments,

linear objects, and sessions are additions to the original object calculus.

Reduction is defined on configurations consisting an extended runtime syntax paired with a

heap where object names map to objects and queue names map to queues.

6.2. THE SESSION OBJECTS CALCULUS 143

6.2.1 Syntax

a,b,c ::= term

u identifier

[τ | li=ς(xi)λ(yi)bi
i∈I] object

[τ | li=λ(yi)bi
i∈I] linear object

w.l←u method invocation

w.l ↼↽ ς(x)λ(y)b method update

clone(w) cloning

let x=a in b sequencial evaluation

spawn a concurrent evaluation

let (x,y)=new session〈κ1,κ2〉 in b session creation

u!v output

u? input

w.l /u selection

u.w branching

close(u) session closing

u,v,w ::= identifier

x,y,z variable

o object name

s queue name

s̄ dual of s, with ¯̄s = s

Figure 6.1: Syntax

The syntax of the sessionς-calculus is given in Figure 6.1, with terms ranged over a, b, c. We

have identifiers (u,v,w) which can be variables (x,y,z), object names (o), or queue endpoints (s, s̄).

In the remaining, we use the convention that u is used for queues, w for objects, and v for both

kinds of value. The dual of a queue endpoint s is denoted s̄, and represents the other endpoint of

the same session. The operation is self-inverse hence ¯̄s = s.

An object [τ | li=ς(xi)λ(yi)bi
i∈I] is a label-indexed collection of methods. The annotation τ

is the type of the object. A method ς(x)λ(y)b has body b, self variable x (ς-bound), and queue

argument y (λ-bound). The self variable allows methods to be mutually recursive. Contrary to

regular objects which are unrestricted, a linear object [τ | li=λ(yi)bi
i∈I] will be used exactly once

and should not be aliased; consequently, its methods have no access to self, and only take a queue

argument. Later typing ensures that a linear object has at least one method.

144 CHAPTER 6. SESSIONS AND OBJECTS

An invocation of a method l with argument u is written w.l←u. This is a departure from impς,

where there is no argument in methods. In a standard way, a method update w.l ↼↽ ς(x)λ(y)b

modifies a heap at w so that l maps to the new method. Note that this operation only applies

to unrestricted objects – linear objects are immutable. To perform a shallow copy of the object

mapped to by w in the heap, we write clone(w), which returns a new name pointing to a copy

of the object. Sequencing is expressed with a let-expression, and spawn a launches a thread with

body a.

The term let(x,y)=new session〈κ1,κ2〉 in b creates a new session, resulting in the instantiation,

within the session body b, of x and y to a fresh pair of endpoint queues. The annotations κ1 and κ2

correspond to the session type of each endpoint. To emit a value v over x we write x!v; to obtain

the value, we perform an input on y, as in let z=y? in b′. An output on x places a value at the end

of the queue of y; an input on x removes the first value on the queue of x and returns it, or blocks

if the queue is empty. There cannot be race conditions: each endpoint has output capability on the

dual’s queue and input capability on its own.

It is desirable to allow alternative behaviours to emerge as choices, within parts of a single

session. To preserve determinism, when an internal choice (selection) is made on an endpoint,

there will be a corresponding external choice (branching) on its dual; this choice is determined by

a method name (a label). With w1.l / x a choice of branch l is performed on x, implemented as

an invocation w1.l←x. This choice is communicated to the dual endpoint, which receives it using

y.w2, and realises it as w2.l←y.

This unified approach reduces the normally verbose syntax of session branching to a single

method invocation on each endpoint. Also, it allows us to implement session recursion directly

at the object level: nested session choices are implemented with nested method calls, and both

endpoints are used recursively.

Sessions have to be closed at both ends for the interaction to be complete, using close(u).

Bound variables are xi,yi in [τ |li=ς(xi)λ(yi)bi
i∈I], yi in [τ |li=λ(yi)bi

i∈I], x,y in w.l↼↽ς(x)λ(y)b

and let (x,y)=new session〈κ1,κ2〉 in b, and x in let x=a in b. The notions of free variables, alpha

equivalence and substitution are standard. fv(a) denotes the set of free variables in a.

Abbreviations We denote the empty object with []. The notation a; b means let x=a in b with

x 6∈ fv(b). Parentheses are used to distinguish terms like (spawn a); b and spawn (a; b).

6.2. THE SESSION OBJECTS CALCULUS 145

We also use the following abbreviations. Below x is fresh:

u. [. . .] ≡ let x=[. . .] in u. x

[τ | l =]/u ≡ let x=[τ | l =] in x.l /u

w.l / (u1,u2) ≡ let x=w.l /u1 in x.l /u2

6.2.2 Configurations

Reduction is defined on configurations of an extended language embedded in the definition of

evaluation contexts:

E ::= Es | E |b | b |E Es ::= 〈·〉 | let x=Es in b

Sequential contexts Es ensure a call-by-value evaluation order for terms structured using (possi-

bly nested) let-expressions. General reduction contexts E extend sequential contexts with parallel

composition. Although the user syntax in Figure 6.1 does not include a production a |b, new

threads are created with spawn, hence the extension. Evaluation order in parallel-composed con-

texts is non-deterministic: the hole can occur in any component. The separation of sequential and

concurrent contexts enforces that threads are top-level, i.e., let x=(E |a) in b is not well-formed.

Heaps are defined as follows:

B ::= /0

| B · s 7→ ~r1 · s̄ 7→ ~r2

| B ·o 7→ [τ | li=ς(xi)λ(yi)bi
i∈I]

| B ·o 7→ [τ | li=λ(yi)bi
i∈I]

r ::= v | l | end

Endpoint queues appear in pairs of duals. Each queue is a vector of runtime values drawn from

the set of identifiers, labels, and the special value end. Labels enable selection and branching,

where a method name is communicated; the value end is used to mark the end of a session and is

especially useful for de-allocation of queues.

6.2.3 Reduction

The reduction rules are formalised in Figure 6.2. To denote that a closed configuration consisting

an evaluation context E with heap B reduces to a new configuration with context E ′ and heap B′

146 CHAPTER 6. SESSIONS AND OBJECTS

(R-CONTEXT)
a,B → a′,B′

E〈a〉,B → E〈a′〉,B′

(R-OBJECT)
c ∈ { [τ | li=ς(xi)λ(yi)bi

i∈I], [τ | li=λ(yi)bi
i∈I]} o 6∈ dom(B)

c,B → o,B ·o 7→ c

(R-SPAWN)
E〈spawn a〉,B → E〈[]〉 |a,B

(R-LET)
let x=v in b,B → b{v/x},B

(R-CLONE)
B(o) = [τ | li=ς(xi)λ(yi)bi

i∈I] o′ 6∈ dom(B)
clone(o),B → o′,B ·o′ 7→ B(o)

(R-INVOKE)
B(o) = [τ | li=ς(xi)λ(yi)bi

i∈I]
o.lk←s,B → bk {o/xk}{s/yk},B

(R-LINVOKE)
B(o) = [τ | li=λ(yi)bi

i∈I]
o.lk←s,B → bk {s/yk},(B\o)

(R-UPDATE)
B≡ B′,o 7→ [τ | li=ς(xi)λ(yi)bi

i∈I]

o.lk ↼↽ ς(x)λ(y)b,B → o,B′ ·o 7→ [τ | li=ς(xi)λ(yi)bi
i∈I\k, lk=ς(x)λ(y)b]

(R-SESSION)
s, s̄ 6∈ dom(B)

let (x,y)=new session〈κ1,κ2〉 in b,B → b{s/x}{s̄/y},B · s 7→ ε · s̄ 7→ ε

(R-PUT)
s!v,B · s̄ 7→~r → [],B · s̄ 7→~rv

(R-GET)
s?,B · s 7→ v~r → v,B · s 7→~r

(R-SELECT)
o.lk / s,B · s̄ 7→~r → o.lk←s,B · s̄ 7→~rlk

(R-BRANCH)
s.o,B · s 7→ lk~r → o.lk←s,B · s 7→~r

(R-END)
close(s),B · s̄ 7→~r → [],B · s̄ 7→~rend

(R-QCLEAN)
a,B · s 7→ end · s̄ 7→ end → a,B

(R-TCLEANL)
o |E,B → E,B

(R-TCLEANR)
E |o,B → E,B

Figure 6.2: Reduction

6.2. THE SESSION OBJECTS CALCULUS 147

we write:

E,B → E ′,B′

With rule (R-OBJECT), when an object is encountered, a new heap mapping for it is created

and returned. Rule (R-CLONE) takes an existing object and adds a copy under a fresh name. In

rule (R-SPAWN) the thread body a is taken out of its original context and placed in parallel, with

the empty object [] placed as the result in the original context.

Rule (R-INVOKE) for unrestricted objects is standard, substituting the object for the self vari-

able and the queue for the formal argument within a copy the method body; rule (R-LINVOKE) for

linear objects is similar, however there is no self argument, and importantly, the object is removed

from the heap – this is safe because typing guarantees it will only be used once. Rule (R-UPDATE)

is as expected, replacing the old method with the new one within the object’s method set.

In (R-SESSION) fresh dual queues s and s̄ are created and substituted for the variables x and

y within the scope of session body b. The queues are added to the heap initialised to ε, the empty

vector. Queues facilitate asynchronous session communication: a sending action is never blocked

(non-blocking) and two messages sent on the same queue arrive in the sending order (message

order preservation per session).

Rule (R-PUT) for output on a queue s places the value v (an object or queue name) at the end

of the dual queue s̄; its result is the empty object. Rule (R-GET) for input on s is applicable if

there is at least one value in the same queue, in which case the value is removed from the queue

and returned.

In rule (R-SELECT) for selection o.lk / s the method name lk is enqueued on s̄, the dual of the

argument s, similarly to output; the selection then becomes an invocation o.lk←s, i.e., the same

method is invoked locally with argument s. Rule (R-BRANCH) is used to receive a selection, using

s . o. It requires the first value of s to be a method name lk, which is dequeued and used in the

resulting invocation o.lk←s.

Rule (R-END) is similar to output, but in this case the special value end is appended to the

dual queue. Rule (R-QCLEAN) deallocates both s and its dual s̄ when both have end as the only

remaining value, because this signifies that the session is complete at both endpoints. Finished

threads are removed from a parallel composition by (R-TCLEANL,R).

148 CHAPTER 6. SESSIONS AND OBJECTS

6.2.4 Example: Instant Messenger

In Figure 6.3 we show an example which utilises most features of the calculus, demonstrating the

subtle interplay between objects, sessions, and recursion: choices are naturally implemented as

recursive objects; linear objects enable complex interleavings, encoding multi-parameter methods

under a concise declarative programming style.

We chose to write the client component of a simple “instant messenger” requiring message

passing, choice, mutual recursion, higher-order sessions, and thread spawning. We only show

how to implement the object for sending messages and files; a usable program would also need a

server, running concurrently, for receiving them.

1 let client =
2 [τ1 |arg = ς(x)λ(y)
3 [τ2 |arg = λ(z)
4 y . [τ3 | exit = λ(y1) close(y1) ; [τ4 | exit = λ(y2)close(y2)] / z ,

5 msg = λ(y1) let m=y1?
6 in [τ5 |msg = λ(y2)y2!m; x.arg/ (y1,y2)] / z ,

7 file = λ(y1) let fn=y1?
8 in let (x1,x2)=new session〈κ1,κ2〉
9 in spawn let f=get file(fn)
10 in (x1! f n; x1! f ; close(x1));
11 [τ6 |file = λ(y2)
12 y2!x2; x.arg/ (y1,y2)] / z]]]
13 in client.arg/ (susr,sim)

Figure 6.3: Example: Instant Messenger

In line 1, we define the client object which is instantiated, in line 13, with the queues susr and

sim. The first queue is used to control the object (e.g. through a session with a user interface),

and the second is used for instant messaging with a suitable server object, which we assume is

separately defined.

In line 2 we start the definition of a shared object with a method arg which will take susr for

the y argument. Invoking arg will result in the object starting in line 3, which is linear and will

take sim for its z argument.

Then, in line 4, we branch on queue y, offering the choices (i.e. method names) exit, msg

and file. The first is used to end the two sessions: first y1, which will be the same as y, is closed;

then, using a nested object, we propagate the user choice by performing a selection of exit also

6.3. TYPING 149

on z ending the session. The method msg is for sending a message; the method file is for sending

a file. If msg is chosen, a message is received from the user queue y1, then in line 6 a selection

of msg is performed on the messaging queue z, relaying the message, and then invoking the outer

object with arguments y1 and y2 (which will have the values susr and sim) implementing a recursive

protocol. Method file, starting in line 7, receives a filename from the user queue, then in line 8

creates a new pair of endpoints for the file transfer.

In lines 9 and 10 a new thread is spawned in which the file f is obtained using the filename fn,

and then fn and f are sent over the first of the new endpoints, x1, which is then closed. (We assumed

a system function ‘get file.’) After spawning, in lines 11-12, an object is sequence composed, and

selection of file is made on z, the endpoint x2 is sent over z to the server object so that the file can

be received, and finally a recursive invocation is performed repeating the client protocol.

For the file transfer we created a new session running on a different thread, and we communi-

cated one of the new endpoints over the existing session, to save our client from blocking. Finally,

note that the code can be written in a modular way, separating the objects, by abstracting over the

free queues.

6.3 Typing

Our session types can be thought of as process types encompassing typed input and output, se-

quencing, and recursive label-indexed branching (external choice) and selection (internal choice).

The language of types can express rich interaction patterns, and a deterministic behaviour that

arises from linear use of dually typed queues.

After introducing the syntax of types, we define type duality and the subtyping relation, and

then describe the typing system. An integration of objects and sessions requires delicate conditions

on both types and typing, which are justified by examples at the end. We also give session types

and typing for the instant messenger example of § 6.2.4.

6.3.1 Types

The types are defined in Figure 6.4. Notice that we use a different set of metavariables than the

one in the previous chapters, to avoid confusion since there are subtle differences. Value types

range over τ, and can be complete session types, ranging over κ, or object types. An object type

records the label-indexed argument and result types, σi and τi, for each method li: the argument is

of session type and the result of value type. Linear object types are distinguished by the lin prefix.

150 CHAPTER 6. SESSIONS AND OBJECTS

τ ::= value

κ complete session

[li : (σi) τi
i∈I] object

lin[li : (σi) τi
i∈I] linear object (?)

σ ::= session

π partial session

κ complete session

π ::= partial session

ε empty

![τ] output

?[τ] input

⊕(X)[li : πi
i∈I] l j : π j;X j

j∈J] internal choice (?)
&(X)[li : πi

i∈I] l j : π j;X j
j∈J] external choice (?)

π;π sequence

κ ::= complete session

end ended session

X type variable

⊕(X)[li : κi
i∈I] internal choice (?)

&(X)[li : κi
i∈I] external choice (?)

π;κ complete sequence

(?) I ⊃ /0

Figure 6.4: Types

6.3. TYPING 151

Session types, ranging over σ, are partitioned into partial, ranging over π, and complete. Partial

session types are building blocks for larger protocols. An output of a value of type τ is written

![τ], and similarly input is ?[τ]. In the process calculi we studied there are no partial session types,

but in the object calculus we chose to include them, because this is a simple way to allow methods

to implement a part of a session without full knowledge of the protocol; this feature facilitates

a greater degree of modularity, which is very relevant for the objectives of an object-oriented

language.

Internal choice (selection) is represented by a set of label-indexed session types, and is prefixed

with ⊕ followed by a bound type variable X which is used for tail-recursion within the branches.

This type is equivalent to µX .⊕[li : πi
i∈I] l j : π j;X j

j∈J]. A pleasant consequence of our com-

bined recursive structures is that, due to the presence of labels between the definition and the type

variables, the types are always contractive. The branches are here shown partitioned into two sets,

with] meaning that labels are distinct in each, and moreover we are ensuring that there should

be at least one branch in which no type variable occurs. This separates the partial and complete

internal choices, which is essential for the soundness of the typing system, see Example 6.3.5 (8).

External choice (branching) is similar and uses the & prefix.

The sequence composition of partial session types is written π;π′, and ε denotes the empty

sequence.

The grammar for complete session types adds the terminals end, marking the end of a session,

and type variables X which are used as in partial types. Choice constructs are complete if and

only if all branches are complete. A complete session type can only be the last component in

a sequence. Finally, we assume that all bound type variables in a session type are chosen to be

different.

Equality and Duality We use three axioms for type equality. First we regard ε as the unit of

sequence composition:

σ;ε = ε;σ = σ

Next, the type end distributes within partial branches of a choice construct:

⊕(X)[li : πi
i∈I] l j : κ j

j∈J];end = ⊕(X)[li : πi;end i∈I] l j : κ j
j∈J]

&(X)[li : πi
i∈I] l j : κ j

j∈J];end = &(X)[li : πi;end i∈I] l j : κ j
j∈J]

152 CHAPTER 6. SESSIONS AND OBJECTS

This type of equality should not be generalised to arbitrary composition, for example between

⊕(X)[li : πi
i∈I] l j : κ j

j∈J];σ and ⊕(X)[li : πi;σ i∈I] l j : κ j
j∈J], because in the first type σ is done

once, but in the second type it may be done more than once depending on recursion.

As standard, duality interchanges input and output, branching and selection, and distributes

over sequencing and into branches. It does not distribute within the value type of input and output.

Type variables, and the types ε and end, remain unaffected.

Formally, duality is defined by the following rules:

ε = ε ![τ] =?[τ] ?[τ] =![τ]

⊕(X)[li : σi
i∈I]=&(X)[li : σi

i∈I] &(X)[li : σi
i∈I]=⊕(X)[li : σi

i∈I]

π;σ = π;σ end = end X = X σ = σ

6.3.2 Subtypes and Asynchronous Subtyping

The rules for subtyping are given in Figure 6.5. The subtyping rule for objects follows [2]: a

larger object type is a subtype of a smaller one, with method argument and result types invariant.

Linear objects are treated in the same way, however, it is crucial that a linear object type must

consist at least one method – otherwise the object would not be usable linearly since no method

could be invoked. Rule (SUB-LINEARISE) formalises that an unrestricted object can safely be

used as linear, similarly to the rule for functions in [63]; the converse, promoting a linear object to

unrestricted type, is unsafe. These conditions are justified in Example 6.3.5 (1) and (2).

In session subtyping, output is covariant to the value type, and input is contravariant. Note

that the input-output subtyping differs from the one for the π-calculus in [77]. This is because

our relation means “if a queue is assigned σ1, then it also satisfies σ2” while the one in [77] says

“if you must do at least σ2, then you are allowed to do σ1.” In other words, we anticipate a

contravariant dual process on each session which, by the interchanging of constructors induced by

duality, becomes covariance on our side.

Our definition of session subtyping is more uniform with objects, as can be seen from the

rules (SUB-SELECT) and (SUB-BRANCH). Selection and branching can be thought of as remote

method invocation (over a session), where the first chooses a method, and the second must support

it; thus if one can invoke an object it can also invoke one with larger interface, and dually an object

that can support a protocol can also fulfil a smaller one. Hence selection with a larger indexing set

is a supertype, and branching is dual. These rules are the same as those in [19].

6.3. TYPING 153

(SUB-REFL)

ζ4 ζ

(SUB-TRANS)
ζ1 4 ζ2 ζ2 4 ζ3

ζ1 4 ζ3
ζ ::= τ | π

(SUB-OBJ)
J ⊆ I

[li : (σi) τi
i∈I]4 [l j : (σ j) τ j

j∈J]

(SUB-LOBJ)
/0⊂ J ⊆ I

lin[li : (σi) τi
i∈I]4 lin[l j : (σ j) τ j

j∈J]

(SUB-LINEARISE)
/0⊂ I

[li : (σi) τi
i∈I]4 lin[li : (σi) τi

i∈I]

(SUB-PUT)
τ1 4 τ2

![τ1]4![τ2]

(SUB-GET)
τ1 4 τ2

?[τ2]4?[τ1]

(SUB-SEQ)
π1 4 π2 σ1 4 σ2

π1;σ1 4 π2;σ2

(SUB-SELECT)
∀i ∈ I . σi 4 σ

′
i /0⊂ I ⊆ J

⊕(X)[li : σi
i∈I]4⊕(X)[l j : σ

′
j

j∈J]

(SUB-BRANCH)
∀i ∈ I . σi 4 σ

′
i /0⊂ I ⊆ J

&(X)[l j : σ j
j∈J]4&(X)[li : σ

′
i
i∈I]

(SUB-ASYNCPUT)
∀h ∈ H .X 6∈ ftv(σh)

![τ];BX〈σh〉h∈H 4 BX〈![τ];σh〉h∈H

(SUB-ASYNCSEL)
∀h ∈ H .∀i ∈ I .X ,Y 6∈ ftv(σih)

⊕(Y)[li : BX〈σih〉h∈H i∈I]4 BX〈⊕(Y)[li : σih
i∈I]〉h∈H

Asynchronous Contexts: BX ::= ?[τ];〈·〉h∈H | &(X)[li : 〈·〉h∈H i∈I]

Figure 6.5: Subtyping

154 CHAPTER 6. SESSIONS AND OBJECTS

Asynchronous Subtyping A consequence of our asynchronous semantics for message passing

is that, as in the HOπas, it is harmless to perform an output or selection “in advance” of any

sequence of inputs and branchings. However, the relative order of outputs (and inputs) should

not be permuted. First, at the bottom of Figure 6.5 we define a class of asynchronous multi-hole

contexts, written BX , where X is a parameterisation specifying the bound type variable that may

appear if we have a recursive branch context (last production). We write BX〈σh〉h∈H for the context

where the holes indexed by h ∈ H are replaced by the corresponding types σh.

We write ftv(σ) for the free type variables of a session type, omitting the formal definition

which is straightforward. We present two rules: the first is (SUB-ASYNCPUT), which permits an

output to appear outside of the asynchronous context, which in turn can be an input or branching;

the second, (SUB-ASYNCSEL), allows a selection to appear outside of the context (and enclose

it). In both rules, there is a necessary limitation, which is that the bound type variable of the

context BX (if there is one), and also the type variable induced by the selection (Y in the last

rule), cannot appear free in the continuations σh and σih, respectively for each rule. Practically,

this means that the types must not behave recursively, although branching, in general, facilitates

recursion. The rationale for this condition is as follows: consider the first rule, (SUB-ASYNCPUT),

then if the context is recursive, as for example in BX〈![τ];σh〉h∈H = &(X)[l :![τ];X], the output

![τ] cannot be extracted, because inside the context the action is repetitive, but outside it will

only occur once, since by the rule we would obtain ![τ];&(X)[l : X]. Similarly for selection in

rule (SUB-ASYNCSEL), with the additional constraint forbidding recursion on Y , as this would

also induce an incorrect transformation. For example, if we could apply (SUB-ASYNCSEL) with

&(X)[l1 :⊕(Y)[l2 : Y]] as the supertype, we would obtain a subtype⊕(Y)[l2 : &(X)[l1 : Y]], in which

the internal branch is now performed repeatedly, when in the original type it was only performed

once before the recursive selection.

However, we still obtain an enlarged typability, and the restriction on recursion is applied only

for the type variables of the transformed types, which means that any recursion defined in a larger,

enclosing scope, can still take place. For example we have that:

&(X1)[l3 :⊕(Y)[l2 : &(X)[l1 : X1]]] 4 &(X1)[l3 : &(X)[l1 :⊕(Y)[l2 : X1]]]

using first (SUB-BRANCH) followed by (SUB-ASYNCSEL). This transformation is sound as both

subcomponents are repetitive in the subtype and in the supertype, using the same type variable X1.

As another positive example, the type σ =![τ]; ?[τ];end has its dual ?[τ]; ![τ];end as a supertype;

6.3. TYPING 155

therefore two endpoints that are both assigned the same type σ can comprise a valid session. See

Example 6.3.5 (3) for a concrete example.

6.3.3 Judgements and Environments

The typing judgements take the shape:

Γ;Λ;Σ ` a : τ and Γ;Λ;Σ ` a1 | . . . |an : �

where Γ, Λ, Σ are unordered environments giving the types for identifiers of unrestricted objects,

linear objects, and queues, respectively. The inductive definition is:

Γ ::= /0 | Γ,u : [li : (σi) τi
i∈I]

Λ ::= /0 | Λ,u : lin[li : (σi) τi
i∈I]

Σ ::= /0 | Σ,u : σ

We write dom(Γ) for the domain of Γ and similarly for Λ and Σ. For a judgement to be well-

formed, we need that no identifier occurs in the domain of more than one environment, i.e.,

dom(Γ)] dom(Λ)] dom(Σ) must be defined. Also, all types assigned in environments must be

closed, i.e., there should not occur free (session) type variables. Parallel compositions are typed

with the process type �.

Environments Λ and Σ are linear: every identifier is associated with a single usage, and there-

fore weakening (used when discarding an identifier) and contraction (used when an identifier is

copied) are not allowed. We write Λ1]Λ2 for the environment that is the set union of Λ1 and

Λ2, defined when the domains of Λ1 and Λ2 are disjoint. Similarly for Σ1]Σ2. The sequence

composition Σ1 # Σ2 is an extension of sequencing from session types to session environments. It

is the partial non-commutative operation defined by:

Σ1 #Σ2 = Σ1]Σ2 if dom(Σ1)∩dom(Σ2) = /0

(Σ1,u : π) # (Σ2,u : σ) = (Σ1 #Σ2),u : π;σ

Successful composition of environments using (]) and (#) prevents contraction: in the first case,

there should be nothing to contract; in the second, multiple usages of an identifier are understood

as one sequential usage, not as copying.

156 CHAPTER 6. SESSIONS AND OBJECTS

Subtyping is also extended to session environments:

/04 /0 Σ,u : σ4 Σ,u : σ
′ if σ4 σ

′

6.3.4 Typing Rules

The typing rules are defined in Figure 6.6. We assume that for a rule to be applicable, the environ-

ments in the consequence are defined.

Values Rule (OBJVAL) is the axiom for typing the identifiers of unrestricted objects. Rule

(CLONE) is for typing the cloning of shared objects. Rule (LOBJVAL) is for linear objects, and

rule (QUEUEVAL) is for queues. In (LOBJVAL) and (QUEUEVAL), the linear environments Λ and

Σ do not contain irrelevant mappings, as this would amount to weakening. Consequently, for each

linear value in the environments of a judgement, one of these axioms has been applied exactly

once within one of the subderivations in its premises.

Concurrency Rule (SPAWN) is for typing thread bodies. There are two conditions: the first

is that queues appearing free in the thread body a must be assigned complete session types; the

second is that the result of a must be an unrestricted object, that is, a subtype of []. Rule (PAR)

types parallel-composed terms, requiring that linear elements are not shared between threads, and

that the result of each thread is of shared type. These conditions are explained in Example 6.3.5

(4).

Sequencing Rule (LET) is for local definitions and sequencing. In the conclusion, no linear

object in a occurs in the continuation b, and the session usages of a are sequence-composed with

those of b. This follows from the call-by-value reduction order. Depending on the type τ of a, the

mapping x : τ is added to the correct environment using a shorthand notation; if τ is linear, usual

conditions will apply. Note that the type of a can be a complete session κ but not a partial session

π, otherwise type safety can be violated; see Example 6.3.5 (5).

Subtyping Rule (SUBSUME) introduces subtyping for both session environments and types.

Objects Rule (OBJECT) is for unrestricted objects. Methods are typed with the object type for

the self variable, and the queue must be used as mandated by the argument type. The object can be

copied, therefore there should not be any use of free linear objects or queues within its methods,

6.3. TYPING 157

(OBJVAL) (τ≡ [. . .])

Γ,u : τ; /0; /0 ` u : τ

(CLONE) (τ≡ [. . .])

Γ,u : τ; /0; /0 ` clone(u) : τ

(LOBJVAL) (τ≡ lin[. . .])

Γ;{u : τ} ; /0 ` u : τ

(QUEUEVAL)

Γ; /0;{u : κ} ` u : κ

(SPAWN)
Γ;Λ;{ui : κi}i∈I ` a : []

Γ;Λ;{ui : κi}i∈I ` spawn a : []

(PAR)
∀i ∈ {1..n} . Γ;Λi;Σi ` ai : []

Γ;
]

Λi;
]

Σi ` a1 | . . . |an : �

(LET)
Γ;Λ1;Σ1 ` a : τ (Γ;Λ2;Σ2)]{x : τ} ` b : τ

′

Γ;Λ1]Λ2;Σ1 #Σ2 ` let x=a in b : τ
′

(Γ;Λ;Σ)]{u : τ}=


Γ,u : τ;Λ;Σ if τ≡ [. . .],
Γ;Λ,u : τ;Σ if τ≡ lin[. . .],
Γ;Λ;Σ,u : τ if τ≡ κ.

(SUBSUME)
Γ;Λ;Σ ` a : τ Σ4 Σ

′
τ4 τ

′

Γ;Λ;Σ
′ ` a : τ

′

(OBJECT) (τ≡ [li : (σi) τi
i∈I])

Γ,xi : τ; /0;{yi : σi} ` bi : τi ∀i ∈ I

Γ; /0; /0 ` [τ | li=ς(xi)λ(yi)bi
i∈I] : τ

(LOBJECT) (τ≡ lin[li : (σi) τi
i∈I], I ⊃ /0)

Γ;Λ;
{

u j : κ j
} j∈J

,yi : σi ` bi : τi ∀i ∈ I

Γ;Λ;
{

u j : κ j
} j∈J ` [τ | li=λ(yi)bi

i∈I] : τ

(INVOKE)
Γ;Λ;Σ ` w : lin[li : (σi) τi

i∈I] k ∈ I

Γ;Λ;Σ,u : σk ` w.lk←u : τk

(UPDATE) (τ≡ [li : (σi) τi
i∈I])

Γ; /0; /0 ` w : τ Γ,x : τ; /0;{y : σk} ` b : τk k ∈ I

Γ; /0; /0 ` w.lk ↼↽ ς(x)λ(y)b : τ

(SESSION)
Γ;Λ;Σ,x : κ1,y : κ2 ` b : τ κ1 4 κ2

Γ;Λ;Σ ` let (x,y)=new session〈κ1,κ2〉 in b : τ

(SEQUNIT)
Γ;Λ;Σ ` a : τ

Γ;Λ;Σ,u : ε ` a : τ

(END)

Γ; /0;{u : end} ` close(u) : []

(GET)

Γ; /0;{u :?[τ]} ` u? : τ

(PUT)
Γ;Λ;Σ ` v : τ

Γ;Λ;{u :![τ]} #Σ ` u!v : []

(SELECT) (σ≡⊕(X)[li : σi
i∈I])

Γ;Λ;Σ,u : σk{{σ/X}} ` w.lk←u : τ k ∈ I

Γ;Λ;Σ,u : σ ` w.lk /u : τ

(BRANCH) (σ≡&(X)[li : σi
i∈I])

Γ;Λ;Σ ` w : lin[li : (σi{{σ/X}}) [. . .]i i∈I]
Γ;Λ;Σ,u : σ ` u.w : []

Figure 6.6: Typing

158 CHAPTER 6. SESSIONS AND OBJECTS

expressed by the empty linear environments. Linear objects are typed with (LOBJECT); there is

no self in methods, however other linear objects and queues can be used. The restrictions are that:

first, all free sessions must be complete; second, all methods must use the same linear objects

and implement the same session type for free queues. The first condition allows a linear object to

change thread; the second ensures that since a linear object is invoked exactly once, it will produce

the same “side-effect” irrespective of which method is invoked.

Rule (INVOKE) types method invocation. Shared objects are linearised first with (SUBSUME).

The corresponding usage for the actual queue argument is added in the final environments. Rule

(UPDATE) is standard; the new method body is typed in the same way as a method in (OBJECT).

See Example 6.3.5 (6). Note that linear objects cannot be updated or cloned.

Sessions Rule (SESSION) for new sessions has two constraints: first, the queues must be used

completely and then closed, producing complete session types; second, the session types must

agree with the annotations and these must be dual, ensuring compatibility of interactions. Sub-

typing may need to be used to achieve syntactic duality. Rule (SEQUNIT) is a limited form of

weakening useful for type preservation: when one queue has been used and closed it may not ap-

pear free, hence will not be in Σ, but due to asynchrony the dual queue may still be present, albeit

with empty remaining type (modulo buffered values); this rule recovers duality of both endpoints.

In (END) closing a queue u produces the singleton Σ-environment {u : end} and gives the empty

object type as result, to match reduction.

Rule (GET) for input records an input session part with the carried value type appearing as the

result. Rule (PUT) for output u!v first types the sent value v assigning to it a type τ with linear

usage Λ and Σ, then in the conclusion an output session part is composed to the left (meaning it

happens first) of Σ. When v is unrestricted Λ = Σ = /0; when v is a linear object Λ = {v : τ} and

Σ = /0; when v is a queue Λ = /0 and Σ = {v : τ} with τ = κ. The rule accepts s!s, i.e., a queue that

emits itself, giving {s :![κ];κ}, which is correct because the rule composes the output type and the

actual type of the value, which is used after that output.

Rule (SELECT) is used for a selection w.lk / u. In the premise we type the invocation w.lk←u

which gives a session environment Σ,u : σk{{σ/X}}. The notation σk{{σ/X}} is a capture-avoiding

type substitution in which the type σ replaces any instance of the type variable X in σk. The type σ

is equal to⊕(X)[li : σi
i∈I] with k ∈ I, therefore, σk{{σ/X}} is an unfolding of the k-th component of

σ. Then, the select construct w.lk /u types u with the folding σ of the unfolded types
{

σi{{σ/X}}i∈I
}

under selection. See Example 6.3.5 (7).

6.3. TYPING 159

Rule (BRANCH) works similarly, but the constraints are slightly stronger: first, all mappings

of label to argument types from the object type (which may be subsumed to lesser methods)

are used in the fold; secondly, all methods used in the branching (but not any methods hidden

by subsumption) must return a shared value of some object type, although these types can be

different, because any of them can be chosen during reduction and we discard the actual value and

assign the empty object type to the branch construct u . w. This is a design choice. Alternatively

we could allow the type of w in the premise to be:

lin[li : (σi{{σ/X}}) τi
i∈I]

allowing the type of u.w in the conclusion to be τ with the additional constraint that ∀ i∈ I .τi 4 τ.

This would allow us to use the returned value within the program, however, it would make it

more difficult to use an object in branching, because a subset of methods satisfying the additional

constraint would have to be chosen. In the current formulation, even methods with arbitrary return

types, as long as they are shared, can participate in the branching. In fact, both versions of the rule

can be added to the system for maximum typability, but for simplicity we prefer to keep the most

useful one for sessions in our present formulation.

Our approach is iso-recursive [35], which is a natural choice since we have coordinated object-

based recursion on both endpoints of a session, and we can perform an implicit type folding at the

points where recursion is decided, i.e., upon selection and branching.

6.3.5 Examples: Justification of Types and Typing Rules

In this subsection we justify the key conditions on types and typing rules with examples, demon-

strating the subtle interplay between recursion, linearity of objects, sessions and concurrency.

1. Allowing the empty indexing set in the syntax of linear object types lin[li : (σi) τi
i∈I], i.e.,

allowing empty linear objects, is problematic. For example consider the following:

let x=[τ1 | l=λ(y)s1!v; close(s1)] in s!x

| let x=[τ2 | l=λ(y) let z=y? in b] in x.l←s̄

Assume we allowed a linear object to subsume the type lin[]. Then the output s!x would

be typable with {s :![lin[]];end}. Take τ2 ≡ lin[l : (?[lin[]];end) τ3]. Then the invocation

x.l←s̄ is typable. In the second object, the input y? would give a value of type lin[] for z.

160 CHAPTER 6. SESSIONS AND OBJECTS

Since z has no method to invoke, it must either be re-sent or returned in b. Therefore, the

enclosed queue s1 will never be used, which is clearly undesirable.

2. We justify the key object subtyping rule, (SUB-LINEARISE). It is always safe to use a shared

object linearly. However, the inverse is unsafe, for example it would allow:

let x=[τ | l=λ(y)s1] in []

which discards s1, and:

let x=[τ | l=λ(y)s1] in x.l←s; x.l←s

in which s1 is copied.

3. Using (SUB-ASYNCPUT), the term

s!v1; s?; close(s) | s̄!v2; s̄?; close(s̄)

is typable. One of the queue usages can be subsumed, say for s, obtaining:

{s :?[τ2]; ![τ1];end, s̄ :![τ2]; ?[τ1];end}

which assigns syntactically dual types to the endpoints.

4. If we allowed partial session use in thread bodies, we would accept:

spawn (s!v); close(s) | s̄?; close(s̄)

which reduces (without showing the heap) to:

close(s) | s̄?; close(s̄) | s!v

where the order of the output and the session ending is non-deterministic, violating com-

munication safety: it constitutes copying of s since in the result it cannot be composed to a

sequential usage.

6.3. TYPING 161

If we allowed a thread body to evaluate to a linear object, then we would accept:

spawn [τ | l = λ(x)s?; close(s)] | s̄!v; close(s̄), B

which reduces to:

[] | s̄!v; close(s̄) | o, B ·o 7→ [τ | l = λ(x)s?; close(s)]

in which s has been effectively discarded, because no term has access to o.

5. If we allowed aliasing of queues in (LET), by permitting a local definition to have a partial

session type, we would type let x = s in s!v1; x!v2, which is unsafe as we would obtain a

final Σ-environment {s :![τ2]; ![τ1]} when the true usage is {s :![τ1]; ![τ2]}.

6. In (OBJECT) and (LOBJECT), the formal method argument can implement part of a session,

for example:

let z=[τ | l=ς(x)λ(y)y!v] in (z.l←s; z.l←s)

can be typed with τ = [l : (![τv]) []] and results in Σ-environment {s :![τv]; ![τv]}. The advan-

tage is modularity: an object does not need knowledge of the complete type of the session to

which it will be applied (s in the example above). Also, a method with partial type argument

is guaranteed not to send or spawn the session, as these require complete types.

7. As a simple example of recursive sessions typing using rule (SELECT) for internal choice,

consider:

let z=[τ | l=ς(x)λ(y)y!v; x.l / y] in z.l / s

with τ ≡ [l : (σ) []] and σ =![τv];⊕(X)[l : ![τv];X]. Omitting binders, the body of method l

is y!v; x.l / y which needs to be typed with Σ-environment:

{y : σ}= {y :![τv]} #{y :⊕(X)[l : ![τv];X]}

Self x has type τ therefore the invocation x.l←y assigns σ to y which then folds to ⊕(X)[l :

![τv];X] in x.l / y, producing the required typing. Outside of the object, in z.l / s, the same

process can type the selection, folding σ and giving, as desired, {s :⊕(X)[l : ![τv];X]} for

the whole example.

8. If for a choice σ =⊕(X)[l1 : X , l2 : X] we have σ ∈ π and σ ∈ κ then the following term is

162 CHAPTER 6. SESSIONS AND OBJECTS

typed using (LET) and (SPAWN):

let x=[τ | l1=ς(x)λ(y)x.l2 / y , l2=ς(x)λ(y)x.l1 / y]

in spawn (x.l1 / s); s!v

In the second line, the sequence composition σ ; ![τ] succeeds since σ ∈ π, and (SPAWN)

succeeds since σ∈ κ, but the term reduces to an unsafe configuration with an output parallel

to the spawned recursion. This justifies our restriction.

6.3.6 Session Types and Typing for the Instant Messenger

We can now give session types to the queues susr and sim from the example of Figure 6.3:

σusr = ⊕(X)[arg : &(Y)[exit : end ,msg :![τs];X ,file :![τs];X]]

σim = ⊕(X)[arg :⊕(Y)[exit : end ,msg :![τs];X ,file :![σfile];X]]

σfile = ?[τs]; ?[τ f];end

with τs being the type of strings and τ f the type of files. Note that the above session types concisely

abstract the structure of interaction and the behaviour of the program as types. Then under envi-

ronments Γ = Λ = /0 and Σ ={susr : σusr,sim : σim}, by using rules (LET), (SELECT), (OBJECT),

(LOBJECT), (BRANCH), (GET), (PUT), (END), (INVOKE), (SESSION), (SPAWN), and the axioms,

the whole program of Figure 6.3 is typable.

6.4 Typing Runtime Terms

Session typing ensures first, that a queue behaves according to a session type, and secondly, that

only dual queues with compatible types can interact in a session. The typing rules enforce linearity

in the use of objects and queues obtaining a strong behavioural guarantee of non-interference.

The type soundness of the sessionς-calculus is established by also typing the heap created

during the execution of a well-typed initial program. In particular, we track the movement of linear

objects and queues to and from the heap, to ensure that linearity is preserved, and we check that

endpoints continue to have dual types after each use. To analyse the intermediate steps precisely,

we utilise the following concepts:

• Session Remainder: We assign types to queues using session remainders, which are a

subtraction of the type of the values stored in a queue from the complete session type of the

6.4. TYPING RUNTIME TERMS 163

queue. This technique is very similar to the one in [40], however in our approach asynchrony

at the type level requires more elaboration.

• Heap Types: We assign types to heaps, understanding a heap type as a collection of map-

pings giving types to all of the heap components. Our formulation must take into account

the possible circularities within a heap.

6.4.1 Session Remainder

Before we proceed to heap typing, it is necessary to explain how to obtain typings for a queue

endpoint taking into consideration that values waiting to be received may be present at the queue.

In Figure 6.7 we formalise the rules, using a new form of judgement taking the shape:

Γ;Λ;Σ ` κ−~r = σ

where κ is a complete session type from which we will “subtract” the values ~r of the queue to

obtain the session remainder σ. By our rules, this remainder will either be ε meaning that the

session has been completed and there is nothing more remaining, or a complete remaining session;

if a partial session was the remainder, it would mean that the session will not be closed. The

environments left of ` accumulate the ones produced by typing each value in ~r. As before, a

judgement is well-formed when dom(Γ)]dom(Λ)]dom(Σ) is defined.

(Q-ANY)

Γ; /0; /0 ` κ− ε = κ

(Q-END)

Γ; /0; /0 ` end− end = ε

(Q-GET)
Γ;Λ1;Σ1 ` v : τ Γ;Λ2;Σ2 ` κ−~r = σ

Γ;Λ1]Λ2;Σ1]Σ2 `?[τ];κ− v~r = σ

(Q-BRANCH) (σ≡&(X)[li : σi
i∈I])

Γ;Λ;Σ ` σk{{σ/X}};σ
′−~r = σ

′′ k ∈ I

Γ;Λ;Σ ` σ;σ
′− lk~r = σ

′′

(Q-PUT)
Γ;Λ;Σ ` κ−~r = κ

′ ~r 6=~r1end

Γ;Λ;Σ `![τ];κ−~r =![τ];κ
′

(Q-SELECT)
Γ;Λ;Σ ` σi−~r = σ

′
i ~r 6=~r1end ∀ i ∈ I

Γ;Λ;Σ ` ⊕(X)[li : σi
i∈I];σ

′−~r =⊕(X)[li : σ
′
i

i∈I];σ
′

Figure 6.7: Session Remainder

Rule (Q-ANY) defines that any session type agrees with the empty queue ε, producing the full

type as remainder. In (Q-END) the type end agrees with the queue consisting the single value end,

164 CHAPTER 6. SESSIONS AND OBJECTS

giving the empty session ε as remainder.

Rule (Q-GET) takes the input prefix of a session ?[τ];κ and the first value from the queue v~r,

and types (with the usual rules) the value assigning τ, to match the input part. The remaining type

κ and queue~r are subtracted to obtain the final remainder. Disjoint composition in the conclusion’s

environments ensures that if v is linear then it only appears once in the queue, since either Λ1 =

{v : τ} or Σ1 = {v : τ}.

Rule (Q-BRANCH) matches a branching type σ at the beginning of a session σ;κ with a label

lk at the top of the queue lk~r. The remainder is obtained by the subtraction σk{{σ/X}};κ−~r where

the label has been used to unfold the k-th component of σ.

Rules for Asynchrony Due to asynchronous subtyping, a process that, according to its type, is

due to perform an output or selection, may in fact have values in its input queue, waiting to be

received. This is because the dually typed process in the same session, which would normally be

expected to wait on in input/branching, may be more asynchronous, and perform output actions in

advance. Thus, when calculating the remainder of a session, we need to allow this possibility; this

is formalised in the following rules.

Rule (Q-PUT) disregards the output prefix of the session type ![τ];κ and calculates the re-

mainder κ′ of κ−~r, which then appears in the conclusion prefixed with the original output giving

![τ];κ′. Therefore the output is not consumed, which is correct, since we are subtracting the value

types of some queue s from the input/branching components of the type for the same s. This rule

relates to the subtyping rule (SUB-ASYNCPUT) of Figure 6.5, which allows a term to perform an

output when a sequence of inputs/branchings is expected, depending on the shape of a context BX

that may have been pushed in the type κ from the outer context of a supertype. If we had not

admitted this subtyping rule, the case of output would be subsumed by (Q-ANY), because there

would be no subtypes that send values “in advance” and hence, no values left to be received when

an output is due. So, for example, ![τ1]; ?[τ2]; ?[τ3];end− v where v is typed with τ2 gives remain-

der ![τ1]; ?[τ3];end. We do not allow κ, the rest of the session, to eventually close (as it would

if (Q-END) was used in the premise) giving final remainder ![τ];ε =![τ]; this would mean that a

session can be closed before an output is performed.

Rule (Q-SELECT) has a similar function. Any values in the queue are subtracted from each of

the branches inside the selection, resulting in a possibly smaller remainder type. The rule relates

to subtyping with (SUB-ASYNCSEL) of Figure 6.5, which allows a term to perform a selection

when a sequence of inputs/branchings is expected. Notice that the sequence composed type σ′

6.4. TYPING RUNTIME TERMS 165

may not be a complete type, since the branch could be recursive and complete itself. In this case

we can take σ′ = ε, which leaves us with the selection since ε is the unit of sequence composition,

and can be removed.

6.4.2 Heap Typing

We assign types to heaps: a heap typing is a collection of mappings giving types to all of the heap’s

components, in the form of three typing environments. The new typing judgement is:

Γ1;Λ1;Σ1 ` B : 〈Γ2;Λ2;Σ2〉

where 〈Γ2;Λ2;Σ2〉 assign types to the elements in the domain of heap B; we call this the heap

type. Objects and queues in the codomain of the heap contain references to other objects and

queues in the heap, and these assumptions are shown on the left of `, as Γ1;Λ1;Σ1; we call

these heap assumptions. A judgement is well-formed when dom(Γ1)] dom(Λ1)] dom(Σ1) and

dom(Γ2)]dom(Λ2)]dom(Σ2) are defined.

Not every heap typing is meaningful for type safety, where we need that the subset of the

heap domain that appears on the left of ` is given the same types also in the full heap type.

The inconsistency is necessary for intermediate typings, due to circularities preventing a purely

inductive definition. Final typings referring to the whole of a heap, used in theorems, will be of

the shape:

Γ1;Λ1;Σ1 ` B : 〈Γ1;Λ1]Λ2;Σ1]Σ2〉

We call such heap typings consistent.

The heap typing rules are shown in Figure 6.8. Rule (B-EMPTY) is for typing the empty heap,

requiring no assumptions except for Γ which is arbitrary.

Rule (B-SHARED) types a heap with a mapping o 7→ c for an unrestricted object c. The object

c is typed (with the rules of Figure 6.6) giving empty linear environments and type τ; the rest of

the heap is typed giving assumptions Γ1, Λ1, Σ1 which are propagated in the conclusion, along

with heap typing Γ, Λ, Σ which becomes extended with {o : τ}. The disjoint union corresponds to

the fact that each mapping in the heap is unique, that is, B cannot contain another mapping for o.

Rule (B-LINEAR) is for a linear object mapping in the heap; it works similarly to the one

for unrestricted objects, however here the assumptions in the conclusion are extended with the

linear environments induced from typing the object. The rule requires, by the disjointness of

the assumptions in the conclusion, that linear components in c do not also appear inside some

166 CHAPTER 6. SESSIONS AND OBJECTS

(B-EMPTY)

Γ; /0; /0 ` /0 : 〈 /0; /0; /0〉

(B-SHARED) (c≡ [τ′ | li=ς(xi)λ(yi)bi
i∈I])

Γ1;Λ1;Σ1 ` B : 〈Γ;Λ;Σ〉 Γ1; /0; /0 ` c : τ τ
′ 4 τ

Γ1;Λ1;Σ1 ` B ·o 7→ c : 〈Γ]{o : τ} ;Λ;Σ〉

(B-LINEAR) (c≡ [τ′ | li=λ(yi)bi
i∈I])

Γ1;Λ1;Σ1 ` B : 〈Γ;Λ;Σ〉 Γ1;Λ2;Σ2 ` c : τ τ
′ 4 τ

Γ1;
]

Λ1,2;
]

Σ1,2 ` B ·o 7→ c : 〈Γ;Λ]{o : τ} ;Σ〉

(B-SESSION)
Γ1;Λ1;Σ1 ` B : 〈Γ;Λ;Σ〉

Γ1;Λ2;Σ2 ` κ1−~r1 = σ1 Γ1;Λ3;Σ3 ` κ2−~r2 = σ2 σ1 4 σ2

Γ1;
]

Λ1,2,3;
]

Σ1,2,3 ` B · s 7→ ~r1 · s̄ 7→ ~r2 : 〈Γ;Λ;Σ]{s : κ1, s̄ : κ2}〉

Figure 6.8: Heap Typing

other object or queue in the heap. Finally, the heap typing is extended as before, but at the Λ-

environment.

Rule (B-SESSION) is for typing the two (dual) endpoint queues of a session. Types κ1 and κ2

can be given to the queues s and s̄ when the session remainders σ1 and σ2 of κ1−~r1 and κ2−~r2 are

dual session types; more precisely, σ1 must be a subtype of the dual of σ2, written σ1 4 σ2. This

also implies σ24 σ1. The linear assumptions needed for typing the values in ~r1 and ~r2 are added to

the heap assumptions, ensuring that everything is used exactly once; the mappings {s : κ1, s̄ : κ2}

are added to the heap type.

6.5 Type Soundness

We first formalise the necessary lemmas for type soundness. In the following, we write E for

closed reduction contexts, and refer to runtime types ψ defined as:

ψ ::= τ | �

First we have a standard lemma for weakening and strengthening of the assumptions in the unre-

stricted environment.

Lemma 6.5.1. (Γ Weakening, Strengthening)

(a) If Γ;Λ;Σ ` E : ψ and u 6∈ dom(Γ,Λ,Σ) and τ≡ [li : (σi) τi
i∈I] then Γ,u : τ;Λ;Σ ` E : ψ .

6.5. TYPE SOUNDNESS 167

(b) If Γ;Λ;Σ ` E : ψ and u 6∈ fv(E) then Γ\u;Λ;Σ ` E : ψ .

Proof. By induction on the last typing rule applied.

Note that weakening and strengthening are not allowed for the linear environments. Next, we

formalise the substitution lemma. Notice the difference between (a) unrestricted and (b) linear

objects.

Lemma 6.5.2. (Substitution) For o,s 6∈ fv(a):

(a) If Γ,x : τ1;Λ;Σ ` a : τ and Γ; /0; /0 ` o : τ1 then Γ;Λ;Σ ` a{o/x} : τ .

(b) If Γ;Λ,x : τ2;Σ ` a : τ and Γ;{o : τ1} ; /0 ` o : τ2 then Γ;Λ,o : τ1;Σ ` a{o/x} : τ .

(c) If Γ;Λ;Σ,x : σ ` a : τ then Γ;Λ;Σ,s : σ ` a{s/x} : τ .

Proof. By induction on the last typing rule applied.

The following lemma is used to obtain typings for subterms that are in redex position within a

reduction context. For example, this lemma is used for the case of sending a message to a queue

as well as the case for spawn.

Lemma 6.5.3. (Subderivation) If Γ;Λ;Σ ` E〈a〉 : ψ then there exist Λ1,2,Σ1,2,τ s.t. Λ = Λ1]Λ2

and Σ = Σ1 #Σ2 and Γ;Λ1;Σ1 ` a : τ .

Proof. By induction on E . Note that if E is a parallel context then we use the fact Σ1 # Σ2 =

Σ1]Σ2.

Using the following lemma, we can obtain new linear environments after a subterm has been

replaced within a reduction context.

Lemma 6.5.4. (Context Replacement)

If Γ;Λ1]Λ2;Σ1 # Σ2 ` E〈a〉 : ψ and Γ;Λ1;Σ1 ` a : τ and Γ,Γ′;Λ′1;Σ′1 ` a′ : τ and Λ′1]Λ2 defined

and Σ′1 #Σ2 defined then Γ,Γ′;Λ′1]Λ2;Σ′1 #Σ2 ` E〈a′〉 : ψ .

Proof. By induction on E .

We now proceed to type soundness and communication safety. The essence of our typing is that

all linear elements are either used or remain accessible (for later use) through the resulting term,

either directly, or indirectly through linear components in the heap. Moreover, sessions must be

used respecting types. Hence the following theorem subsumes type soundness and communication

168 CHAPTER 6. SESSIONS AND OBJECTS

safety in the sense of [48]. The conditions are formulated in two clauses: (a) for all reductions

except thread creation, and (b) for a reduction that generates a thread.

Theorem 6.5.5. (Subject Reduction)

If Γ1;Λ1;Σ1 ` E : ψ and Γ1;Λ2;Σ2 ` B : 〈Γ1;Λ1]Λ2;Σ1]Σ2〉 and E,B → E ′,B′ , using

(a) any rule except (R-SPAWN), then there exist Γ2,Λ3,4,Σ3,4 s.t. Γ2;Λ3;Σ3 ` E ′ : ψ and

Γ2;Λ4;Σ4 ` B′ : 〈Γ2;Λ3]Λ4;Σ3]Σ4〉 .

(b) (R-SPAWN) with E ≡ E1〈spawn a〉 then there exist Λ11,12,Σ11,12 s.t. Λ1 = Λ11]Λ12 and

Σ1 = Σ11 #Σ12 = Σ11]Σ12 and Γ1;Λ11;Σ11 ` a : [] and Γ1;Λ12;Σ12 `E1〈[]〉 : ψ and Γ1;Λ1;Σ1 `

E1〈[]〉 |a : � .

Proof By induction on the last reduction applied. For the first part of each case, we obtain

that the produced term has the same type as the original, using a straightforward combination of

Weakening (6.5.1), Substitution (6.5.2), Subderivation (6.5.3), and Context Replacement (6.5.4).

Obtaining a matching heap typing that is consistent is more delicate. For the rules (R-SPAWN),

(R-LET), (R-CLONE), (R-INVOKE), (R-UPDATE) and (R-OBJECT) (for the unrestricted case) the

heap typing is either unchanged or trivially obtainable, since there are no linear elements moved

from the term to the heap or from the heap to the term. Similarly for the rules (R-TCLEANL,R).

For linear objects in (R-OBJECT) we obtain a new heap judgement where any linear compo-

nents in the body of the object appear, after reduction, on the heap typing assumptions, and the

heap type is extended using (B-LINEAR). Dually, for the linear invocation (R-LINVOKE) the heap

typing decreases, and the linear assumptions from typing the object body move to the term typing

where the method body is copied; for this it is crucial that the linear object is removed from the

heap.

The rules for sessions are more interesting. For new sessions in (R-SESSION) a consistent

heap typing is obtained since the types for each endpoint are initially dual, and there are no values

in the queues, resulting trivially in dual remainders. Rule (R-QCLEAN) is also straightforward.

For the case of input in (R-GET) a straightforward inspection of the premises in (Q-GET) gives

the remaining session; then, if the received value is linear, its singleton environment obtained by

(LOBJVAL) or (QUEUEVAL) is moved to the term typing, using the Substitution Lemma (6.5.2).

In (R-SELECT) the selection becomes invocation, resulting in an unfolding on the type of the

argument; then, in the remainder typing for the other endpoint, using (Q-BRANCH), the received

label will be used for unfolding giving, as desired, dual remaining types for both queues. Rule

6.5. TYPE SOUNDNESS 169

(R-BRANCH) is similar: the label causing the unfolding (in the queue typing) is consumed from

the queue, but the resulting invocation re-introduces the unfolding therefore leaving the type intact.

For (R-END) in close(s) a direct use of session remainder gives ε for s̄ (which is where the end

is appended), and the same is obtained using (SEQUNIT) for s (which does not appear anywhere

after being closed).

The most delicate case is that of output in (R-PUT), where the sent value can be linear, and

the type of the sending endpoint changes; we prove this case below:

Case (R-PUT) E = E1〈s!v〉 B = B1 · s 7→ ~r1 · s̄ 7→ ~r2

E ′ = E1〈[]〉 B′ = B1 · s 7→ ~r1 · s̄ 7→ ~r2v

By Lemma 6.5.3 we obtain Γ;Λ11;Σ11 ` s!v : τ1 with Λ1 = Λ11]Λ22 and Σ1 = Σ11 #Σ22. By (PUT)

we have Γ;Λ11;Σ′11 ` v : τ and Σ11 = {s :![τ]} #Σ′11 and τ1 = []. By (OBJECT) and Lemma 6.5.4 we

obtain Γ;Λ12;Σ12 ` E ′ : ψ as desired. We now check the heap. By (B-SESSION) on the assumption

we obtain the premises:

Γ;Λ21;Σ21 ` B1 : 〈Γ1;Λ1]Λ2;Σ
′〉 (6.1)

Γ;Λ22;Σ22 ` κ1−~r1 = σ1 (6.2)

Γ;Λ23;Σ23 ` κ2−~r2 = σ2 (6.3)

with Σ1]Σ2 = Σ′]{s : κ1, s̄ : κ2} and Λ2 = Λ21]Λ22]Λ23 and Σ2 = Σ21]Σ22]Σ23 and σ1 4 σ2.

We have Σ1(s) = κ1 and:

(Σ′11 #Σ12)(s) = κ
′
1 (6.4)

with κ1 =![τ];κ′1 by definition of (#). By (Q-PUT) σ1 =![τ];σ′1 and:

Γ;Λ22;Σ22 ` κ
′
1−~r1 = σ

′
1 (6.5)

By σ14σ2 we have σ24σ1, therefore σ24?[τ];σ′1. Applying a sequence of (Q-PUT)/(Q-SELECT)

as required, followed by (Q-GET) once we reach the input (only outputs/selections can appear be-

fore this input in σ2), we obtain:

Γ;Λ11;Σ
′
11 ` σ2− v = σ

′
2 (6.6)

170 CHAPTER 6. SESSIONS AND OBJECTS

with σ′2 4 σ′1 which is equivalent to σ′1 4 σ′2. From (6.3) and (6.6) we obtain:

Γ;Λ23]Λ11;Σ23]Σ
′
11 ` κ2−~r2v = σ

′
2 (6.7)

where Λ23]Λ11 and Σ23]Σ′11 are defined by the assumptions. Using (B-SESSION) with (6.1)

and (6.5) and (6.7) we obtain:

Γ;Λ11]Λ2;Σ
′
11]Σ2 ` B′ : 〈Γ1;Λ1]Λ2;Σ

′]
{

s : κ
′
1, s̄ : κ2

}
〉

which must be shown consistent. The type of s̄ does not change from the original typing (only

its remainder changes). For s, we have from (6.4) that (Σ′11 #Σ12)(s) = κ′1 and by the condition in

(PUT) that sent queues are complete we have either Σ′11 = {s : κ′1}, if v = s, or Σ12 = Σ′12,s : κ′1,

if v 6= s. Therefore the heap assumptions agree with the new heap type; the heap judgement is

consistent.

We now formalise communication-safety (which also subsumes type-safety for objects). An

s-input is a term of the shape s? or s . o. An s-output is a term s!v or o.l / s. An s-close is a term

close(s). Finally, an s-method is a term o.l←s and an s-occurrence is the term s. Then, an s-action

is an s-input, s-output, s-close, s-method, or s-occurrence. For object constructs, we define an o-

invocation to be a term of the shape o.l←s, an o-update is a term o.l ↼↽ ς(x)λ(y)b, an o-selection

is a term o.l / s and an o-branch has the shape s.o. We also define an o-occurrence to be the term

o. Then an o-action is an o-invocation, o-update, o-selection, o-branch, or o-occurrence. We can

now define error configurations:

Definition 6.5.6 (Error Configurations). We say that a configuration E,B is an error if:

(a) E = E1〈a〉 and E = E2〈b〉 where E1 6= E2 and both a and b are s-actions.

(b) E = E1〈a〉, a is a s-input, and B = B′ · s 7→ r~r such that (i) a = s? and r ∈ {l,end}, or (ii)

a = s.o and r ∈ {v,end}.

(c) E = E1〈a〉 and E = E2〈b〉 where E1 6= E2 and both a and b are o-actions and B(o) = [τ | li=

λ(yi)bi
i∈I].

(d) E = E1〈a〉, and a = o.lk←s or a = o.lk / s or a = o.lk ↼↽ ς(x)λ(y)b, with B(o) = [τ | li=

ς(xi)λ(yi)bi
i∈I] or B(o) = [τ | li=λ(yi)bi

i∈I] and k 6∈ I.

(e) E = E1〈o.l ↼↽ ς(x)λ(y)b〉 with B(o) = [τ | li=λ(yi)bi
i∈I].

6.6. NOTES ON RELATED WORK 171

The above says that a configuration is an error if (a) it breaks the linearity of s by having e.g. two

s-inputs in parallel, or (c) of objects by having two usages of a linear object in parallel; (b) there

is communication-mismatch; (d) a method is chosen for some operation but it is not defined in

the corresponding object; or (e) a linear object is updated. As a corollary of Theorem 6.5.5, we

achieve the following general communication-safety theorem.

Theorem 6.5.7 (Communication Safety). A configuration E,B such that Γ1;Λ1;Σ1 ` E : ψ and

Γ1;Λ2;Σ2 ` B : 〈Γ1;Λ1]Λ2;Σ1]Σ2〉 never reduces into an error.

Proof The formalisation of communication safety is defined similarly to Theorem 4.4.14 for

HOπs and Theorem 5.5.11 for HOπas. The balanced condition on environments defined in the pre-

vious chapters has a correspondence in this system through the rule (B-SESSION), which therefore

ensures that in the configuration under consideration the sessions are used dually. Thus, the strat-

egy for the proof of this theorem in sessionς is very similar to the previous ones, utilising Subject

Reduction (Theorem 6.5.5) and showing by contradiction that error processes cannot arise.

6.6 Notes on Related Work

Object Calculi The untyped imperative object calculus impς and the first-order system Ob1<:

of Abadi and Cardelli [2] formed the foundation for the object fragment of our calculus. A notable

extension in our work is method arguments. In impς, methods with arguments can be encoded

using the state of an object, but in sessionς we cannot perform this encoding, because queues are

linear and cannot be aliased.

Another related work is the concς-calculus of Gordon and Hankin [43]. Their work extends the

impς-calculus with parallel composition and mutexes for synchronisation. Their mutexes could

be added to our system, although we already achieve a different style of non-interference using

the session primitives.

The recent work by Gay et al. [41] offers an alternative to our branching sessions: our branch-

ing labels coincide with method names; their branching uses instances of enumerations corre-

sponding to typestates.

The closest work to ours, in terms of approach to sessions, is that of Drossopoulou, Dezani,

and Coppo [33], in which sessions are implemented as methods. In particular, their main session

primitive is written a.l{b}, which behaves as follows: the code of the method a.l is placed in

parallel to b, and a fresh channel k is used for communication between the two threads. Thus,

172 CHAPTER 6. SESSIONS AND OBJECTS

the reduction has the shape (νk) (c{k/•} | b{k/•}), where c is the code of a.l, and • denotes the

local placeholder for the channel. Note that this system only allows one session per scope. We can

encode their main session primitive in sessionς as:

a.l{b} def= let z=a in let (x,y)=new session〈κ1,κ2〉 in (spawn z.l←x); b

with y used in b.

6.7 Concluding Remarks

We presented sessionς, a small but powerful calculus featuring mutable objects, local definitions,

concurrency, and type-safe asynchronous communication primitives. Importantly, our amalgama-

tion of session and object recursion enables complex interaction patterns to be embedded in the

structure of objects, creating a natural and concise programming paradigm for sessions.

The calculus enables the programming of elaborate interacting software within a framework

of determinism, induced by linearity and type duality. The ability to utilise higher-order code in

the form of shared and linear objects provides powerful programming idioms with a high degree

of encapsulation.

The sessionς-calculus has the Subject Reduction property, and Communication Safety obtained

through careful analysis of intermediate steps and movements of linear values between a running

program and the store.

Our session object calculus can serve as a basis for the addition of other features and type

analyses, such as recursive self types, parametric polymorphism and variance annotations, to name

a few. Our ability to recurse on methods with session argument addresses the question of how

to extend a standard object-oriented language uniformly to deal with session and non-session

arguments transparently. Moreover, the iso-recursive approach is easier to implement than the

equi-recursive which requires coinductive definitions. The asynchronous buffered semantics offer

a direct implementation strategy, and the careful removal of used linear values from the heap

means that garbage collection is straightforward for our linear structures.

Part III

Conclusion & Future Directions

173

7 Conclusions, Open Questions
and Future Work

Overview We summarise the contributions of the thesis, and then focus on future work. There

are a number of milestones that need to be achieved in order to prepare the foundational session

typing theories developed in the previous part, for practical applications. The greatest empha-

sis is placed on the development of an algorithm for asynchronous coinductive subtyping. Then,

we proceed to describe other desirable extensions for both processes and objects, including an

evaluation of different methods for the algorithmic typing of objects. We finish by suggesting

interesting implementation projects, such as a session typing system for the language Erlang.

7.1 Summary of Contributions in this Thesis

This thesis presents a theoretical framework for structured communication-oriented programming,

in the form of a family of typed programming calculi. In particular, the languages we defined

encompass the fundamental constructions of communicating processes, functions and objects, fa-

cilitating a wide range of powerful programming idioms. Thus, our work provides a foundation

for programming language design integrating multi-paradigm components with session-oriented

communications, in a typesafe way.

The Languages

We presented three session-typed calculi:

• HOπs is a process algebra that extends the HOπ (Higher-order π-calculus) with a session

typing discipline. This language supports synchronous communication and enables us to

represent mobile-code as the communication of functions, which may furthermore contain

free instances of typed channels, necessitating a method to control their use. Our system

extends and subsumes the existing formalisations for π-calculus, and can therefore serve as

a unified theory.

175

176 CHAPTER 7. CONCLUSIONS, OPEN QUESTIONS AND FUTURE WORK

• HOπas is an asynchronous adaptation of HOπs where messages are buffered in queues. Be-

cause of the asynchronous semantics we relaxed the conditions of type-safe composition of

communicating processes, introducing a notion of asynchronous subtyping which is reified

through a coinductive subtyping relation between session types corresponding to what is

intuitively understood as more asynchronous behaviour. With this system we contributed

a theory that takes advantage of the asynchrony induced by the use of buffered messaging,

which is the norm in most application domains including the internet in general, and thus

offer a refined basis for more flexible session-oriented programming in the presence of code

mobility.

• sessionς is a modification of the Abadi and Cardelli imperative object calculus impς, and

integrates the code organisation of objects into process-oriented programming. In particu-

lar the structure of an object coincides with that of the protocols in which it can be used,

allowing a concise formalisation where session control flow is merged into the fundamental

abilities of objects. Session branching is implemented through associating an endpoint with

an object that waits for a choice, or method, and selection corresponds to choosing a method

on a branched object. Infinite protocols are realised directly through object self-secursion.

Moreover, the creation of sessions is localised, providing an approach more suitable to an

object-centric programming style, avoiding synchronised session initiation primitives. Since

the language is buffered, we introduce asynchronous subtyping, but following an inductive

approach which is more suitable in the context of the object calculus. Finally, the notions

of object subtyping and branching subtyping are unified, yielding a natural integration of

sessions and objects at the typing level. This object calculus is suitable for understand-

ing and designing languages with structural and also class-based types, providing a unified

foundation for a wide range of further development.

Key Ideas and Technical Contributions

The key original technical points are as follows:

• HOπs: The treatment of mobile code (sent functions) as linear components solved the prob-

lems that arise from the uncontrolled usage, and thus from the possible copying or vanishing

of processes that implement sessions, which clearly compromises type safety of protocols.

• HOπas: The equi-recursive asynchronous subtyping defined constitutes a sound theoretical

justification for the reordering message optimisations that can be accepted within type safe

7.2. TOWARDS AN ALGORITHM FOR COINDUCTIVE SUBTYPING 177

session programming. Technically, the coinductive formalisation of subtyping, and the sub-

sequent proof, were more involved than expected and required more elaborate and stratified

mathematical constructions.

• sessionς: The realisation of session control flow as a direct function of object control flow

offers a new intuition on session objects, and in particular a way to utilise objects for the

structural and behavioural organisation of process-oriented code. This integration of the

object and session process paradigms is original, and can inform the development of prac-

tical languages, considering the acknowledged structuring benefits of objects. Moreover,

the inductive, iso-recursive approach to asynchronous subtyping, provides a less powerful

but simpler and more tractable technique, which is also uniform with the techniques for

recursive objects in the original impς calculus.

We now discuss in some detail the future work we intend to undertake, focusing on the required

results that facilitate practical implementations, under the challenging context of asynchronous

subtyping.

7.2 Towards an Algorithm for Coinductive Asynchronous Subtyping

The coinductive method offers an attractive mathematical framework, although in its generality

it does not specify how to prove (or disprove) a subtyping hypothesis. More specifically, it does

not offer a way to obtain a simulation ℜ ⊆6c, if there is one, that contains a desired hypothesis

(S1,S2) ∈ ℜ; it merely accepts or rejects a solution which is given by us, playing the role of an

oracle. The question of how to obtain a (preferably minimal) simulation, failing if there is none,

is what an algorithmic subtyping method is called to answer. In such a system, the coinductive

relation 6c is replaced by a set of rules implementing the algorithmic subtyping 6, in judgements

of the shape Σ ` S1 6 S2. The environment Σ is used to collect checked hypotheses, and S1 6 S2

is the goal. Then, 6 must typically be shown to be sound and complete with respect to 6c, but

for a practical implementation there is a prerequisite of decidability and, if possible, efficiency.

Decidability depends on a number of key conditions: the number of possible goals that may need

to be asserted in a single derivation must be finite; goals must not be checked repeatedly; the sub-

typing relation should be invertible, enabling the “guessing” of the shape of the subtype based on

a known supertype. Typically the first two conditions are used to construct a well-founded mea-

sure that guarantees the termination of the algorithm. The last condition relates to computational

efficiency; we return to this later.

178 CHAPTER 7. CONCLUSIONS, OPEN QUESTIONS AND FUTURE WORK

A Digression on Termination

Now we turn our attention to the asynchronous subtyping relation 6c, which has a distinguish-

ing feature compared to the standard simulations of Gay and Hole [39] and of Pierce and San-

giorgi [77]: some subtypings are only proved with infinite simulations. One such example is

µt.![U1].t 6c µt.![U1].?[U2].t from § 5.3.1. A straightforward adaptation of the standard works

(mentioned above) produces an algorithmic system that, for the aforementioned example, will

produce an infinite derivation; thus the induced algorithm is non-terminating. Consider the fol-

lowing three algorithmic subtyping rules:

(Out)

Σ `~ U1 6U2

Σ ` S1 6 A〈S2h〉h∈H

Σ `![U1].S1 6 A〈![U2].S2h〉h∈H
(RecR)

n = depth〈top(S),S′〉 n≥ 1

Σ,S6 S′ ` S6 unfoldn(S′)

Σ ` S6 S′

(RecL)
Σ,µt.S6 S′ ` unfold1(µt.S)6 S′

Σ ` µt.S6 S′

In (Out) the supertype has a comparable top-level output (selection is similar), possibly guarded

under inputs and branching within A . The rule (RecR) (which has less priority than (RecL)) uses

some auxiliary functions. top(S) returns the constructor symbol at the top of S which must be

guarded, for example ! if S =![U].S′. Then, depth is a terminating function that returns the maxi-

mum number of recursions that need to be unrolled at the supertype before the desired constructor

(such as !) is encountered. The purpose of (RecR) is, then, to unroll the supertype just enough for

the desired constructor (the head of the subtype) to appear at the top-level (i.e., not under recur-

sion), enabling the subsequent application of an asynchronous rule such as (Out). Moreover, all

input-prefixed or branched types are possible targets of unfolding, contrary to the usual technique

of only unfolding µ-prefixed types during the generation of subgoals.

We consider the previously mentioned infinite-simulation example, which can be typed using

only the rules we mentioned. For clarity we use a simplified syntax ignoring carried types. Let

7.2. TOWARDS AN ALGORITHM FOR COINDUCTIVE SUBTYPING 179

S1 = µt . ! . t and S2 = µt . ! . ? . t. Then we obtain the following infinite inference:

...

{. . . , ! .S1 6? .S2, ! .S1 6? . ! . ? .S2} ` S1 6? . ? .S2 (?)
(RecL)

{. . . , ! .S1 6? .S2} ` ! .S1 6? . ! . ? .S2

(Out)

{S1 6 S2, ! .S1 6 S2, ! .S1 6! . ? .S2,S1 6? .S2} ` ! .S1 6? .S2

(RecR)

{S1 6 S2, ! .S1 6 S2, ! .S1 6! . ? .S2} ` S1 6? .S2 (?)
(RecL)

{S1 6 S2, ! .S1 6 S2} ` ! .S1 6! . ? .S2

(Out)

{S1 6 S2} ` ! .S1 6 S2

(RecR)

/0 ` S1 6 S2

(RecL)

Notice that the initial goal depends on proving an increasingly larger subgoal resulting from

unfolding and fetching an output from the respective supertype, leaving residual input actions that

accumulate; we mark these points with (?). However, our empirical observation is that the shape

of the supertype in those subgoals evolves following a regular pattern, with the same sequence

of rules (RecL,RecR,Out) applied ad infinitum. This motivates the search for a discriminating

condition for exactly those diverging goals, effectively bounding these infinite derivations.

A First Condition In our previous work by Mostrous and Yoshida [64], we formalised an algo-

rithmic subtyping for HOπas where the recursion rule (RecR) has an additional sidecondition:

(RecR)

n = depth〈top(S),S′〉 n≥ 1

Σ,S6 S′ ` S6 unfoldn(S′) S on S′

Σ ` S6 S′

where S on S′ means that S and S′ have the same corresponding constructors for actions inside

recursion. With this condition, the above non-terminating example is rejected in a finite derivation,

and specifically in the first instance of (RecR) starting from the root.

A Better Solution Our aim is to formulate a sound and complete algorithmic system, therefore

the above solution which rejects the diverging (but valid by 6c) example is not fully satisfactory,

even though the method is correct by the restriction to on-compatible subtypings. Hence we follow

a new approach, by replacing the standard axiom (Asmp) for assumed hypotheses (shown on the

left below) with a modified version (shown on the right below). As expected (Asmp) is applicable

180 CHAPTER 7. CONCLUSIONS, OPEN QUESTIONS AND FUTURE WORK

with priority over other rules, ensuring that a goal already assumed does not trigger a re-check.

(Asmp)
Σ,S1 6 S2 ` S1 6 S2

=⇒ (Asmp)
Σ,S1 6 A〈S2h〉h∈H ` S1 6 A〈A〈S2h〉h∈H〉h∈H

When A = 〈·〉h∈{0}, the new rule gives an instance of the standard axiom (left above), since

A〈S2h〉h∈H = A〈A〈S2h〉h∈H〉h∈H = S2h. It is straightforward to check that the algorithm now termi-

nates when approximating an infinite simulation that can be constructed with a regular input-action

increase in the structure of the supertype. This regularity, reflecting the residual inputs/branching

from eager unfolding, is captured by the nested A-context. We have checked that this rule gives

an affirmative answer to µt.![U1].t 6 µt.![U1].?[U2].t (and other similar diverging examples) in a

finite number of steps. This is easy to see in the previous derivation, where the topmost instance of

(RecL) would be replaced with the new (Asmp) instantiated with A =? .〈·〉, validating the intended

subtyping.

We have not yet determined whether this system is sound and complete with respect to the

coinductive method, as it is not immediately clear if with the rule (Asmp) it accepts any subtypings

not supported in 6c, or if all infinite simulations can indeed be approximated in this way.

Towards an Algorithm

Achieving a provably sound and complete algorithmic subtyping remains an important future

work, and one upon which subsequent practical efforts will be based on. There are a number

of technical components that need to be developed:

Bounding the goals In the standard systems, the maximum number of subgoals that may be

checked in a single derivation is bounded by the cartesian product of the subexpressions

of the initial goal. With our proposed rules, the finiteness of the set of possible subgoals

must be reconsidered, but we expect that the modified axiom (Asmp) will offer exactly such

a bound. Then, we can prove termination following the method of Gay and Hole [39].

Soundness and completeness Rule (Asmp) holds the key to the correctness of the algorithm: we

need to establish a correspondence between all infinite simulations and the use of (Asmp) in

the respectively induced algorithmic derivations.

Invertibility of 6c This property implies that the shape of a subtype can be determined from a

given supertype. It is useful in order to avoid having a combinatorial explosion in the paths

7.2. TOWARDS AN ALGORITHM FOR COINDUCTIVE SUBTYPING 181

that need to be checked in a derivation: an algorithm starts from the initial goal and moves

“up,” encountering subtypes (in the premises) that can be determined from the supertype

(in the conclusion), using an inversion lemma or an inverted definition for subtyping. We

believe that 6c can be adapted to obtain an inverted “supertype-of” relation 6inv
c with the

property 6inv
c =6−1

c .

Buffers and Asynchronous Subtypes

One final consideration is implementation; even with a correct and terminating algorithm, infinite

buffer resources may be needed due to subtyping alone. For example let, omitting carried types,

S1 = µt . ! . t and S2 = µt . ! .? . t. Then S2 = µt .? . ! . t, and a process performing S2 may communi-

cate with a process that implements S2. By the subtyping S1 6c S2, a process which acts according

to S1 can also interact with one that follows S2, but clearly the former never receives the outputs

of the latter. Hence the input buffer of the process with session S1 will continually and indefinitely

increase storing the outputs of S2. Moreover, note that a subtype of S2 can also ignore the input,

creating the same situation at both buffers of the session. It may therefore be preferable to iden-

tify those subtypes, which seem to be the ones inducing infinite simulations and (in the standard

algorithmic system without the modified (Asmp) axiom) divergence, as undesirable and decline to

accept them. To implement this, it is enough to fail — instead of succeeding — the algorithmic

derivation with (Asmp) when an infinite simulation is approximated:

(Asmp)
A 6= 〈·〉 ⇒ fail

Σ,S1 6 A〈S2h〉h∈H ` S1 6 A〈A〈S2h〉h∈H〉h∈H

The sidecondition A 6= 〈·〉 ⇒ fail ensures that the rule can still be used as the standard axiom

when there is no duplicated context, that is, when A = 〈·〉. Otherwise a match on a nested (and

duplicated) non-empty A should cause failure, immediately bringing to an end the building of the

derivation without following alternative goal paths which can lead to divergence. This solution

has similar effect to the use of on in our original modification of (RecR), since we again have

S1 6c S2 but not /0 ` S1 6 S2. However, the solutions are not equivalent, since on is more rigid

and rejects desirable subtypings such as µt.![U1].?[U2].t 6 µt.![U1].?[U2].![U1].?[U2].t whose con-

structors do not exactly match, but are still proportional; this example is accepted with both the

proposed versions of (Asmp). The resulting system will not be formally sound without a suitable

sidecondition, as a valid class of subtypings in 6c will be rejected by 6, but it may be the most

reasonable compromise for practical applications with limited resources towards the allocation of

182 CHAPTER 7. CONCLUSIONS, OPEN QUESTIONS AND FUTURE WORK

buffer space.

7.3 Progress in Asynchronous Higher-order Sessions

Another direction is communications progress, discussed in Section 3.7. The existing methods,

such as the interaction typing system by Dezani, de’ Liguoro, and Yoshida [29], can be adapted

to provide a solution for languages with mobile code such as HOπs and HOπas. Nevertheless, in

the presence of higher-order code mobility, the extension demands care since it requires tracking

dependencies inside mobile code. For example, if s!〈pPq〉 is blocked, the sessions inside pPq are

also blocked. On the other hand, we postulate that asynchronous subtyping does not introduce

deadlock to a deadlock-free supertype, as outputs and selections can only be done in advance

(partial commutativity), satisfying even stricter input dependencies than those required by the

dual session of the supertype. Also, an alleviating factor might be that sessions in mobile code

(and in general, within structures which can be used as values) must be completed. This indicates

that a sufficient analysis might only need to explicitly consider linear functions in the ordering of

session actions, obtaining a straightforward solution.

7.4 Algorithmic Type-checking for the Session Object Calculus

To facilitate itself as a foundation for practical language design, the sessionς calculus would

greatly benefit from concrete type-checking methods, and the possibility of (even restricted) type

inference. In the present iso-recursive setting, subtyping does not pose a significant challenge, but

type-checking and inference still require a careful formulation.

A useful property with regard to type-checking is that of unique types, or more generally min-

imum types. A type system with minimum types assigns a unique type to each typable term, and

moreover the assigned type is the smallest, by subtyping. The aim of minimum typing is to sim-

plify type-checking algorithms, since the construction of a single successful derivation is always

sufficient. Unique types arise in the simpler setting where there is no subtyping. Minimum types

have been used to guide algorithmic systems for λ-calculus, see for example Pierce’s book [76,

§ 16.2], and for the first-order object calculus with subtyping Ob1<: of Abadi and Cardelli [2]. In

the case of sessionς, minimum types are not easy to achieve, or even necessarily desirable, since,

for example, the same object w in a branching u.w can induce incomparable types for u. Consider,

7.4. ALGORITHMIC TYPE-CHECKING FOR THE SESSION OBJECT CALCULUS 183

for instance:
let w = [τ | l1 = ς(x1)λ(y1)y1 . x1 ,

l2 = ς(x2)λ(y2)y2 . x2 ,

l3 = ς(x3)λ(y3)close(y3)

in u.w

with:

τ = [l1 : (σ) [], l2 : (σ) [], l3 : (end) []] and σ = &(X)[l1 : X , l2 : X]

Then (BRANCH) (from Figure 6.6) can type u . w with type σ for u, after subtyping of τ to [l1 :

(σ) [], l2 : (σ) []] which enables the folding (to σ), and also with:

σ
′ = &(Y)[l1 : σ , l2 : σ , l3 : end]

The larger branching type σ′ (including l3 : end) does not match the use in the methods (where the

subset of branches in σ is assigned based on τ), thus folding to σ does not take place. Moreover, the

types σ′ and σ cannot be related by 4, since in the iso-recursive method folding and unfolding are

explicitly triggered within terms (in our case branching and selection). However, this difficulty in

finding a suitable typing system with minimum types may become irrelevant, if an equi-recursive

subtyping method is used instead, since then we could accept σ′ as a minimum typing for u in

u.w, obtaining σ as a supertype if desired, using a coinductive framework.

Although the minimum types method seems unsuited to the object calculus with iso-recursive

sessions, we are motivated to find a solution since this form of subtyping enjoys a very simple

theory compared to the coinductive formalisation. An appropriate strategy might be to recast al-

gorithmic subtyping as a constraint solving problem. This approach stems from the observation

that typing information from the root of a derivation can inform the choice of types deep in the

derivation tree. Instead of trying to type these deep subderivations directly as they appear, this

method progressively introduces subtyping constraints that, if solvable, induce a typing. A solu-

tion in that case is a substitution of concrete types, extracted from the type annotations, for type

variables in the generated constraint set. Type reconstruction, or inference, works similarly, but in

that case there are no type annotations, and the substitution is inferred. For a detailed exposition

to constraint-based algorithmic typing, see Pierce’s book [76, § 22.3]. For Ob1<:, Palsberg [74]

has developed efficient algorithmic type reconstruction systems. In the context of inference for

session types without asynchronous subtyping, Dezani et al. [31, 30] define a typing system with

unification-based substitution inference.

184 CHAPTER 7. CONCLUSIONS, OPEN QUESTIONS AND FUTURE WORK

7.5 Extension to Objects with Self Types

An important concept in the work of Abadi and Cardelli [2] is that of self types, which give

recursive types to special classes of objects, such as those returning the object itself (or a modified

version of it) from within a method. We decided not to include them in sessionς, for simplicity of

presentation, and to obtain a more manageable calculus. It is an important future work for us to

investigate the interplay between session subtyping, object subtyping, and self types. In particular,

we want to answer the question of how to obtain correctly the deep subtypings that arise when

a recursive branching y . x within a method executes the session argument y with a subtyped

implementation of self as x, one that provides a larger interface and hence, more branches. This

situation arises in systems in which objects can be extended, such as when using inheritance or

mixin-composition.

7.6 Implementation of Sessions

Buffer Size Bounding and Asynchronous Subtyping The buffer size bounds inferred in the

system of Gay and Vasconcelos [40] can in some cases enable the static allocation of (possibly

optimised) buffer resources at the compilation level. It would be interesting to see if this method,

which specifically calculates the size of the required input buffer given a type, can be extended to

work in the presence of asynchronous subtyping. A first observation, hinting at a difficult point, is

that subtyping affects the buffer bound. Consider the subtyping µt.![U1].t6c µt.![U1].?[U2].t. For

µt.![U1].t their method would give a bound of zero, since only inputs and branching are considered,

while for µt.![U1].?[U2].t the bound would be one, corresponding to the (repetitive) input. How-

ever, for both types the other end can be typed with µt.?[U1].![U2].t, and the fact that µt.![U1].t

ignores inputs from ![U2] does not mean that these are not received at its input buffer, hence

the assigned bound should be ∞ instead of zero. Similar situations arise whenever the subtype

has a greater proportion of outputs/selections than the supertype, as in µt.![U1].![U1].?[U2]t 6c

µt.![U1].?[U2].t, causing an incremental buffer size increase at the receiver of ![U1]. In the last

example the dual of the supertype µt.![U1].?[U2].t induces a buffer bound of one, but the subtype

µt.![U1].![U1].?[U2].t causes it to actually need a buffer of size at least two in order to accommo-

date for the double output (between inputs) at each recursion. Hence it may be the case that such

bounds cannot be inferred in the presence of asynchronous subtyping, but even in that case, there

may still be a suitable adaptation of the technique for the typing restriction detailed previously in

§ 7.2.

7.6. IMPLEMENTATION OF SESSIONS 185

Sessions for Erlang A solution to the problem of algorithmic type checking in both higher-

order processes and in objects with sessions, and to a lesser degree the ability to optimise the

allocation of finite resources for session running programs, lead us to the path of implementation

equipped with a strong arsenal of foundational theories. One particularly interesting language

that encompasses message-passing processes at the core of interacting programs is Erlang [53], a

functional language with sums (cases on the shape of a value), records, and higher-order functions.

In the words of Armstrong [4, § 6.3], Erlang’s creator:

“Erlang views the world as communicating black boxes, exchanging streams of mes-

sage that obey defined protocols.”

Essentially, Erlang processes are always in a session which is identified with the process identity

(or pid). Communications towards the process use the pid to locate the buffer to which the message

should be appended, and only a process can read its own pid-indexed buffer. Complex protocols

arise when multiple processes interact and cooperate through their respective pids. Moreover,

the dynamic update of programs without interruption (hot-swapping), a distinguishing feature of

Erlang, indicates that there is an element of code mobility, combined with a dynamic modification

of runtime processes which is straightforwardly subsumed by the one found in objects (manifested

through method update). Session typing can certainly benefit Erlang. From this starting point we

hope to follow two avenues: first, a study into type-inference of session-based types for existing

Erlang code, perhaps enabling us to retroactively verify part of the codebase, which has not been

done for the process-oriented part of the language; second, to implement a language similar to

Erlang in efficiency and programming style, but with a typed session discipline at its core, paving

the future for a more powerful and verification-friendly programming paradigm for massively

concurrent applications.

Our design can be partly informed by the subtyping-based type inference system of Wadler [56],

and by the soft typing system by Nyström [70]. The success typings of Lindahl and Sagonas [55]

seem to be a suitable basis, and are used in Dialyzer, the official static analysis component of the

open source Erlang compiler. Note, however, that none of these systems address the process (com-

munications) part of Erlang, instead focusing on the functional core. Armstrong [3] addresses the

interconnection of Erlang and other languages with contracts that specify state-machines describ-

ing the behaviour of Erlang processes, but still, the method cannot capture behaviour as precisely

as session types, and is not applicable as a general static verification of communicating processes.

186 CHAPTER 7. CONCLUSIONS, OPEN QUESTIONS AND FUTURE WORK

Sessions on the GO Session typing could benefit the newly released GO language by Google [28].

The concurrency mechanism of GO is similar to that of Erlang, but channels are explicit and typed

with a singleton carried type, facilitating a more direct adaptation of the standard session typ-

ing methodologies. Communication is buffered. Moreover, GO has structurally typed objects,

indicating that our session objects calculus might provide a suitable base for formalisation.

Towards Language-independent Implementations of Session-oriented Programs As ses-

sions become more and more pervasive, their restriction to serve as a language-specific verification

mechanism may become a limiting factor for some domains: we envision that eventually there will

be a need to interconnect diverse session-oriented programs implemented in heterogeneous envi-

ronments. Thus, we might need to decide how session types can be used at a more abstract level,

using a restricted set of universal datatypes such as XML types, possibly implemented using a

standardised mechanism such as SOAP.

Already, the W3C Choreography Web Description Language (CDL) [90, 21] addresses many

of these aspects in a web services context, but what we are suggesting is a session middle-

ware framework similar in principle (but not technically related) to CORBA, connecting binary-

incompatible communicating programs.

7.7 Concluding Remarks

A fundamental motivation of the typing techniques that are utilised in this work is that communi-

cation must be treated as central to programming, deserving the same attention in its verification

as any other construction, such as a function, object, or variable. Session types address pre-

cisely this, and we presented a theoretical foundation integrating sessions with higher-order pro-

cesses and objects, which can support structured type-safe communications in functional, process,

object, and multi-paradigm languages. Furthermore, we have formalised a subtyping approach

in which certain re-structurings of communications are allowed, when they preserve the desired

safety properties of programs. This asynchronous subtyping was presented in both a coinductive

and an inductive formulation, yielding respectively an equi-recursive and iso-recursive system; the

first method admits many more subtypings, the second has the benefit of simplicity. For the future

we have important directions to explore using this work as a basis, aiming at more theoretical

results, algorithms for practical subtyping implementations, and the adaptation of session typing

to the actor-declarative paradigm of the language Erlang.

This concludes the thesis.

Bibliography

[1] SENSORIA project. http://www.sensoria-ist.eu/.

[2] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[3] Joe Armstrong. Getting erlang to talk to the outside world. In Erlang Workshop, pages

64–72, 2002.

[4] Joe Armstrong. A history of erlang. In HOPL III: Proceedings of the third ACM SIGPLAN

conference on History of programming languages, pages 1–26, New York, NY, USA, 2007.

ACM.

[5] Franco Barbanera, Sara Capecchi, and Ugo de’ Liguoro. Typing Asymmetric Client-Server

Interaction. In Proc. of FSEN’09, LNCS. Springer-Verlag, 2009.

[6] Henk Barendregt. The Lambda Calculus. North Holland, 1985.

[7] Martin Berger, Kohei Honda, and Nobuko Yoshida. Completeness and logical full abstrac-

tion in modal logics for typed mobile processes. In Proceedings of ICALP 2008 Part II – Au-

tomata, Languages and Programming, volume 5126/2009 of LNCS, pages 99–111. Springer-

Verlag, 2009.

[8] Lorenzo Bettini, Sara Capecchi, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Betti

Venneri. Session and Union Types for Object Oriented Programming. In Rocco De Nicola,

Pierpaolo Degano, and José Meseguer, editors, Concurrency, Graphs and Models, volume

5065 of LNCS, pages 659–680. Springer-Verlag, 2008.

[9] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-

Ciancaglini, and Nobuko Yoshida. Global progress in dynamically interleaved multiparty

sessions. In CONCUR, volume 5201 of LNCS, pages 418–433, 2008.

187

http://www.sensoria-ist.eu/

188 BIBLIOGRAPHY

[10] Eduardo Bonelli and Adriana Compagnoni. Multipoint Session Types for a Distributed Cal-

culus. In TGC’07, volume 4912 of LNCS, pages 240–256, 2008.

[11] Eduardo Bonelli, Adriana Compagnoni, and Elsa Gunter. Correspondence Assertions for

Process Synchronization in Concurrent Communications. Journal of Functional Program-

ming, 15(2):219–248, 2005.

[12] Michele Boreale, Roberto Bruni, Luis Caires, Rocco De Nicola, Ivan Lanese, Michele Loreti,

Francisco Martins, Ugo Montanari, António Ravara, Davide Sangiorgi, Vasco T. Vasconce-

los, and Gianluigi Zavattaro. SCC: a Service Centered Calculus. In M. Bravetti and G. Za-

vattaro, editors, Proceedings of WS-FM 2006, 3rd International Workshop on Web Services

and Formal Methods, volume 4184 of LNCS, pages 38–57. Springer-Verlag, 2006.

[13] Michele Boreale, Roberto Bruni, Rocco De Nicola, and Michele Loreti. Sessions and

Pipelines for Structured Service Programming. In Gilles Barthe and Frank S. de Boer,

editors, Proceedings of FMOODS 2008, 10th IFIP International Conference on Formal

Methods for Open Object-Based Distributed Systems, volume 5051 of LNCS, pages 19–38.

Springer-Verlag, 2008 2008.

[14] Mario Bravetti and Gianluigi Zavattaro. A theory for strong service compliance. In COOR-

DINATION’07, volume 4467 of LNCS, pages 96–112. Springer-Verlag, 2007.

[15] Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography con-

formance and contract compliance. In Software Composition, volume 4829 of LNCS, pages

34–50, 2007.

[16] Roberto Bruni, Ivan Lanese, Hernan Melgratti, and Emilio Tuosto. Multiparty Sessions in

SOC. In COORDINATION’08, volume 5052 of LNCS, pages 67–82. Springer-Verlag, 2008.

[17] Lus Caires and Hugo T. Vieira. Conversation types. In Proceedings of ESOP 2009, volume

5502, pages 285–300. Springer-Verlag, 2009.

[18] Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, and

Elena Giachino. Amalgamating Sessions and Methods in Object Oriented Languages with

Generics. Theoretical Computer Science, 410:142–167, 2009.

[19] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured Communication-Centred

Programming for Web Services. In ESOP’07, volume 4421 of LNCS, pages 2–17, 2007.

BIBLIOGRAPHY 189

[20] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured interactional exceptions

for session types. In 19th International Conference on Concurrency Theory (Concur’08),

LNCS, pages 402–417. Springer-Verlag, 2008.

[21] Marco Carbone, Kohei Honda, Nobuko Yoshida, Robin Milner, Gary Brown, and Steve

Ross-Talbot. A theoretical basis of communication-centred concurrent programming. To

be published by W3C. Available at http://www.dcs.qmul.ac.uk/˜carbonem/cdlpaper/

workingnote.pdf, 2006.

[22] Luca Cardelli. An Accidental Simula User. In ECOOP ’07, volume 4609 of LNCS,

page 201. Springer-Verlag, 2007. Dahl-Nygaard Senior Prize Talk, available at http:

//lucacardelli.name/Talks.htm.

[23] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani.

Foundations of Session Types. In PPDP’09. ACM Press, 2009. Full version: http://www.

di.unito.it/˜dezani/papers/cdgpFull.pdf.

[24] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web services.

In POPL’08, pages 261–272. ACM, 2008.

[25] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for web services.

ACM Trans. Program. Lang. Syst., 31(5):1–61, 2009.

[26] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. Asynchronous Session

Types and Progress for Object-Oriented Languages. In FMOODS’07, volume 4468 of LNCS,

pages 1–31. Springer-Verlag, 2007.

[27] Ricardo Corin, Pierre-Malo Deniélou, Cédric Fournet, Karthikeyan Bhargavan, and James J.

Leifer. Secure implementations for typed session abstractions. In CSF, pages 170–186, 2007.

[28] Google Corporation. The GO programming language, November 2009. http://golang.

org/.

[29] Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida. On Progress for

Structured Communications. In Gilles Barthe and Cédric Fournet, editors, TGC’07, volume

4912 of LNCS, pages 257–275. Springer-Verlag, 2008.

[30] Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous, and Nobuko

Yoshida. Objects and session types. Information and Computation, 207(5):595–641, 2009.

http://www.dcs.qmul.ac.uk/~carbonem/cdlpaper/workingnote.pdf
http://www.dcs.qmul.ac.uk/~carbonem/cdlpaper/workingnote.pdf
http://lucacardelli.name/Talks.htm
http://lucacardelli.name/Talks.htm
http://www.di.unito.it/~dezani/papers/cdgpFull.pdf
http://www.di.unito.it/~dezani/papers/cdgpFull.pdf
http://golang.org/
http://golang.org/

190 BIBLIOGRAPHY

[31] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and Sophia

Drossopoulou. Session types for object-oriented languages. In ECOOP’06, volume 4067

of LNCS, pages 328–352, 2006. Available from www.doc.ic.ac.uk/˜mostrous/.

[32] Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alex Ahern, and Sophia Drossopoulou.

A distributed object oriented language with session types. In TGC, volume 3705 of LNCS,

pages 299–318, 2005.

[33] Sophia Drossopoulou, Mariangiola Dezani-Ciancaglini, and Mario Coppo. Amalgamat-

ing the Session Types and the Object Oriented Programming Paradigms. Presented at

MPOOL’07, 2007.

[34] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt, James R.

Larus, , and Steven Levi. Language Support for Fast and Reliable Message-based Communi-

cation in Singularity OS. In Willy Zwaenepoel, editor, EuroSys2006, ACM SIGOPS, pages

177–190. ACM Press, 2006.

[35] Vladimir Gapeyev, Michael Levin, and Benjamin Pierce. Recursive subtyping revealed.

Journal of Functional Programming, 12(6):511–548, 2003.

[36] Pablo Garralda, Adriana Compagnoni, and Mariangiola Dezani-Ciancaglini. BASS: Boxed

Ambients with Safe Sessions. In Michael Maher, editor, PPDP’06, pages 61–72. ACM Press,

2006.

[37] Simon Gay. Bounded polymorphism in session types. MSCS, 18(5):895–930, 2008.

[38] Simon Gay and Malcolm Hole. Types and Subtypes for Client-Server Interactions. In

ESOP’99, volume 1576 of LNCS, pages 74–90. Springer-Verlag, 1999.

[39] Simon Gay and Malcolm Hole. Subtyping for Session Types in the Pi-Calculus. Acta Infor-

matica, 42(2/3):191–225, 2005.

[40] Simon Gay and Vasco T. Vasconcelos. Linear Type Theory for Asynchronous Session Types.

Journal of Functional Programming, 20(1):19–50, 2010. Subsumes Technical Report 2007–

251, University of Glasgow.

[41] Simon Gay, Vasco T. Vasconcelos, António Ravara, Nils Gesbert, and Alexandre Z. Caldeira.

Modular session types for distributed object-oriented programming. In 37th ACM SIGCAT-

SIGPLAN Symposium on Principles of Programming Languages (POPL 2010), 2010.

www.doc.ic.ac.uk/~mostrous/

BIBLIOGRAPHY 191

[42] Marco Giunti, Kohei Honda, Vasco T. Vasconcelos, and Nobuko Yoshida. Session-based type

discipline for pi calculus with matching. Presented at PLACES 2009 — 2nd International

Workshop in Programming Language Approaches to Concurrency and Communication-

cEntric Software, 2009.

[43] Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus: Reduction and typing.

In Proceedings HLCL’98. Elsevier ENTCS, 1998.

[44] Matthew Hennessy. A Distributed Pi-Calculus. Cambridge University Press, 2007.

[45] Matthew Hennessy, Julian Rathke, and Nobuko Yoshida. Safedpi: A language for controlling

mobile code. Acta Informatica, 42(4-5):227–290, 2005.

[46] Tony Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[47] Kohei Honda. Types for Dyadic Interaction. In CONCUR’93, volume 715 of LNCS, pages

509–523. Springer-Verlag, 1993.

[48] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primitives and Type

Disciplines for Structured Communication-based Programming. In ESOP’98, volume 1381

of LNCS, pages 22–138, 1998.

[49] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session

Types. In POPL’08, pages 273–284. ACM, 2008.

[50] Raymond Hu. Implementation of a distributed mobile Java. Master’s thesis, Imperial College

London, 2006.

[51] Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming

in Java. In ECOOP’08, volume 5142 of LNCS, pages 516–541, 2008. http://www.doc.

ic.ac.uk/˜rhu/sessionj.html.

[52] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theoretical

Computer Science, 311(1-3):121–163, 2004.

[53] Claes Wikstrm Joe Armstrong, Robert Virding and Mike Williams. Concurrent Program-

ming in Erlang. Prentice-Hall, 2nd edition, 1996.

[54] Cosimo Laneve and Luca Padovani. Concurrency, Graphs and Models, volume 5065 of

LNCS, chapter The Pairing of Contracts and Session Types. Springer-Verlag, 2008.

http://www.doc.ic.ac.uk/~rhu/sessionj.html
http://www.doc.ic.ac.uk/~rhu/sessionj.html

192 BIBLIOGRAPHY

[55] Tobias Lindahl and Konstantinos Sagonas. Practical type inference based on success typings.

In PPDP ’06: Proceedings of the 8th ACM SIGPLAN international conference on Principles

and practice of declarative programming, pages 167–178, New York, NY, USA, 2006. ACM.

[56] Simon Marlow and Philip Wadler. A practical subtyping system for erlang. In Proceedings

of 2nd International Conference on Functional Programming, June 1997.

[57] Leonardo Gaetano Mezzina. How to infer finite session types in a calculus of services and

sessions. In COORDINATION, volume 5052 of LNCS, pages 216–231. Springer-Verlag,

2008.

[58] Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer-Verlag,

Berlin, 1980.

[59] Robin Milner. Functions as processes. MSCS, 2(2):119–141, 1992.

[60] Robin Milner. Communicating and Mobile Systems: the π-Calculus. CUP, 1999.

[61] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes. Technical

report, Laboratory for Foundations of Computer Science, Department of Computer Science,

University of Edinburgh, 1989.

[62] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile Processes, Parts I

and II. Information and Computation, 100(1), 1992.

[63] Dimitris Mostrous and Nobuko Yoshida. Two Session Typing Systems for Higher-Order

Mobile Processes. In TLCA’07, volume 4583 of LNCS, pages 321–335. Springer-Verlag,

2007. Available from www.doc.ic.ac.uk/˜mostrous/.

[64] Dimitris Mostrous and Nobuko Yoshida. Session-based communication optimisation for

higher-order mobile processes. In TLCA’09, number 5608 in LNCS. Springer-Verlag, 2009.

Available from www.doc.ic.ac.uk/˜mostrous/.

[65] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. Global principal typing in partially

commutative asynchronous sessions. In ESOP’09, volume 5502 of LNCS, pages 316–332.

Springer-Verlag, 2009. Available from www.doc.ic.ac.uk/˜mostrous/.

[66] Stavros Mostrous. Extending Objective Caml with Sessions, May 2007. Bachelor’s Thesis,

Nottingham Trent University.

www.doc.ic.ac.uk/~mostrous/
www.doc.ic.ac.uk/~mostrous/
www.doc.ic.ac.uk/~mostrous/

BIBLIOGRAPHY 193

[67] The Message Passing Interface (MPI) standard. http://www-unix.mcs.anl.gov/mpi/

usingmpi/examples/intermediate/main.htm.

[68] Matthias Neubauer and Peter Thiemann. An implementation of session types. In PADL,

volume 3057 of LNCS, pages 56–70. Springer-Verlag, 2004.

[69] Matthias Neubauer and Peter Thiemann. Session types for asynchronous communication,

2004. Unpublished manuscript.

[70] Sven-Olof Nyström. A soft-typing system for erlang. In ERLANG ’03: Proceedings of the

2003 ACM SIGPLAN workshop on Erlang, pages 56–71, New York, NY, USA, 2003. ACM.

[71] Martin Odersky, Philippe Altherr, Vincent Cremet, Iulian Dragos, Gilles Dubochet, Burak

Emir, Sean McDirmid, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Sten-

man, Lex Spoon, and Matthias Zenger. An Overview of the Scala Programming Language.

Technical Report LAMP-REPORT-2006-001, École Polytechnique Fédérale de Lausanne

(EPFL), 2006.

[72] Luca Padovani. Contract-directed synthesis of simple orchestrators. In CONCUR, volume

5201 of LNCS, pages 131–146, 2008.

[73] Luca Padovani. Session types at the mirror. In Proceedings of the 2nd Workshop on Interac-

tion and Concurrency Experience (ICE’09). lncs, 2009.

[74] Jens Palsberg. Efficient inference of object types. Information and Computation,

123(2):198–209, December 1995.

[75] Press Association Photos. ShootLive technology, 2009. Description available at http:

//www.shootlive.com/technology/.

[76] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[77] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. In

Logic in Computer Science, 1993. Full version in Mathematical Structures in Computer

Science , Vol. 6, No. 5, 1996.

[78] D. Sangiorgi. From π-calculus to Higher-Order π-calculus — and back. In Proc. TAP-

SOFT’93, volume 668 of LNCS, pages 151–166. Springer-Verlag, 1993.

[79] Davide Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher Order

Paradigms. PhD thesis, University of Edinburgh, 1992.

http://www-unix.mcs.anl.gov/mpi/usingmpi/examples/intermediate/main.htm
http://www-unix.mcs.anl.gov/mpi/usingmpi/examples/intermediate/main.htm
http://www.shootlive.com/technology/
http://www.shootlive.com/technology/

194 BIBLIOGRAPHY

[80] Davide Sangiorgi and David Walker. The π-Calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.

[81] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-based Language and its

Typing System. In PARLE’94, volume 817 of LNCS, pages 398–413. Springer-Verlag, 1994.

[82] UNIFI. International Organization for Standardization ISO 20022 UNIversal Financial In-

dustry message scheme. http://www.iso20022.org, 2002.

[83] Antonio Vallecillo, Vasco T. Vasconcelos, and António Ravara. Typing the Behavior of

Objects and Components using Session Types. In FOCLASA’02, volume 68(3) of ENTCS.

Elsevier, 2002.

[84] Vasco T. Vasconcelos. A note on a typing system for the higher-order π-calculus. Keio

University, September 1993.

[85] Vasco T. Vasconcelos. 9th International School on Formal Methods for the Design of Com-

puter, Communication and Software Systems: Web Services (SFM 2009), volume 5569 of

LNCS, chapter Fundamentals of Session Types, pages 158–186. Springer-Verlag, 2009.

[86] Vasco T. Vasconcelos, Simon Gay, and António Ravara. Typechecking a Multithreaded Func-

tional Language with Session Types. TCS, 368(1–2):64–87, 2006.

[87] Vasco T. Vasconcelos, Simon Gay, António Ravara, Nils Gesbert, and Alexandre Z. Caldeira.

Dynamic interfaces. In International Workshop on Foundations of Object-Oriented Lan-

guages (FOOL’09), 2009.

[88] Hugo Torres Vieira, Luı́s Caires, and João Costa Seco. The conversation calculus: A model

of service-oriented computation. In ESOP, volume 4960 of LNCS, pages 269–283, 2008.

[89] David Walker. Advanced Topics in Types and Programming Languages, chapter Substruc-

tural Type Systems. MIT, 2005. Editor Benjamin C. Pierce.

[90] Web Services Choreography Working Group. Web Services Choreography Description Lan-

guage. http://www.w3.org/2002/ws/chor/.

[91] Nobuko Yoshida. Channel dependency types for higher-order mobile processes. In

POPL ’04, pages 147–160. ACM Press, 2004. Full version available at www.doc.ic.ac.

uk/˜yoshida/.

http://www.iso20022.org
http://www.w3.org/2002/ws/chor/
www.doc.ic.ac.uk/~yoshida/
www.doc.ic.ac.uk/~yoshida/

BIBLIOGRAPHY 195

[92] Nobuko Yoshida and Vasco T. Vasconcelos. Language Primitives and Type Disciplines for

Structured Communication-based Programming Revisited. In SecRet’06, volume 171(3) of

ENTCS, pages 127–151. Elsevier, 2007.

	Table of Contents
	List of Figures
	Introduction
	Motivation and Objectives
	Contributions
	Publications & Detailed Contribution of the Author
	Synopsis

	I Background
	Foundations
	Higher Order Processes
	Objects
	From Synchronous to Buffered Communication
	When things ``go wrong''
	Sessions
	Session Types
	Primitive Support for Establishing Sessions

	The Thesis

	Related Work
	Session Typing for Binary Sessions
	Sessions in CCS and -calculus
	Sessions in Functional Languages
	Sessions in Higher-order Processes
	Sessions in the Ambient Calculus
	Sessions in Object-oriented Languages

	Linear Type Theory Techniques in Sessions
	Alternative Formulations
	Asynchronous Communication in Sessions
	Session Subtyping and Polymorphism
	Asynchronous Subtyping
	Progress and Deadlock-Freedom in Sessions
	Correspondence Assertions and Logics for Sessions
	Exceptions for Error Handling in Sessions
	Implementations
	Sessions in Industry Specifications
	Multi-Party Sessions: Typing Protocols with Many Participants
	Service Oriented Computing

	II Session Types and Subtyping in Higher-Order Processes and Objects
	Sessions and Higher-Order Processes
	Introduction
	The Higher-Order -Calculus with Sessions
	Syntax
	Reduction Semantics
	Examples
	Example: Business Protocol with Code Mobility

	Higher-Order Linear Typing
	Types
	Subtyping
	Linear Higher-Order Typing System
	Examples

	Type Soundness and Type Safety
	Substitution
	Typing the Hotel Booking Example

	Concluding Remarks

	Asynchronous Session Subtyping
	Introduction
	The Higher-Order -Calculus with Asynchronous Sessions
	Syntax and Reduction
	Example: Optimised Business Protocol with Code Mobility

	Higher-Order Asynchronous Subtyping
	Some Examples of c
	The Relation c is a Preorder

	Asynchronous Higher-Order Session Typing
	Typing the Optimised Mobile Business Protocol

	Type Soundness and Communication Safety
	Concluding Remarks

	Sessions and Objects
	Introduction
	The Session Objects Calculus
	Syntax
	Configurations
	Reduction
	Example: Instant Messenger

	Typing
	Types
	Subtypes and Asynchronous Subtyping
	Judgements and Environments
	Typing Rules
	Examples: Justification of Types and Typing Rules
	Session Types and Typing for the Instant Messenger

	Typing Runtime Terms
	Session Remainder
	Heap Typing

	Type Soundness
	Notes on Related Work
	Concluding Remarks

	III Conclusion & Future Directions
	Conclusions, Open Questions and Future Work
	Summary of Contributions in this Thesis
	Towards an Algorithm for Coinductive Subtyping
	Progress in Asynchronous Higher-order Sessions
	Algorithmic Type-checking for the Session Object Calculus
	Extension to Objects with Self Types
	Implementation of Sessions
	Concluding Remarks

	Bibliography

