
Global Progress in
Dynamically Merged Multiparty Sessions

Lorenzo Bettini1, Mario Coppo1, Loris D’Antoni1, Marco De Luca1,
Mariangiola Dezani-Ciancaglini1, and Nobuko Yoshida2

1 Dipartimento di Informatica, Università di Torino
2 Department of Computing, Imperial College London

Abstract. A multiparty session forms a unit of structured interactions among many partic-
ipants which follow a prescribed scenario specified as a global type signature. This paper
develops, besides a more traditional communication type system, a novel static interaction
type system for global progress in dynamically merged and interfered multiparty sessions.

1 Introduction
Widespread use of message-based communication for developing network applications to
combine numerous distributed services has provoked urgent interests in structuring series
of interactions to specify and program communication-safe software. The actual devel-
opment of such applications still leaves to the programmer much of the responsibility
in guaranteeing that communication will evolve as agreed by all the involved distributed
peers. Multiparty session type discipline proposed in [12] offers a type-theoretic frame-
work to validate a messages-exchange among concurrently running multiple peers in the
distributed environment, generalising the existing two-party session types [10, 11]; inter-
action sequences are abstracted as a global type signature, which precisely declares how
multiple participants communicate and synchronise with each other. Recently the two
standardisation bodies for web-based business and finance protocols [19, 18] have inves-
tigated a design and implementation framework for standardising message exchange rules
and validating business logic based on a notion of multiparty sessions, where a global type
plays as a “shared agreement” between a team of programmers who are developing (pos-
sibly) a large size of distributed protocol or software by collaborations.

The initial multiparty session type discipline aims to retain the powerful dynamic
features from the original binary sessions [11], incorporating features such as recursion
and choice of interactions. Among features, session delegation is a key operation which
permits to rely on other parties for completing specific tasks transparently in a type safe
manner. A typical scenario is a web server delegating remaining interactions with a client
to an application server to complete a transaction. The customer and the application server
are initially unknown to each other but later communicate directly (transparently to the
customer), through dynamic mobility of the session. When this mechanism is extended
to multiparty interactions engaged in two or more specifications simultaneously, further
complex interactions can be modelled: each multiparty session following a distinct global
type can be dynamically merged and interfered by another at runtime via the channel
delegation operation, grouping several structured conversations.

Previous work on multiparty session types [12] has ignored this dynamic nature, pro-
viding a limited progress property ensured only within a single session, by assuming
non-interference among different sessions and by forbidding delegation. More precisely,
although the previous system assures that the multiple participants respect the protocol,

by checking the types of exchanged messages and the order of communications, it cannot
guarantee a global progress, i.e, that a protocol which merges several global scenarios
will not get stuck in the middle of a session. This limitation prohibits to ensure a success-
ful termination of a transaction, making the framework practically inapplicable to a large
size of dynamically reconfigured conversations.

This paper develops, besides a more traditional communication type system (§ 3), a
novel static interaction type system (§ 4) for global progress in dynamically merged and
interfered multiparty, asynchronous sessions. High-level session processes equipped with
global signatures are translated into low-level processes which have explicit senders and
receivers (§ 2.4). Type-soundness of low-level processes is guaranteed against the local,
compositional communication type system (§ 3.3). The Appendix completes definitions,
examples and gives proofs: it is added for referee convenience only.

The new calculus for multiparty sessions offers three technical merits without sacrify-
ing the original simplicity and expressivity in [12]. First it avoids the overhead of global
linearity-check in [12]; secondly it provides a more liberal policy in the use of variables,
both in delegation and in recursive definitions; finally it implicitly provides each partici-
pant of a service with a runtime channel indexed by its role with which he can commu-
nicate with all other participants, permitting also broadcast in a natural way. The use of
indexed channels, moreover, permits to define a light-weight interaction type system for
global progress.

The interaction type system automatically infers causalities of channels for the low
level processes, ensuring the entire protocol, starting from the high-level processes which
consist of multiple sessions, does not get stuck at intermediate sessions also in the pres-
ence of delegation.

2 Syntax and Operational Semantics

2.1 Merging Two Conversations: Three Buyer Protocol

We introduce our calculus through an example, the three-buyer protocol, extending the
two-buyer protocol from [12], which includes the new features, session-multicasting and
dynamically merging two conversations. The overall scenario, involving a Seller (S), Al-
ice (A), Bob (B) and Carol (C), proceeds as follows.

1. Alice sends a book title to Seller, then Seller sends back a quote to Alice and Bob.
Then Alice tells Bob how much she can contribute.

2. If the price is within Bob’s budget, Bob notifies both Seller and Alice he accepts, then
sends his address, and Seller sends back the delivery date.

3. If the price exceeds the budget, Bob asks Carol to collaborate together by establish-
ing a new session. Then Bob sends how much Carol must pay, then delegates the
remaining interactions with Alice and Seller to Carol.

4. If the rest of the price is within Carol’s budget, Carol accepts the quote and notifies
Alice, Bob and Seller, and continues the rest of the protocol with Seller and Alice
transparently, as if she were Bob. Otherwise she notifies Alice, Bob and Seller to quit
the protocol.

Figure 1 depicts an execution of the above protocol where Bob asks Carol to collabo-
rate (by delegating the remaining interactions with Alice and Seller) and the transaction
terminates successfully.

2

Fig. 1. The three buyer protocol interactions

Then multiparty session programming consists of two steps: specifying the intended
communication protocols using global types, and implementing these protocols using pro-
cesses. The specifications of the three-buyer protocol are given as two separated global
types: one is Ga among Alice, Bob and Seller and the other is Gb between Bob and Carol.
We write principals with legible symbols though they are actually numbers: in Ga we have
S = 1, A = 2 and B = 3, while in Gb we have B = 1, C = 2.

Ga = Gb =
A −→ S : 〈string〉.
S −→ {A,B} : 〈int〉.
A −→ B : 〈int〉.
B −→ {S,A} : {ok :B−→ S : 〈string〉.

S−→ B : 〈date〉;end
quit : end}

B −→ C : 〈int〉.
B −→ C : 〈T 〉.
C −→ B : {ok : end, quit : end}.

T =
⊕({S,A},
{ok :!〈S,string〉; ?〈S,date〉;end,
quit : end})

The types give a global view of the two conversations, directly abstracting the scenario
given by the diagram. In Ga, line 1 denotes A sends a string value to S. Line 2 says S
multicasts the same integer value to A and B. In lines 4-6 B sends either ok or quit to S and
A. In the first case B sends a string to and receives a date from S, in the second case there
are no further communications.

Line 2 in Gb represents the delegation of the capability specified by the action type T
of channels (formally defined in § 3.1) from B to C (note that S and A in T concern the
session on a).

We now give the code, associated to Ga and Gb, for S, A, B and C as:

S = ā[3](y1).y1?(title);y1!〈quote〉;y1&{ok : y1?(address);y1!〈date〉;0, quit : 0}
A = a[2](y2).y2!〈"Title"〉;y2?(quote);y2!〈quote div 2〉;y2&{ok : 0, quit : 0}
B = a[3](y3).y3?(quote);y3?(contrib);

if (quote - contrib < 100) then y3⊕ok;y3!〈"Address"〉;y3?(date);0
else b̄[2](z1).z1!〈quote - contrib - 99〉;z1!〈〈y3〉〉;z1&{ok : 0, quit : 0}

C = b[2](z2).z2?(x);z2?((t));
if (x < 100) then z2⊕ok; t⊕ok; t!〈"Address"〉; t?(date);0
else z2⊕quit; t⊕quit;0

3

Session name a establishes the session corresponding to Ga. S initiates a session involving
three bodies as first participant by ā[3](y1): A and B participate as second and third par-
ticipants by a[2](y2) and a[3](y3), respectively. Then S, A and B communicate using the
channels y1, y2 and y3, respectively. Each channel yp connects participant p with all other
ones; the receivers of the data sent on yp are specified by the global type (this information
will be included in the runtime code). The first line of Ga is implemented by the input
and output actions y1?(title) and y2!〈"Title"〉. The last line of Gb is implemented by the
branching and selection actions z1&{ok : 0, quit : 0} and z2⊕ok, z2⊕quit.

In B, if the quote minus A’s contribution exceeds 100e (i.e. quote - contrib≥ 100), an-
other session between B and C is established dynamically through shared name b. The del-
egation is performed by passing the channel y3 from B to C (actions z1!〈〈y3〉〉 and z2?((t))),
and so the rest of the session is carried out by C with S and A. We can further enrich this
protocol with recursive-branching behaviours in merged sessions (for example, C can re-
peatedly negotiate the quote with S as if she were B). What we want to guarantee by static
type-checking is that the whole merged conversation between the four parties preserves
progress as if it were a single conversation.

2.2 Syntax for Multiparty Sessions

The syntax for processes initially written by the user, called user-defined processes, is
based on [12]. We start from the following sets: service names, ranged over by a,b, . . .
(representing public names of endpoints), value variables, ranged over by x,x′, . . . , identi-
fiers , i.e., service names and variables, ranged over by u,w, . . . , channel variables, ranged
over by y,z, t . . . , labels, ranged over by l, l′, . . . (functioning like method names or labels
in labelled records); process variables, ranged over by X ,Y, . . . (used for representing re-
cursive behaviour). Then processes, ranged over by P,Q . . . , and expressions, ranged over
by e,e′, . . . , are given by the grammar in Table 1.

P ::= ū[n](y).P Multicast Request
| u[p](y).P Accept
| y!〈e〉;P Value sending
| y?(x);P Value reception
| y!〈〈z〉〉;P Session delegation
| y?((z));P Session reception
| y⊕ l;P Selection
| y&{li : Pi}i∈I Branching

u ::= x | a Identifier
v ::= a | true | false Value

| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| (νa)P Hiding
| def D in P Recursion
| X〈e,y〉 Process call

e ::= v | x
| e and e′ | not e . . . Expression

D ::= X(x,y) = P Declaration
Table 1. Syntax for user-defined processes

For the primitives for session initiation, ū[n](y).P initiates a new session through an iden-
tifier u (which represents a shared interaction point) with the other multiple participants,
each of shape u[p](y).Qp where 2≤ p≤ n. The (bound) variable y is the channel used to
do the communications. We call p, q,... (ranging over natural numbers) the participants of
a session. Session communications (communications that take place inside an established
session) are performed using the next three pairs of primitives: the sending and receiving
of a value; the session delegation and reception (where the former delegates to the latter
the capability to participate in a session by passing a channel associated with the session);
and the selection and branching (where the former chooses one of the branches offered
by the latter). The rest of the syntax is standard from [11].

4

2.3 Global Types

A global type, ranged over by G,G′, .. describes the whole conversation scenario of a
multiparty session as a type signature. Its grammar is given below:
Global G ::= p→{pk}k∈K : 〈U〉.G′ Exchange U ::= S | T

| p→{pk}k∈K : {li : Gi}i∈I Sorts S ::= bool | . . . | G
| µt.G | t | end

We simplify the syntax in [12] by eliminating channels and parallel compositions, while
preserving the original expressivity (see § 5).

The global type p→{pk}k∈K : 〈U〉.G′ says that participant p multicasts a message of
type U to participants pk (k ∈ K): and then interactions described in G′ take place. Ex-
change types U,U ′, ... consist of sorts types S,S′, . . . for values (either base type or global
types), and action types T,T ′, . . . for channels (discussed in §3.1). Type p→{pk}k∈K : {li :
Gi}i∈I says participant p multicasts one of the labels to participants pk (k∈K). If l j is sent,
interactions described in G j take place. Type µt.G is a recursive type for recursive proto-
cols, assuming type variables (t, t′, . . .) are guarded in the standard way, i.e. type variables
only appear under the prefixes. We take an equi-recursive view of recursive types, not
distinguishing between µt.G and its unfolding G{µt.G/t} [16] (§21.8). We assume that
G in the grammar of sorts is closed, i.e., without type variables. Type end represents the
termination of the session. We often write p→ p′ for p→{p′}.

2.4 Runtime Syntax

User defined processes equipped with global types are executed through a translation into
runtime processes. The runtime syntax (Table 2) differs from the syntax of Table 1 since
the input/output operations (including the delegation ones) specify the sender and the
receiver, respectively. Thus, c!〈{pk}k∈K ,e〉 sends a value to all the participants in {pk}k∈K ;
accordingly, c?(p,x) denotes the intention of receiving a value from the participant p. The
same holds for delegation/reception (but the receiver is only one) and selection/branching.

P ::= c!〈{pk}k∈K ,e〉;P Value sending
| c?(p,x);P Value reception
| c!〈〈p,c′〉〉;P Session delegation
| c?((q,y));P Session reception

| c⊕〈{pk}k∈K , l〉;P Selection
| c&(p,{li : Pi}i∈I) Branching
| (νs)P Hiding session
| s : h Named queue
| ...

c ::= y | s[p] Channel
m ::= (q,{pk}k∈K ,v) | (q,p,s[p′]) | (q,{pk}k∈K , l) Message in transit
h ::= m· h | � Queue

Table 2. Runtime syntax: the other syntactic forms are as in Table 1

We call s[p] a channel with role: it represents the channel of the participant p in the
session s. We use c to range over variables and channels with roles. As in [12], in order to
model TCP-like asynchronous communications (message order preservation and sender-
non-blocking), we use the queues of messages in a session, denoted by h; a message in
a queue can be a value message, (q,{pk}k∈K ,v), indicating that the value v was sent by
the participant q and the recipients are all the participants in {pk}k∈K ; a channel message
(delegation), (q,p′,s[p]), indicating that q delegates to p the role of p′ on the session s
(represented by the channel with role s[p]); and a label message, (q,{pk}k∈K , l) (similar
to a value message). The empty queue is denoted by �. With some abuse of notation we
will write h ·m to denote that m is the last element included in h and m ·h to denote that m

5

is the head of h. By s : h we denote the queue h of the session s. In (νs)P all occurrences
of s[p] and the queue s are bound. Queues and the channel with roles s[p] are generated
by the operational semantics (§ 2.5).

We present the translation of Bob (B) in the three buyer protocol of § 2.1 with the
runtime syntax: the only difference is that all input/output operations specify also the
sender and the receiver, respectively.

B = a[3](y3).y3?(1,quote);y3?(2,contrib);
if (quote - contrib < 100) then y3⊕〈{1,2},ok〉;y3!〈{1},"Address"〉;y3?(1,date);0
else b[2](z1).z1!〈{2},quote - contrib - 99〉;z1!〈〈2,y3〉〉;z1&(2,{ok : 0, quit : 0})

It should be clear from this example that starting from a global type and user-defined
processes it is possible to add sender and receivers to each communication obtaining in
this way processes written in the runtime syntax.

We call pure a process which does not contain message queues.

2.5 Operational Semantics

ā[n](y1).P1 | a[2](y2).P2 | .. | a[n](yn).Pn −→ (νs)(P1{s[1]/y1} | .. | Pn{s[n]/yn} | s :�) [Link]

s[p]!〈{pk}k∈K ,e〉;P | s : h−→ P | s : h · (p,{pk}k∈K ,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉;P | s : h−→ P | s : h · (p,q,s′[p′]) [Deleg]

s[p]⊕〈{pk}k∈K , l〉;P | s : h−→ P | s : h · (p,{pk}k∈K , l) [Label]

s[p j]?(q,x);P | s : (q,{pk}k∈K ,v) ·h −→ P{v/x} | s : (q,{pk}k∈K\ j,v) ·h (j ∈ K) [Recv]

s[p]?((q,y));P | s : (q,p,s′[p′]) ·h−→ P{s′[p′]/y} | s : h [Srec]

s[p j]&(q,{li : Pi}i∈I) | s : (q,{pk}k∈K , li0) ·h −→ Pi0 | s : (q,{pk}k∈K\ j, li0) ·h
(j ∈ K) (i0 ∈ I) [Branch]

Table 3. Selected reduction rules

Table 3, shows the basic rules of the reduction relation P−→ P′.
Rule [Link] describes the initiation of a new session among n participants that syn-

chronise over the service name a. The service provider ā[n](y1).P1 is considered as the
participant 1 and specifies that it will accept n− 1 clients. After the connection, the par-
ticipants will share the private session name s, and the queue associated to s, which is
initialised as empty. The variables yp in each participant will then be replaced with the
corresponding channel with role, s[p]. The output rules [Send], [Deleg] and [Label] push
values, channels and labels, respectively, into the queue of the session s (in rule [Send],
e ↓ v denotes the evaluation of the expression e to the value v). The rules [Recv], [Srec]
and [Branch] perform the corresponding complementary operations. Note that these op-
erations check that the sender matches, and also that the message is actually meant for the
receiver (in particular, for [Recv], we need to remove the receiving participant from the
set of the receivers in order to avoid reading the same message more than once).

Processes are considered modulo structural equivalence, denoted by ≡, and defined
by adding the following rules for queues to the standard ones [15].

– s : (q,{pk}k∈K ,z) · (q′,{pk}k∈K′ ,z′) ·h≡ s : (q′,{pk}k∈K′ ,z′) · (q,{pk}k∈K ,z) ·h
if K∩K′ = /0 or q 6= q′

– s : (q,{pk}k∈K ,z) ·h≡ s : (q,{pk}k∈K′ ,z) ·(q,{pk}k∈K′′ ,z) ·h with K = K′∪K′′ and K′∩K′′ = /0
– s : (q, /0,v) ·h≡ s : h, and s : (q, /0, l) ·h≡ s : h

6

where z ranges over v, s[p] and l. The first and second rules permit rearranging messages
when the senders or the receivers are not the same, and also splitting a message for mul-
tiple recipients. The last two rules garbage-collect messages that have already been read
by all the intended recipients. We use −→∗ and 6−→ with the expected meanings.

3 Communication Type System
The previous section defines the syntax and the global types. This section introduces the
communication type system, by which we can check type soundness of the communica-
tions which take place inside single sessions.

3.1 Types and Typing Rules for Pure Runtime Processes

We first define the local types of pure processes, called action types. While global types
represent the whole protocol, action types correspond to the communication actions, rep-
resenting sessions from the view-points of single participants.

Action T ::= !〈{pk}k∈K ,U〉;T send
| ?(p,U);T receive
| ⊕〈{pk}k∈K ,{li : Ti}i∈I〉 selection
| &(p,{li : Ti}i∈I) branching

| µt.T recursive
| t variable
| end end

The send type !〈{pk}k∈K ,U〉;T expresses the sending to all pk for k ∈ K of a value
or of a channel of type U , followed by the communications of T . The selection type
⊕〈{pk}k∈K ,{li : Ti}i∈I〉 represents the transmission to all pk for k ∈ K of a label li chosen
in the set {li | i ∈ I} followed by the communications described by Ti. The receive and
branching are dual and only need a sender. Other types are standard.

The relation between action and global types is formalised by the notion of projection
as in [12]. The projection of G onto q (G ¹ q) is defined by induction on G:

(p→{pk}k∈K : 〈U〉.G′) ¹ q =





!〈{pk}k∈K ,U〉;(G′ ¹ q) if q = p,

?(p,U);(G′ ¹ q) if q = pk for some k ∈ K,

G′ ¹ q otherwise.
(p→{pk}k∈K : {li : Gi}i∈I) ¹ q =




⊕({pk}k∈K ,{li : Gi ¹ q}i∈I) if q = p

&(p,{li : Gi ¹ q}i∈I) if q = pk for some k ∈ K
G1 ¹ q if q 6= p,q 6= pk∀k ∈ K and

Gi ¹ q = G j ¹ q for all i, j ∈ I.
(µt.G) ¹ q = µt.(G ¹ q) t ¹ q = t end ¹ q = end

As an example, we list the projections of the global types Ga and Gb in § 2.1:

Ga ¹ 1 = ?〈2, string〉; !〈{2,3}, int〉;&(3,{ok :?〈3, string〉; !〈{3},date〉;end,quit : end})
Ga ¹ 2 = !〈{1}, string〉; ?〈1, int〉; !〈{3}, int〉;&(3,{ok : end,quit : end})
Ga ¹ 3 = ?〈1, int〉; ?〈2, int〉;T
Gb ¹ 1 = ?〈2, int〉; ?〈1,T 〉;⊕〈{2},{ok : end,quit : end}〉
Gb ¹ 2 = !〈{1}, int〉; !〈{1},T 〉;&(1,{ok : end,quit : end})

where T =⊕〈{1,2},{ok :!〈{1}, string〉; ?〈1,date〉;end, quit : end}〉.
The typing judgements for expressions and pure processes are of the shape:

Γ ` e : S Γ ` P.∆

7

Γ ` u : 〈G〉 Γ ` P.∆ ,y : G ¹ 1 pn(G)≤ n
bMCASTc

Γ ` ū[n](y).P.∆

Γ ` u : 〈G〉 Γ ` P.∆ ,y : G ¹ p
bMACCc

Γ ` u[p](y).P.∆

Γ ` e : S Γ ` P.∆ ,c : T
bSENDc

Γ ` c!〈{pk}k∈K ,e〉;P.∆ ,c : !〈{pk}k∈K ,S〉;T

Γ ,x : S ` P.∆ ,c : T
bRCVc

Γ ` c?(q,x);P.∆ ,c :?(q,S);T

Γ ` P.∆ ,c : T
bDELEGc

Γ ` c!〈〈p,c′〉〉;P.∆ ,c : !〈p,T ′〉;T,c′ : T ′
Γ ` P.∆ ,c : T,y : T ′

bSRECc
Γ ` c?((q,y));P.∆ ,c :?(q,T ′);T

Γ ` P.∆ ,c : Tj j ∈ I
bSELc

Γ ` c⊕〈{pk}k∈K , l j〉;P.∆ ,c :⊕〈{pk}k∈K ,{li : Ti}i∈I〉

Γ ` Pi .∆ ,c : Ti ∀i ∈ I
bBRANCHc

Γ ` c&(p,{li : Pi}i∈I).∆ ,c : &(p,{li : Ti}i∈I)

Γ ` P.∆ Γ ` Q.∆ ′ dom(∆)∩dom(∆ ′) = /0
bCONCc

Γ ` P | Q.∆ ∪∆ ′

Table 4. Selected typing rules for pure processes

where Γ is the standard environment which associates variables to sort types, service
names to global types and process variables to pairs of sort types and action types; ∆ is
the session environment which associates channels to action types.

Formally we define:
Γ ::= /0 | Γ ,u : S | Γ ,X : S T ∆ ::= /0 | ∆ ,c : T

assuming that we can write Γ ,u : S only if u does not occur in Γ , briefly u 6∈ dom(Γ)
(dom(Γ) denotes the domain of Γ , i.e. the set of identifiers which occur in Γ). We use the
same conventions for X : S T and ∆ .

Table 4 presents the interesting typing rules for pure processes. Rule bMCASTc per-
mits to type a service provider identified by u, which uses the channel y and which re-
quires n participants, if the type of y is the first projection of the global type G of u and
the number of participants in G (denoted by pn(G)) is at least n. Note that an activation
of service a can include more than pn(Ga) participants. The extra participants obviously
cannot have interactions with the ones specified by Ga, but this feature could be useful for
synchronisation purposes. Rule bMACCc permits to type the p-th participant identified by
u, which uses the channel y, if the type of y is the p-th projection of the global type G of
u. The successive six rules associate the input/output processes to the input/output types
in the expected way. Note that in rule bDELEGc the channel which is sent cannot appear
in the session environment of the premise, i.e. c′ 6∈ ∆ : this is necessary in order to write
the session environment in the conclusion. Rule bCONCc permits to put in parallel two
processes only if their sessions environments have disjoint domains.

For example we can derive:

` t⊕〈{1,2},ok〉; t!〈{1},"Address"〉; t?(1,date);0.{t : T}
where T = ⊕〈{1,2},{ok :!({1}, string); ?〈1,date〉;end, quit : end}〉. In the typing of the
example of § 2.1 the types of the channels y1, y2, y3, z1, z2 are (in order) the projections
of Ga and Gb.

8

3.2 Types and Typing Rules for Runtime Processes
This subsection extends the communication type system to processes containing queues.
Message T ::= !〈{pk}k∈K ,U〉 message send

| ⊕〈{pk}k∈K , l〉 message selection
| T;T′ message sequence

Generalised T ::= T action
| T message
| T;T continuation

Message types are the types for queues: they represent the messages contained in the
queues. The message send type !〈{pk}k∈K ,U〉 expresses the communication to all pk for
k ∈ K of a value or of a channel of type U . The message selection type ⊕〈{pk}k∈K , l〉
represents the communication to all pk for k ∈ K of the label l and T;T′ represents se-
quencing of message types. For example ⊕〈{1,2},ok〉 is the message type for the mes-
sage (3,{1,2},ok). A generalised type is either an action type, or a message type, or a
message type followed by an action type. Type T;T represents the continuation of the
type T associated to a queue with the type T associated to a pure process. An example of
generalised type is ⊕〈{1,2},ok〉; !〈{1}, string〉; ?〈1,date〉;end.

In order to take into account the structural congruence between queues we consider
message types modulo the equivalence relation ≈ induced by the following rules (with
\ ∈ {!,⊕} and Z ∈ {U, l}).

– \〈 /0,Z〉;T ≈ T
– \〈{pk}k∈K ,Z〉; \′〈{pk}k∈K′ ,Z〉;T ≈ \′〈{pk}k∈K′ ,Z〉; \〈{pk}k∈K ,Z〉;T if K∩K′ = /0
– \〈{pk}k∈K ,Z〉;T ≈ \〈{pk}k∈K′ ,Z〉; \〈{pk}k∈K′′ ,Z〉;T if K = K′∪K′′,K′∩K′′ = /0

We start by defining the typing rules for single queues, in which the turnstile ` is deco-
rated with {s} (where s is the session name of the current queue) and the session environ-
ments are mappings from channels to message types. The empty queue has empty session
environment. Each message adds an output type to the current type of the channel which
has the role of the message sender. Being all these rules similar, we only show the rule for
message selection:

Γ `{s} s : h.∆
bQSELc

Γ `{s} s : h · (q,{pk}k∈K , l).∆ ;{s[q] :⊕〈{pk}k∈K , l〉}
where ; is defined by:

∆ ;{s[q] : T}=

{
∆ ′,s[q] : T′;T if ∆ = ∆ ′,s[q] : T′,
∆ ,s[q] : T otherwise.

For example we can derive `{s} s : (ok,{1,2},3).{s[3] :⊕〈{1,2},ok〉}.
In order to type pure processes in parallel with queues, we need to use generalised

types in session environments and further typing rules. The more interesting rules are:

Γ ` P.∆
bGINITc

Γ ` /0 P.∆

Γ `Σ P.∆ Γ `Σ ′ Q.∆ ′ Σ ∩Σ ′ = /0
bGPARc

Γ `Σ∪Σ ′ P | Q.∆ ∗∆ ′

Rule bGINITc promotes the typing of a pure process to the typing of an arbitrary process
decorating the turnstile with the empty set, since a pure process does not contain queues.
When two arbitrary processes are put in parallel (rule bGPARc) we need to require that a
queue associated to the same session name does not appear twice (condition Σ ∩Σ ′ = /0).
In composing the two session environments we want to put in sequence a message type
and an action type for the same channel with role. For this reason we define the composi-
tion ∗ between local types as:

9

T∗T′ =





T;T′ if T is a message type,
T′;T if T′ is a message type,
⊥ otherwise.

and we extend ∗ to session environments as expected:
∆ ∗∆ ′ = ∆\dom(∆ ′)∪∆ ′\dom(∆)∪{c : T∗T′ | c : T ∈ ∆ & c : T′ ∈ ∆ ′}

Note that ∗ is commutative, i.e. ∆ ∗∆ ′ = ∆ ′ ∗∆ . Also if we can derive message types only
for channels with roles, we consider the channel variables in the definition of ∗ for session
environments since we want to get for example {y : end}∗{y : end}=⊥. An example of
derivable judgement is:

`{s} P | s : (3,{1,2},ok).{s[3] :⊕〈{1,2},ok〉; !〈{1}, string〉; ?〈1,date〉;end}
where P = s[3]!〈{1},"Address"〉;s[3]?(1,date);0.

3.3 Subject Reduction
Since session environments represent the communications the channels have to do, by
reducing processes we get different session environments. This can be formalised as in
[12] by introducing the notion of reduction of session environments, whose rules are:

– {s[p] : !〈{pk}k∈K ,U〉; T,s[p j] :?(p,U);T ′} ⇒ {s[p] : !〈{pk}k∈K\ j,U〉; T,s[p j] : T ′} if j ∈ K
– {s[p] : T ;⊕〈{pk}k∈K ,{li : Ti}i∈I〉} ⇒ {s[p] : T ;⊕〈{pk}k∈K , li〉;Ti}
– {s[p] :⊕〈{pk}k∈K , l〉;T,s[p j] : &(p,{li : Ti}i∈I)} ⇒ {s[p] :⊕〈{pk}k∈K\ j, l〉;T,s[p j] : Ti}

if j ∈ K and l = li
– ∆ ∪∆ ′′ ⇒ ∆ ′∪∆ ′′ if ∆ ⇒ ∆ ′

The first rule corresponds to the reception of a value or channel by the participant p j, the
second rule corresponds to the choice of the label li and the third rule corresponds to the
reception of the label l by the participant p j.

Using the above notion we can state type preservation under reduction as follows:

Theorem 1 (Type Preservation). If Γ `Σ P . ∆ and P −→∗ P′, then Γ `Σ P′ . ∆ ′ for
some ∆ ′ such that ∆ ⇒ ∆ ′.
Note that the communication safety [12, Theorem 5.5] is a corollary of this theorem.
Thus the user-defined processes with the global types can safely communicate since their
runtime translation is typable by the communication type system described in this section.

4 Progress
This section studies progress: informally, we say that a process has the progress property
if in all configurations where it is provided a suitable context (represented by another
inactive process running in parallel), either (1) it does not contain channels with roles
(i.e., all communications on open sessions ended) or (2) it can be further reduced.
Definition 1 (Progress). A process P has the progress property if P−→∗ P′ implies that
either P′ does not contain channels with roles or P′ | Q −→ for some Q such that P′ | Q
is well typed and Q 6−→.
We will give an interaction type system which ensures that the typable processes always
have the progress property.

Let us say that a channel qualifier is either a session name or a channel variable. Let
c be a channel, its channel qualifier is defined by: (1) if c = y, then `(c) = y; (2) else
if c = s[p], then `(c) = s. Let Λ , ranged over by λ , denote the set of all service names
and all channel qualifiers. The progress properties will be analysed via three finite sets:

10

two sets N and B of service names and a set R ⊆ Λ ∪ (Λ ×Λ). The Cartesian product
Λ ×Λ , whose elements are denoted λ ≺ λ ′, represents a transitive relation. The meaning
of λ ≺ λ ′ is that an input action involving a channel (qualified by) λ or belonging to
service λ could block a communication action involving a channel (qualified by) λ ′ or
belonging to service λ ′. Moreover R includes all channel qualifiers and all service names
which do not belong to N or B and which occur free in the current process. This will be
useful to easily extend R in the assignment rules, as it will be pointed out below. We call
N nested service set, B bound service set and R channel relation (even if only a subset
of it is, strictly speaking, a relation). Let us give now some related definitions.
Definition 2. Let R ::= /0 |R,λ |R,λ ≺ λ ′.

1. B∪̄{e} =

{
B∪{v} if e ↓ v and v is a session name
B otherwise.

2. R \λ = {λ1 ≺ λ2 | λ1 ≺ λ2 ∈R & λ1 6= λ & λ2 6= λ}∪{λ ′ | λ ′ ∈R & λ ′ 6= λ}

3. R \\λ =

{
R \λ if λ is minimal in R

⊥ otherwise.

4. R]R ′ = (R ∪R ′)+

5. pre(`(c),R) = R]{`(c)}]{`(c)≺ λ | λ ∈R & `(c) 6= λ}
where R+ is the transitive closure of R and λ is minimal in R if 6 ∃λ ′ ≺ λ ∈R.
Note, as it easy to prove, that] is associative. A channel relation is well formed if it is
irreflexive, and does not contain cycles. A channel relation R is channel free (cf(R)) if it
contains only service names.

In Table 5 we introduce selected rules for the interaction type system. The judgements
are of the shape:

Θ ` P I R ; N ; B

where Θ is a set of assumptions of the shape X[y] I R ; N ; B (for recursive defini-
tions) with the variable y representing the channel parameter of X .

We say that a judgement Θ ` P I R ; N ; B is coherent if: (1) R is well formed;
(2) R ∩ (N ∪B) = /0. We assume that the typing rules are applicable if and only if the
judgements in the conclusion are coherent.

We will give now an informal account of the interaction typing rules, through a set of
examples. It is understood that all processes introduced in the examples can be typed with
the communication typing rules given in the previous section.

The crucial point to prove the progress property is to assure that a process, seen as
a parallel composition of single threaded processes and queues, cannot be blocked in a
configuration in which

1. there is no service initialisation asking for a connection (otherwise the process could
be reactivated by providing it with the right partners) and

2. all subprocesses are either non-empty queues or processes waiting to perform an input
action on a channel whose associated queue does not offer an appropriate message.

Progress inside a single service is assured by the communication typing rules in § 3. This
will follow as an immediate corollary of progress (Theorem 2). The channel relation is es-
sentially defined to analyse the interactions between services: this is why in the definition
of pre(`(c),R) we put the condition `(c) 6= λ . A basic point is that a loop in R represents
the possibility of a deadlock state. For instance take the processes:

11

Θ ` P I R ; N ; B
{MCAST}

Θ ` ā[n](y).P I R{a/y} ; N ; B

Θ ` P I R ; N ; B
{MACC}

Θ ` a[p](y).P I R{a/y} ; N ; B

Θ ` P I R ; N ; B
{MCASTN}

Θ ` ā[n](y).P I R \\y ; N ∪{a} ; B

Θ ` P I R ; N ; B
{MACCN}

Θ ` a[p](y).P I R \\y ; N ∪{a} ; B

Θ ` P I R ; N ; B cf(R \\y)
{MCASTB}

Θ ` ū[n](y).P I R \\y ; N ; B∪̄{u}
Θ ` P I R ; N ; B cf(R \\y)

{MACCB}
Θ ` u[p](y).P I R \\y ; N ; B∪̄{u}

Θ ` P I R ; N ; B
{SEND}

Θ ` c!〈{pk}k∈K ,e〉;P I {`(c)}∪R ; N ; B∪̄{e}

Θ ` P I R ; N ; B
{RCV}

Θ ` c?(q,x);P I pre(`(c),R) ; N ; B

Θ ` P I R ; N ; B
{DELEG}

Θ ` c!〈〈p′,c′〉〉;P I {`(c), `(c′), `(c)≺ `(c′)}]R ; N ; B

Θ ` P I R ; N ; B R ⊆ {`(c), y, `(c)≺ y}
{SREC}

Θ ` c?((q,y));P I {`(c)} ; N ; B

Θ ` P I R ; N ; B Θ ` Q I R′ ; N ′ ; B′
{CONC}

Θ ` P | Q I R]R′ ; N ∪N ′ ; B∪B′
Θ ` P I R ; N ; B a 6∈R ∪N

{NRES}
Θ ` (νa)P I R ; N ; B \a

{VAR}
Θ ,X [y] I R ; N ; B ` X〈e,c〉 I R{`(c)/y} ; N ; B∪̄{e}

Θ ,X [y] I R ; N ; B ` P I R ; N ; B Θ ,X [y] I R ; N ; B ` Q I R′ ; N ′ ; B′
{DEF}

Θ ` def X(x,y) = P in Q I R′ ; N ′ ; B′

Table 5. Selected interaction typing rules

P1 = b̄[2](y1).ā[2](z1).z1?(2,x′);y1!〈2, true〉;0
P2 = b[2](y2).a[2](z2).y2?(1,x);z2!〈1, false〉;0

In process P1 we have that an input action on service a can block an output action on
service b and this determines a ≺ b. In process P2 the situation is inverted, determining
b≺ a. In P1 | P2 we will then have a loop a≺ b≺ a. In fact P1 | P2 reduces to

Q = (νs)(νr) (r[1]?(2,x′);s[1]!〈2, true〉;0 | s[2]?(1,x);r[2]!〈1, false〉;)0
which is stuck. It is easy to see that services a and b have the same types, thus we could
change b in a in P1 and P2 obtaining P′1 and P′2 with two instances of service a and a
relation a ≺ a. But also P′1 | P′2 would reduce to Q. Hence we must forbid also loops on
single names (i.e. the channel relation cannot be reflexive).

Rule {RCV} asserts that the input action can block all other actions in P, while rule
{SEND} simply adds `(c) in R to register the presence of a communication action in P. In
fact output is asynchronous, thus it can be always performed. Rule {DELEG} is similar to
{SEND} but asserts that a use of `(c) must precede a use of `(c′): the relation `(c)≺ `(c′)
needs to be registered since an action blocking `(c) also blocks `(c′).

12

Three different sets of rules handle service initialisations. In rules {MCAST}-{MACC}
the service name a replaces y in R. Rules {MCASTN}-{MACCN} can be applied only if
the channel y associated to a is minimal in R .This implies that once a is initialised in P
all communication actions on the channel with role instantiating y are performed before
any input communication action on a different channel in P. The name a is added to the
nested service set. Remarkably, via rules {MCASTN}-{MACCM} we can prove progress
when services are nested, generalising the typing strategy of [6]. The rules {MCASTB}
and {MACCB} add u to the bound service set whenever u is a service name. These rules
are much more restrictive: they require that y is the only free channel in P and that it is
minimal. Thus no interaction with other channels or services is possible. This safely al-
lows u to be a variable (since nothing is known about it before execution except its type)
or a restricted name (since no channel with role can be made inaccessible at runtime by a
restriction on u). Note that rule {NRES} requires that a occurs neither in R nor in N .

The sets N and B include all service names of a process P whose initialisations
has been typed with {MCASTN}-{MACCN}, {MCASTB}-{MACCB}, respectively. Note
that for a service name which will replace a variable this is assured by the (conditional)
addition of e to B in the conclusion of rule {SEND}. The sets N and B are used to
assure, via the coherence condition R ∩ (N ∪B) = /0, that all participants to the same
service are typed either by the first two rules or by the remaining four. This is crucial to
assure progress. Take for instance the processes P1 and P2 above. If we type the session
initialisation on b using rule {MCAST} in P1 and {MACCN} or {MACCB} in P2 no
inconsistency would be detected. But rule {CONC} does not type P1 | P2 owing to the
coherence condition. Instead if we use {MACC} in P2, we detect the loop a ≺ b≺ a.
Note that we could not use {MCASTN} or {MCASTB} in P1 since y1 is not minimal.

Rule {SREC} avoids to create a process where two different roles in the same ses-
sion are put in sequence. Following [21] we call this phenomenon self-delegation. As an
example consider the processes

P1 = b̄[2](z1).ā[2](y1).y1?((2,x));x?(1,w);z1!〈2, false〉;0
P2 = b[2](z2).a[2](y2).y2!〈〈1,z2〉〉;0

and note that P1 | P2 reduces to (νs)(νr)(s[2]?(1,w);s[1]!〈2, false〉;0) which is stuck. Note
that P1 | P2 is typable by the communication type system but it is not typable by the
interaction type system, since we get y1 ≺ z1 which is forbidden by rule {SREC}.

A closed runtime process P is initial if it is typable both in the communication and
in the interaction type systems. The progress property is assured for all computations that
are generated from an initial process.

Theorem 2 (Progress). All initial processes have the progress property.

It is easy to verify that the (runtime) version of the three buyer protocol can be typed
in the interaction type system with {a};{b}; /0 and /0;{a,b}; /0 according to which typing
rules we use for the initialisation actions on service names a, b. Therefore we get

Corollary 1. The three buyer protocol has the progress property.

5 Conclusions and Related Work
The programming framework presented in this paper relies on the concept of global types
that can be seen as the language to describe the model of the distributed communications,
i.e., an abstract high-level view of the protocol that all the participants will have to respect
in order to communicate in a multiparty communication. The programmer will then write
the program to implement this communication protocol; the system will use the global

13

types (abstract model) and the program (implementation) to generate a runtime represen-
tation of the program which consists of the input/output operations decorated with explicit
senders and receivers, according to the information provided in the global types. An alter-
native way could be that the programmer directly specifies the senders and the receivers
in the communication operations as our low-level processes; the system could then infer
the global types from the program. Our communication and interaction type systems will
work as before in order to check the correctness and the progress of the program. Thus
the programmer can choose between a top-down and a bottom-up style of programming,
while relying on the same properties checked and guaranteed by the system.

We are currently designing and implementing a modelling and specification language
with multiparty session types [17] for the standards of business and financial protocols
with our industry collaborators [18, 19, 5]. This consists of three layers: the first layer is
a global type which corresponds to a signature of class models in UML; the second one
is for conversation models where signatures and variables for multiple conversations are
integrated; and the third layer includes extensions of the existing languages (such as Java
[13]) which implement conversation models. We are currently considering to extend this
modelling framework with our type discipline so that we can specify and ensure progress
for executable conversations.
Multiparty sessions The first papers on multiparty session types are [2] and [12]. The
work [2] uses a distributed calculus where each channel connects a master end-point and
one or more slave endpoints; instead of global types, they solely use (recursion-free) local
types. In type checking, local types are projected to binary sessions, so that type safety is
ensured using duality, but it loses sequencing information: hence a progress property in a
session is not guaranteed.

The present calculus is an essential improvement from [12]; both processes and types
in [12] share a vector of channels and each communication uses one of these channels,
while our user processes and global types are simpler and user-friendly without these
channels. The global types in [12] have a parallel composition operator, but its projectabil-
ity from global to local types limits to disjoint senders and receivers; hence it does not
increase expressivity.

The present calculus is more liberal than the calculus of [12] in the use of declarations,
since the definition and the call of recursive processes are obliged to use the same channel
variable in [12]. Similarly the delegation in [12] requires that the same channel is sent and
received for ensuring subject reduction, as analysed in [21]. Our calculus solves this issue
by having channels with roles, as in [9] (see the example at page 13). As a consequence
some recursive processes, which are stuck in [12], are type-sound and reducible in our
calculus, satisfying the interaction type system.

Different approaches to the description of service-oriented multiparty communica-
tions are taken in [3, 4]. In [3], the global and local views of protocols are described in two
different calculi and the agreement between these views becomes a bisimulation between
processes; [4] proposes a distributed calculus which provides communications either in-
side sessions or inside locations, modelling merging running sessions. The type-safety
and progress in merged sessions are left as an open problem in [4].
Progress The majority of papers on service-oriented calculi only assure that clients are
never stuck inside a single session, see [1, 7, 12] for detailed discussions, including com-
parisons between the session-based and the traditional behavioural type systems of mo-
bile processes, e.g. [20, 14]. In [1, 7, 12], structured session primitives help to give simpler
typing systems for progress.

14

The first papers considering progress for interleaved sessions required the nesting
of overlapping sessions in Java [8, 6]. The present approach significantly improves the
binary session system for progress in [7] by treating the following points: (1) asynchrony
of the communication with queues, which enhances progress; (2) a general mechanism of
process recursion instead of the limited permanent accepts; (3) a more liberal treatment
of the channels which can be sent; and (4) the standard semantics for the reception of
channels with roles, which permits to get rid of process sequencing. None of the previous
work had treated progress across interfered, dynamically merged multiparty sessions.

References
1. L. Acciai and M. Boreale. A Type System for Client Progress in a Service-Oriented Calculus.

In Festschrift in honor of Ugo Montanari, LNCS. Springer, 2008. To appear.
2. E. Bonelli and A. Compagnoni. Multipoint Session Types for a Distributed Calculus. In

TGC’07, volume 4912 of LNCS, pages 240–256, 2008.
3. M. Bravetti and G. Zavattaro. Towards a Unifying Theory for Choreography Conformance and

Contract Compliance. In Software Composition, volume 4829 of LNCS, pages 34–50, 2007.
4. R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multiparty Sessions in SOC. In COORDINA-

TION’08, LNCS. Springer, 2008. To appear.
5. M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Programming for

Web Services. In ESOP’07, volume 4421 of LNCS, pages 2–17, 2007.
6. M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asynchronous Session Types and Progress

for Object-Oriented Languages. In FMOODS’07, volume 4468 of LNCS, pages 1–31, 2007.
7. M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On Progress for Structured Commu-

nications. In TGC ’07, volume 4912 of LNCS, pages 257–275, 2008.
8. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session Types for

Object-Oriented Languages. In ECOOP’06, volume 4067 of LNCS, pages 328–352, 2006.
9. S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta Informatica,

42(2/3):191–225, 2005.
10. K. Honda. Types for Dyadic Interaction. In CONCUR’93, volume 715 of LNCS, pages 509–

523. Springer, 1993.
11. K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and Type Disciplines for

Structured Communication-based Programming. In ESOP’98, volume 1381 of LNCS, pages
22–138. Springer, 1998.

12. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In POPL’08,
pages 273–284. ACM, 2008.

13. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in Java. In
ECOOP’08, LNCS. Springer, 2008. To appear.

14. N. Kobayashi. A New Type System for Deadlock-Free Processes. In CONCUR’06, volume
4137 of LNCS, pages 233–247. Springer-Verlag, 2006.

15. R. Milner. Communicating and Mobile Systems: the π-Calculus. CUP, 1999.
16. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
17. Scribble Project. www.scribble.org.
18. UNIFI. International Organization for Standardization ISO 20022 UNIversal Financial Indus-

try message scheme. http://www.iso20022.org, 2002.
19. Web Services Choreography Working Group. Web Services Choreography Description Lan-

guage. http://www.w3.org/2002/ws/chor/.
20. N. Yoshida. Graph types for monadic mobile processes. In FSTTCS, volume 1180 of LNCS,

pages 371–386, 1996.
21. N. Yoshida and V. T. Vasconcelos. Language Primitives and Type Disciplines for Structured

Communication-based Programming Revisited. In SecRet’06, volume 171 of ENTCS, pages
73–93. Elsevier, 2007.

15

A More on Operational Semantics
Table 6 gives the full structural equivalence and Table 7 gives all the reduction rules.

P | 0≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)

(νr)P | Q≡ (νr)(P | Q) if r /∈ fn(Q)

(νrr′)P≡ (νr′r)P (νr)0≡ 0 def D in 0≡ 0

def D in (νr)P≡ (νr)def D in P if r /∈ fn(D)

(def D in P) | Q≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = /0

def D in (def D′ in P)≡ def D and D′ in P if dpv(D)∩dpv(D′) = /0

s : (q, /0,v) ·h≡ s : h s : (q, /0, l) ·h≡ s : h

s : (q,{pk}k∈K ,z) · (q′,{pk}k∈K′ ,z′) ·h≡ s : (q′,{pk}k∈K′ ,z′) · (q,{pk}k∈K ,z) ·h
if K∩K′ = /0 or q 6= q′

s : (q,{pk}k∈K ,z) ·h≡ s : (q,{pk}k∈K′ ,z) · (q,{pk}k∈K′′ ,z) ·h
where K = K′∪K′′ and K′∩K′′ = /0

Table 6. Structural equivalence (r ranges over a,s and z ranges over v, s[p] and l.)

B More on the Three Buyer Example
This appendix shows some reduction steps using the example of the three buyer protocol
of § 2.4. First we list the full definition of the runtime syntax.

S = ā[3](y1).y1?(2, title);y1!〈{2,3},quote〉;y1&({ok : y1?(3,address);y1!〈{3},date〉;0, quit : 0},3)

A = a[2](y2).y2!〈{1},"Title"〉;y2?(1,quote);y2!〈{3},quote div 2〉;y2&(3,{ok : 0, quit : 0})
B = a[3](y3).y3?(1,quote);y3?(2,contrib);

if (quote - contrib < 100) then y3⊕〈{1,2},ok〉;y3!〈{1},"Address"〉;y3?(1,date);0
else b̄[2](z1).z1!〈{2},quote - contrib - 99〉;z1!〈〈2,y3〉〉;z1&(2,{ok : 0, quit : 0})

C = b[2](z2).z2?(1,x);z2?((1, t));
if (x < 100) then z2⊕〈{1},ok〉; t⊕〈{1,2},ok〉; t!〈{1},"Address"〉; t?(1,date);0
else z2⊕〈{1},quit〉; t⊕〈{1,2},quit〉;0

We will consider a simplified version of the example (i.e., the Buyer3 always selects
the ok label, without the if . . . then . . . else . . .) and we will concentrate on the part in-
volving delegation. Thus, we assume that the seller and the first two buyers have already
established a connection (the session name is sa) and that the Buyer2 is about to establish
a connection with Buyer3; the first line represents the server that is waiting to conclude
the transaction with participant 3. We give some reduction steps in Table 8. In the com-
putation, Buyer3 plays the role of Buyer2 (participant 3 in the session sa) transparently to
the seller.

C More on Communication Type System
Tables 9, 10 and 11 list the typing rules for pure processes, for single queues and for pro-
cesses containing queues, respectively. Note that in rules bDELEGc and bQDELEGc the

16

ā[n](y1).P1 | a[2](y2).P2 | .. | a[n](yn).Pn −→ (νs)(P1{s[1]/y1} | .. | Pn{s[n]/yn} | s :�) [Link]

s[p]!〈{pk}k∈K ,e〉;P | s : h−→ P | s : h · (p,{pk}k∈K ,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉;P | s : h−→ P | s : h · (p,q,s′[p′]) [Deleg]

s[p]⊕〈{pk}k∈K , l〉;P | s : h−→ P | s : h · (p,{pk}k∈K , l) [Label]

s[p j]?(q,x);P | s : (q,{pk}k∈K ,v) ·h −→ P{v/x} | s : (q,{pk}k∈K\ j,v) ·h (j ∈ K) [Recv]

s[p]?((q,y));P | s : (q,p,s′[p′]) ·h−→ P{s′[p′]/y} | s : h [Srec]

s[p j]&(q,{li : Pi}i∈I) | s : (q,{pk}k∈K , li0) ·h −→ Pi0 | s : (q,{pk}k∈K\ j, li0) ·h
(j ∈ K) (i0 ∈ I) [Branch]

if e then P else Q−→ P (e ↓ true) if e then P else Q−→ Q (e ↓ false) [If-T, If-F]

def X(x,y) = P in (X〈e,s[p]〉 | Q) −→ def X(x,y) = P in (P{v/x}{s[p]/y} | Q) (e ↓ v) [Def]

P−→ P′ ⇒ (νr)P−→ (νr)P′ P−→ P′ ⇒ P | Q−→ P′ | Q [Scop,Par]

P−→ P′ ⇒ def D in P−→ def D in P′ [Defin]

P≡ P′ and P′ −→ Q′ and Q≡ Q′ ⇒ P−→ Q [Str]

Table 7. Reduction rules (r ranges over a,s)

channel with role which is sent cannot appear in the session environment of the premise.
Note that the session environments of single queues can contain both action types and
message types: the action types are the types of the channels with roles which are sent,
while the message types are the types of the channels with roles which send values, chan-
nels or labels.

Definition 3. The projection of the generalised local type T onto q, denoted by T ¹ q, is
defined by:

(!〈{pk}k∈K ,U〉;T ′) ¹ q =

{
!U ;T ′ ¹ q if q = pk for some k ∈ K,

T ′ ¹ q otherwise.

(?({pk}k∈K ,U);T ′) ¹ q =

{
?U ;T ′ ¹ q if q = pk for some k ∈ K,

T ′ ¹ q otherwise.

(⊕〈{pk}k∈K ,{li : Ti}i∈I〉) ¹ q =





⊕{li : Ti ¹ q}i∈I if q = pk for some k ∈ K,

T1 ¹ q if q 6= pk ∀k ∈ K and
Ti ¹ q = Tj ¹ q
for all i, j ∈ I.

(&(p,{li : Ti}i∈I)) ¹ q =





&{li : Ti ¹ q}i∈I if q = p,

T1 ¹ q if q 6= p

∀k ∈ K and
Ti ¹ q = Tj ¹ q
for all i, j ∈ I.

(⊕〈{pk}k∈K , l〉;T ′) ¹ q =

{
⊕l;T ′ ¹ q if q = pk for some k ∈ K,

T ′ ¹ q otherwise.

(µt.T) ¹ q = µt.(T ¹ q) t ¹ q = t end ¹ q = end

17

(νsa)(sa[1]&(3,{ok : sa[1]?(3,address);sa[1]!〈{3},date〉;0, quit : 0}) |
b[2](z1).z1!〈{2},quote - contrib - 99〉;z1!〈〈2,sa[3]〉〉; . . .) |
b̄[2](z2).z2?(1,x);z2?((1, t));z2⊕〈{1},ok〉; t⊕〈{1,2},ok〉; t!〈{1}, . . .〉; t?(1,date)

−→ by using [Link] (and the structural congruence for scope extrusion)

(νsasb)(. . .as above . . . | sb[1]!〈{2},quote - contrib - 99〉;sb[1]!〈〈2,sa[3]〉〉; . . . |
sb[2]?(1,x);sb[2]?((1, t));sb[2]⊕〈{1},ok〉; t⊕〈{1,2},ok〉; t!〈. . . ,{1}〉; t?(1,date))

−→∗ by using [Send] and [Recv] the result of quote - contrib - 99 is communicated

(νsasb)(. . .as above . . . | sb[1]!〈〈2,sa[3]〉〉;sb[1]&(2,{ok : 0, quit : 0}) |
sb[2]?((1, t));sb[2]⊕〈{1},ok〉; t⊕〈{1,2},ok〉; t!〈. . . ,{1}〉; t?(1,date))

−→∗ by using [Deleg] and [Srec]

(νsasb)(. . .as above . . . | sb[1]&(2,{ok : 0, quit : 0}) |
sb[2]⊕〈{1},ok〉;sa[3]⊕〈{1,2},ok〉;sa[3]!〈{1}, . . .〉;sa[3]?(1,date))

−→∗ by using [Label] and [Branch]

(νsasb)(sa[1]&(3,{ok : sa[1]?(3,address);sa[1]!〈{3},date〉;0, quit : 0}) | 0 |
sa[3]⊕〈{1,2},ok〉;sa[3]!〈{1}, . . .〉;sa[3]?(1,date))

Table 8. Example of reduction

Definition 4. The duality relation between projections of generalised local types is the
minimal symmetric relation which satisfies:

end ./ end t ./ t T ./ T ′ =⇒ µt.T ./ µt.T ′ & !U ;T ./ ?U ;T ′

∀i ∈ I Ti ./ T ′i =⇒ ⊕{li : Ti}i∈I ./ &{li : T ′i }i∈I
∃i ∈ I l = li & T ./ Ti =⇒ ⊕l;T ./ &{li : Ti}i∈I

Definition 5. A session environment ∆ is coherent for the session s (notation co(∆ ,s)) if
s[p] : T ∈ ∆ and T ¹ q 6= end imply s[q] : T ′ ∈ ∆ and T ¹ q ./ T ′ ¹ p. A session environment
∆ is coherent if it is coherent for all sessions which occur in it.

D From User Syntax to Runtime Syntax via Types

Given a user process P and the set of global types associated to the service identifiers
which occur free or bound in P we can add the sender and the receivers to each commu-
nication, by getting in this way a process in the runtime syntax. We define two mappings
with domain the set of user processes: the first one (denote by bG † uc) depends on a
global type G and on a service identifier u, while the second one (denote by bT ‡ yc)
depends on an action type T and on a channel variable y. The mapping bG † uc (Table
12) calls the other mapping with the appropriate projection and channel variable when
it is applied to a session initiation on the identifier u, and leaves the process unchanged
otherwise. The mapping bT ‡ yc (Table 13) adds the sender or the receiver to the commu-
nications which use the channel y and it does not affect the other processes. An interesting
clause is the fifth one, in which bT ′ ‡ y′c is applied to the body of the channel reception
y′ (T ′ is the action type of y′). In the last but one clause T ′ is the unique type such that
bT ′ ‡ yc(X(e y)) occurs in (the evaluation of) bT ‡ yc(Q). More precisely we evaluate
this type by applying to Q the mapping bT \ y \ Xc() defined in Table 14.

In order to get the runtime version of an user process P we need to apply to P the
mapping bG † uc, for each service identifier u which occurs free or bound in P, where G

18

Γ ,u : S ` u : S bNAMEc Γ ` true, false : bool
Γ ` ei : bool

Γ ` e1 and e2 : bool
bBOOLc,bANDc

Γ ` u : 〈G〉 Γ ` P.∆ ,y : G ¹ 1 pn(G)≤ n
bMCASTc

Γ ` ū[n](y).P.∆

Γ ` u : 〈G〉 Γ ` P.∆ ,y : G ¹ p
bMACCc

Γ ` u[p](y).P.∆

Γ ` e : S Γ ` P.∆ ,c : T
bSENDc

Γ ` c!〈{pk}k∈K ,e〉;P.∆ ,c : !〈{pk}k∈K ,S〉;T

Γ ,x : S ` P.∆ ,c : T
bRCVc

Γ ` c?(q,x);P.∆ ,c :?(q,S);T

Γ ` P.∆ ,c : T
bDELEGc

Γ ` c!〈〈p,c′〉〉;P.∆ ,c : !〈p,T ′〉;T,c′ : T ′
Γ ` P.∆ ,c : T,y : T ′

bSRECc
Γ ` c?((q,y));P.∆ ,c :?(q,T ′);T

Γ ` P.∆ ,c : Tj j ∈ I
bSELc

Γ ` c⊕〈{pk}k∈K , l j〉;P.∆ ,c :⊕〈{pk}k∈K ,{li : Ti}i∈I〉

Γ ` Pi .∆ ,c : Ti ∀i ∈ I
bBRANCHc

Γ ` c&(p,{li : Pi}i∈I).∆ ,c : &(p,{li : Ti}i∈I)

Γ ` P.∆ Γ ` Q.∆ ′ dom(∆)∩dom(∆ ′) = /0
bCONCc

Γ ` P | Q.∆ ∪∆ ′

Γ ` e : bool Γ ` P.∆ Γ ` Q.∆
bIFc

Γ ` if e then P else Q.∆

∆ end only
bINACTc

Γ ` 0.∆

Γ ,a : 〈G〉 ` P.∆
bNRESc

Γ ` (νa)P.∆

Γ ` e : S ∆ end only
bVARc

Γ ,X : S T ` X〈e,c〉.∆ ,c : T

Γ ,X : S T,x : S ` P. y : T Γ ,X : S T ` Q.∆
bDEFc

Γ ` def X(x,y) = P in Q.∆

Table 9. Typing rules for pure processes

is the global type of u. Note that when u is a bound variable we need to apply bG † xc
only to the scope of x.

We say that a closed user process P = C [y1?(x1);Q1] . . . [ym?(xm);Qm] with bound
service identifiers x1, . . . ,xm and service names a` with ` ∈ L is a correct implementation
of the protocols described by G1, . . . ,Gm and G′

` for ` ∈ L if we can derive

bG′
` † a`c`∈L(C [y1?(x1);bG1 † x1c(Q1)] . . . [ym?(xm);bGm † xmc(Qm)]). /0

from {a` : G′
` | ` ∈ L}.

For example by applying bGa † ac and bGb † bc to the three buyer protocol of Sub-
section 2.1 we get the three buyer protocol of Subsection 2.4.

E More on Progress

Tables 15 and 16 give the interaction typing rules.

19

bQINITc
Γ `{s} s :�. /0

Γ `{s} s : h.∆ Γ ` v : S
bQSENDc

Γ `{s} s : h · (q,{pk}k∈K ,v).∆ ;{s[q] : !〈{pk}k∈K ,S〉}

Γ `{s} s : h.∆
bQDELEGc

Γ `{s} s : h · (q,p,s′[p′]).∆ ,s′[p′] : T ′;{s[q] : !〈p,T ′〉}

Γ `{s} s : h.∆
bQSELc

Γ `{s} s : h · (q,{pk}k∈K , l).∆ ;{s[q] :⊕〈{pk}k∈K , l〉}

Table 10. Typing rules for queues

Γ ` P.∆
bGINITc

Γ ` /0 P.∆

Γ `Σ P.∆ ∆ ′end only
bWEAKc

Γ `Σ P.∆ ∗∆ ′

Γ `Σ P.∆ Γ `Σ ′ Q.∆ ′ Σ ∩Σ ′ = /0
bGPARc

Γ `Σ∪Σ ′ P | Q.∆ ∗∆ ′

Γ `Σ P.∆ co(∆ ,s)
bGSRESc

Γ `Σ\s (νs)P.∆ \ s

Γ ,a : 〈G〉 `Σ P.∆
bGNRESc

Γ `Σ (νa)P.∆

Γ ,X : S T,x : S ` P.{y : T} Γ ,X : S T `Σ Q.∆
bGDEFc

Γ `Σ def X(x,y) = P in Q.∆

Table 11. Typing rules for processes

F Proofs
F.1 Proof of Subject Reduction for the Communication Type System

Lemma 1 (Inversion Lemma for Pure Processes).

1. If Γ ` u : S, then u : S ∈ Γ .
2. If Γ ` true : S, then S = bool.
3. If Γ ` false : S, then S = bool.
4. If Γ ` e1 and e2 : S, then Γ ` e1,e2 : bool,S = bool.
5. If Γ ` ā[n](y).P.∆ , then Γ ` a : 〈G〉 and Γ ` P.∆ ,y : G ¹ 1 and pn(G)≤ n.
6. If Γ ` a[p](y).P.∆ , then Γ ` a : 〈G〉 and Γ ` P.∆ ,y : G ¹ p.

bG † uc(ū[n](y).P) = ū[n](y).bG ¹ 1 ‡ yc(P)
bG † uc(u[p](y).P) = u[p](y).bG ¹ p ‡ yc(P)
bG † uc(pref;P) = pref;bG † uc(P) u 6∈ pref
bG † uc(if e then P else Q) = if e then bG † uc(P) else bG † uc(Q)
bG † uc(P | Q) = bG † uc(P) | bG † uc(Q)
bG † uc(0) = 0
bG † uc((νa)P) = (νa)bG † uc(P)
bG † uc(def X(x y) = P in Q) = def X(x y) = bG † uc(P) in bG † uc(Q)
bG † uc(X〈e y〉) = X〈e y〉

where pref is any session initialization or communication command.

Table 12. Application of a global type and a service identifier to a user process.

20

b !〈{pk}k∈K ,S〉;T ‡ yc(y!〈e〉;P) = y!〈{pk}k∈K ,e〉;bT ‡ yc(P)
b?(p,S);T ‡ yc(y?(x);P) = y?(p,x);bT ‡ yc(P)
b !〈{pk}k∈K ,T ′〉;T ‡ yc(y!〈〈y′〉〉;P) = y!〈〈{pk}k∈K ,y′〉〉;bT ‡ yc(P)
bT ‡ yc(y′!〈〈y〉〉;P) = y′!〈〈y〉〉;P
b?(p,T ′);T ‡ yc(y?((y′));P) = y?((p,y′));bT ‡ yc(bT ′ ‡ y′c(P))
b⊕〈{pk}k∈K ,{li : Ti}i∈I〉 ‡ yc(y⊕ l j;P) = y⊕〈p, l j〉;bTj ‡ yc(P) j ∈ I
b&(p,{li : Ti}i∈I) ‡ yc(y&{li : Pi}i∈I) = y&(p,{li : bT ‡ yc(Pi)}i∈I)
bT ‡ yc(pref;P) = pref;bT ‡ yc(P) y 6∈ pref
bT ‡ yc(if e then P else Q) = if e then bT ‡ yc(P) else bT ‡ yc(Q)
bT ‡ yc(P | Q) = bT ‡ yc(P) | Q y 6∈ Q
bT ‡ yc(P | Q) = P | bT ‡ yc(Q) y 6∈ P
bend ‡ yc(0) = 0
bT ‡ yc((νa)P) = (νa)bT ‡ yc(P)
bT ‡ yc(def X(x y′) = P in Q) = def X(x y′) = bT ′ ‡ y′c(P) in bT ‡ yc(Q)

where T ′ = bT \ y \ Xc(Q)
bT ‡ yc(X〈e y′〉) = X〈e y′〉

Table 13. Application of a local type and a channel variable to a user process.

b !〈{pk}k∈K ,S〉;T \ y \ Xc(y!〈e〉;P) =bT \ y \ Xc(P)
b?(p,S);T \ y \ Xc(y?(x);P) = bT \ y \ Xc(P)
b !〈{pk}k∈K ,T ′〉;T \ y \ Xc(y!〈〈y′〉〉;P) = bT \ y \ Xc(P)
b?(p,T ′);T \ y \ Xc(y?((y′));P) = bT \ y \ Xc(P)
b⊕〈{pk}k∈K ,{li : Ti}i∈I〉 \ y \ Xc(y⊕ l j;P) = bTj \ y \ Xc(P) j ∈ I
b&(p,{li : Ti}i∈I) \ y \ Xc(y&{li : Pi}i∈I) = bTj \ y \ Xc(Pj) j ∈ I & X ∈ Pj
bT \ y \ Xc(pref;P) = bT \ y \ Xc(P) y 6∈ pref
bT \ y \ Xc(if e then P else Q) = bT \ y \ Xc(P) X ∈ P
bT \ y \ Xc(if e then P else Q) = bT \ y \ Xc(Q) X ∈ Q
bT \ y \ Xc(P | Q) = bT \ y \ Xc(P) X ∈ P
bT \ y \ Xc(P | Q) = bT \ y \ Xc(Q) X ∈ Q
bT \ y \ Xc((νa)P) = bT \ y \ Xc(P)
bT \ y \ Xc(def X ′(x y′) = P in Q) = bT \ y \ Xc(Q) X 6= X ′
bT \ y \ Xc(X〈e y′〉) = T

Table 14. Application of a local type and a channel variable and a process variable to a user process.

7. If Γ ` c!〈{pk}k∈K ,e〉;P . ∆ , then ∆ = ∆ ′,c : !〈{pk}k∈K ,S〉;T and Γ ` e : S and Γ `
P.∆ ′,c : T .

8. If Γ ` c?(q,x);P.∆ , then ∆ = ∆ ′,c :?(q,S);T and Γ ,x : S ` P.∆ ′,c : T .
9. If Γ ` c!〈〈p,c′〉〉;P.∆ , then ∆ = ∆ ′,c : !〈p,T ′〉;T,c′ : T ′ and

Γ ` P.∆ ′,c : T .
10. If Γ ` c?((q,y));P.∆ , then ∆ = ∆ ′,c :?(q,T ′);T and Γ ` P.∆ ′,c : T,y : T ′.
11. If Γ ` c⊕〈{pk}k∈K , l j〉;P . ∆ , then ∆ = ∆ ′,c : ⊕〈{pk}k∈K ,{li : Ti}i∈I〉 and Γ ` P .

∆ ′,c : Tj and j ∈ I.
12. If Γ ` c&(p,{li : Pi}i∈I) . ∆ , then ∆ = ∆ ′,c : &(p,{li : Ti}i∈I) and Γ ` Pi . ∆ ′,c :

Ti ∀i ∈ I.
13. If Γ ` P | Q.∆ , then ∆ = ∆ ′∪∆ ′′ and Γ ` P.∆ ′ and Γ ` Q.∆ ′′ where dom(∆ ′)∩

dom(∆ ′′) = /0.
14. If Γ ` if e then P else Q.∆ , then Γ ` e : bool and Γ ` P.∆ and Γ ` Q.∆ .
15. If Γ ` 0.∆ , then ∆ end only.
16. If Γ ` (νa)P.∆ , then Γ ,a : 〈G〉 ` P.∆ .
17. If Γ ,X : S T ` X〈e,c〉.∆ , then ∆ = ∆ ′,c : T and Γ ` e : S and ∆ ′ end only.

21

Θ ` P I R ; N ; B
{MCAST}

Θ ` ā[n](y).P I R{a/y} ; N ; B

Θ ` P I R ; N ; B
{MACC}

Θ ` a[p](y).P I R{a/y} ; N ; B

Θ ` P I R ; N ; B
{MCASTN}

Θ ` ā[n](y).P I R \\y ; N ∪{a} ; B

Θ ` P I R ; N ; B
{MACCN}

Θ ` a[p](y).P I R \\y ; N ∪{a} ; B

Θ ` P I R ; N ; B cf(R \\y)
{MCASTB}

Θ ` ū[n](y).P I R \\y ; N ; B∪̄{u}
Θ ` P I R ; N ; B cf(R \\y)

{MACCB}
Θ ` u[p](y).P I R \\y ; N ; B∪̄{u}

Θ ` P I R ; N ; B
{SEND}

Θ ` c!〈{pk}k∈K ,e〉;P I {`(c)}∪R ; N ; B∪̄{e}

Θ ` P I R ; N ; B
{RCV}

Θ ` c?(q,x);P I pre(`(c),R) ; N ; B

Θ ` P I R ; N ; B
{DELEG}

Θ ` c!〈〈p′,c′〉〉;P I {`(c), `(c′), `(c)≺ `(c′)}]R ; N ; B

Θ ` P I R ; N ; B R ⊆ {`(c), y, `(c)≺ y}
{SREC}

Θ ` c?((q,y));P I {`(c)} ; N ; B

Θ ` P I R ; N ; B
{SEL}

Θ ` c⊕〈{pk}k∈K , l〉;P I {`(c)}∪R ; N ; B

Θ ` Pi I Ri ; Ni ; Bi ∀i ∈ I
{BRANCH}

Θ ` c&(p,{li : Pi}i∈I) I pre(`(c),
⊎

i∈I
Ri) ;

⋃

i∈I
Ni ;

⋃

i∈I
Bi

Table 15. Interaction typing rules I

18. If Γ ` def X(x,y) = P in Q.∆ , then Γ ,X : S T,x : S `P.{y : T} and Γ ,X : S T `Q.∆ .

Lemma 2 (Inversion Lemma for Processes).

1. If Γ `Σ P.∆ and P is a pure process, then Σ = /0 and Γ ` P.∆ .
2. If Γ `{s} s :�.∆ , then ∆ = end only.
3. If Γ `{s} s : h · (q,{pk}k∈K ,v) . ∆ , then ∆ = ∆ ′;{s[q] : !〈{pk}k∈K ,S〉} and Γ `{s} s :

h.∆ ′ and Γ ` v : S.
4. If Γ `{s} s : h · (q,p,s′[p′]).∆ , then ∆ = ∆ ′;{s[q] : !〈p,T ′〉} and Γ `{s} s : h.∆ ′ and

s′[p′] : T ′ ∈ ∆ .
5. If Γ `{s} s : h · (q,{pk}k∈K , l). ∆ , then ∆ = ∆ ′;{s[q] : ⊕〈{pk}k∈K , l〉} and Γ `{s} s :

h.∆ ′.
6. If Γ `Σ P | Q . ∆ , then Σ = Σ1 ∪Σ2 and ∆ = ∆1 ∗∆2 and Γ `Σ1 P . ∆1 and Γ `Σ2

Q.∆2.
7. If Γ `Σ (νs)P.∆ , then Σ = Σ ′ \ s and ∆ = ∆ ′ \ s and co(∆ ′,s) and Γ `Σ ′ P.∆ ′.
8. If Γ `Σ (νa)P.∆ , then Γ ,a : 〈G〉 `Σ P.∆ .
9. If Γ `Σ def X(x,y) = P in Q.∆ , then Γ ,X : S T,x : S`P.y : T and Γ ,X : S T `Σ Q.∆ .

22

Θ ` P I R ; N ; B Θ ` Q I R′ ; N ′ ; B′
{CONC}

Θ ` P | Q I R]R′ ; N ∪N ′ ; B∪B′
Θ ` P I R ; N ; B a 6∈R ∪N

{NRES}
Θ ` (νa)P I R ; N ; B \a

{VAR}
Θ ,X [y] I R ; N ; B ` X〈e,c〉 I R{`(c)/y} ; N ; B∪̄{e}

Θ ,X [y] I R ; N ; B ` P I R ; N ; B Θ ,X [y] I R ; N ; B ` Q I R′ ; N ′ ; B′
{DEF}

Θ ` def X(x,y) = P in Q I R′ ; N ′ ; B′

Θ ` P I R ; N ; B Θ ` Q I R′ ; N ′ ; B′
{IF}

Θ ` if e then P else Q I R]R′ ; N ∪N ′ ; B∪B′

{INACT}
Θ ` 0 I /0 ; /0 ; /0

{QINIT}
Θ ` s :� I /0 ; /0 ; /0

Θ ` s : h I R ; /0 ; B
{QADDVAL}

Θ ` s : h · (q,{pk}k∈K ,v) I R ; /0 ; B∪̄{v}

Θ ` s : h I R ; /0 ; B
{QADDSESS}

Θ ` s : h · (q,p,s′[p′]) I {s,s′,s≺ s′}]R ; /0 ; B

Θ ` s : h I R ; /0 ; B
{QSEL}

Θ ` s : h · (q,{pk}k∈K , l) I R ; /0 ; B

Θ ` P I R ; N ; B
{SRES}

Θ ` (νs)P I R \ s ; N ; B

Table 16. Interaction typing rules II

Lemma 3. 1. If Γ `{s} s : (q,{pk}k∈K ,v) ·h.∆ , then ∆ = {s[q] : !〈{pk}k∈K ,S〉}∗∆ ′ and
Γ `{s} s : h.∆ ′ and Γ ` v : S.

2. If Γ `{s} s : (q,p,s′[p′]) ·h.∆ , then ∆ = {s[q] : !〈p,T ′〉}∗∆ ′ and Γ `{s} s : h.∆ ′ and
s′[p′] : T ′ ∈ ∆ .

3. If Γ `{s} s : (q,{pk}k∈K , l) ·h.∆ , then ∆ = {s[q] :⊕〈{pk}k∈K , l〉}∗∆ ′ and Γ `{s} s :
h.∆ ′.

Theorem 3 (Type Preservation under Equivalence). If Γ `Σ P . ∆ and P ≡ P′, then
Γ `Σ P′ .∆ .

Proof. By induction on ≡. We only consider some interesting cases.

Case 1 (P | 0≡ P). First we assume Γ `Σ P.∆ . By Γ ` /0 0. /0 and by applying bGPARc
to these two sequents we obtain Γ `Σ P|0.∆ .
For the converse direction assume Γ `Σ P|0 . ∆ . Using 2(6) we obtain: Γ `Σ ′ P . ∆1,
Γ `Σ ′′ 0.∆2 where ∆ = ∆1 ∗∆2, Σ = Σ ′∪Σ ′′ and Σ ′∩Σ ′′ = /0. Using 2(1) we get Σ ′′ = /0,
which implies Σ = Σ ′, and Γ ` 0 . ∆2. Using 1(15) we get ∆2 end only and we conclude
Γ `Σ P.∆1 ∗∆2 by applying bQWEAKc.
Case 2 (P | Q≡Q | P). By the symmetry of the rule we have only to show one direction.
Suppose Γ `Σ P | Q . ∆ . Using 2(6) we obtain Γ `Σ ′ P . ∆1, Γ `Σ ′′ Q . ∆2 where ∆ =
∆1 ∗∆2, Σ = Σ ′∪Σ ′′ and Σ ′∩Σ ′′ = /0. Using bGPARcwe get Γ `Σ Q | P.∆2 ∗∆1. Thanks
to the commutativity of ∗, we get ∆2 ∗∆1 = ∆ and so we are done.

23

Case 3 (P | (Q | R) ≡ (P | Q) | R). Suppose Γ `Σ P | (Q | R). ∆ . Using 2(6) we obtain
Γ `Σ ′ P .∆1, Γ `Σ ′′ Q | R .∆2 where ∆ = ∆1 ∗∆2, Σ = Σ ′∪Σ ′′ and Σ ′∩Σ ′′ = /0. Using
2(6) we obtain Γ `Σ ′′1 Q . ∆21, Γ `Σ ′′2 R . ∆22 where ∆2 = ∆21 ∗∆22, Σ ′′ = Σ ′′1 ∩Σ ′′2 and
Σ ′′1 ∪Σ ′′2 = /0. Using [GPar] we get Γ `Σ ′∪Σ ′′1 P | Q.∆1 ∗∆21. Using bGPARc again we get
Γ `Σ (P | Q) | R . ∆1 ∗∆21 ∗∆22 and so we are done by the associativity of ∗. The proof
for the other direction is similar.

Case 4 (s : (q, /0,v) ·h≡ s : h). Using 3(1) we obtain Γ `s (q, /0,v) ·h.∆ , where ∆ = {s[q] :
!〈 /0,S〉} ∗∆ ′ and Γ `{s} s : h . ∆ ′ and Γ ` v : S. Using the equivalence relation on ∆ we
get {s[q] : !〈 /0,S〉}∗∆ ′ ≈ ∆ ′.

Lemma 4 (Substitution lemma).

1. If Γ ,x : S ` P.∆ and Γ ` v : S, then Γ ` P{v/x}.∆ .
2. If Γ ` P.∆ ,y : G ¹ p, then Γ ` P{s[p]/y}.∆ ,s[p] : G ¹ p.

Proof. Standard induction on P.

Theorem 4 (Type Preservation under Reduction). If Γ `Σ P . ∆ and P −→∗ P′, then
Γ `Σ P′ . ∆ ′ for some ∆ ′ such that ∆ ⇒ ∆ ′. Moreover ∆ coherent implies ∆ ′ coherent
and ∆ closed implies ∆ ′ closed.

Proof. - Case [Link]
ā[n](y1).P1 | a[2](y2).P2 | . . . | a[n](yn).Pn −→ (νs)(P1{s[1]/y1}|...|Pn{s[n]/yn}|s :�).

Assume Γ `Σ ā[n](y1).P1 | a[2](y2).P2 | . . . | a[n](yn).Pn .∆ , then Σ = /0 and
Γ ` ā[n](y1).P1 | a[2](y2).P2 | . . . | a[n](yn).Pn .∆

by Lemma 2(1). Using Lemma 1(13) more times we have
Γ ` ā[n](y1).P1 .∆1 (1)

Γ ` a[i](yi).Pi .∆i (2≤ i≤ n) (2)

where ∆ =
⋃n

i=1 ∆i. Using Lemma 1(5) on (1) we have
Γ ` a : 〈G〉

Γ ` P1 .∆1,y1 : G ¹ 1 (3)

and pn(G)≤ n. Using Lemma 1(6) on (2) we have
Γ ` a : 〈G〉

Γ ` Pi .∆i,yi : G ¹ i (2≤ i≤ n). (4)

Using Lemma 4(2) on (3) and (4)
Γ `{s} Pi{s[i]/yi}.∆i,s[i] : G ¹ i (1≤ i≤ n). (5)

Using bCONCc more times on (5) we have

Γ ` P1{s[1]/y1}|...|Pn{s[n]/yn}.
n⋃

i=1

(∆i,s[i] : G ¹ i). (6)

Note that
n⋃

i=1

(∆i,s[i] : G ¹ i) = ∆ ,s[1] : G ¹ 1, . . . ,s[n] : G ¹ n

24

Using bGINITc, bQINITc and bGPARc on (6) we have
Γ `{s} P1{s[1]/y1}|...|Pn{s[n]/yn} | s :�.∆ ,s[1] : G ¹ 1, . . . ,s[n] : G ¹ n. (7)

Using bQSCOPEc on (7) we have
Γ ` /0 (νs)(P1{s[1]/y1}|...|Pn{s[n]/yn} | s :�).∆ (8)

since
(∆ ,s[1] : G ¹ 1, . . . ,s[n] : G ¹ n)\ s = ∆ .

- Case [Send]
s[p]!〈{pk}k∈K ,e〉;P | s : h−→ P | s : h · (p,{pk}k∈K ,v) (e ↓ v).

Assume
Γ `Σ s[p]!〈{pk}k∈K ,e〉;P | s : h.∆ .

Using Lemma 2(1) and 2(6) we have Σ = {s} and
Γ ` s[p]!〈{pk}k∈K ,e〉;P.∆1 (9)

Γ `{s} s : h.∆2 (10)

where ∆ = ∆2 ∗∆1. Using 1(7) on (9) we have
∆1 = ∆ ′

1,s[p] : !〈{pk}k∈K ,S〉;T
Γ ` e : S (11)

Γ ` P.∆ ′
1,s[p] : T. (12)

Using bQADDVALc on (10) and (11) we have
Γ `{s} s : h · (q,{pk}k∈K ,v).∆2;{s[p] : !〈{pk}k∈K ,S〉}. (13)

Using bGINITc on (12) and then bGPARc on (12), (13) we get
Γ `{s} P | s : h · (q,{pk}k∈K ,v). (∆2;{s[p] : !〈{pk}k∈K ,S〉})∗ (∆ ′

1,s[p] : T).

Note that
(∆2;{s[p] : !〈{pk}k∈K ,S〉})∗ (∆ ′

1,s[p] : T) ⇒ ∆2 ∗ (∆ ′
1,s[p] : !〈{pk}k∈K ,S〉;T).

- Case [Recv]
s[p j]?(q,x);P | s : (q,{pk}k∈K ,v) ·h−→ P{v/x} | s : (q,{pk}k∈K,k 6= j,v) ·h (j ∈ K).

Assume
Γ `Σ s[p j]?(q,x);P | s : (q,{pk}k∈K ,v) ·h.∆ .

By 2(1) and 2(6) we have Σ = /0 and
Γ ` s[p j]?(q,x);P.∆1 (14)

Γ `{s} s : (q,{pk}k∈K ,v) ·h.∆2 (15)

where
∆ = ∆2 ∗∆1.

Using Lemma 1(8) on (14) we have
∆1 = ∆ ′

1,s[p j] :?(q,S);T
Γ ,x : S ` P.∆ ′

1,s[p j] : T (16)

25

Thanks to Lemma 4(1) from (16) we get Γ ` P{v/x}.∆ ′
1,s[p j] : T , which implies by rule

bGINITc
Γ ` /0 P{v/x}.∆ ′

1,s[p j] : T. (17)

Using Lemma 3(1) on (15) we have
∆2 = {s[q] : !〈{pk}k∈K ,S〉}∗∆ ′

2

Γ `{s} s : h.∆ ′
2 (18)

Γ ` v : S.

Applying rule bQADDVALc on (18) we get
Γ `{s} (q,{pk}k∈K\ j,v) ·h.{s[q] : !〈{pk}k∈K\ j,S〉}∗∆ ′

2 (19)

Using rule bGPARc on (17) and (19) we get
Γ `{s} P{v/x} | (q,{pk}k∈K\ j,v) ·h. ({s[q] : !〈{pk}k∈K\ j,S〉}∗∆ ′

2)∗ (∆ ′
1,s[p j] : T).

Note that
({s[q] : !〈{pk}k∈K ,S〉}∗∆ ′

2)∗ (∆ ′
1,s[p j] :?(q,S);T) ⇒ ({s[q] : !〈{pk}k∈K\ j,S〉}∗∆ ′

2)∗ (∆ ′
1,s[p j] : T).

- Case [Label]
s[p]⊕〈{pk}k∈K , l〉;P | s : h−→ P | s : h · (p,{pk}k∈K , l)

Assume
Γ `Σ s[p]⊕〈{pk}k∈K , l〉;P | s : h.∆

Using Lemma 2(1) and 2(6) we have Σ = {s} and
Γ ` s[p]⊕〈{pk}k∈K , l〉;P.∆1 (20)

Γ `{s} s : h.∆2 (21)

where
∆ = ∆2 ∗∆1

Using Lemma 1(11) on (20) we have for l = l j (j ∈ I):
∆1 = ∆ ′

1,s[p] :⊕〈{pk}k∈K ,{li : Ti}i∈I〉
Γ ` P.∆ ′

1,Tj. (22)

Using rule bQSELc on (21) we have
Γ `{s} s : h · (p,{pk}k∈K , l).∆2;{s[p] :⊕〈{pk}k∈K , l〉}. (23)

Using bGPARc on (22) and (23) we have
Γ `{s} P | s : h · (p,{pk}k∈K , l). (∆2;{s[p] :⊕〈{pk}k∈K , l〉})∗ (∆ ′

1,s[p] : Tj).

Note that
∆2 ∗ (∆ ′

1,s[p] :⊕〈{pk}k∈K ,{li : Ti}i∈I〉) ⇒ (∆2;{s[p] :⊕〈{pk}k∈K , l〉})∗ (∆ ′
1,s[p] : Tj).

- Case [Branch]
s[p j]&(q,{li : Pi}i∈I) | s : (q,{pk}k∈K , li0) ·h−→ Pi0 | s : (q,{pk}k∈K\ j, li0) ·h (j ∈K)

(i0 ∈ I)
Assume

Γ `Σ s[p j]&(q,{li : Pi}i∈I) | s : (q,{pk}k∈K , li0) ·h.∆ .

26

Using Lemma 2(1) and 2(6) we have Σ = {s} and
Γ ` s[p j]&(q,{li : Pi}i∈I).∆1 (24)

Γ `{s} s : (q,{pk}k∈K , li0) ·h.∆2 (25)

where
∆ = ∆2 ∗∆1 = ∆2 ∗∆1.

Using Lemma 1(12) on (24) we have
∆1 = ∆ ′

1,s[p j] : &(q,{li : Ti}i∈I)
Γ ` Pi .∆ ′

1,s[p j] : Ti ∀i ∈ I. (26)

Using Lemma 3(3) on (25) we have
∆2 = {s[q] :⊕({pk}k∈K , li′)}∗∆ ′

2

Γ `{s} s : h.∆ ′
2. (27)

Using bQSELc on (27) we get
Γ `{s} s : (q,{pk}k∈K\ j, li0) ·h.{s[q] :⊕({pk}k∈K\ j, li′)}∗∆ ′

2. (28)

Using bGPARc on (26) and (28) we have
Γ `{s} Pi0 | s : (q,{pk}k∈K\ j, li0) ·h. ({s[q] :⊕({pk}k∈K\ j, li′)}∗∆ ′

2)∗ (∆ ′
1,s[p j] : Ti0).

Note that
({s[q] :⊕({pk}k∈K , li′)}∗∆ ′

2)∗ (∆ ′
1,s[p j] : &(q,{li : Ti}i∈I)) ⇒

({s[q] :⊕({pk}k∈K\ j, li′)}∗∆ ′
2)∗ (∆ ′

1,s[p j] : Ti0).

F.2 Proof of the Progress Theorem
In the following definitions and proofs we assume that all considered processes are well
typed with the communication type system of Section 3.

Lemma 5. If Θ ` s : h ·m I R ; /0 ; B then Θ ` s : m ·h I R ; /0 ; B.

Proof. By induction on h.

Lemma 6 (Substitution Lemma). Let Θ ` P I R ; N ; B.

1. Let v 6∈R. Then Θ ` P{v/x} I R ; N ; B′ where B′ = B∪̄{v};
2. Θ ` P{s[p]/y} I R{s/y} ; N ; B.

Proof. By induction on Θ ` P I R ; N ; B.

1. By induction on P. The only interesting case is when v is a service name a, thus, P≡
x̄[n](y).P′ or P≡ x[n](y).P′ and the last applied rules are {MCASTB} or {MACCB},
respectively. Let us consider P≡ x̄[n](y).P′ (the other case is similar). From {MCASTB}
we have that Θ ` P′ I R ′ ; N ; B such that cf(R ′ \\y) and R = R ′ \\y. Now,
P{a/x}= ā[n](y).P′. Since, by hypothesis, cf(R ′\\y), thus we can apply {MCASTB},
obtaining Θ ` ā[n](y).P′ I R ; N ; B∪{a}. Note that this judgements is coherent
since by hypothesis a 6∈R.

2. Easily follows from the definition of `(c).

Theorem 5 (Type Preservation under Equivalence). If P is well typed and Θ ` P I
R ; N ; B and P≡ P′, then Θ ` P′ I R ; N ; B.

27

Proof. Standard induction on ≡.

Theorem 6 (Type Preservation under Reduction). If P is well typed and Θ ` P I
R ; N ; B and P−→∗ P′, then Θ ` P′ I R ′ ; N ′ ; B′ for some R ′ ⊆R, N ′ ⊆N and
B′ ⊆B.

Proof. By induction on −→ and by cases on the last applied rule.

- [Link]. By hypothesis

Θ ` ā[n](y1).P1 | a[2](y2).P2 | . . . | a[n](yn).Pn I R ; N ; B.

This judgement is obtained by applying rule {CONC} to the subprocesses ā[n](y1).P1,
a[2](y2).P2, . . . ,a[n](yn).Pn. Then we have:

– Θ ` ā[n](y1).P1 I R1 ; N1 ; B1
– Θ ` a[2](y2).P2 I R2 ; N2 ; B2
– . . .
– Θ ` a[n](yn).Pn I Rn ; Nn ; Bn

where R =
⊎

1≤i≤n Ri and N =
⋃

1≤i≤n Ni and B =
⋃

1≤i≤n Bi. Point 2. of the
the coherence condition (see page 11) implies that the rules {MCAST}, {MACC}
cannot be used for the same session name with the rules {MCASTN}, {MACCN},
{MCASTB}, {MACCB}.
We consider the case in which P1 has been typed with rule {MCASTN} or {MCASTB}
and each Pp (2≤ p≤ n) with {MACCN} or {MACCB}.
Then for each i (1 ≤ i ≤ n) we must have Θ ` Pi I R ′

i ; N ′
i ; B′

i such that Ri =
R ′

i \\yi, N ′
i ⊆Ni, B′

i ⊆Bi (yi is minimal in R ′
i). By Lemma 6(2) we have

Θ ` Pi{s[i]/yi} I R ′
i{s/yi} ; N ′

i ; B′
i .

By using {CONC} (and {QINIT}) we have

Θ ` P1{s[1]/y1}|...|Pn{s[n]/yn}|s :� I R ′ ; N ′ ; B′

where R ′ =
⊎

R ′
i{s/yi},N ′ =

⋃
N ′

i and B′ =
⋃

B′
i . Note that this judgement is

coherent since s must be minimal in R ′ and R ′∩ (N ′∪B′) = /0.
By using {SRES},

Θ ` (νs)(P1{s[1]/y1}|...|Pn{s[n]/yn}|s :�) I R ′ \ s ; N ′ ; B′

Finally it is easy to see that R ′ \ s = R (by the minimality of the yi in R ′
i and of s in

R ′), N ′ ⊆N and B′ ⊆B.

- [Send]. By hypothesis, Θ ` s[p]!〈{pk}k∈K ,e〉;P | s : h I R ; N ; B, which is obtained
by applying rule {CONC}. Thus,

Θ ` s[p]!〈{pk}k∈K ,e〉;P I R1 ; N ; B1 Θ ` s : h I R2 ; /0 ; B2

where R = R1]R2 and B = B1∪B2. The first judgement can only be obtained by
{SEND}, i.e., Θ ` P I R ′

1 ; N ; B′
1 such that R1 = {s}∪R ′

1 and B1 = B′
1∪̄{v}.

By using rules {QADDVAL} and {CONC} we obtain

Θ ` P | s : h · (p,{pk}k∈K ,v) I R ′
1]R2 ; N ; B′

1∪ (B2∪̄{v}).
Now note that R ′

1]R2 ⊆R and B′
1∪ (B2∪̄{v}) = B.

28

- [Deleg]. Proceed as in the previous case, thus obtaining

Θ ` s[p]!〈〈q,s′[p′]〉〉;P I R1 ; N ; B1 Θ ` s : h I R2 ; /0 ; B2

where R = R1]R2 and B = B1∪B2. By inverting rule {DELEG} we obtain Θ `
P I R ′

1 ; N ; B1 where R1 = {s,s′,s≺ s′}]R ′
1. By using rules {QADDSESS} and

{CONC} we have

Θ ` P | s : h · (q,p,s′[p′]) I R ′
1]{s,s′,s≺ s′}]R2 ; N ; B1∪B2.

- [Label]. Similar to [Send] but simpler (using rule {QSEL} instead of {QADDVAL}).

- [Recv]. By hypothesis, Θ ` s[p j]?(q,x);P | s : (q,{pk}k∈K ,v) ·h I R ; N ; B. Proceed
as in the case of rule [Send], thus obtaining

Θ ` s[p j]?(q,x);P I R1 ; N ; B1 Θ ` s : (q,{pk}k∈K ,v) ·h I R2 ; /0 ; B2

where R = R1]R2 and B = B1 ∪B2. By inverting rule {RECV} we obtain Θ `
P I R ′

1 ; N ; B1 where R1 = pre(s,R ′
1). By Lemma 6(1) we obtain Θ ` P{v/x} I

R ′
1 ; N ; B1∪̄{v}. Moreover we have Θ ` s : h I R2 ; /0 ; B′

2 where B2 = B′
2∪̄{v}.

Applying {CONC} we get

(1) Θ ` P{v/x} | s : (q,{pk}k∈K\ j,v) ·h I R ′
1]R2 ; N ; B1∪̄{v}∪B′

2.

and note that R ′
1]R2 ⊆R1]R2 and B1∪̄{v}∪B′

2 = B.
If v = a is a service name, then a ∈B2 implies that a 6∈R1]R2 and so a 6∈R ′

1]R2.
Then (1) is coherent.

- [Srec]. By hypothesis, Θ ` s[p]?((q,y));P | s : (q,p,s′[p′]) ·h I R ; N ; B. Proceeding
as before,

Θ ` s[p]?((q,y));P I {s} ; N ; B1 Θ ` s : (q,p,s′[p′]) ·h I R2 ; /0 ; B2

where R = {s}]R2 and B = B1 ∪B2. In particular (inverting rule {SREC}) we
have Θ ` P I R ′

1 ; N ; B1 where R ′
1 ⊆ {s, y, s≺ y}. Moreover, by {QADDSESS}

(and Lemma 5) we have that Θ ` s : h I R ′
2 ; /0 ; B2 such that R2 = {s,s′,s≺ s′}]R ′

2.
By Lemma 6(2), we have Θ ` P{s′[p′]/y} I R ′′

1 ; N ; B1 where R ′′
1 ⊆ {s, s′, s ≺

s′}. By applying rule {CONC} we obtain

Θ ` P{s′[p′]/y} | s : h I R ′′
1]R ′

2 ; N ; B1∪B2.

Lastly it is easy to see that this statement is coherent and that R ′′
1]R ′

2 ⊆R.

- [Branch]. By hypothesis, Θ ` s[p j]&(q,{li : Pi}i∈I) | s : (q,{pk}k∈K , li0)·h I R ; N ; B.
By inverting the rules we have

– Θ ` Pi I Ri ; Ni ; Bi ∀i ∈ I
– Θ ` s : (q,{pk}k∈K , li0) ·h I R ′ ; /0 ; B′
– R = pre(s,

⊎
i∈I Ri)]R ′, N =

⋃
i∈I Ni, B =

⋃
i∈I Bi∪B′.

By applying rule {CONC} to the reduced process we obtain

Θ ` Pi0 | s : (q,{pk}k∈K\ j, li0) ·h I Ri0]R ′ ; Ni0 ; Bi0 ∪B′

and the result follows easily.

29

- [If-T, If-F]. Straightforward.

- [Def]. Let’s assume Θ ` def X(x,y) = P in (X〈e,s[p]〉 | Q) I R ; N ; B. Note that by
rule bDEFc y is the only free channel which can occur P. By inspecting the inference
rule, as before, we must have:
1. Θ ′ = Θ ,X [y] I R ′ ; N ′ ; B′;
2. Θ ′ ` P I R ′ ; N ′ ; B′;
3. Θ ′ ` X〈e,s[p]〉 I R ′{s/y} ; N ′ ; B′∪̄{e};
4. Θ ′ ` Q I R ′′ ; N ′′ ; B′′;

where R = R ′{s/y}]R ′′,N = N ′∪N ′′,B = B′∪̄{e}∪B′′.
By Lemma 6 we have Θ ′ ` P{v/x}{s[p]/y} I R{s/y} ; N ; B′∪̄{v} and then by
rule {CONC}Θ ′ ` (P{v/x}{s[p]/y} |Q) I R ; N ; B since e ↓ v implies B′∪̄{e}=
B′∪̄{v}. By rule {DEF}we conclude Θ ` def X(x,y) = P in (P{v/x}{s[p]/y} |Q) I
R ; N ; B.

- [Scop, Pat, Defin, Str]. For the congruence rules the thesis follows from the induction
hypothesis.

Lemma 7. If Γ `Σ P.∆ and Θ ` P I R ; N ; B, then:
1. s[p] : T ∈ ∆ and T 6= end imply s ∈R;
2. s ∈R implies ∆(s[p]) 6= end for some p.

Proof. Standard by induction on P.

Lemma 8. If Θ ` P I R ; N ; B and a 6∈R∪N and P≡ ā[n](y).P′ or P≡ a[p](y).P′,
then no channel with role occurs in R.

Proof. The last applied rule must be {MCASTB} or {MACCB} and then we must have
Θ ` P′ I R ′ ; N ; B and R = R ′ \\y. Note that the condition cf(R ′ \\y) prevents chan-
nels with roles to occur in R ′.

In the following definition we use C[] to denote a context with a hole defined in the
standard way.

Definition 6 (Precedence).
1. The channel c precedes c′ in the process P if one of the following condition holds:

– P = C[c?(q,x);Q] and c′ occurs in Q;
– P = C[c!〈〈p,c′〉〉;Q];
– P = C[c?((q,y));Q] and c′ occurs in Q;
– P = C[c&(q,{li : Pi}i∈I)] and c′ occurs in Pi for some i ∈ I;
– P = C[s : h · (q,p,s′[p′]) ·h′] and c = s[p] and c′ = s′[p′].

2. The channel c weakly precedes c′ in the process P if either c precedes c′ in P or one
of the following condition holds:

– P = C[c!〈{pk}k∈K ,e〉;Q] and c′ occurs in Q;
– P = C[c!〈〈p,c0〉〉;Q] and c′ occurs in Q.

Lemma 9. If Θ `P I R ; N ; B and s[p] precedes s′[p′] in P and s 6= s′, then s≺ s′ ∈R.

Proof. By induction on P.

Lemma 10. Let P be initial and P−→∗ P′.

30

1. If s[p] weakly precedes s′[q] in P′, then either s 6= s′ or p = q;
2. If P≡ P′ | s : h′ · (q,p,s′[p′]) ·h then s′ 6= s.

Proof. We show both points simultaneously by induction on−→∗. In an initial P there are
no channels with roles. As for the induction step we discuss the more interesting cases.
- Rule [Link] creates a new channel with a unique distinguished role for each parallel
process. Both 1. and 2. follow trivially by the induction hypothesis.
- When the reduction step is obtained by rule [Srec] we must have s : (q,p,s′[p′]) ·h. By
induction hypothesis we must have s 6= s′. By Theorem 6 we can derive a channel relation
for the left hand side of the reduction rule [Srec] using the interaction typing rule {SREC}.
Therefore s[p] and s′[p′] are the only channels with role in P{s′[p′]/y} and point 1. follows
immediately.
- When the reduction step is obtained by rule [Deleg] note that the session delegation
command must have been typed by rule bDELEGc. For this reason we get s[p] 6= s′[p′].
Since s[p] precedes s′[p′] in the session delegation command, then by induction s = s′
implies p = p′. We then conclude s 6= s′.

Definition 7. Define ∝ between processes, message queues and local types, as follows:
c!〈{pk}k∈K ,e〉;P ∝ !〈{pk}k∈K ,S〉;T c?(q,x);P ∝?(q,S);T
c!〈〈p′,c′〉〉;P ∝ !〈{pk}k∈K ,T 〉;T c?((q,y));P ∝?(q,T);T

c⊕〈{pk}k∈K , li〉;P ∝⊕〈{pk}k∈K ,{li : Ti}i∈I〉 c&(q,{li : Pi}i∈I) ∝ &(p,{li : Ti}i∈I)
(q,{pk}k∈K ,v) ·h ∝ !〈{pk}k∈K ,S〉;T (q,p′,s[p]) ·h ∝ !〈{pk}k∈K ,T 〉;T

(q,{pk}k∈K , l) ·h ∝⊕〈{pk}k∈K ,{li : Ti}i∈I〉 X〈e,c〉 ∝ T
where i ∈ I.

Definition 8. A process P is ready in a process Q if one of the following conditions holds:
– Q≡ P;
– Q≡ P | R for some R;
– Q≡ (νa)R and P is ready in R, for some R, a;
– Q≡ (νs)R and P is ready in R, for some R, s;
– Q≡ def D in R and P is ready in R, for some R, D.

Definition 9. – An input process is a value sending, session delegation or label selec-
tion.

– An output process is a value reception, session reception or label branching.
– The identifier u is the subject of ū[n](y).P and u[p](y).P.
– The channel c is the subject of c!〈{pk}k∈K ,e〉;P, c?(q,x);P, c!〈〈p′,c′〉〉;P, c?((q,y));P,

c⊕〈{pk}k∈K , l〉;P and c&(q,{li : Pi}i∈I).
– An output type is a type of the shape !〈{pk}k∈K ,U〉;T, ⊕〈{pk}k∈K ,{li : Ti}i∈I〉, or
⊕〈{pk}k∈K , l〉;T.

– An input type is a type of the shape ?({pk}k∈K ,U);T , or &(p,{li : Ti}i∈I).

Lemma 11. Assume that
– Θ ` P I R ; N ; B;
– R contains service names which are not bigger than channels with roles and less

than at least one channel with role;
– no ready process in P is an output or a conditional or a process call or a session

initialisation on a variable.
Then P contains one ready session initialisation on a free service name which belongs to
R ∪N .

31

Proof. If P is a session initialisation on a free service name which belongs to R ∪N
there is nothing to prove. Otherwise the proof is by induction on P.

P cannot be a session initialisation on a free session name which does not belong to
R ∪N , since otherwise R could not contain channels with roles by Lemma 8.

P cannot be an input process since otherwise by Lemma 9 a channel with role would
be less than all channels with roles which occur in R.

If P ≡ P1 | P2, then R = R1]R2 and Θ ` P1 I R1 ; N1 ; B1 and Θ ` P2 I
R2 ; N2 ; B2 for some R1,R2, since the last applied rule for deriving Θ `P I R ; N ; B
must be {CONC}. Note that at least one between R1 and R2 must contain session names
which are not bigger than channels with roles and less than at least one channel with role.
Therefore by induction either P1 or P2 contains a ready session initialisation on a free
service name which belongs to R ∪N .

If P ≡ def X(x,y) = P′ in Q, then Θ ,X [y] I R ′ ; N ′ ; B′ ` Q I R ; N ; B since
the last applied rule for deriving Θ ` P′ I R ′ ; N ′ ; B′ must be {DEF}. Therefore by
induction Q contains a ready session initialisation on a free service name which belongs
to R ∪N .

If P≡ (νa)P′, then Θ ` P′ I R ; N ; B′ where B′ = B \a and a 6∈R ∪N , since
the last applied rule for deriving Θ ` (νa)P I R ; N ; B must be {NRES}. Therefore by
induction P′ contains a ready session initialisation on a free service name which belongs
to R ∪N .

Lemma 12. Assume that
– Γ `Σ P.∆ ;
– Θ ` P I R ; N ; B is proved without using rule {SRES};
– s is minimal in R;
– no s[p] precedes s[q] with p 6= q in P;
– no ready process in P is an output, a conditional, a process call, a session initialisa-

tion on a free channel or on a variable.
Then:
1. if ∆(s[p]) is an input type then P contains a ready input process Q with subject s[p]

such that Q ∝ ∆(s[p]);
2. if ∆(s[p]) is an output type then P contains the queue s : h and h ∝ ∆(s[p]).

Proof. The proof of both points is by induction on P. Note that P cannot be a session
initialisation on a bound channel, i.e. we cannot have P ≡ (νa)Q where Q is a session
initialisation on the channel a, since in that case the channel relation for Q should contain
a≺ s and this is impossible by Lemma 8.

(1). If P is an input process, then by Lemmas 9 and 10 the subject of P must be s[p]:
obviously P is ready. Note that P is a user process and then Γ ` P.∆ by Lemma 2(1). We
get P ∝ ∆(s[p]) by Lemma 1(8), (10) and (1).

If P ≡ P1 | P2, then by Lemma 2(6) Σ = Σ1 ∪Σ2 and ∆ = ∆1 ∗∆2 and Γ `Σ1 P1 . ∆1
and Γ `Σ2 P2 . ∆2. Since an input type is never a message type we have either ∆(s[p]) =
∆1(s[p]) or ∆(s[p]) = ∆2(s[p]). Assume ∆(s[p]) = ∆1(s[p]). Moreover, since the last ap-
plied rule must be {CONC}, Θ ` P1 I R1 ; N1 ; B1 and Θ ` P2 I R2 ; N2 ; B2 and
R=R1]R2. Note that by Lemma 7 R1 contains s. Moreover s is minimal in R1 since
R1 ⊆ R. Therefore by induction P1 contains a ready input process Q with subject s[p]
such that Q ∝ ∆(s[p]).

If P ≡ def X(x,y) = P′ in Q, then by Lemma 2(9) Γ ,X : S T,x : S ` P . y : T and
Γ ,X : S T `Σ Q . ∆ . Moreover Θ ,X [y] I R ′;N ′;B′ ` Q I R ; N ; B, since the last

32

applied rule for deriving Θ ` P′ I R ′ ; N ′ ; B′ must be {DEF}. Therefore by induction
Q contains a ready input process Q with subject s[p] such that Q ∝ ∆(s[p]).

If P≡ (νa)P′, then by Lemma 2(8) Γ ,a : 〈G〉 `Σ P′ .∆ . Moreover, since the last ap-
plied rule for deriving Θ ` (νa)P′ I R ; N ; B must be {NRES}, Θ `P′ I R ; N ; B′
where B = B′ \a and a 6∈R∪N . Therefore by induction P′ contains a ready input pro-
cess Q with subject s[p] such that Q ∝ ∆(s[p]).

(2). If P is a queue, then it must be the queue s and the result follows from Lemma 3.
If P ≡ P1 | P2, then by Lemma 2(6) Σ = Σ1 ∪Σ2 and ∆ = ∆1 ∗∆2 and Γ `Σ1 P1 . ∆1

and Γ `Σ2 P2 . ∆2. We consider the case ∆(s[p]) = ∆1(s[p]);∆2(s[p]), the other cases
being similar or simpler. As in the proof of (1) we get R = R1]R2 and Θ ` P1 I
R1 ; N1 ; B1. Note that by Lemma 7(1) R1 contain s. Therefore by induction P1 contains
the queue s:h and h ∝ ∆(s[p]).

If P≡ def P1 in P2 or P≡ (νa)P′, the proof proceeds as in the case of (1).

Proof of Theorem 2 [Progress].
Let P0 be initial and P0 −→∗ P.

If P does not contain channels with roles there is nothing to prove.
If a ready sub-process of P is an output process, then P is reducible.
If a ready process in P is a conditional, then P would reduce, since P is closed (being

P0 closed) and any closed boolean value is either true or false. Similarly if a ready process
of P is a process call it can be reduced.

No ready process in P is an accept/request on a variable since P is closed.
If one ready process in P is an accept/request on a free channel a, then a must be in

the domain of the standard environment Γ used to type P0 and P. Even if in P there are
not enough partners to apply rule [Link], using Γ (a) we can build a process Q containing
the missing partners which are necessary in order to apply it to P | Q.

Otherwise let P≡ (ν s̃)Q, where s̃ is the set of all session names which occur in P. By
the Type Preservation Theorems 4 and 6 P is well typed both in the communication and in
the interaction type systems. This implies `Q I R ; N ; B for some R, N , B. Let ∆
be the session environment of Q. Note that by construction we do not use rule {SRES} for
deriving R. All minimals in R cannot be service names names since otherwise P would
contain one ready initialisation on a free service name by Lemma 11. So there must be a
session name s which is minimal. By Lemma 7(2) and the coherence of ∆ there must be
p, q such that ∆(s[p]) = T , ∆(s[q]) = T ′ and T ¹ q ./ T ′ ¹ p. Without loss of generality
we can assume that T is an input type and T ′ is an output type. Then Lemma 12 implies
that Q contains a ready input process R such that R ∝ T and the queue s : h with h ∝ T ′.
Therefore P reduces by rule [Recv].

33

