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Abstract

This dissertation investigates different formalisms, in the form of programming language calculi,
that are aimed at providing a theoretical foundation for structured concurrent programming based
on session types. The structure of a session type is essentially a process-algebraic style description
of the behaviour of a single program identifier serving as a communication medium (and usually
referred to as a channel): the types incorporate typed inputs, outputs, and choices which can be
composed to form larger protocol descriptions. The effectiveness of session typing can be at-
tributed to the linear treatment of channels and session types, and to the use of tractable methods
such as syntactic duality to decide if the types of two connected channels are compatible. Linear-
ity is ensured when accumulating the uses of a channel into a composite type that describes also
the order of those actions. Duality provides a tractable and intuitive method for deciding when
two connected channels can interact and exchange values in a statically determined type-safe way.
We present our contributions to the theory of sessions, distilled into two families of programming
calculi, the first based on higher-order processes and the second based on objects. Our work uni-
fies, improves and extends, in manifold ways, the session primitives and typing systems for the
Lambda-calculus, the Pi-calculus, the Object-calculus, and their combinations in multi-paradigm
languages. Of particular interest are: the treatment of infinite interactions expressed with recursive
sessions; the capacity to encapsulate channels in higher-order structures which can be exchanged
and kept suspended, i.e., the use of code as data; the integration of protocol structure directly
into the description of objects, providing a powerful and uniformly extensible set of implemen-
tation abstractions; finally, the introduction of asynchronous subtyping, which enables controlled
reordering of actions on either side of a session. Our work on higher-order processes and on object
calculi for session-based concurrent programming provides a theoretical foundation for program-

ming language design integrating functional, process, and object-oriented features.
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Introduction

1.1 Motivation and Objectives

Concurrency is becoming increasingly pervasive at all levels of computer programming, from low
level and embedded software to operating systems and globally deployed web services. Never-
theless, concurrent programming suffers from the lack of mature and usable typing disciplines
that have proven very successful in sequential programming. Moreover, the majority of concur-
rent software is written using shared memory models and threads, which are widely considered
notoriously difficult to verify and understand. Adding to the above, modern trends in hardware,
pronounced with the emergence of multicore microprocessors many of which utilise distributed
memory models, create a need for new programming languages that can bridge the expanding
chasm between hardware and software architecture. And it is not an exaggeration to say that these
developments in hardware technology testify to the fact that the sequential model of computation

has reached the limits of its scalability.

Presently, communication oriented software is mostly implemented using either sockets, facil-
itating the transmission of arbitrary messages, or with remote method invocation. Sockets provide
untyped stream abstractions, and remote method invocation allows methods to be called in a dis-
tributed setting, using sockets as the underlying transport mechanism. Both have shortcomings:
socket-based code requires a significant amount of dynamic checks and type-casts on the values
exchanged, in order to ensure type safety; remote method invocation does ensure that methods
are used as mandated by their type signatures, but does not capture behaviour arising from the

combination of invocations that may implement a conceptual unit of interaction.

If we consider the type-based methodologies used in mainstream industrial-grade languages,
we see increasingly sophisticated techniques for the verification of functions, objects, and other
sequential constructs. Perhaps paradoxically, there is very little provision for the typing of com-
munication primitives, such as sockets. This shows that most of these languages were not designed

for concurrency and communication: rather, they impose typing demands on programs written us-
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14 CHAPTER 1. INTRODUCTION

ing their sequential core, and no demands at all when it comes to primitives for the exchange of
messages. Such untyped communications are the weakest link even in otherwise strongly-typed

languages.

The essence of communication in programming can be abstractly captured in the notion of
message passing between independently executing components within a larger software compo-
sition; if there is no communication then there is no need to verify the behaviour at the level of
interaction between the components. When there is interaction through communication, it is intu-
itive to consider not only individual messages, but also the structure and compatibility of a protocol
that implements a complete structured dialogue between components. The basic abstraction for
message passing concurrency is that of a communication channel. Then the central question is,
can we assign types to communication channels, in the way we give types to variables in a pro-
gram? The requirements are different: a variable is a placeholder for a single value at a time, and
its type does not change; a channel is a passageway for possibly heterogeneous values and control
instructions, and if we are to give it a type, this type must facilitate change after each step of an
interaction, so that the correctness of an implementation can be verified statically. When there is
communication, there are normally at least two participants, and therefore we also need to capture
the intended symmetries in communications, in the general sense that when sending a message it

will be received at the other end, and vice versa.

Session typing addresses exactly these requirements, fortifying the communications-oriented
primitives of a language with a type-based verification discipline that can statically ensure that
interactions are indeed well-behaved. Session types enable the validation of programs with struc-
tured communications, assuring both type and communication-safety — not only is the value of
each message correctly typed — but also the sequence of messages that are sent and received via
a channel is performed according to the exact scenario specified by the session type, precluding
communication mismatch. Moreover, session typed code is more concise than using sockets di-
rectly, eliminating the explicit checks which otherwise proliferate in interactions where different
types of values need to be communicated following an evolving protocol. Finally, sessions are
useful as an abstraction for concrete communication mechanisms: the use of sockets directly is
not always desirable, as more efficient shared memory data structures can be used for sessions

taking place within the same memory domain, and this can be done safely and behind the scenes.

This dissertation presents fundamental theories for session typing in programs that utilise the

powerful abstractions of processes, code mobility, and object orientation.
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1.2 Contributions

We formalise for the first time session typing for a process language that allows not only data but
also runnable code to be the subject of structured type-safe communications. The ability to ex-
change code is fundamental in concurrent and distributed systems where programs cannot be fully
fixed ab initio and dynamicity is a prerequisite. We then relax the strict compatibility requirements
that govern pairs of interacting processes to allow certain classes of message-passing actions to
be permuted in restricted ways, offering not only greater flexibility in composing programs, but
also guidance toward type-safe optimisations. Finally, we introduce an original session typing
system to a minimal object calculus that can serve as a theoretical foundation for the several disci-
plines of object-orientation, without restricting this powerful style of programming to class-based

languages.

1.3 Publications & Detailed Contribution of the Author

The following publications, presented in reverse chronological order, are in varying degrees the
source of the expanded and improved material presented in this dissertation. We indicate the
main publications relating to each chapter; the remaining have nevertheless contributed to the
understanding and intuition of this work, even if the material does not directly appear in the main

body of the thesis.

Declaration Only the material relating directly to the author’s research appears in this thesis.
Any work, in the form of original ideas, formal systems, writing, and proofs, that have been
contributed by my supervisor and other researchers and that appears in the following joint publi-

cations, has been omitted from the main body.

1. Dimitris Mostrous and Nobuko Yoshida. Session-Based Communication Optimisation for
Higher-Order Mobile Processes. In Pierre-Louis Curien (Ed.), 9th International Conference
on Typed Lambda Calculi and Applications (TLCA’09), volume 5608 of Lecture Notes in

Computer Science, pages 203-218, Springer, 2009 [64]].

Author’s Contribution: The ideas, formulations, writing, and proofs of this work are my

owi.

Corresponding Part: Chapter[5]
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2. Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous and Nobuko

Yoshida. Objects and session types. In Information and Computation, number 5, volume

207, pages 595-641, Elsevier, 2009 [30].

Author’s Contribution: This work is an extended and improved version of our previous
work on objects (ECOOP 2006 [31]], mentioned below). My contribution in this version
was in the overall improvement, presentation and proofs, and in particular the sections of
introduction, related work, and conclusion, are my own writing. I also contributed in the

proof-reading of the remaining material.

Corresponding Part: This work does not appear in the dissertation because it originates
from research conducted during my Masters degree; it was nevertheless published during

my Doctorate studies.

. Dimitris Mostrous, Nobuko Yoshida and Kohei Honda. Global Principal Typing in Partially

Commutative Asynchronous Sessions. In Giuseppe Castagna (Ed.), /8th European Sym-
posium on Programming (ESOP’09), volume 5502 of Lecture Notes in Computer Science,

pages 316-332, Springer, 2009 [[63]].

Author’s Contribution: In this work I have contributed the main technical results in Sec-
tion 3 of the paper, and in particular the theoretical framework for subtyping, the formali-
sation and proof of a coinductive subtyping system for multiparty sessions, and some con-
tributions to the algorithmic subtyping system. The major part of the algorithmic typing
system, and the second major contribution of the paper, which consists of a global approach

to typing, were not developed by myself.

Corresponding Part: This work does not appear directly in the dissertation because my
part was highly technical and it was further developed in the TLCA 2009 paper mentioned
above. My contribution to this work has motivated my further work presented in Chapter 5]

but in this way only my own research is presented in the dissertation.

. Dimitris Mostrous and Nobuko Yoshida. Two Session Typing Systems for Higher-order

Mobile Processes. In S. Ronchi Della Rocca (Ed.), 8th International Conference on Typed
Lambda Calculi and Applications (TLCA’07), volume 4583 of Lecture Notes in Computer
Science, pages 321-335, Springer, 2007 [63]].

Author’s Contribution: This work presents two systems for session typing higher-order

processes. My contribution is the ideas, design, and proofs of the primary system, which is
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the one presented in this thesis. The second system is referred to in related work.

Corresponding Part: Chapter[4]

5. Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida and Sophia Drossopoulou.
Session Types for Object-Oriented Languages. In Dave Thomas (Ed.), The 20th European
Conference on Object Oriented Programming (ECOOP’06), volume 4067 of Lecture Notes
in Computer Science, pages 328-352, Springer, 2006 [31].

Author’s Contribution: In this work my contribution is in the theoretical framework, the
formalisation, and the proofs of the main system. It was conducted during my Masters

degree at Imperial (final project).

Corresponding Part: This work does not appear in my thesis, because the research took
place during my Masters degree. However it has influenced my intuition and interest in

subsequent work on object languages, which is independent and appears in Chapter [0

Electronic versions are available athttp://www.doc.ic.ac.uk/-mostrous.

1.4 Synopsis

The dissertation is divided into three parts, covering the foundations and related work, the main

theories, and the future directions.

Part I: Background
Chapter 2] motivates the choice of languages and demonstrates, in an untyped setting, the
power of processes with code mobility and the integration with object-oriented struc-
turing. Session types are introduced with reference to desirable and undesirable com-

positions of processes.

Chapter [3] provides an extended review of the session typing literature and of closely re-

lated approaches.

Part I1: Session Types and Subtyping in Higher-Order Processes and Objects
Chapter 4] introduces sessions into a synchronous higher-order process language with code

mobility manifested through the exchange of functions.
Chapter |5| extends the language and typing discipline of the previous chapter to allow cer-

tain communications to be partially permuted, a feature enabled by non-blocking se-

mantics for buffered communication.


http://www.doc.ic.ac.uk/~mostrous
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Chapter[6] integrates sessions into a foundational object language with imperative seman-

tics and buffered communication.

Part II1: Conclusion & Future Directions

Chapter[7] focuses on important future work which can pave the way to practical imple-

mentations based on the fundamental theories developed in the main part.
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2 Foundations

Overview [n this chapter we lay the foundations of the work in this thesis, placing it in the
context of the different theories that are used in the formal systems defined later. It follows a
slightly informal style aiming at exposing the subtleties in modelling and expressing systems in
process and object based programming calculi. We motivate and justify the main concepts of

session typing as a discipline that allows desirable programs, rejecting behaviours we identify

as unsafe.

2.1 Higher Order Processes

A significant part of the formal study of concurrency develops around the notion of processes.
By process we mean a unit of execution that can interact with other processes, by way of com-
munication, that is, by sending and receiving values over channels. Several process calculi have
been formalised — early examples are Milner’s CCS [58]] and Hoare’s CSP [46], followed by the
nt-calculus [61} 162] by Milner ef al., which extends CCS with the ability to form dynamic link
topologies — and we are interested in an extension of the m-calculus, Sangiorgi’s Higher-order
n-calculus [[79]], or HOm, which integrates mt-calculus with A-calculus. The standard reference for
A-calculus is Barendregt’s book [6]. Sangiorgi and Walker’s book [80] is a complete reference of
the fundamentals of 1t-calculus and Higher-order m-calculus.

By combining the foundational theories of processes (7-calculus) and functions (A-calculus),
HOm facilitates not only communication and link mobility, but also code mobility, which is rep-
resented as the communication of a function. As Sangiorgi [78] has shown, at the semantic level
the m-calculus is already higher-order, in the sense that HO® can be encoded into first-order 7, but
as a basis for programming language design we are interested in adopting a formalism that can
directly represent the essential elements of concurrent and distributed computation, where typi-
cally we encounter a combination of functions and communications. For instance, mobile code
is necessary when modelling or implementing remote code installation which is very common in

mobile devices and in personal computers, even at the operating system level.

21



22 CHAPTER 2. FOUNDATIONS

First, we briefly introduce the main constructs of an untyped Higher-order m-calculus.

HOm in a Nutshell

The syntax for the untyped HOm variant that we use is shown in Figure The reduction rules
are in Figure Structural equivalence axioms are in Figure We denote processes with P,
0O, R. Variables range over x, y, z, but we also use f in examples. Values V can be functions,

communication channels ranging over a, b, or the constant unit, written ().

Identifiers
u,v = Xx,)2 variables
| a,b,c channels
Values
V.V = uyv identifier
| () unit
|  Ax.P function
| ux.Ay.P recursion
Terms
PO,R =V value
| u?(x).P input
| ul(V).P output
|  u>{lL:P,...,l,:P,} branching
| u<ly.P selection
|  P|O parallel
| (va) P restriction
| P-Q application
) nil

Figure 2.1: HOx Syntax

Functions The term Ax. P is a function with argument x and body P. The notation (Ax.P)-V
denotes function application, where the value V takes the place of the variable x in the function
body P, written P{V/x}, which can then use it to produce a result. We write uz.Ax.P for a

recursive function which is defined like Ax. P with the difference that (uz.Ax.P)-V results in P
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(beta)
(rec)
(comm)

(label)
ar> {l]

P—P
(app-l

'Po0—70

(Ax.P)-V — P{V/x}
(uy.Ax.P)-V  — P{V/x}{my-reP/y}

a?(x).P|al(V).Q — P{Vi}|Q

P, P} la<ily, P — Py |P 1<m<n

Q—>Q’ P—P

vo—vig  "re—7o

P—P P=P —Q=0

(resc)

(str)

(va) P— (va) P’ P—0

Figure 2.2: HO® Reduction

P=¢0=P=0Q

Renaming of bound variables

P|Q=Q|P Commutativity of parallel composition
(PIQ)|R=P|(Q|R) Associativity of parallel composition
PlO=P Inaction and parallel composition

(va) P|Q=(va) (P|Q) a¢fn(Q) Scope extrusion

(va) (vb) P = (vb) (va) P Exchange

(va)0=0 Inaction and restriction

Figure 2.3: HOm Structure Congruence
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with V for x and uz . Ax . P for z. In other words, when this function is applied, it has access to its
own definition through the recursion variable z, and can therefore reuse itself within its body P.

We also make use of the following abbreviated forms for function application:

f . . .
P;0 def letz=Pin Q if z does not occur in Q

with letz=PinQ ¥ (Az.0)-P

Note that in the above, if P does not reduce to a value, the computation becomes stuck.

Processes The process 0 represents inaction. The prefix form a!(V) . P consists of the sending
of a value V on channel a, followed by whatever P specifies. Similarly to a function, a?(x).P
can receive a value (say, V) via a and then do P but with V taking the place of x. With P | Q the
processes P and Q are executed concurrently, hence in a!(V).P; | a?(x). P, a communication on
a can be performed, followed by the remaining actions P; | P; where P} is P, with V for x. The
notation (va) P means that the communication channel a is private to P, thus, a can be thought of
as being freshly created in (va) P. Consequently, in (va) (a!(V).P) | a?(x).Q, the instances of
aina!(V).P and a?(x) . Q are considered distinct, and no communication can take place on a. To
avoid obscuring the presentation, we just show the main use of fresh names through the following

idiomatic example:
(vx) (al{x).x{V).0) | a2(z).22(y).x{V').0

Since instances of x in the left and right processes are meant to be different, we rename the variable

x of the left term to x/, obtaining:
(vx') (a!(X)y. XNVY.0) | a?(z).22(y).xH{(V').0

where we chose some x’ which does not occur in the original term. Then, we can extend the scope

of (vx’) , specified here with parentheses, without causing conflicts, obtaining:
(vx') (a!(X)y. XNVY.0 | a2(z).22(y) . x1(V').0)

Now the communication on a can take place within the new scope of (vx’) , and the fresh channel
x' will become shared between the two processes, substituting z on the right. After that step, no

other process can interact with the channel x/, therefore we can guarantee the non-interference of
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the subsequent communication on it, in the sense that only the process on the right of | can receive
the value V.

We write ut>{l; : Py,...,l, : P,} for a process offering n alternative behaviours (branches)
indexed by the labels [; .. .[,. Then, u<il,,.Q with 1 <m <nrepresents a selection of the behaviour
indexed by I, followed by Q. For example, u <1/.Q | ut>{l; : P;,l : P,} becomes Q | P,.

The combination of recursion and branching can encode complex repetitive protocols, as we

demonstrate in the next section.

Mobile Processes in Industry

We give evidence to the expressiveness and relevance of HO® with a set of examples based on a
scenario from industry. The general idea is not fictional: this is how a large corporation processes
photographs in real-time from live events in disparate locations, forwarding the edited versions to
clients such as news websites and publishers. An important aspect of this case study is that mobile
code is not just an optimisation, but rather the enabling factor, the sine qua non for an extensible

implementation.

Real-time Photo Feeds [75]]

The physical actors in the scenario are: Photographers, which carry mobile devices that store the
pictures once they are taken; Editors, whose task is to prepare the pictures for publication, by
applying transformations and adding metadata; Image server, where edited pictures are stored in
order to be distributed; Clients, which receive feeds of edited pictures from the server.

For the purposes of this example, we focus on the interaction, at the software level, between

the Editor and Photographer’s systems. We expose this part of the scenario in more detail:
e Image files are large, and the network links between photographers and the editor are slow.

e To achieve good performance, when an Editor has to work on the pictures from an event, it

receives a list of thumbnails instead of the originals.

e The Editor applies transformations on chosen thumbnails, and the same instructions are then
sent to the Photographer’s system, so that the same editing can be applied to the original

picture.

e The edited pictures are sent to the Image server directly from the Photographer. This is

an optimal strategy because many times the transformations reduce the size of an image
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dramatically, for example by scaling or cropping, which means that in some cases the whole
process can be completed without the transfer of any large files. Therefore, this is preferred
to the alternative of first moving the originals of chosen thumbnails at the Editor’s location,
then editing and sending from there. Moreover, this strategy avoids the overhead of the

Editor acting as an intermediate transit point between the pictures and the server.

e The transformations for each picture are sent to the Photographer’s system one by one
as they are applied at the Editor, to facilitate maximum concurrency especially for time-

consuming actions.

A Higher-order nt-calculus Implementation of the Scenario

We now show how the above case study can be precisely expressed in HO=. First, we assume some
system provided functions (such as print and DB.load) and constants (such as img4?2), written in
different typeface. To keep the use of those functions concise, we use the following abbreviated

form:

Fxiyooosxn) = (((Fxp)xp...) xp)

We define the process at the Photographer, PhotoSrv(a), as follows:

a?(x) .x?(image.id) .

let img=DB.load(image_id) in
PhotoSrv(a) &
<,uy.?uz.x>{nextFi|ter:x?(f) (let=f-ziny-7),

done : DB.save(image_id, z) ; 0 }> -img

The definition PhotoSrv(a) is parameterised with the channel a, which can be thought of as the
location of the process. Note that, for simplicity, we do not show how the thumbnail images are
obtained, and assume that when interacting with this code they are known; it is easy to model their
transmission as a series of outputs. First, a new channel is received over a, replacing x, and then it
is used to receive the key image_id identifying the picture to be edited. Next, the picture is loaded,
as img, from the local database DB using DB.load. Now a repetitive behaviour is defined: the
prefix uy.Az. ... specifies a recursive function which can access itself using y, taking an argument
for z. This function is applied to the image img which replaces z in its body. The body of this
function is a process that offers the choices nextFilter and done on x. If the first choice is made,

then an image transformation function is received over x, replacing occurrences of f, and then it is
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applied to the image with f - z. The last step is a recursive function application y- 7/, which repeats
the process by applying y to the new image z/, so that further transformations can be applied. If
the choice done is made, then the image is saved locally with DB.save(image_id, z) and the code

terminates, since there is no recursion here.

Note that for simplicity, we define PhotoSrv(a) so that it can be used only once and then it
vanishes. However, we can easily redefine it, encapsulating it with an additional recursion and

making it available in a persistent way.

Next we define a process Editor| (@) which can interact with PhotoSrv(a):

(vx) (vack)

(Iet f=M\img.ack!{()).P in

def

Editor; (a) al(x) .x!(imgd2) .

x < nextFilter.x!(f) .x <done.

ack?(z) . print(“ok”); 0>

This definition begins with a declaration of two fresh channels, unique in every instance of
Editor| (a). The first, declared in (vx) , will be sent over a, facilitating further communications. If
we avoided this apparent indirection and used a directly for all the communications, then another
process in parallel, possessing a, could interfere at any stage (since a is not restricted to some
term), destroying the determinacy of the intended protocol which is between the two processes
only. The initial step in Editor| (a) is the creation of a transformation function Aimg . ack!{()) . P
bound to f. The function takes an image as its img argument. When this function is applied, it first
sends an acknowledgement over ack, acting as a confirmation that it is being executed. We then
assume that specific image manipulations are performed in P using img. Next, the fresh channel
x is sent over a, facilitating a unique connection with the receiving process, then img42 is chosen
for editing with the output x!(img42), then the choice x < nextFilter is made followed by the
output of the function f in x!(f), followed by the choice x <l done terminating the interaction on
x. The process then blocks waiting to receive the acknowledgement with ack?(z), before printing

a confirmation message.

The above processes can be composed in parallel to obtain:

PhotoSrv(a) | Editor; (a)
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implementing the intended interactions. Note that the first step is to rename all the variables to
make them distinct, most importantly by extending the scope of (vx) and (vack) to ensure that x

and ack do not appear in PhotoSrv(a).

An Extended Use Case Suppose that we modify PhotoSrv(a), adding the two more choices

upload and undo, to obtain ExtPhotoSrv(a) defined below:

a?(x).x?(image.id) .
let img=DB.load(image_id) in
<yy.kz.x>{nextFi|ter x2(f).(let=f-ziny-7),
ExtPhotoSrv(a) =
done : DB.save(image.id, 7); 0,
upload : x?(dest) .dest!(z) .x!{() . (y-z),

undo : let 7 =DB.load(image_id) in y -7’ }) -img
The new functionality allows ExtPhotoSrv(a) to be instructed to send the current image to a given

destination, and also to undo the transformations by reloading the original image from the database

and invoking the recursion with it. Moreover, we can now define:

(vx)

det (a!(x) x!(imgd2) . ...
Editory(a,b) =
x <upload.x!(b).x?(y).x<done.

print(“upload complete”); 0)

which uses the new option upload after applying some transformations (which we omit for clarity),

and we can define the composition:
ExtPhotoSrv(a) | Editor(a,b) | b?(x).Q

as well as:

ExtPhotoSrv(a) | Editor; (a)

These compositions indicate, as expected, that the extended process ExtPhotoSrv(a) can interact

with a superset of processes compared to the original PhotoSrv(a).
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Remarks

The above industry-inspired example was easily modelled in the untyped HO™, giving testament
to the expressive power of the calculus, and also to the invaluable contribution of mobile code,
without which the scenario would be impossible to implement both efficiently and extensibly. In
fact, we can postulate that the same strategy applies to many cases where there is a large data
set and we wish to process it from a remote location. We can further distill a useful principle in
deciding when utilisation of mobile code is appropriate or even necessary: When a computation
requires a piece of code and a piece of data which are not co-located, and if optimal performance is
the objective, then the smallest of the two should move, assuming there is sufficient computational
power at the target site, relative to the difference in transfer time induced by the sizes of the code

and the data.

2.2 Objects

The Higher-order m-calculus has the primitives needed to express complex communication pat-
terns, but it does not have much provision for modular structuring and dynamic extensibility of
programs. Moreover, it is evident that the combination of recursion and choice enables the ex-
pression of complex interactive behaviour, and it is natural to ask whether a more high level con-
struction combining all of these capabilities can simplify programming. Also, another matter of

interest is the interplay between communication and imperative constructs.

Objects emerge as a natural candidate, because they combine functions, recursion, and branch-
ing in a compact and powerful abstraction. The untyped imperative object calculus imp¢ of Abadi
and Cardelli [2] is a small formalisation that distills the essential features of object-orientation,
namely objects, methods, and state. A concurrent variant of imp¢, named concg, with parallel

composition and mutex synchronisation was developed by Gordon and Hankin [43]].

For the purposes of this section, we “borrow” the main object-oriented elements from the func-
tional variant of impg — referring to it as c-calculus hereafter — and integrate them into HO7g, an
adaptation of the simple HOm of the previous section, reusing definitions as necessary. We do not
attempt a complete formalisation here, but rather provide a model that will make concrete the con-
cepts pertaining to sessions in object languages. Note that the calculus HOn¢ is original, it does
not appear in the literature, and for this reason we are more precise in our description comparing

to the HOR of the previous section.
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HOmnc: An Integration of HO7n and the functional ¢-calculus

We remove recursive functions py . Az. P and the branching construct ut>{/; : Py,...,l, : P,} from
the HOm of the previous section. We then add the following productions. First, for objects we add

w, defined as:

wwl = X variables
| [L=g(x) '] objects
An object consists of a collection of methods, and each method begins with a self binder ¢(x;), as
in [2]. The self variables x; provide access to the object within its own methods, similarly to the

recursion variable y in uy. There are differences in the typing of self and functional recursion, but

in this untyped context this issue does not concern us; see [2].

We extend values to include objects:

vV o= .. as before except recursion

| [li=c(x;) P object
Then we extend processes with the following fundamental object primitives:

PO.R = ... as before except branching
| wy method select
|  wl,&c¢(x)P method update

| xpw branching

We write w.l,,, for the selection of method /,, of object w. We define the result of performing this

as follows (where — denotes reduction):
[li:C.:(xi)Piiel]'lm I Pm{[li:g(xi)PiiEI ]/xm} ifmel

With Pm{[ li=g(x;) B! ]/xm} we denote the capture avoiding substitution of the self variable x,,
with the actual object being invoked. Moreover, in this and the following reduction rules, if m ¢ I,
the term is simply stuck. Next, we write w.l,, & ¢(x) P for method update, where a new method
definition replaces the existing one in the returned copy (in this functional setting) of object w.

This reduction is defined as:

=) B Ly P —  [h=G(a) PV =) P ] ifmel
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Note that in the original ¢-calculus there are no functions, since they can be encoded using a spe-
cial “arg” method which is updated with the argument. However, we kept them, because they
allow us to encode sequential protocols which in the ¢-calculus can only be encoded with a more
complicated version of method update that computes a value before the update, since in this sim-
pler version the new method is not executed; it just modifies an object’s definition. See [2] for

more details.

Finally, we re-introduce branching to the language with u>w, reducing with the rule (which

uses selection from HOT):

u<al,.Q | uv[li=g(x) P

Q0 | [l=c(x)Pc L, ifmel

This reduction simply uses selection to choose the corresponding method that will implement the
branch. Note that as Q can continue to use u, so does the object, if u appears within the method.
The notions of free and bound identifiers are standard, extending to the new constructions, and

we reuse the structural congruence = from the previous section.

A HOmn¢ Implementation of the Scenario

We can write ObPhotoSrv(a), an object-based version of PhotoSrv(a), using a combination of

process, functional, and object-oriented features:

a?(x) .x?(image_id) .
let imgo=DB.load(image_id) in
x> [nextFiIter =q(y)
ObPhotoSrv(a) = x?(f). (letimg; = f- (y.img) in
let yy = (y.img&g(x;)img) in x>y ),
done = ¢(y) let z=y.img in ( DB.save(image.id, z); 0),
img = () imgo ]
In this version, the image is stored into the method img of the object. Initially it has the value

imgo from the outside scope, then in every invocation of nextFilter an update is performed on the

self variable y producing a copy y; of the object with the new value for img. Then branching is
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performed on the updated object with x>y and the process repeats.
In general, method update can be used to dynamically obtain modified versions of objects:
suppose we call the object used above w, then if we have such an object in a program, we can

update the implementation, for example, with:
let w/=(let orig=w.img in w.img<¢(y) lock!(image_id) . (orig)) in P

This way another component can be notified when the image is first accessed, perhaps by locking
the local database, and with a similar modification of done, the object can be unlocked. Observe
that after the first access in ObPhotoSrv(a) the method img is internally updated, hence our mod-
ified code is only reduced once. Also note that in the above program fragment we assumed that

image_id is known; it could of course be stored in the object. As before we can write:
ObPhotoSrv(a) | Editor; (a)

and obtain the expected behaviour.

Remarks

Objects can be naturally integrated with process-oriented features providing a way to structure and
dynamically manipulate interacting components which is necessary in practical programming. An
untyped formalism such as HOmn¢, although inherently unsafe, can give insight into the design

requirements of safer variants for concurrent and distributed programming.

2.3 From Synchronous to Buffered Communication

In the context of programming, it is natural to think of communication as asynchronous, in the
sense that sender and receiver need not synchronise on every action between them. Indeed, for
many protocols such synchronisation imposes an undesirable and unnecessary overhead. At the
level of concurrent calculi, it is easy to formalise this way of operation, by adding a basic level
of indirection to communications, in the form of buffers. The idea is that every output action
synchronises not with an input, but instead with a buffer, and similarly for inputs. When a value
is sent, it is appended at the end of the associated buffer; when receiving, the first element in the
buffer is returned. This formulation is a basic model for popular asynchronous transports, such as

TCP.
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We implement the idea by adding buffered channels to HO®, and by extension, to HOxg. First,

we extend the values to include labels, needed for branching:

Vv = as before
| 1 label
Then, we extend processes with a notion of buffer:
PO,R == ... asbefore
| a:V buffer

Each buffer holds a vector of values V. The empty vector is denoted €.  The reduction rules

(send)
w(VYP | u:V — P | u:VV
(recv)
wx).P | u:VV — P{Vi} | u:V
(sel)
u<lP | wV — P | u:Vi
(HOmt-bra)
w>{l;:Py,....L:PYy | w:l,V — P, | u:V 1<m<n
(HOm¢-bra)
us[l=¢x) B | w:l,V — [lL=¢(x) P [y | u:V 1<m<n

Figure 2.4: Asynchronous Reduction in HOn and HOmg

(comm) and (label) of Figure[2.2)are removed, and the rules of Figure[2.4]are added. For branching
there are two alternatives, one for each calculus. The new reductions simply model the movement
of values, including labels, to and from the buffers in an order-preserving way. In this untyped
setting, we do not impose that buffers exist for every name in a process; for example the term
a!(V) .0 alone is simply stuck, in the same way that this term would be stuck if it appeared without
a matching input in the synchronous calculus. Moreover, the following term can reduce non-

deterministically:
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It is easy however, to ensure the correspondence of names in action prefixes with buffers, and the
absence of multiple buffers per name, by imposing well-formedness conditions or by typing, but

this is beyond the scope of this Section.

Other modifications are simple. We extend free names as follows:
fn(l)=0 fn(a:Vy...V,) = (Uicr.a(V;)) U{a}
Then we add the following axiom to structural congruence:

(va)a:e=0 inaccessible buffer

Modelling in the Asynchronous Calculi One observation that we can make immediately is
that for deterministic behaviour, it is better to use multiple buffered channels and make sure that
each process in a composition uses only one of the input-output capabilities induced by input and

branching, and output and selection, respectively.

For instance, we can define the following processes, drawing as before from our example. We

begin with the asynchronous extended Photographer process, AsyncExtPhotoSrv(a), as follows:

a?(xy).x1?2(xz) . x1 ?(image_id) .
let img=DB.load(image_id) in

dot <,uy.kz.x1 > { nextFilter : x,2(f). (letZ=f-ziny-7),
AsyncExtPhotoSrv(a) =

done : DB.save(image.id, z); 0,
upload : x;?(dest) .dest!(z) . x21{0)) . (y-2),

undo : let 7 =DB.load(image_id) in y- 7/ }) -img
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Then we define an Editor:

(vx 1 ) (VXQ)

(a!(x1> X l(xg)  xp(imgd2) . ...

AsyncEditor; (a, b, c) def x1 <lupload.x; !(b) .x; < upload.x;!{c).x; <done.

x22(y) . x22(2) . print( “upload complete”) ; 0

’ X]:€ | Xp:€ >

The strategy we employed is to define two private channels with (vx;) and (vx;) , with their corre-
sponding buffers initialised to € within the scope of the process, and program AsyncEditor, (a, b, c)
to send the first through channel a, and the second through channel x;. The reason for this is
that we want to ensure that once a process receives xi, then the same process will also receive xp,
facilitating two buffered links between the two processes. If we had performed a!(x;) .a!(x2)...,
then the two outputs could be read by different processes with access to a. This chaining of out-
puts is in fact the method used to encode the polyadic m-calculus (in which multiple values can
be sent simultaneously) into the monadic mt-calculus (in which only a single value is sent at each

communication); for more details on that see [62, [80].

By using the two channels x; and x,, designing each process so that one does all inputs on x;
and all outputs on x,, and vice versa for the other, we can ensure that the interaction is predictable.
The conclusion is that, in general, when two asynchronous processes need to exchange values in

both directions, two buffered channels are preferred.

One interesting consequence of the asynchronous semantics is that the ordering of outputs in

AsyncEditor, (a, b, ¢) does not correspond exactly with the ordering of inputs in AsyncExtPhotoSrv(a).

In particular, at AsyncEditor, (a, b, c) we have:

...x1 <upload.x;!(b) .x; <upload.x;!{c) .x; <done.xy?(y).x2?(z)...

and, considering that the recursion unrolls twice with x; <t upload from the above, we eventually

have the following communications at AsyncExtPhotoSrv(a):

...x1 > { nextFilter...x;?2(dest) ... .x2!{()) ...x1 > { nextFilter...x;?(dest) ... .x2!{()) ...

Observe that in AsyncEditor;(a, b, c) the second x; <l upload happens before the expected x2?(y)
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that matches the third action of AsyncExtPhotoSrv(a), which is x2!(()). This is not a problem,
as the channels are separate and by the use of buffers there is no need to synchronise at each for

communication to take place.

Next consider a composition of the processes as follows:

(Vbl) (VC[) ( AsyncEditorz(a,bl,cl) | by:¢e | Cc1:.€ )
|  AsyncExtPhotoSrv(a) | AsyncExtPhotoSrv(a) | a:e€
‘ (Vbz) (VCQ) ( AsyncEditor; (a,bz,CZ) ‘ by:€ ‘ Ccy.€ )

An interesting point here is that both instances of AsyncEditor,(a,b;,c;) will interact with an
instance of AsyncExtPhotoSrv(a) each, without interference, validating the strategy of sharing
unique channels between pairs of processes, together with the separation of input-output capabil-

ity between them.

To summarise, the untyped calculi with buffers enable (but do not guarantee) the programming
of complex asymmetric protocols, and different interactions can be shielded from interference with

each other, by a careful sharing of unique channels.

2.4 When things “go wrong”: The Need to Discipline Processes

Until now we have been slightly biased: we designed all our examples so that nothing goes wrong.
In fact there are so many things that can go wrong that we can only provide a small sample. There

is nothing to prevent us from writing terms such as:

(vx) (vack)
IncompleteEditor; (a) def <Iet f=MN\img.ack!{()).P in

al(x).x!(imgd2) .x < nextFilter. 0)
and composing it with PhotoSrv(a) in:
PhotoSrv(a) | IncompleteEditor; (a)

resulting in a stuck computation as PhotoSrv(a) expects more actions on x after nextFilter is

chosen but IncompleteEditor; (a) terminates with 0.
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Similarly we can write:

PhotoSrv(a) | Editors(a,b)

and again the computation will eventually get stuck as Editor,(a,b) selects upload which is not

supported by PhotoSrv(a).

In general the ordering, sequencing, and expected values can be different than expected, re-
sulting in stuck computation, and type errors in the case of typed calculi. Moreover, we can write

processes such as:

(vx) (vack)

def

NonDetEditor; (a) (Iet f=N\img.ack!{()).P in

al(x) .x!(img42) . (x < nextFilter. 0 | x!(img24) 0))
composed in:

PhotoSrv(a) | NonDetEditor; (a)

in which behaviour becomes non-deterministic, by performing actions in parallel, when PhotoSrv(a)
has a sequential and in fact incompatible protocol, so again this may result in an error or a blocked

communication which has no receiver.

In the asynchronous semantics, consider the case where we define:

o () ()
BadAsyncEditor(a,b,c) =
< x1:€ | xp:done >

in which the buffer where the other process will output contains a choice from the start, or the

following:

def (V)C]) (VXQ)
NaughtyAsyncEditory (a,b,c) =
<| xi:€ | x:e | x:€ )

where buffer x; occurs twice causing non-determinism. Consider this process:

o ) )
RudeAsyncEditors (a,b,c) =
< ‘ X1:€ )
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in which the channel x, has no queue and therefore the other process will never be able to com-

municate. Next, consider this case:

def (Vxl)
CarelessAsyncEditory(a,b,c) =
< | xi:e | x:€ >

where the channel x; is not bound and thus another process can interfere with it. Finally, observe

that in a term like the following:

def (Vxl) (VXQ)
CrazyAsyncEditor;(a,b,c) =
( | Az.xj:e Xp:€ )

the buffer x; is trapped in a function, and cannot be accessed.
Therefore, although the calculi described in the previous sections have significant expressive-
ness and desirable features, they allow many classes of bad behaviour, and this motivates our

investigation of a static verification discipline that will accept only safe interaction.

2.5 Sessions

Starting from 1994 with the works of Takeuchi, Honda and Kubo [81], and then Honda, Vas-
concelos and Kubo [48]], Sessions and Session types have emerged as a tractable and expressive
theoretical substrate, which offers direct language support for high-level, type-safe and uniform
abstraction subsuming a wide range of communication patterns.

A session is defined as a series of typed communications between fwo processes which form
a meaningful logical unit, just like a web session between a browser and a server, created when
a human user interacts with an e-commerce site, or like the intended protocol between the Editor
and Photographer’s systems in the case study we described.

There are two components to sessions: session types and the associated typing discipline,
verifying the communication behaviour of a private link between processes, and session primitives

that establish the actual link.

2.5.1 Session Types

Session types model interactions as an abstract structure, a process-like description consisting

sequences of typed inputs, outputs, internal and external choices, and repetition. To facilitate typ-
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S == 1U]S output
| ?U].S input
| @[l :S1,...,0,:8,] selection
] &l[ly:S1,...,0,:S,] branching
|t type variable
| utS recursion
|  end ending

UT == S |

Figure 2.5: Session Types

ing, session types are associated to communication channels, and the behaviour of those channels
throughout a program is verified against a given type. In Figure[2.5|we show a standard definition.
The constructors of session types have a direct correspondence with the process constructors that

implement the respective behaviour. For example, x in an input prefixed process:

x?(y).P

will be given an input prefixed session type of the shape:

NUI.S

where U is the expected type of y, and S is the session type of x in P. Similarly for an output
prefixed process x!(V) . Q inducing a type of the shape ![U].S where U is a type assigned to V and

S is the type of x in Q. Next, a process branching on a channel x, such as:
xD{ll :Pl,...,lnipn}
induces a type of the shape:

&[l] ZS],...,anSn]

where the type of x in each P; is equal to S;. Selection on x <11, . P induces a type ®|I; : S;]'! where

m € I, and S,, describes the use of x in P. In session typing the term:

Ax.xI(V).0
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will be given a functional (arrow) type of the shape:

[U].end > T

where the session type end can be thought of as the session equivalent of the 0 process. Recursive
functions induce recursive session types, typically with branching in order to have a termination

condition, although this is not necessary. As a simple example, the variable x in the term:

uy . Ax.x!(V).(y-x)

can be given a type:

ut!l[U] .t
corresponding to the repetitive outputs.

Note that there is no session type S | S corresponding to a parallel composition of communica-
tions over a single channel, which implies that each process possessing a channel must use it in an
inherently deterministic way. Then, as we describe next, the different types assigned to the same

channel in two processes within a session are compared, to determine their compatibility.

Capturing Symmetric Interaction

The essence of session typing is to ensure that the two behaviours associated with a session are
deterministic with respect to each other. This implies that a certain symmetry should be applicable
to the respective types, turning one into the other and vice versa. In the most basic setting we use
a syntactic duality transformation, given a session type S, that produces the dual type S, using the

following rules:

'[U].s =?[U].S 2U).S =![U].S t=t ut.S = ut.S end = end

B[ :S1,. . 1Sy = &[ly: Sty S &[l1:S1,. . LS = Blly: Sty ln: Sl

Duality is an idempotent operation, that is, S = S, interchanging input and output, and also branch-

ing and selection, and for all other type constructors it is the identity function.



2.5. SESSIONS 41

Example Types for the Scenario

Let us consider the processes PhotoSrv(a) and Editor; (@) from our previous examples. Observing
the structured communications in PhotoSrv(a), we can postulate that the session type of x within

the definition (where it occurs free) will be as follows, assuming the necessary ground types:

Sy =?[String] . ut . &[ nextFilter :?[Image — Image] . t, done : end |

Then, in Editor (a), again observing the structure, the variable x can be typed with:

Sy =![String] . & [nextFilter :![Image — Image]. & [done : end|]

To achieve syntactic duality between the given types, we need to understand the type S, as an

instance of S5, defined as:

S, =1[String] . ut. & [nextFilter :![Image — Image] . t, done : end]

Trivially we have that S’2 = S1. For the comparison between S, and S’2 to be obtained, we can
consider the infinite expansion of the types, and utilise a coinductive method to verify the cor-
respondence. Pierce’s book [76] contains a detailed overview of the techniques and the math-
ematical background. Coinductive subtyping of recursive session types is first studied in the
work of Gay and Hole [39], adapting the standard methods for IO-subtyping in the ®-calculus,
by Pierce and Sangiorgi [[77]. Using a coinductive method, we can verify that the session usage in
ExtPhotoSrv(a) is a subtype of the one in PhotoSrv(a), which enables the substitution of the first

process in place of the latter, offering flexibility in programming.

2.5.2 Primitive Support for Establishing Sessions

From the desirable and undesirable process compositions in the previous sections, we can extract
a first principle for safe program behaviour: there needs to be a private link between two com-
municating processes to ensure determinism. Moreover, the inherently deterministic session types
cannot correspond to the non-determinism induced by uncontrolled parallel actions on a channel.

We already saw how this can be achieved: one of the processes can first create a fresh com-
munication channel, unknown to any other process, and then this private channel can be com-
municated to the intended co-process over a known channel. Thus the only communication on

unrestricted channels should be the exchange of a private link, through which all subsequent inter-
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actions take place. In process-algebraic terms, this corresponds to the principle of only allowing
bound output over known (unrestricted) channels, where bound output is defined as the output of

a locally restricted name. In m-calculus, we write this as (vc¢) (a!(c) . P) which can be used as in:

(ve) (al{c).P) | a?2x).0

The above evolves, modulo alpha-conversion (uniform renaming of both ¢ and instances of ¢ in

al{c).Pto ¢’ so that ¢’ does not appear in Q), to:

(ve) (al{c). P | a?x).Q)

The scope of (vc¢) has been extended (scope extrusion) to encompass Q, making c¢ private to both
P and Q. In other terms, this can be thought of as choosing a suitable identity for a private link
between P and Q. Then the communication on a takes place, which is only possible after the scope

of (vc) has been opened to encompass both processes, resulting in:

(ve) (P [ Q{%x})

Now we arrived at a configuration in which c is uniquely shared between P and Q.

We can distill this process of private link creation in session connection primitives for both
synchronous and asynchronous processes, while forbidding other types of interaction over non-
private channels, to establish a principle where all communications except connection initialisation
are performed through private links. Moreover, the explicit constructors make session typing easier

to formalise and implement.

Primitives for Synchronous Sessions

A first attempt  First, to separate private and shared channels, let us define a new class of session

channels ranging over s, and redefine the communication rules in HO® (and HO7¢) to be:

(comm)

s2(x).Psi(V).0 — P{V/i}|Q

(HOm-label)

s>{l:P,...,l,:P,} | s<ly.P —> Py,|P 1<m<n
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(HOm¢-label)
s<ly. Q| s> li=gx) '] — Q| [lLi=c¢(x) P .1, mel

Thus, we cannot perform any communication on channels such as a any more, but only on this

new class of session channels.

Then, without resorting to the different notations in the many works on sessions, which are
discussed in the next chapter, we can formulate a basic connection primitive that establishes the
desired private link between two processes, over a shared channel a, with the following dynamic

semantics:

(conn) connect a(x).P | connecta(z).Q — (vs) (P{SK} | Of%z})

Hence, we arrive at a new formulation where there is a class of shared names a that can only be
used to establish a private link between two processes, with actual communications taking place

using the new class of channels denoted by s.

Undesirable configurations Consider the following process adapted from Dezani et al. [31],

further examined in the work of Vasconcelos and Yoshida [92]:

P = connecta(x).x?(y).y(V).x2(y1).0 | connecta(z).z!(z).0

This process can be typed with the following types for x and z, respectively, within the body of the

connections, assuming a type U for V:

S, = U].end].?[U].end

S; = [![![U].end].![U].end
Now consider the reductions of P:

P — (vs) (s?2(y).yHV).s?2(y1).0 | sls).0)

— (vs) (siV).s2(»1).0 | 0)

The contractum is now typed with:
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This typing is unexpected, and breaks the property of type preservation, an issue further discussed
in the aforementioned work. The reason is that we started with two complementary types for x and
z but we ended up with a single type for s, as if a session can exist on its own. We can make an
observation, however, on the cause of the problem, which is that we use the same channel name
in both parallel processes. In session typing the two processes use the channel in different but
complementary ways, but we have to take into account the possibility that they can reduce to a
single process possessing an interleaved usage of the channel. In other words, we need to consider
the possibility of aliasing. Hence, the solution, also present in the study of Gay and Hole [39]], is
to distinguish the channel name used at each process in a session, so that the above contractum
can be typed with a type corresponding to the completion of the session (even though the term is

stuck) since type safety is not violated.

A correct solution Let k be defined as either s or 5, with 5 = 5. This is equivalent to the use of

polarised channels s™ and s~ in the work by Gay and Hole [39]. Next we redefine the rules, as

follows:
(comm)
K2x).PkIV).Q — P{V/x}[Q
(HOmt-label)
k>{li:Py,....01,:P,} | k<tlpy.P — Py|P 1<m<n
(HOmc-label)

k<. Q| ko[li=c(x) P ] — Q| [li=¢() P |y mel

We then establish connections using the associated channels, providing one to each process:

(conn) connect a(x).P | connecta(z).Q — (vs,5) (P{S} | 0Of%/})

Note that in the above, (vs,s5) does not declare two independent channels, but rather the two
endpoints of a single session. Now the typing of P and of all the processes to which P reduces is
correct.

As a final note, an alternative but more restricted solution, in the context of an imperative
class-based language with thread spawning and no parallel composition at the level of user syntax,

is given by Dezani et al. [31]].
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Primitives for Asynchronous Sessions

For the asynchronous semantics, we can easily adapt our previously given buffered communication

rules to use the above solution, with a connection rule:

(conn)

connect a(x).P | connecta(z).Q0 — (vs,5) (P{Sh} | O | s:& |

=]l

Now we also have the two associated buffers initialised to empty, as required.

2.6 The Thesis

Both higher-order processes and objects provide powerful primitives for structuring interactions
in a concurrent setting. A common denominator of many useful protocols is the need to facilitate
private connections between two or more programs, and a deterministic behaviour that is char-
acterised by compatibility of the composed systems. Sessions and session types offer a precise
discipline that can be used to statically verify the correctness of many interesting applications.
However, until our recent work [63]], it was not possible to type higher-order processes in which
mobile code may make use of session communications. For example, if ack in Editor| (a) belongs
to a session, then the systems in the literature before our work cannot type the process. In addi-
tion, in an asynchronous setting, before our work [64], it was impossible to type a composition of
processes such as:

AsyncEditory(a,b,c) | AsyncExtPhotoSrv(a)

where the order of actions is different than expected but safety is not violated, while rejecting
unsafe asynchrony, in a higher-order setting. Finally, we address the question of how to integrate
sessions and objects in a foundational calculus, which has also not been done before.

Session typing is important for concurrent programming, as much as typing theories for func-
tional and object languages have proved to be essential for sequential computation: sessions con-
trol and discipline the power of processes, which is what is needed to incorporate them in practical
settings. Thus, a formalisation of sessions applicable to the fundamental range of primitives found
in functions, mobile processes and objects, can constitute a basis for the development of future

programming languages in which verifiable concurrency is — and it must be — a core feature.






3 Related Work

Overview We present the most important works on sessions in the context of different lan-
guages, as well as closely related approaches, providing an exposition to the state of the art
in this area of type-based structured protocol verification. Moreover, we offer pointers to ref-

erences on implementation-related issues and session-based prototypes, exposing the practical

aspects of sessions.

3.1 Session Typing for Binary Sessions

The genesis of session types can be traced to the work of Honda [47] in 1993. Then, the formu-
lation matured into its present form, starting from 1994 with the works of Takeuchi, Honda and
Kubo [81]], and then Honda, Vasconcelos and Kubo [48]].

The study of session typing systems is now wide-spread due to the need for structured type-
safe communications in various distributed computing scenarios. Below we give the most closely

related work.

3.1.1 Sessions in CCS and 7m-calculus

In the original work of Honda [47]] we find a formulation built upon the now revived concept of
sessions with generic internal and external choice, and of type compatibility based on a bisimilarity
on a labelled transition system. The language endowed with these sessions is a Tt-calculus like
process algebra. Interestingly, in this work we can also find the first reference to deadlock-free
sessions, based on a characterisation of terms.

Then, in the work of Takeuchi, Honda and Kubo [81]], the process algebra L is presented,
resembling CCS/CSP but with explicit session initiation primitives, deterministic label-indexed
branching (external choice with input of label) and selection (internal choice with output of la-
bel), recursive process definitions, and a primitive for the dynamic creation of parallel processes
(threads). The concept of label-indexed choice resembles record-field selection and method selec-

tion in object languages, and provides a powerful control flow mechanism that retains determinacy

47
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in a simple framework. The types are finite (no recursion), and there is no name passing for ses-
sions, prohibiting certain classes of dynamic topology from being programmed. Finally, the idea
of typing the two usages of a session channel using distinct polarities is introduced in this work.

Honda, Vasconcelos and Kubo [48]] address the shortcomings of the aforementioned work, and
present a language based on a polyadic ®-calculus, supporting both name passing (where a session
channel is being “thrown”) and recursive sessions (implemented by passing session channels as
arguments to recursive process invocations), in addition to the capabilities of £. One note on
delegation (session passing) is that it is not implemented with substitution, but rather with o-
conversion, hence every communicated name is fixed; this is not a significant restriction but it
does imply a runtime test to convert names if needed.

As we saw in the previous chapter, some systems suffer from a subtle maltreatment of session
channels in typing, and that invalidates the basic theorems of type soundness and type safety. We
already identified the root of the problem in the absence of polarities, combined with the presence
of session delegation which enables the aliasing of sessions that are treated as independent at the
stage of typing. Yoshida and Vasconcelos [92] revisit the previous work [48]], which does not suffer
from this problem due to the more limited alpha-conversion based delegation method used which
forbids a free channel from being received in the same scope. They extend the language with the
more powerful form of delegation which causes the problem, and provide a correct formulation
with some additional smaller corrections. Their extension of the original work to allow a more
liberal style of session passing, where the names are not fixed, enables arbitrary session channels
to be received, by utilising polarised endpoints in the style of Gay and Hole [39], thus avoiding
situations where the two ends of a session are merged (aliased). Also, there is no need for runtime
a-conversion. The notion of polarities at the typing level, but not at the term level, is first utilised
in the work of Takeuchi, Honda and Kubo [81]].

Recently, Giunti ef al. [42]] showed that although the polarity-free languages may not enjoy
subject reduction, type safety is not violated. Moreover, they allow unrestricted (non-linear) use
of session channels in some harmless settings, such as when testing the identity of a channel (a

feature not found in other session systems) even after it has been delegated away.

3.1.2 Sessions in Functional Languages

Neubauer and Thiemann [[68]] encode sessions in Concurrent Haskell. Vasconcelos, Gay and
Ravara [86], add session primitives to a concurrent multi-threaded functional language. Their

language supports sending of channels and higher-order values (not containing free session chan-
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nels), labelled branching and selection, recursive sessions and channel sharing. It has an explicit
multi-threading primitive (fork) and explicit stores. Gay and Vasconcelos [40] define a functional

language with sessions, following substructural techniques as discussed in § [3.2]

3.1.3 Sessions in Higher-order Processes

Sessions have been integrated in a Higher-order m-calculus by Mostrous and Yoshida [63, 64].
The systems in these papers combine the use of linear A-calculus and standard session typing,
treating free session channels in mobile code as linear components that are only used in one unit of
abstraction, which may include a sequence of session actions identified as a larger usage. Mobile
code with free sessions is then treated as a linear function, ensuring that its contents are used

exactly once.

3.1.4 Sessions in the Ambient Calculus

Garralda, Compagnoni, and Dezani [36], define the language BASS that introduces session types
to boxed ambients, preventing session interruption when an ambient crosses nested boundaries.
Essentially, mobility is forbidden when there are pending sessions between an ambient and its
parent, ensuring that sessions remain safe; otherwise once an ambient boundary is dissolved com-

munications with its original enclosing scope can be lost or become mixed with the new context.

3.1.5 Sessions in Object-oriented Languages

CORBA Vallecillo, Vasconcelos, and Ravara [83]] give a preliminary account of how sessions
could be incorporated into CORBA interfaces. Their approach governs the use of remote method
invocations using session typing that mandates the sequencing of calls, facilitating fine-grained
control of remote interfaces. The ideas are expository and not fully formalised, but can inform

further work in the area.

Class-Based Languages There are a number of works on class-based languages with session
typing, which are very related, albeit different, in their approach. We present the most related ones
in chronological order.

Session typing for a multi-threaded Java-like language has been studied in our previous work
by Dezani et al. [31,[30]] and its distributed precursor [32]. The language in [31} 30] is more of
an extension rather than an integration of objects and sessions. There are no recursive session

types or linear objects, but on the other hand, in their language the property of progress holds, i.e.,
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there are no deadlocks. Note that due to synchronous semantics this property comes at the cost of
rejecting all session interleavings. Another achievement of this work is a type inference system for
session environments and types. Their sessions are established over shared channels, and session
bodies are not identified with methods. This is one of the reasons session iteration is used, instead

of recursion.

In the extended and updated version of the above work by Dezani et al. [30], we relax the
condition on interleavings, and achieve progress in a setting where in every sequential execution

there can be multiple sessions but only one may perform (blocking) input actions.

Coppo, Dezani, and Yoshida [26] define an asynchronous class-based language with session
typing. Their reduction semantics for input and output use buffers, and their session types are
similar to those of Dezani et al. [31,30]. The essence of their work is an effect system that decides

if a term has the progress property, restricting certain classes of interleavings.

Drossopoulou, Dezani, and Coppo [33] describe a class-based language in which sessions are
identified with methods. In their approach, session invocation combines a method of an object
(which is spawned) and a block of code that will interact with the method body. Communication
is asynchronous using buffers. Their main primitive is written a./{b}, which invokes the method
(session) [ of object a and places it in parallel to the code b; a fresh session channel is created
and is shared between the method and the code that interacts with it. In their system there is
only one session per scope and the session channel is implicit. Hence, endpoints are not first
class values, although there is a form of delegation resembling synchronised method invocation.
Their branching primitive decides which path to follow based on the class of a received value,
and branches can contain the keyword continue for iteration. However, it is not clear how this
data-driven branching approach would scale to object-oriented recursion, especially as threads are
created for every method call. On the other hand, their sessions enjoy progress like the systems
by Dezani et al. [31,130] and by Coppo, Dezani, and Yoshida [26]. Capecchi et al. [18] extend the
above work by Drossopoulou, Dezani, and Coppo [33], to include parametric polymorphism, or
generics.

Bettini et al. [8] improve the above work, with the introduction of union types of the shape
Uy V ...V U,, which are used to drive their class-dependent branching and selection in a more
flexible and compositional way, since a received value can command the choice of a subsequent
selection within a program.

More recently, Gay et al. [41]], proposed a modular approach to sessions in distributed class-

based object-oriented programming, building on their previous work on dynamic interfaces [87].
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Their system integrates the idea of fypestates as a way to type classes that implement sessions:
the availability of methods is non-uniform, but rather follows a set of parameterised states that
specify the visible interface of an object, which changes after every method invocation. In their
system there are no session endpoints (but there are shared channels for the initiation of a session).
The trace of method invocations themselves effectively implements the session, allowing mutually
recursive definitions, and the evolving interface of the object ensures that the session behaves as
required by its type. The operational semantics specify a synchronous communication model.

An interesting aspect of their work is that it is safe to store a session endpoint in an object
field, and in fact this enables different methods to access the session, during a single run. They
allow this because their typing system ensures that the reference to the object is linear and the
object behaves in accordance with its typestates; the use of the stored session channels remains
deterministic. In their language, self-application within methods requires type annotations, reflect-
ing different conditions when dealing with method invocation from inside and from outside of an
object, respectively. In their formulation there are no threads but a “spawn” primitive is provided
that places a new configuration in parallel, with similar operational effect to local threads. Finally,
a decidable typechecking algorithm and a prototype implementation are provided, indicating the

practical usability of the language.

3.2 Linear Type Theory Techniques in Sessions

The precise conditions restricting the usage of sessions within terms have prompted some research
into Linear type theory approaches to session typing. These works draw from the techniques of
Linear A-calculus, treating session channels similarly to linear variables. See Walker’s exposi-
tion [89]] for a detailed account of the techniques for A-calculus, which are based on the idea of
substructural type environments, where weakening, needed when a variable is not used but ap-
pears in the environment, and contraction, required when a variable is used more than once in the
subterms of a term, are explicitly forbidden.

The use of such linear techniques at the core of a session typed m-calculus is described in
detail in the work of Vasconcelos [85]; for a more extended technical exposition see the article
by Gay and Vasconcelos [40], where the language is a functional calculus with session primitives.
Their typing uses standard linear function types and linear pairs, re-binding session variables after
every action so they can be typed with the remaining session type in the process continuation.

Algorithmic type checking is achieved using the standard linear type theory techniques. The work
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by Gay and Vasconcelos [40] follows an asynchronous, buffered mode of communication; we
return to this later.

A different approach in which sessions are not reduced to linear usages, but where code that
contains free sessions is treated as a linear function, appears in the work for mobile processes by

Mostrous and Yoshida [63}164], mentioned previously.

3.3 Alternative Formulations

Channel Dependent Sessions The paper by Mostrous and Yoshida [[63]] provides an alternative
formulation of session typing based on the channel dependent types of Yoshida [91]]. Our compar-
ison between the two approaches via [63, Theorem 4.3] which defines the embedding of the linear
typing system into the channel dependent one makes the relationship between controlling usage
of functional variables and effects of channel accessibility clear: the channel dependency system
types more processes, while the linear typing approach is simpler, it requires less type annotations,
and is more tractable. This line of study has not been explored in the previous literature. Moreover,
it can provide insight into the extension to distributed (location-aware) processes such as those of
the SAFEDPI calculus with channel dependency types of Hennessy, Rathke, and Yoshida [45]],

developed further in Hennessy’s book [44].

Foundations of Session Types Recently, an alternative formulation was proposed by Castagna et
al. [23]. The session types in this system consist internal and external choice, and also input-output
followed by a continuation of the session. Due to the use of standard choice constructors, where
external choice is not constrained to be input-prefixed (contrary to label-indexed branching in the
standard approach), and internal choice is similarly free from the duty to announce the selection
by starting with an output (of a label in the standard approach), there is a need to precisely de-
scribe more complex dualities than usual. For example, if a process uses a session with type
I[int] .end + ![bool] . end where + denotes external choice (or branching in the standard approach),
then a dual should be able to handle both possible outputs in a type-directed way. The authors
solve this by adding boolean combinators only used to more accurately describe the carried types
of input and output actions, for example ?[int V bool] . end is the type of a channel that is used to
receive either an int or a bool, and is a suitable co-type for the above external choice. Also, duality
is not syntactic but rather behavioural, and for each session type there can be a (possibly empty)
set of duals. Session types with a non-empty set of dual co-types are called viable, while those

with no duals are undesirable. Note that for higher-order sessions (session passing) the boolean
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operators remain applicable, producing extended session types called sieves, and resulting in a rich

language of interactions.

A set-theoretic semantics is given for subtyping based on the interpretation of the session
types based on the values that can inhabit the input-output actions and additionally, the conditions
imposed by boolean operators on those sets of values. Duality is defined using a relation on a
labelled transition system, and the definitions of subsessioning and subsieving (which correspond
to subtyping) are formalised in a coinductive framework. The coinductive and denotational notions
of subsessioning coincide, and the set-theoretic definitions for subsessioning are algorithmically
decidable. Then, a typed m-calculus variant is given, demonstrating that their system can be used to
type sessions in a language without special primitives, consisting standard (internal and external)
choice, and (bound) outputs for establishing sessions. Duality is enforced for the initiation of
a session. The language enjoys the property of progress (absence of deadlock in a constrained
universe of interleaved sessions), by placing restrictions on the use of interleaved inputs which

may block against interleaved outputs appearing in different order.

Session Types at the Mirror Following a similar approach, Padovani [73]] defines a system
where the main concept is to denote session types as value-passing CCS processes that describe
precisely, within a labelled transition system, how processes in a term language use a session.
First, the usual linearity constraints of session types are relaxed, allowing a parallel composition
of session usages corresponding to a copied session channel used by multiple processes. Second,
there is internal and external session choice which is not indexed by labels but rather follows the
actual non-deterministic choices in the term language. Third, there is a session type representing
failure, which is used to identify that an undesirable state has been reached. The first and third
points are not present in the previously discussed work by Castagna et al. [23]], and for simplicity
in this system there are no sieves consisting boolean combinations of session types. The author
defines a subsessioning relation that acts similarly to subtyping. Well-typed compositions use vi-
able session types, which as before are types for which a co-type exists. The concept of session
completeness captures the familiar concept of duality, as a special case. A typing system is pre-
sented for a m-calculus based process language, for which we can make the following essential
observations. First, a process receiving a session channel can only use that specific channel in the
continuation, for type preservation (this is similar to the receive-and-spawn technique for delega-
tion in the object language by Dezani et al. |31, 30]), since there are no polarities to guard against

typing aliased channels in a contractum. Second, a delegated channel can continue to be used at



54 CHAPTER 3. RELATED WORK

the sender, yielding a parallel non-deterministic usage between sender and receiver. Finally, par-
allel composition of processes demands that both use the same session channels. In general, this
approach views control flow and data communication as different, and (due to parallel-composed
session types) drops the linearity constraints which are the cornerstone of determinism in sessions,

yielding a formalism closer to the behavioural types of Igarashi and Kobayashi [52].

Asymmetric Client Server Interactions Barbanera, Capecchi, and de’ Liguoro [5]], inspired by
works on contracts (which we discuss at the end of this chapter), define a session typed ®-calculus
in which the client can perform an initial prefix of the expected session with the server. The
prefix relation € essentially allows a session with end terminals to be considered compatible to
one where on each ended part there are further actions, implemented with an axiom end € §
supported with congruence rules for the other session type constructors, propagating deep into
the session structure. A condition of weak compliance is formulated based on a labelled transition
system, stating that a server may not perform less actions than the client, thus validating the desired
principles of the design.

One possible objection to this design is that some protocols may require a strict correspon-
dence of client-server actions, for example in a banking transaction, and therefore it would be
useful to have allowed session types to be demarcated as requiring full completion, precluding the
use of the prefix relation; anyway, this is an easy addition to their theory, and simplicity outweighs

the benefits of trivially extending it.

3.4 Asynchronous Communication in Sessions

The work of Gay and Vasconcelos [40] defines a functional language with asynchronous sessions,
where the reduction semantics are using buffers, hence message sending is non-blocking. The
two buffered endpoints of a session are associated by explicitly storing an entry for the “other”
endpoint together with the values of each buffer; this functionality is the same as the use of two
polarised session channels for distinguishing two endpoints (similarly to Gay and Hole [39]]). An
achievement of their work is that they calculate the upper bound on the size of the queues, with
important ramifications for efficiency and static memory allocation. Several other works discussed
in this chapter utilise buffered semantics, for example by Neubauer and Thiemann [69], Carbone,
Honda, and Yoshida [49], Bonelli and Compagnoni [[10], Coppo, Dezani, and Yoshida [26]], Bet-
tini [9], Mostrous, Yoshida, and Honda [[65]], and Mostrous and Yoshida [64].
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3.5 Session Subtyping and Polymorphism

Session primitives can be smoothly integrated with traditional subtyping of object and functional
languages, to obtain a more flexible behavioural composition that brings sessions frameworks
closer to software engineering. The first study of subtyping in sessions is the work of Gay and
Hole [38., [39]]. The authors introduce standard value subtyping, such that for example an output
'[U] can be performed instead of ![U’] when U and U’ are in a suitable subtype relation. Selection
and branching is subtyped similarly to records, allowing less choices (than those demanded by
the type) to be made in a process, and dually, more branches to be offered. Recursion imposes
a coinductive subtyping method which is first adapted to sessions in their work, following the
standard techniques for IO-subtyping for the ®-calculus by Pierce and Sangiorgi [[77]].

Gay [37] takes the previous work a step further, and introduces bounded polymorphism to
session types. Using this system, types such as &[/ (int < X < real) :?[X].![X].end] are allowed,
in this example denoting the reception of a value of some type X which is a supertype of int and
a subtype of real, followed by the sending of a value of the same type. The authors chose to
annotate branching (at the type and term levels) with the bounds declarations, so that the informa-
tion is “piggybacked” onto the communicated label. The basic algorithmic representation of the
bounded subtyping is proved decidable. In conclusion, this system facilitates fine-tuned control
over polymorphic communications.

Following the above work, Capecchi et al. [[18] include parametric polymorphism (generics)

into a class based object language with sessions.

3.6 Asynchronous Subtyping

Our recent work by Mostrous, Yoshida, and Honda [65]] developed a new subtyping, asynchronous
subtyping, founded on the ordered asynchrony of inputs and outputs, respectively, that arises with
the use of buffered session channels. This subtyping characterises compatibility between classes
of permutations of communications within asynchronous protocols, offering greater flexibility in
programming. The target system is based on the multiparty session calculus of Carbone, Honda,
and Yoshida [49] (discussed later); however, it does not support higher-order sessions (delega-
tion) and higher-order code (code mobility). Both of these features provide powerful abstractions
for structured distributed computing. Mostrous and Yoshida [64] expand the previous theory in a
framework based on the Higher-order mt-calculus, allowing the same communication order permu-

tations in the presence of code mobility, effectively incorporating higher-order sessions and linear
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functions into asynchronous subtyping, and therefore addressing the previously open issues. As
a simple example, these theories admit ut. ![Us] . ?[U;] .t as a subtype of ut.?[U;].![U>].t, but
not the other way around, because moving an input ahead of time might block unless if the dual
endpoint performs the respective output also in advance, which is not guaranteed. Thus, the con-
straints that forbid subtypes that are inhabited by processes that may block can be regarded as a
safety guarantee, protecting the desired invariant that a session should not be blocked on its own,
that is, without depending on another interleaved session. This has practical considerations since
the replacement of a process with one that uses sessions according to subtypes (compared to the
original) will not block if the original process did not also block.

As a final note, a similar concept of session actions appearing in a different than expected (by
duality against the other end of the session) order is seen in the unpublished work of Neubauer
and Thiemann [[69], as part of an acceptance relation on traces induced by session types within a

nt-calculus based language.

3.7 Progress and Deadlock-Freedom in Sessions

By progress in the context of a session language we mean the deadlock-free execution of multiple
interleaved sessions. A simple counterexample to such progress is the following composition (to

which a well-typed initial program may arrive during reduction):
s17(x) . s21(V1) .0 | 522(2) .511(V2) .0

in which both sessions, although type-safe, are waiting on each-other to output a value, ad infini-
tum. This notion of session progress is first considered in the work of Dezani et al. [31}130], and a
solution is provided in the form of a restriction on the interleaving of sessions.

Coppo, Dezani, and Yoshida [26] reconsider the problem in the context of a class based object
language with buffered communications. In this approach, the authors revisit and successfully
relax the interleaving restriction, allowing some of the interleavings in which only one session
is expecting inputs, but in which many may perform outputs. This is possible due to the use of
buffered semantics for communication, since output becomes a non-blocking action, and hence
one that is sometimes safe to interleave.

Dezani, de’ Liguoro, and Yoshida [29] formulate a new solution in a synchronous 7-calculus
setting, defined as an interaction typing system, and utilising a generic label-based ordering that is

used to detect circularities in interleaved binary sessions, as those can lead to a deadlocked state.
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Contrary to the typing method of Igarashi and Kobayashi [52] (for the m-calculus), the labels
do not originate as annotations in the term language, but rather appear as fresh assignments in
the typing derivation, lessening the programming burden otherwise imposed. Notably, only one
session can input values in any given sequentially executed scope. Bettini et al. [9]] extend the

previous methodology to multi-party sessions.

The property of progress is also considered in the typed Conversation calculus of Caires and
Vieira [17]]. In this system labels are attached to session actions in a natural way, and are reused in
the progress conditions to ensure acyclicity. Also, a session that has been delegated can continue
to be used at the sender’s continuation, providing an extra degree of flexibility while preserving

the desirable deadlock-freedom properties.

3.8 Correspondence Assertions and Logics for Sessions

The basic systems view sessions as independent entities interleaved within a program, and make
no effort to verify the intended interdependencies between different sessions that may interact to-
gether. For example, ignoring session constructors, consider a simple process a?(x).b!(x).c!(5) .0,
and its variation a?(x).b!{c) .x!(5) . 0; session typing does not distinguish the two processes when
the types of x and ¢ coincide. Bonelli, Compagnoni and Gunter [11] address this consideration,
by introducing correspondence assertions to a session-based calculus, offering a system that, for
instance, distinguishes the above terms at the type level. This is achieved by adding constraints to
sessions, such as one mandating that a value received on one session (a from above) is the exact

same value subsequently sent in another (b from above).

Berger, Honda, and Yoshida [7] developed a modal logic for session-typed mobile processes.
Their work studies an extension of Hennessy-Milner logic for typed w-calculi, giving a sound and
complete characterisation of representative behavioural equivalences on typed processes; three
compositional proof systems are obtained, characterising the May/Must testing preorders and
bisimilarity. Using their logical framework, fine-grained properties of processes can be embedded
into the specification (against which the implementation is verified), such as, for example, the
property that in a bank transaction modelled as a session the amounts are as expected after every
action. Using this method, a much finer control of processes is achieved, compared to correspon-

dence assertions.
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3.9 Exceptions for Error Handling in Sessions

Carbone, Honda, and Yoshida [20] introduce exceptions into a process language with sessions,
using a familiar try/catch block structure. Their main contribution is the uniform propagation
of exceptions to all affected processes (due to session nesting) which can be executing asyn-
chronously evolving sessions, and the incorporation of exception types that validate potentially
error-raising protocols. Vieira, Caires, and Seco [88] incorporate similar exception handling in

their Conversation calculus, discussed at the end of this chapter.

3.10 Implementations

Functional Languages Neubauer and Thiemann [68] developed an encoding of sessions in the
type system of Haskell. Mostrous [66] implemented an initial prototype for a subset of OCaml
extended with finite session types (without branching) used for the typechecking of client-server
socket based connections. Corin et al. [27] introduced session types to Ff, an implementation
of a ML dialect. The work describes a system for ensuring security of multi-role sessions in
the absence of trust. Session types are compiled to cryptographic protocols in a way such that
during execution every party is guaranteed to play their role. Runtime verification is used to detect

behaviour incompatible with a session.

Object Languages The Masters thesis of Hu [50] and the subsequent work by Hu, Yoshida,
and Honda [51] have been investigating the incorporation of session types with Sockets in Java.
Communication is asynchronous and the implementation has been measured to have a very small
performance overhead compared to untyped socket communication. Its language and runtime is
also extended to work under various transports such as shared memory and HTTP/HTTPS [51].
More recently, Gay et al. [41] implemented a prototype of their language for sessions in distributed

class-based object-oriented programming, including a decidable typing algorithm.

An Operating system Fihndrich et al. [34] use general ideas from sessions to facilitate efficient
and reliable message-based communications in the Singularity operating system. Behaviour in
this system is defined in contracts, that contain definitions that form a state machine of desired
message exchange patterns. Messages encapsulate asynchronous method invocation, and consist
of information on which method should be invoked, along with the actual arguments to use, when

the message is received. Values are exchanged using bidirectional channels, where each channel
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has two explicit endpoints. At the endpoints, the specific methods required for each state of the
contract are defined. Asynchronous transmission is implemented using message queues. Their
system has the property that each endpoint can only be used by a single thread at a time, which
corresponds to the usual conditions of linearity, and messages at the endpoint queues are always
ordered. Also, they allow to send channel endpoints, which corresponds to higher-order sessions.
When different messages can be received, they use a form of switch to group the program be-

haviours for each case. Their contracts are verified statically.

3.11 Sessions in Industry Specifications

At the industry specification level, languages with variants of session types have been used in the
W3C CDL (Choreography Web Description Language) [90,21,119] and ISO UNIFI (International
Organization for Standardization ISO 20022 UNIversal Financial Industry message scheme) [|82]].
From these experiences, we find that not only type checking by session types after writing a pro-
tocol, but also declaring session types before compilation, greatly helps programmers implement

error-free interactions.

3.12 Multi-Party Sessions: Typing Protocols with Many Participants

The first papers formalising sessions and session types with more than two participants are by
Carbone, Honda, and Yoshida [49] (which supersedes a more preliminary version [[19]]), and by
Bonelli and Compagnoni [10].

In [49], the concept of multi-party session types is introduced, acting as a global specifi-
cation consisting participant-directed messages and selections. For example, the global type
G=p—p': k{U);G says that participant p sends a message of type U to channel k (represented
as a natural number) received by participant p’ and then interactions described in G’ take place.
From the global viewpoint of G, the first prefix represents both an output and an input, and the local
types representing the viewpoint of each participant can be recovered using a projection operator
G | p which, given a participant identity p, produces a type with the (directed subset of the) session
protocol involving p as sender or receiver. For example, (p — p': k(U);G’) | p = k![U]; (G’ | p),
p—=p: k{U);G)Ip =kNUIJ;(G'1p') and (p — p': k(U);G') [q= (G'|q). Thus, local types
represent the ordered use of (possibly multiple) channels by a single process. Session connec-
tions are established between multiple participant processes, using a multi-participant request that

interacts, synchronously, with a number of session acceptance primitives, followed by the instan-
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tiation of a number of buffers used within the protocol. The number of buffers may be different
than the number of processes in a single session. Beyond the usual safety properties, the authors
identify session fidelity as an important property: the actions of a typable process exactly follow

the specification described by the global type.

The work [[10] follows a similar approach based on a distributed calculus where each channel
connects a master endpoint and one or more slave endpoints. The authors utilise annotation labels
(like participants above) on (global) session types, and a simplify operator acting similar to pro-
jection. Trace types describe the behaviour of individual participants in a session corresponding
to local types. Contrary to [49], this language does not allow higher-order sessions (delegation).
The basic soundness and safety results hold as expected.

In the recent work by Mostrous, Yoshida, and Honda [65] we generalise the theory of mul-
tiparty session types of Carbone, Honda, and Yoshida [49] with asynchronous communication
subtyping, which allows partial commutativity of actions offering greater flexibility and a way
to identify safe optimisations in message choreography. As a complementing result, we show
a type inference method for deriving the principal global specification from end-point processes
which is minimal with respect to subtyping. The resulting theory allows a programmer to choose
between a top-down and a bottom-up style of communication programming, ensuring the same
desirable properties of typable processes. The top-down approach in multiparty session types is
first studied in the work of Carbone, Honda, and Yoshida [49], but local refinement (asynchronous
subtyping) is not proposed there. The problem of synthesising a global specification from endpoint
behaviours has been an open question since the inception of the notion of global descriptions for
business protocols (see Choreography Description Language [90]), and has been posed as an open
problem in several previous works mentioned above [10, 49} |9]. Inference of principal types for
simplified binary sessions is studied in the work of Mezzina [57]], but in the context of Service Ori-
ented Computing languages, discussed in the next section. Finally, we recall that a typing system

offering a strong progress property in multi-party sessions is studied by Bettini et al. [9].

3.13 Service Oriented Computing

Castagna, Gesbert and Padovani [24, [25] study formal theories of contracts specifying and us-
ing multiparty interaction structures other than multiparty session types; specifically, the authors
utilise CCS-like processes as a type representation. The subsequent work by Padovani [72] ex-

tends [24] with a treatment of asynchronous behaviours using orchestrators, through the use of
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bounded buffers that control message flows between a client and servers. A defining characteristic
of their approach is that a client can choose to fulfil only some initial part of an interaction with a

server, as long as the corresponding communications agree behaviourally.

Conformance and refinement based on agreement of clients to service specifications is studied
in the work of Bravetti and Zavattaro [14, [15], using a synchronous CCS-based calculus as a
contract language, and testing-preorders to check sub-contract compliance. Neither type-checking

of end-point processes using projected contracts nor a bottom-up strategy is presented there.

The work by Bruni et al. [[16] proposes a distributed calculus with sessions, which act as an
enclosing context constraining (intra-session) communications to be between processes belong-
ing to it. Services can be invoked, placing the service instance under the client session, therefore
ensuring multiple subsequent interactions (over otherwise known channels) are between the same
client and service pair. Sessions can be merged, allowing more processes to interact dynamically.
Locations represent logical groupings of processes/services and allow direct intra-site communi-
cations crossing the boundaries of sessions. Reduction is defined via a labelled transition system,
and terms are related by a weak bisimulation, useful for equating abstract specifications and more
concrete implementations. Unlike type-based systems, there are no guarantees that executions are

well-behaved.

The work of Vieira, Caires, and Seco [88]] presents the Conversation calculus, a language
for service oriented computing, by extending the m-calculus with context-sensitive interactions,
equipped with service and request primitives and local exceptions. A crucial difference compared
to standard session approaches is that endpoints are not channels, but rather interactive processes
encapsulated within “conversation” contexts (like in the above work by Bruni et al. [16]). Es-
sentially, communication within conversation contexts depends on the identity of the session as-
sociated with the context, and on the relative position of the context in a possibly nested context
hierarchy. Communication has three modes: within a context, between a context and its parent
context (the outer scope), and with the other endpoint of the session to which the context belongs.
The last mode transcends arbitrary contextual boundaries. The identity of the current session can
be dynamically accessed using a special prefix that returns a self-reference. Exceptions are raised
with a throw primitive, and handled within the scope of a try/catch constructor. The behavioural
semantics are checked by defining a strong bisimilarity on the label transition system upon which
reduction is defined. In the follow-up work by Caires and Vieira [[17]], conversation types are
considered for the aforementioned calculus. One point of interest is the flexibility in typing multi-

participant interactions with an unconstrained, dynamic number of parties. Labels decorate actions
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within a conversation context, facilitating an analysis of progress based on the acyclicity of label
occurrence in traces of actions.

Recently, Laneve and Padovani [54] provided an encoding between session types and con-
tracts, based on a limited session type language without value passing which crucially excludes
session delegation. They prove that under those assumptions the two methods can be used inter-
changeably, and observe that although the encoding of session types to contracts is almost direct,
the other direction from contracts to session types causes an exponential growth of the gener-
ated type with respect to the size of the given contract. The authors attribute this result to the
greater expressiveness of contracts, and indeed, it is intuitively justified considering the expan-
sions needed in order to accommodate for the non-deterministic internal and external choices of
contract languages.

Another work in the intersection of sessions and contracts is that of Boreale et al. [13]]. The
authors formalise the Calculus of Sessions and Pipelines (CaSPiS) for service oriented computing,
utilising the context-based sessions used also in the above works. The novelty of this work is the
introduction of a pipelining operator P > Q, which can be used to compose service invocations in
a chain. Special outputs in P, called return messages, can be used to pass values to the context
of the pipeline which can then receive the value, spawning a copy of the pipelined code Q to
handle the invocation. Hence, in this calculus there are two forms of communication, one within
a session, and one from a producer to a consumer in a pipeline of services. Pattern matching can
be used to guide a protocol, operating on input values and channel names. The authors utilise
a compositional termination handling mechanism, which allows complex hierarchies of nested
sessions to terminate consistently; furthermore, the authors define a property called gracefulness,
which holds when all sessions in a composition are equipped with a component that can handle
early termination from either side.

Many of the above languages, specifically those using session contexts of the shape r>P where
r is the session identity and P communicates using an implicit intra-session communication mech-
anism, have evolved from the Service Centred Calculus (SCC) of Boreale et al. [12]], developed

within the collaborations in the SENSORIA Project [[1]].
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Sessions and Higher-
Order Processes

Overview Here we introduce session typing into a process language which models higher-
order mobile code, i.e., one in which a process can be packaged (or “thunked”) into a value
sent to another process. Session types for the HOR-calculus capture high-level structures of
communication protocols and code mobility as type abstraction, and can be used to statically
verify safe and consistent process composition in communication-centric distributed software.
Integration of arbitrary higher-order code mobility and sessions leads to technical difficulties
in type soundness, because both linear usage of session channels and the completion of sessions

are required in executed code. By using techniques from the linear A-calculus, we develop a

coherent and tractable session typing system for the HOR-calculus.

4.1 Introduction

In global computing environments, applications are executed across multiple distributed sites or
devices. The use of mobile code is prominent in such environments, where several participants are
synthesised by communication of not only passive values but also of runnable code: for example
a service can be delegated to different participants, by sending either a channel via which it is
accessible, or code that accesses it; and incoming code may transit through several devices that
alter their computational behaviour or their data through interaction with it.

The Higher-Order m-calculus (HOm-calculus) [79] is a general formalism of interaction in
which two kinds of mobility, name passing and process passing, are integrated in a simple and
universal form: in this model, processes can be instantiated by names and other processes, just
like a piece of mobile code is instantiated with local capability after migration. This additional ex-
pressiveness inherited from the A-calculus provides a powerful basis for describing and analysing
dynamic behaviour in global computing scenarios.

While many advanced session types for the t-calculus and programming languages have been
studied, before our work [63] there existed no session typing systems for the HOm-calculus. In-

corporation of sessions into this language offers a general theoretical basis for examining the
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interplay between two non-trivial features in communication-based programming, higher-order
mobility and session-based structured interaction.

This Chapter, based on [63]], establishes the first session type theory for the HOx-calculus
which can statically validate the type safety of complex distributed scenarios with code mobility.
In spite of their simple type syntax, the previous literature have shown that obtaining type sound-
ness for session types is an intricate task because of delegation of sessions [92]. In addition, in the
presence of higher-order process passing, with the instantiation of names within executable code,

preservation of typability becomes even more non-trivial.

4.2 The Higher-Order n-Calculus with Sessions

The Higher-order mt-calculus with sessions, HO7®, is a variant of the HO m-calculus [79]. The
main difference is that in HOn® each communication occurs not freely, but in the context of an
initiated session synchronising two processes to perform a prescribed protocol. HOn® encom-
passes two types of mobility: name passing, with which dynamic communication topologies can
be programmed, and code passing, where by transmitting processes a dynamic behaviour can be
achieved. Note that the calculus is monadic, i.e., only one value is sent/received at each commu-

nication step, but this does not affect the results and serves for simplicity.

4.2.1 Syntax

The syntax of HOT® is given in Figure The calculus extends the HOT with a small kernel of
session primitives: a way to initiate a session over a shared channel, a class of session names —
which we call endpoints — used for communications within sessions, and primitives for offering

and making choices indexed by labels.

Identifiers Variables range over x,V,z, . ... Shared channel names, which are used only to initiate
sessions (we describe this in detail further below), are ranged over a, b, c, . ... We write u,v,w, ... to
represent shared identifiers, that is, those that are either variables or shared channel names. Session
channels, ranged over s,... and s,. .., are the endpoints through which values are communicated
within an established session (which as we shall see is always between exactly two processes).
The name s denotes the dual of s, that is, if one process in a session uses s, the other process
uses 5, and in this way each of the two processes possess a unique endpoint. This separation of

endpoints is similar to the use of two polarities in [39,92]. We define duality to be idempotent,
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Identifiers

u,v,w

Values

A %04

Terms

P.Q,R

Abbreviations

x7y7Z
a,b,c

X 0,2
S,S

u,v,w
/ "
kK k

9)
A(x:U).P

ux:U —-T)Ay:U).P

Vv
u(x).P

u(x).P

k?(x).P

KI(V).P

k> {ll ZP],...,lnipn}
k<l.P

P[Q

(va: (S))P

(vs)P

PO

0

Alx:unit).P  (x & fv(P))

Ax.(x())

variables
shared channels

variables
session channels

shared identifier
linear identifier
unit

abstraction
recursion

value
connect
connect dual
input
output
branching
selection
parallel
restriction
restriction
application
nil process

thunk

run

Figure 4.1: Syntax
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thus, we have that 5 = s. This property of endpoint names is used in the reduction semantics,
where a communication is synchronised over the two endpoints of a session. We write k, kK’ k", ...

for linear identifiers, consisting of variables and session channels.

Values We write V.V’ W,... for those terms that may be used as values, that is, as the object
of a communication or as the argument in function application. First, we have identifiers, shared
and linear (as standard). Abstraction, written A(x : U).P, encapsulates a process P, where x may
occur free, into a function over x (with type annotation U). This is the basic mechanism for the
exchange of processes, and the unit () is useful when we wish to obtain a value from an arbitrary
process P: take a variable x not free in P, then A(x:unit).P is a value, usually referred to as a
thunk, and abbreviated to "P". To reveal and execute the process within a thunk, we use the run
function A(x:unit — ©).(x()) which takes a thunk as argument and applies it to the unit value to
obtain the hidden process.

To facilitate terms that exhibit infinitary behaviour, we introduce a recursive function con-
structor u(x:U — T).A(y:U).P. In this fixpoint representation, instances of the variable x within

P represent the function itself.

Terms The terms of the calculus are written P, Q, R, . ... The main constructs are:

Session initialisation u(x).P and u(x).Q are prefixed processes that may synchronise and com-
mence a session. The interactions will adhere to the session type assigned to the shared
identifier u, and since each session consists of two endpoints used in a complementary way,
we distinguish the two different behaviours with respect to this type using u and i. The
bound variable x is a placeholder for a fresh session endpoint, initialised after the prefixes

react to establish a session.

Input and Output k?(x).P is the standard input prefixed process, with linear subject k and using
x as a placeholder for the received value. k!(V).P is an output prefixed process, sending

value V over session k.

Branching and Selection k> {/,:Py,...,I,: P,} offers a set of label-indexed choices /; : P; on
endpoint k, with a process continuation P; corresponding to each label /;. It is often written
k> {l; : P;}ier with index set I. The dual (or co-action) of a branch is a process ready to
perform a selection k <1/.P where the chosen label is within the domain of the branch set.

Essentially a branching is an input expecting a label and performing case analysis (which
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covers all cases) on this label to choose a continuation. Dually, a selection is an output of
a label designating a choice. Clearly, it is undesirable to allow the empty set in branching,
since no selection can be made (that is, there is no effective co-action), and henceforth we
assume that there is at least one branch (and the respective indexing sets, when used, are

non-empty).

Fresh names We write (va : (S)) P to denote a process P in which the shared channel a (typed by
(S)) is unique. With (vs) P we denote that the two endpoints s and 5 are unique in P, that
is, no external process can perform a session action on either of these endpoints; this gives

non-interference within a session.

Other constructs are the nil process 0, parallel composition P |Q, and functional application PQ,
which are standard from 7-calculus and A-calculus. We often omit 0 and some type annotations
when not relevant.

The bindings are induced by (va : (S))P, (vs)P, u(x).P, u(x).P, k?(x).P, A(x : U).P, and
u(x:U — T).A(y:U).P. The derived notions of bound and free identifiers, alpha equivalence
and substitution are mostly standard. We write fv(P)/fn(P) for the set of free variables/names,
respectively; the definition is in Figure 1.2 Moreover, when dealing with proofs we assume the
variable convention, that is, free and bound variables are always chosen to be different, and all

bound variables are distinct; the same applies to names.

4.2.2 Reduction Semantics

We define the standard structural congruence, denoted ‘=’, as the smallest equivalence relation
which is congruent with respect to the calculus constructors (parallel composition, name restric-
tion, prefixes) and respects the axioms and rules in Figure [4.3] The single-step call-by-value
reduction relation, denoted —, is a binary relation from closed terms to closed terms, defined by
the rules in Figure Rule (beta) is standard from the call-by-value A-calculus. The case of (rec)
is similar, with the added step of unfolding the recursive function, by substituting it in place of the
variable y within the function body P.

Rule (conn) establishes a new session between two processes a(x).P and a(z).Q ready to syn-
chronise on a. The result of this rewriting is a parallel composition of the session bodies P and Q
with a fresh set of endpoints s and s substituted for the session variables x and z, respectively. The
sidecondition ensures that the new endpoints do not already appear free in either P or Q.

Rule (comm) realises session communication between endpoints k£ and k: a value is delivered
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Term fv fn

X {x} 0

a 0 {a}

s 0 {s}

5 0 {5}

; 0 0

Ax.P fv(P)\ {x} fn(P)

ux.Ay.P fv(P)\ {x,y} fn(P)

u(x).P /u(x).P fv(u) U (fv(P)\ {x}) fn(u) Ufn(P)
k?(x).P fv(k) U (fv(P)\ {x}) fn(k) Ufn(P)
kWV).P fv(k) Ufv(V)Ufv(P) fn(k)Ufn(V)Ufn(P)
k>{li:Py,....0h:P,} | fv(k)Ufv(P)U...Ufv(P,) | fn(k)Ufn(P)U...Ufn(P,)
k<l.P fv(k) Ufv(P) fn(k) Ufn(P)

Plo/ PO (P) UR(0) fn(P) Ufn(©)
(va:(S))P fv(P) fn(P)\ {a}

(vs)P fv(P) fn(P)\ {s,5}

0 0 0

Figure 4.2: Free Variables and Free Names
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(va: (S))P[Q=(va:(S))(P|Q) a¢n(Q)
(Vvs)P|O = (vs)(P|Q) s,5¢fn(Q)

(va: (S))(vs)P=(vs)(va:(S))P

(va: (S))(vb: (§"))P=(vb: (S))(va: (S))P
(vs) (vs') P = (vs') (vs) P

(va:(S))0=0 (vs)0=0

Renaming of bound variables

Commutativity of parallel composition
Associativity of parallel composition
Inaction and parallel composition

Scope extrusion

Exchange

Inaction and restriction

Figure 4.3: Structural Congruence
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(beta)

(Mx:U).PYV — P{V/x}
(rec)

(upAxP)V  —  P{V/x}{m-Mx.P/y}

(conn)

a(x).P|a(z).0 — (vs)(P{/x} [ Q{5/z}) s,5¢n(P.Q)
(comm)

k2(x).P|kNV).0 — P{Vi}|Q k=sork=5s

(label)

k>{ly:Py,....L,: Py} | k<ly.P — P,|P k=sork=5 1<m<n

W P—P L 0—0 P—P
P—P P—P P=P —0 =0
res0) Na: ()P — (va. sNP "N ngp —wp T P —0

Figure 4.4: Reduction

from k!(V).Q to k?(x).P. Due to the self-inverse duality property of endpoints, if k = s then we
have an output from s to s, and if kK =5, the output is from s to 5. The result is the input process
continuation P{V/x} where the value V is substituted for the variable x, in parallel to the output
continuation Q. When V is a function, we have higher-order code passing; when V is a session
endpoint, we call it higher-order session passing.

Rule (label) is a communication version of case reduction in the A-calculus. With k> {/; :
Py,...,1,:P,}, the session on k offers a set of label-indexed choices, and reduces against a selection
of a label on the dual endpoint k, using k <I/,,.P. The index m of the selected label /,, must be in
the branch set as indicated by the sidecondition. Finally, the result is the selected branch P, in
parallel with the continuation P of the selector process.

In the remaining rules: (app-l) and (app-r) implement a left to right reduction order for functional
application; (par) reduces the leftmost parallel process; (resc) and (ress) are standard and reduce a
process under name hiding. The last rule, (str), introduces standard structural congruence [60]] into

the reduction relation. This is necessary for re-arranging terms to match reduction rules.

Remark In our original work [63]], processes of the shape a(x).P (called “servers”) were repli-
cated, but this is not needed here as we have introduced recursive functions which can encode

replication.
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4.2.3 Examples

Example 4.2.1 (Encoding Replication). By using recursion, we can represent infinite behaviours
of processes such as, e.g., the definition agent def, or the replication !u(x).P of [59} 92| 48] 63].

Replication on a shared name, useful for defining persistent servers, can be encoded as follows:
lu(x).P Lef (uy.Az.z(x).(P | y2))u taking y,z & fv(P)

Hereafter when writing a replicated connection-prefixed process we shall mean that this encoding
is used. Note that we did not (and by typing we cannot) replicate a session endpoint, since that
would violate linearity. To validate the encoding, we can observe a reduction using a replicated

connection !a(x).P and a suitable co-action a(z).Q:

la(x).P | a(z).Q
— a(x).(P|la(x).P)|a(z).Q  (rec)
— (vs) (P{¥/x} [ la(x).P | Q{%/z}) (conn)
= (vs) (P{S} | Q{%/}) | lalx).P

Note that in the application of rule (conn), since x is bound in !a(x).P, the substitution {$/x} has
no effect on this subterm. Once a connection is established via (conn), we can apply structural
congruence = to obtain a term where !a(x).P can react again; for this we used the fact that s and
5 do not occur free in !a(x).P, which is ensured by the conditions of the previous reduction with

(conn).

4.2.4 Example: Business Protocol with Code Mobility

We show a simple protocol which contains essential features by which we can demonstrate the
expressivity of the code mobility and session primitives for the HOx-calculus; it consists of a
combination of session establishing, code mobility, session delegation and branching. This extends
a typical collaboration pattern that appears in many web service business protocols [90, [19] to
code mobility. In Figured.5] we show the sequence diagram for a protocol which models a hotel
booking: first, Booking Agency and Client initiate interaction at session x over channel a; then
Client starts exchanging a series of information with Agency; during this initial communication,
Agency calculates its Round Trip Time (RTT) between Client and Agency; Agency selects an
appropriate Hotel and creates a new session y over channel b with that Hotel. If the RTT is short

(Figure[4.5](a)), then Agency delegates to Client its part of the remaining activity with Hotel, by
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Client Agency Hotel Client Agency Hotel
a:x - a:x
----- x london 3 x :london =
x_: date b:y x:dalte > b:y
X : continue with y[*- Tt ! X :mobiletoy prrrerresreeoe '
B y : roomtype B y : code
| y : roomrate X run code
y : creditcard || Ae---4B : start session x y : roomtype
X : commission . cix overa y . roomrate
A—>B : send x over ¢ y : creditcard
(a) Remote Message Passing c:lwithy « o
A—»»B : select label and| X :commission
sendyoverc | (b) Code Mobility

Figure 4.5: Sequence Diagram for Hotel Booking

sending session channel y; then Client and Hotel continue negotiations by message passing. If
the RTT is long (Figure @] (b)), since many remote interactions increase the communication time
as well as the danger of communication failures, Agency asks back Client to send mobile code
which contains the communication of the Client’s room plan and negotiation behaviour. Agency
sends the code to Hotel, then Hotel runs it locally, finishing a series of interactions in its location.
Finally Agency receives a commission fee (10 percent of the room rate) via session x, concluding

the transaction.

The given scenario is straightforwardly encoded in our calculus, where session primitives
make the structure of interactions clearer. Agency first initiates at a and starts the interactions with
Client; then it initiates at b and establishes session y; next it invokes either label cont or label
move in Client depending on the RTT and sends y (higher-order session passing) to it, and waits
for completion of the transaction between Client and Hotel at x (“if-then-else” can be encoded

using branching, and we use other base types and their operators).

Agency o la(x).x?(area)...b(y).if rtt < 100 thenx<dcont.x!(y).x?(z)..P (4.1)

else x<<move.x!(y).x?(z).P (4.2)

Client requests a service at @ and starts a series of interactions with Agency, and either continues
the remaining activity with Hotel or sends the code (a thunk in Line 4.4). Note that Client can
safely send back the commission fee to Agency because the return message x(z x 0.1) which uses

session channel x is embedded in the thunk.
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Client déf

a(x).x!(london)..xt>{ cont:x?(y).y <cont.y!(roomtype).y?(z)...x!(zx 0.1) , (4.3)

move : x?(y).y << move.y!("y!(roomtype).y?(z)...x!{(z x 0.1)7) }(4.4)

Hotel performs the interactions with Agency and Client via a single session at y (by the facility

of higher-order session). In Line[4.6] the code sent by Client is run locally.

Hotel % b(y).y>>{ cont:y?(z).y!(roomrate.y?(z))...0 ; 4.5)

move : y?(code).(run code | y?(z).y!(roomrate(z))...0)} (4.6)

This encoding shows a couple of subtle points whose slight modification breaks the session struc-
tures. First, in Line 4.4] if we send code which does not complete the session, then the protocol is
broken: e.g. if we have interactions at y (say y!(w)) after sending a thunk in Line in Client,
the session at y will appear in three threads (two in Hotel, one in Client), so the session at y
is interfered with and values may get mixed up. Secondly, in Line 4.6] if we have two or more
applications (say run code | run code) instead of one run code, it again breaks the session struc-
ture (both at y and x). Finally, if the code is not activated in Line (like (Ax.0)code instead of
run code), the receiver y(z) . y!(roomrate(z))...Q cannot find a matching output. Hence the variable

code must appear exactly once and become instantiated into a process exactly once.

4.3 Higher-Order Linear Typing

In this section we present the session typing system which uses techniques from linear typing.

4.3.1 Types

The syntax of types is given on Figure It is an integration of the types from the simply typed
A-calculus with unit and the session types from the mt-calculus. Term types range over T, and can
be value types, ranging over U, or the process type ¢. Value types consist the unit type unit, the
type U — T of shared functions, the type U —o T of linear functions, the type S of sessions, and
the shared channel type (S) which enforces that sessions initiated on the corresponding channel
will follow the protocol defined by S.

The session types are defined inductively as follows. The type ![U].S represents the sending

of a value of type U, followed by the remaining session S. Dually, with ?[U].S the action will
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Term

Value

Session

S

unit
U—T
U—oT

()

U).S
NU.S
EB[ll 251,...,1,,25,,}
&[l] ZSl,...,anSn}

ut.S
end

value
process

unit

shared function
linear function
shared channel
session

output

input
selection
branching
type variable
recursion
ending

Figure 4.6: Types
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be to receive a value of expected type at least U, followed by S as before. The selection type
@[l :S1,...,0,:S,] signifies that one of the choices [j,...,l, will be made (operationally this is
an output of a label), and depending on this label the corresponding session continuation chosen
from S,...,S, will take place. The co-type of selection is the branch type &[l; : Sy, ... 1, :Sy]
corresponding to the reception of a label followed by the corresponding continuation type as in
selection. Recursive session types are written ut.S, where the type variable t is bound and may
occur free in S. We only consider contractive recursive types [3592]. Practically, contractiveness
of ut.S means that every free instance of t in S is guarded under at least one input, output, selection
or branching constructor. For example ut.![nat].t is contractive, but ut.ut’.t is not. Moreover, we
only consider tail-recursive session types, therefore types such as ut.![t].end are not well-formed.
To indicate that a session is finished, we use the terminal end.

We write 7 for the set of types.

Abbreviated Forms We often write &[/; : S;|ic; and ®[l; : Si|;e; for branching and selection

types, "1™ for unit — T and 7™ for unit —o T. The terminal end is sometimes omitted.

Example 4.3.1 (Types). Session types can encode many common interactions. For example the

following type can be used to iterate through a list containing elements of type U:

ut. ® [hasnext : &[next :?[U].t, finished : end], finished : end]

The type describes the behaviour of the client process accessing the list: first a choice is made,
either to query the list and discover if it has more elements, by choosing hasnext; or alternatively
the choice finished can be made in which case the protocol reaches its end. If hasnext is chosen,
then the list can respond by choosing next, after which the client can receive a value of type U.
Moreover the type variable t signifies that at this point the protocol is repeated from the point of
definition, that is, from the p-binder at the beginning. If the list replies by choosing finished, the

protocol is complete.

Duality In the above example we show the type of the iterator, but not of the list. In
fact the list’s type can be obtained by duality. Each session type S has a dual type, denoted by S,
which describes complementary behaviour. This is inductively defined by the rules in Figure
Essentially, dualisation interchanges input (?) with output (!), branching (&) with selection (&),
leaving end, type variables and u binders unchanged. Duality is idempotent. Note that we do not

need to define duality for other types such as the function types, as these are never dualised.



4.3. HIGHER-ORDER LINEAR TYPING 77

Figure 4.7: Type Duality

4.3.2 Subtyping

To formalise subtyping in the presence of recursive types a simulation-based (or coinductive)
method is used, in which subtyping is determined by membership of the goal within a binary
relation on types.

First, let us define:
(8,8)® = (5.5)
(T,T"® = (T,T) if T, T’ are not session types

which is used to adjust for the different variance of functional and session types, by reversing
the variance of sessions with respect to the other types. A technically equivalent approach where
the variance is the same for sessions and functions can be applied (see e.g. [39]) but we find that
our approach is more natural for our effect-like typing system and for understanding subtyping in
sessions programming in a way reminiscent of record subtyping.

In the following definition of coinductive subtyping we adapt standard simulation approaches

from [39, [77]].

Definition 4.3.1 (Coinductive Subtyping). A relation R € 7 x 7 is a type simulation if (71,73) €

R implies that at least one of the following conditions must hold:
1. If T} = ¢, then T, = .
2. If T} = unit, then 7> = unit.
3. T =U; — T/, then, =U, — Ty or T, = U — T, with (U»,U;)® € Rand (T, T)® € R.
4. If Ty = U, — T/, then T = Uy —o T; with (Up,U;)® € R and (T{,T,)® € R.
5. If 71 = (1), then T, = (S,) and (51, 5,) € R and (S,,51) € R.

6. If T} = end, then 7> = end.
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7. If Ty =![U1].81, then T =![U5].S5, (U1,U2)® € R and (S1,5,) € R.

8. If Ty =?[U,].S1, then T =?[U5].Ss, (Up,Up)® € R and (S1,5,) € R.

9. If Ty = ®[l; : Stilier, then T = B[l : S2]jes, I CJ and Vi € 1.(S1;,52) € R.
10. If Ty = &[l; : Siilier, then Tr = &[1; : Saj]jes, J CTand V j € J.(S1,52j) € R.
11. If T} = ut.S, then (S[ut.S/t], T») € R.

12. If T, = ut.S, then (T}, S[ut.S/t]) € K.

The integration of subtyping for higher-order (linear) functions and asynchronous sessions re-
quires a careful formulation: (1,2,6) are standard identity rules. (3) says that an unlimited function
can be used as a linear function. Note that the reverse is unsafe: suppose f = Ax.k!(x) with a
linear type nat —o <. If we apply the reverse direction, A(y:nat — ¢).(y1 | y2)f becomes typable,
destroying the linearity of session k.

Also in (3), when U; is a session type, we use the relation (S1,5,)® = (S,5]) to transpose
the tuple. Session types are dualised since the session channel is going to be used in a process in
a contravariant manner. To see this condition, suppose process P = (A(x:S).x?(y).x!(2).0) s with
S =?[real].![nat].end. Then P can safely interact with Q =5!(5).5?(z).0 where the type of 5is §' =
![nat].?[real].end. The types S and S’ are not dual, but each subsumes a type which is dual to the
other. For example, taking nat <, real, we can obtain S <.?[nat].![real].end = §’. This subtyping
is intuitive when we understand S as the actual behaviour of variable x (and consequently of s)
in process P, and all supertypes as the behaviours that P also satisfies. In this example, P can
safely substitute a process that is expected to use s according to ?[nat].![real].end: it can receive
any value of type nat (since it can receive any real) and will send a value that inhabits the type
real (since any nat is also a real). For P to compose with Q we must have § — o <. §' — o, with
S <. ¥, that is, the subtype ordering of session types left of — is covariant. The contravariance
of session types on the right of — can be justified in the same way. The case when T; is a session

type is also similarly explained. (4) is similar.

Remark  The original session typing system uses a judgement “I"+ P : £~ where I is a shared
(standard) environment and X is a mapping from a session channel to a session type. This means:
P accesses the session channels specified at most by X. In contrast, in our typing system defined
in the next section, ¥ appears in the left-side position, so that we need to dualise the session types

for subtyping, cf. [91]].
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(5) says that the shared channel type is invariant (as in the standard session types [39., 165, 48])).
(7-8) match the output/input prefixes and check the continuations, as expected. The cases (9-10)
for selection and branching subsume the traditional session branching/selection subtyping. The
last two rules ensure that types are unfolded (or unrolled) adequately for the other rules to be
applicable. We use the notation S[ut.S/t] to mean that all free occurrences of t in S are replaced
by the original type ut.S. The notion of free type variables is simple to define: the only binder is u,
that is, t is bound in ut.S, and all instances of type variables that are not bound (i.e., do not appear

under a u binder) within a type are free instances. We omit the formal definition which is trivial.

Our relations contain slightly more elements compared to those of [39] — where unfolding is
done within the other rules — because in our definition all the pairs arising from unfolding are
included in the type simulation. But this is not a significant difference because by the contractive-
ness restriction on types we know that unfolding of a y-prefixed type does not generate an infinite

relation.

As standard, the coinductive subtyping relation <. is the union of all type simulations and is
defined, for types 77 and 7>, when there exists a type simulation R with (77,7;) € R. When the

actual relation is not important we write 77 <. 7.

4.3.3 Linear Higher-Order Typing System

Environments

We first define three kinds of finite mappings for environments, needed when typing a term with

free identifiers:

(Shared) I' == O|Lu:unit|Tu:U—T|Lu:(S)
(Linear) A == O0|Ax:U—T
(Session) ¥ == O|XZk:S

I' is a finite mapping, associating shared value types to identifiers. A associates variables and
linear function types. There is no need to define mappings here for identifiers such as channels
or session endpoints as these cannot have a linear function type. X is a finite mapping from
variables/session channels to session types. £, X' and A, A’ denote disjoint-domain unions. I',u:U

means u ¢ dom(I"), and similarly for the other environments.
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Typing Judgement

The typing judgement takes the shape:

AXEP:T

which is read: under a (global) shared environment I" and a linear function environment A, a term
P has type T with session usages described by X. We say that a judgement is well-formed if the
environments (pairwise) do not share elements in their domains, that is, when the disjoint union

dom(I") Wdom(A) Wdom(X) is defined.

Typing Rules

The typing rules for identifiers, subtyping, and functions are given in Figure The rules for
processes and sessions are given in Figure 4.9] In each rule, we assume that the environments in
the consequence are defined.

Starting from Figure [4.8] the first group is (Common). First we have a rule for the unit value
(), assigning the type unit. In the conclusion, notice that an arbitrary I' is allowed, but no recording
of linear variables (A = 0), or sessions (¥ = 0). This restriction agrees with the use of weakening
only for shared environments, a condition necessary for the preservation of linearity. (Shared) is
an introduction rule for identifiers with shared types, i.e., not including U — T or S. (LVar) is for
linear variables and (Session) is for session endpoints, recording x:U — T in A and k:S in X,
respectively. The general strategy is that the environments A and X record precisely the desired
usages of linear variables/sessions, and then within a derivation these usages are combined using
disjoint union (to ensure that no copying takes place) and prefixing composition in the case of ses-
sions (to ensure that certain separated usages are seen as one largest use). The use of disjoint union
effectively forbids contraction. The absence of weakening guarantees that all linear hypotheses are
actually used.

The group (Subtyping) consists of one subsumption rule, (Sub), introducing the coinductive
subtyping <. into typing derivations. For example this rule can lift from the shared function
U — T to the linear function U —o T. The other direction would be unsafe as it would allow
copying of a linear function by first promoting it to a shared type and then using it as such. We
write £ <. X’ when dom(X) = dom(X') and for all k: S € ¥, we have k: S’ € ¥ with § <. §’. Notice
that subsumption can apply to the session environment, but not to other environments, and it can

also apply to the given type T for the term P. The reason for which <, should be applicable to
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(Common)
(Unit) (Shared) (LVar)
[50;0F () :unit Lu:U;0;0Fu:U I {x:U —-T};0bx:U—T
(Session)
[0;{k:S}Hk:S
(Subtyping)
(Sub)
OAXEP:T <Y T<.T
A FP:T
(Functional)
(Abs) (Absy) (Absg)
Cx:UNZEP:T A x:U;XEP:T A, x:SEP:T

A ZEAMx:U).P:U—T A EEAX:U).P:U—T A ZEAMx:S).P:S—T

(App)
A FP:U —T ALY, EQ:U ()

F;A],AQ;ZI,ZQ l_PQT

(Rec)
Ix:U—T;0,0-A(y:U).P:U—T
0,0 u(x:U —T)A(y:U).P:U—T

(t)ifU=U"—T' then Ly = Ay = 0.

Figure 4.8: Linear Session Typing: Common and Functional Rules
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(Process)
(Nil) (New) (New;)
[a:(S);A;EFP:o DAY, s:S,5:SFP:o
[;0,0-0:0 A EE (va:(S))P:o LAZE (vs)Pro
(Conn) (ConnDual)
G;0,0F u:(S) T;AZx:SEP:o [;0;0Fu:(S) T;AZx:SEP:o
A u(x).Pio LA Eu(x).Pio
(Recv) (Recvy)
Ox:U; N2 k:SEP:o A x:U; X k:SEP:o
CAE k2ULS EE2(x).P:o DA E k2NULS Fk?2(x).P:o
(Recvyg)
AL k:S x:SFP:o
[, A2, k:2(S].8" Fk2(x).P: o
(Send)

LAY FP: o A VU k:SeX; i=lori=2 (1)

AL A (2, 20) \{k: S}k NULSEENV).P:o

(Par) (Bra)
A s Zi2F Pioio CAZ kS EP o (Viel)
F;Al,AQ;Zl,Zz |—P1 ’ P:o F;A;Z,k : &[li : Si]ig Fk> {l,’ : I)i}iel o
(Close) (Sel)
CAXEP:T k & dom(I',AX) CAXk:SjEP:o jel
A X k:end=P: T DoAZ k@[l Silier Fhk<lj.P:o

(1)ifU=U"— T then X, = A, = 0.

Figure 4.9: Linear Session Typing: Processes
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Y is that, at some stage, the types of dual endpoints need to be compared syntactically (see rule
(Newy) in Figure [4.9), and subsumption may be necessary for this, typically for recursive types.
An alternative would be to not have ¥ <. X’ in (Sub) and to use <, directly in (Newy), but we

preferred to only mention <, in a single rule.

The second group, (Function), comes from the simply typed linear A-calculus. There are
three abstraction rules, each depending on the shape of the type U of the argument: (Abs) when
it is a shared type (not linear function or session type); (Abs;) when it is a linear function type;
and (Absg) when it is a session type. In the conclusion of these rules, we remove x from the
corresponding environment, because it is now A-bound in the term. (App) is the rule for functional
application; the side condition () ensures that when the term on the right is assigned a shared
function type, it does not to contain free session endpoints or linear variables. This is a way of
ensuring that shared functions that are used as arguments do not contain linear terms, as these
unrestricted arguments may be used more than once, breaking linearity, or may not be used at all,
again violating linearity by making endpoints or linear functions disappear. The conclusion says
that the session environments and linear variable sets of P and Q must be disjoint; otherwise, there
is copying (more than one usage) of the respective linear terms, which is forbidden. Note also that
in order to obtain the linear type U —o T for P, we may need to use subtyping to promote the type
from U — T. The purpose of defining the rule with a linear type for the function is to avoid the
redundancy of having two similar rules for application, one for each type of function. Rule (Rec)
is similar to (Abs), but with the addition of a hypothesis for x in the premise, representing the
function itself, and used for typing instances of the function within its body. It is required that the
linear function and session environments are empty, since a recursive function may rewrite itself

repetitively copying all its contents.

In Figure 4.9| we have the final group, (Process), for processes integrated with linear func-
tional and session typing. Rule (Nil) types the empty process. (New) and (Newy) hide a shared
name and a pair of session endpoints, respectively. The latter erases, in the session environment,
complementary communication patterns for the two endpoints s and 5, in order to ensure com-
patible dyadic interactions. Subtyping may need to be used to verify that the session usages are

dual.

(Conn) and (ConnDual) are for initiating sessions. In the premises of (Conn), the usage S
of the endpoint x in P has to agree with the type (S) recorded for the shared identifier u in the
typing environment I". Rule (ConnDual) is similar, however the type in the environment I is

dual to the usage in the session body P. This is needed in order to indicate which side of the
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session is followed with respect to a shared channel type, since connecting processes must use
their endpoints dually. As in the case of the abstraction rules, there are three rules for input,
depending on the shape of the type of the expected value: (Recv) is for receiving values of a
shared type; (Recvy) types the input of a linear function; and (Recvg) types the input of a session
endpoint. The new session type is composed in the conclusion’s session environment, in a way
that agrees with the protocol, that is, the input is appended before any subsequent actions on &

within P.

(Send) is the most complex rule, integrating session typing and linear typing. First, as in (App),
(1) enforces safety when sending shared functions. Secondly, either X, or X, contains the complete
session k: S, which in practice means that after sending a value, the rest of the session on endpoint
k must appear (and be completed) either in the continuation P of the sending process, or inside
the value V. In the latter case, we can have that V = k which implements higher-order session
passing. The composition X;,Y, is defined in the conclusion, which entails that no endpoint
appears in both the remaining sender P and the sent value V, because, in that case, we would
have a race condition between the receiver of V and P, in the usage of communications over these
common sessions. The same applies to linear variables free in V and P. If V has a functional type,
all session endpoints within it must be complete, that is, suffixed with end, because they should
not compose further. This is achieved by the necessary use of a suitable instance of (Close). This
rule uniformly generalises the corresponding rules in the session types literature [39} 81,92, 48]].
In the conclusion, we delete k:S where it occurs, either in X; or X5, and the updated type for k is
recorded in the conclusion’s session environment, consisting the original type S prefixed with the
output ![U].

In (Par), we parallel-compose two processes, assuming disjointness of linear function and
session environments, as in (App). (Bra) and (Sel) are the standard rules for branching and selection
from [48]. In (Bra) all continuations P; must have corresponding session usages on k that agree
with the branch type. In (Sel) the continuation P must have a usage S; on k that agrees with the

type corresponding to the selected label /; on the selection type of the conclusion.

Closing sessions In the above rules for session communication, the premises always contain a
hypothesis for the subject of the session action, e.g. k : S appears in X; located in the premise of the
typing for k!(V').P. This does not necessarily imply that k appears in P, as the usage {k : end} can
be obtained using (Close). This rule is used to effectively close a session on k by introduction of a

hypothesis k:end, in order for further composition (i.e., more session actions on k) to be rejected.
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4.3.4 Examples

Here we state a few examples and counter-examples that demonstrate the purpose of the type

system.

1. Session endpoints must not become “forgotten”:

(AM(x:5).0)-s

In the above term, after reduction by the (beta) rule, the endpoint s will not appear any more,
and the session on 5 might become stuck. This term is only typable if S = end, otherwise
it is not typable because in the premises of rule (Absg) we require a session hypothesis x: S

which cannot be introduced in the typing of 0 except by use of (Closed).

2. Session endpoints must not be copied:

(Mx:S). el VY [ x1(V)) ) -5

The above term reduces to:

sV | s (V')

in which we have copied s breaking the condition of linearity, which is undesirable as the
endpoint § will nondeterministically interact with one of the outputs, leaving the other wait-
ing forever. The first term is untypable because typing the body x!(V) | x!(V’) with (Par)
requires that the sessions in each parallel process are disjoint, which is not the case here due

to the common presence of x.
3. Abstractions that contain running sessions must be used exactly once:

(@ (A(x:U)x-0) - "s1(5).07 U =unit—oo
This term is safe, since the thunk which contains s is used exactly once within the
function that receives it. The term is typed using (App) followed by (Abs) and (Abs;)

for the left and right subterms of the application, respectively.
(b) (AMx:U).0) - "s!(5).0"
This term is unsafe as the thunk which contains s does not appear in the function

that receives it, after reduction. This is an indirect way for an endpoint to become

“forgotten” as before. The typing fails because (Abs;), used for the left subterm of the
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application, requires x : U to appear in the linear function environment of the typing
of 0, which is impossible.

©) (Mx:U").0) - Ta(x).x!(5).07 U' = unit — ¢
This term is safe because, although the thunk will not be used in the function, it does
not contain any linear or session element that needs to be preserved. The term is typed

with (App) followed by (Abs) for the two subterms, respectively.

4.4 Type Soundness and Type Safety

We proceed to show that typed processes enjoy type soundness and type safety. We begin with
a number of auxiliary properties, and then prove the Substitution Lemma (page [88)), which is

necessary in proving Type Soundness (page[94); we finish with Type Safety (page[102).

Lemma 4.4.1 (Closed Judgement). If'; A;X+ P: T and x € fv(P) then x € dom(I") Udom(A) U
dom(X).

Proof By induction on the typing derivation for P. The interesting cases are the axioms which
form the leaves of a derivation. If the last rule is (Shared), (LVar), or (Session), then P = x and x
appears in one of typing environments, depending on which axiom was applied. The other cases
are easy to obtain using the inductive hypothesis. O

We have the standard weakening and strengthening for I', but not for A and .
Lemma 4.4.2 (I'-Weakening). I[f [ A;XF P : T and x & dom(I',AX) then T, x:U; A2 P T.
Lemma 4.4.3 (I'-Strengthening). If I, x:U;A;XF P: T and x & fv(P) then T; A;EH P T.

The typing rule (Close) can be used to introduce arbitrary, but ended, hypotheses to the session
environment. This is a form of weakening, albeit restricted, and we introduce the following lemma
so that we can strengthen the hypotheses by removing any one introduced by (Close). This lemma

is used in the proof of Structural Congruence.

Lemma 4.4.4 (X-Strengthening). IfI;A;X k:end-P: T and k & fn(P) then T; A; 2P T.

Proof By induction on the typing derivation for P.

Lemma 4.4.5 (Linear Variable Occurrence). IfT;A,x:U — T; X+ P: T then x € fv(P).
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Proof By induction on the typing derivation for P. Most cases are straightforward, using the
inductive hypothesis. The interesting case is for (LVar), where P = x, proving the occurrence of

the linear variable. O

Lemma 4.4.6 (Endpoint Occurrence). If I'; A;X,x:SE P : T and S # end then x € fv(P).

Proof By induction on the typing derivation for P. Most cases are straightforward, using the
inductive hypothesis. The interesting case is for (Session), where P = x, proving the occurrence
of the endpoint. The sidecondition S # end serves to exclude the cases where x appears in the

session environment by introduction through (Close). O

Lemma 4.4.7 (Ended Session). If ;A X, x:S+ P: T and x & fv(P) then S = end.

Proof By induction on the typing derivation for P. Most cases are straightforward, using the
inductive hypothesis. The interesting case is when the last rule applied was (Close), which does

not require x to be free in the term, and also implies that S = end. O

Lemma 4.4.8 (Linear Unique Occurrence). If I';A,x:U — T;XFP: T, and P = Q1 - Q> or
P=0Q1|0z0r P=k'Q1).Q; (in the last case Q1 =V ), then x € tv(Q;) fori=1ori=2.

Proof We proceed by induction on the typing derivation for P. Note that we have x € fv(P)
by Lemma Suppose x € fv(Q1). Assume A,x:U — T = Aj,Ay and £ = X ,X,. Let
CAGEZ EQr:Th (1) and T3 A 2y F Qs ¢ 1o from the ILH. on the premises of the last rule applied;
this was either (App) or (Par) or (Send). From Lemma 4.4.1| we know that since x is free in Q; it
appears in one of the typing environments of (1), and in particular A; since by the well-formedness
of the assumed judgement for P it cannot appear in I" or £; C ¥ when it appears in A,x:U — T.
Now assume additionally that x € fv(Q5). Then by Lemma4.4.1| we have that x € dom(I", A2, %)
which is a contradiction since by the well-formedness of the judgement for P we have that x cannot

appear in I" or Ay C A or X, C X. Hence x ¢ fv(Q»). The case for x ¢ fv(Q) is symmetric. O

Lemma 4.4.9 (Endpoint Unique Occurrence). I[f A X x:SEP: T, and P=Q,-Q or P=
01|02 or P=k!(Q1).Qx (in the last case Q1 =V ), then x € fv(Q;) fori=1ori=2.

Proof The proof is by induction on the typing derivation, and follows the same pattern as in
Lemma When x ¢ fv(P), which is a possibility due to (Close), the result is immediate.
When x € fv(P) we proceed as in Lemma4.4.8] O
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4.4.1 Substitution

Then the substitution lemma follows. The subcases of the lemma reflect the possible value substi-

tutions that may take place during reduction.
Lemma 4.4.10 (Substitution Lemma).
1. Suppose U,x:U; N2 P:T and 50,0V :U. Then T; A= P{V/x}: T.

2. Assume T;A1,x:U — T2 - P:T and T; A5 FV : U —o T with A1,Ay and ¥1,%,
defined. Then T; A1, A2 X1, X0 = P{V/x} : T.

3. Suppose T;A;Z,x:SHP:T and k & dom(T,A,X). Then T;A; 2,k : S+ P{k/x} : T.

Proof The proof is by induction on the last rule applied in the typing derivation for P. In Part (1)
we do not state cases where substitution has no effect, as these can be shown trivially from the
assumptions with strengthening on the hypothesis for x in [,x:U. In Part (2), we assume that
substitution is only applied when x € fv(P), which is correct since in any judgement x € dom(A)
implies that x occurs in the term (see Lemmaé.4.5). For Part (3) we cannot assume that x € fv(P),

since usages of the shape x : end can be obtained using (Close) even when x is not free in the term.

Part (1)
Case (Shared) P=x T=U A=X=0

We have P{V/x} =V by the hypotheses, then 7 = U and A =X = 0. Then we use [;0;0+-V : U
to obtain the required judgement I A, X+ P{V/x} : T.

Case (LVar) P = x is excluded because x € dom(A) implies x ¢ dom(I") by the well-formedness

of the judgement for P. This case is proved in Part (2).

Case (Session) P = xis excluded because x € dom(X) implies x € dom(I") by the well-formedness

of the judgement for P. This case is proved in Part (3).
Case (Sub) Trivial to show using the I.H. on the premise followed by an application of (Sub).

Case (Abs) P=A(z:U;).0Q 7#x T=U —T I'=T,z:U;

From the I.H. on the premises we have I, x: U; A; X F Q{V/x} : Ti (1). With an application of
(Abs) on (1), binding variable z, we obtain I',x:U; A; X+ A(z: U;p).Q{V/x} : T (2). Now, since by
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the substitution we have that x ¢ fv(A(z : U;).Q{V/x}), we use strengthening on (2) to remove the

hypothesis for x and obtain the required judgement.
Case (Absy) , (Absg), (Rec) very similar to the case for (Abs).

Case (App) P=01-0 A=A, A r=X,%

From the premises we obtain I',x: U;A; X F Qi{V/x} : T, with Ty = U’ — T and T, = U'. We
then apply (App) with the above judgements in the premises, noting that the sidecondition () is
satisfied, and obtain the result. Strengthening to remove the hypothesis for x (which is not free in

the resulting term) is the last step.

Case (Nil) , (New), (News) are all straightforward to obtain from the premises using the I.H. fol-
lowed by an application of the respective rule. Removing the hypothesis for x is used as before to

obtain the desired shared environment for the final judgement.

Case (Conn) P=u(z).0 7#X T=o¢
We take the following cases:

1. Suppose u = x. Then we have I',x : U; A;Z F x(2).0 : ¢ (1). Also V =4 and from the
assumptions I';0;0 F o' : U (2) with U = (S). We have P{V/x} = u/(2).0{V/x}. From (1)
we obtain the premise I',x: U; A; Z,z:SF Q: ¢ (3). Applying the LH. on (3) we getI'; A 2, z:
SEQ{V/x}:o (4). We now apply (Conn) with (2) and (4) to obtain ['; A; X+ 4/ (2).O{V/x} : ¢

as required.

2. Suppose u # x. Then P{V/x} = u(z).Q{V/x}. From the assumption for P we obtain the
premise I',x:U; A;ZF u: (S) (5). Then since x # u we can strengthen the hypotheses and
obtain I; A; X Fu: (S) (6). We obtain (4) as before, and apply (Conn) using (4) and (6) to

obtain the required judgement.

Case (ConnDual) is very similar to (Conn).
Case (Recv) , (Recvy), (Recvy) very similar to (Abs).
Case (Send) is similar to (App).

Case (Par) is straightforward to obtain using the I.H. on the premises followed by an application

of (Par).
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Case (Close) is straightforward to obtain using the I.H. on the premises followed by an application

of (Close).

Case (Bra) , (Sel) is easy to prove using the I.H. on the premises. Note that k # x by the assumptions

since x is assigned a shared type.

Part (2)

Case (Shared) P = x is excluded because x appears in the linear function environment and there-

fore cannot also be in the shared environment as required by (Shared).

Case (Var) P=x T=U-—-T A =0 X =0

From the assumed judgement for P (note that A =0 and X; = 0) we have I'; {x:U — T'};0 F x :
T. Then from the assumed judgement for V we have I'; Ap; X, HV : U — T and since P{V/x} =V

and A = X =0, this is the required typing judgement.

Case (Session) P = k = x is excluded because x appears in the linear function environment and

therefore cannot also be in the session environment as required by (Session), by well-formedness.

Case (Sub) As in Part (1), trivial to show using the I.H. on the premise followed by an application
of (Sub).

Case (Abs) P=A(z:U;).0 7F#x T=U —T

From the [.H. on the premises of the judgement for P we have (with the hypothesis for x now re-
moved from the linear environment) I',z: Uy; A1, A2; X1, 20 F Q{V/x} : T1 (1). With an application
of (Abs) on (1), binding variable z, we obtain I'; A, Ap; X1, X0 FA(z: Up).Q{V/x} : T as required.

Case (Absy) , (Absg), (Rec) very similar to the case for (Abs).

Case (App) P=01-0 L1 =Z1,212 Apx:U— T = Ay, A

From the assumption I';Aj,x:U — T";E; - P: T (1) and Lemma we have that x € fv(P).
Using P = Q; - O, with Lemma on the assumption we also have that x ¢ fv(Q;) for some

i € {1,2}. We can therefore take two cases:

1. Takex € fv(Q;) and x & fv(Q2). Then P{V/x} = 01{V/x}- Q>. The last rule applied (modulo
(Sub)) is (App). By the L.H. on the premise I'; A} ,x:U — T";EZ11 = Q1 : Uy — T of (1) we
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obtain I'; A}, A2; 211, X0 F Q1{V/x} : Uy — T (2). The other premise of (1) is I';Aj2; X2 -
0> : U; (3). Now we can apply (App) with (2) and (3) as premises. We also need to respect
the sidecondition (7): this is already satisfied from the premises of the original application

of (App) with respect to (3). We thus obtain the required judgement.

2. The case x € fv(Q,) and x ¢ fv(Q;) is symmetric. One note is that if U; is an arrow-type,
then by the sidecondition (1) of (App) we have that Aj, = X1, = 0, and x ¢ dom(I") by
WF of the assumption, hence in that case we have a contradiction since it must hold that
x ¢ fv(Qz) by Lemma This verifies our intuition that if a linear variable x appears in

0, then O, cannot be typed with a shared function type.

Case (Nil) , (New), (News) are straightforward using the I.H.

Case (Conn) , (ConnDual) follow a similar pattern to the same cases in Part (1). The proof is

slightly simpler since we have that if P = u(x).Q then since x is a linear function variable u # x.
Case (Recv) , (Recvy), (Recvg) very similar to (Abs).
Case (Send) is similar to (App).

Case (Par) is straightforward to obtain, as before, using the I.H. on the premises followed by an

application of (Par).
Case (Close) is straightforward as in the previous part.

Case (Bra) , (Sel) is easy to prove using the [.H. on the premises. Note that k # x by the assumptions

since x is assigned a linear type.

Part (3)

Most cases are straightforward as before. For the case (App), (Par), the proof is similar to the other
parts but makes use of Lemma (instead of Lemma|4.4.8).
Case (Recv) P=K?7z).0 T=5¢
We have I'; A2, x: S+ k'2(z).Q : . Then we take cases on k'.
1. k' = x. Then P{k/x} = k?(z).Q{¥/x} and S =?[U].S’. From the premises of (Recv) we obtain
[,72:U;AZ,x:8' F Q: 0. By the LH. we have I, 2: U; A; X, k: 8" - Q{K/x} : o. Then with an
application of (Recv) we obtain I'; A; X, k2[U].S" - k2(z).Q{K/x} : © as required.



92 CHAPTER 4. SESSIONS AND HIGHER-ORDER PROCESSES

2. k' # x. Then P{k/x} = K'2(z).Q{k/x} and £ = X',k ?[U].S’. As before by the premises
[,2:U; A Y K S x:SHQ:o. By the LH. T, z: U; A; X,k : S k: S F Q{K/x} : o. Then with
an application of (Recv) we obtain I'; A; X, k:S - k'2(z).Q{K/x} : o as required.

Case (Recvy) , (Recvs) very similar to (Recv) above.

Case (Send)  P=KIV).0 T=o  Ex:S=(L,5)\{K:S},KIULS
A= AlaAZ

From the premises of (Send) we have:

CAGZIFO: o (1)
A FV U (2)
K:S eX; i=lori=2 (3)
ifU=U"—T'thenX, =A,=0. (4)

Then we perform case analysis on k'

1. Suppose k' = x. Then S =![U].S". We now look at the occurrence of x in the session envi-

ronments:

(a) Letx:S' € Xy, then Xy =X}, x: 5 and P{k/x} = k!(V).Q{¥k/x}. Using the LH. on (1) we
obtain [; Ay X1, k:S" - Q{K/x} : o (3). Then we apply (Send) with (3) and (2), with the
sideconditions clearly satisfied from the assumptions, to obtain I'; A; X1, X, k! [U].S'
k/(V).Q{k/x} : ¢ as required.

(b) Let x:§" € Xy, then £, = X, x: & and P{k/x} = k!(V{¥/x}).0. From the L.H. on
(2) we have [;Ap; X5, k:S" = V{Kk/x} : U (4). In this case we have U # U’ — T’
otherwise X, would be the empty set. We now apply (Send) with (1) and (4) to obtain
A2, 25, kULS F NV {KAD).Q : o as required.

2. Suppose k' # x. As above we look at the occurrence of x in the session environments. Since

k' # x we have two cases:

(a) Let x:S € Xy, then X; = X},x: S and P{k/x} = K'/(V).Q{k/x}. By the LH. on (1),
T AGE, kS O{K/A} - o (5). We apply (Send) as before with (5) and (2), the side-
conditions are satisfied (we do not check where k’ occurs in the session environments

X and X, as the sidecondition is met by the assumptions), and obtain I'; A; (X}, X, k:

SY\{K': 8"}, K NULS = KNV).Q{k/x} : o as required.
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(b) Letx:S €X,, then X, =% x: Sand P{K/x} = K'!(V{k/x}).Q. Using the same sequence

of steps as before we obtain the result.

Case (Close)

Suppose (Close) was applied for some k’. Then the premise obtained is:
A (2, x:S)\{K:end} FP:T (1)

We now distinguish two cases:

1. x=K'. Then S =end. Also, x ¢ dom(T', A, X) by the well-formedness of (1). By Lemma[4.4.1]
x € fv(P) implies x € dom(T,A,X) thus we have x ¢ fv(P). Then P{k/x} = P. From (1) we
obtain:

OAEEP:T (2)

We have k ¢ dom(I", A, X) by assumption, and we can apply (Close) to obtain:
A X k:end-P: T

which is the desired result, since S = end and P{k/x} = P.

2. x#k'. Then from (1) we obtain:
A (Z\{K:end}),x:SEP:T (4)
By the LH. on (4) we have:
;A (Z\ {K :end}),k: S+ P{k/x}: T (5)

We now consider two cases:

(a) k':end € . Then with an application of (Close) on (5) we obtain:
A S k:SEP{kx}:T

as required.

(b) k':end € . Then £\ {k":end} = X and the result is immediate from (5).
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The remaining session cases are straightforward. O

Lemma 4.4.11 (Shared Value Judgement). [fT; A;X -V : U and U € {unit, (S)} then A=X=0.

Proof Straightforward to show by induction on the typing derivation. There are two cases to
consider: if U = unit then by (Unit) the result is immediate; if U = (S) then by (Shared) the result

follows. No other typing rule need to be considered for this type of value. O

Balanced Session Environments

Before stating the main theorems, we introduce the important notion of balanced session environ-
ments [39]. This formulation is used in theorems, to allow only typings where the two ends of
a channel are of dual types, modulo subtyping; otherwise there could be incompatibilities in the

structure of communications, which is undesirable.

Definition 4.4.12 (Balanced Session Environment). Formally, we say that a session environment

Y is balanced, written balanced(X), if whenever s: S,5: S, € X, then S| <. S>.
Theorem 4.4.13 (Type Soundness).
1. Suppose T; A;LF P : o with balanced(X). Then P = P implies T; A;EFH P2 0.

2. Suppose T;0;L = P : T with balanced(X). Then P — P’ implies T;0;X' & P' : T with
balanced(X).

Proof In both parts the proof is by induction on the typing derivation for P, given by the assumed
judgement, taking cases on the last rule applied, using = in (1), and — in (2). Part (1) is
standard, however we present one case which is slightly different. For Part (2) we show the

important cases.

Part (1)

Most cases are standard. We are interested in the case of scope extrusion of session endpoints, that
is, (vs) P|Q = (vs) (P| Q) when 5,5 & fn(Q). We need to investigate two directions, corresponding

to the two ways in which the rule can be applied.

Case (Scope extrusion (endpoints) =) P=(vs)R|Q P = (vs)(R|0Q) T=o¢
balanced(X) 5,5 ¢ fn(Q)
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The last rule applied is (Par), then from the premises, with A = Aj,Ay and £ = X, %), we

obtain:
AGE F(vs)R:o (1)

DA H Qo (2)

In (1) the last rule applied was (Newy), and we obtain the premise:
[A12,s:5,5:SFR: 0 (3)

From the well-formedness of (3), we know that s, 5 ¢ dom(X;). However, even though s,5 & fn(Q),
it is not guaranteed that 5,5 ¢ dom(X,) because ended hypotheses can be introduced by the use
of (Close). If s or 5 or both appear in X,, we cannot apply (Par) on (3) and (2), because the

Y-environment will not be defined.

1. ¥, =Y),5:5) and 5 ¢ dom(X}). By Lemmaf4.4.7we have that S| = end. Using Lemmaf.4.4]

we can obtain

CAGE F Qo (4)
Then we apply (Par) on (3) and (4) and obtain:
[AX, 2, s:8,5:SER|Q: 0 (5)
With an application of (New,) we obtain:
OAZLE E (vs) (R]Q) io (6)
Then with an application of (Close) we obtain:
AL (vs) (R]Q) o

as required.
2. ¥, =%,,5:8 and s & dom(X}). As above.

3. X =%),s5:851,5:51. As before but with two applications of Lemma and two applica-

tions of (Close) in the end.

4. 5,5 ¢ dom(X;). Then we apply (Par) followed by (New;) and obtain the required result as

before.
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O

Case (Scope extrusion (endpoints) <) P=(vs)(R|0Q) P'=(vs)R|Q T=o
balanced(X) 5,5 € fn(Q)

The last rule applied was (New,). From the premises we obtain:
AL, s:S,5:SER|Q:0 (1)
Let A=Aj,A and X,s:S,5:S = X1, X,. The last rule applied was (Par) giving the premises:

F;Al;leRZO (2)
A3 00 (3)

We now examine the following four cases:

1. £ =X,s5:5,5:S. Then we can apply (New;) on (2) followed by (Par) on the result and (3)

to obtain the required judgement.

2.5 =X,5:S A 5¢&dom(X}). Then we have £, = ¥},5:S and by Lemma S=
end = S. By Lemma4.4.4on (3) we obtain:

DAxT F Qo (4)
With an application of (Close) on (2) we obtain:
[;A12,5:SER: o (5)
With an application of (New;) on (5) we obtain:
DAGE F (vs)R: o (6)
Then applying (Par) on (6) and (4) we obtain:
CAEL XS (Vvs)R o

which is the required judgement since X}, X, = X.

3. £ =X%,5:5 A s¢dom(X}). Similar to above.
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4. 5,5 ¢ dom(Z;). Similar to the above case but with two uses of Lemma on (3) and two

applications of (Close) on (2).

Part (2)

The interesting cases are (beta), (conn), and (comm). The case of (rec) is almost identical to (beta),
and simpler due to the absence of hypotheses in the session environment due to the repetitive
actions of the term. Notice that the assumed judgement has an empty linear environment, but this

is not a restriction, because reduction is only defined between closed terms.

Case (beta) P=M\x:U).0)V P =0{Vh} £=3%.,%  balanced(X)

The last rule in the derivation for the assumed judgement was (App) from which we obtain the
premises:
Lo FAMx:U).Q:U—T (1)
0% FV:U (2)
Also, by the sidecondition (), if U = U’ — T’ then £, = 0.
From (1) we have that the last rule applied was (Sub), as it is the only rule to introduce the

linear function type, with premise:

[0E, FA(x:U).Q:U—T (3)
U—T <. U—T (4)
) <L (5)

To accommodate for the different abstraction rules that could have been used to obtain (3), we

will need to take cases on the type U.

1. U € {unit,(S),U; — T1}. Then the rule used to type (3) was (Abs), and we obtain the

premise:

[x:U;0:X2 FQ: T (6)

Looking at (2), by Lemma[.4.11] if U € {unit, (S)}, we have that £, = 0. By the sidecon-
dition (), if U = U; — T, we also have X, = 0. We can therefore use Lemma 4.4.10} part

(1), to obtain:

02 Fo{Vixy: T (6)
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Using (Sub) with premises (6), (5), (4) we obtain:

L0 FO{Via}y: T

which, since X, = 0, is equivalent to:

Li0:X - Q{V/x}: T

with balanced(X), from the assumptions, as required.

. U =U) —o Ty. Then the rule used to type (3) was (Abs;), and we obtain the premise:

C{x:ULE FQ: T (7)
Then using Lemma[4.4.10] part (2), we obtain from (7):
L0 X Do - O{Vnh: T (8)
Using (Sub) with premises (8), (5), (4), and since X}, X, <. Z;,X,, we obtain:
LO:EEO{VA}: T

and as before balanced(X), as required.

. U =S. Then the rule used to type (3) was (Absg), and we obtain the premise:

02 ,x:SEQ:T" (9)
We also have that V = k and £, = {k:S}. Then using Lemma 4.4.10} part (3), we obtain
from (9):
L0 5, kxS Q{Fx} - T/ (10)
Using (Sub) with premises (10), (5), (4), and since X7, k:S <. Xi,k:S and X, = {k:S}, we

obtain:

00,2 Ok} : T

with balanced(X) as required.
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Case (conn)  P=a(x).Q|a(z).R  P'=(vs)(Q{Sx} [R{%:})  s,5¢n(Q,R)
T=o r=X.,% balanced(X)

The last rule applied is (Par), from the premises of which we obtain:

[0 Fa(x).Q:0 (1)
05 Fa(z).R:o  (2)

The last rule applied for (1) is (Conn), with premises:

;0,0 a: (S) (3)
[0:X,x:SEQ:0 (4)

The last rule applied for (2) is (ConnDual), with premises:

;0,0 a: (S) (5)
[;0;%,2:SFR: o (6)

Above we used the fact that S = S. Since 5,5 ¢ fn(Q,R) we can apply Lemma , part (3), on

(4) and (6), respectively, to obtain:

[0:2,s:SEQO{/x} -0 (7)
[;0;%,,5:SER{S/z}: 0 (8)

We can now apply (Par) with premises (7) and (8), since X;,X,,s:S,5:S is defined, followed by
an application of (News), to obtain:

0P :o
with balanced(X) as required. O

Case (comm) P=k2(x).Q| k" (V).R P'=Q{V/ix}|R k=sork=5s
T=o r=%.,% balanced(X)

The last rule applied was (Par), and from the premises we obtain:

0% Fk?(x).Q0:0 (1)
[;0;5 kN (V).R:o (2)
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In (2), the last rule was (send), and we obtain the premises:

0%, VU (3)
0,2 FR:0 (4)
k:S€Xy (5)
Yy = (%21,E0) \ {k: S} ,k:1[U].S (6)
U=U —-T = % =0 (7)

Since the environment ¥ is balanced, and k occurs in £y, we have that £; = X}, k:?[U].S. We

now take cases on the shape of U:

1. U € {unit,(S),U; — T; }. Then the last rule applied in (1) was (Recv), and we obtain the

premise:

Cx:U;0;Z,k:SEQ:0 (8)

In (3), by Lemmal4.4.11} if U € {unit, (S)}, we have that £,; = 0. Also, by (7)if U =U" —
T’ then again X5 = 0. We can now apply Lemmal4.4.10], part (1), on (8) and (3), to obtain:

;0,2 ,k:SEO{VA} o (9)
We proceed by applying (Par) using (9) and (4) in the premises, and obtain:
0,2, 200,k:SE Q{V/x} : o (10)

Since Xp; = 0 from (5) we have that k: S € 2. Let X5 = X),,k:S. Then X, X5, C ¥ and

therefore the final session environment X’ = X1 X/, k: S,k:S is balanced, as required.

. U =U; —o Ty. Then the rule used to type (1) was (Recv.), and we obtain the premise:

O {x:UL;Z k:SEQ: 0 (11)

We then apply Lemma4.4.10} part (2), with (11) and (3) to obtain:

0,30, 501, k:SE OV} o (12)
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Next we apply (Par) with (12) and (4) to obtain:
F;@;Z&,ZQl,ZQZ,k:EI_ Q{V/x} O (13)

Let ¥’ be the final environment with £’ = ¥{,%51,%,k:S. From (5) we have that £, =
2,1, Eh,,k:S. Therefore ¥’ =X}, %}, %),,k:S,k: S and since X},X5,, X5, C £ we have that

Y/ is balanced as required.
3. U=S". Then V =k’ and, from (3), £5; = {k’:S’'}. The rule used to type (1) was (Recvs),

and we obtain the premise:

50,5 ,k:S,x:8' =00 (14)
We then apply Lemma[4.4.10} part (3), with (14) and (3) to obtain:
L0 k:S,K:8' - O{K )k} o (15)
Next we apply (Par) with (15) and (4) to obtain:
;0;2), 200, k: S,k :S = O{V/x}: o (16)
Let Y be the final environment with ¥/ =¥ %5, k:S,k":S". We consider two cases (recalling

that a session can emit itself):

(@) k =K'. Then using (5), we obtain that S’ = S. The final environment ¥’ becomes

¥\, %00, k:S,k:S and X, C X hence balanced(Y) as required.

(b) k # k. Then from (5) we have X5, = X),,k:S. The final environment ¥’ becomes
0,2 k:S,k: S,k S" and since Xp; = {k':S'} we obtain £},X5,,k:S,k: 5, 1. We

have X{,X},,X; C X therefore balanced(X') as required.

Type safety

We now formalise type safety. First, a k-process is a prefixed process with subject k (such as k?(x)
and k!(V)). Next, a k-redex is a parallel composition of a k-process and a k-process, of the form

(kNVYP | k2(x)Q) or (k<1ly.P|k>{l;: Q1;-+-1,: Qn}) with 1 <m < n. Then we say P is an
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error if P = (vd)(v5)(Q | R) where Q is, for some k, the |-composition of either a k-process and a
k-process that do not form a k-redex, or two k-processes. The last class of error subsumes the case

of more than two k-processes in parallel. We then have:

Theorem 4.4.14 (Type Safety). A rypable process I'; A;E+ P : o with balanced(X) never reduces

into an error.

Proof By Type Soundness (Theorem #.4.13)), it is enough to show that error processes are not
typable. We prove this by contradiction. Assume P = (va)(vs)(Q | R) and let Q be an error

process. We consider two cases depending on the class of the error:

1. Q is the |-composition of a k-process and a k-process that do not form a k-redex. All com-
binations are similar. Take for instance Q = k!(V).Q; |k <11.Q5. Then by the typability
of P we have that (Par) can be applied on Q giving I'; A}, A2;X1,X F Q¢ (1) and from
its premises we obtain [';A1; 21 = kN (V).Q1 1o (2) and T3 A2; X, F k<11.Q5 2 o (3). In (2)
we can apply (Send) and therefore £; = X/, k:![U].S;. In (3) we can apply (Sel) and thus
Y =%, k:B[l:S1,. ..,1,:S,]. Since balanced(X) and £1,%; C ¥ we have balanced(Z;,X5).

But then we require ![U].S; <. ®[l;:S1,...,1,:S,] which is impossible to derive, hence we

arrive to a contradiction. Other combinations that do not form redices are proved similarly.

2. Q is the |-composition of two k-processes. As before all combinations are proved in the
same way. Let Q = k!(V).Q |k?(x).Q>. If we apply (Par) then from the premises we obtain
AL, A2 21,0 F Qo and from the latter’s premises we obtain I'; A3 X1 F&!(V).Q) : ¢ and
A2 X - k?(x).Qs = ©. We then have that £; = X, k:![U].S and X, = X,k 2[U'].S’ from
typing the premises with (Send) and (Recv) (or (Recv 5)). But then Xy,%; is undefined as k

occurs in the domain of both ¥; and X,. Other cases are similar.

4.4.2 Typing the Hotel Booking Example

Using the typing system, we can now type the hotel booking example in § [4.2.4] guaranteeing its

type safety. Agent has the following types at a and b.
a: (![string]...®[rtt <100: S;; rtt >100:S; |), b: (![S,].end)
with S| = &[cont : ?[S,].![int].end ; move : ?[S,].![int].end]

and Sy = &[cont :![string].?[int]...end ; move :!["c"].end]
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Note that the type of a is dualised because a is used as the input in Agent (see (Acc)). S consists of
higher-order session passing, and the thunk has a linear arrow type. Client and Hotel just have
the dual of Agent’s type at a and the dual of Agent’s type at b, respectively. Note that in Client,
subject y is shared in the sent code V, which is typed by (Send) with a general side condition

k:S; € I, explained in §[5.4]

4.5 Concluding Remarks

Our typing system is substructural in the sense that for session environments ¥ we do not al-
low weakening and contraction, ensuring that a session channel is recorded as having been used
only when it actually occurs in session communication expressions. Similarly no structural trans-
formations can apply to linear variable environments, ensuring that the occurrence of a variable
manifests that it has indeed been used exactly once. Note that, in our system there is no need to
enforce linear usage for other than functional types. Applying the inference techniques of [31}130]
and [84], with the algorithmic subtyping of [39], it may be possible to construct a type inference

system.






5 Asynchronous Session
Subtyping

Overview Here we introduce session subtyping into a buffered version of the process lan-
guage HOT® of the previous chapter. We define a coinductive subtyping relation between ses-

sion types corresponding to what is intuitively understood as more asynchronous behaviour.

5.1 Introduction

Our recent work [65] developed a new subtyping, asynchronous subtyping, that characterises
compatibility between classes of permutations of communications within asynchronous proto-
cols, offering much greater flexibility. However, an interesting development remained: how to
uniformly introduce communication optimisations in the presence of code mobility [|63l], incorpo-
rating higher-order sessions and functions into the asynchronous subtyping [65, § 6]. This is the

question we address in the paper [64], which is the basis for the material in this chapter.

Higher-Order Processes with Asynchronous Sessions. We develop a session typing system for
the Higher-order mt-calculus [79], an amalgamation of call-by-value A-calculus and ©t-calculus, ex-
tending [63]. Code mobility is facilitated by sending not just ground values and channels, but also
abstracted processes that can be received and activated locally, reducing the number of transmis-
sions of remote messages. The simplest code mobility operations are sending a thunked process
TP via channel s (denoted as s!("P™)), and receiving and running it by applying the unit (denoted
as s?(x).x()). In our calculus, communications are always within a session, established when

accept and receive processes synchronise on a shared channel:

a(x).x!(5).x!{true).x?(y).(y() | R) | a(x).x?(z1).x?(z2).x!("P")

resulting in a fresh session, consisting two channels s and 5, each private to one of the two pro-

cesses, and their associated queues initialised to be empty:

(vs)(s!(5).s!(true).s?2(y).(y() | R) | 52(z1)-5?(z2).51("P") | s:€ | 5:¢€)

105
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To avoid conflicts, an output on a channel s (resp. ) places the value on the dual queue s (resp. s),
while an input on s reads from s (resp. for 5). Thus, after two steps the outputs of 5 and true are

placed on queue s as follows:

(vs)(s2(y).(0() | R) | 52(z1)-52(z2) SUTPY) | s:€ | 5:5-true)

and in two more steps the right process receives and reduces to 5!("P{5/7, }{true/z, }). Similarly
the next step transmits the thunked process, and R can interact with P locally. The session type
of 5, S =?[nat].?[bool].![U].end (where U is the type of "P"), guarantees that values are received

following the order specified by S.

Asynchronous Communication Optimisation with Code Mobility Suppose the size of P is
very large and it does not contain z; and z,. Then the right process might wish to start transmission
of P to s: € concurrently without waiting for the delivery of 5 and true, since the sending is non-
blocking. Thus we send "P" ahead as in 5!("P").5?(z1).5?(z2).0. The interaction with the left
process is safe as the outputs are ordered in an exact complementary way. However the optimised
code is not composable with the other party by the original session system [81]] since it cannot
be assigned S. To make this optimisation valid, we proposed the asynchronous subtyping in [65]]
by which we can refine a protocol to maximise asynchrony without violating the session. For
example, in the above case, S’ =![U].?[nat].?[bool].end is an asynchronous subtype of S, hence
the resulting optimisation is typable.

The idea of this subtyping is intuitive and the combination of two kinds of optimisations is vital
for typing many practical protocols [[82,90] and parallel algorithms [67]], but it requires subtle for-
mal formulations due to the presence of higher-order code. The linear functional typing developed
in [63[] permits to send a value that contains free session channels: for example, not only message
51("s'2(x).s"1(x)") (for 51("P")), but also one which contains its own session 5!("5?(x).5!(x)7) is
typable (if R conforms with the dual session like R = 5!(7).s?(z).0). The first message can go
ahead correctly, but the permutation of the second message (as 5!("P")) violates safety since the

input action 5?(x) will appear in parallel with 5?(z;).5?(z2), creating a race condition, as seen in:

(vs)(52(x).51(x) | R | 52(z1).52(2z2).0 | s:€ | 5:5-true)

Our paper [64] shows that the combination of two optimisations is indeed possible by establishing

soundness and communication-safety, subsuming the original typability from [63]]. The technical
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challenge is to prove the transitivity of the asynchronous subtyping integrated with higher-order
(linear) function types and session-delegation, since the types now appear in arbitrary contravariant
positions [65]. Moreover the definitions are now exposed more constructively. Another challenge
is to formulate a runtime typing system which handles both stored higher-order code with open
sessions and asynchronous subtyping. We demonstrate all facilities of type-preserving optimisa-

tions proposed in [64] by using an e-commerce scenario.

Terms
PO,R = ...
| s:h  queue
Messages
h o= 1 label
| V. value

Figure 5.1: Syntax modifications for Asynchronous Higher-order mt-calculus

5.2 The Higher-Order nt-Calculus with Asynchronous Sessions

5.2.1 Syntax and Reduction

We modify and extend the Synchronous Higher-Order calculus of Chapter [ (HOn®), adding to the
syntax defined in Figure the productions of Figure We call the new calculus HOnt®, the
Asynchronous Higher-Order m-calculus with sessions. The new components are message queues,
also called buffers, and written s h. A queue s h provides access, via a session that uses s, to the
ordered messages h. Tt can be thought of as a network pipe in a TCP-like transport mechanism.
The messages can be values, or labels which are required for selection and branching. The dual
of a queue endpoint s is denoted by 5, and represents the other endpoint of the same session. The

operation is self-inverse hence

Gl
Il
n

Note that queues and session restrictions appear only at runtime. A program is a process which
does not contain runtime terms. Other primitives are standard. We often omit 0.

The bindings remain the same. The derived notions of bound and free identifiers, alpha equiv-
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alence and substitution are standard; see Figure Free names, however, are extended to queue

processes (which can contain labels) as follows:

fn(l) =0 fn(s:hl...hn) = (U,-el“nfn(h,-))u{s}

The single-step call-by-value reduction relation, denoted —, is defined as a modification of
the original rules of Figure[d.4] using the rules in Figure[5.2]

Rule (conn) is modified, to establish a new session between server and client via shared name u,
generating two fresh session channels and the associated empty queues (€ denotes the empty se-
quence). The original (comm) and (label) are removed and replaced with asynchronous rules for
session communication. Rules (send) and (sel) respectively enqueue a value and a label at the tail
of the queue for a dual endpoint k. Rules (recv) and (bra) dequeue, from the head of the queue, a
value or label. (recv) substitutes value V for x in P, while (bra) selects the corresponding branch
for index m.

Since (conn) provides a queue for each channel, these rules say that a sending action is never
blocked (asynchrony) and that two messages from the same sender to the same channel arrive in
the sending order (order preservation). Other rules are standard.

We use the standard structural congruence rules [59], defined in Figure We add a non-

standard rule, for garbage collecting queues from completed sessions:

(vs)(s:e|5:€)=0 garbage collection

With “—” we denote the multi-step reduction defined as (= U —)*.

5.2.2 Example: Optimised Business Protocol with Code Mobility

We show a business/financial protocol interaction from [90, |82 which integrates the two kinds of
type-safe optimisations. We extend the scenario from [[63]] to highlight the expressiveness gained
using the new method. Figure draws the sequencing of actions modelling a hotel booking
through a process Agent. On the left Client behaves dually to Agent; on the right, an optimised
MClient utilises type-safe asynchronous behaviour.

The Agent behaves the same towards both clients: initially it calculates the round-trip time
(RTT) of communication (rtt) and sends it; it then offers to the other party the option to consider
the RTT and either send mobile code to interact with the Agent on its location, or to continue the

protocol with each executing remotely their behaviour. When mobile code (after choice move) is
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(beta)
(AMx:U).P)V — P{V/}
(rec)
(uyAx.P)V  —  P{V/x}{myAx.P/y}
(send)
kWVV.P|k:h — P|k:h-V
(recv)
k2(x).P|k:V-h — P{V/}|k:h
(sel)
k<l.P|k:h — P|k:h-1I
(bra)
k> {l1:P,....Ly: P} | kily-h — Py |k:h 1<m<n
(conn)
a(x).P|a(z).Q — (vs) (P{S/x} | Q{5/z} |s:e]5:€) 5,5 ¢fn(PQ)
k=sork=5s
/ — 0 _,p
(app-l) Pg : IP)’Q (app-1) nggQ' (par)ﬁ
(resc) P—F (ress) P—P (str) P=P —0'=0

(vs)P — (vs)P’ P—Q

Figure 5.2: Reduction
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Client Agent MClient
rit rtt
< \\
move move
. »le
P >
code code
run code S run code
___________ ' Ve o oo oo o o o -
)/ hotel hotel N
roomtype roomtype
rate rate creditcard
creditcard < <
local

Figure 5.3: Standard (left) and Optimised (right) Interaction for Hotel Booking

received, it is run by the Agent completing the transaction on behalf of the client, in a sequence of
steps. The behaviour of Client is straightforward and complementary to Agent, but MClient has
special requirements: it represents a mobile device with limited processing power, and irrespective
of the RTT it always sends mobile code; moreover, it does not care about money, and provides the

creditcard number (card) before finding out the rate.

To represent this optimised scenario, we start from the process for Agent:

Agent = a(x).x!(rtt).x>{move: x?(code).(run code | Q), local : O}

Q = x?hotel).x?(roomtype).x!(rate).x?(creditcard) ...

The session is initiated over a, then the rtt is sent, then the choices move and local are offered. If
the first choice is made then the received code is run in parallel to the process Q which continues
the agent’s session, performing optimisation by code mobility. As expected, Client has dual

behaviour:
Client = a(x).x?(rtt).x <move.x!("x!(ritz).x!(suite).x?(rate).x!(card)....”)

A more interesting optimisation is given by MClient which at first may seem to disagree with the

intended protocol:

MClient = a(x).x <move.x!("x!(ritz).x!(suite).x!(card).x?(rtt).x?(rate)...")
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After the session is established, it eagerly sends its choice move, ignoring rtt, followed by a
thunk that will continue the session; and another important point is that in the mobile code the
output of the card happens before rtt and rate are received.

Even without subtyping, the typing of sessions in the HOm-calculus poses delicate condi-
tions [63]]; in the present system, we can further verify that the optimisation of MClient does not
violate communications safety (but the similar example in § 1, 5!("s?(x).5!(x)7).5?(z1).5?(22).0,
must be untypable): when values are received they are always of the expected type, conforming to

a new subtyping relation given in the next section.

5.3 Higher-Order Asynchronous Subtyping

This section presents a theory of asynchronous session subtyping: reordered communications
between two processes, in the presence of higher-order values and session mobility, can preserve
the desired type-safety and progress invariants of the original protocol.

A permutation of two inputs or two outputs is not permissible because it violates type-safety.
Suppose P = s!(2).s!(true).s?(x).0 and Q = 57(y).5?(z).5!(y +2).0. These processes interact
correctly. If we permute the outputs of P to get P’ = s!(true).s!(2).s?(x).0, then the parallel
composition (P' | Q) causes a type-error. Similarly, an alteration in the order of inputs may cause
deadlock, losing progress in session s. For example, consider exchanging s!(true) and s?(z) in
P, = s!{true).s?(z).0, and Q| =5?(y).5!(2).0.

The syntax of types remains the same as in Chapter [ defined in Figure [4.6] on page
We begin with some preliminary notions. An occurrence of a type constructor not under a re-
cursive prefix in a recursive type is called a rop-level action. For example, ![U;] and ?[U,] in
U1].2[Uz].ut.![U3).t are top-level, but ![U3] in the same type is not.

Consider the following types:
S = NU1].2MUz].ut N [Uy].2[Us] t
S2 = ,ut.?[Uz].![Ul].t

Intuitively, we want to include S in the subtypes of S», because in the infinite expansion of the
types any action of S; can be matched to one in S;. The first output ![U;] of S} needs to be matched

with a copy of the same output obtained after unrolling the recursion in S, once, resulting in:

Sh =] [U1].5>
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This unrolling is necessary because under the u binder, every action has multiplicative effect, and
by unrolling once we can obtain one of the possibly infinite instances of the action. For this
strategy to succeed, we need to obtain the output ![U;] in S5 which is guarded under the input
action ?[Us]. Then, the input action can be compared, and the remaining types checked, following
a coinductive method similar to the one in Chapter

To summarise, in asynchronous coinductive subtyping we need to formalise both the unfolding
of a type and also the type contexts specifying the top-level actions that may guard an output (or
selection).

We generalise the type unfolding function defined in [39] so that it can be applied to guarded

types, yielding the following definition, based on [65]]:

Definition 5.3.1 (n-time unfolding).
unfold®(S) = S for all § unfold!*"(S) = unfold! (unfold”(S))
unfold! ({[U].8) =![U].unfold' (S)  unfold" (®[;: Silier) = ®[l;: unfold! (S;)]ies
unfold! (?[U].8) =?[U].unfold' (S)  unfold' (&[l;: Si]ier) = &[l;: unfold! (S;)]ies
t

1
(
unfold!(t) = unfold! (ut.S) = S[ut.S/t] unfold! (end) = end

For any recursive type S, unfold”(S) is the result of inductively unfolding the top level recur-

sion up to a fixed level of nesting. For example:

unfold' (2[U].ut.[U'].t) = 2U]NU'|.ut.\[U'].t

unfold(?[U].ut.2[U].ut' NU').Y) =
unfold' (?[U].2[U .ut' N[U'].¥) =
AUN2U)NU b N [U').E

From the definition we have that unfold! (unfold”(S)) = unfold”(unfold!(S)), even though nor-
mally we apply from the outside. Also, since recursive types are not unfolded until they become
guarded, but only n-times, unfold”"(S) terminates. Moreover, because our recursive types are con-
tractive, there is no need to apply unfolding indefinitely to obtain a guarded type.

Then we proceed to define the contexts corresponding to a nested structure of top-level input
actions (where branching is treated like input in the sense that a label is to be received). The
rationale is that a supertype is less asynchronous than a subtype, hence may consist of input actions

before any outputs that need to be checked first, based on the prefix of the subtype. Thus, the
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multi-hole asynchronous contexts are defined as follows:

Definition 5.3.2 (Asynchronous Contexts).
A = (Y U)a | &l Alicr

We write A(S,)*<H for the context 4 with holes indexed by & € H, where each hole (-)"<# is

substituted with Sj,. For example, taking H = {1,2} and
A= &l UL b ()
we obtain
A U8y = &[1, 2[U)NU').Sy, I 2V [U').S5]

We now introduce the main definition, asynchronous communication subtyping, which is a

modification of the coinductive method of Definition 4.3.1t

Definition 5.3.3 (Asynchronous Subtyping). A relation R € 7 x 7 is an asynchronous type

simulation if (77,7>) € R implies the following conditions:
1. If T} = ¢, then T, = .
2. If T} = unit, then 75> = unit.
3. 1T =U; — T/, then, =U, — Ty or T, = Up — T, with (U»,U;)® € Rand (T{,T)® € R.
4. f Ty = U, —o T{, then T = U, — Ty with (U»,U;)® € R and (T{,T,)® € R.
5. If 71 = (1), then T, = (S,) and (51, S5,) € R and (S,,51) € R.
6. If 7| = end, then for some n, unfold"(7>) = end.

7. If Ty =![U;].S), then for some n, unfold”(T3) = A(![U5].S2,)"H with (U;,U,)® € R and
(S],ﬂ<S2h>h€H) e R.

8. If Ty =?[U,].S, then for some n, unfold”(73) =?[U].S2, (Uz,U;)® € R and (S1,5,) € R.

9. If T1 = ®[l; : S1ilicr, then for some n, unfold” (T>) = A(P[l; : S2jh]jejl1>h€H andVhe H.ICJ,
and Vi € I.(Sli,le<52,‘h>h€H) e R.

10. If 7y = &[l; : Sii]ics, then for some n, unfold"(T5) = &[lj : S2j]jes, J CTand V j € J.(S1},52;) € R.
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11. If T} = ut.S, then (unfold'(71),T3) € K.

The coinductive subtyping 71 <. T» (read: T; is an asynchronous subtype of T,) is defined when
there exists a type simulation R with (77,72) € R. Formally, <. is the largest type simulation,

defined as the union of all type simulations.

Most cases are similar to the ones in Definition[4.3.1] but in order to facilitate the asynchronous
rules the unfolding of the supertype is performed at each case for some level n. We focus on the
new rules: in (7), an output prefix of 77 can be simulated when 7, can be unfolded to obtain a type
that has an output hidden under an asynchronous context A4, which by definition consists of only
inputs and branchings. Therefore, U; is compared to U,, the first available top-level output. As
before, we adapt the variance based on the shape of U;. Then the continuation S; of 77 is compared
with the asynchronous context A(S;,)"<H where the output(s) have been removed, since they were
matched with the output prefix of 77. For the input in (8), we do not use any context, since the
input must appear as the first action after unfolding. No action can appear before the desired
input at the supertype: if there is a branching (which is a form of input, with labels as values)
it is not comparable, and if there is an output or selection then 7, cannot be a supertype of the
input-prefixed type 7;.

In (9), selection is defined similarly to output and a label appearing in 77 must be included in
the top level selections of the asynchronous context derived from 7,. Note that in the supertype,
each hole in the context may use a different indexing set I, but the set I of the subtype is smaller
than all these sets. Dually to selection, in (10), branching is defined like input and any labelled
branch of (the unfolding of) 7> must be supported in 7;. Finally (11) forces 7} to be unfolded until

it becomes a guarded type.

5.3.1 Some Examples of <.

We show four small but representative examples which highlight key points of our subtyping
relation. The first example shows that permuting outputs in advance of inputs in an infinite type
preserves subtyping. The second example demonstrates that in some subtypings, a finite number
of extra outputs can appear in the subtype, and dually, a finite number of extra inputs can appear
in the supertype; this is acceptable when the total outputs remain infinite without losing type
compatibility, and similarly for inputs. The third example demonstrates a case where n-level
unfolding is required. The fourth example which is atypical exposes a class of subtypings that

induce infinite simulation relations, due to asynchronous subtyping.
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Three typical examples Consider the types given previously:
S = NU1].2MUz].ut N [Uy].2[U] t
S2 = ,ut.?[Uz].![Ul].t

It is easy to verify that S <. S» by checking that the following relation is a type simulation:

R = {(S1,8), (U,Ur), (U2].ut.M[U1].2[U3] £, ?[U2].S2),
(U2,Us), (ut.!'[U].2[U,] 1,S2) }

It is also straightforward to show that for the following types:

Sy = U]t \[U1]).2]0s) t
R AR RIARIAR!

It holds that S5 <. S4 using the following simulation:

R = {(53754), (U],U]), (,ut.![Ul].?[Uz}.t,?[Uz].S4),
(\[U1].2Us] .1 [U1].2[Un) 4, 2[Us].Sa), (2[Us]at.\[U1].2[Us) ., 2[U5].2[Us).S),
(Uz,U2) }

Also easily we can demonstrate that for the following types:

Ss = uptAU2U)&[l it 0t
S6 = ,utl.?[U].,utz.&[l]2![U].t1,lzi![U].t1]

We have that S5 <. S with the following simulation:

R = {(55.56), (U,U), (unfold'(Ss),S6), (unfold' (Ss),unfold*(Ss)),
(?[U].&[ll : Ss,lz : S5],?[U].&[ll . S6,l2 . 56])7 (&[11 : S5,lz 255],&[11 : Sé,lz N 56])}

In fact, since as we prove in the next section <. is transitive, we can also find a simulation
R’ such that (ut.![U;].2[U].&[l; : t, 1 = t],uty U] .uty. &1 2 [Us] 41,1 2V [Us].ty]) € R’ whenever
(U,U)® € R and (Uy,U3)® € R'. For this the simulation will support the intermediate results
(ut U] .2NU).&(l : b0 c t], uty 2[U ] uty. &1y N [Uy] .4y, U] .4]) € R and (uty 2([U].uty. &[1
ULty ULt ity Ut &1 VU], D 2V [US) L)) € R
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A more controversial example Consider the types:

S7 = uwt!U].t
Sg = ,ut.![Ul].?[Uz].t

Perhaps surprisingly, it holds that 7 <. Ss, as evidenced by the following simulation:

U {(S7,?[U2}n.58), (![Ul].S7,?[U2]n.Sg) ’ ne ON}

where ?[U,]".Ss is the type Sg prefixed with a sequence of n input actions ?[U,]. Effectively, the

subtype is sending all the infinite outputs in advance, and never receives any values.

The above example seems slightly pathological: operationally if a process running a session
with the subtype ut.![U;].t takes the place of one typed with the supertype ut.![U;].?[Us].t, its
buffer might grow indefinitely. To see why, assume that the process with session ut.![U,].t inter-
acts, as expected, with a process that runs the session with type Sg = ut.?[U;].![U>].t. Clearly, the
values of type U, are received in the buffer but not in the program, therefore the buffer increases in
size indefinitely, eventually causing a buffer overflow. However, type safety is not violated since

no value of unexpected type is ever received within a term.

There are many similar examples, where the common denominator in all is the presence,
within a recursion at the subtype, of a greater proportion of output actions (including selection)
compared to the supertype. For instance, ut.![U,;].![U;].?[Us].t <. ut.![U;].?[Uz].t also holds and

can be shown with an infinite simulation relation.
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5.3.2 The Relation <. is a Preorder

We conclude this section with the main theorem, stating that <. is a preorder. In inductively
defined subtyping systems, commonly presented as a set of deduction rules, transitivity is a prop-
erty by definition [35. [76]. In a coinductive setting, transitivity cannot be assumed, and not every
simulation is guaranteed to contain the necessary hypotheses; however, we can prove that <. is
transitive by careful construction of supporting simulations, containing the necessary components
up to unfolding and context manipulation.

If <, was not transitive, there would not be type safety. The typical explanation is that, if
there exists U; <. U, and U, <. U3 such that U; €. Us, then from two consecutive applications
of subsumption (such as with rule (Sub) of the previous Chapter) we may provide a value of type
U, when Uj is expected, which is unsafe when U; €. Us. For a detailed exposition to the issues
arising from the use of coinductive definitions in subtyping, see Chapter 21 of [[76].

The standard method of relational composition [39] is not enough for proving the transitivity
of <.. Moreover, the asynchronous coinductive subtyping in our previous work [65] does not
work with higher-order and contravariant components in types. The difficulty is that, given S7 <,
S, and 7 <. S3, we need to find a subtyping relation that includes enough elements to justify
S1 < S5 directly. However, due to the use of nested n-times unfolding with manipulation of
asynchronous contexts, we only obtain information which cannot be straightforwardly combined
with the hypotheses from S, <. S3.

Our objective is to discover how to obtain the missing elements, and to achieve it we gradually
formalise a set of extensions on simulations, essentially monotonous functions from simulations
to simulations, and then utilise them to prove the main result, Theorem stating that <. is a

preorder.

Overview of Proof Specifically, we perform the following steps:

e We prove as standard that unfolding S; or S or both in §; <. S preserves the subtyping.

We formalise the unfolding extension of a simulation to include such n-times unfoldings.

o We define a class of single-step permutation contexts representing an input/branching pre-
fixed type. Then we formalise rules for moving an output/selection appearing within such
a context (that is, immediately after the initial input/branching), to the position ahead of it.

This represents the finest granularity of permutation since it is not transitive.

e The contextual extension of a simulation is defined, which is a supporting construction. It
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is necessary in order to obtain the subtypings that arise when removing an output/selection

from a single-step permutation context, thus changing its original structure.

e The asynchronous extension of degree n is defined by applying n consecutive single-step
permutations on the subtypes in a simulation relation, and up to contexts A (that is, also
deep within the structure of types). Both the contextual and the unfolding extensions are

necessary to prove that this relation is also a simulation.

e Multi-step permutations that can extract an output/selection from deep within a context
A, placing it ahead of all actions (that is, prefixing A4), are shown to be included in the
asynchronous extension of degree N. This is effectively a proof that the transitive application

of nested single-step permutations is included in the asynchronous extension.

e The transitivity connection of two simulations is then defined, utilising a composition of
asynchronous extensions for the given simulations. The proof that the transitivity connection

is a simulation implies that <, is transitive.

e The relation <. is shown to be a preorder: reflexivity is easy to obtain using straightforward
techniques, and transitivity is proved directly by utilising the result for transitivity connec-

tions.

Lemma 5.3.4. [f S| <. S then unfold"(S1) <, S».
Proof Let R be a type simulation such that S} R S,. Let

U(R) = | {(unfold'(S7),55)[(S],85) € R}UR
icl.n
Clearly (unfold"(S;),52) € U'(R), but is has to be shown that 7}'(R) is a type simulation.
For this we need to demonstrate that for any (7;,7>) € U'(R) the rules of simulation (Defini-
tion[5.3.3) hold. Since R C 7' (R) and R is a simulation, we only need to examine the cases for
(unfold’(S}),S5) € U (R) \ R, that is, for the new elements for which (S,S5) € R holds by our
construction of U'(R).

In the following we write gE“) to mean case (11) of Definition

Case unfold(S}) = end. Then S| = ut;...ut..end for 0 < z < i. We have, by assumption, that

(81,85) € R, therefore after applying <" 7 times we get (end,S) € R, and by the rules of

simulation unfold™(S}) = end, for some m, as required.
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Case unfold'(S}) =![U;].S19. Without loss of generality let S| = ut; ... ut,.!/[U;].S}, with 0 < z < i.
We have (S57,55) € R and after z uses of <" we obtain (unfold*(S}),S5) € R which can be
written, based on the shape of S, as (![U;].5,,8,) € R. The type S}, is derived from S,
after the type variable substitutions induced by the z unfoldings on S}. By the rules of sim-
ulation, from (![U;].57,,S5) € R we obtain unfold”(S}) = A([U,].S2,)"H and (U,U,)® € R
and (87, A4(S2,)"<M) € R. From the shape of S| given previously we have that unfold'(S}) =
I{U1].unfold%(S},) and by our assumptions S;o = unfold’*(S},). By the construction of UJ'(R)
and (87, A(S,)"<") € R we have that (unfold'(S7,), 4(S2,)"H) € U (R). Therefore we have
(S10,A(S21)"H) € W' (R). From the definition of 72'(R) which includes R the above provide us
with (Uy,U2)® € U}(R) and (S10,-4(S2)" ") € U'(R), as required.

Case unfold'(S}) = ut; ...ut,.S10. Then without loss of generality S| = ut} ... ut\.ut; ... ut,.S},.
The type Sy is derived from S}, after the type variable substitutions induced by the i unfoldings
on S}. Since (S5},55) € R, after i applications of <" we obtain (unfold’(S)),S%) € R and hence
(unfold' (unfold’(S")),S5) € R which is the required result since R C 7' (R).

Other cases are similar. O

Lemma 5.3.5. IfS1 < 8o then S <, unfold"(Sz).

Proof Let R be a type simulation such that S; R S;. Let

U {(S},unfold’(S5)) | (S7,85) € R} UR

i€l.n

The proof follows a pattern similar to the previous lemma. Clearly (S;,unfold"(S)) € U} (R),
but is has to be shown that U (R) is a type simulation. For this we need to demonstrate that for
any (T1,T») € U/ (R) the rules of simulation (Definition [5.3.3) hold. Since R C U (R) and R is
a simulation, we only need to examine the cases for (S;,unfold”(S:)) € U (R) \ R with m < n,
that is, for the new elements for which (S1,S2) € R holds by the construction of U (R).

Interesting cases are:

Case S| = end. Then (S;,S20) € R and S, = unfold™(Sy0) and unfold*(S29) = end. If z < m then

unfold™(S20) = end as required. If z > m then unfold*™™(S,) = end as required.

Case S| =![U].S}. Then (S1,S20) € R and S» = unfold” (Sz9) and unfold*(Sa) = A(![Ua].Sas)"<H
and (Uy,U2)® € R and (S}, A(S2,)"<H) € R.
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If z < m then, using the definition of unfold
S2 = unfoldm_z(ﬂ<![Uz].82h>h€H) = ﬂ(![Uz].Unfoldm_Z(Szh»hEH

We have (U;,U,)® € R, then we need (S}, 4 (unfold™ %(Say,))1<H) € €?(R). From (S, A(San )< €
R we obtain (S, unfold” ?(A(S2,)"<H)) € U*(R), and then from the definition of unfold we ob-
tain unfold™ *(A(Sy,)"") = A (unfold™ *(S;))"<H, as required. If z > m then unfold* " (S,) =

A(\[U].82,)"<H and the supporting elements are in R, as required.

Other cases are similar. O

Definition 5.3.6 (Unfolding Extension). Given a simulation R, the unfolding extension of R is
defined as follows:

WR) = W R) VU (R)

Proposition 5.3.1. If R C<, then U"(R) C<.. That is, for any simulation R, the unfolding

extension U"(R) is a type simulation.

Proof Trivial as U"(R) is defined as the union of two simulations. O

We now define the single-step permutation transformations for top-level actions, which enable
us to obtain more asynchronous subtypes, as this is needed further on when, given a simulation,
we obtain more asynchronous simulations utilising single and multi-step permutations. There are

two components, permutation contexts C and permutation rules >>, defined as follows:

Definition 5.3.7 (Single-step Permutation).

Permutation Contexts

C == ULV | &l ()M

Permutation Rules

S > S
CUULS)EHE > MU].C(Sp)<H

C®[l = Sinlier, )" > Oli: C(Sy)" )i VYheH.ICI,

Definition 5.3.8 (Contextual Extension). Given a simulation R, the contextual extension of R is
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defined as follows:

Cf(%) = {(?[U]].S],?[Uz].Sz)’(Uz,U1)®€m/\(51,52)69{}
U {(&[liZSli]ig,&[lj:Szj]jej)|J§I/\Vj€].(slj,52j)Eg{}

U R

Lemma 5.3.9. If R C<, then CE(R) C<,. That is, for any simulation R, the contextual extension

CE(R) is a type simulation.

Proof Trivial since the generated pairs in CE(R) are exactly those justified by the conditions in
Definition[5.3.3] cases (8) and (10), with the required assumptions provided in R. We do not need
to examine the R subcomponent as it is a simulation by assumption. O

Next we define the asynchronous extension of a simulation, with degree n. The degree rep-
resents the number of single-step permutations, applied successively to all the components of the

given simulation, up to asynchronous contexts 4.

Definition 5.3.10 (Asynchronous Extension). Given a simulation R, the asynchronous extension

of R with degree n is defined as follows:
a®(R) = R
o'(R) = CE(U(a"(R)))
UL (A(S),) "1 82) [ (A(S1a)"eH S5) € o H(R) AVREH .S1y, > Sy, b (n>1)

Lemma 5.3.11. If R C<, then o"(R) C<,. That is, for any simulation R and degree n € N, the

asynchronous extension o'(R) is a type simulation.

Proof We proceed by induction on the degree n. The base case of n = 0 holds because R is a
simulation by assumption. We then prove the inductive case for any n > 1.

By the inductive hypothesis o'~ (R) C<,, then by Propositionwe have UM (o1 (R)) C<,,
and by Lemma we obtain CE(UN (" 1(R))) C<,. Therefore, it is not necessary to exam-
ine pairs in this subset of o (R). Then, it remains to examine an arbitrary pair (A(S] k)kEK ,$2) €
o' (R) such that (A(S1,) K, S,) € a1 (R) with Vk € K. Sy > S, We proceed by taking cases

on the shape of the context 4.

Case A = (-)*<K_Then let S| = A(S1,)*K, and S| = 4(S], )**X. We have S| > S/, and proceed
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by examination of the permutation applied.

Subcase S| = S. Trivial.

Subcase Sy = C{![U].Su)*K and S| =![U].C{S1k)*<K. We proceed with cases on C.
If C =?[U;].(-)*<K then
S1 = CQU].S1)* K =2[U1].1[U]. 81k
and

Sy =U].C(S1) K =1[U].2[U1].S 1k

(S1,8,) € o ! (R) unfold”"(S,) =?[U,].S)
(Uz,U1)® € (Xnil(gt)

(NU].S1k,S5) € o1 (R)

> > |

([U)-S1.Sh) € o \(R) = unfold”(Sy) = 4, ({[U).Sap)"<H
A (U UN® e L(R)
A\ (Slk,/ql <S2h>h€H) (S Otnfl(gi)

From the definition of n-times unfolding we obtain
unfold”*m(Sz) Z?[Uz]..ﬂl <![U’].Sgh>h€H = ﬂ2<![U/].SZh>hEH
with
A, =NU,|. A

Now we proceed to justify the inclusion (S7,52) € o"(R). We have ([U].2[U1].Sik,S2) € a*(R).

Also unfold™(8,) = 2, (![U’].S2,)"<H with (U,U")® € o1 (R)(C o*(R)). We then need to

show that (?[U1].S1x, 42 (Son)"H) € o*(R) which can be written (?[U;].S1x, 2[U2]. A1 (S)"<H) €
o"(R). We have (U,,U;)® € o1 (R) and (Six, A1 (San)"<7) € =1 (R), hence (?2[U1].S1x, o (San)"H) €
CE(o""1(R)) C o"(R) as required.

IfCc= &[l,‘ : <~>k€K]i€1, then

S; = CQU).Su) K = &[1; [U].S1i)ier
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and

St =1U).C(S1)* K =1[U).&][l; : S1ilier

(51,8) € a" 1 (R) = unfold"(Sy) = &[lj: 2] jes
A JCI
A VjeJ.(NU].S1j,S2;) € ' H(R)
= VjeJ.unfold"(Sy) = A;(1U'].S ;)"
A (U UN® ea {(R)
N Y ET (817, Ai(Sh)" M) € a'H(R)

Let Mmax = maxjc;(m;). Then from the unfolding construction of UM (a*~!(R)) we obtain

Vj € J.(Sy, unfold™m"i (4;(S5,)"<")) € N (o (R))

From the definition of n-times unfolding we obtain

unfold”*mmaX(Sz) = &[lj:unfold’”max_’"f(ﬂj<![U’].S’2jh>hEHf)]j€J
= A'(U'].85)"<"
with

a = &[lj : unfold™max—"j (ﬂj)}je] and H=4jey (H])

Now we proceed to justify the inclusion (![U].&[l; : S1]icr, S2) € o (R). We have unfold™"m=x(S,) =
(! [U’].Séjh>h€H, and (U,U")® € o~ ! (R). We then need to show that (&][l; : Sli],-g,ﬂ'<S’2jh>h€H) €
o (R). Since J CTand Vj € J.(Sy, unfoldmmax*mf(ﬂj<S’2jh>h€H)) € UN(o"'(R)), we have that
(&Il; = Siilier, &[1 - unfoldm"‘ax*mf(/‘le<S’2jh)h6H)]jE/) € CE(UN (a1 (R))), as required.

Subcase S| = C{(D[l; : S]ik]igk)kEK and Sll =[l;: C(Slik>k€K}i61 with VYke K.I CI,. We

proceed with cases on C.

If C =2[U;].(-)¥K then
S1 = C(®[l : Staier, )X =2[U1]. @ [l : Suilies

and

Sll = @[ll . C<S1[k>k€K]i€1 = @[ll :?[Ul]-Sli}iEI
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(81,82) € ' {(R) = unfold"(S,) =?[Ua].S
A (UQ,U1>® S (Xnil(g{)
A (@[li : Sl,-],-g,S’z) S (xn—l(gt)

= unfold”(Sy) = A (DI} : Sajn]jes, )"
AN YheH.ICJ,
A Vi€l (Si, A (Saun)"H) € o H(R)

(@[l : Silicr, Sy) € 0" H(R)

From the definition of n-times unfolding we obtain
unfold”+m(S2) =?U,].4, <@[lj : Szjh]jejh>hEH = ﬂ2<@[lj : Szjh]jejh>hEH

with
2, =?U,].4

Now we proceed to justify the inclusion (S7,52) € a(R). We have (®[l; :?[U;].S1ilier,S2) €

o' (R). Also unfold™™(S;) = A (B[l : Sajul jes,)"<? with Vi € H .1 C J,. We then need to show

that Vi € 1. (?[U1].S1;, o (Sain) ") € o' (R) which can be written (?[U1].S1;, 2[Us]. 41 (Sain)"€H) €

o (R). We have (Up,U;)® € o~ 1(R) and (Sy;, A1 (Sain)"<H ) € o1 (R), hence (?[U1].S1;, Zo (Sain)'<H) €
CE(o*"1(R)) as required.

If C = &ll; : (-)*K];¢;, then
St = C(®[li : Sinlier ) K = &[l'; @[l : Stijlier)jer

and

St =0l C(S1)*Kier = Bl : &[I'j = Suijljes)ier VielJ.ICl;

(51,82) € o H(R) unfold”(Sy) = &[l'; : Sac).cz

ZClJ

VzE€Z.(&[li : Siz)ier,S2:) € A" H(R)

Vz € z.unfold™ (S2;) = AAD[L; : Sazjn) jes, )"
Vzez.VheH,.I, CJ,

Vzez.Viel,. (Sliza/qz<Szzjh>h€HZ) c o] (R)

> > | > > |

Let mMmax = max,ez(m;). Then from the unfolding construction of 7N (o*~!(R)) we obtain

Vz € Z.Vi € L . (Syz, unfold™m» (2S5, V<)) € N (o~ (R))
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From the definition of n-times unfolding we obtain

unfold™ ™™ (Sy) = &[I'.: AAS(L; : Sazjn) jes, )"z
= A&l : Sozjn)jes, )"

with

' =&[l'; unfold™=>"":(4)|,c;  and  H =W,z (H,)

Now we proceed to justify the inclusion (B[l; : &[I'j : S1jj] jeslicr, S2) € &' (R). We have unfold"t"max($,) =
A (@l : S2zjh]j€]h>h€H and from I C Lczcy C Jyen, we obtain Vh € H.I C J,. We then need to
show that Vi € I.(&[l'; : S1ij]jes, &[l'; : unfold™ "o ( A, (Sa,in)"H)],cz) € o (R). These pairs

are in CE(UN(a"~!(R))) by construction, as required.

Case 4 =?[U].A'. From the shape of 4 we have (?[U].4'(S1;)*X,S,) € o 1(R). By the rules of
simulation, unfold™(Sy) =?[U’].S} and (U',U)® € o~ }(R) and (A’ (Si;)*K,S}) € a1 (R). By
the construction of o*(R) we have (A'(S},) <K, S,) € a"(R). It is now straightforward to show

that (?[U].4'(S},)*<K,S,) is justified by the rules of simulation and the above hypotheses.

Case 4 = &|l; : Aj]ic;. From the shape of 4 we have (&[l; : 4;(S1,)*X)ic1,S2) € a"~1(R). By
the rules of simulation, unfold”(Sy) = &[l; : Szj]jes and J C I and ¥V j € J . (A;(S1k)*K,S,;) €
o'~ !(R). By the construction of a"(R) we have Vj € J. (4;(S],)*K,S,;) € o*(R). As before it
is now trivial to justify (&[l; : 4;(S},)*K)ic1,S2) € a(R). O

Corollary 5.3.12 (Multi-step Permutation).
L If (A(U1].S1x)%€K,S) € olN(R) then ([U1].4(S1k)*K, ;) € aN(R)

2. If (A(D[L = Svinlier,)"€H,82) € dN(R) and Yh € H .1 C I, then (D[l; : A(S1in)"“Mic1,52) €
aV(R).

Proof Every context 4 can be written as a (possibly empty) nested structure of C contexts, such
that 4 = C(G(Cu{. ..) )" )*<K_ BEvery level of asynchronous permutation in o (R) generates
pairs by applying a transformation on the innermost C contexts of all matching types; in this way
it reduces the depth of the innermost contexts for the generated type pairs, which are matched at
the next level. At every level, the penultimate contexts become last. By induction on the maximum

depth of the nested C-context representation of any A, we can obtain the result formally. O

Proposition 5.3.2. If (S1,S52) € aN(R) then (unfold”"(S}),S,) € a¥(R)
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Proof Easy to obtain: since >> allows the identity permutation, then for all m, o (R) will in-
clude CE(UN (0"~ (R))) D UN (0"~ (R)) even when there are no more effective permutations
to apply on any type, and up to all contexts. Suppose (S1,52) € o*(R), take m = z+n+ 1, and we
obtain the result (unfold"(S1),S52) € ™ (R). O

Transitivity Connection

Next is the main definition of this section, the transitivity connection of two relations. It is defined
as the relational composition (taking the union of both directions, needed due to the presence of
contravariant components) of the asynchronous extensions of the given simulations, respectively.
We then prove that the transitivity connection (of simulations) is a simulation, which is, effectively,

a proof of the transitivity of <.

Definition 5.3.13 (Transitivity Connection). For type simulations R; and R,, the rransitivity

connection tre(Ry,R,) is defined as follows:

trc(%l,i)iz) = OCN(%l) -OCN(mz) U OCN(EKQ) . OCN(C.Kl)

Lemma 5.3.14. If Rc( 2y <, then tre(R,Ry) C<. That is, for any two simulations Ry and

Ry, the transitivity connection tre(R1,R,) is a type simulation.

Proof We examine an arbitrary (77, 73) € oN(R;) - ol (R,) C tre(R,R,), taking cases on the

shape of Tj. The remaining cases, for membership in ¥ (R, ) - & (R;), are symmetric.

Case Ty :![Ul].Sl. Then (T],Tz) € OCN(%l) and (T27T3) S OCN(giz).



5.3. HIGHER-ORDER ASYNCHRONOUS SUBTYPING

127

(![U]].S],Tz) S ocN(E)Kl)

(T, T3) € o (Ry)

Corollary[5.3.12]

Uiegi12y =S

Uiy #S

4

> > | | X

4

=

A

Hence (71, 73) is justified in tre(R;, Ry).

unfold”(T3) = 4, (![Us].San) <1
(U1,U1)® € oN(R))
(Sla/ql <S2h>hEH) S (XN(gtl)

(unfold™(T»),T3) € a™(Ry)
(ﬂ1<![Uz].S2h>hEH,T3) S OCN(EKQ)

(MUa]- A1 (Son)"H T3) € oM (Ry)
unfold™ (T3) = A (![U3].S3)*<K
(U»,U3)® € oY (Ry)

(A1 (San)"<H , Ay (S3)*<K) € al(Ry)

(U1,U3)® = (U3,U1) S OLN(C.Kz) 'OLN(C.Kl)
(S1, A (S3x)*<K) € al¥(FR1) - o (Ry)

(Ul,U3)® = (Ul,U3) S OCN(C.Kl) '(XN(C.KQ)
(S[,ﬂ2<53k>k€1() S OCN(C.KI) 'OCN(C.Rz)

Case T, :?[Ul].Sl. Then (Tl,Tz) S GN(%l) and (TQ,T3) S OCN(g{Q).

(?[Ul].Sl,Tz) S OCN(SRQ

(Tz, T3) S OCN(mz)

Uictiy = S;

Uiy #S

> > | ¢ 4

4

unfoId”(Tz) :?[Uz].Sz
(UQ,U1)® S OLN(gﬂ)
(S],Sz) S (X,N(gil)

(unfold™(T3), T3) € alN(R,)
(?[02].82,T3) € ol (Ry)
unfold™(T3) =?[Us].53
(U3, U2)® € a¥(Ry)
(52,83) € ol (R,)

(U3, U))® = (U, U3) € o (Ry) - ol (Ry)
(51753) S OLN(C.Kl) -OLN(E){z)

(U3,U1)® = (U3,U1) < OCN(%Q) -OCN(gtl)
(51,53) S OLN(EKl) '(XN(EKZ)
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Hence, as before, (77, 73) is justified in tre(R;, R,).
Case T} = @[li : Sli]iel- Then (Tl,Tz) € (XN(E){l) and (TQ,T3) S OCN(Q{Q).
unfold"(Tz) = ,"41 <@[lj : Szjh]jejh>hEH

=
AN YheH.ICJ,
N Yiel. (Sli,.ql <Sz,‘h>h€H) S OLN(EKl)

(@[ : Siilier, o) € oN(Ry)

(unfold(T>), T3) € ()
(Al Sajnljes,) M, T5) € N (Ry)

(Tz,Tg,) S QN(mz)

Y

3

(®[L : A (Soin)"“Micr, T3) € 0N(R2)
unfoldm(T3) = ﬂlz(@[lz . Ssz]ZEZk>k6K

Corollary [5.3.12)with I C Jpey =
-
AN YkeK.ICZ
A
-

Viel. (4 <Szih)h€H7/q2 <S3ik>kEK) € OLN(SQ)
Viel. (Sli,f‘lz<S3ik>keK) S (XN(gﬁ) . (XN(%z)

Hence (73, 73) is justified in tre(R;, R,).

Case Ty = ut.Sy. Then (T;,T») € a¥(R)) and (T3, T3) € ol (R,).

(yt.Sl,Tz) S OCN(C.Kl) = (unfoldl(,ut.Sl),Tz) S (X,N(gtl)
= (unfoldl(,ut.S]),T3) S OCN(gtl) -OCN(gig)

Thus, (77, 73) is justified in tre(R;, R,).

Other cases are similar, and in fact simpler, because they make no use of asynchronous contexts

and permutations. 0

Theorem 5.3.15 (<. is a Preorder). The relation <. is reflexive and transitive.

Proof For reflexivity it is easy to prove that {(7,T)|T € T} C<,. For transitivity, we have that
whenever (T1,T) € R, and (T»,T3) € Ry, then (77, T3) € tre(R,Ry), and tre(R;,R,) €<, by
Lemma[5.3.14l O
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5.4 Asynchronous Higher-Order Session Typing

The typing system extends the one for the language of Chapter ] replacing a few rules with
more general versions; for the basic system see Figures 4.8 and starting on page New
formulations are needed for the integration of typing at the level of session queues, and for ensuring

that the asynchronous calculus is sound.

Queue Types Due to the presence of labels in session queues, we need to extend the types to

facilitate all buffer components, as follows:
t=U |1
Therefore, every label induces a singleton type identified with the label value.

Session Remainder Type soundness is established by also typing the queues created during the
execution of a well-typed initial program. We track the movement of linear functions and channels
to and from the queue to ensure that linearity is preserved, and we check that endpoints continue
to have dual types up to asynchronous subtyping after each use. To analyse the intermediate steps
precisely, we utilise a session remainder S —7T = S’ which subtracts the vector T of the queue
types of the values stored in a queue from the complete session type S of the queue, obtaining a
remaining session S’. The rules are formalised below: When S is end, then the session has been

completed; otherwise it is not closed yet.

(Empty) (Get) (Put)
S—1=5 s-1=¢
S—e=S§ NU.S—UT=S U].S—%=![U].S
(Branch) (Select)
Sk—%':S’ kel S,'—’_fzSg Viel
&[li . Si]ig — lk% = S/ @[li . Si]ig —76 = @[li . Sl,']iel

Figure 5.4: Session Remainder

(Empty) is a base rule. (Get) takes an input prefixed session type ?[U].S and subtracts the type
U at the head of the queue, then returns the remainder S’ of the rest of the session S minus the

tail T of the queue type. (Put) disregards the output action type of the session and calculates the



130 CHAPTER 5. ASYNCHRONOUS SESSION SUBTYPING

remainder S’ of § — 7, which is returned prefixed with the original output giving ![{U].%. Therefore
the output is not consumed. (Branch) is similar with (Get), but it only records the remainder of the
k-th branch with respect to a stored label ;. Dually, (Select) records the remainder of all selection

paths.

Typing System for Terms with Session Queues We first extend the session environment as
follows:

Ax=X|As:T|As:(S7)

The typing judgement is also extended with
AZEL: ]

which is used for typing any labels appearing in a session queue. A contains usage information for
queues (s : ) in a term, so that the cumulative result can be compared with the expected session
type; for this we use the pairing (s : (S,7)) that combines the usage of a channel and the sequence

of types already on its queue. We identify (S,%) and (%, S).

We define a composition operation ® on A-environments, used to obtain the paired usages for

channels and queues:
AO A= {SZ (Al (S),Az(s)) ‘ s € dom(Al) N dom(Az)} U A]\d0m<A2) U Az\dom(Al)

The typing rules for runtime are listed in Figure[5.5] (Label) types a label in a queue, while (Queue)
forms a sequence of the types of the values in a queue: we ensure the disjointness of session
environments of values, and apply a weakening of ended session types (Xo) for closure under the
structure rules. (News) is the main rule for typing the two endpoint queues of a session. Types
S; and S can be given to the queues s and 5 when the session remainders S} and S, of S| — T}
and S, — T, are dual session types up to asynchronous subtyping; more precisely, S| must be a
subtype of the dual of S, written S} <, Si’2 Since the session is compatible, we can restrict s. (Par)
composes processes, including queues, and records the session usage by ©; this rule subsumes
(Par) for programs. Note that, as this is a runtime typing system, the set of linear variables is

empty.
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(Label) (Queue) ift;=U —TthenX; =0
[0 X Fhi:t i€l.n Xy={5:end}
[;0,0-1:1 ;05 (X0, .., 20) © $:T1.. Ty F sthyhy o
(Newy)

L30;A,5:(S1,T1),5:(S2, ) FPio Si—% =S8 i€l,2 S)<. S
[0;AF (vs)P:o

(New) (Par)
[La:(S);A;AEP:o A1 ;A 12 F Praio
A AR (va: (S))P:o CALAZA O A EP | Po

Figure 5.5: Runtime Typing for Asynchronous Higher-order mt-calculus

5.4.1 Typing the Optimised Mobile Business Protocol

Using the program and runtime typing systems, we can now type the hotel booking example
of § [5.2.2] in the presence of asynchronous optimisation for higher-order mobility. Agent and

standard Client can be typed, by using the rules in Figures [4.8]and [4.9] as follows:

Shgent =![int].&[move :?[unit —o 0].S)ene , local : Syyens]
where Sy, =?[string].?[string].![double].?[int].end

and  Scijent = SAgent

We then type MClient and obtain:
Swc1ient = ®[move :![unit —o ¢].![string].![string].![int].?[int].?[double].end]

Applying Deﬁnition we verify that Syciient <c @ (and Suciient <S¢ Sciient). Then using
typing rules (Conn,ConnDual) we can type both MClient and Agent with @ : (Sagent) € I, after
applying (Sub) on the premises of (ConnDual) typing the body of MClient.

We now demonstrate runtime typing; after three reduction steps of MClient | Agent we can

have this configuration:
(vs)(st>{move : 5?(code).(run code | ...), local : ...} | s:rtt | s:move-"sl(ritz)...")

with § as the Agent’s queue. Both queues contain values including the linear higher-order code
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sent by MClient (which became 0 after this output). Using (Queue, Label) from Figure [5.5] we

type 5:move-"s!(ritz)...” with session environment
{5 Skc11ent, 5 - MOve - unit —o o}
where Syc11ent cOmes from typing the HO code containing s, and:
Mclient =![string].![string].![int].?[int].?|double].end
and similarly we type s:rtt with:

{s:int}

The Agent 50> {move: ..., local : ...} is typed with (Bra) under session environment:
{5 : &[move :?[unit —o 0].Sy ey » local : Shgene]
The above session environments can be synthesised using © to obtain:
{s: (Skc11ent, i0t), 5 : (&[move :2[unit —o o).y cny , local : Sygeny], move - unit —o 0) }
Now we use the rules in Figure [5.4to calculate the session remainder of each queue:

Shclient — int =![string].![string].![int].?[double].end

. . / A 1 — </
&[move.?[unlt—oo].SAgent, IocaI.SAgent] — move - unit — o =Sy ¢

and we have:

![string].![string].![int].?[double].end <; Syyent

Finally, we can apply (New,) and complete the derivation.

5.5 Type Soundness and Communication Safety

This section studies the key properties of our typing system. First, we show that typed processes
enjoy subject reduction and communication safety.
We begin by introducing balanced environments which specify the conditions for composing

environments of runtime processes. Our definition extends the one in [39] to accommodate for the
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presence of buffers, using session remainders.

Definition 5.5.1 (Balanced A). balanced(A) holds if whenever {s: (S1,71),5: (S2,%2)} C A with

S;—7%; =S} and S, — % = S}, then S} <. S).

The definition is based on (New;) in the runtime typing system (Figure [5.3): intuitively, all
subprocesses generated from an initial typable program should conform to the balanced condition.
We next define the ordering between the session environments which abstractly represents an

interaction at session channels.

Definition 5.5.2 (A Ordering). Recall ® defined in § We define A =, A as follows:

s2U)SOs:UT C5 5:SOs: 7T s &[L:SilicrO s T Cy s: S @s:% kel
s:AU]LS®5:T Cy s:SO5:TU $:®[l:Silicr©5:%T Ty s:85:05: %y kel
siut.SOS T Oy s: 5087 if s:SutS/teos T Ty s: 505 :T

AOA LA A if A C5 Ay and A® Aj defined

Note that if Aj C; Ay and A® A is defined, then A® A, is defined; and if balanced(A) and
A T A’ then balanced(A’). Then we have:

Theorem 5.5.3 (Type Soundness). 1. Suppose T;A;AF P :o. Then P = P implies T'; A;A -
P o,

2. Suppose T';0;A ‘- P : T with balanced(A). Then P — P’ implies T;0;A’' = P' : T and either
A=ANorAC A

First we prove a number of supporting results; the proof of Type Soundness begins on page[133]

Lemma 5.54. If X,%, defined and ¥ <. X and ¥}, <. X then ¥|,%) defined and ¥, X} <,
X1,5.

Proof. Trivial by the definition of <, on environments and the fact that it does not change the

domain of an environment. O
Lemma 5.5.5. If ;A x;XF P:T then x is free in P.

Proof. Since there is no weakening for the A set, the only way to introduce x in A, x is by applying
the axiom (LVar) with subject x. But whenever a linear variable is bound, it is removed from the

linear set of the conclusion; see (Abs) and (Rec). Hence x appears in P and is not bound. [
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Lemma 5.5.6. If T;A;X,k: S P:T and k is not free in P then S = end.

Proof. Since there is no weakening for the X environment, and k is not free in P, the only way to

introduce a mapping for k in X,k : S is by applying the axiom (Nil). But then S = end. O

Lemma 5.5.7 (Environment Properties). . If A® s : T defined then A® s : T, defined for

any Ty and T,.
2. If A® s: S defined then A® s : S defined for any S| and S,.
3. If A A defined then A® A defined and AN = A A.
4. AON=NoAand (A © L) O A =A1O (A O A3).
5. If A| ® A, defined and Ay =5 Az then Ay © Az defined.

6. Ifbalanced(A) and A T A’ then balanced (A").
Proof. Straightforward from the definitions of balanced(A), ® and C;. O
Lemma 5.58. [f T AZOARP:Tand L < X thenT; A Y O AP T

Proof. Outline: For each s:S € £ with s: 5" € ¥/, and with P = (va: <§))(V§’) (Pr|...|Py), we take
cases on the free occurrence of s in some P;. If P; is not a queue process then by (Sub) we obtain
s:8' in the session environment of the subderivation for P,. If P; is a queue process then it is typed
using (Queue) and we can apply (Sub) as before on the premises. Then using (New), (News) and

(Par) we obtain the required judgement. O

Lemma 5.5.9 (Queue Subsumption). I[f T;A;AG s: T Uit P T and Uy <. U thenT; A;AG s:
%1U27§2 FP:T

Proof. Last rule applied is (Queue); in the premises we can apply (Sub) on the typing judgement of

the value that corresponds to the U typing, then apply (Queue) using the new premise with U,. [

We have the standard Weakening (Lemma[4.4.2) and Strengthening (Lemma[4.4.3)) for I en-
vironments, and the restricted form of Strengthening (Lemma4.4.4) for X.

The Substitution Lemma (4.4.10) remains the same from Chapter 4] noting that we only need
to define substitution for terms that do not contain runtime elements, hence the original Lemma

using ¥ environments (and not A) is sufficient.
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Proof of Theorem (Type Soundness)

Part (1). Subject congruence is standard, except for the case of garbage collection. The latter
is easy: first use the restricted weakening environment Xo of rule (Queue) to obtain, after © -
composition, the balanced usage pairs (end,€) for the dual ended queues; then by (News) the
ended session can be restricted.

Part (2). For this part we proceed as standard by taking cases on the last reduction rule applied.

For all cases we assume:
COAEP:T (%) balanced(A) P—P

Case (beta) P=(A(x:U).Q)V P’ = QO{V/x}

From (x) we have that the judgement for P has as last rule(s) a (possibly empty) sequence of
applications of (Sub), and then (App). We then have by the judgement (%) before (Sub) and the

premises of (App) that:
[;0;X,5-P: T (1) [;0;X FAx:U).Q: U — T (2) ;0,5 V.U (3)
LI <A (4) U<®u (5) T'<®T (6)

By(T)ifU/:U()—>H() then 22:@ (7)

Note that the function may have also have the smaller type U — T" with T" <. T'.

(@) U = H. To obtain (2) we have (after a possibly empty sequence of (Sub)), an application of
(Abs) with:

Cx:U;NZ FQ:T" (8) <1 (9) 1 <2 (10)

By the sidecondition of (Abs) we have that if U = U; —o Ty then A = {x} else A =0, since
A\x=0in(2). By Lemmaand (10) and since ¥1,%; is defined we have that £, %, is
defined and:

13 < 2,5 (1)

(a-1) x € v(Q). By (8) and (3) and (5) and (7), using Lemma#.4.10(1), we obtain:
[;0;X), 5 F Q{Vi}: " (12)

Finally using (Sub) with (11) and (4) for the session environment and (9) and (6) for
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the result type, we obtain:

L0,AF O{Vix}: T

(@-2) x ¢ fv(Q). If U =U, —o T; then by (Abs) x € A, but then by Lemma x € fv(Q)
which contradicts the assumption. Otherwise, if U = U; — T; or U = (S) we have

Y, =0. We have P’ = Q and by Lemma and (8) we obtain:
AT FQ: T (13)

Then X <. A and with an application of (Sub) we obtain the result as before.

(b) U=S. ThenV =s. From (3), and (2) with (Abss), following similar steps as before, we

obtain:
L0005 Fs: S (14) [0, x:SFQ:T"  (15)
By (5) and ® we have S <. S', then by Lemma 2) with (14) and (15) we obtain:
;0,5 : SEQ{V/x}: T" (16)

We have that {s:S'} <. X, in (14) and hence {s:S} <. X, then using also (10) with
Lemma as before we obtain X',s : S <. X1,Xp. Then using (4) and (9) and (6) with
(Sub) on (16) we obtain

O AFE Q{Vix}h: T

Case (send) P=s(V).Q|s:h P =Q|5:h-V

The last rule applied was (Par) for runtime. From this we have:
0:5 FsH(V).0:0 (1) [;0;5,05:tF5:h:0 (2) A= 0505:T 3)

After a possible application of (Sub) on (1), by (Send) and its premises:
;0,2 Fsl(V).Q:0 (4) = (Z1,202) \ {s:8},sULS  (5) [0 Q0 (6)
[0, FV:o (7) s:SeXy; i€l,2 (8) ifU=Uy — T thenXi, =0 (9)
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Using (8) with 211,212 =X, X),,5:S, we get, using (3), (10) and Lemma|5.5.8}

L OoLos:T is defined
Yi1,210) \ {s:8},sU].SO L, O 5:7 is defined
(

(X1,,20,,5:8)\ {s:5},s:![Ul.SO L, 0 5:7T is defined

(Z11, 20,5 ULS) 0 L ©5:T is defined

Then using Lemma 3) on the above, followed by Lemma5.5. 2), we obtain:
,0X,0s:SOL05:TU  isdefined (11)

In (2) the last rule applied was (Queue) and combining the premises and adding (7) we obtain, by

a new application of (Queue) (noting also (9) which is needed):
05605 EFs:h-Vio (12)
where the session environment is defined by (11). Then using (6), (12), and (Par), we obtain:
O 050 053U P 1o (13)
By Lemma we have:
YHOZn=X11,21n=X,Zh,s:S=2,0X,®s:S

and (13) becomes:
[0,X,0Z,0s:8005:tURP o (14)

By Lemma since X, © X, <. Ly \ s, we have from (14) that:
[;0;(Z\s) 0s:SOL05:TU P 1o (15)

From (10) we have s:\|U].S € X} and by (5) there is s:S' € X1 with [U].S <. §'. By the defini-
tion of simulation unfold"(S") = A(![U'].S})"" and U <® U’ and S <. A(S,)"<!. Finally using
Lemma and Lemma on (15) we can obtain:

0N +-P o
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where A' = (21 \s) © 5: A(S})"H © T, © 5:TU’ and it holds that A T, A O
Case (recv) is very similar to (beta); the rest are easy to obtain. L]
We now formalise communication-safety (which subsumes the usual type-safety). First, an

s-queue is a queue process s:h. An s-input is a process of the shape s?(x).P or s > {l;: P; }ic;.

An s-output is a process s!(V).P or s <[.P. Then, an s-process is an s-queue, s-input or s-output.

Finally, an s-redex is a parallel composition of either an s-input and non-empty s-queue, or an

s-output and s-queue.

Definition 5.5.10 (Error Process). We say P is an error if P = (vd)(vs)(Q | R) where Q is one
of the following: (a) a |-composition of two s-processes that does not form either an s-redex
or an s-input and an empty s-queue; (b) an s-redex consisting an s-input and s-queue such that
0=1s?x).0|s: Ich or O=s0>{l;:P}ic | s:Vh; (c) an s-process for s € § with 5 not free in R or

Q; (d) a prefixed process or application containing an s-queue.

The above says that a process is an error if (a) it breaks the linearity of s by having e.g. two s-inputs
in parallel; (b) there is communication-mismatch; (c) there is no corresponding opponent process
for a session; or (d) it encloses a queue under prefix, thus making it unavailable. As a corollary of
Theorem [5.5.3] we achieve the following general communication-safety theorem, subsuming the

case that P is an initial program.

Theorem 5.5.11 (Communication Safety). If I'; A;A - P : o with balanced(A), then P never re-

duces into an error.

Proof The proof is very similar to the one for Type Safety in the Synchronous HO=®, stated as
Theorem 4.4.14] The strategy is to show, with case analysis, that no error process is typable. This

is easily demonstrated by contradiction. O

5.6 Concluding Remarks

The proof of the transitivity in this work requires a more complex construction of the transitive
closure tre(R;, R,) (Definition than the one in [65] due to the higher-order constructs.
In spite of the richness of the type structures, we proposed a more compact runtime typing and
proved communication safety in the presence of higher-order code, which is not presented in [65].
Moreover, our new typing system extends naturally the previous linear typing system of Chapter[4]

demonstrating a smooth integration of two kinds of type-directed optimisation.
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The subtyping system of [39] does not provide any form of asynchronous permutation, thus
does not need the nested n-times unfolding (Definition[5.3.T). Our transitivity proof and the algo-
rithmic subtyping are significantly more involved than in [39] due to the incorporation with n-time
unfolding, permutation, and higher-order functions.

Our treatment of runtime typing, specifically our method for typing session queues and the
use of session remainders, is more compact than previous asynchronous session works [49, (9, [10]]
where they use the method of rolling-back messages — the head type of a queue typing moves to
the prefix of the session type of a process using the queue, and then compatibility is checked on the
constructed types. Our method is simpler, as we remove type elements appearing in a queue from
its typing. On the other hand, our queue typing is more similar to that of the functional language
in [40], where smaller types are obtained after marching with buffer values. Our method works
with queue types rather than with values directly, hence it can be extended smoothly to handle
asynchronous optimisation, which is not treated in [40]. For example we allow a type consisting
an output followed by an input action to be reduced with a type corresponding to the input, leaving
the output prefix intact. Using a more delicate composition between values and queue typing, our
system enables linear mobile code to be stored in the queues.

An analysis of asynchronous session action permutations, encompassing an asynchronous “ac-
ceptance” relation which accommodates for output actions performed in advance, appears in an
unpublished manuscript [69]. The authors suggest that their algorithm is terminating. However,
if their system admits ut.![U;].t as a subtype of ut.![U;].?[Us].t, which as we show on page
induces an infinite simulation, then it is unclear how it avoids divergence without any special

provision.






Sessions and Objects

Overview Here we introduce asynchronous session typing into the Abadi and Cardelli imper-
ative object calculus. Our system shows how process—oriented programs can be organised in
object units with the structuring benefits that arise from that such as dynamic dispatch, object

subtyping, and self-recursion. The asynchronous subtyping follows an iso-recursive approach.

6.1 Introduction

This Chapter addresses the question of how to design and implement type-safe concurrent pro-
grams communicating via message-passing, in a natural programming style based on objects. We
formalise a small object calculus enabling structured concurrent programming of typed bidirec-
tional protocols via sessions. Our language is typed using both object types and session types.
The formalism extends the first-order imperative object calculus of Abadi and Cardelli [2], adding
queue-based primitives for asynchronous communication where the senders send messages with-
out being blocked (but preserving their order). As before, each session consists of two queues, or
end-points, used in a symmetric way with an output on one corresponding to an input on the other.
Queues are considered linear values, which forbids general aliasing, but we allow controlled en-
capsulation within linear objects, obtaining a powerful and uniform programming paradigm. The
resulting language is small but very expressive, due to the high degree of amalgamation of object

and structured concurrency primitives.

Contributions

While many theoretical works exist, no formalism has successfully integrated all of the main
features appearing in object-oriented languages without classes: imperative constructs, thread
spawning, mutable state, recursion, structural object types, and subtyping. Our choice to aug-
ment session-based communication in an extension of the object calculus distills essential features
of higher-order and object behaviours, offering a theoretical tool to analyse delicate type safety

conditions.
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Compared to class-based calculi, the object-calculus approach to sessions has significant ad-
vantages. First, objects are more primitive, in the sense that different class-based and trait-based
systems can be encoded [2, 22]. In particular, our work can be used to extend languages with
structural object types such as OCaml and also the mainstream class-based languages Java and C#
which use nominal types, as well as languages with classes and traits such as Scala [71]]. Sec-
ondly, higher-order structures are naturally expressed as objects, providing a powerful program-
ming style [22] which manifests also in class-based languages that support anonymous classes
defined within expressions. Thus, the object calculus provides a versatile and expressive basis for
object-oriented languages including, but not limited to, those that are class-based.

Our main contributions are summarised as follows:

e Linear objects allow higher-order mobile code to encapsulate active sessions, while mobility
of queue end-points realises higher-order session communication. The feature of linear
higher-order code was not allowed in previous class-based systems [31, 26], in which it

would enable anonymous classes to use endpoints appearing free in their definition.

e We define a new formulation for recursive sessions, naturally integrating session-based
choices with method invocations. This iso-recursive approach to sessions has not appeared
previously in the literature, and it proves natural in the object calculus which follows the

same approach for recursive methods.

e We formulate an iso-recursive version of asynchronous subtyping, capturing the essential

properties in a tractable framework.

e The typing system of our calculus guarantees type soundness and communication safety in

the presence of asynchronous session subtyping.

6.2 The Session Objects Calculus

The sessionc-calculus is based on the imperative object calculus impg [2]. Objects can be invoked,
updated, and cloned; terms can reduce in sequence and also concurrently; session primitives enable
structured interactions based on asynchronous message passing. Concurrency, method arguments,
linear objects, and sessions are additions to the original object calculus.

Reduction is defined on configurations consisting an extended runtime syntax paired with a

heap where object names map to objects and queue names map to queues.
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6.2.1 Syntax

a,b,c .= term
u identifier
[t | li=(x) Myi) bi '] object
[T] Li=My:) b '] linear object
w.l—u method invocation
wleg(x)A(y)D method update
clone(w) cloning
let x=ainb sequencial evaluation
spawn a concurrent evaluation
let (x,y) =new session(Kj,Kp) in b session creation
ulv output
u? input
w.l<u selection
usw branching
close(u) session closing
u,v,w = identifier
X, 9,2 variable
o object name
s queue name
5 dual of s, with§ = s

Figure 6.1: Syntax

The syntax of the sessiong-calculus is given in Figure[6.1} with terms ranged over a, b, c. We
have identifiers («, v, w) which can be variables (x, y, z), object names (o), or queue endpoints (s, §).
In the remaining, we use the convention that u is used for queues, w for objects, and v for both
kinds of value. The dual of a queue endpoint s is denoted §, and represents the other endpoint of
the same session. The operation is self-inverse hence § = s.

An object [T]l;=¢(x;) M(y;) b;"!] is a label-indexed collection of methods. The annotation T
is the type of the object. A method ¢(x)A(y)b has body b, self variable x (¢-bound), and queue
argument y (A-bound). The self variable allows methods to be mutually recursive. Contrary to
regular objects which are unrestricted, a linear object [T | ;= A(y;) b;"“!] will be used exactly once
and should not be aliased; consequently, its methods have no access to self, and only take a queue

argument. Later typing ensures that a linear object has at least one method.
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An invocation of a method / with argument u is written w./«—u. This is a departure from impg,
where there is no argument in methods. In a standard way, a method update w./ & g(x)A(y)b
modifies a heap at w so that / maps to the new method. Note that this operation only applies
to unrestricted objects — linear objects are immutable. To perform a shallow copy of the object
mapped to by w in the heap, we write clone(w), which returns a new name pointing to a copy
of the object. Sequencing is expressed with a let-expression, and spawn a launches a thread with

body a.

The term let (x,y) =new session(K],K) in b creates a new session, resulting in the instantiation,
within the session body b, of x and y to a fresh pair of endpoint queues. The annotations K and
correspond to the session type of each endpoint. To emit a value v over x we write x!v; to obtain
the value, we perform an input on y, as in let z=y? in ’. An output on x places a value at the end
of the queue of y; an input on x removes the first value on the queue of x and returns it, or blocks
if the queue is empty. There cannot be race conditions: each endpoint has output capability on the

dual’s queue and input capability on its own.

It is desirable to allow alternative behaviours to emerge as choices, within parts of a single
session. To preserve determinism, when an internal choice (selection) is made on an endpoint,
there will be a corresponding external choice (branching) on its dual; this choice is determined by
a method name (a label). With w;./ <x a choice of branch [/ is performed on x, implemented as
an invocation wj.l«—x. This choice is communicated to the dual endpoint, which receives it using

y>wo, and realises it as wy.l«—y.

This unified approach reduces the normally verbose syntax of session branching to a single
method invocation on each endpoint. Also, it allows us to implement session recursion directly
at the object level: nested session choices are implemented with nested method calls, and both

endpoints are used recursively.
Sessions have to be closed at both ends for the interaction to be complete, using close(u).

Bound variables are x;,y; in [T|li=¢(x;) My;) b; '], yiin [T | l=A(y;) bi €], x,y in w.l <= (x) M(y) b
and let (x,y) =new session(Kkj, ) in b, and x in let x=a in b. The notions of free variables, alpha

equivalence and substitution are standard. fv(a) denotes the set of free variables in a.

Abbreviations We denote the empty object with []. The notation a; b means let x=a in b with

x & fv(b). Parentheses are used to distinguish terms like (spawn a); b and spawn (a; D).
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We also use the following abbreviations. Below x is fresh:

us[...] = letx=[...]inudx
[t|l=_]<u = letx=[t|l=_]inxl<u
wl<(up,up) = letx=wl<u in x.I<up

6.2.2 Configurations
Reduction is defined on configurations of an extended language embedded in the definition of
evaluation contexts:

E:=E; | E|b|b|E Es::= () | letx=E;inb

Sequential contexts E; ensure a call-by-value evaluation order for terms structured using (possi-
bly nested) let-expressions. General reduction contexts E extend sequential contexts with parallel

composition. Although the user syntax in Figure does not include a production a

b, new
threads are created with spawn, hence the extension. Evaluation order in parallel-composed con-
texts is non-deterministic: the hole can occur in any component. The separation of sequential and
concurrent contexts enforces that threads are top-level, i.e., let x=(E |a) in b is not well-formed.

Heaps are defined as follows:

B =10
| Bs—ii-§ i
| Brow [t]li=g(x) Myi) b ]
| B-o—[t]|li=Myi) bi']

r == v|l|end

Endpoint queues appear in pairs of duals. Each queue is a vector of runtime values drawn from
the set of identifiers, labels, and the special value end. Labels enable selection and branching,
where a method name is communicated; the value end is used to mark the end of a session and is

especially useful for de-allocation of queues.

6.2.3 Reduction

The reduction rules are formalised in Figure To denote that a closed configuration consisting

an evaluation context E with heap B reduces to a new configuration with context £’ and heap B’
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(R-CONTEXT) (R-OBIJECT) _ _
a,B — al,B' c € {[t|li=c(xi) Myi) b ™), [T Li=Myi) bi'<']} o & dom(B)
E(a),B — E{a/),B ¢,B— o0,B-o—c
(R-SPAWN) R-C )
E .B—E .B ~CLONE .
spaun )b = E(ll e B(o) = [t li=g(x) My)b,'] o & dom(B)
(R-LET)

_ clone(o),B — o!,B-o/+— B(0)
letx=vinb,B — b{V/x},B

(R-INVOKE) _ (R-LINVOKE) _

B(0) =[] li=¢(x;) AMyi) bi "] B(o) = [t]li=M(y;) b:i")

0.lx—s,B — by {O/xk}{s/)’k}7B 0.lx—s,B — by {s/yk}7 (B\O)
(R-UPDATE)

B = B”o — [‘c|li:g(xl.) 7"()’1') b,-ie]]
0.y =¢(x)My)b,B — O,B’-o — [1: | Li=¢(x) My;) biiel\k’ li=c(x) k(y)b]

(R-SESSION)
5,5 ¢ dom(B)
let (x,y) =newsession(k;,kz) in b,B — b{S/x}{5/y},B-s+—¢€-5§—¢

(R-PUT) (R-GET)
s'vB-§+—7F — [|,B-§+—Fv s2,B-s+— Vi — v,.B-s+— T
(R-SELECT) (R-BRANCH)
0.y<s,B-§+—7F — 0.y—s,B-5+—Fl; spo,B-s+— L — oly«—s,B-s—7F
(R-END) (R-QCLEAN) (R-TCLEANL)
close(s),B-5+—F — [],B-§+ Fend a,B-s+—end-5+—end - a,B  o|E,B— E,B

(R-TCLEANR)
Elo,B — E,B

Figure 6.2: Reduction
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we write:

E.B — E' B

With rule (R-OBJECT), when an object is encountered, a new heap mapping for it is created
and returned. Rule (R-CLONE) takes an existing object and adds a copy under a fresh name. In
rule (R-SPAWN) the thread body a is taken out of its original context and placed in parallel, with

the empty object [] placed as the result in the original context.

Rule (R-INVOKE) for unrestricted objects is standard, substituting the object for the self vari-
able and the queue for the formal argument within a copy the method body; rule (R-LINVOKE) for
linear objects is similar, however there is no self argument, and importantly, the object is removed
from the heap — this is safe because typing guarantees it will only be used once. Rule (R-UPDATE)

is as expected, replacing the old method with the new one within the object’s method set.

In (R-SESSION) fresh dual queues s and § are created and substituted for the variables x and
y within the scope of session body b. The queues are added to the heap initialised to €, the empty
vector. Queues facilitate asynchronous session communication: a sending action is never blocked
(non-blocking) and two messages sent on the same queue arrive in the sending order (message

order preservation per session).

Rule (R-PUT) for output on a queue s places the value v (an object or queue name) at the end
of the dual queue §; its result is the empty object. Rule (R-GET) for input on s is applicable if
there is at least one value in the same queue, in which case the value is removed from the queue

and returned.

In rule (R-SELECT) for selection o.l; <s the method name /; is enqueued on §, the dual of the
argument s, similarly to output; the selection then becomes an invocation o.ly«s, i.e., the same
method is invoked locally with argument s. Rule (R-BRANCH) is used to receive a selection, using
s>o. It requires the first value of s to be a method name I, which is dequeued and used in the

resulting invocation o.l;«s.

Rule (R-END) is similar to output, but in this case the special value end is appended to the
dual queue. Rule (R-QCLEAN) deallocates both s and its dual § when both have end as the only
remaining value, because this signifies that the session is complete at both endpoints. Finished

threads are removed from a parallel composition by (R-TCLEANL,R).



148 CHAPTER 6. SESSIONS AND OBJECTS

6.2.4 Example: Instant Messenger

In Figure [6.3| we show an example which utilises most features of the calculus, demonstrating the
subtle interplay between objects, sessions, and recursion: choices are naturally implemented as
recursive objects; linear objects enable complex interleavings, encoding multi-parameter methods
under a concise declarative programming style.

We chose to write the client component of a simple “instant messenger” requiring message
passing, choice, mutual recursion, higher-order sessions, and thread spawning. We only show
how to implement the object for sending messages and files; a usable program would also need a

server, running concurrently, for receiving them.

1 let client =

: [ufarg=g(x)A(y)

D [mlag =)

4 y > [t3] exit = AM(y1) close(y1) ; [Ta | exit = A(y2) close(y2)] < z,
5 msg = A(y1) let m=y;?

6 in [ts|msg = My2)y2!m; x.arg<(y1,y2)] < z,
7 file=A(y1) let fn=y,?

8 in let (x1,x,) =new session(K;, k)

9 in spawn let f=get_file(fn)

10 in (x1!fn; x! f; close(xy));

I [T6 | file = A(y2)

12 y2lag; x.arg<(yi,y2) | <z ]]]

13 in client.arg < (Susr, Sim)

Figure 6.3: Example: Instant Messenger

In line 1, we define the client object which is instantiated, in line 13, with the queues s, and
sim- The first queue is used to control the object (e.g. through a session with a user interface),
and the second is used for instant messaging with a suitable server object, which we assume is
separately defined.

In line 2 we start the definition of a shared object with a method arg which will take s, for
the y argument. Invoking arg will result in the object starting in line 3, which is linear and will
take sin, for its z argument.

Then, in line 4, we branch on queue y, offering the choices (i.e. method names) exit, msg
and file. The first is used to end the two sessions: first y;, which will be the same as y, is closed;

then, using a nested object, we propagate the user choice by performing a selection of exit also
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on z ending the session. The method msg is for sending a message; the method file is for sending
a file. If msg is chosen, a message is received from the user queue y{, then in line 6 a selection
of msg is performed on the messaging queue z, relaying the message, and then invoking the outer
object with arguments y; and y, (which will have the values s, and s;r,) implementing a recursive
protocol. Method file, starting in line 7, receives a filename from the user queue, then in line 8
creates a new pair of endpoints for the file transfer.

In lines 9 and 10 a new thread is spawned in which the file f is obtained using the filename fn,
and then fin and f are sent over the first of the new endpoints, x;, which is then closed. (We assumed
a system function ‘get_file.”) After spawning, in lines 11-12, an object is sequence composed, and
selection of file is made on z, the endpoint x; is sent over z to the server object so that the file can
be received, and finally a recursive invocation is performed repeating the client protocol.

For the file transfer we created a new session running on a different thread, and we communi-
cated one of the new endpoints over the existing session, to save our client from blocking. Finally,
note that the code can be written in a modular way, separating the objects, by abstracting over the

free queues.

6.3 Typing

Our session types can be thought of as process types encompassing typed input and output, se-
quencing, and recursive label-indexed branching (external choice) and selection (internal choice).
The language of types can express rich interaction patterns, and a deterministic behaviour that
arises from linear use of dually typed queues.

After introducing the syntax of types, we define type duality and the subtyping relation, and
then describe the typing system. An integration of objects and sessions requires delicate conditions
on both types and typing, which are justified by examples at the end. We also give session types

and typing for the instant messenger example of §

6.3.1 Types

The types are defined in Figure Notice that we use a different set of metavariables than the
one in the previous chapters, to avoid confusion since there are subtle differences. Value types
range over T, and can be complete session types, ranging over K, or object types. An object type
records the label-indexed argument and result types, 6; and T;, for each method /;: the argument is

of session type and the result of value type. Linear object types are distinguished by the lin prefix.
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'ZTC,'iGIL'Ulj . ch;ijEJ]

'Iﬂ?iielLﬂlj : ch;ijGJ]

':KiiEI]

- KiiEl]

value
complete session
object
linear object (x)

session
partial session

complete session

partial session
empty
output
input
internal choice (*)
external choice (x)

sequence

complete session
ended session
type variable
internal choice (%)
external choice (x)

complete sequence
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Figure 6.4: Types
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Session types, ranging over G, are partitioned into partial, ranging over 7, and complete. Partial
session types are building blocks for larger protocols. An output of a value of type T is written
![t], and similarly input is ?[t]. In the process calculi we studied there are no partial session types,
but in the object calculus we chose to include them, because this is a simple way to allow methods
to implement a part of a session without full knowledge of the protocol; this feature facilitates
a greater degree of modularity, which is very relevant for the objectives of an object-oriented

language.

Internal choice (selection) is represented by a set of label-indexed session types, and is prefixed
with & followed by a bound type variable X which is used for tail-recursion within the branches.
This type is equivalent to uX. ®[l; : 7, w1l i ITBX J€J]. A pleasant consequence of our com-
bined recursive structures is that, due to the presence of labels between the definition and the type
variables, the types are always contractive. The branches are here shown partitioned into two sets,
with & meaning that labels are distinct in each, and moreover we are ensuring that there should
be at least one branch in which no type variable occurs. This separates the partial and complete
internal choices, which is essential for the soundness of the typing system, see Example [6.3.5] (8).

External choice (branching) is similar and uses the & prefix.

The sequence composition of partial session types is written 7;U', and € denotes the empty

sequence.

The grammar for complete session types adds the terminals end, marking the end of a session,
and type variables X which are used as in partial types. Choice constructs are complete if and
only if all branches are complete. A complete session type can only be the last component in
a sequence. Finally, we assume that all bound type variables in a session type are chosen to be

different.

Equality and Duality We use three axioms for type equality. First we regard € as the unit of
sequence composition:

C;€E=¢€0=0
Next, the type end distributes within partial branches of a choice construct:
BX) [l Wl k7 end = ©(X) [ misend S W I

&X)[li:m S Wi k' ]end = &(X)[l; : misend S Wl kI
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This type of equality should not be generalised to arbitrary composition, for example between
®X) [l Wi k790 and S(X)[]; : mi;6°T W 1 /<)), because in the first type o is done
once, but in the second type it may be done more than once depending on recursion.

As standard, duality interchanges input and output, branching and selection, and distributes
over sequencing and into branches. It does not distribute within the value type of input and output.

Type variables, and the types € and end, remain unaffected.

Formally, duality is defined by the following rules:

g=¢ [t =?01] ] =[]
W:&(X)[li : 61.561] W:@(X)Ui :aiiel]
7,6 =T;0 end = end X=X S—0c

6.3.2 Subtypes and Asynchronous Subtyping

The rules for subtyping are given in Figure [6.5] The subtyping rule for objects follows [2]: a
larger object type is a subtype of a smaller one, with method argument and result types invariant.
Linear objects are treated in the same way, however, it is crucial that a linear object type must
consist at least one method — otherwise the object would not be usable linearly since no method
could be invoked. Rule (SUB-LINEARISE) formalises that an unrestricted object can safely be
used as linear, similarly to the rule for functions in [63]; the converse, promoting a linear object to

unrestricted type, is unsafe. These conditions are justified in Example[6.3.5|(T)) and (2).

In session subtyping, output is covariant to the value type, and input is contravariant. Note
that the input-output subtyping differs from the one for the m-calculus in [77]. This is because
our relation means “if a queue is assigned G, then it also satisfies 6, while the one in [77] says
“if you must do at least G,, then you are allowed to do 6;.” In other words, we anticipate a
contravariant dual process on each session which, by the interchanging of constructors induced by

duality, becomes covariance on our side.

Our definition of session subtyping is more uniform with objects, as can be seen from the
rules (SUB-SELECT) and (SUB-BRANCH). Selection and branching can be thought of as remote
method invocation (over a session), where the first chooses a method, and the second must support
it; thus if one can invoke an object it can also invoke one with larger interface, and dually an object
that can support a protocol can also fulfil a smaller one. Hence selection with a larger indexing set

is a supertype, and branching is dual. These rules are the same as those in [19]].
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(SUB-REFL) (SUB-TRANS)
SES <G
Ci=1|m
<€ <G
(SuB-OBJ) (SuB-LOBJ)
JCI 0cJClI

[l (o) W' < [l : (o)) ;7] linfl; : (o) w'<'] < lin[l; : (o) ;7]

(SUB-LINEARISE)
0cli

[li : ((5,’) T, iel] < |in[l,‘ : (Gi) T; [GI]

(SuB-PuT)
T

![’Cl] #![’CQ]

(SuB-GET)
T

?[Tz} %?[’Cl]

(SUB-SEQ)

T T 0| X 02

T;01 R M2 62

(SUB-SELECT)
Viel.o; <0, 0ciICJ

X[l 0" < S(X)[1 : 64 7]

(SUB-BRANCH)
Viel.o; <0, 0cICJ

1

&(X)[l;: 0,7 < &(X)[l; : 0]

i

(SUB-ASYNCPUT) (SUB-ASYNCSEL)

Yhe H.X € ftv(oy,)

Vhe H.Viel.X,Y &ftv(oi)

1[t); By(on)" <" < Bx(![1]: )"

Asynchronous Contexts:

EB(Y)[I,‘ . (Bx<05h>heH iel] < $X<@(Y)[li - O iel]>hEH

By 1= T ()| &)l ()N

Figure 6.5: Subtyping
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Asynchronous Subtyping A consequence of our asynchronous semantics for message passing
is that, as in the HOn®, it is harmless to perform an output or selection “in advance” of any
sequence of inputs and branchings. However, the relative order of outputs (and inputs) should
not be permuted. First, at the bottom of Figure we define a class of asynchronous multi-hole
contexts, written By, where X is a parameterisation specifying the bound type variable that may
appear if we have a recursive branch context (last production). We write By(cy,)"< for the context

where the holes indexed by 4 € H are replaced by the corresponding types Gj,.

We write ftv(c) for the free type variables of a session type, omitting the formal definition
which is straightforward. We present two rules: the first is (SUB-ASYNCPUT), which permits an
output to appear outside of the asynchronous context, which in turn can be an input or branching;
the second, (SUB-ASYNCSEL), allows a selection to appear outside of the context (and enclose
it). In both rules, there is a necessary limitation, which is that the bound type variable of the
context By (if there is one), and also the type variable induced by the selection (Y in the last
rule), cannot appear free in the continuations 6, and G;, respectively for each rule. Practically,
this means that the types must not behave recursively, although branching, in general, facilitates
recursion. The rationale for this condition is as follows: consider the first rule, (SUB-ASYNCPUT),
then if the context is recursive, as for example in Bx(![t];0,)"H = &(X)[I :![1]; X], the output
![t] cannot be extracted, because inside the context the action is repetitive, but outside it will
only occur once, since by the rule we would obtain ![t]; &X)[/ : X]. Similarly for selection in
rule (SUB-ASYNCSEL), with the additional constraint forbidding recursion on Y, as this would
also induce an incorrect transformation. For example, if we could apply (SUB-ASYNCSEL) with
&(X)[l; : ®(Y)[Lr : Y]] as the supertype, we would obtain a subtype &(Y)|[l» : &(X)[I; : Y]], in which
the internal branch is now performed repeatedly, when in the original type it was only performed

once before the recursive selection.

However, we still obtain an enlarged typability, and the restriction on recursion is applied only
for the type variables of the transformed types, which means that any recursion defined in a larger,

enclosing scope, can still take place. For example we have that:

&(X])[l3 : @(Y)[lz . &(X)[l] :le < &(X])[l3 . &(X)[l] : EB(Y)[IQ :le

using first (SUB-BRANCH) followed by (SUB-ASYNCSEL). This transformation is sound as both

subcomponents are repetitive in the subtype and in the supertype, using the same type variable X.

As another positive example, the type 6 =![t]; ?[t]; end has its dual ?[t]; ![t];end as a supertype;
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therefore two endpoints that are both assigned the same type ¢ can comprise a valid session. See

Example for a concrete example.

6.3.3 Judgements and Environments

The typing judgements take the shape:

A XRa: and CAEEar .. |a, o

where I', A, ¥ are unordered environments giving the types for identifiers of unrestricted objects,

linear objects, and queues, respectively. The inductive definition is:

L o= 0|Tu:[l: (o)
A o= 0] Au:lin[: (o)
Y o= 0|Xu:0

We write dom(I") for the domain of I" and similarly for A and X. For a judgement to be well-
formed, we need that no identifier occurs in the domain of more than one environment, i.e.,
dom(I') Wdom(A) Wdom(X) must be defined. Also, all types assigned in environments must be
closed, i.e., there should not occur free (session) type variables. Parallel compositions are typed

with the process type <.

Environments A and X are linear: every identifier is associated with a single usage, and there-
fore weakening (used when discarding an identifier) and contraction (used when an identifier is
copied) are not allowed. We write A; W Ay for the environment that is the set union of A; and
Ay, defined when the domains of A; and A; are disjoint. Similarly for X; WX¥,. The sequence
composition X § X, is an extension of sequencing from session types to session environments. It

is the partial non-commutative operation defined by:
213X, =21 WX, if dom(Z])ﬂdom(Zg) =0
Zu:m)s(Xru:0)=(X13%),u:mc

Successful composition of environments using (W) and (§) prevents contraction: in the first case,
there should be nothing to contract; in the second, multiple usages of an identifier are understood

as one sequential usage, not as copying.
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Subtyping is also extended to session environments:

0<0 Yu:o<xXu:o ifo<o

6.3.4 Typing Rules

The typing rules are defined in Figure[6.6] We assume that for a rule to be applicable, the environ-

ments in the consequence are defined.

Values Rule (OBJVAL) is the axiom for typing the identifiers of unrestricted objects. Rule
(CLONE) is for typing the cloning of shared objects. Rule (LOBJVAL) is for linear objects, and
rule (QUEUEVAL) is for queues. In (LOBJVAL) and (QUEUEVAL), the linear environments A and
¥ do not contain irrelevant mappings, as this would amount to weakening. Consequently, for each
linear value in the environments of a judgement, one of these axioms has been applied exactly

once within one of the subderivations in its premises.

Concurrency Rule (SPAWN) is for typing thread bodies. There are two conditions: the first
is that queues appearing free in the thread body a must be assigned complete session types; the
second is that the result of @ must be an unrestricted object, that is, a subtype of []. Rule (PAR)
types parallel-composed terms, requiring that linear elements are not shared between threads, and

that the result of each thread is of shared type. These conditions are explained in Example

@.

Sequencing Rule (LET) is for local definitions and sequencing. In the conclusion, no linear
object in a occurs in the continuation b, and the session usages of a are sequence-composed with
those of b. This follows from the call-by-value reduction order. Depending on the type T of a, the
mapping x : T is added to the correct environment using a shorthand notation; if 7 is linear, usual
conditions will apply. Note that the type of a can be a complete session K but not a partial session

T, otherwise type safety can be violated; see Example ).

Subtyping Rule (SUBSUME) introduces subtyping for both session environments and types.

Objects Rule (OBJECT) is for unrestricted objects. Methods are typed with the object type for
the self variable, and the queue must be used as mandated by the argument type. The object can be

copied, therefore there should not be any use of free linear objects or queues within its methods,
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(OBJVAL) (t=]...]) (CLONE) (t=]...]) (LOBIVAL) (t=lin[...])

Iu:t,0,0+ clone(u) : t

Fu:T10,0Fu:t i{u:t};0Fu:t

(QUEUEVAL) (SPAWN) . (PAR)
CA; {ui Y Fac ] Vie{l.n} . TiA;ZiFa;: (]
0 {u:x}hFu:x F;A;{ui:Ki}iEI}—spawna:[] F;H—JAi;LﬂZil—a”...\an:o

(LET)
DAL Fa:t (T Ay L) W{x:th b7

DA BWAGY X Fletx=ainb: T

Fu:tuAX  ift=[. ],

CAD)W{u:t=¢ TiAu:wE  ift=lin[..],
OAZu:t ift=x

(SUBSUME) (OBJECT)  (t=[l;: (o) ')
AZRait DY 17 Loxi 10 {yi:oi} bty Viel
LAZEa:T F0:0 - [ li= () Ayi) by ™) 7

(t=linll; : (6:)T:"¥"),1 > 0) (INVOKE)
Viel LA Fw:linfl;: (o) T kel
CoAZ u: o Ewlp—u: 1

(LOBIJECT)
I A; {I/lj : Kj}]ej,y,' . O; H b,‘ LT
U5 A {uj 6 M F [ =) b it

(UPDATE) (’t = [ll : (Gi) T iEI])
I;0,0-w:<t Cox:t0;{y: o} Fb:1k kel

[0;0 - wilh—=g(x)My)b:t

(SESSION) (SEQUNIT)
A x: K,y kb1 K <K A XFa: T
A Zuetbat

A EF let (x,y) =newsession(K,Kz) in b : T

(GET) (PUT)
ARVt

CoA{u:t]} e 2 ulv: ]

(END)

[;0;{u:end} I close(u) : [] 050 {2t} Fu?:t
(BRANCH) (6= &(X)[li : 6,'])
LA ZEw:linfl: (oi{o/x ) [... )i <

A Eu:chubw: (]

(SELECT) (0= ®(X)[; : 6;€"])
DAL u:o f{o/xFwhe—u:t kel
DA Zu:obwl<u:t

Figure 6.6: Typing
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expressed by the empty linear environments. Linear objects are typed with (LOBJECT); there is
no self in methods, however other linear objects and queues can be used. The restrictions are that:
first, all free sessions must be complete; second, all methods must use the same linear objects
and implement the same session type for free queues. The first condition allows a linear object to
change thread; the second ensures that since a linear object is invoked exactly once, it will produce
the same “‘side-effect” irrespective of which method is invoked.

Rule (INVOKE) types method invocation. Shared objects are linearised first with (SUBSUME).
The corresponding usage for the actual queue argument is added in the final environments. Rule
(UPDATE) is standard; the new method body is typed in the same way as a method in (OBJECT).

See Example[6.3.5](6). Note that linear objects cannot be updated or cloned.

Sessions Rule (SESSION) for new sessions has two constraints: first, the queues must be used
completely and then closed, producing complete session types; second, the session types must
agree with the annotations and these must be dual, ensuring compatibility of interactions. Sub-
typing may need to be used to achieve syntactic duality. Rule (SEQUNIT) is a limited form of
weakening useful for type preservation: when one queue has been used and closed it may not ap-
pear free, hence will not be in X, but due to asynchrony the dual queue may still be present, albeit
with empty remaining type (modulo buffered values); this rule recovers duality of both endpoints.
In (END) closing a queue u produces the singleton X-environment {u : end} and gives the empty
object type as result, to match reduction.

Rule (GET) for input records an input session part with the carried value type appearing as the
result. Rule (PUT) for output u!v first types the sent value v assigning to it a type T with linear
usage A and X, then in the conclusion an output session part is composed to the left (meaning it
happens first) of X. When v is unrestricted A = £ = 0; when v is a linear object A = {v: T} and
Y. =0; when vis aqueue A =0 and £ = {v: t} with T = k. The rule accepts s!s, i.e., a queue that
emits itself, giving {s :![k];x}, which is correct because the rule composes the output type and the
actual type of the value, which is used after that output.

Rule (SELECT) is used for a selection w.l; <u. In the premise we type the invocation w.l;«—u
which gives a session environment X, u : 6, {0/x }}. The notation 6, {0/x } is a capture-avoiding
type substitution in which the type G replaces any instance of the type variable X in 6. The type ¢
is equal to ®(X)[l; : 6;°€'] with k € I, therefore, 6;{0/x } is an unfolding of the k-th component of
6. Then, the select construct w.lx <u types u with the folding 6 of the unfolded types {c;{o/x }*' }
under selection. See Example [6.3.5] (7).
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Rule (BRANCH) works similarly, but the constraints are slightly stronger: first, all mappings
of label to argument types from the object type (which may be subsumed to lesser methods)
are used in the fold; secondly, all methods used in the branching (but not any methods hidden
by subsumption) must return a shared value of some object type, although these types can be
different, because any of them can be chosen during reduction and we discard the actual value and
assign the empty object type to the branch construct u>w. This is a design choice. Alternatively

we could allow the type of w in the premise to be:

linll; : (0:{5/x }) T ]

allowing the type of u>w in the conclusion to be T with the additional constraint that Vi€ 1.1; < T.
This would allow us to use the returned value within the program, however, it would make it
more difficult to use an object in branching, because a subset of methods satisfying the additional
constraint would have to be chosen. In the current formulation, even methods with arbitrary return
types, as long as they are shared, can participate in the branching. In fact, both versions of the rule
can be added to the system for maximum typability, but for simplicity we prefer to keep the most
useful one for sessions in our present formulation.

Our approach is iso-recursive [35]], which is a natural choice since we have coordinated object-
based recursion on both endpoints of a session, and we can perform an implicit type folding at the

points where recursion is decided, i.e., upon selection and branching.

6.3.5 Examples: Justification of Types and Typing Rules

In this subsection we justify the key conditions on types and typing rules with examples, demon-

strating the subtle interplay between recursion, linearity of objects, sessions and concurrency.

1. Allowing the empty indexing set in the syntax of linear object types lin[l; : (5;) 7;''], i.e.,

allowing empty linear objects, is problematic. For example consider the following:
let x=[11 | I=A(y)s1!v; close(s;)] in s!x
| letx=[12|I=A(y)let z=y?in b] in x.l§

Assume we allowed a linear object to subsume the type lin[]. Then the output s!x would
be typable with {s :![lin[]];end}. Take t, = lin[l: (?[lin[]];end)T3]. Then the invocation

x.l35 is typable. In the second object, the input y? would give a value of type lin[] for z.
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Since z has no method to invoke, it must either be re-sent or returned in b. Therefore, the

enclosed queue s; will never be used, which is clearly undesirable.

. We justify the key object subtyping rule, (SUB-LINEARISE). It is always safe to use a shared

object linearly. However, the inverse is unsafe, for example it would allow:

let x=[t|I=A(y)s1] in []

which discards s;, and:

let x=[T|I=A(y)s1] in x.ls;x.l—s

in which s; is copied.

. Using (SUB-ASYNCPUT), the term

s!vy; s?; close(s) | §1va; §7; close(s)

is typable. One of the queue usages can be subsumed, say for s, obtaining:

{s :2[12];![71];end, §:![t2]; ?[t1];end}

which assigns syntactically dual types to the endpoints.

. If we allowed partial session use in thread bodies, we would accept:

spawn (s!v); close(s) | §7?; close(s)

which reduces (without showing the heap) to:

close(s) | §7; close(s) | s!v

where the order of the output and the session ending is non-deterministic, violating com-
munication safety: it constitutes copying of s since in the result it cannot be composed to a

sequential usage.
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If we allowed a thread body to evaluate to a linear object, then we would accept:

spawn [t|/ = A(x)s?; close(s)] | §!v; close(5), B

which reduces to:

[]]5!v;close($) |0, B-ow[t]l=MA\(x)s?; close(s)]

in which s has been effectively discarded, because no term has access to o.

5. If we allowed aliasing of queues in (LET), by permitting a local definition to have a partial
session type, we would type let x=s in s!v;; x!v,, which is unsafe as we would obtain a

final X-environment {s :![t2];![t;]} when the true usage is {s :![t1];![T2]}.

6. In (OBJECT) and (LOBJECT), the formal method argument can implement part of a session,
for example:

let z=[t|l=g(x)A(y) y!v] in (z.l<s; z.l—s)

can be typed with t=[/: (![t,]) []] and results in E-environment {s :![t,]; ![t,]}. The advan-
tage is modularity: an object does not need knowledge of the complete type of the session to
which it will be applied (s in the example above). Also, a method with partial type argument

is guaranteed not to send or spawn the session, as these require complete types.

7. As a simple example of recursive sessions typing using rule (SELECT) for internal choice,
consider:

let z=[t|l=g(x)A(y) y!v; x.I<y] in z.l<s
witht=[/: (0)[]] and 6 =![7,]; &(X)[/ : ![7,]; X]. Omitting binders, the body of method /

is y!v; x.[ <y which needs to be typed with X-environment:

{yrop ={:tmls{y: el m ) X]}

Self x has type 7 therefore the invocation x./«—y assigns G to y which then folds to &(X)[/ :
![ty];X] in x./ <y, producing the required typing. Outside of the object, in z./ <, the same
process can type the selection, folding ¢ and giving, as desired, {s: &(X)[/ :![t,]; X]} for

the whole example.

8. If for a choice 6 = ®&(X)[/; : X, » : X] we have 6 € T and © € K then the following term is
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typed using (LET) and (SPAWN):

let x=[t|[1=¢(x)AMy)x.L<y ,[Lb=¢(x) A(y) x.]; <]

in spawn (x./;<s); s!v

In the second line, the sequence composition G; ![t] succeeds since ¢ € T, and (SPAWN)
succeeds since G € K, but the term reduces to an unsafe configuration with an output parallel

to the spawned recursion. This justifies our restriction.

6.3.6 Session Types and Typing for the Instant Messenger

We can now give session types to the queues sys and s;r, from the example of Figure

Ousr = D(X)|arg : &(Y)[exit : end ,msg :\[t,]; X , file :![15]; X ]
Cim = ®(X)[arg : ®(Y)[exit : end ,msg :![t,]; X ,file :![Cfite]; X | ]

Ofile = 7[‘5“']; ?[‘Cf] ; end

with T, being the type of strings and T the type of files. Note that the above session types concisely
abstract the structure of interaction and the behaviour of the program as types. Then under envi-
ronments I' = A = 0 and X ={s, : Gusr, Sim : Gim }, by using rules (LET), (SELECT), (OBJECT),
(LOBIJECT), (BRANCH), (GET), (PUT), (END), (INVOKE), (SESSION), (SPAWN), and the axioms,

the whole program of Figure[6.3]is typable.

6.4 Typing Runtime Terms

Session typing ensures first, that a queue behaves according to a session type, and secondly, that
only dual queues with compatible types can interact in a session. The typing rules enforce linearity
in the use of objects and queues obtaining a strong behavioural guarantee of non-interference.
The type soundness of the sessionc-calculus is established by also typing the heap created
during the execution of a well-typed initial program. In particular, we track the movement of linear
objects and queues to and from the heap, to ensure that linearity is preserved, and we check that
endpoints continue to have dual types after each use. To analyse the intermediate steps precisely,

we utilise the following concepts:

e Session Remainder: We assign types to queues using session remainders, which are a

subtraction of the type of the values stored in a queue from the complete session type of the
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queue. This technique is very similar to the one in [40], however in our approach asynchrony

at the type level requires more elaboration.

o Heap Types: We assign types to heaps, understanding a heap type as a collection of map-
pings giving types to all of the heap components. Our formulation must take into account

the possible circularities within a heap.

6.4.1 Session Remainder

Before we proceed to heap typing, it is necessary to explain how to obtain typings for a queue
endpoint taking into consideration that values waiting to be received may be present at the queue.

In Figure|6.7| we formalise the rules, using a new form of judgement taking the shape:

A XFK—F=o0

where K is a complete session type from which we will “subtract” the values 7 of the queue to
obtain the session remainder 6. By our rules, this remainder will either be € meaning that the
session has been completed and there is nothing more remaining, or a complete remaining session;
if a partial session was the remainder, it would mean that the session will not be closed. The
environments left of - accumulate the ones produced by typing each value in 7. As before, a

judgement is well-formed when dom(I") W dom(A) W dom(X) is defined.

(Q-ANY) (Q-END)
I0;0Fx—e=x I0;0Fend—end =¢
(Q-GET) (Q-BRANCH) (6= &X)[l; : 6;'])
DA Fv:it DAY Fk—F=0 AR {o/x )0 —7F=06" kel
AT WAGE W Ft);k—Vvi=0 A X060 — L F=0o"
(Q-PuT) (Q-SELECT)
CAXFk—7F=K  7#7Fend A0, —F=0, F#Fend Viel
LA H T e — 7 =1t DA E&(X)[ 0 <0’ —F=a(X)[l; : 6] ']:0'

Figure 6.7: Session Remainder

Rule (Q-ANY) defines that any session type agrees with the empty queue €, producing the full

type as remainder. In (Q-END) the type end agrees with the queue consisting the single value end,
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giving the empty session € as remainder.

Rule (Q-GET) takes the input prefix of a session ?[t]; k and the first value from the queue V7,
and types (with the usual rules) the value assigning T, to match the input part. The remaining type
k and queue 7 are subtracted to obtain the final remainder. Disjoint composition in the conclusion’s
environments ensures that if v is linear then it only appears once in the queue, since either A} =
{vitjorX;={v:1}.

Rule (Q-BRANCH) matches a branching type ¢ at the beginning of a session ¢;x with a label
Iy at the top of the queue ;7. The remainder is obtained by the subtraction 6 {S/x }}; kK — 7 where

the label has been used to unfold the k-th component of G.

Rules for Asynchrony Due to asynchronous subtyping, a process that, according to its type, is
due to perform an output or selection, may in fact have values in its input queue, waiting to be
received. This is because the dually typed process in the same session, which would normally be
expected to wait on in input/branching, may be more asynchronous, and perform output actions in
advance. Thus, when calculating the remainder of a session, we need to allow this possibility; this
is formalised in the following rules.

Rule (Q-PuUT) disregards the output prefix of the session type ![t];k and calculates the re-
mainder K’ of k¥ — 7, which then appears in the conclusion prefixed with the original output giving
![t]; /. Therefore the output is not consumed, which is correct, since we are subtracting the value
types of some queue s from the input/branching components of the type for the same s. This rule
relates to the subtyping rule (SUB-ASYNCPUT) of Figure [6.5] which allows a term to perform an
output when a sequence of inputs/branchings is expected, depending on the shape of a context By
that may have been pushed in the type x from the outer context of a supertype. If we had not
admitted this subtyping rule, the case of output would be subsumed by (Q-ANY), because there
would be no subtypes that send values “in advance” and hence, no values left to be received when
an output is due. So, for example, ![1;]; ?[T2]; ?[t3];end — v where v is typed with T, gives remain-
der ![t];?[t3];end. We do not allow ¥, the rest of the session, to eventually close (as it would
if (Q-END) was used in the premise) giving final remainder ![t];€ =![t]; this would mean that a
session can be closed before an output is performed.

Rule (Q-SELECT) has a similar function. Any values in the queue are subtracted from each of
the branches inside the selection, resulting in a possibly smaller remainder type. The rule relates
to subtyping with (SUB-ASYNCSEL) of Figure [6.5] which allows a term to perform a selection

when a sequence of inputs/branchings is expected. Notice that the sequence composed type 6’
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may not be a complete type, since the branch could be recursive and complete itself. In this case
we can take 6’ = €, which leaves us with the selection since € is the unit of sequence composition,

and can be removed.

6.4.2 Heap Typing

We assign types to heaps: a heap typing is a collection of mappings giving types to all of the heap’s

components, in the form of three typing environments. The new typing judgement is:

IFiABE EB: (T A )

where (I'2;A2;%,) assign types to the elements in the domain of heap B; we call this the heap
type. Objects and queues in the codomain of the heap contain references to other objects and
queues in the heap, and these assumptions are shown on the left of F, as I'j; A ;X;; we call
these heap assumptions. A judgement is well-formed when dom(I';) W dom(A;) Wdom(X;) and
dom(I';) Wdom(A;) Wdom(X,) are defined.

Not every heap typing is meaningful for type safety, where we need that the subset of the
heap domain that appears on the left of - is given the same types also in the full heap type.
The inconsistency is necessary for intermediate typings, due to circularities preventing a purely
inductive definition. Final typings referring to the whole of a heap, used in theorems, will be of
the shape:

I'ALGE FEB: (T A WA Y W)

We call such heap typings consistent.

The heap typing rules are shown in Figure[6.8] Rule (B-EMPTY) is for typing the empty heap,
requiring no assumptions except for I' which is arbitrary.

Rule (B-SHARED) types a heap with a mapping o — ¢ for an unrestricted object c. The object
c is typed (with the rules of Figure giving empty linear environments and type T; the rest of
the heap is typed giving assumptions I';, Ay, £; which are propagated in the conclusion, along
with heap typing I', A, £ which becomes extended with {o : t}. The disjoint union corresponds to
the fact that each mapping in the heap is unique, that is, B cannot contain another mapping for o.

Rule (B-LINEAR) is for a linear object mapping in the heap; it works similarly to the one
for unrestricted objects, however here the assumptions in the conclusion are extended with the
linear environments induced from typing the object. The rule requires, by the disjointness of

the assumptions in the conclusion, that linear components in ¢ do not also appear inside some
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(B-EMPTY) (B-SHARED) (¢ = [ |li=g(x;) Myi) bi'<'])
AT EB(GAY) T00Fc:t U<
;0,0 0: (0,0,0) I'ABE EBo—c: TwW{o:1};AX)

(B-LINEAR) (¢ = [T | i=Ny;) b:"¥1])
AR FB:(TAY) T1iA Y et T <1

TilHA L HZi2 B0 —c: (T;AW{o : T} )

(B-SESSION)
I'ALBE FEB: (AL
;A5 K —7 =01 ;A3 53Kk —m =0 I

Fl;LﬂALZﬁ;LﬂZLZﬁ FB-s+— }71 - S }72 : <F;A;ZH:J{S : K1,§:K2}>

Figure 6.8: Heap Typing

other object or queue in the heap. Finally, the heap typing is extended as before, but at the A-
environment.

Rule (B-SESSION) is for typing the two (dual) endpoint queues of a session. Types k; and K,
can be given to the queues s and § when the session remainders 6| and 6, of k] — 7] and Kk, — 73 are
dual session types; more precisely, 6; must be a subtype of the dual of G;, written 6; < 6;. This
also implies 67 < G1. The linear assumptions needed for typing the values in 7] and 75 are added to
the heap assumptions, ensuring that everything is used exactly once; the mappings {s: xj,5: %2}

are added to the heap type.

6.5 Type Soundness

We first formalise the necessary lemmas for type soundness. In the following, we write E for

closed reduction contexts, and refer to runtime types Y defined as:

yoo= 10

First we have a standard lemma for weakening and strengthening of the assumptions in the unre-

stricted environment.
Lemma 6.5.1. (I' Weakening, Strengthening)

(a) FT;AZFE :yand u & dom(T,AX) and T = [I; : (6;) '] then Tyu: T, A; X E 2y,
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(b) FT;AEEE:vyandu & fv(E) then T\ u; AsL - E 2y,
Proof. By induction on the last typing rule applied. O

Note that weakening and strengthening are not allowed for the linear environments. Next, we
formalise the substitution lemma. Notice the difference between (a) unrestricted and (b) linear

objects.
Lemma 6.5.2. (Substitution) For o,s & fv(a):
(a) fT,x: 13 A2 a:tand T;0,0 - 0 : Ty then T; A2 - a{9/x} @ T.
(b) IfTsAx: 132 Fa:tand T {o :11};0F 0 ity then ;A 0 T2 F a{9/x} @ t.
(c) TN X, x:0Fa:tthen; AL s o b a{S/k} .
Proof. By induction on the last typing rule applied. O

The following lemma is used to obtain typings for subterms that are in redex position within a
reduction context. For example, this lemma is used for the case of sending a message to a queue

as well as the case for spawn.

Lemma 6.5.3. (Subderivation) If I'; A;X - E(a) : y then there exist A1 2,X12,Ts.t. A=AjWA,
and X=X Xy and ;A2 Fac: .

Proof. By induction on E. Note that if E is a parallel context then we use the fact X §%, =

YW, O]

Using the following lemma, we can obtain new linear environments after a subterm has been

replaced within a reduction context.

Lemma 6.5.4. (Context Replacement)
T A UARE X FE(a) i yand Ty A X Fa:tand T T A E) Fd T and A} WA, defined
and ¥ $X, defined then T, T, A{ WAy X X0 F E(d) @ .

Proof. By induction on E . O

We now proceed to type soundness and communication safety. The essence of our typing is that
all linear elements are either used or remain accessible (for later use) through the resulting term,
either directly, or indirectly through linear components in the heap. Moreover, sessions must be

used respecting types. Hence the following theorem subsumes type soundness and communication
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safety in the sense of [48]. The conditions are formulated in two clauses: (a) for all reductions

except thread creation, and (b) for a reduction that generates a thread.

Theorem 6.5.5. (Subject Reduction)
FULAGS FE yand UM F B (T3 A\ WAL X WEy) and E,B — E',B' | using

a) any rule except (R-SPAWN), then there exist 13,A34,234 S.t. 12;A3;23 Y an
(a) any rul pt (R-S ), then th ist 12,A3.4,%3, I2;A3:X3 - E' -y and

A4 24 F B : <F2;A3 WA X3 H‘JZ4>.

(b) (R-SPAWN) with E = E1<spawn a) then there exist A11712,211712 s.t. A = A1 WA and
21 :le 3212 :le H‘JZ]Z andFl;A“;Z“ Fa: H andFl;Alz;le }—E1<H> :wandrl;Al;Zl [
E({[])]a:o.

Proof By induction on the last reduction applied. For the first part of each case, we obtain
that the produced term has the same type as the original, using a straightforward combination of
Weakening (6.5.1)), Substitution (6.5.2), Subderivation (6.5.3)), and Context Replacement (6.5.4).

Obtaining a matching heap typing that is consistent is more delicate. For the rules (R-SPAWN),
(R-LET), (R-CLONE), (R-INVOKE), (R-UPDATE) and (R-OBJECT) (for the unrestricted case) the
heap typing is either unchanged or trivially obtainable, since there are no linear elements moved
from the term to the heap or from the heap to the term. Similarly for the rules (R-TCLEANL,R).

For linear objects in (R-OBJECT) we obtain a new heap judgement where any linear compo-
nents in the body of the object appear, after reduction, on the heap typing assumptions, and the
heap type is extended using (B-LINEAR). Dually, for the linear invocation (R-LINVOKE) the heap
typing decreases, and the linear assumptions from typing the object body move to the term typing
where the method body is copied; for this it is crucial that the linear object is removed from the
heap.

The rules for sessions are more interesting. For new sessions in (R-SESSION) a consistent
heap typing is obtained since the types for each endpoint are initially dual, and there are no values
in the queues, resulting trivially in dual remainders. Rule (R-QCLEAN) is also straightforward.
For the case of input in (R-GET) a straightforward inspection of the premises in (Q-GET) gives
the remaining session; then, if the received value is linear, its singleton environment obtained by
(LOBIJVAL) or (QUEUEVAL) is moved to the term typing, using the Substitution Lemma (6.5.2).
In (R-SELECT) the selection becomes invocation, resulting in an unfolding on the type of the
argument; then, in the remainder typing for the other endpoint, using (Q-BRANCH), the received

label will be used for unfolding giving, as desired, dual remaining types for both queues. Rule



6.5. TYPE SOUNDNESS 169

(R-BRANCH) is similar: the label causing the unfolding (in the queue typing) is consumed from
the queue, but the resulting invocation re-introduces the unfolding therefore leaving the type intact.
For (R-END) in close(s) a direct use of session remainder gives € for 5 (which is where the end
is appended), and the same is obtained using (SEQUNIT) for s (which does not appear anywhere

after being closed).

The most delicate case is that of output in (R-PUT), where the sent value can be linear, and

the type of the sending endpoint changes; we prove this case below:

Case (R-PUT) E = E|(slv) B = Bj-s+—7-§+—1

E' = E1<H> B = B -s—r-§— vy

By Lemma weobtain [ A ;X Fslv:ity with Ay = A1 WAp and X =211 §X9,. By (PUT)
we have I A ;2] Fv:tand 21y = {s :![1]} $X, and T; = []. By (OBJECT) and Lemma|6.5.4|we
obtain I'; A12; X5 = E' : y as desired. We now check the heap. By (B-SESSION) on the assumption

we obtain the premises:

;A2 F By <F1;A1 LﬂAz;Z/> (6.1)
A2 X0 F K — 71 =0 (6.2)
A3 En kK~ =0; (6.3)

with X WX, = Z’H:J{s 1 Kp,S Kz} and Ay = Ay WA WA and Xy =X Wy Wy and 61 < 6.
We have Z;(s) = Kk and:
(Z115Zi2)(s) =% 6.4)

with k; =![t]; %] by definition of (§). By (Q-PUT) 6, =![1]; 0] and:
[iA0 En K — 7 =0} (6.5)

By 61 < G, we have 6, < G, therefore 6, 4?[1];67/1. Applying a sequence of (Q-PUT)/(Q-SELECT)
as required, followed by (Q-GET) once we reach the input (only outputs/selections can appear be-

fore this input in G6,), we obtain:

F;A”;Z’Ul—cz—v:c’z (6.6)
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with 6} < &) which is equivalent to 6} < 6. From and (6.6) we obtain:
A3 WA X0 H’JZI]] f‘Kz—fiV:GIQ (6.7)

where Ay WA and Xp3 WE), are defined by the assumptions. Using (B-SESSION) with (6.1)
and and (6.7) we obtain:

;A L‘l’JAz;ZI]I WX, FB: <F1;A1&JA2;Z,&J{S : KII,S‘ : K2}>

which must be shown consistent. The type of 5 does not change from the original typing (only
its remainder changes). For s, we have from that (£}, $X12)(s) = | and by the condition in
(PUT) that sent queues are complete we have either X}, = {s: |}, if v =15, or Zjp = Z},,5: %],
if v # 5. Therefore the heap assumptions agree with the new heap type; the heap judgement is
consistent. O

We now formalise communication-safety (which also subsumes type-safety for objects). An
s-input is a term of the shape s? or s>o0. An s-output is a term s!v or 0./ <s. An s-close is a term
close(s). Finally, an s-method is a term o.l«<—s and an s-occurrence is the term s. Then, an s-action
is an s-input, s-output, s-close, s-method, or s-occurrence. For object constructs, we define an o-
invocation to be a term of the shape o./«<s, an o-update is a term 0.l & ¢(x) A(y) b, an o-selection
is aterm 0./ <s and an o-branch has the shape s>0. We also define an o-occurrence to be the term
0. Then an o-action is an o-invocation, o-update, o-selection, o-branch, or o-occurrence. We can

now define error configurations:
Definition 6.5.6 (Error Configurations). We say that a configuration E, B is an error if:
(a) E=E(a) and E = E;(b) where E| # E, and both a and b are s-actions.

(b) E =E;(a), ais a s-input, and B= B’ -s — r7 such that (i) a = s? and r € {/,end}, or (ii)

a=sro and r € {v,end}.

(c) E =E(a) and E = E;(b) where E| # E; and both a and b are o-actions and B(o) = [t|l;=
Ayi) bi"].

(d) E=E{a), and a = o.[y—s or a = 0.y ds or a = 0.ly &=¢(x) A(y) b, with B(0o) = [t| ;=
S(x:)) A(yi) bi '] or B(o) = [t|li=M(y;) b;"*'| and k € I.

(e) E =E {o.l=g(x)A(y)b) with B(0o) = [t|li=A(y;) b;*"].
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The above says that a configuration is an error if (a) it breaks the linearity of s by having e.g. two
s-inputs in parallel, or (c) of objects by having two usages of a linear object in parallel; (b) there
is communication-mismatch; (d) a method is chosen for some operation but it is not defined in
the corresponding object; or (e) a linear object is updated. As a corollary of Theorem we

achieve the following general communication-safety theorem.

Theorem 6.5.7 (Communication Safety). A configuration E,B such that T'1;A; X1+ E Y and
[5A25 F B (T A1 WA X WEy) never reduces into an error.

Proof The formalisation of communication safety is defined similarly to Theorem [4.4.14] for
HO7® and Theorem[5.5.11]for HOn*. The balanced condition on environments defined in the pre-
vious chapters has a correspondence in this system through the rule (B-SESSION), which therefore
ensures that in the configuration under consideration the sessions are used dually. Thus, the strat-
egy for the proof of this theorem in sessiong is very similar to the previous ones, utilising Subject

Reduction (Theorem[6.5.5)) and showing by contradiction that error processes cannot arise.

6.6 Notes on Related Work

Object Calculi The untyped imperative object calculus impg and the first-order system Oby..
of Abadi and Cardelli [2] formed the foundation for the object fragment of our calculus. A notable
extension in our work is method arguments. In imp¢, methods with arguments can be encoded
using the state of an object, but in sessiong we cannot perform this encoding, because queues are
linear and cannot be aliased.

Another related work is the concc-calculus of Gordon and Hankin [43]]. Their work extends the
impc-calculus with parallel composition and mutexes for synchronisation. Their mutexes could
be added to our system, although we already achieve a different style of non-interference using
the session primitives.

The recent work by Gay et al. [41] offers an alternative to our branching sessions: our branch-
ing labels coincide with method names; their branching uses instances of enumerations corre-
sponding to typestates.

The closest work to ours, in terms of approach to sessions, is that of Drossopoulou, Dezani,
and Coppo [33], in which sessions are implemented as methods. In particular, their main session
primitive is written a./{b}, which behaves as follows: the code of the method a./ is placed in

parallel to b, and a fresh channel k is used for communication between the two threads. Thus,
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the reduction has the shape (VK) (c{K/e}|b{K/e}), where c is the code of a.l, and e denotes the
local placeholder for the channel. Note that this system only allows one session per scope. We can

encode their main session primitive in sessiong as:

a.l{b} L Jetz=ain let (x,y) =newsession(K;,K) in (spawn z.[<x); b

with y used in b.

6.7 Concluding Remarks

We presented sessionc, a small but powerful calculus featuring mutable objects, local definitions,
concurrency, and type-safe asynchronous communication primitives. Importantly, our amalgama-
tion of session and object recursion enables complex interaction patterns to be embedded in the
structure of objects, creating a natural and concise programming paradigm for sessions.

The calculus enables the programming of elaborate interacting software within a framework
of determinism, induced by linearity and type duality. The ability to utilise higher-order code in
the form of shared and linear objects provides powerful programming idioms with a high degree
of encapsulation.

The sessionc-calculus has the Subject Reduction property, and Communication Safety obtained
through careful analysis of intermediate steps and movements of linear values between a running
program and the store.

Our session object calculus can serve as a basis for the addition of other features and type
analyses, such as recursive self types, parametric polymorphism and variance annotations, to name
a few. Our ability to recurse on methods with session argument addresses the question of how
to extend a standard object-oriented language uniformly to deal with session and non-session
arguments transparently. Moreover, the iso-recursive approach is easier to implement than the
equi-recursive which requires coinductive definitions. The asynchronous buffered semantics offer
a direct implementation strategy, and the careful removal of used linear values from the heap

means that garbage collection is straightforward for our linear structures.
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7 Conclusions, Open Questions
and Future Work

Overview We summarise the contributions of the thesis, and then focus on future work. There
are a number of milestones that need to be achieved in order to prepare the foundational session
typing theories developed in the previous part, for practical applications. The greatest empha-
sis is placed on the development of an algorithm for asynchronous coinductive subtyping. Then,
we proceed to describe other desirable extensions for both processes and objects, including an

evaluation of different methods for the algorithmic typing of objects. We finish by suggesting

interesting implementation projects, such as a session typing system for the language Erlang.

7.1 Summary of Contributions in this Thesis

This thesis presents a theoretical framework for structured communication-oriented programming,
in the form of a family of typed programming calculi. In particular, the languages we defined
encompass the fundamental constructions of communicating processes, functions and objects, fa-
cilitating a wide range of powerful programming idioms. Thus, our work provides a foundation
for programming language design integrating multi-paradigm components with session-oriented

communications, in a typesafe way.

The Languages

We presented three session-typed calculi:

e HO®® is a process algebra that extends the HOn (Higher-order mt-calculus) with a session
typing discipline. This language supports synchronous communication and enables us to
represent mobile-code as the communication of functions, which may furthermore contain
free instances of typed channels, necessitating a method to control their use. Our system
extends and subsumes the existing formalisations for m-calculus, and can therefore serve as

a unified theory.

175
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e HO=™ is an asynchronous adaptation of HO®® where messages are buffered in queues. Be-
cause of the asynchronous semantics we relaxed the conditions of type-safe composition of
communicating processes, introducing a notion of asynchronous subtyping which is reified
through a coinductive subtyping relation between session types corresponding to what is
intuitively understood as more asynchronous behaviour. With this system we contributed
a theory that takes advantage of the asynchrony induced by the use of buffered messaging,
which is the norm in most application domains including the internet in general, and thus
offer a refined basis for more flexible session-oriented programming in the presence of code

mobility.

e sessiong is a modification of the Abadi and Cardelli imperative object calculus impg, and
integrates the code organisation of objects into process-oriented programming. In particu-
lar the structure of an object coincides with that of the protocols in which it can be used,
allowing a concise formalisation where session control flow is merged into the fundamental
abilities of objects. Session branching is implemented through associating an endpoint with
an object that waits for a choice, or method, and selection corresponds to choosing a method
on a branched object. Infinite protocols are realised directly through object self-secursion.
Moreover, the creation of sessions is localised, providing an approach more suitable to an
object-centric programming style, avoiding synchronised session initiation primitives. Since
the language is buffered, we introduce asynchronous subtyping, but following an inductive
approach which is more suitable in the context of the object calculus. Finally, the notions
of object subtyping and branching subtyping are unified, yielding a natural integration of
sessions and objects at the typing level. This object calculus is suitable for understand-
ing and designing languages with structural and also class-based types, providing a unified

foundation for a wide range of further development.

Key Ideas and Technical Contributions

The key original technical points are as follows:

e HOm®: The treatment of mobile code (sent functions) as linear components solved the prob-
lems that arise from the uncontrolled usage, and thus from the possible copying or vanishing

of processes that implement sessions, which clearly compromises type safety of protocols.

e HOn®: The equi-recursive asynchronous subtyping defined constitutes a sound theoretical

justification for the reordering message optimisations that can be accepted within type safe
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session programming. Technically, the coinductive formalisation of subtyping, and the sub-
sequent proof, were more involved than expected and required more elaborate and stratified

mathematical constructions.

e sessiong: The realisation of session control flow as a direct function of object control flow
offers a new intuition on session objects, and in particular a way to utilise objects for the
structural and behavioural organisation of process-oriented code. This integration of the
object and session process paradigms is original, and can inform the development of prac-
tical languages, considering the acknowledged structuring benefits of objects. Moreover,
the inductive, iso-recursive approach to asynchronous subtyping, provides a less powerful
but simpler and more tractable technique, which is also uniform with the techniques for

recursive objects in the original impg¢ calculus.

We now discuss in some detail the future work we intend to undertake, focusing on the required
results that facilitate practical implementations, under the challenging context of asynchronous

subtyping.

7.2 Towards an Algorithm for Coinductive Asynchronous Subtyping

The coinductive method offers an attractive mathematical framework, although in its generality
it does not specify how to prove (or disprove) a subtyping hypothesis. More specifically, it does
not offer a way to obtain a simulation R C<_, if there is one, that contains a desired hypothesis
(S1,82) € R; it merely accepts or rejects a solution which is given by us, playing the role of an
oracle. The question of how to obtain a (preferably minimal) simulation, failing if there is none,
is what an algorithmic subtyping method is called to answer. In such a system, the coinductive
relation <, is replaced by a set of rules implementing the algorithmic subtyping <, in judgements
of the shape X S < §5. The environment X is used to collect checked hypotheses, and S; < S
is the goal. Then, < must typically be shown to be sound and complete with respect to <., but
for a practical implementation there is a prerequisite of decidability and, if possible, efficiency.
Decidability depends on a number of key conditions: the number of possible goals that may need
to be asserted in a single derivation must be finite; goals must not be checked repeatedly; the sub-
typing relation should be invertible, enabling the “guessing” of the shape of the subtype based on
a known supertype. Typically the first two conditions are used to construct a well-founded mea-
sure that guarantees the termination of the algorithm. The last condition relates to computational

efficiency; we return to this later.
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A Digression on Termination

Now we turn our attention to the asynchronous subtyping relation <., which has a distinguish-
ing feature compared to the standard simulations of Gay and Hole [39] and of Pierce and San-
giorgi [[77]: some subtypings are only proved with infinite simulations. One such example is
ut Uy ].t <. pt.[U].2[Us].t from § A straightforward adaptation of the standard works
(mentioned above) produces an algorithmic system that, for the aforementioned example, will
produce an infinite derivation; thus the induced algorithm is non-terminating. Consider the fol-

lowing three algorithmic subtyping rules:

YO U < Uy n = depth(top(S),S") n>1
LS < A8y, )M 2,5 <S8 F S < unfold™(S)
(Out) (RecR)
2 UL < A(Us].So)"EH LTSS

¥, ut.S <S8+ unfold! (ut.S) < '
(Recl)

ThutS<S

In (Out) the supertype has a comparable top-level output (selection is similar), possibly guarded
under inputs and branching within 4. The rule (RecR) (which has less priority than (RecL)) uses
some auxiliary functions. top(S) returns the constructor symbol at the top of S which must be
guarded, for example ! if S =![U].S’. Then, depth is a terminating function that returns the maxi-
mum number of recursions that need to be unrolled at the supertype before the desired constructor
(such as !) is encountered. The purpose of (RecR) is, then, to unroll the supertype just enough for
the desired constructor (the head of the subtype) to appear at the top-level (i.e., not under recur-
sion), enabling the subsequent application of an asynchronous rule such as (Out). Moreover, all
input-prefixed or branched types are possible targets of unfolding, contrary to the usual technique

of only unfolding p-prefixed types during the generation of subgoals.

We consider the previously mentioned infinite-simulation example, which can be typed using

only the rules we mentioned. For clarity we use a simplified syntax ignoring carried types. Let
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Sy =ut.!.tand S, =ut.!.?.t. Then we obtain the following infinite inference:

(RecL)
{0181 <2.85,1.81<2.1.2.8) B 851 <2.2.8, (%)

(Out)
{08128} F 1.§1<2.1.2.8,

(RecR)
{Sl <8, 181 <8,,1.81 <!1.7.85,, 8 g?.Sz} F 1S <25

(Recl)
{S[gSz,!.Slg.S‘z,!.Slg!.?.Sz} F§5 <5 (*)

(Out)
{51<52,!.51<52} FOoLS; <78,

(RecR)
{51<SZ} F LSS

0 F 5<%

Notice that the initial goal depends on proving an increasingly larger subgoal resulting from
unfolding and fetching an output from the respective supertype, leaving residual input actions that
accumulate; we mark these points with (x). However, our empirical observation is that the shape
of the supertype in those subgoals evolves following a regular pattern, with the same sequence
of rules (RecL,RecR,Out) applied ad infinitum. This motivates the search for a discriminating

condition for exactly those diverging goals, effectively bounding these infinite derivations.
A First Condition In our previous work by Mostrous and Yoshida [[64], we formalised an algo-
rithmic subtyping for HOn® where the recursion rule (RecR) has an additional sidecondition:

n = depth(top(S),8’) n>1
L,S<SFS<unfold"(S) S

(RecR)
TESLY

where S X S’ means that S and §’ have the same corresponding constructors for actions inside
recursion. With this condition, the above non-terminating example is rejected in a finite derivation,

and specifically in the first instance of (RecR) starting from the root.

A Better Solution Our aim is to formulate a sound and complete algorithmic system, therefore
the above solution which rejects the diverging (but valid by <.) example is not fully satisfactory,
even though the method is correct by the restriction to X-compatible subtypings. Hence we follow
a new approach, by replacing the standard axiom (Asmp) for assumed hypotheses (shown on the

left below) with a modified version (shown on the right below). As expected (Asmp) is applicable

(ReclL)
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with priority over other rules, ensuring that a goal already assumed does not trigger a re-check.

(Asmp) — (Asmp)
2,85 <S8 < S 2,81 < A(Son)" M+ 81 < A(A(Sy) <M YEH

When 4 = (-)"<{0} the new rule gives an instance of the standard axiom (left above), since
A(Sy )"l = A(A(Soy,)"<H)1eH = §,,,. Tt is straightforward to check that the algorithm now termi-
nates when approximating an infinite simulation that can be constructed with a regular input-action
increase in the structure of the supertype. This regularity, reflecting the residual inputs/branching
from eager unfolding, is captured by the nested A4-context. We have checked that this rule gives
an affirmative answer to ut.![U;].t < ut.![U;].?[U>].t (and other similar diverging examples) in a
finite number of steps. This is easy to see in the previous derivation, where the topmost instance of
(RecL) would be replaced with the new (Asmp) instantiated with 4 =?. (-), validating the intended
subtyping.

We have not yet determined whether this system is sound and complete with respect to the
coinductive method, as it is not immediately clear if with the rule (Asmp) it accepts any subtypings

not supported in <, or if all infinite simulations can indeed be approximated in this way.

Towards an Algorithm

Achieving a provably sound and complete algorithmic subtyping remains an important future
work, and one upon which subsequent practical efforts will be based on. There are a number

of technical components that need to be developed:

Bounding the goals In the standard systems, the maximum number of subgoals that may be
checked in a single derivation is bounded by the cartesian product of the subexpressions
of the initial goal. With our proposed rules, the finiteness of the set of possible subgoals
must be reconsidered, but we expect that the modified axiom (Asmp) will offer exactly such

a bound. Then, we can prove termination following the method of Gay and Hole [39]].

Soundness and completeness Rule (Asmp) holds the key to the correctness of the algorithm: we
need to establish a correspondence between all infinite simulations and the use of (Asmp) in

the respectively induced algorithmic derivations.

Invertibility of <. This property implies that the shape of a subtype can be determined from a

given supertype. It is useful in order to avoid having a combinatorial explosion in the paths
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that need to be checked in a derivation: an algorithm starts from the initial goal and moves
“up,” encountering subtypes (in the premises) that can be determined from the supertype
(in the conclusion), using an inversion lemma or an inverted definition for subtyping. We
believe that <. can be adapted to obtain an inverted “supertype-of” relation <"V with the

property <I"V=<71.

Buffers and Asynchronous Subtypes

One final consideration is implementation; even with a correct and terminating algorithm, infinite

buffer resources may be needed due to subtyping alone. For example let, omitting carried types,

cate with a process that implements S,. By the subtyping S; <. S,, a process which acts according
to S1 can also interact with one that follows S5, but clearly the former never receives the outputs
of the latter. Hence the input buffer of the process with session S will continually and indefinitely
increase storing the outputs of S,. Moreover, note that a subtype of S, can also ignore the input,
creating the same situation at both buffers of the session. It may therefore be preferable to iden-
tify those subtypes, which seem to be the ones inducing infinite simulations and (in the standard
algorithmic system without the modified (Asmp) axiom) divergence, as undesirable and decline to
accept them. To implement this, it is enough to fail — instead of succeeding — the algorithmic

derivation with (Asmp) when an infinite simulation is approximated:

A+ () = fail
(Asmp)

2,81 < ﬂ<52h>h€H FS < ﬂ<ﬂ(52h>h€H>h6H

The sidecondition 4 # (-) = fail ensures that the rule can still be used as the standard axiom
when there is no duplicated context, that is, when 4 = (-). Otherwise a match on a nested (and
duplicated) non-empty A4 should cause failure, immediately bringing to an end the building of the
derivation without following alternative goal paths which can lead to divergence. This solution
has similar effect to the use of X in our original modification of (RecR), since we again have
S1 < §2 but not 0 =87 < S5,. However, the solutions are not equivalent, since X is more rigid
and rejects desirable subtypings such as ut.![U;].?[Us].t < ut.![U;].?[U2].![U;].?[Uz].t whose con-
structors do not exactly match, but are still proportional; this example is accepted with both the
proposed versions of (Asmp). The resulting system will not be formally sound without a suitable
sidecondition, as a valid class of subtypings in <, will be rejected by <, but it may be the most

reasonable compromise for practical applications with limited resources towards the allocation of
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buffer space.

7.3 Progress in Asynchronous Higher-order Sessions

Another direction is communications progress, discussed in Section The existing methods,
such as the interaction typing system by Dezani, de’ Liguoro, and Yoshida [29], can be adapted
to provide a solution for languages with mobile code such as HOn® and HOn®. Nevertheless, in
the presence of higher-order code mobility, the extension demands care since it requires tracking
dependencies inside mobile code. For example, if s!("P") is blocked, the sessions inside "P" are
also blocked. On the other hand, we postulate that asynchronous subtyping does not introduce
deadlock to a deadlock-free supertype, as outputs and selections can only be done in advance
(partial commutativity), satisfying even stricter input dependencies than those required by the
dual session of the supertype. Also, an alleviating factor might be that sessions in mobile code
(and in general, within structures which can be used as values) must be completed. This indicates
that a sufficient analysis might only need to explicitly consider linear functions in the ordering of

session actions, obtaining a straightforward solution.

7.4 Algorithmic Type-checking for the Session Object Calculus

To facilitate itself as a foundation for practical language design, the sessiong calculus would
greatly benefit from concrete type-checking methods, and the possibility of (even restricted) type
inference. In the present iso-recursive setting, subtyping does not pose a significant challenge, but

type-checking and inference still require a careful formulation.

A useful property with regard to type-checking is that of unique types, or more generally min-
imum types. A type system with minimum types assigns a unique type to each typable term, and
moreover the assigned type is the smallest, by subtyping. The aim of minimum typing is to sim-
plify type-checking algorithms, since the construction of a single successful derivation is always
sufficient. Unique types arise in the simpler setting where there is no subtyping. Minimum types
have been used to guide algorithmic systems for A-calculus, see for example Pierce’s book [76]
§ 16.2], and for the first-order object calculus with subtyping Ob;.. of Abadi and Cardelli [2]. In
the case of sessiong, minimum types are not easy to achieve, or even necessarily desirable, since,

for example, the same object w in a branching u>w can induce incomparable types for u. Consider,
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for instance:
letw = [t|li =¢(x1)A(y1)y1>x1,

b = ¢(x2) My2) y2>x2
I3 = ¢(x3) A(y3) close(y3)
nubw
with:
T=[L:(0),b:(0)],s: (end)[]] and & = &X)[L:X, b X]

Then (BRANCH) (from Figure can type u>w with type G for u, after subtyping of T to [/; :
(6)]], 2 : (o) []] which enables the folding (to ©), and also with:

o =&Y)[l1:06,hL:0,1:end]

The larger branching type ¢’ (including /3 : end) does not match the use in the methods (where the
subset of branches in © is assigned based on 7), thus folding to ¢ does not take place. Moreover, the
types 6’ and © cannot be related by <, since in the iso-recursive method folding and unfolding are
explicitly triggered within terms (in our case branching and selection). However, this difficulty in
finding a suitable typing system with minimum types may become irrelevant, if an equi-recursive
subtyping method is used instead, since then we could accept 6’ as a minimum typing for u in

u>w, obtaining ¢ as a supertype if desired, using a coinductive framework.

Although the minimum types method seems unsuited to the object calculus with iso-recursive
sessions, we are motivated to find a solution since this form of subtyping enjoys a very simple
theory compared to the coinductive formalisation. An appropriate strategy might be to recast al-
gorithmic subtyping as a constraint solving problem. This approach stems from the observation
that typing information from the root of a derivation can inform the choice of types deep in the
derivation tree. Instead of trying to type these deep subderivations directly as they appear, this
method progressively introduces subtyping constraints that, if solvable, induce a typing. A solu-
tion in that case is a substitution of concrete types, extracted from the type annotations, for type
variables in the generated constraint set. Type reconstruction, or inference, works similarly, but in
that case there are no type annotations, and the substitution is inferred. For a detailed exposition
to constraint-based algorithmic typing, see Pierce’s book [76, § 22.3]. For Oby.., Palsberg [74]
has developed efficient algorithmic type reconstruction systems. In the context of inference for
session types without asynchronous subtyping, Dezani et al. [31,130] define a typing system with

unification-based substitution inference.
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7.5 Extension to Objects with Self Types

An important concept in the work of Abadi and Cardelli [2] is that of self types, which give
recursive types to special classes of objects, such as those returning the object itself (or a modified
version of it) from within a method. We decided not to include them in sessiong, for simplicity of
presentation, and to obtain a more manageable calculus. It is an important future work for us to
investigate the interplay between session subtyping, object subtyping, and self types. In particular,
we want to answer the question of how to obtain correctly the deep subtypings that arise when
a recursive branching y>x within a method executes the session argument y with a subtyped
implementation of self as x, one that provides a larger interface and hence, more branches. This
situation arises in systems in which objects can be extended, such as when using inheritance or

mixin-composition.

7.6 Implementation of Sessions

Buffer Size Bounding and Asynchronous Subtyping The buffer size bounds inferred in the
system of Gay and Vasconcelos [40]] can in some cases enable the static allocation of (possibly
optimised) buffer resources at the compilation level. It would be interesting to see if this method,
which specifically calculates the size of the required input buffer given a type, can be extended to
work in the presence of asynchronous subtyping. A first observation, hinting at a difficult point, is
that subtyping affects the buffer bound. Consider the subtyping ut.![U;].t <. ut.![U;].?[Us].t. For
ut.![U].t their method would give a bound of zero, since only inputs and branching are considered,
while for ut.![U;].?[U].t the bound would be one, corresponding to the (repetitive) input. How-
ever, for both types the other end can be typed with ut.?[U;].![U].t, and the fact that ut.![U;].t
ignores inputs from ![U,] does not mean that these are not received at its input buffer, hence
the assigned bound should be oo instead of zero. Similar situations arise whenever the subtype
has a greater proportion of outputs/selections than the supertype, as in ut.![U;].![U;].?[Us]t <.
ut.\[U,].7[U,].t, causing an incremental buffer size increase at the receiver of ![U;]. In the last
example the dual of the supertype ut.![U;].?[Us].t induces a buffer bound of one, but the subtype
ut.\[Uy].1[U;].2[Us] .t causes it to actually need a buffer of size at least two in order to accommo-
date for the double output (between inputs) at each recursion. Hence it may be the case that such
bounds cannot be inferred in the presence of asynchronous subtyping, but even in that case, there

may still be a suitable adaptation of the technique for the typing restriction detailed previously in

§72
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Sessions for Erlang A solution to the problem of algorithmic type checking in both higher-
order processes and in objects with sessions, and to a lesser degree the ability to optimise the
allocation of finite resources for session running programs, lead us to the path of implementation
equipped with a strong arsenal of foundational theories. One particularly interesting language
that encompasses message-passing processes at the core of interacting programs is Erlang [S3]], a
functional language with sums (cases on the shape of a value), records, and higher-order functions.

In the words of Armstrong [4} § 6.3], Erlang’s creator:

“Erlang views the world as communicating black boxes, exchanging streams of mes-

sage that obey defined protocols.”

Essentially, Erlang processes are always in a session which is identified with the process identity
(or pid). Communications towards the process use the pid to locate the buffer to which the message
should be appended, and only a process can read its own pid-indexed buffer. Complex protocols
arise when multiple processes interact and cooperate through their respective pids. Moreover,
the dynamic update of programs without interruption (hot-swapping), a distinguishing feature of
Erlang, indicates that there is an element of code mobility, combined with a dynamic modification
of runtime processes which is straightforwardly subsumed by the one found in objects (manifested
through method update). Session typing can certainly benefit Erlang. From this starting point we
hope to follow two avenues: first, a study into type-inference of session-based types for existing
Erlang code, perhaps enabling us to retroactively verify part of the codebase, which has not been
done for the process-oriented part of the language; second, to implement a language similar to
Erlang in efficiency and programming style, but with a typed session discipline at its core, paving
the future for a more powerful and verification-friendly programming paradigm for massively

concurrent applications.

Our design can be partly informed by the subtyping-based type inference system of Wadler [56],
and by the soft typing system by Nystrom [70]. The success typings of Lindahl and Sagonas [53]]
seem to be a suitable basis, and are used in Dialyzer, the official static analysis component of the
open source Erlang compiler. Note, however, that none of these systems address the process (com-
munications) part of Erlang, instead focusing on the functional core. Armstrong [3]] addresses the
interconnection of Erlang and other languages with contracts that specify state-machines describ-
ing the behaviour of Erlang processes, but still, the method cannot capture behaviour as precisely

as session types, and is not applicable as a general static verification of communicating processes.
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Sessions on the GO  Session typing could benefit the newly released GO language by Google [28].
The concurrency mechanism of GO is similar to that of Erlang, but channels are explicit and typed
with a singleton carried type, facilitating a more direct adaptation of the standard session typ-
ing methodologies. Communication is buffered. Moreover, GO has structurally typed objects,

indicating that our session objects calculus might provide a suitable base for formalisation.

Towards Language-independent Implementations of Session-oriented Programs As ses-
sions become more and more pervasive, their restriction to serve as a language-specific verification
mechanism may become a limiting factor for some domains: we envision that eventually there will
be a need to interconnect diverse session-oriented programs implemented in heterogeneous envi-
ronments. Thus, we might need to decide how session types can be used at a more abstract level,
using a restricted set of universal datatypes such as XML types, possibly implemented using a
standardised mechanism such as SOAP.

Already, the W3C Choreography Web Description Language (CDL) [90, [21] addresses many
of these aspects in a web services context, but what we are suggesting is a session middle-
ware framework similar in principle (but not technically related) to CORBA, connecting binary-

incompatible communicating programs.

7.7 Concluding Remarks

A fundamental motivation of the typing techniques that are utilised in this work is that communi-
cation must be treated as central to programming, deserving the same attention in its verification
as any other construction, such as a function, object, or variable. Session types address pre-
cisely this, and we presented a theoretical foundation integrating sessions with higher-order pro-
cesses and objects, which can support structured type-safe communications in functional, process,
object, and multi-paradigm languages. Furthermore, we have formalised a subtyping approach
in which certain re-structurings of communications are allowed, when they preserve the desired
safety properties of programs. This asynchronous subtyping was presented in both a coinductive
and an inductive formulation, yielding respectively an equi-recursive and iso-recursive system; the
first method admits many more subtypings, the second has the benefit of simplicity. For the future
we have important directions to explore using this work as a basis, aiming at more theoretical
results, algorithms for practical subtyping implementations, and the adaptation of session typing
to the actor-declarative paradigm of the language Erlang.

This concludes the thesis.
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