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Abstract. This paper proposes two typing systems for session interactions in higher-
order mobile processes. Session types for the HOπ-calculus capture high-level structures
of communication protocols and code mobility as type abstraction, and can be used to
statically check the safe and consistent process composition in communication-centric
distributed software. Integration of arbitrary higher-order code mobility and sessions
leads to technical difficulties in type soundness, because linear usage of session chan-
nels and completion of sessions are required in executed code. By using techniques from
the linearλ-calculus, we develop a coherent and tractable session typing system for the
HOπ-calculus. We also present an alternative system based on fine-grained process types.
The formal comparison between the two systems offers insight on the interplay between
higher-order code mobility and session types.

1 Introduction

In global computing environments, applications are executed across multiple distributed sites
or devices. The use of mobile code is prominent in such environments, where several partici-
pants are synthesised by communication of not only passive values but also of runnable code:
for example a service can be delegated to different participants, by sending either a channel via
which it is accessible, or code that accesses it; and incoming code may transit through several
devices that alter their computational behaviour or their data through interaction with it.

The Higher-Orderπ-calculus (HOπ-calculus) [22] is a general formalism of interaction in
which two kinds of mobility, name passing and process passing, are integrated in a simple
and universal form: in this model, processes can be instantiated by names and other processes,
just like a piece of mobile code is instantiated with local capability after migration. This ad-
ditional expressiveness inherited from theλ-calculus provides a powerful basis for describing
and analysing dynamicity in global computing scenarios.

As a type-theoretic foundation for highly structured communication protocols often found
in distributed applications, this paper focuses on the notion of sessionsand their types. A
session is a series of communications between two parties which form a meaningful logical
unit, just like a web session between a browser and a web server when a human user interacts
with an e-commerce site. Session types model such interactions as an abstract structure of
typed inputs and outputs. The study of session typing systems is now wide-spread due to the
need for structured communications in various scenarios indistributed computing. Starting
from 1994, it has been studied for theπ-calculus [4, 12–14,18, 23, 32], ambients [11], CORBA
interfaces [24], Concurrent Haskell [21], multi-threadedfunctional languages [16, 26, 27] and
distributed [9] and multi-threaded Java [8]. At the industry level, languages with variants
of session types are implemented in an operating system [10]and WC3 Choreography Web
Description Language [5, 6, 29].

While many advanced session types for theπ-calculus and programming languages have
been studied, there exist no session typing systems for the HOπ-calculus. Incorporation of
sessions into the HOπ-calculus offers a general theoretical basis for examiningthe interplay
between two non-trivial features in communication-based programming, higher-order mobility



and session-based structured interaction. This paper establishes the first session type theory for
the HOπ-calculus which can statically validate the type safety of complex distributed scenar-
ios with code mobility. In spite of their simple type syntax,the previous literature have shown
that obtaining type soundness for session types is an intricate task because of delegation of
sessions [32]. In addition, in the presence of higher-orderprocess passing, with the instantia-
tion of names into executable code, preservation of typability becomes even more non-trivial.
We provide two different solutions: one by controlling the linear use of variables for higher-
order processes, which enjoys simplicity and tractability; and another by exporting channel
capabilities as types of processes, which needs more annotations but has wider, more flexible
typability. These two methods provide a potential type-theoretic basis of future programming
idioms for dynamic code mobility and structured communications [2, 19].

The next section defines the syntax, operational semantics,and demonstrates the combined
use of session types and code mobility. Section 3 defines the first typing system inspired by the
linearλ-calculus [28]. Section 4 outlines an alternative typing system based on the fine-grained
process types of [30, 31], and discusses the trade-offs between the two approaches. Section 5
concludes with related and future work. The omitted definitions and proofs are found in the
on-line Appendix [1].

2 The Higher-Order π-Calculus with Sessions

2.1 Syntax

The syntax of the calculus is given in Fig. 1, based on theπ-calculus augmented with session
primitives and the call-by-valueλ-calculus. A session is a series of reciprocal interactions
between two parties, possibly with branching, serving as a unit of type abstraction. A session
is initiated over ashared channeland communications belonging to a session are performed
via two fresh end-point channels specific to that session, called session channels. The indices 0
and 1 of session channels are used to distinguish the two end points, taking a similar approach
to [14, 32]. We denotẽV for a potentially empty vectorV1...Vn. “t” and “σ” denote types which
will be given later. Type annotations are often omitted.

For terms, we have prefixes for declaring session connections, !u(x).P for servers and
u(x).P for clients. Here the identifieru represents the public interaction point over which a
session may commence. The bound variablex represents the actual channel over which the
session’s communications will take place. Session communications are performed using the
next four primitives: the inputk(x).P, the outputk〈V〉.P, branchingk�{l1 :P1; . . . ; ln :Pn} (of-
ten written ask�{l i : Pi}i∈I with index setI ) which offers alternative interaction patterns, and
selectionk� l .P which chooses an available branch.(νa : σ)P restricts (and binds) a channel
a to the scope ofP. Similarly, (νκ)P bindsκ0 andκ1, making them private toP. Other prim-
itives are standard. We often omit0. Thebindingsare induced by(νa : σ)P, (νκ)P, !u(x).P,
u(x).P andλx.P. The derived notions of bound and free identifiers, alpha equivalence and sub-
stitution are standard. We denotefv(P)/fn(P) for the set of free variables/channels, respectively.
We sayP is initial if it does not contain free variables/session channels. Thedifference be-
tween shared and session channels is worth illustrating.a(x).P1 | a(x).P2 | a(x).Q is accepted,
but κ0〈V1〉.P1 | κ0〈V2〉.P2 | κ1(x).Q is not, since two senders atκ0 appear at the same time;
κ0〈V〉.κ0(x).P2 | κ1(y).0 is also unsafe because interactions betweenκ0 andκ1 do not match.

2.2 Reduction

The single-step call-by-value reduction relation, denoted−→, is a binary relation from closed
terms to closed terms, defined by the rules in Fig. 2. The rulesare from those of the HOπ-
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(Identifiers) u,v,w ::= x,y,z variables
| a,b,c shared channels

k ::= x,y,z variables
| κi i ∈ {0,1} session channels

(Terms)
P,Q,R ::= V value

| !u(x).P server
| u(x).P client
| k(x).P input
| k〈V〉.P output
| k�{l1 :P1; . . . ; ln :Pn} branching
| k� l .P selection
| P|Q parallel
| (νa : σ)P restriction
| (νκ)P restriction
| PQ application
| 0 nil process

(Values)
V,V ′,W ::= u,v,w shared identifier

| k,k′,k′′ linear identifier
| () unit
| λ(x : t).P abstraction

(Abbreviations)

pPq
def
= λ(x:unit).P (x 6∈ fv(P)) thunk

run def
= λx.(x()) run

Fig. 1. Syntax

(beta) (λ(x : t).P)V −→ P{V/x}

(conn) !a(x).P | a(z).Q −→ !a(x).P | (νκ)(P{κ0/x} | Q{κ1/z}) κ0,κ1 fresh

(comm) κi(x).P | κ j〈V〉.Q −→ P{V/x} | Q i 6= j

(label) κ j �{l1 :P1; . . . ; ln :Pn} | κi � lm.P −→ Pm | P i 6= j , 1≤ m≤ n

(app-l) P−→ P′

PQ−→ P′Q
(app-r) Q−→ Q′

VQ−→VQ′

(par) P−→ P′

P|Q−→ P′ |Q
(res) P−→ P′

(νã : σ̃)(νκ̃)P−→ (νã : σ̃)(νκ̃)P′ (str) P≡ P′ −→ Q′ ≡ Q
P−→ Q

Fig. 2. Reduction

calculus [22, 30], but with the necessary modifications for session communications. Rule (conn)
establishes a new session between server and client via shared nameu; freshκ0 andκ1 are in-
stantiated, and the server stays as it is, waiting another interaction. Rule (comm) transmits
values between the private session channels. Note that a session channel can be sent and re-
ceived (whenV = k), with which various protocols are expressed, allowing complex nested
and private structured communications. This interaction is calledhigher-order session pass-
ing (delegation). Rule (label) selectsPm (a communication version of the case reduction in
theλ-calculus). We use the standard structure rules [20]≡ such as(νκ)P|Q≡ (νκ)(P|Q) if
κi∈{0,1} 6∈ fn(Q) (see Appendix [1]).

2.3 Example: Business Protocol with Code Mobility

We show a simple protocol which contains essential featuresby which we can demonstrate
the expressivity of the code mobility and session primitives of the HOπ-calculus; it consists of
a combination of session establishing, code mobility, session delegation and branching. This
extends a typical collaboration pattern that appears in many web service business protocols
[5, 7, 29] to code mobility.
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Client Agency  Hotel
a : x

x : London 

x : mobile to y 
b : y 

   y : roomrate

x : comission

A  B : creat session x over a 

A B : send  x over c
c : x

A B : select label and 
      send  y over c

c : l with y   

a : x 

y : code 

x : Date  

  y : creditcard

run code

(a)   Remote Message Passing 

(b)   Code Mobility 

   y : roomtype

Client Agency  Hotel
a : x

x : London 

x : continue with y 
b : y 

   y : roomrate

x : comission

y : roomtype 

x : Date  

  y : creditcard

Fig. 3. Sequence Diagram for Hotel Booking

In Fig. 3, we show the sequence diagram for a protocol which models a hotel book-
ing: first, Booking Agency andClient initiate interaction at sessionx over channela; then
Client starts exchanging a series of information withAgency; during this initial communi-
cation,Agency calculates its Round Trip Time (RTT) betweenClient andAgency; Agency
selects an appropriateHotel and creates a new sessiony over channelb with thatHotel. If the
RTT is short (Fig. 3 (a)), thenAgency delegates toClient its part of the remaining activity
with Hotel, by sending session channely; thenClient andHotel continue negotiations by
message passing. If the RTT is long (Fig. 3 (b)), since many remote interactions increase the
communication time as well as danger of communication failures,Agency asks backClient
to send mobile codewhich contains the communication of theClient’s room plan and ne-
gotiation behaviour.Agency sends the code toHotel, thenHotel runs it locally, finishing a
series of interactions in its location. FinallyAgency receives a commission fee (10 percent of
the room rate) via sessionx, concluding the transaction.

The given scenario is straightforwardly encoded in our calculus, where session primitives
make the structures of interactions clearer; we omit the subject of the intermediate communi-
cations within the same session e.g.x� l .x〈v〉.x(y).P is written asx� l ;〈v〉;(y).P. Agency first
initiates ata and starts the interactions withClient; then it initiates atb and establishes session
y; next it invokes either labelcont or labelmove in Client depended on the RTT and sends
y (higher-order session passing) to it, and waits for a completion of the transaction between
Client andHotel at x (note that “if-then-else” can be encoded using branching, and we use
other base types and their operators).

!a(x).x(area); ...b(y).if rtt < 100 then x� cont;〈y〉;(z).P (1)

else x�move;〈y〉;(z).P (2)

Client requests a service ata and starts a series of interaction withAgency, and either contin-
ues the rest of activity withHotel or sends the code (a thunk in Line 4). Note thatClient can
safely send back the commission fee toAgency because the return messagex〈z×0.1〉 which
uses session channelx is embedded in the thunk.

a(x).x〈London〉; ...x�{ cont : (y).y� cont;〈roomtype〉;(z); ...x〈z×0.1〉 ; (3)

move : (y).y�move;〈py〈roomtype〉;(z); ...x〈z×0.1〉q 〉} (4)
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Hotel performs the interactions withAgency andClient via a single session aty (by the
facility of higher-order session passing). In Line 6, the code sent byClient is run locally.

!b(y).y�{ cont : (z);〈roomrate(z)〉; ...Q ; (5)

move : (code).(run code| y(z);〈roomrate(z)〉; ...Q)} (6)

The encoding is simple, but includes a couple of subtle points whose slight modification breaks
the session structures. First, in Line 4, if we send the code which does not complete the session,
then the protocol is broken: e.g. if we have interactions aty (sayy〈w〉) after sending a thunk
in Line 4 in Client, the session aty will appear in the three threads (two inHotel, one in
Client), so the session aty is interfered and values get mixed up. Secondly, in Line 6, if
we have two or more applications (sayrun code| run code) instead of onerun code, it again
breaks the session structure (both aty andx). Finally, if the code is not runnable in Line 6 (like
(λx.0)codeinstead ofrun code), the receivery(z);〈roomrate(z)〉; ...Q cannot find a matching
output. Hence the variablecodemust appear exactly once and surely get instantiated into a
process exactly once.

3 The First System: Higher-Order Linear Typing

3.1 Types

This section presents the first session system based on linear typing for higher-order functions.
The syntax of types is given below.

Term τ ::= t | ⋄ Chan σ ::= begin.α Val t ::= unit | t → τ | (t → τ)1 | σ | α
Session α ::= ![t].α | ?[t].α | ⊕[l1 :α1; . . . ; ln :αn] | & [l1 :α1; . . . ; ln :αn] | end

It is an integration of the types from the simply typedλ-calculus with unit and the session types
from theπ-calculus, with the exception of linear functional types,(t → τ)1, which represent
functions to be used exactly once. Term types, ranging overτ, include all value types and the
process type⋄. Channel types, ranging overσ, take the shapebegin.α. Session typesrange
over α,β,γ... In begin.α, begin represents the start of the session, whileend represents its
termination.Value typesconsist of the unit type, the function types, the linear function types
and the channel and session types. Note that linear annotations are attached only to function
types. In the session types, ![t].α represents the output of a value typed byt followed by a
session typed byα; ?[t] is its dual.⊕[l1 : α1; . . . ; ln : αn] is the selection type on which one
of the labelsl i can be sent, with the subsequent session typed byαi ; & [l1 : α1; . . . ; ln : αn] is
its dual called the branching type. We often write &[l i : αi ]i∈I / ⊕[l i : αi ]i∈I for branching and
selection types, andpτq for unit → τ. end is often omitted. Each session typeα has adual
type, denoted byα, which describes complementary behaviour. This is inductively defined as:
![t].α =?[t].α,⊕[l1 : α1; . . . ln : αn] = & [l1 : α1; ...; ln : αn], ?[t].α =![t].α, & [l1 : α1; . . . ln : αn] =
⊕[l1 : α1; ...; ln : αn], andend = end.

3.2 Linear Higher-Order Typing System

We first define the two kinds of finite mappings for environments:

Global Γ ::= /0 | Γ,u : σ | Γ,x : unit | Γ,x : t → τ | Γ,x : (t → τ)1 SessionΣ ::= /0 | Σ,k : α

Γ is a mapping, associating value types (except session types) to identifiers.Σ is a mapping from
session channels to session types that records precise usage information for all free session
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(Common)

(Shared)
t 6= (t ′ → τ)1

Γ,u: t; /0; /0 ⊢ u : t

(Session)

Γ;k:α; /0 ⊢ k : α

(LVar)

Γ,x : (t → τ)1; /0;{x} ⊢ x : (t → τ)1

(Function)

(Base)

Γ; /0; /0 ⊢ () : unit

(Abs)
Γ,x: t;Σ;S ⊢ P : τ (⋆)

Γ;Σ;S \x⊢ λ(x: t).P : t → τ

(AbsS)
Γ;Σ,x: α;S ⊢ P : τ
Γ;Σ;S ⊢ λ(x:α).P : α → τ

(App)
Γ;Σ1;S1 ⊢ P : (t → τ)1 Γ;Σ2;S2 ⊢ Q : t (†)

Γ;Σ1,Σ2;S1,S2 ⊢ PQ : τ

(Sub)
Γ;Σ;S ⊢ P : t → τ
Γ;Σ;S ⊢ P : (t → τ)1

(Process)
(Nil)
Σ = {k̃ : ˜end}

Γ;Σ; /0 ⊢ 0 : ⋄

(Par)
Γ;Σ1,2;S1,2 ⊢ P1,2 : ⋄
Γ;Σ1,Σ2;S1,S2 ⊢ P1 | P2 : ⋄

(New)
Γ, a: σ;Σ;S ⊢ P : ⋄
Γ;Σ;S ⊢ (νa: σ)P : ⋄

(Newκ)
Γ;Σ,κi : α,κ j : α;S ⊢ P : ⋄
Γ;Σ;S ⊢ (νκ)P : ⋄

(Acc)
Γ; /0; /0 ⊢ u : begin.α Γ;x: α; /0 ⊢ P : ⋄
Γ; /0; /0 ⊢! u(x).P : ⋄

(Req)
Γ; /0; /0 ⊢ u : begin.α Γ;Σ,x: α;S ⊢ P : ⋄
Γ;Σ;S ⊢ u(x).P : ⋄

(Rec)
Γ,x: t;Σ,k: α;S ⊢ P : ⋄ (⋆)

Γ;Σ,k: ?[t].α;S \x⊢ k(x).P : ⋄

(RecS)
Γ;Σ,k: α′,x: α;S ⊢ P : ⋄
Γ;Σ,k: ?[α].α′;S ⊢ k(x).P : ⋄

(Send)
Γ;Σ1;S1 ⊢ P : ⋄ Γ;Σ2;S2 ⊢V : t k: α ∈ Σi∈{1,2} (†)

Γ;(Σ1,Σ2)\{k : α} ,k : ![t].α;S1,S2 ⊢ k〈V〉.P : ⋄

(Bra)
Γ;Σ,k: αi ;S ⊢ Pi : ⋄ (∀i ∈ I)
Γ;Σ,k : & [l i : αi ]i∈I ;S ⊢ k�{l i : Pi}i∈I : ⋄

(Sel)
Γ;Σ,k : α j ;S ⊢ P : ⋄ j ∈ I
Γ;Σ,k : ⊕[l i : αi ]i∈I ;S ⊢ k� l j .P : ⋄

(⋆) if t = (t ′ → τ′)1 thenx∈ S . (†) if t = t ′ → τ′ thenΣ2 = S2 = /0.

Fig. 4.Session Typing based on Linear Types

channels in a term, so that the cumulative result can be compared with the expected session
type. In addition, we use a set of linear variables ranged over S , S ′, ... to ensure linear usage
of function terms that may contain session channels.Σ,Σ′ andS ,S ′ denote disjoint-domain
unions.Γ,u:σ meansu 6∈ dom(Γ). Then the typing judgement takes the shape:

Γ;Σ;S ⊢ P : τ

which is read: under a global environmentΓ, a termP has a typeτ with session usages de-
scribed byΣ and linear variables specified byS . We say the judgement iswell-formed if
dom(Γ) ⊇ S and dom(Γ)∩dom(Σ) = /0. The typing system is given in Fig. 4. In each rule,
we assume the environments of the consequence are defined.

In the first group,(Common), (Shared) is an introduction rule for identifiers with shared
types, i.e. neither(t ′)1 or α. (Session) is for session channels and(LVar) is for linear variables,
recordingk in Σ andx in S , respectively.
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The second group,(Function), comes from the simply typed linearλ-calculus. In(Abs),
the side condition (⋆) ensures that the formal parameterx, to be substituted with the received
function, appears in the linear variables’ premise. In the conclusion, we removex from the
function environment.(AbsS) is an abstraction rule for session channels.(App) is the rule for
application; the side condition (†) ensures that when the right term is of shared function type,
it is required not to have free session channels or linear variables. The conclusion says thatP
andQ’s session environments and linear variable sets are disjoint. (Sub) is a subsumption rule
to lift from the shared to linear function. The converse is unsafe.

The final group,(Process), are for processes integrated with linear functional typing. In
(Nil), we start from the session environment only withend-usages and the empty linear vari-
able set. In(Par), we parallel-compose two processes, assuming disjointness of session envi-
ronments and linear variable sets as in(App). (New) and(Newκ) hide a shared name and a pair
of session channels, respectively. The latter erases, in the session environment, complemen-
tary communication patterns for the two endpoints ofκ, in order to ensure compatible dyadic
interactions.(Acc) and(Req) are for initiating sessions.(Acc) forbids the use of anyfree linear
identifier because of replication. The type expected for thesession channel is dual (α) to that
portion of the declared session type for the shared identifier. In (Req), it is used as it is (α).
(Rec) handles the reception (input) of values. Just as(Abs), if received values have a linear
function type,x should be recorded to ensure its linear usage inP. The relevant consumption
is composed in the conclusion’s session environment, in a way that agrees with the protocol.
(RecS) is for the input of session channels.

(Send) is the most complex rule, integrating session typing and linear typing. Firstly, (†), as
in (App), enforces safety when sending linear functions. Secondlyk: α ∈ Σi∈{1,2} means either
Σ1 or Σ2 contains the complete sessionk: α (sinceΣ1,Σ2 is defined in the conclusion). When
k: α ∈ Σ1 andV has a functional type, it ensures that all occurring sessionchannels withinV
being sent are complete (i.e. suffixed withend). Hence they cannot occur in the continuation
P, because, if they did, we would have a race condition betweenthe receiver ofV andP, w.r.t.
communications over these common channels, as noted in the example in § 2.3. This condition
forcesV to bek itself when it has the session typeα, uniformly generalising the corresponding
rule in the session types [14, 18, 23, 32]. This is important since, in the presence of higher-
order mobility, the sent code containingk can be executed locally and privately in the receiver
side:Client in the example in § 2.3 becomes typable with this general rule. In the conclusion,
we deletek in eitherΣ1 or Σ2, and the relevant consumption is recorded in the conclusion’s
session environment. Note the function environments are disjoint. (Bra) and(Sel) are the rules
for branching and selection. They are standard from [18].

3.3 Type Soundness and Type Safety

The typed processes enjoy type soundness and type safety. First, typings which start from
well-formed environments construct only well-formed environments.

Proposition 3.1. Suppose the derivation ofΓ;Σ;S ⊢ P : τ starts from the axioms(Shared,
Session, LVar, Base, Nil) of a well-formed judgement. ThenΓ;Σ;S ⊢ P : τ is well-formed.

We have the standard weakening and strengthing forΓ (but not forΣ andS ). Then the substi-
tution lemmas follow.

Lemma 3.2 (Substitution Lemma).

1. SupposeΓ,x: t;Σ1;S1 ⊢ P : τ andΓ;Σ2;S2 ⊢ V : t with t 6= t ′ → τ′, x∈ fv(P), andΣ1,Σ2

andS1,S2 are defined. ThenΓ;Σ1,Σ2;S1 \ x,S2 ⊢ P{V/x} : τ.
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2. AssumeΓ,x: t ′ → τ′;Σ;S ⊢ P : τ andΓ; /0; /0 ⊢V : t ′ → τ′. ThenΓ;Σ;S ⊢ P{V/x} : τ.
3. SupposeΓ;Σ,x : α;S ⊢ P : τ and k 6∈ (dom(Γ)∪dom(Σ)). ThenΓ;Σ,k : α;S ⊢ P{k/x} : τ.

Before stating the main theorems, we introduce the important notion ofbalancedsession envi-
ronments. Clearly, typability over arbitrary session environments is not closed under reduction.
For example, the processκ0〈true〉 | κ1(x).κ′

i〈x+1〉 is typable, but it reduces toκ′
i〈true+1〉,

leading to a run-time error. Hence we allow only typings where the two ends of a channel
are of dual types. Formally, we say that a session environment Σ is balancedif whenever
κi : α,κ j : β ∈ Σ, thenα = β.

Theorem 3.3 (Type Soundness).

1. SupposeΓ;Σ;S ⊢ P : ⋄ with Σ balanced. Then P≡ P′ impliesΓ;Σ;S ⊢ P′ : ⋄.
2. SupposeΓ;Σ;S ⊢ P : τ with Σ balanced. Then P−→ P′ impliesΓ;Σ′;S ′ ⊢ P′ : τ with Σ′

balanced andS ⊇ S ′.

One may wonder why “balanced” cannot be assumed for the condition of the well-formed
judgement. To see the reason, consider(λx.x〈1〉.(x〈3〉.0 | κ1(x).κ1(y).0))κ0. This is typed un-
der the balanced environmentΣ = κ0 : α,κ1 : α with α =![nat].![nat].end, and moreover all
subterms are typed under balanced environments. This process reduces toP′ = κ0〈1〉.(κ0〈3〉.0 |
κ1(x).κ1(y).0), which is still typed under the balanced environmentΣ. However the body of
P′ (i.e. κ0〈3〉.0 | κ1(x).κ1(y).0) cannot be typed under a balanced environment. Thus if we
impose the balanced condition for the typing judgement, type soundness does not hold; the
general substitution lemmas (Lemma 3.2) are required for this reason, too. This is one of the
subtle points on aliasing of session channels, caused byβ-reductions and communications.

We now formalise type safety. First, ak-processis a prefixed process with subjectk (such
ask(x) andk〈V〉). Next, aκ-redexis a pair of dual processes composed by|, i.e. either of forms
(κi〈V〉.P | κ j(x).Q) or (κi � lm.P | κ j �{l1 : Q1; · · · ln : Qn}) with 1≤ m≤ n. Then we sayP
is anerror if P ≡ (νã)(νκ̃)(Q | R) whereQ is, for someκ, the |-composition ofeither two
κ-processes that do not form aκ-redex,or three or moreκ-processes. We then have:

Theorem 3.4 (Type Safety).A typable processΓ;Σ;S ⊢ P : ⋄ with balancedΣ never reduces
into an error.

Typing Hotel Booking Example Using the typing system, we can now type the hotel booking
example in § 2.3, guaranteeing its type safety.Agent has the following types ata andb.

a : begin.![string]...⊕ [rtt < 100 : α ; rtt ≥ 100 : α ], b : begin.![β].end

with α = & [cont : ?[β].![int].end ; move : ?[β].![int].end]

and β = & [cont :![string].?[int]...end ; move :![(p⋄q)1].end]

Note that the type ofa is dualised becausea is used as the input inAgent (see(Acc)). α consists
of higher-order session passing, and the thunk has a linear arrow type.Client andHotel just
have the dual ofAgent’s type ata and the dual ofAgent’s type atb, respectively. Note that in
Client, subjecty is shared in the sent codeV, which is typed by(Send) with a general side
conditionk : α ∈ Σ2 explained in § 3.2.
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4 The Second System: Fine-Grained Process Typing

Linear variables in the previous system “might be instantiated by a function which contains
free session channels, hence it should occur exactly once”:if we haveprior knowledge as to
channel capabilities with which each functional variable (hence any code instantiated into it)
is associated, then we might have more flexible control over migrating code that holds session
capabilities. This motivates the use of the fine grained process typing introduced in [17, 30, 31].
Consider the following server which receives thunked processes via shared channela.

Serv(a) = !a(x).x(y: τ).run y (7)

Since accepting arbitrary processes for execution obviously breaks access control of local re-
sources, one might wish to restrict the behaviour of incoming code so that it can only access
some specified channels. In [17, 30, 31], we introduced a typediscipline which can control
the effect of migrating code, by assigning a different type to each process depending on its
intended use, so that a process can use a typed inputting channel (τ at a in (7) above) to de-
tect, for example, malicious behaviour of received code viastatic type checking. A type for
representing capability is given as a finite channel environment∆, prescribing channel usage
of each process.

Γ ⊢ P : ∆

This judgement means “P accesses channels at most as specified by∆ under global environ-
mentΓ”. For example, under appropriateΓ ⊃ {b: σ,c: σ} with σ = begin.![nat].end, a client
may be assigned a different type depending on its destination.

Γ ⊢ b(x).x〈1〉 : {b: σ} and Γ ⊢ c(x).x〈2〉 : {c: σ}

Then the following indicates a server which only accepts a process which accesses at most the
specified resource,b.

Serv(a) = !a(x).x(y: pb: σq).run y (8)

Using the type system in [17, 30, 31], one can checkServ(a) | a(x).x〈pb(x).x〈1〉q〉 is typable
while Serv(a) | a(x).x〈pc(x).x〈1〉q〉 is not. Using process types with session capabilities, we
can type-check that the following process is illegal:

k(y: pk′ : ![nat]q).(run y | run y) (9)

sincerun y has a process type∆ = {k′ : ![nat]}, and∆ and∆ are not disjoint, so tworun y must
not be composed. Now we no longer require linear annotation on functional types. Moreover
the additional type information leads to a larger typability than the previous system. For ex-
ample,k(y: pk′ : ![nat]q).(run y | (λz.0)y), (λx.0)κ0 | κ0(z).0 | κ1〈1〉, and more interestingly
(λx.k〈1〉.run x)(pk〈()〉.0q) which do not destroy session communication but are untypable in
the previous one become typable since the resulting processtypes are balanced.

4.1 Types

The second typing system introduced below is built on the fine-grained types of [30, 31]. The
syntax of environments and types is given below.

Env Γ ::= /0 | Γ,x: t | Γ,u: σ ∆ ::= /0 | ∆,u: σ Term τ ::= t | ∆
Chan σ ::= begin.α | α Func t ::= unit | t → τ | Πx: σ.τ

Session α ::= ![Π(x̃: σ̃)t̃];α | ?[Π(x̃: σ̃)t̃];α | ⊕[l i : αi ]i∈I | & [l i : αi ]i∈I | end

9



These types are from the first system except for the introduction of fines-grained process types
∆, functional dependent typesΠx: σ.τ and channel dependentΠ(x̃: σ̃)t̃. Note from this sys-
tem,u,v,w, ... (resp.σ) include session names and variables (resp. session types), butτ do not
include channels.1

In Πx: σ.τ, we allow the typeτ to contain occurrences of the channel variablex; thenx in
τ is bound. Noteσ → τ is a special case ofΠx: σ.τ with x 6∈ fv(σ). A process type∆, assigned
to a process, is a mapping from a finite subset of identifiers tochannel types.

A channel type incorporates dependent quantification, and has the formΠ(x̃: σ̃)t̃ indicating
a vector of channels typed byσ1, ..,σn and a vector of higher-order values typed byt1, ..,tm;
free occurrences ofxi in σi+1, . . . ,σn as well ast1, ...,tm are bound occurrences. We write
σ1, ...,σn,t1, ...,tm for Π(x1 : σ1, ...,xn : σn)t1, ...,tm if x1, ...,xn 6∈ fv(σ1, ...,σn,t1, ...,tm). Under
this abbreviation, ?[t].β is subsumed to the casen = 0, and ?[α].β to the caseσ1 = α and
m= 0. The set of free names and variables are defined in the standard way [30], cf. Appendix
[1]. The sets of free s/variables channels incorporate those occurring in annotating types. For
example, we havefv(λ(x: t).P) = (fv(t)∪ fv(P)) \ x. Substitution by channelsP{u/x} affects
not only terms but also types which annotate bound variables: for example, when the channel
u is substituted forx in a process type∆, then the typesσ of x and σ′ of u are joined as:
{u1 : σ1, ...,un : σn}{V/x} = ∪i{ui{V/x} : σi{V/x}}. Others are defined homomorphically.
Duality is defined by adding?[Π(x̃: σ̃)t̃].α =![Π(x̃: σ̃)t̃].α and![Π(x̃: σ̃)t̃].α =?[Π(x̃: σ̃)t̃].α;
others remain unchanged.

4.2 Fine-Grained Process Typing System

The typing system is given in Fig. 5, and uses two kinds of judgements: the main isΓ ⊢
P⊲ ∆, which reads “under the environmentΓ, processP has an interface type∆”. Also we
haveΓ ⊢ u: σ, which reads as “a channelu has a typeσ underΓ” and the standard well-
formednessΓ ⊢ Env andΓ ⊢ τ : tp for environments and types following [30, 31] (which are
left to Appendix [1]). For channel inference, we define the ordering≻ on channel types as the
smallest partial order such that: ![Π(x̃: σ̃)t̃].α ≻ α and⊕[l1 : α1; . . . ln : αn] ≻ αi ; dually for
input and branching types.

The inference rules are combinations of [30] and the sessiontyping system of theπ-
calculus. We use the notation∆ ·u: σ for ∆∪{u: σ} if σ = begin.α; ∆,u: σ otherwise. We
extend this to∆ ·∆′; andũ: σ̃ which meansu1 : σ1 · · ·un : σn.

In the first group,(Common), (Val) is a standard rule for variables.(Chan) uses≻ to infer
shortertypes for sessions than the type ofu declared in the environmentΓ. The second one,
(Function), comes from the simply typedλ-calculus (where the rules for the higher-order
abstractions,(AbsH ) and (AppH ) and those for channel abstraction,(AbsN) and (AppN), are
separately given). The final group,(Process), are about processes. In(Nil), we start from the
empty interface, and in(Par), we merge two interfaces together. The rule(Weak) corresponds
to the process subsumption rule; sinceΓ ⊢ P : ∆ means “P would access channels specified
at most by∆”, we can increment its interface. Note that we cannot weaken session channels
exceptend. (New) and(Newκ) hide a name and a pair of session channels, respectively.(Acc),
(Req), (Bra) and(Sel) are standard rules for accept, request, branching and selection.

(Rec) is a combination of the input rule for session types and that in [30]. This single rule
subsumes both the value input rule and the session channel input rule (recall the abbreviation

1 For simplicity of presentation, the tail typeτ does not include the channel typeσ. This inclusion can
be straightforwardly formalised by using the standard typeequality approach [3]. We also omit the
existential types from [17, 30] which are a special case of dependent types.
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(Common)

(Val)
Γ,x: t,Γ′ ⊢ Env

Γ,x: t,Γ′ ⊢ x : t

(Chan)
Γ,u: σ,Γ′ ⊢ Env σ ≻ σ′

Γ,u: σ,Γ′ ⊢ u : σ′

(Function)

(Base)
Γ ⊢ Env

Γ ⊢ () : unit

(AbsH )
Γ,x: t ⊢ P : τ
Γ ⊢ λ(x: t).P : t → τ

(AppH )
Γ ⊢ P : t → τ Γ ⊢ Q : t
Γ ⊢ PQ : τ

(AbsN)
Γ,x: σ ⊢ P : τ
Γ ⊢ λ(x:σ).P : Πx: σ.τ

(AppN)
Γ ⊢ P : Πx: σ.τ Γ ⊢ u : σ
Γ ⊢ Pu : τ{u/x}

(Process)

(Nil)
Γ ⊢ Env

Γ ⊢ 0 : /0

(Par)
Γ ⊢ P1,2 : ∆1,2
Γ ⊢ P1 | P2 : ∆1 ·∆2

(Weak)
Γ ⊢ P : ∆ Γ ⊢ u: σ
σ ∈ {begin.α,end} u 6∈ dom(∆)

Γ ⊢ P : ∆,u: σ
(New)
Γ, a: σ ⊢ P : ∆,a: σ

Γ ⊢ (νa: σ)P : ∆

(Newκ)
Γ,κi : α,κ j : α ⊢ P : ∆,κi : α,κ j : α

Γ ⊢ (νκ)P : ∆

(Acc)
Γ ⊢ u : begin.α {k : β} 6⊆ ∆
Γ, x: α ⊢ P : ∆,x: α
Γ ⊢! u(x).P : ∆ ·u: begin.α

(Req)
Γ ⊢ u : begin.α Γ, x: α ⊢ P : ∆,x: α
Γ ⊢ u(x).P : ∆ ·u: begin.α

(Rec)
Γ ⊢ k :?[Π(x̃: σ̃)t̃];α
Γ, x̃: σ̃, ỹ: t̃ ⊢ P : ∆, x̃: σ̃,k: α
Γ ⊢ k(x̃: σ̃, ỹ: t̃).P : ∆,k: ?[Π(x̃: σ̃)t̃];α

(Send)
Γ ⊢ k :![Π(x̃: σ̃)t̃];α
Γ ⊢ P : ∆ {k: α} ⊆ ∆ · ṽ: σ̃
Γ ⊢Vj : t j{ṽ/x̃} Γ ⊢ vi : σi{ṽ/x̃}
Γ ⊢ k〈ṽ,Ṽ〉.P : ∆ · ṽ: σ̃\k,k: ![Π(x̃: σ̃)t̃];α

(Bra)
Γ ⊢ k : & [l i : αi ]i∈I Γ ⊢ Pi : ∆,k: αi

Γ ⊢ k�{l i : Pi}i∈I : ∆,k: & [l i : αi ]i∈I

(Sel)
Γ ⊢ k : ⊕[l i : αi ]i∈I Γ ⊢ P : ∆,k: αi

Γ ⊢ k� l i .P : ∆,k: ⊕ [l i : αi ]i∈I

Fig. 5. Session Typing based on Fine-Grained Process Types

in the previous paragraph). The first assumption ensuresu can input channels typed byσi and
higher-order values typed byt j , and in the conclusion, the free occurrences of ˜x in bothP and
t j are bound (hencet j is depended by ˜x), resulting the process type∆ with a new session type
?[Π(x̃: σ̃)t̃].α at k (notek 6∈ dom(∆)). (Send) is again a combination with the output rule in
[30] (see also (Send) for the first system): the first assumption ensuresu outputs a pair of names
typed byσi and higher-order values typed byt j . The third assumption says thatk is either sent
namevi or a free name inP. The the first part of the arguments isvi , then the second part of the
arguments should have typet j{ṽ/x̃} sincexi binds free occurrences ofxi in t j . Then the effect
of channelk andvi should be recorded as a type ofk〈ṽ,Ṽ〉 because they will be used by the
opponent input after interaction (note that we donothave to record the effect ofV).

By essentially the same routine of the proofs in [30], we obtain:
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Theorem 4.1 (Type Soundness).

1. SupposeΓ ⊢ P : t and P−→ P′. ThenΓ ⊢ P′ : t.
2. SupposeΓ ⊢ P : ∆ with ∆ balanced. Then P≡ P′ impliesΓ ⊢ P′ : ∆′ with ∆′ balanced.
3. SupposeΓ ⊢ P : ∆ with ∆ balanced. Then P−→ P′ impliesΓ ⊢ P′ : ∆′ with ∆′ balanced.

Note thatΓ does not have to be balanced.

Theorem 4.2 (Type Safety).A typable processΓ ⊢ P : ∆ with balanced∆ never reduces into
an error.

Typing Hotel Booking Example We revisit the hotel booking example in § 2.3. The only
change from the previous types in § 3.2 is ![(p⋄q)1] in β. This is changed to ![Π(x : γx,y : γy)p∆q]
with γx =![string].?[int]...end andγy =![int].end, and∆ = {x : γx,y : γy}. Note that we also
have to change the syntax in Line 4 fromy�move;〈pRq〉 to y�move;〈x,y,pRq〉 since the type of
the thunk is dependent onx andy. This suggests a trade-off between the two approaches. In the
channel-dependent typing, we gain more flexibility by having more type information, but this
in turn demands additional type annotation in programs. Theapproach based on linear typing
does not need heavy annotations, though it allows the typability of a smaller, but probably
pragmatically sufficient, class of programs. We may also refine the dependently typed approach
with the existential types of [17, 30] (this integration is straightforward, but requires more
rules), in which case we do not have to declare session names explicitly. The syntax of the
example is unchanged, and the type becomes ![∃[x : γx,y : γy]p∆q]. The reader can also check
the processes in the beginning of the section are typable: inthe first process,(λx.0)y has the
empty process type/0 so that we can compose withrun y by (Par). Similarly for the second.
In the third,(λ(x: t).k〈1〉.run x)(pk〈()〉.0q) with t = pk: ![unit].endq. has a process type∆ =
{k: ![nat].![unit].end} under environment∆. These are untypable in the first system.

4.3 Comparison of the Two Systems

We conclude this section with a comparison of the two typing systems. The examples in the
beginning of this section show the existence of terms typable in the second system but not in
the first system introduced in § 3. A natural question is whichsubsystem of the second system
can precisely characterise the first, i.e. a sound and complete embedding of the first system into
a subset of the second system. Observing that it is linear functions that can inhabit those types
with free session capabilities (e.g.λ(x: α).x〈1〉 of typeΠx: α.x: nat is not a linear function,
while px〈1〉q of typepx: natq is linear), we introduce the following three functions.

– Erase(P) erases the dependent binding from the input and output, andErase(τ) erases
the dependent binding from the functional and channel dependent types; and translates
process types into⋄; and puts the linear annotation to a functional type which has free
session typings in its tail.

– Proc(τ) extracts the session environmentΣ from τ.
– Lin(Γ) extracts the linear variable setS from Γ.

Formally we define:

– For terms:Erase(()) = (), Erase(u) = u, Erase(0) = 0, Erase(k(x̃: σ̃,y: τ).P) = k(y :
Erase(τ)).Erase(P), Erase(k〈ṽ,V〉.P) = k〈Erase(V)〉.Erase(P) and others are homomor-
phic. For types:Erase(unit)= unit, Erase(∆)= ⋄, Erase(t → τ)= (Erase(t)→Erase(τ))1

(if Proc(t → τ) 6= /0) Erase(t) → Erase(τ) (otherwise);Erase(Πx: σ.τ) = (Erase(σ) →
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Erase(τ))1 (if Proc(Πx: σ.τ) 6= /0) Erase(σ)→Erase(τ) (otherwise);Erase(![Π(x̃: σ̃)t];α)=
![Erase(t)];Erase(α), Erase(![Π(x̃: σ̃)];α)=![Erase(σn)];Erase(α), Erase(end)= end and
others are homomorphic or dual.Erase(Γ) is defined homomorphicly except deleting ses-
sion typings (i.e.Erase(Γ,u: α) = Erase(Γ)).

– Proc(∆) = {k : Erase(α) | k : α∈∆}; Proc(unit) = unit, Proc(t → τ) = Proc(τ)\Proc(t)
andProc(Πx: σ.τ) = Proc(τ)\ x.

– Lin(Γ) = {x | Erase(Γ(x)) = (t)1}.

Next we re-formulate the rules for the arrow types to ensure that all session capabilities are
not lost duringβ-reductions (which is a property of the first system):t → τ is well-formed if
Proc(t) ⊆ Proc(τ); andΠx: α.τ is so if x: α ∈ Proc(τ). We also replace∆ ·k: α to meank 6∈
fn(∆)∪ fv(∆) in the rules for processes. Then we can describe the corresponding side conditions
directly usingProc(τ) andLin(Γ) instead of recordingΣ andS . Then we have:

Theorem 4.3 (Embedding).BelowΓ ↾ S means{u : Γ(u) | u∈ S}.

– SupposeΓ ⊢ P : τ is derived by the restricted system defined in this subsection. Then we
have: Erase(Γ);Proc(τ) \Σ;S ⊢ Erase(P) : Erase(τ) whereS = Lin(Γ ↾ fv(P)) and Σ =
{Proc(t) | x : t ∈ Γ ↾ S}.

– SupposeΓ; /0; /0 ⊢ P : ⋄ and P is initial. Then there existΓ′, P′ and∆ such thatΓ′ ⊢ P′ : ∆
with Erase(Γ′) = Γ, Erase(P′) = P and∆ ⊂ Γ′ in the restricted system.

The first statement means that the session capabilities ofP except those that appear in types of
the linear variables inP are placed asΣ, and the linear variables inP are placed asS in the first
system. The proof is by induction onΓ ⊢ P : τ. The second statement is by constructing the
minimum environments starting from(),x,u and0. This theorem shows that the second system
(with appropriate use of dependency type information) has awider typability than the first one,
but needs more complex types in the user program. Type inference along the line of [8, 30]
may partly ease these burdens, while it is unknown for programs without type annotations.

5 Related and Future Work

This paper studies session types for higher-order processes using two different approaches and
compares their typability. The robust formulations hintedby the linear and dependentλ-type
theories [3, 28] lead to new process typing systems for protocol validation. Straightforward ex-
tensions are recursive types [18, 32], subtyping [14, 30] and polymorphism [12, 26]. In partic-
ular, recursive session types are useful to type various common “repetitive” protocols appeared
in many practices [7, 10, 29]. For this extension, an explicit recursion construct in the form of
the recursive agentdef X(x̃k̃) = P in M is introduced in [18, 32]. In our calculus, this agent
can be replaced by a more familiar syntax such asletrec x = P in M. The important con-
straint is thatP cannot hold linear variables nor free session channels (i.e. Σ = S = /0), which
does not reduce the expressivity by using parameterised processes as in [28]. By taking the ap-
proach in [32], we can construct the typing rule for the recursive agent, and can type scenarios
with repetition and recursion which are common in the literature, fully integrated with code
mobility, see [1].

There is a large literature on linear and session types for both theλ-calculus and theπ-
calculus. Below we give the most closely related work, focusing on the linear typing system of
theλ-calculus and on the session types for distribution and functional programming languages.
See also [1, 6–8, 29] for discussions on other type disciplines of theπ-calculus as well as on
applications of session types.
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Our first typing system is substructural [28] in the sense that for session environmentsΣ
we do not allow weakening, ensuring that a session channel isrecorded as having been used
only when it actually occurs in session communication expressions; contraction is also not
allowed inΣ. Similarly no structural transformations can apply to linear variable environments,
ensuring that the occurrence of a variable manifests that ithas indeed been used exactly once.
The ways in which our typing system enforces linearity can beseen as an amalgamation of the
two approaches in [28], retaining the simplicity of declarative systems, and the decidability of
algorithmic ones. Contrary to the systems of [28], there is no need to consider linear usage for
types other than functional. Applying the techniques in [8,25], constructing its type inference
system would be a straightforward task.

Relating to distribution, [11] studies session types for boxed ambients, preventing session
interruption when an ambient crosses its boundary. One of the technical challenges of our work
is to formalise sound typing systems for arbitrarily parameterised processes (i.e.λ-abstractions
in processes with the full type hierarchy), which is not treated in ambient primitives. In [26, 27]
the authors extend previous work [16], and define a concurrent multi-threaded functional lan-
guage with session primitives. It has explicit multi-threading primitivefork and explicit stores
whose operational semantics. Their recent draft paper [15]further extends the language to a
variant of session types where sending messages is non-blocked. This is handled by explic-
itly storing an entry for the two endpoint channels in a buffer. It’s functionality is the same as
our use of two session channels indexed by 0 and 1 for distinguishing two endpoints (based
on [14]). They simplify their previous type judgement whichrequires input and output envi-
ronments in [26, 27] by using the linear typing withsplit operator, which is more directly
related to the original non-deterministic typing [28]. While a precise typability comparison is
difficult due to our additional language primitives and their operational semantics with buffers
(which is essential for type soundness in their language), their work also shows a use of the
linear types for functional languages with sessions. Our comparison between the first and sec-
ond systems via Theorem 4.3 makes the relationship between controlling usage of functional
variables and effects of channel accessibility clear: the idea of “balanced” seems more suited
to effect-like systems since our concern is well-formedness of process types, not intermediate
functional types, while the linear typing approach is simpler and more tractable. This line of
study is not explored in the previous literature.

As an on-going work, we have been investigating the incorporation of session types and
code mobility with Sockets in Java [19] and Web Service Description Languages [7, 29]. From
these experiences, we find that not only type checking by session types after writing a protocol,
but also declaring its session types before compilation, greatly helps programmers implement
error-free interactions in their programs. For developingprogramming language designs, the
presented type theory needs further explorations, including its incorporation with advanced
concurrent programming primitives such as exceptions, timeout and priority checking.
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A Appendix: Section 2

We define the structural congruence omitted from the main section. The relation, denoted ‘≡’,
is the smallest relation generated by the following axioms and rules.

P =α Q ⇒ P≡ Q Renaming of bound variables

P|Q≡ Q|P Commutativity of parallel composition
(P|Q) |R≡ P|(Q|R) Associativity of parallel composition
P|0≡ P Inaction and parallel composition

(νa : σ)P|Q≡ (νa : σ)(P|Q) a 6∈ fn(Q) Scope extrusion
(νκ)P|Q≡ (νκ)(P|Q) κi∈{0,1} 6∈ fn(Q)
(νa : σ)(νκ)P≡ (νκ)(νa : σ)P Exchange
(νa : σ)(νb : σ′)P≡ (νb : σ′)(νa : σ)P
(νκ)(νκ′)P≡ (νκ′)(νκ)P
(νa : σ)0≡ 0 (νκ)0≡ 0 Inaction and restriction

B Appendix: Section 4

This appendix lists the omitted definitions and rules in Section 4. First we define the set of free
names and variables as follows.

(Free Variables)
fv(x) = {x}, fv(a) = fv(κi ) = /0.

fv(unit) = fv(end) = /0
fv(t → τ) = fv(t)∪ fv(τ)

fv(Πx: σ.τ) = fv(σ)∪ fv(τ)\x

fv(begin.α) = fv(σ)

fv(∆) = {fv(u)∪ fv(τ) | u: τ ∈ ∆}
fv(![Π(x1 : σ1, ...,xn : σn)τ1, ...,τm]α)

= fv(?[Π(x1 : σ1, ...,xn : σn)τ1, ...,τm]α)
= (fv(σ1)...∪ fv(σn)∪ fv(τ1)...∪ fv(τm))\ x̃∪ fv(α)

fv(& [l1 : α1; . . . ln : αn]) = fv(⊕[l1 : α1; . . . ln : αn]) = ∪fv(αi )

(Free Names)
fn(x) = /0, fn(a) = {a}, fn(κi ) = {κi}

fn(Πx: σ.τ) = fn(σ)∪ fn(τ)

fn(![Π(x1 : σ1, ...,xn : σn)τ1, ...,τm]α)
= fn(?[Π(x1 : σ1, ...,xn : σn)τ1, ...,τm]α)
= (fn(σ1)...∪ fn(σn)∪ fn(τ1)...∪ fn(τm))∪ fv(α)

Other rules are given by replacingfv( ) by fn( ).

Well-FormednessNext we define the notions of well-formedness for types and environments
by the formal system in Figure 6. As in [30, 31], the first judgement Γ ⊢ Env is designed
to ensure that an identifier can only be used in the construction of a type if it has already
beendeclaredin the environment. (e-base) and (e-chan) are standard. Theformation rule for
functional types are the same as [30, 31]; (t-base) is for constant and end type, and (t-absH) is
for higher-order values. In the formation rule for dependent types, (t-absN), the bound variable
x is allowed in the construction of the result typeτ. (t-dep) for channel dependent types is
similarly defined. (t-sel) is for selection. Then (t-dual) formulates the input types. For process
types, (t-proc) ensures that a process always has a channel environment which does not exceed
the capability specified by the global environmentΓ, see [31, § 3.1].
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(Well-Formed Environment)

(e-nil) /0 ⊢ Env (e-val)
Γ ⊢ t : tp x 6∈ dom(Γ)

Γ, x: t ⊢ Env
(e-chan)

Γ ⊢ σ : tp u 6∈ dom(Γ)
Γ, u: σ ⊢ Env

(Well-Formed Types)

(t-base)
Γ ⊢ Env

Γ ⊢ unit,end : tp (t-absH )
Γ ⊢ t : tp Γ ⊢ τ : tp

Γ ⊢ t → τ : tp (t-absN)
Γ,x: σ ⊢ τ : tp

Γ ⊢ Πx: σ.τ : tp

(t-proc)
Γ ⊢ Env

Γ ⊢ /0 : tp

Γ ⊢ ∆ : tp Γ ⊢ u : σ
u 6∈ dom(∆)

Γ ⊢ ∆,u : σ : tp (t-beg)
Γ ⊢ α : tp

Γ ⊢ begin.α : tp (t-dual)
Γ ⊢ σ : tp
Γ ⊢ σ : tp

(t-out)
Γ,x1 : σ1, ..,xn : σn ⊢ τ j : tp Γ ⊢ α : tp

Γ ⊢![Π(x1 : σ1, ...,xn : σn)τ1, ...,τm];α : tp
(t-sel)

Γ ⊢ τ j : tp
Γ ⊢ ⊕{l1 : α1, ..., ln : αn} : tp

Fig. 6.Well-Formed Higher-Order IO Types
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