Local State in Hoare Logic for
Imperative Higher-Order Functions

Nobuko Yoshida, Kohei Hond&, and Martin Berger

1 Department of Computing, Imperial College London
2 Department of Computer Science, Queen Mary, University of London

Abstract. We introduce an extension of Hoare logic for imperative higher-order func-
tions with local state. Local state may be generated dynamically and exported outside its
scope, may store higher-order functions, and may be used to construct complex shared
mutable data structures. The induced behaviour is captured with a first order predicate
which asserts reachability of reference names. The logic enjoys a strong match with the
semantics of programs, in the sense that valid assertions characterise the standard con-
textual congruence. We explore the logic’s descriptive and reasoning power with non-
trivial programming examples manipulating dynamically generated local state. Axioms
for reachability play a central role for reasoning about the examples.

Table of Contents

1 INtrodUuCtiono 1
2 AProgramming Languaget 4
2.1 SyntaxandReduction..............c.c.c i 4
2.2 TYPING. oot 7
3 AssertionsforLocal State i 9
3.1 ALogical Languageoiii 9
3.2 Assertions for Higher-Order Functions and Aliasing 10
3.3 AssertionsforlLocalState i 12
3.4 Formulaefor Freshness i 13
4 MOAEIS ..o 15
4.1 OpenModels 15
4.2 ModelswithLocalityccoo i 15
4.3 AbstractModels. ... 16
4.4 OperationsonModels. 17
4.5 Propertiesof Operationst 17
4.6 Semantics Of ASSErtiONSot 20
5 Judgementand Proof Rules 23.
5.1 JudgementanditsSemantics i, 23.
5.2 Proof Rules (1): Basic Proof System............................ 24
5.3 Proof Rules (2): Derived LocatedRules 30
6 Axioms, Soundness and Observational Completeness 31..
6.1 AxiomsforReachability.............. 31
6.2 Elimination Results i 34

6.3 Consistency of LOQICovvi i 38

6.4 SoundnessofProofRules............ i i A2

6.5 Observational Completeness (1): FCFs............ ...t 44.
6.6 Observational Completeness (2): Characteristic Formulae 46 .
Reasoning EXamples. 52
7.1 Stored Procedures with Shared Local State 52.
7.2 Dynamic Mutable Data Structure (1): Trees.oinn. 53
7.3 Dynamic Mutable Data Structures (2): DAGS 56
7.4 Trees and Dages witho8i{Structures. 66
7.5 Dynamic Mutable Data Structures (3): Graphs 66
7.6 Higher-Order Mutable Data Structuresovun... 67
7.7 Local State and Information Hiding 68
DISCUSSIONS . ..ottt e 75
8.1 SUMMANY ...t 75
8.2 RelatedWork. i OB
8.3 FUtUre WOrK. ... 78
Proof of Axiomsin Remark 6.11o iiiiiiniininnenn.. 81
Graph CopY . .o oot 81

1 Introduction

Local State in Imperative Higher-Order Programming. New reference generation

in ML-like languages [1, 2] is a powerful programming primitive. First, a newly cre-
ated reference is hidden from the outside, enhancing modularity through localisation of
read/write effects. Consider the following program:

Inc et x=ref(0) in A().(x:=Ix+1; Ix) (1.1)

We use standard notation [31]: in particulaef (M) returns a fresh reference whose
content is the valuéM evaluates to.X is dereferencing of an imperative variable
When the anonymous function imc is invoked, it increments the content of its local
variablex, and returns the new content. Thus the procedure returns a different result
at each call, whose source is hidden from external observers. This is different from
A().(x:=Ix+1; x) wherex s globally accessible.

The use of local state is also a source of representation independence. As an exam-
ple,

Inc2 & 1et x,y = ref(0) in A().(x:=Ix+1;y:=ly+ 1; (Ix+1y)/2) (1.2)

realises the same observable behaviourmas But if x or y is not local, they clearly
have distinct visible behaviours.

Freshness of names of imperative variables generated by programs is a fundamental
element of the semantics of local state. Consider the following program:

Ax.let y=ref(1l) in if X=y then O else 100 1.3)

This function always returns 100, since a hame fed by the environxjearid the name
of a newly generated locatiog)(cannot be identical. This freshness guarantees locality
of state by prohibiting (direct) access to that state from the outside of its scope. This fa-
cility can be used for insulating dynamically generated data structures from undesirable
interference by other programs.

As another example, consider the following program with stored higher-order pro-
cedures [33, § 6]:

1 a = Inc; * I'x =07%
2 b =1 a; * !'x =0%
3 z1 = (! a)(; * I'x=1M%
4 z2 = (' b); * I'x =27%
5 (" zL)+(z2)

This program, which we hereafter cdthcShared, first assigns, in Line 1I1(1), the
programInc to a; then, inl.2, assigns the content afto b; and invokes, irl.3, the
content ofa; then does the same for thatlofn 1.4; and finally inl.5 adds up the two
numbers returned from these two invocations. By tracing the reduction of this program,
we can check that the initial value gfs 0 (atl.1 andl.2), then the return value of this
program is 3. To specify and understand the behavioinefhared, it is essential to
capture the sharing of between two procedures assignedtandb, whose scope is

originally (atl.1) restricted tod but gets (at.2) extruded to and shared Ry. Note that
if we replaceb :=!aatl.2 byb := Inc, two separate instances ic are assigned ta
andb, and the final result is 2. Controlling sharing by combining scope extrusion and
local state is a foundation of many programming disciplines, including manipulation
of dynamically generated mutable data structures (as shown in § 7), but it severely
complicates reasoning even for relatively simple commands.

A further example demonstrates the power of combining stored functions and lo-
cal references. We consider a factorial program which realises a recursion by circular
references, an idea due to Landin [21].

circFact £'x := \zif z=0then 1 else zx (X)(z—1)

This program calculates the factorialfBut sincex s still free incircFact, if a pro-
gram reads fronx and stores it in another variable, spyassigns a diverging function
to x, and feeds the content giwith 3, then the program diverges rather than returning
6. In the presence of local state, we can hide avoid unexpected interference.

safeFact = let X = ref (AY.y) in (circFact;!X)

(aboveAy.y can be any initialising value). The program evaluates to a function which
also calculates the factorial: bats now invisible and inaccessible from the outside, so
that the program behaves as the pure factorial function. The potential distance between
the extensional and internal behaviour of a program with local state can be exploited
for modular programming. But this distance also causes difficulties in reasoning, since
it makes correspondence between programs’ syntactic structures and their behaviours
subtle to establish [20, 24, 32, 33].

Program Logic and Local State. This paper proposes a simple extension of Hoare
logic for treating higher-order imperative programs with local state. Hoare logic has
been highly successful in software engineering, including verification, rigorous soft-
ware development and testing. However there have been three open issues which make
it difficult to extend Hoare logic to imperative higher-order programming languages
such as ML.

e Higher-order functions, including stored ones.
e General forms of aliasing induced by arbitrary nested reference types.
e Treatment of dynamically generated local state and its scope exclusion.

The first is a primary source of the expressive power of higher-order imperative pro-
grams (as seen iircFact). For the second point, since reference types can occur in
other types, we can use references as parameters of function calls, return values and
content of references and other data structures, causing potential aliasing. These three
are fundamental elements of practical typed higher-order programming, but have defied
clean logical treatment.

In preceding studies, the present authors have proposed Hoare logics which capture
the first two features [3, 17-19]. The resulting logics enjoy a tight link with standard
observational semantics in that assertions distinguish programs’ behaviour just as the

contextual behavioural equivalence does. As already stressed in the context of Hoare
logics [10, 16], this property, observational completeness, is important when, for ex-
ample, we wish to use compositional program logics together with other mathematical
tools based on a firm semantic basis.

On the basis of our preceding works [3, 17-19], this paper introduces a composi-
tional program logic for higher-order functions with dynamically generated local state.
The logic enjoys observational completeness and offers a uniform basis for asserting
and reasoning about the general class of dynamically generated mutable data structures
such as graphs storing higher-order functions at their nodes. Its proof system, combined
with axioms for reachability, enables precise compositional verification of subtle pro-
gramming examples involving higher-order functions and local state, including those
discussed above. To our knowledge, this is the first time a Hoare-like program logic
for imperative higher-order functions with ML-like dynamically generated references
in full type hierarchy are developed.

Outline. In the rest of the paper, Section 2 reviews the target programming language
and its contextual equivalence. Section 3 introduces the assertion language and illus-
trates basic ideas of the assertion language, especially in the way it expresses local
state, through simple examples. Section 4 introduces semantics of assertions. Section 5
presents the proof rules, including both compositional proof rules and structural rules.
Section 6 proves the validity of the axioms, establishes soundness and and observational
completeness of the logic. Section 7 offers examples of reasoning about programs. Sec-
tion 8 gives comparisons with related work and concludes with further topics. Some
auxiliary definitions and proofs are relegated to Appendix.

2 A Programming Language

2.1 Syntax and Reduction

As our target programming language, we use call-by-value PCF with unit, sums and
products, augmented with imperative constructs [12, 31]xLet .. range over an in-
finite set of variables, often callathmes Then typesd,3,...), values ¥,W,...) and
programs A, N,...) are given by the following grammar.

o, = X | Unit | Bool | Nat | a=p | axB | a+p | Ref(a) | pX.a
V,W c | X | MM | ufBAYEM | (VW) | inj®TP(V)

M,N ==V | MN | M:=N | ref(M) | IM

| op(M) | T§(M) | (M,N) | inj{"*P(v)

| if M then Mj else My | case M of {inj;(X").Mi}ic{12}

Above we use the standard notation [12, 31, 43]. The binding is induced in the standard
way. Programs are considered up to the correspormliaguality.

The language is identical with the one used in [3], except for the inclusion of a con-
struct for reference generation. Constart(; . ..) include the uni{), natural numbers
n, booleans (either trutht or falsef), andlocations(l,l’,...). Locations appear only
at run-time.op(M) (whereM is a vector of programs) is a standarary arithmetic or
boolean operation, such as —, x, = (equality of two numbers); (negation) A and
V. We freely use obvious shorthands likeN andlet x= M in N. Type annotations
are often omitted from programs, writing eX.M.

Since all constructs are standard, we leave their illustration to well-known textbooks
[12, 31, 43], except for the focus of the present study. The reference generatioi,),
behaves as:

FirstM of typea is evaluated and becomes a valethen afreshlocal refer-
encel of typeRef(a) with initial contentV is generated.

Then another form of new name generation [24, 86% X := M in N, behaves as
follows:

First, M of type a is evaluated; Then, assuming it terminates and becomes a
valueV, it generates &eshlocal reference of typ&ef(a) with initial content
V; finally N (which may possibly usg) is evaluated.

Note that
newX ;=M in N &' 1et x= ref(M) in N (2.2)
ref(M) & hewx:=M inx (2.2)

In this full version, we shall use both constructs. We formalise this and other behaviour
of programs using the standard (one-step, call-by-value) reduction [12, 31, 43].

A store(a,d’,...) is a finite map from locations to values. We writem (o) for the
domain ofo andfl(o) for locations occurring in both the domain and co-domaiw of

o[l — V] denotes the store which maps localtioto V and otherwise agrees with
for eachl € dom(o). An open configurations a pair of a closed program and a store,
written (M, o). A configurationis an open configuratiofM,g) combined with a set of
locations ofdom(a), written (v1)(M, o) (the order of does not matter). We calvl) in
(vl)(M,0), the latter'sv -binder, and consider locations Iroccur bound in(v1)(M, o).
Configurations are always considered up to the inducedjuality, including that on
programs and stores. We assume the standard bound name convention for configura-
tions. Open configurations are considered as configurations with the empty names in
theirv-binders, i.e. we writéM, o) for (ve)(M, o) with € denoting the empty string.

A reduction relation or oftenreductionfor short, is a binary relation between con-
figurations, written . .

(vi)(M,01) — (vI')(N,02)

The relation is generated by the following rules. First, we have the standard rules for
the call-by-value PCF:

AXM)V — MV/X
m((V1,V2)) — V1
if t then M1 else My, — My
(LFAGNW — NW/g[uf.Ag.N/f]
case inj; (W) of {inj;(%i)-Mi}icf1,2y — M1[W/xq]
The induced reduction becomes that for open configurations (hence for configurations
with empty binder) by stipulating:
M— M
(M,0) — (M’,0)

Then we have the reduction rules for imperative constructs, i.e. assignment, dereference
and new-name generation.

(1, 0) — (o(l), o)
(I:=V, 0) = (0, oll =V])
(ref(V), 0) — (vI)(I, oW[l —V])
(newx:=V in N,0) — (VI)(N[I/X],oW[l — V]) (I fresh

Finally we close— under evaluation contexts amdbinders.
(VI1)(M,0) — (vip) (M, ")
(Vi) (E[M], 0) — (vlI2)(ZM'],0")

wherel are disjoint from bott; andiy, [-] is the left-to-right evaluation context (with
eager evaluation), inductively given by:

£ = (2 M) | VE]) | VELD T (ERLY) | m(E]) | ingi (2]
| p(V,Z[I,M) | if Z[-] then M else N | case Z[-]| of {inj;(%)-Mi}ic(1.2)
| YEL] [E] =M | Vi=E[] | ref(E[]) | newx:=E[-]in M

Some notations:

vl_) (M,0) | stands fofM, o) —* (vi')(V,d"), for somel’, V ando’.
— (vi)(M,0) 4 iff (vi)(M,0) —" for each natural number, that is iff (vi)(M, o) ||
does not hold.

—If (v i)(M,o) andl; does not appear iM andl; € dom(o), then we writeM as

(v(M,0).

Example 2.1 (reduction, 1) Let us follow the reduction dficShared. We set:

— Incshared’ = bi=laly:= (1a)();2 == (1b)(); (!11) + (!I2),
— IncShared” d—Qfl ()0 l2:= (b)(); (Y1) + (!12), and
— IncShared” = def = (!b)(); (1) + (M2).
Further we sewV d_Ef)\().I =!I + 1;1l. Omitting irrelevant values in a store, the re-

duction of IncShared follows (we recallM;N stands for(A().N)M which reduces
as(A().N)() — N: for legibility this reduction is not counted below).

(IncShared, 0)

— (vl)(a:=W; IncShared’, {l+—0, a,b,I1,lp—...})
IncShared’, {x+— 0, a—W, b,l1,l2+—...})
b:=W,;IncShared”, {l+—0, a—W, b,l3,lz+—...})
IncShared”, {I —0, ab—W, Iy, l2+—...})

71 = 1;IncShared”, {l— 1, ab—W, Iy, lz+—...})
IncShared”, {I—~1 ab—W, |1 —1 la—...})
l2:=2;(l1)+ (1), {I—1, ab—W,l1—1 l—...})
M)+ (2), {I—1 ab—-W,l1—1 I~ 2})

— (vl
(
(
(
(
(
(
vhH@3, {I—1 ab—W, l1—1 l,—2})

A~ N N /N N/~ /S

< < < < < < <

Observd is shared throughout the reduction.

Example 2.2 (reduction, 2) The following example indicates the expressive power of
new reference generation. We first introduce the following notation:

cons(X,Y) % hewh:=Xinnewt = yin (ht)
that iscons(x,l) generates two new referencésandt, with their respective contemt
(say a natural number) arydwhich is either another pair or a terminator, the latter we
write nil), and constructs a pair of these two fresh references. Since both components are
references, we can modify their content: So, in a somewhat analyticakeryx, y)
represents a mutable cons cell, as found in Lisp. We can further set

def def

car(1) = 1(1) cdr(1l) =

Note types match. The following program is similar to the one treated by Burstall [6].

(1)

L £ x:=cons(0,nil) ; y:=cons(2,1X) ; car(!x) :=1

We can then check, assumirgndy are not aliased:

(L Ux/X][y/y] {loly=--3)
—* (vhil)(car(llx) := 1, {h—0, K2, I+ (N nil), I'— (W,1), Ix—1, ly—1"})
—* (vhinl)(h:=1, {h—0, =2, 1~ (b nil), I'— H,1), k=1, ly—1'})
— (vhIND)((), {h—1, =2, 1= (W, nil), I'— (H,1), Ix—1, ly—1"})

Analytical as it is, the final configuration precisely indicates the situation whenely

store two cells so that the tail of the pair stored/icoincides with the pair stored i

as expected. This demonstrates (well-known) representability of procedural idioms in
imperative higher-order functions.

Fig. 1 Typing Rules

[Var] m [Constan}tm

MAF- M172:Nat r; A}—Mlz Nat
Add =AMy M, s Nat (B9 P My =M, : Bool

(] MAFM:Bool T;AFN 0 (i=12)
[AF if M then Nj else No @ a

O,xakFM:B MAFM:a=pB IN;AFN:a
AbY S M ap APP I AFMN:P

Re C}FXG:>B AN M:a=p
AR WEPAY M a=B

I AFM:Ref(a) . o TAEM:Ref(a) M AEN:a
[Derel] = rriv-a = [(ASSIO =AM = N Unit

OFM:a a=f
OFM:B

[Iso)

AFV:a MAFM:o T;AX:Ref(a) EN:B
Rel = A ret V) Refla) N AT newx =M inN:B

(Inj] MAFM: q; [Casé MNAFM:a1+ds rAx, ai EN;: B
I AF inj;(M) og+03 I AF case M of {inj;(X"").Ni}icq1.2) 1 B

MAFM; 0 (i=1,2) MAFM:0g x0o

[Pair] FAF <M17M2> 01 X0z [Proj] MAFT(M) a; (i=1,2)

2.2 Typing

A basisl";A is a pair of finite maps, one from variables to non-reference types,(
calledenvironment bas)sand the other from variables or labels to reference tyfies (

calledreference basjs®, @', ... combine two kinds of bases. The sequent for the typing
is of the form:
MAEM:a
which readsM has typea underl"; A. We often omitl™ or A if it is empty. We also use
the typing sequent of the form:
OFM:a

where® mixes these two kinds of maps, from which the original sequent can be imme-
diately recovered (and vice versa). This latter form is convenient when, for example, a
typing rule treats a variable regardless of its being a reference type or a non-reference
type. The typing rules are standard [31], which we list in Figure 1 for reference (from
first-order operations we only list two basic ones). We take the equi-isomorphic ap-
proach [31] for recursive types. In the first rule of Figurec4,indicates a constant

has a base type.

Notation 2.3 We often writeM" 2% for M such thal";A+ M : a.
Definition 2.4 A program M ‘4 is closedif dom(I") = 0.
One of the basic properties of typed formalisms is subject reduction. To state it, we need
to type configurations. First we type a store by the following rule:
vl € dom(a).((o(l) =V AA(l) =Ref(a)) DAFV:a)
Ao

That is, a stor@ is typed undef when, for each in its domaino(l) is a closed value
of typea underA, assuming(I) = Ref(a). Note this means i\ - o andV is stored
(is in the co-domain ofy, then any locations iN are already irlom(A).

We then type a configuration by the following rule:

Al:d-M:a A-l:dro
AF (vi)(M,0)

The following is standard [12, 31].
Proposition 2.5 (subject reductionpupposéd ;Ao - M : o and A+ (v r)(M,0). Then
if we have a reductiofv i) (M, o) — (vi’)(M’,d’). then we have (1A + (vi’)(M’,d")
and (2)A" = M’ : a for somed’ D Ag.

Convention 2.6 Henceforth we only consider well-typed programs and configurations.

Write C[],E AAGO‘ for a typed context which expects a program typeshderl; A to
fill its hole and produces a program typetiunderl™”; &' A typed context ilosingif
the resulting program is closed. We now define the standard contextual congruence on
programs as follows.

Definition 2.7 (observational congruence) LEtA = My 2 : a. Then we writel ;A
(vll)(Ml,ol) (vlz)(Mz,cz) often S|mply(vll)(M1,01) (V|2)(|\/|2,O'2) leaving type
information implicit, if, for each typed conteg -]‘r{”A'fq, the following condition holds:

(viD)(CMa], o) § = (v2)(CM2), 02) &
We also writel'; A = My = Mg, or simplyM; = M leaving type information implicit,
if, i=0,=0(=12).

3 Assertions for Local State

3.1 A Logical Language

The logical language we shall use is that of standard first-order logic with equality [23,
§ 2.8], extended with assertions for stateful evaluation [18, 19] (for imperative higher-
order functions) and quantifications over store content [3] (for aliasing). On this basis
we add a first-order predicate which asserts reachability of a reference name from a
datum. The grammar follows, lettinge {A,V, D>} andQ € {V,3}.

e x=x | ()In|b|l|op@ | (e€) | (e |inf*Pe|te
C :=e=€ | C|CxC' | QxC | QX.C
| {Cleed = x{C'}|[lC | (16)C | e—¢

The first set of expressiong €, . ..) aretermswhile the second sébrmulae(A,B,C,C’ .. .).
Terms include variables, constants (natural numbers, booleans and locations), pair-
ing, projection, injection and standard first-order operatiomdehotes the dereference
(content) of a reference Note thate cannot contain actions with side effects. Using
typed terms is not strictly necessary but contributes to clarity and understandability.

The logical language uses the standard logical connectives and quantification [23].
We include, following [3, 18], quantifications over type variables YX...). We also
use truthT (definable as £ 1) and falsityF (which is—T). x # y stands for~(x =y).

The remaining formulae are those specifically introduced for describing programs’
behaviour. Their use will be illustrated using concrete examples soon: here we infor-
mally outline their central ideas. FirdC} ee€ = x{C'} is calledevaluation formula
introduced in [19], which intuitively says:

If we apply a function e to an argumeritsarting from an initial state satis-
fying C, then it terminates with a resulting value (name it xX) and a final state
together satisfying C

x binds free occurrences afin C'. Having an explicit name to denote the result in
C’ is crucial; evaluation formulae can be nested arbitrarily, by which we can describe
specifications of arbitrary higher-order functions as assertions. This is a departure from
other logics such as JML which uses specific variatles to denote the result. See
examples of the assertions in [3, 19] and later in this paper.

['e]C and(!e)C are calleduniversal/existential content quantificatiomsspectively,
introduced and studied in [3]. The universal content quantificgtige (with e of a
reference type) says that:

Whatever (well-typed) value we may store in a reference denoted by e, the
assertion C holds.

('e)Cis interpreted dually:

For some possible (well-typed) content of a reference denoted by e, the asser-
tion C holds.

Note that, in both cases, we valuate validity®é@inder a hypothetical content ef not
necessarily its real one. From its meaning, we can see variabdas ifie]C and(!e)C
occur free: in particularx in [!x]C and (IX)C is a free occurrence. In the presence of
aliasing, quantifying over names is not the same thing as quantify over their content,
demanding these quantifiers, enabling hypothetical statement over content of imperative
variables. Their usage for structured reasoning for programs with aliasing, together with
their logical status, is detailed in [3].

Finally, e; — e (which reads: & is reachable frome;”, with e, of a reference type
ande; of an arbitrary type) is calledeachability predicate This predicate is newly
introduced and plays an essential role in the present legie: e, says that:

One can reach (or better: some closed program can reach) the reference re-
ferred to by e solely starting from a datum denoted by e

As an example, ik denotes a starting point of a linked ligts— y says a referencg
occurs in one of the cells reachable fromin assertions, we often use its negation,
writteny#x [9, 35], which says one can never reach a refergrstarting fromx. Later

we make precise its semantics and discuss methods for deriving this relation through
syntactic axioms.

Note thate does not contain abstractions, applications and assignments which in-
volve non-trivial dynamics (possibly infinite reductions) for its simplification. For ex-
ample, pairing, projections and injections do not include such reduction and useful to
represent data-structures.

Convention. Logical connectives are used with standard precedence/association, using
parentheses as necessary to resolve ambigUitigs). (resp.ftv(C)) denotes the set of
free variables (resp. free type variables)dnNote thatx in [!x]C and (!x)C occurs
free, whilexin {C} ee€ = x{C'} occurs bound within its scop&. C; = C;, stands
for (C1 D Cp) A (Cp D Cp). CXindicatesfv(C) N {X} = 0. We write x# for Aix#y;;
similarly X#y stands fomx; #y.

Terms are naturally typed starting from variables. A formula is well-typed if all
occurring terms are well-typetilereafter we assume all terms and formulae we use are
well-typed.Type annotations are often omitted in examples.

3.2 Assertions for Higher-Order Functions and Aliasing

We start from a quick review of the assertion method introduced and studied in [3, 18,
19] which form the basis of the present work.

1. The assertiorx = 6 says thai of type Nat is equal to 6. Assuming has type
Ref(Nat), Ix= 2 means that stores 2.
2. The assertion
vn{T}luen=z{z=2xn} (3.2)

says a program namadwould double the number whenever it is invoked. The
programAx.X+ X namedu satisfies this specification.

10

3. The assertion
vni.{Ix=i}luen=2z{z= ()Alx=i+n} (3.2)

describes a program of typéat = Unit, which, upon receiving a natural number
n, returns() (the unique closed value of typnit) and increments the contentof
by n. The program\y.x :=!x+y, namedu, has this behaviour.

4. As seen above, a program whose return typénis can have only one return value,
(), if any, so that we naturally omit it. Thus we write, abbreviating (3.2) above:

vni.{Ix=i}luen{Ix=i+n} (3.3)
A similar example (assuming multi-ary arguments):

VX, Vi, j {IX=IiAly = jlue (X, y){Ix= jAly=i} 3.4

which is satisfied by the standard swapping function namegiven as follows:
A(X,y).let i =lyin (y:=IX;x:=1).

5. For afuller specification of the swapping function, we may refine the assertion (3.4)
by saying what it does not do, that is it does not touch references except what it has
received as arguments. Such a property is often essential when a program is used
as part of a bigger program. The following notation, caltezhted assertiofid], is
used for this purpose.

X V0, J{IX=1Aly = jlue (X, y){Ix= jAly =i} @xy (3.5)

Above “@X’ indicates that the evaluation touches owjy€aving content of other
references unchanged. The assertion (3.5) in fact stands for the following formula
in our logical language, with = xy standing for # XA r # y andr andh fresh.

v>(7I‘Ref()(>7h>(7)(’y7i7 j'
{Ix=iAly=jAr #xyAlr=h}ue (x,y){!x=jAly=iAlr=h} (3.6)

The assertion says:
For any r of any reference type which is distinct from x and y, its content,
denoted by h, stays invariant after the execution of the swapping function,
that is, onlyx andy are touched (theseandy are calledwrite effectsin this work,
asin [3], we assume write effects do not contain dereferences, which simplifies their
semantics without losing generality). Translation from (3.5) to (3.6) is mechanical,
so that located assertions can be treated just as standard formulae. The ability to
(in)equate and quantify over reference names plays a crucial role in this translation.
6. The located assertion can also be used for refining (3.1):

vn{Tluen=2z{z=2xn} @0 3.7)

asserting that no store is touched by this function,u.bas purely functional be-
haviour. In (3.7), only the input/output relation matters: hence without loss of pre-
cision we can further abbreviate it to:

Yn.uen\,2xn (3.8)

11

7. Consider the assertiofix)!ly =5 which stands for: “for some content gf ly =
5 holds.” Becausey!= 5 is equivalent tox = yAlx = 5) V (X # yAly = 5), and
because!x) cancels any constraint about the contenk gbut not aboutx itself),
we know(!x)!y = 5 is equivalent tox# y D!y = 5. Next considef!x]!ly = 5. It says
that whatevex may store, the number storedyris 5. The assertion is logically
equivalent tox # y A ly = 5. In this way,(!e)C claimsC holds for the content of a
reference qualified i€ if that reference is distinct fromy wheread!e|C claimsC
holdsandany reference whose content is discussed im distinct frome.

8. Using content quantification, we can defingical substitutionwhich is robust in
the presence of aliasing, used for the proof rule for assignment.

Clez/ler) = Sm((le)(C Aler=m) A m=e,).

with mfresh. IntuitivelyC{e>/!e;[} describes the situation where a model satisfy-
ing C is updated at a memory cell referred to &y (of a reference type) with a
valuee, (of its content type), witle; » interpreted in the current model. Combina-
tion of content quantification and predicate for locality in the present logic offers a
tractable tool for modular reasoning, as demonstrated in Section 5.

3.3 Assertions for Local State

Concrete examples of assertions for local state follow.

1. Consider a simple command=y;y := z;w := 1. After its run, we can reach the
referencez by dereferencing, andy by dereferencing. Hencezis reachable from
y, y from x, andz from x. That is the final state satisfies

X—YAYy—z

which also impliex — z, by transitivity.

2. Next, assumingv is newly generated, we may wish to sayis unreachabldrom
X, to ensure the freshnesswf For this we assert

WHX

)

which, as noted, stands fef(x — w). Note thatw#x D w # x. Note also that
X<— X =T andx#x = F, but x < x may not beT andx#!x may not beF.

3. Considerxy :=Vy1;Y1 := 71, X2 := Y2, Y2 := Z. Then we may wish to say that any
content reachable fromy (herexs,yi,21) is unreachable from any content reach-
able fromx, (herexy,Y», 22), so that we can represent a deep separation of the two
resources. To represent this specification, we assefts, which we formally set:

def Ref(X)

e1xe = VYX,y (61— yDy#en)

which is logically equivalent to'X, yRefX) (y#e; vV y#ey). This means anyreach-
able frome; is unreachable frore, and vice verse. That s, all reachable nodes from
e are disjoint with those frore,: we have two mutually disjoint data structures.

12

4. We consider reachability in (higher-order) functions. Assifje(x := 1) is named
fw andA().!x is namedf,. Since f,, can write tox, we havef,, < x. Similarly
fr — X. Next supposeet x=ref(z) in A().x has namd. andz’s type isRef(Nat).
Thenf; — z (for example, consider f.()) := 1). Howeverx is notreachable from
AQ).((AY.())(A()-x)) since it cannot touck in any context.

5. Consider the referenceef (M) % hew x =M in x. It returns a freshly gener-
ated memory cell, initialised to the value pass as an argument. Then the program
An.ref(n) meets

YX.ViX vn{Tluen=2z{z#j* Alz=n}@0

wherej is fresh. This means that it creates a new referemwaeose stored value is
n, and its new name is unreachable from any name (hence fresh). We abbreviate it
as:

vn{T}luen=z{#z!z=n}@0

6. Finally we consider a factorial program which realise a recursion by circular refer-
ences, the idea due to Landin [21] in Introduction. In [19], we have shown we can
derive the following post-condition for the above program (with an initial state, say
T).

def
) =

circfact(x Jg.(Vn.{Ix=g}gen=2z{z=nlAlx=g}@x A Ix=Q)

The assertion says:
After executing the program, x stores a procedure which would calculate a
factorial if x indeed stores that behaviour itself, and that x does store that
behaviour.

In circFact, x occurs free. In the present language, we can furthentédeshown

in safeFact in Introduction. Sinceis now invisible and inaccessible from the out-

side, so that the program as a whole behaves as a pure factorial function, satisfying:

Yn.uen ™\ n! (3.9)

We derive (3.9) as the postconditionsaff eFact from circfact(X) using the axioms
for reachability in Section 7.7.

Further examples of assertions are found later.

3.4 Formulae for Freshness

Below we list three forms of formulae for freshness. First, the following appeared al-
ready:vx saysx is distinct from any names existing in the initial state, giving the most
general (weakest) form of freshness. Beboig of a reference type.

def

{Cleee =z{vx.C'} = VX,i*.{Cleed =2{Ix.(x#iAC)}

Note thatz andx are distinct variables by the binding condition. We can equivalently
useRef(X) instead of X (the meaning does not change since a reference name cannot
be equated with a variable of non-reference type).

13

Next we demand # instead of simple inequality. Beloagain should be typed with
a reference type.

{Cleed =2{#2C'} ¥ vX,iX {Cleed =z{z#i AC}

Notezis bound in the whole formula because it occurs as the result name in the evalu-
ation formula. In contrast, 2C' doesiotinduce binding org, as can be seen from the
encoding. It is notable thdiC}ee & =2z{#x.C'} (with x andz distinct) is never valid
sincei can then denotg. Thus the binding oz induced by the evaluation formula is
essential for its consistency, analogous to the existential binding in the first freshness
formula.

Finally the strongest disjointness property usdselowz maynotbe of a reference

type.
{Cleed =z{xzC'} L' vX,iX.{Cleed =2{zxiAC'} (3.10)
The formula says the invocation efwith argumen# results in a chunk of connected
data structure which as a whole is fully disjoint from what existed in the initial state.
The last two forms of freshness formulae have variations, where we combitie
v. While we may not use them in the subsequent technical development nor in exam-
ples, they sometimes become useful in reasoningx betow be of a reference type.
def

{Cleed =2z{vixC'} vX,i%*.{Cleed =7{Ix.(x#i A C')} (3.11)
which says the evaluation efe € leads to a creation of a referencehich is unreach-
able from anything extant in the initial state. Similarly, and this tixref an arbitrary

type:

{Cleed=z{vxxC} ¥

vX,i%X {Cleed =2z{Ix.(xxi A C')} (3.12)
which says that the evaluation e € leads to a creation of a chunk of data structure
reachable fronx which is disjoint from anything extant in the initial state. In these
variants tooj can be typedef(X) instead of X with the same effect.

We may further extend these notations to a set of references, e.g. we may write, with

SE{WEW)},

def

{C}ee € =2{#SC'} vX,i%*.{Cleed =z{vw.(E(W) Dw#i) A C'} (3.13)

14

4 Models

This section introduces models for the logic and defines the semantics (satisfaction
relation) of assertions. The class of models we introduce is based on, and extends,
those for our preceding program logics for higher-order behaviour[3, 17-19]. For clear
presentation, we take three steps to introduce them.

Step 1: We first buildopen modelswhich capture imperative higher-order functions
[19] and aliasing [3]. Open models directly come from [3].

Step 2: We incorporate locality to open models usifig” binders, which hide refer-
ence names.

Step 3: Resulting models are made semantically precise through a quotient construc-
tion, on the basis of which we introduce basic operators for interpretation.

Following [3, 17-19], we use programs themselves to build models, though other op-
tions are possible. The highlight of the section is interpretation of equality which pre-
cisely captures the observational meaning of assertions for behaviour with local state,
answering to one of the issues raised in Introduction.

4.1 Open Models

We first define open models.

Definition 4.1 (open modelspnopen model of typ® =T"; A, written M2 is a tuple
(€,0) where:

— &, calledenvironmentis a finite map fromlom(©) to closed values such that, for
each xe dom(I"), §(x) is typed a$d(x) underA, i.e. A+ §(X) : O(X).

— 0, calledstore is a finite map from labels to closed values such that for eagh |
dom(0), if A(l) has typeRef(a), thena(l) has typen underA, i.e. A+ o(l) : a.

Example 4.2 (open model) As an example, an assertion:
IX=0 A Vi{lx=i}lue()=Z{Ix=2zAlx=i+1} (4.2)
may be interpreted using the following open model.
{u:AO).(I:=1+1;10)}, {l—0} (4.2)

We can the interpret identifiers, terms and predicates in (4.1) using (4.2).

4.2 Models with Locality

Open models are close to the standard notion of model in that they are maps interpreting
identifiers in assertions. For capturing local state, we have to foresake this map-like
nature of models and incorporating hidden names. We illustrate the key idea using the
Introduction’s (1.1), reproduced below.

Inc £'newx:=01in AQ).(x:=Ix+1; Ix)

15

When we run this program, the initial state may for example be given as the empty
open model: then, after runnirigic, we reach a state where a hidden name stores 0, to
be used by the resulting procedure when invoked. We represent this state of affairs by
adding a binder (as used in configurations for reduction, cf. 82.1) to (4.2), as follows.

VHHu:A).(I:=1+211)3, {I—0}) (4.3)

(4.3) says that there is a behaviour nameahd a reference naméavhich is not aliased
with any other names that this reference stores 0, and that thelnarhelden. Based
on (4.3), we may assert:

IX(IXx=0 A Vidlx=iluei=z{Ix=2zAIx=i+1}) (4.4)
This gives us the following notion of models with hidden names.
Definition 4.3 (models)A modelof typel; A is a structure
(V)& 0)

where(§,0) is an open model of typ; A-A" with dom(A") = {I}. M, M’,... range
over models.

In (vI)(£,0), | act as binders, which gives standargquality on models.

4.3 Abstract Models.
Observationally, models in Definition 4.3 are too concrete, consider:
(VI U=+ 51 =0+ 15 (11 /2)), {1, = 0)) (4.5)

The behaviour located athas the same observable behaviour as that locatednat
(4.3), in spite of its difference in internal structure. Indeed, just as (4.3) originates in
Inc, (4.5) originates in

Inc2 & new X,y:=0in A().(x:=Ix+Ly:=ly+1; (Ix+1y)/2)

which is contextually equivalent ftnc: and if two models originate in the same abstract
behaviour, we wish them to be the same model. For this purpose we use the behavioural
equivalencex.

Definition 4.4 Given modelsf]l/[i'_‘A = (vﬁ)({yi Vi, .Yt Vin},0i) fori = 1,2, we set
CAF My~ M iff (viD)((Vig, ., Vin),01) = (Vi2)((Var, .., Van), 02)

The=s-congruence classes are callatistract models

16

4.4 Operations on Models

The following operations and relations on models are used for defining the satisfac-
tion relation for our assertion language. In the next subsection we shall show they are
invariant unders.

Definition 4.5 (expansion)et M2 &' (vI)(8,0). Assuming”;A+ N : a and u fresh
we set

Mu:N] Z' (vi)(E-u:NE, o).
Note M [u:N] is not necessarily a model, becausg iHay not be a value. To obtain a
model, we write

M[u:N] | (vil)(E-u:V,d)

when (N&, o) | (vi")(V,0’). By determinacy of the reductiofl/’ is uniquely deter-
mined, shouldV [u:N] converge. If not, we writ@/[u: N] 1.

Definition 4.6 (update)Let MM 4 ' (vi)(¢,0) and e and V w.rt. N2 be respectively
typed aRef(a) anda underl'; A

Me—V] £ Wi(E ol — VE)
if (vi)(e€,0) 4 (vi)(I,0).

Notation 4.7 Let M = (vI)(§-u:V,0). Write M /ufor (vI)(§,0).

4.5 Properties of Operations

This subsection shows the operations and relations on models introduced in the previ-
ous subsection are closed with respecttaso that they can directly be considered as
operations/relations on abstract models.

We start from one important notion in the present model, symmetry, coming from a
process-theoretic nature of our models. We first define permutation concretely.

Definition 4.8 (permutation)Let a4 &' (vI)(E-v:V-w:W, 0). Then, for any w e
dom(IM), we set:
() M def (VD (E-viW-w:V, o).

which we call a (binarypermutation ofM at u andw. We extend this to an arbitrary
bijectionp ondom(I"), writing (p) M.
Remark 4.9

1. By definition, given "2, if I (v) = I' (w) then a permutatiot) M has the same

type asM'.

2. As a simple example of a permutationuifv are fresh w.r.t and{u,v} N (fv(e)U
fv(€')) = 0, then we have:

(W (M [u:e][v:€]) € Mu:e]v:e]

We shall have further examples later.

17

3. A permutation in the sense of Definition 4.8 is related with, but different from, a
bijective renaming on a model, which we write e-[uv/vu]. For example, we
have:

(M[uze[v:€))uv/vu Z' arfv:eu:e]

Note (\") M [v:€][u: €] is essentially the same model &6 except they differ in
typing (as a sequence).

Definition 4.10 (symmetry)A permutatiorp on M is asymmetry ort when(p) M =
M.

Any model has the trivial symmetry, identity. To show more examples, we introduce

a semantic presearving encoding from a model to a termaet (VI)({y1: V1,¥2:
Vo, ...;¥n iV}, [l1— W] [Im — Wi]). Then we define:

[M] ® Jetly = ref (W) in let Ip = ref(Ws) in let Iy = ref (W) in (V1,..., Vi)

Obviously we haveM; ~ Mo iff [M;]] = [M2]]. The following shows subtlety of sym-
metries.

Example 4.11 (symmetry)

1. The following two models correspond ImcShared andIncUnShared:
My E (vI)({u: Inc[l/X], v: Inc[l /X}, {I —0})
My E (WIl)({u: Inc]l /X, v:Inc[l’ /X]}, {I — O, 1" — O})

Both 2, and 4 have an obvious symmety)\).
2. If we expand these two models, however, we find one retains a symmetry while
another doesn't.

(o) (Ma[w:u]) ~ Ma[w:u
() (M2 w:u]) 5 Hofw: Ul

To see why the latter is the case, let:

C[] & Ax.(1et y= mu(X)() in let z= Tg(X) in 2)[]

ThenV [Mo[w:u]] —* 1 butV [() Ma[w: u]] —* 2, because of sharing.

Definition 4.12 (witness)Given a partial magf on models of specific types, we say a
program Mwitnessesf if [F M| =%y MM] for each?/ in the domain off .

Remark 4.13 (witness) By having witnesses for these operations, they can be consid-
ered as operations on encodings of concrete models, hence in effect those on abstract
models, by the contextual closure®f Concrete presentation of operations often elu-
cidates the nature of operations: the notion of witness, as well as the subsequent results,
indicates that we can safely work with concrete operations without violating abstract
nature of models, as far as they can be given appropriate witnesses.

18

Lemma 4.14 Letdom(I";©) = {y1,...,Yn} below.
1. Givenl';A-N:aq,
AN (M, (. (\y1.-yn N TR() .. T ()

witnesses the expansion frobf of typel ;A to M [u:N].
2. Givenl;Al-e: Ref(a) and N'*49, the program

M (C((Ay1...yn.€) T (M)..TH(M)) == N;X)

witnesses the updafe\/ [e — N]J of M2,
3. Forisuch thatl <i < n, the program.

AT (g (m), .., 15 1(M), T3, 1(mM), .., Th(M))
witnesses the projectiafi(/y;.
PrRoOF. Immediate from the construction. O
Lemma 4.15 My =~ M impliesM;[u: N] ~ M[u:N].

PROOF: Letu be fresha/* andl; AF N : a. WriteV for the witness of the expansion
in Definition 4.12. We infer:

My~ Mz = [Mi] = [9]
= V][] =V[M]
= Mi[u:N] =~ M[u:N]
where the third step uses Lemma 4.14 (1). O
Lemma 4.16 M3 = M implies My /u = M /u.
PROOF. As in Lemma 4.15, using Lemma 4.14 (3) instead of (1). ad

By successively applying Lemma 4.16, the property extends to arbitrary projections of
models.

Lemma 4.17 M = M implies(vI) My =~ (V) Mo.
PROOF. We prove that i ;A,x: Ref(a) - My = My :Bandl; ARV @ a, then
MAFlet x=ref(V)in My & let Xx=ref(V) in My : 3

3 In the third clause, if = 1 (respi = n) then we take offg_1(m) (resp.T.1) from the sequence
<T[l(m)7 X3 Tﬁ*l(m)7m+1(m)7 7T[n(m)>

19

Choose appropriately typez]-].

Cllet Xx= ref(V) in M1] — (VI)(C[M1[I /X]],1 — V)
< (1:=V;M) |y
< (1:=V;M2) |
< Cllet x= ref(V) in Mp] — (VI)(C[M2[l /X]],1 — V)

as required. Then by definition, we obtain the result. O
Finally we mention basic properties of permutation and symmetries. First, a permuta-
tion has an obvious witness:

Lemma 4.18 (permutation witnessgiven "2 and a bijectionp ondom(T"), the op-
erationp is withessed by the standard isomorphismibpermuting the elements fol-
lowing p.

Corollary 4.19 Givena] i* and a bijectiorp ondom(I"), we haveM; ~ Ms iff (p) My ~
(P) M.

Hence we know:

Proposition 4.20 If M; = M5 and if (p) is a symmetry of\f;, then(p) is also a sym-
metry of Mb.

4.6 Semantics of Assertions

This subsection defines semantics of assertions. The interpretation of terms is straight-
forward, given as follows.

Definition 4.21 Letl;AFe: a, ;AR M andM = (&,0). Then theinterpretation of
e under, denoted]e]l¢ is inductively given by the clauses below.

where the operatong etc. are abused to denote the corresponding ones.

Definition 4.22 (name closure) Letr be a store in some model aSd- dom(o). Then
thelabel closure of S i, writtencl(S, o), is the minimumS such that: (15c S and
(2) If | € S thenfl(a(l)) C S.

Lemma 4.23 For all o, we have:

1. Sccl(So)

20

. S C S implies c[S;,0) C cl($,0)

. cl(S o) =cl(cl(S 0),0)

. cl(S,0)Ucl(S,0) =cl(STUS,0)

S C cl(S,0)and $ C cl(S3,0), then § C cl(Ss,0)

. there exist®’ C o such that d|S g) = fl(¢’) = dom(0’).

OUlAWN

We are now ready to define semantics of assertions. To treat type variables, we
augment a modeM with a map from type variables to closed types. In the following,
all omitted cases are by de Morgan duality.

- MEe=eif Mu:e|~Mu:e].

- M’ZC]_/\CZ if M'ZC]_ andM):Cz.

- M = -Cifnot M |=C.

— M E=vxX2.Cifforall V, M'[x:V] =C; or for each(vI) M’ ~ M with | typed by
a, M'[x:1] =C.

— M = VvX.Cif for all closed typea, M -X:a |=C.

- M = ['elCifforall V, M[e— V] =C.

— M = {Clee e =x{C'} if, wheneverM[u:N] | Mo and My |= C with u fresh, we
havedp(x:e€] || M’ =C'.

- M = e — e ifforeach(vl)(§,0) = M, [e2]s 5 € cl(fl([e1]s), 0)

The reachability clause says the set of hereditarily reachable namesfrimciudes
& up to=. We can check, witHy, f, and fc denotingh().x:= 1, A().!xandlet x =
ref(z) in A().X respectively as in § 3.3 (4), we ha¥g — x, f; — xandf. — z

The following characterisation of # is often useful for justifying axioms for fresh
names.

Proposition 4.24 (partition) M = x#u if and only if M ~ (vI)(E-u:V -x:1, 01w 05)
such that dlfl(V),01 W 02) = fl(01) = dom(o1) and | € dom(02).

PROOF Let 0 = 01 W02. Notedom(o1) Ndom(az) = 0. For the only-if direction, we
notel ¢ cl(fl(V),o) by definition of reachability. Sincke dom(o2), there existssy
such that ¢ dom(a1) andcl(fl(V),o) = cl(fl(V),01) = fl(01) = dom(01), hence done.
The if-direction is obvious by definition of reachability. O

The characterisation says thakifs unreachable from then, up to, the store can be
partitioned into one covering all reachable names ftommd another containing

Remark 4.25 (equality with locality) The clause for the satisfaction of the equality
e; = e given above, doasotuse equality/equivalence of interpreted terms as elements
of some set. In spite of this, Section 6 will show the induced relation satisfies all stan-
dard axioms for equality. We shall also show, in this section, that it captures intuitive
meaning of equality on behaviour with locality. Here we illustrate how the given clause
precisely captures the subtlety of equality of behaviours with shared local state, using
simple examples. The defining clause for equality validate:

u A).(1 =1+ 110,
(V')(v:)\().a 1), mo) Eu=v

21

On the other hand, it also says:

. A=+ 150, '
i)<$:A(()).((l’::I!|7L+11|;!)I’), o Ho> S

Call the first modelM; and the secon@/f; (M1 and M, are the same models as treated
in Remark 4.11, page 18). We observe:

— In M3, u andv share state, while ifdf; they don't, reminiscent ofncShared and
IncUnShared in Introduction.

— Intuitively, sayingu andv are equal ifM; makes sense because runninglways
has the same effect as runnimgso behaviourally any description afshould be
replaceable with those efand vice versa.

— But, in M5, runningu andv once each is quite different from running oniywice:
u andv are far from being mutually substitutive.

More concretely, both fofi; and >, we can obviously soundly assert:
Ix.(Ix=0 A inc(u,x) A inc(u,x)) (4.6)

whereinc(u, x) d:eri.{!x =itue() =z{Ix=zAIx =1+ 1} @x. In M, since we have
u=v, we can apply the law of equality to (4.6), obtaining:

IX.(IX=0 A inc(u,x) A inc(V,X)) (4.7)

which indicates that, if we invoke u and then invoke v, the latter retRmagher than
1. Since this is obviously not the case, it is wrong to sayu = v in Mp, justifying
Mo |= u £ v. Note that, in spite of this)f, satisfies

IX.(IXx=0 A inc(u,x)) A IX.(IXx=0 A inc(V,X)) (4.8)

which indicates, if compared independentigndv show precisely the same observable
behaviour, witnessing the contextual congruence of the behaviaarat the behaviour
atv.

Now supposé = u=v. By definition this meang/[w:u] ~ Mz[w:V]. Since(j,")
is obviously a symmetry abs[w: u], by Proposition 4.20, it should also be a symmetry
of Mz[w:V]. But we have already seen it is not so in Example 4.11 (2) (page 18), a
contradiction. Thus it cannot be the ca&@ = u =, that is we havel, = u# v, as
required.

Formal properties of the satisfaction relation (such as satisfiability of standard axioms)
will be studied in Section 6.

22

5 Judgement and Proof Rules

5.1 Judgement and its Semantics

This section introduces judgements and basic proof rules. A judgement consists of a
program and a pair of formulae following Hoare [14], augmented with a fresh name
calledanchor[17-19].

{Cymm&a . (C'}.

which intuitively says:

If we evaluate M in the initial state satisfying C, then it terminates with a value,
name it u, and a final state, which together satisfy C.

Note the judgement is about total correctn&Sgquents have identical shape as those in

[3, 19]: the described computational situations is however quite different, wher€both
andC’ may describe behaviours and data structures with local state. The same sequent
is used for both validity and provability. If we wish to be specific, we prefix it with
eithert- (for provability) or = (for validity). In {C} M40 - {C'}:

1. uis theanchorof the judgement, which shoultbt be indom(I',A) Ufv(C); and
2. Cis thepre-conditionandC’ is thepost-condition

An anchor is used for naming the value frdthand for specifying its behaviour. As in
Hoare logic, the distinction between primary and auxiliary names plays an important
role in both semantics and derivations.

Definition 5.1 (primary/auxiliary namedhn {C} M"4@ ;, {C'}, theprimary namesire
dom(I",A) U {u}, while theauxiliary namesre those free names in C and@hich are
not primary.

Convention 5.2 Henceforth we assume judgements are always well-typed (including
those in the conclusions of proof rules), in the sense thdCiM™4:%:, {C'}, T, A, O

C and ua,l,A,©F C, for some® such thatdom(©) N (dom([,A)U{u}) =0. In

spite of this, we often omit type information from a program in a judgement, writing
{C} M4 ;. 1C’} (under monomorphic typing, this in fact does not lose precision).

We now make precise the semantics of judgement.

Definition 5.3 (semantics of judgement) L&l def (vX)(&,0) be of typel';A; D, and
;A N :a with ufresh. The validity= {C}M :, {C'} is given by:

Q.
=+

e

E{CIM: {CY £ var (M =C = Mu:M] M’ EC)

(note free names stay Above we demand, for well-definednesshatcludes all
variables inM, C andC’ exceptu.

4 Total correctness was chosen following [3, 18, 19]. The proof rules for partial correctness are
essentially identical except for recursion.

23

Notation 5.4 (judgement for freshness) We use the following abbreviation for judge-
ments similar to those with evaluation formulae in § 3.3. Belowy ket fresh.

— {C}M{C'} stands fo{C} M :, {u= () AC'}.

— {CIM ;, {C'} @& stands fo{C Ay #8Aly=i}M :y {C'Aly=i} with y fresh (to be
precisey andi are respectively typed &&f(X) and X for a fresh X).

— {C} M i {vx.C'} stands fo{C} M :, {3x.(x #i AC') } (to be preciseiis typed as
X for a fresh X, similarly in the following).

— {C} M, {#m.C'} stands fo{C} M :, {m#i AC'}.

— {C} My {xm.C’} stands fo{C} M :, {mxi AC'}.

We may also combine these forms ag@} M :, {vx.C'} @y and{C} M :n, {v#x.C'}@y.

5.2 Proof Rules (1): Basic Proof System

The proof rules in a compositional program logic are given as a proof system which
builds assertions following the syntactic structure of programs. Since we are work-
ing with a typed programming language, the proof rules precisely follow the typing
rules presented in Section 2.2. The proof system is augmentedstaittiural rules
which only manipulate formulae without changing the program itself. These structural
rules often play a fundamental role in deriving/validating required specifications for
programs. In contrast, the proof rules which follow the syntactic structure of programs
may be called compositional proof rules. Figure 2 presensts the full compositional proof
rules in the present logic. There is one rule for each typing rule. Some of the major
structural rules are presented in Figure 3.

For each rule, we stipulate:

— Freei, j,... range over auxiliary names; no primary names in the premise(s) occur
as auxiliary names in the conclusion (this may be considered as a variant of the
bound name convention).

— A A ,B,B,... range ovestateless formulge.e. those formulae which do not con-
tain active dereferences (a dereferenees lactiveif it does not occur in pre/post
conditions of evaluation formulae nor under the scope of content quantification of
le). We also exclude#y and—A from stateless formulae (they implicitly contain
dereference: see Section 6.2).

In the following, we focus two new aspects of the presented proof rules: the proof rule
for new reference generation, and the proof rule for universal quantification and the
consequence rule with evaluation formula in Figure 3.

Proof Rule for New Reference Generation.The compositional rules in Figure 2 stay
identical with those in the base logic [3] except for adding the rule for new name genera-
tion, in spite of the significant semantic enrichmeRte{ says that the newly generated
cell is unreachable from any datum in the initial state, and stores Mtataluates to

in the reference named hy.

24

Fig. 2 Compositional Rules

Varl st xa ey (CoSt et e 1T

Add {CHMzm {Co} {Co}Mp i, {C'[my +my/ul }
{CYM1+M; 3 {C}
CAAM}M i {C’
[Abg {A})\xll\/iL u {in%C}u-i :} m{C'}}

apg LCIMim (Co}{Co} Nin (Cu A {Cu} men = u(C'})
[CTMN {C'}

if 1€ Mb {Cob {Colt/bl} M -y {C} {Colf/bl} Mz {C'}
{C} if M then M; else M 3y {C'}

[Pair] {C} Ml my {CO} {CO} MZ ‘mp {C/[<ml7m2>/u]}
{C} (M1,My) :y {C}
{C}M :m {C'[ru(m)/u}
{C}u(M) . {C"}
{C} My {C'[injy (v)/u]}
{C} inj;(M) 1 {C"}
{C2} M im {CF9?} {Colingi(x)/m]} Mi w {C7°} i€ {1,2}
[Cast {CJ case M of {inj; (x) Mi}icq1z) u (C'}
o S
2 {C}M:m{Co} {Co} N:n {C'{n/!m}}
[Assign [CIM =N {C}
XAV] < iB)X/UYAYM 1y {B()™}
{A} pxAy.M : {Vi.B(i)}

{C}M:m{C}
Rl T rez(M) o {#uCTU/M]

[Proj,]

(Ing]

Reg A

Variants for New Name Generation. In the side condition ofNlew], fpn(e) denotes
the set offree plain nameof e which are reference names @nthat occur without

being dereferenced. Formalfyn(e) is inductively defined agpn(x) d:‘Ef{x}, fpn(c) =
fpn(le) %70, for other constructs it acts homomorphicafiya (€) is short forUifpn(e),

x#€& for Aj x#g. This new name generation rule reads, in direct correspondence with
the reduction of the “new” construct (cf. §2.1):

Assume(1) starting from C, the evaluation of M reacheg, @ith the resulting
value named m; an?) starting from @ with m as content of x ¢Jx/m])
together with the assumption x is unreachable from any existing dat&d),(x

the evaluation of N reaches C with the resulting value named u. Then starting
from C,new x:= M in N with its result named u reaches.C

25

Fig. 3 Structural rules

G {GoiMw{Cy} CpoC
{CIMw{C}

{C}V {C}

[Promoté [CACOHV w {C ACo] [Consequenn}é:

{CAAWV y {C'}
{ClV: {ADC}

CiiM iy {C CoIM iy {C CIM ;y {C CIM 3y {C
o Ol (GIAIC) o OB I0)

{CM :, {A>C

el (CAAIM 1 {C}

[>-A]

{CY M1, {C'} iis ofabase type
[CIM 0 (iC'}

{CIM . {C' T}
{3iCIM {C}

[Aux;] [Aux]

{CH%)IM 1w {C'(i%)} o atomic Ve {C(c)IM 1y {C/(c)}
[AUant] {C(Ca)}M u {C/(Ca)} [AU)%(bS& {C(IG)}M u {C/(IU)}

A . /
[StatelessIrv €} MF'A'a ‘m {C/}
(CAAIMTBT . (T AA}

{Co} M7 1 {Chy C > If.(Colf/il A [18(CHI/1>C))
[Consequence-AL,i\ {CIM (C}

{Co} M :m{Cy} xfresh; T auxiliary
Vi {Co}xe () =m{Ch} > ¥i-{C}xe () =m{C'}
{C}M:m{C}

In [Consequence-f\y)we let & (resp.i) exhaust active dereferences (resp. auxiliary names) in
C,C’,Co,Cp, while j are fresh and of the same lengthias

[ConsEval

Fig. 4 Variants of Ref and Other Related Rules.

Nevy {CHMim {Co}_{Collx/m] Ax#8) Ny {C') x¢ fon(@
{C}newx :=M inN:, {vxC'}

i
{C}M:y{C'} u¢fpn(e)
[Sub$ = CTe/i M (C e/}

{C} M {v.Co} {Co} N:u {C)
[LetOped e et x= M in Ny (v.C'}

. {C}M :m {C fpn(€
[Ref] EC}} ref(li{ll) :};, {g%\ E#(ée})

26

Some remarks:

— The side conditiorx ¢ fpn(&) is essential for the consistency of the rule: as an
extreme cases#x is obviously false, similarly#(x,x) (cf. § 3.3). Howevex#!x
is not falsity, and in factshouldhold in the pre-condition foN: immediately after
a new reference is generated, it cannot be stored anywhere.

— The intermediate condition#é&, gives a much stronger notion of freshness in com-
parison with the postcondition in the conclusion,C’, i.e.3x.(C' Ax #) for fresh
i. This is because, during the runNf x may have been stored somewhere: so all
that we can say i% is distinct from any reference name in the initial configuration
(C’ may assert stronger freshness conditionsfiepending omMN’s behaviour).

We may also observe that the proof rule has an equipotent variant, listed as the first rule
([NewVal) in Figure 4. NewVat is equi-potent with the original rule when combined
with the consequence rule. Indeed, if we hiNewVat and if we assume the premise
of [New,, we simply addx # i to the pre/post condition of the second judgement by
[Statelesslny then usgConsequenddo existentially abstract, to reach the premise,
hence the conclusion, dNewvat. Conversely, if we havéNew and if we assume
the premise ofNewVat, since the premise directly fits as a premise [fdew], we
obtain{C} new X :=M in N :; {vx.C'}: butvx.C’' = C’ sincex does not occur free
in C'. In inference [New is more convenient when we derive the conclusion from the
premise (forward reasonind): whereas[NewVar follows the conventional style of
compositional proof rules, starting from the conclusion to find the premizecKivard
reasoning). Note also[NewVaj is essentially identical with the original proof rule
for new variable declaration by Hoare and Wirth [13] except adding the condition for
unreacability.

In Section 2, we discussed interplay between freshness and locality. In particular,
we asked howref (M), combined withlet, can commute witthew x := M in N.
This question is best answered by mutual derivations of their proof rules. Below we
show derivation in one direction, derivirflew from the rule forref(M), listed as
the second rule in Figure 4, leaving the other direction to the redglet.days that the
newly generated cell is unreachable from any initially existing datum. We further use
the next two rules in Figure 4Subgis the standard substitution rule (the rule implicitly
assumes, by our convention of typability of judgements, thdtfn(e) wheni occurs
in C: wheni doesnotoccur inC, the side-condition demandsnot to occur infpn(e)).
[LetOpenis a refinement of the standard let rule:

{C}M x {C1} {Ci} N {C}

[Lef {C} let x= M in N:, {C'}

(There is some interest in derivinggtOpen from [Lef], which we shall discuss later.)
Using the encoding in (2.1) and the proof rule above, as well as others, we can derive

27

[New as follows.

1L {C}M:n{Co} (premise)
2. {Co[!x/m| Ax#€E} N :y {C'} with x¢ fpn(€) (premise)
3. {C} ref (M) i {#x.Co[!x/m[} (1,Ref)
4. {C} ref (M) :x {#x.(Co[!x/m]| AX#8&)} (Subsn-times)

5. {C} ref(M) ix {vy.(Co[!X/m Ax#EAX=Y)} (Consequence)

6. {Co[!x/m Ax#EAX=Y} Ny {C'Ax=Yy} (2,Invariance)
7.{C} let x=ref(M) in N:y {vy.(C'Ax=y)} (5,6,LetOpen)

8. {C} let x= ref(M) in N :, {vx.C'} (Consequence)

As may be observed, the crucial step in the above derivation is Line 5, ok
freshness into locality through the standard law of equality and existential

C = 3II(CAx=Yy)

with y fresh. This also indicates that allowirgbound name (heng to be equated with
even free names (hexg as in the post-condition of Line 5 is inevitable if we wish to
have locality (new) and freshness (ref) interact consistently. This may also offer a case
for the use of existential quantifier in the present setting.

We also record a variant of th&e] as the last rule in Figure 4, suggested in the
derivation above. Note the rule is close to the premiséefj and [NewVai.

The proof rule LetOpefused above, which opens the scopg ahd which is often
useful, is derivable fromLefl and a couple of structural rules, includinggnsequende
We list below its derivation which elucidates how smoothly the representation of fresh-
ness in the present logic integrates with compositional logic for sequential languages.
The derivation follows (the premises are thoselddtPper; for simplicity we treat a
single name -binder, whose generalisation is obvious; and we assugteesh).

L{C}M:n{3y.(y#i A Co)} (premise)
2. {Co} Ny {C'} (premise)
3 {y£i ACo} Ny {y#i A C'} (2, Invariance)
4. {y#i NCo} Ny {Iy.(y£i A C)} (3, Consequence)
5 {3y.(y#i A Co)} Niy {Iy.(y#i A C)} (4, Aux)
6. {C} let x= M in N:, {vy.C'} (1,5, Let)

Observe howy # i slides from the post-condition of a first judgement to later ones.
Similar scope opening rules are derivable from other rules with non-trivial premises.

Let us list a small example from the Introduction, (1.3), a program which always
returns 100 because of a freshness of local reference, reproduced below.

M L hew y:=1in if X=Ythen Oelse 100 (5.1)

28

The desired judgement {5 }M :r,, {m= 100}. For deriving this judgement, we use:
{C}M :n{vxC'} x¢fn(C)
{C}M:m{C'}
The derivation follows, omitting trivial reasoning.
L{T}1:m{T}
2. {x#y} if x=ythen Oelse 100 y {u= 100}

[Erasq

3. {y#x} if x=y then O else 100 y {u= 100} (2, Consequence)

4. {T}newy:=1inif x=ythenOelse 100y {vxu=100} (1,3,New)

5 {T}newy:=1inif X=ythen Oelse 100 y {u= 100} (4, Erase)
Above Line 2 uses the entailment

yH#X D X#Y

which is immediate fromx =y D x — y. Final lines could also have useNdwVat
instead of New.

Proof Rule for Universal Abstraction. The structural rules in Figure 3 stay identical
with those in the preceding logic [3] except for a slight changgin,]. Without this
side condition, the rule is not sound. As a simple examplef] immediately gives us:

{T} ref(0):y {u#i} (5.2)
from which we canotconclude
{T} ref(0):y {Vi.(u#i)} (5.3)

since if so we can substitutefor i by the standard law of universal quantification,
reaching an inconsistent judgemét} ref(0) :y {F}.

Let us further clarify the semantic stauts of (5.2) and its difference from (5.3). Se-
mantically, (5.2) says that, for eacl (implicitly assuming typability), we have, by
referring to the definition of expansion (Definition 4.5, page 17) and semantics of judge-
ment (Definition 5.3, page 23):

Mu:ref(0)]J (VDM -u:l, 1 —0) E u#i

with | fresh. Note should be interpreted ifif i.e. itis in the domain of. This means
eitheri is a non-reference in which case# i is immediate, or, ifi is a reference, it
cannot be mapped to the same labeligkence again we hawe+# i. This is how the
inequalityu # i for a freshi can represent freshnesstLof

In contrast, (5.3) says that, again for eadh we have:

M-u:l, 1—0 [Vi.(u#i)

29

from which we can deduce, by the semantics of universal abstraction:
M-ui:l, 1—0}E u#i

which is a straightforward contradiction. This contradiction is caued simply because
i can be coalesced with the quantification in the postcondition is effectiafter the
post-state is obtained, $@an denote anything in the poststate. In (5.2gn only be
interpreted in? outside ofu simply because we knowshould already exist iri/

and becausa is added as a singleton (or unaliased) name in the postcondition, so that
i cannot be equated with This is essentially whyNew] rule is sound, whose formal
proof is given in Section 6.

5.3 Proof Rules (2): Derived Located Rules

We find several rules derivable or admissible in the basic proof system to be of sub-
stantial help in reasoning about programs. The first class of these rules are for located
judgements, listed in Figure 5 and Figure 6. All rules come from [3] except for the new
name generation rule and the universal quantification rule, both corresponding to the
new rules in the basic proof system. Mgw] rule, x should be taken off from the write
effects (by the freshness condition, other write effects are guaranteed to be distinct from
X). In the structural rules for located assertions in Figurérédriance generalises the

rule of the same name in Figure 3, and is used for modular and extensional reasoning
for programs with write effects.

These rules stay as they originally are in [3] in spite of a major change in semantics
of assertions. A central reason for this is that the operators on models used for inter-
preting the present logic discussed in Section 4 work precisely in the same way as the
set-theoretic operators used for interpreting the logic in [3] (and [19]), up to a certain
abstraction level (for this purpose the behavioural aspect of these operators, or more
directly theira-closure, cf. Section 4.5, is essential). Thus the soundness of each proof
rule follows precisely the same reasoning as the one given in the preceding models, the
latter based on set-theoretic operations. Let us see how this is so taking the invariance
rule, [Invariancd, as an example. Recall that we dayis le-freeif [!le]C =C. By its
premise we assume:

= {CIM 3 {C'}@e (5.4)
where for simplicity we consider a single write effect, which is easily extended. By the
le-freeness o€y, we have:

VMo, W.(Mp = Co = Mole— V] = Co). (5.5)
Now supposeM =C A Cp, that is we have (&M = C and (b)M = Cy. By (a) and
(5.4) we know:

Mu:M] | M =C and IW.(M'/u= M[e— W]) (5.6)

The second half in (5.6) is by the write effect. (5.6), (b) and (5.5) indicatée= Co,
Hence we reach{[u:M] | M’ |=C' ACy.

As we have already explored in our previous work [3, 19], programs of specific
shape allow efficient reasoning rules, some of which are listed in Fifuiglore spe-
cific rules for freshness will be introduecd in § 7.

30

Fig. 5 Derived compositional rules for located assertions

Verl exurx e fcr@e (SOt eur e (er@o

(Adq {CHMa im, {C0} @8 {Co} My imy {C'my +mp/u]} @6,
{CIM1+M; 3, {Cr@E1&
Abg {CAAX} M {C} @6
TA] AXM 1y {{Cluex=m(C'} @&} @0

App {CIM 1m {Co} @€ {Co} N :n {C1 A {Ci}men=U{C"} @&} @&
{C} MN: {C'} @¢&1&

1) 1CH M (Col@8_ {Cole/bl) M, (C) @& (o]} Mz (C')06,
{C} if M then M; else M, :, {C'}@&,&
{C} M1:m, {Co}@€1 {Co} M2 m, {C'[(mn,mp)/U]} @&
{C} (M1, M2) 1y {C} @&1&
{C} M :m {C'[ru(m)/u]} @&
{Ct m(M): {C't@¢

iy (G M (Clini (v) /@€
(Ch 1nj; (M) (C') @€

e} M im {C} @81 {Colingi(x)/m} Miu {C7}@& i€ {1,2}
{C} case M of {inji(Xi)-Mi}ie{l,z} 0w {C1 @68

{C} M i {C M/} @6
[Deref) S S 1O @6

{CIM i {Co} @& {Co} N {C'{n/im}}@6 Co > m=¢
(Assign CIM =N [C}@6&¢

New {CIM:m {Co}@G1 {Col'’x/m| Ax#E} N1y {C'}@Gox x¢ fpn (&) Ufv(Gaba)
{C}new x :=M in Ny {vx.C'} @g10>

[Pair]

[Proj,]

[Casé {c

Ref {C} M 1 {C'Y@EX x¢ fpn(&) Ufv(E)
{Cyref(M) {#xC'} @6

6 Axioms, Soundness and Observational Completeness

6.1 Axioms for Reachability

This subsection shows axioms of reachability predicate and its negation. There are three
non-standard logical primitives in the present assertion language.

1. Evaluation formulae (for imperative higher-order functions).
2. Content quantification (for aliasing).
3. Reachability (for local state).

31

Fig. 6 Derivable structural rules for located judgements.

{C}V , {Cl@0

CoCo {Co)M:u{Ch}@ G oC!
[PromOte <& A o} V iy {C'ACo} @0 e

{CIM {Cr@é

[Consequend

[CAA}V 1 {C'}@0
[CIVw{A>C @0

[CIM: {ASC @6
[CAAIM 3, [C1 @6

[A-2]

[5-7]

C1}M 1 {C}@E {C} M1y {Cl@é CIM 1 {C1}@E {C}M 1 {Cr}@€
[v-pre] 1) {cfv}cz}e M{uz{}c}@é{} € rposy i< {é}kﬂ}iue{Cl{/\}Cz}@ei =
{CIM {C @6 A]{C'i}M:u{C’}@e" iis of a base type.
GciMy{Cr@ " {CIM 4 (ViC @6

[Aux]

CIM:y {Cr@€ Gis!&free
{C A Co} My {C'ACo} @6

[Invariance {

{CIM n {C'I@E . {CAlE =i} M {C'AI€ =i}@6€ i fresh
[Weak 1CI M m (C] @66 [Thinning CI M m (C] @6

i M9 {Coy @8 C o 3.(Colj/i] A [M8(Gli/1 2 C))
{CYM {Cr @6

[Consequence-A

In [Consequence-f\yxwe let !é(resp.f) exhaust activg dereferences (resp. auxiliary names) in
C,C’,Co,Cy, while j are fresh and of the same lengthias

The axioms for the first two constructs are respectively treated in [19] and [3], including
their interplay with each other. We list basic axioms of reachability, which are useful
for reasoning examples later.

Lemma 6.1 AssumeM = x#¥i and fv(N) UfI(N) C §i. Then for all N with u fresh,
M[u:N] |} M impliesM’ = x#ul.

Proposition 6.2 (axioms for reachability) The following assertions are valid (we as-
sume appropriate typing).

1. 1) X=X, (2) X—=YyAYy—2Z D X—Z;(3) XHWAW— U D X#u.
2. (1) y#x® with a € {Unit,Nat,Bool}; (2) (X1,X2) =Y = X1 = yVXa—Y;
(3) inji(x) =y = x> y; (4) x— YR 5 xly;
(5) xRef(@ s yAXA£Y DIXesy.
3. () {CAx#fy}fey=2{C'} D {CAx#fy}fey=2{C Axiz};
(2) {CAx# fyW} fey=2{C'}@W D {x# fyWw} f ey=2z{C' A xtizw} @W;
(3) {x#fyWAC} fey=2{C'}@W D {x#tfyWAC} fey=2z{x#fyau A C'} @W.

PROOF. Axiomsin 1 and 2 use Lemma 4.23. Axiom 1-(1) is direct by Lemma 4.23 (1),
while Axiom 1-(2) is by Lemma 4.23 (5). Axiom 1-(3) is proved by a contradiction.

32

Fig. 7 Other derived located proof rules.

Cle/!x} oDx=g N C{€/le} De=g
/X xi=efcj@g ASSONSIMPREITI T e d (Cl@g

[AssignVaf 1cl

o {ChelM1{C}@F {Ch-e} M, {C}@F
[1fSimplg {C} if ethen M; else M, {C'}@§

. .C > {Clee(er.&) = u{C'}@4
[AppSimplé {C} e(ey..en) {C}J}@g

eAx#e} Ny {C'}@dx x¢ fpn(¢) Ufv(g)
{C} newx :=ein N, {vxC'}@F

[NewSimp!}a{C/\!X =

Leq {C1M 5 (C0}@ {Co} N1 (C)@F
{C} let x= M in N :, {C'} @Gy

{G}M{C}@8 {G} N {G}@&

5eq {CEM {Co}@F_{Co} N ('} @]
Cr A 18]G} MiN (G A (18)C1 @66

{C} M;N {C"}@dy

[Seq-ln\}/{

Assume—w — XAW < U but u < x. Then by transitivity, we havev — X, which
contradictsx#w. Axiom 2 (1) is trivial byfv(a(x)) = 0. Axiom 2 (2) is by Lemma 4.23
(4), while Axiom 2 (3) is by definition of the name closure. Axiom 2 (4) is by Lemma
4.23 (6). Axiom 2 (5) is by Lemma 4.23 (2) and (3). The proof of Axiom 3 (1,2) are
subsumed by that of Axiom 3 (2) below. Axiom 3 (2) is proved by Proposition 4.24 and
the definition of the model of the evaluation formula. Suppdsé= {x#fywAC} fey=
z{C'}@w. The definition of the evaluational formula says, witfresh,

VYN, (M [u:N] | Mo A My =xt#tHfywAC D IM' . (Mpz: fy] 4 M'AM' =C)).

We prove suchiM’ always satisfies\t’ |= x#zw. AssumedMp ~ (vI)(E, 00w 0x) with
Ex) =1, &) =W, &(f) = V¢ and§(w) = ly such thatcl(fl(Vs,Vy,lw),00 W 0x) =
fl(ap) = dom(og) andly € dom(ox). By this partition, during evaluation df: fy, ox
is unchanged, i.gVv1)(£-z: fy,0oWox) —— (VI)(E-2: ViV, 00w ax) —— (VI')(E - z:
V;, 05 W 0y). Then obviously there exists; such thato; C o and cl(fl(V, lw), op &
ox) = fl(01) = dom(a1). Hence by Proposition 4.24, we ha%é) = x#wz, completing
the proof. O

3 above says that X is unreachable from a functiofy its argumenty and its write
variablew, then the same is true for its return valuendw. Note thatf = A().x saitsifies
{y=()}fey=z{y= ()} @0 but does no{y = () } fey=2{y = () A x#wz} @D hencex#f
in the precondition is necessary to deri#z in the postcondition. Similarly for#f
andx#y.

33

6.2 Elimination Results

Finite TypesLet us say is finiteif it does not contains an arrow type or a type variable.

We saye — € is finite if e has a finite type. We show, for finite and recursively finite
types, the (non-)reachability predicates can be eliminated from the assertion language,
in the sense that each assertion containing such predicates has an equivalent assertion
which does not use them.

Theorem 6.3 Suppose any reachability predicates in C are finite. Then there exXists C
such that C= C’ and no reachability predicate occurs if.C

As the first step, we define a simple inductive method for defining reachability from a
datum of a finite type.

Definition 6.4 (i-step reachability)Let a be a finite type. Then the i-step reachabil-
ity predicatereach(x®, yRef(B) iNat) (read“a referencey is reachable fronx in at
mosti-steps] is inductively given as follows (below we assume y is tyRedp),

C € {Unit, Bool,Nat}, and omit types when evident).

reach(x?, vy,)_ X =
reach(XC, y, n+1) =
reach(x?1*%2 'y n+1) = \/.reach(i(X), ¥, N) V reach(x, y, n)
) =3

reach(x¥17%2 'y n+1 X.(X =inl(x) A reach(X,y, n)) v
IX.(X =inr(x) A reach(X,y, n)) Vv
reach(X, y, n)

reach(x**f(®_y n+1) = reach(Ix, y, n) V reach(x, y, n)

Remark 6.5 With C being a base typegach(x®, y, 0) = x =y = F (since a reference
y cannot be equal to a datum of a base type).

A key lemma follows.

Proposition 6.6 If a is finite, then the following logical equivalence is valid, i.e. is true
in any model.
x* < y=TJi.reach(xX®, y, i)

PrROOF For the “if” direction, we show, by induction on reach(x?, y, i) D x* < y.
For the base case, we have 0, in which case:

reach(xX®,y, 0) = x=y
= Xy

For induction, let the statement holds umtdVe only show the case of a product. Other
cases are similar.

reach(xX%1%%2 y n+1) = Vjreach(Tg(X), ¥, n) V reach(x, y, n)
= ViTi(X) =y V X—y

34

But if Ty (x) < ythenx < y by the definition of reachability. Similarly whem(x) <y,
hence done.
For the converse, we show the contrapositive, showing:

M = —FJireach(X®, y, i) = ME-X" <y

If we have M |= —3i.reach(X?, v, i) with a finite, then the referencgis not among
references hereditarily reachable frarfif it is, then eitherx = y or y is the content of
a reference reachable froxbecause of the finiteness of so that we can find somie
such thatM = reach(x?, y, i)), hence done. O

Now let us define the predicat€ —’ yRef(®) with o finite, by the axioms given in
Axiom 2 in § 6.1 which we reproduce below.

xunit 7/ yRef(B) =F

xBool yRef(B) =F

xNat 7 yRef(B) =F
xA1x02 </ yRef(B) = Jy 5 (X = (X1, %2) A Vi12% —'Y)
X0tz ! yREB) = 3 (Vg px = inji (X)) A X ="y)
XRef(G) [N yRef(B) =X= y\/!X ' y

The inductive definition is possible due to finiteness. We now show:
Proposition 6.7 If a is finite, then the following logical equivalence is valid.
X/ YReFB) = i reach(x¥, yRefB) i)

PROOF reach(x®, yRef(B) i) 5 x@ —/ yRef(B) is by induction ori. The converse is by
induction ona. Both are mechanical and omitted. a

Corollary 6.8 If a is finite, then the logical equivalence
X yRef(B) = YA yRef(B)
is valid, i.e.— is completely characterised by the axioms4ef given above.

PrRooOF Immediate from Propositions 6.6 and 6.7. O

Recursively TypedhVe say a type isecursively finitewhen it is closed and contains
neither an arrow type nor type quantifiers. Wtenan be recursively finite, we define
reach(x®, yRef(B)_iNat) by precisely the same clauses (taking the iso-recursive approach
[31]). Then we again obtain, by precisely identical arguments:

Proposition 6.9 If a is recursively finite, then the logical equivalence
X% < y=Ti.reach(x®, y, i)

is valid, i.e. is true in any model.

35

Remark 6.10 The literally same argument as for Proposition 6.6 can be used for Propo-
sition 6.9 because, regardlesscobeing finite or recursively finite, ¥® can reacly,
theny is indeed found (possibly hereditarily going through the store) at a place where
the type ofy occurs ina. This property does not generally hold whencontains a
function type, precluding simple operational reasoning based on disjointness.

A convenient axiomatisation ef> and its negation in the presence of recursive finite
types uses coinduction for the obvious reason: for example, ty gapot reachable
from x, we can show the existence of a finite set of pairs includig) which is
closed under one-step reachability and which shows no datum reachablg &foes
not coincide withy. For such assertions, we need a small increment in the grammar of
assertions. First, terms are incremented with finite relations:

e == .. | 0| R

(We may type these expressions with appropriate types.) We also extend the assertion
with:
C == .. | (xyer

For effectively asserting on, and reasoning about, finite relations, we may use simple
axioms for set membership as well as basic operations on sets.

Co-inductive axiomatisation specifies a property of a finite relation, sayifgyf
is related byR, and R satisfies a certain property, then— y. The axiomatisation
focusses on a certain closure property®ofind is given in Figure 8.

Fig. 8 Axioms for (Non-)Reachability (recursive finite casef3 are recursively finite)

o yffB) = 3R((xy) € R A W(R))
whereW(R) is given by the conjunction of:
VX12.2 (P2 e R D Vico(W(2),y) €R
VX12,2 P2 yye R D Vie1237Z.(z=inji(Z) A (Z,y) €R)
X,z (FFX yer o5 z=yv (zy)eR

Symmetrically
B = 3R.((xy)€R A O(R))
whered(R) is given by the conjunction of:

VX12,2 (ZP%2 e R D Aii12(Ti(2),y) € R
VX12,2 (X2) e R D A1237.(z=1inji(Z2) A (Z,y) €R)

X,z (X yer o z£y A (lzy)eR

36

Remark 6.11 (content quantification and reachability) Givéh— e, ore; #ey, if ais

finite or recursively finite, then the axiomatisations discussed above offer a simple way
to calculate content-quantified (un)reachability, such!age} — e>: we simply de-
compose— (or #) into its witness, and check how content quantification interacts with
each (in)equation, using the standard axioms for content quantifiers [8fcdhtains

a function type or a type variable, this method does not work. In some cases, however,
we can indeed reason about such interplay easily. For example, the following logical
equivalence is valid in any model under the assumptionfhatecursively finite and
thatRef(3) does not occur ifs up to the type isomorphism.

(VX VX £xj#x) D (1) o xRfB) = [1xi% s xRefB) = 0, yRefB)) (6.2)
Equivalently, under the same assumption:

(VXX £xj#x) D ((IX)xReFB) g

[IX]XRFB) 2 = 0, xRefB) (5.2)

Note the axioms do not depend anWithout going into a rigorous notion of models

we shall discuss in the next section, the reason why (6.1) and (6.2) hold can be easily
understood. By the assumptioiX.Vj* # x. j #x, any datum is unreachable x@xcept

x itself. Since, by the type @@, we can never reachfrom the content ok, this means
changing the content of cannot influence the reachability (in fact even under hypo-
thetical content ok we can only havé — x =i = x) (indeed we believe the condition

on 3 can be taken away). The proof of the validity of (6.1) and (6.2) can be found in
Appendix.

A usable axiomatisation of- for finite recursive types needs coinduction. For this
purpose we assume a finite relation (whose variables we ®rjte.) and a set mem-
bership predicate(X,y) € R) as part of the logic, with the corresponding axioms (we
do not need such axioms as well-ordering and construction of powerset). Then we set:

X B = 3R ((xy) € R A W(R))
whereW(R) is given by the conjunction of:
(V%2) € R O Vic12(Ti(2),y) € R

(X2 yye ® 537Z.(z=inl(Z) A (Z,)y) €R) V
3Z.(z=inr(Z) A (Z,y) €R)

(N e R dz=y Vv (lzy) e R

where we omit the outermost (type and variable) universal quantification qveaixd
z

Proposition 6.12 If a is recursively finite, then
X yRfB) = G reach(x@, yReFPB) i)

is valid.

37

PROOF. reach(x®, yRef(B) i) 5 x& —/ yRef(B) is by induction oni. For the converse,
simply go through the chain fromto y inside a(ny) witnessing_ for —'. O

Thus we obtain, by Propositions 6.9 and 6.12;

Corollary 6.13 If a is recursively finite, then

Xy yRef(B) = YA yRef(B)

is valid, i.e.< is completely characterised by the axiomsdef given above.

Theorem 6.14 Let C be such that each reachability predicate occurring in C is recur-
sively finite. Then there exists €uch that €= C such that Cdoes not contain any
occurrences of reachability predicates.

6.3 Consistency of Logic

Before establishing soundness of the logic, it is necessary to check the consistency of
the logical constructs in the sense that equality, connectives and quantifications sat-
isfy the standard axioms. For logical connectives, this is direct from the definition. For
equality and quantification, however, this is not immediate, due to the non-standard
definition of their semantics.

First we check the equality indeed satisfies the standard axioms for equality. We
start from the following lemmas.

Lemma 6.15 Let M has a typd; A; D below.

1. (injective renaming) Letw € dom(I"). ThenM = C iff M [uv/vu = Cluv/vu].

2. (permutation) Let w € dom(I"). Then we haveV = C iff () M = Cluv/vul.

3. (exchange) Letw ¢ fv(e,€). Then we havé(|u:e|[v:€] EC iff M|v:€][u:e] =C.

4. (monotonicityM |=C impliesM [u:€] = C. Further if u¢ fv(C) thenM[u:e] =C

impliesM = C.

5. (symmetryYM = e; = e iff for fresh and distinct w: M[u: ej][v: e ~ M]u:
er][v:ey).

. (substitution, 1M [u:X|[v: €] = M[u:x][v:e[u/X]].

7. (substitution, 2/ [u:€)[v:€] ~ M[u:€g[v:€[e/u]].

»

PROOF For (1), both directions are simultaneously established by inducti@) prov-
ing for bothC and its negation. IC is 1 = &, we have, lettingM def (v¥)(E,0),
5% [uv/vu] andg’ *ies:

ME=e=e
= MIx: e~ M[X: e
= (V) (& Xx: [e]lg,0), O) Zia (
= (V) (&' x:[e19] & 0}, O) i
= M[X: e10] =~ Mp[x: &0
= M= (e1=€)d

vH)(E&-x: [ellq), 0)
(V) (E -x:[€20] (g 0), O) (%)

Above () used[&] ¢ o) 4 [€8] & o). Dually for its negation. The rest is easy by
induction. (2) is by precisely the same reasoning. (3) is immediate from (1) and (2). (4)
is similar, for which we again show a base case.

Mi=e=e

& M e~ Mx: e (Def)
< Mx:e][u: g~ M[x:eu: € (Lem.4.15)
< Mu:g[x: e = Mu: €g[x: e] ((3) above)

Dually for the negation. For (5), the “only if” direction:

[U:e] ~Mu:e)] (Def)

[JIV:ie) = Mu: e]v:e] A

Mu:elv:e] = Mu:e[v:e] (Lem.4.15; (3) above)
[u:e

Operationally, the encoding of models simply removes all referencasvtand re-
places them by positional information: hence all relevant difference is induced, if ever,
by behavioural differences betweenande,, which however cannot exist by assump-
tion. The “if” direction is immediate by projection.

(6) and (7) are best argued using concrete models. For (6 Let(v¥)(,o) and
let&(x) =W. We infer:

Mu:x][v: € e (VY (E-u:W-v:eg, o)
L VHEuW-v: (€u/x)E, o)

For (7), letM = (v¥)(§,0) andW = [e]s ; (the standard interpretation efoy & and
o). We then have

Mu:gv:€] ~ (v§)(E-u:W-v: [€]gq, O)
E W) (E-uW-v: [€e/ul]lg o0 0)

The last line is because the interpretation is homomorphic. O

We are now ready to establish the standard axioms for equality.
Lemma 6.16 (axioms for equality)For any modetM and x, y, z and C:

1L MEXx=x, MEXx=yDy=x andM E (x=yAy=2) Dx=2z.
2. M = (C(x,y) AX=Y) D C(X,X).

where Gx,y) and Cx,X) is understood as in [2%2.4] (i.e. C(x,y) indicates C together
with some of the occurrences of x and y, whil&@) is the result of substituting x for
the latter).

39

PROOF For the first clause, reflexivity is becaud€[u: x| ~ M [u: x|, while symmetry
and transitivity are from those ef. For the second clause, we proceed by induction on
C. We show the case whefis e; = . It suffices to proveM =x=yandM C

imply M = C[x/y].

MEx=y= Mu:X|[v:y] = M[u:y|[v:X] (6.3)
= Mu:x|[v:y][w:e] =~ M[u:y][v:X][w:e] (6.4)

Here (6.3) is by Lemma 6.15.5 and (6.4) follows from Lemma 4.15.

Mu:X|[v:y][w:g] =~ Mu:X][v:y][w:e[v/y]] (Lem. 6.15.6)
~ Mu:y[vix][w:elv/y]] (Lem. 4.15, 6.3)

~ Muzylv:x][w: e [vw/xy] (Lem. 6.15.6)

~ MUy [vix] [w:e[xx/xy]] (Lem. 6.15.7)

~ M [w: e [xx/xy]][u:y][v:X] (Lem. 6.15.3)
MEe=g=MuxVy EFe=e (Lem. 6.15.4)

= Mu:x][v:y][w:er] ~ Mu:x][v:y][w:e)]
Thus we get

Mw:er[xx/xyl][u:y][V:X] &= M[u:X][v:y][w:e]
~ Mu:X|[v:y][w:e]
~ Mw:ex[xx/xy]][u:y][v:X]

This allows to conclude to:
M |W: er[xx/Xy]] & M [W: ez[xx/xYy]]

which is equivalent to:
M E C(x,X).

as required. O
Lemma 6.17 (axioms forv) For any modeb/:

1. M = (vx2.C) D Cle/x] for all e of typea.
2. M E (W.(C1 DCy)) D (C1 D WXY.Cy), provided x in G.

PROOF. We only show (1) whem is a value type.
MEV'.CEYNMX:N]EC =VeM[x:eEC

(2) is standard. ad

40

Lemma 6.18 (content quantification) For ang/.

1. M E[IXCOC,
2. M E=[IX(Ix=m>DC) = (IX)(!x=mAC),
3. M = (['X](C1 D Cy)) DC1 D [!X|C2 when[!X|C = C;.

PrROOE For (1)
M = [IXIC implies M [x —!X] = C implies M =C.
For (2)
ME[IX(IX=m>DC) & Mx—m =C
< M[x—m| ECAlIX=m
< M = (IX)(CAIx=m)
Finally, for (3), if IX|C1 = Cy then: M =Ciiff for all V, M [e— V] = Cy. Consequently:
M = [IX](-C1VCo)
=W. Mle— V] ECrorMe— V] ECy)
=M FECLorW. Me— V] =G
=M = —Cy V[IXC
as required. ad
Lemma 6.19 M = (!x)(CAlx = m) iff M[x— [e]ls 5] =C
PROOF. Straightforward and standard. Below let us 3étto be the mode{vi)(&-x:
I-m:V, -]l — W]) (the case ¢ fv(C) is obvious).

M = (Ix)(CAIx=m)

< IM =M[x—V]st. (M ECAM EIx=m)
& (V)(Ex:I-m:V, o]l — V)

& Mx—m EC

as required (note the reasoning is identical with the corresponding proof in [3], or with
the corresponding one in Hoare logic). ad

Notation 6.20 We writeC{ € /!e]} for Im.({!x)(CAle=m) Am= €) with mfresh.

Lemma 6.21 (plain free reference names) Letfpn(e). Then, with u fresh, for all
M:
Mu:ref(M)] | M’ impliesM’ = utte.
ProOFR M’ has shape: N
(iDEY-u:l,07 [l = V])
).

with (vio) (ME, o) | (vio)(V,0). Then one can chedje]e.u) o1y = [€leo £ Cl(l, 0
[l —V])=cl(l,][l —V]). O

Lemma 6.22 Suppose A is stateless afid = A. Then:

1. M[u:M] |} M’ with u fresh impliesM” = A.
2. M~ (V)M AM'[x:1] EA.

PROOF By induction onA. ad

41

6.4 Soundness of Proof Rules
we are ready to prove:
Theorem 6.23+ {C} M :, {C'} implies}= {C} M :y {C'}.
PROOF. We start with par].

M = Clx/u] implies M u:x] E=C.
Similarly [Consi is reasoned:

M E Clc/u] impliesM[u:c] =C.

Next, [Inj4] is reasoned:

MEC = MMM M = Clinjy(m)/u]
= MMM M'st. M'[u:inj;(m)] =C'.
= M[m:M][u:inj,(m)] =C.
~ Muing,(M)] =C.

For [Proj] we reason as follows.
MEC = MmM]| M E=C[m(m)/u,ie Mu:mm)pEC
For [Caség, we reason:

MEC = MMM 3= Co, if M= (vi)(E 0)and(vi)(ME o) | (vI7)(inj;(x)E, o)
= Mo[m:inj;(%)] = CoAm=inj;(x)
= Mo[m:inj;(x)][u:Mq] § M’ =C'
= Mlu:case M of {inj;(%).Mi}ici12y] § M'/m|=C'

Now we reason for4bg. We assume, i have functional types.

M = AD M[u:Ax.M] |= ¥xi.{Cluex=m{C'}

= M = AD Mu:AxM][x:V][[:W] = {Cluex=m{C'}

= M = AD (M[u:AxM][x:V][[:W][k:N] 4 Mo A Mo = C)
D (Mo[m:ux| |} MyA Mg =C')

= (M = AA MU AxM][x:V][[:W][k:N] |} Mo A M |=C)
> (Mo[m:ux I M5 A MG =C)

= (M = AAM[UAXM][x:V][I:W][K:N] |} Mo A Mo = AAC) (Lemma 6.22 (1))
> (Mo[m:ux I MG A MG =C)

C Mo = ANC D (Mo[m:M] |} MGA MG E=C')

If x has a reference type, we use Lemma 6.22 (2) instead of (1). Then reasoning is

identical.

42

[App is reasoned as follows.

MEC = MMM M Co
M[n:N] |} My =CiA{Ci}men=n{C’'}
M[m:M][n:N][u:men] || M’ =C;
M[u:MN] |} M’ /mn=C’

P

For [Deref], we infer:

MEC = MmM]|M E=C['m/y
= MmiM] | M"/mEC
For [Assigr} we reason as follows, assumingo be fresh.
MEC = MMM Mk Co,M[n:N] |} M =C'{n/!m]

= M[m—n M E=C
= Mu:M:=N]| M /mnu:()] =C

For [Red, we establish the result for a variant:

{T}AxM 1y {A}
[Rec-REh{T} HEAXM 1y {Alu/ f]}

This variant and its relation wittReq is discussed below. Choose arbitrapg® f:0=8,
ThenM =T and

(IH) VM . Mu:AxM] = A
VM M :puf AXM][u:AXM] EA

[
[
VM. M, f:ufAXM] =A
[
[

ol

VM. Mu:pfAXM] =VE.(f=aDA)
= VM. M[u:pfAxM] = Alu/f]

[Reg is easily derivable withRec-Rehusing mathematical induction at the level of
assertions. Proving the converse derivability (or rather equi-potence) needs a different
method.

For [Ref], we reason:

MEC = MmM]|MEC
= Mm:M]u:ref(M)] | Mo~ M'[ur— m|
and M'[u— m =C'Alu=mAu#i (Lemma 6.21)
= Mu:ref(M)] | M"/m}= #u.Cllu/m|

Remark 6.24 On the soundness of other proof rules from [3, 19], we observe:

43

— All proof rules listed in the previous logic [3, 19] are sound in the present logic
except for a minor adjustment [Aux~] (which introducei to the postcondition
if an auxiliary name does not occur in the pre-condition). Among others this allows
us to have all the derived rules for modular verification in [3] (one of them is the
invariance rule which is already treated above).

— As we have seen in Section 5, the lack of validityAfix] in [3, 19] in its general
form stems from the existence of new name generation rather than a particular
choice of assertion language in the present context. For this reason we believe this
is inevitable in any logic which allows description of dynamic new name generation
as treated in the present work. The rule is sound if we restrict the type of an auxiliary
name to be quantified so that it does not include a reference type.

6.5 Observational Completeness (1): FCFs

Basic Ideas. In this subsection and next, we establish observational completeness,
which says the logic differentiates programs precisely as the standard observational
completeness does. The employed arguments are close to what have been given in
[3, 19], taking the following steps.

1. We first reduce the contexts needed to witness semantic difference to finite canon-
ical forms. In particular, we reduce the “new” construct to generators of relative
fresh names. The resulting restricted programs are chiB¥s Following [3], we
extend the logical language with so-callettor variables

2. Next we derive a characteristic formula for each FCF, by induction of the structure
of FCFs. In particular, the preconditions of characteristic formulae we derive are
alwaysopen in the sense that wheneverX) (&, o) = C then(§, o) = C holds (this
property does not hold for general formulae).

3. Finally, using 1 and 2, we show any differentiating context betwderand M,
can be reduced to a formula which can only be satisfied by oiv efbut not the
other, reaching observational completeness.

Notice if two programs are observationally equivalent then surely they satisfy the same
set of pre/post-conditions, because satisfiability is closed gder

Context Reduction. For establishing this result, we reduce arbitrary differentiating
contexts to programs of specific shape, which we call FCFs. The grammar of FCFs
are from [3, §8.4]. Formallyfinite canonical formsor FCFsfor short, ranged over by
F,F’,..., are a subset of typable programs given by the following grammar (which are
read as programs in imperative PCFv in the obvious wdy)l’, ... range over FCFs
which are values.

F o= n | Xf@ | o | AxF | letx=yU inF
| casexof(n;:F)iex | casexof (y;:F)iex
| letx=lyinF | x:=U;F

where:

44

— In the second case construcgndy; should be typed by the same reference type.
— In each of the case construcds,should be a finite hon-empty subset of natural
numbers (it diverges for other values); and

— w stands for a diverging closed term of typde.g.w® def (W& Ay xy)V with V
any closed value typed).

Note no “new” construct is used. Reference names are treated in the case construct. We
omit the obvious translation to imperative PCFv-terms and typing rules.
We now outline the proof of the following result.

Lemma 6.25 Let 4 and \4 be closed and ¥/ V. Then there exists an FCF U in the
above sense s.t. Y¥ and UV f with i # j.

PROOFE AssumeA+ M; 2% My : a and letC| - | andV be such that, for example:

(CMy), F=V) 1l and (C[Mg], F+—V) 1
which means, through tH&, -equality:

(WM, F—=V)| and (WM, F—V)1f
where we setW d:ef)\x.C[x}. Note the convergence iftW My, f — V) | takes, by the
very definition, only a finite number of reductions. Let it beThen (occurrences of)
A-abstractions i andV can only be applied up to-times, similarly for other de-
structors. Also all occurrences of “new” construct can only be used atmtoses. So,
taking some fresh names, we can replace them with generators of a sequence of these
relatively freshn names for each type, each set up as a procedure, called at each place
where “new” is used, using a finite list and a counter as a way to counting it.

Using these decompositions, we transform these programs into FCF values main-
taining the convergence property while being made less defined (we leave the details to
[19, Appendix A]). Once this is done, we obtain (semi-closed) FCF values, which we set
to beF andU. The transformation maintains convergence behavio@a¥l;, F — V).

Further(FMa,f — U) is more prone to divergence théw My, 7 — V), so it still di-
verges. Thus we obtain

(FMy, F—U)| and (FMp, F—U) 1.

For detailed illustration of context reduction, see [19, 86 and Appendix A]. O

For brevity we only consider programs typable by the set of types inductively gen-
erated fromNat, arrow types and reference types. Accordingly, we assume the “if”
construct branches on numerals, judging if it is (say) zero or non-zero, and the syntax
of the assignment has the fordy := M2 ; N, with the obvious operational semantics.
The technical development is easily extendible to other constructs.

45

Vector Variables. Another preparation needed for observational completeness is a
small extension of the logical language. The added construct is not generally used for
assertions, and may not be necessary for observational complepenessbut we do
use it in our present proof. The construct can be used when a program uses a behaviour
with generic (unknown) side effects in the environment: however, when we use external
programs, an assertion may as well constrain side effects of external behaviours in some
way, so its practical use would be limited. The extension is given at the level of logical
terms, as follows:

e = ... | a | la

a is calledvector variable and represents a vector of values. For our present purpose,
we only need to allow constructors on vector variables except for dereferences, as given
above. Vector variables and their dereferences are only used for equations and quan-
tifications, though other constructions are possible (for example injection of a vector
variable makes sense).

For typing vector variables, we need to introduce vector types, which are used only
for typing vector variables.

d = X |Ref(X)
X denotes a vector of generic types (which can be distinct from each other). We can
consider other sorts of vector types (for example a vector of standard types is surely
useful), but this is all we need in the present context.

There are several natural predicates usable for vector variables and values. Among
them is a membership relation, writtare a, which saysxis one of the values consti-
tuting the vectom. We write this operatiox € a. We then define, for Ref(f()-typed
a:

Max(aRefX)) L1 yy yxY pRFX) (x e b 5 x e a)

This makes sense since reference names in a model is always finite.
The interpretation of a vector variable and its dereference is given by extending a
model to interpret a vector variable as a sequence of values. As data, we &Jd)in

— The environment mag, how also maps vector variables to their values: each vector
variable is mapped to a vector of values of the corresponding typess Ibf type
Ref(Y), then it is mapped to a vector of identicalsdom (o).

— The store mapg, does not change, still mapping identicals to stored values.

A vector variable of a vector type is then interpreted simply as a vector of values mapped
in the model. We interpret terms as follows:

[0*] e.0) £ &)

[1aRe] ¢ o) L Mg i ([a] .0) = i1--in)

6.6 Observational Completeness (2): Characteristic Formulae

TCA and Characteristic Assertions Pairs. We first make the class of formulae we
shall use for defining characteristic formulae. Belowthe contextual preorderis the
standard pre-order counterpartf

46

Definition 6.26 (TCAs) An assertiorC is atotal correctness assertion (TCA) atifu
whenever(&-u:k,o0) = C andk C k’, we have(& - u: k’,0) =C. SimilarlyC is atotal
correctness assertion (TCA) btif whenever(§,0-x+— K) = C andk C K/, we have
(§,0-x—«K') =C.

Intuitively, total correctness is a property which is closed upwards — if a profffam
satisfies it and there is a more defined progfdrnthen N also satisfies it (there are
assertions which describe partial correctness rather than total correctness. For example,

UX.(UeX N\ X! V uex)

is a partial correctness assertion for a factorial). Practically all natural total correctness
specification (which does not mention, essentially, non-termination) would be straight-
forwardly describable as a TCA. The present logic, including its proof system, is geared
towards total correctness: from this viewpoint, we may as well restrict our attention to
total correctness assertions. Below we introduce three notions which are about charac-
teristic formulae for total correctness.

Convention 6.27 (TCA pair) We say a paifC,C’) is aTCA-pair for[;A+M :a at u,
or simply aTCA-pairwith the concerned typed program implicit, when: Clis a TCA
atdom(I";A) and (2)C' is a TCA at{u} Udom(A) and a co-TCA af } (aco-TCAis
given by the same clauses as in Definition 6.26 except changingh).

Definition 6.28 (characteristic assertion pair) We say a TCA g@iiC’) is a charac-
teristic assertion pair (CAP) foF ;A M : a at uiff we have: (1)= {C}MP& ; {C'}
and (2)= {CIN"4 : {C'} impliesI;A-M C N : a. We also sayC,C') characterise
MAFM:aatuwhen(C,C')isa CAP forl;A-M:aatu.

Definition 6.29 (minimal terminating condition) Lef - M : a. Then we sayC is an
minimal terminating conditionor anMTC, for I' = M : a iff the following condition
holds: (¢,0) = C if and only (M,0) {; and (2)(Mg,0) | implies, if (§,0) = 31.C

wherei are auxiliary names i@ (i.e. fv(C)\dom(I")).

An MTC is a condition by which termination or divergence of a program is determined.
In the purely functional sublanguage, this is solely about the class of closing substi-
tutions, while in imperative PCFv, the notion also includes paired stores. We can now
introduce a strengthened version of CAP.

Definition 6.30 (strong CAP) Let™;A+ M : a. Then we say a TCA paifC,C/) is a
strong characteristic assertion pair, or strong CAP faiA - M : a at u, iff we have:

1. (soundness)= {CYMT49 - (C'Y,

2. (MTC)Cis an MTC forM.

3. (closure) If= {CAE} N {B} andM |=CAE, thenM[u:M] C M[u:N] (with
the latter preorder defined in the obvious way).

Proposition 6.31 If (C,C’) is a strong CAP of M, the(C,C’) is a CAP of M.

47

ProOOF If (C,C') is a strong CAP foM, then, by definition, for an§ andag, we have
(ME,0) C (N&,0). SinceM C N iff V&,0.((M&,0) C (N§,0)) we are done. O

A strong CAP says that a pdi€,C’) defines a program in a way stronger than a CAP in
one point: it demands, in addition to being a CAP, that giving a more focus/restriction
on the precondition (an initial environment and store) leads to a more focus/restriction
on the postcondition (the resulting value and state). Because of this closure property,
the use of strong CAP, instead of CAP, is fundamental for the subsequent technical
development.

Fig. 9 Proof rules for characteristic assertions of FCFs.

_ {CI} Fir-x:Nat;a :U {CI/}
{T} nlNat . {u=n} @0 {Vi(x=niAG)} caseXxof (n; : K >ir;a w {Vilx=nAC)H}

B {CI} Fir»x:Ref(B);(x " {CI/}
(TR fu=x} @0 {Vi(x=YyiAG)} casexof (yi : F) @ 1y {Vi(x=yi AC))}
{C} FF,x:u;B ‘m {C,}
{T} A FET=B: {ux{Cluex\,m{C'}} @0
{Thu™;, {A} @0 {CIF"™PV:, {C'}
{Va,b. ((la=bAMax(a)) D Vz{Arla=b}fez \ x{C})} let x=yU in FV:, {C}

{C}Fw{C}
{C['x/y]} let y=!xinF :y {C'}

{TIUBY (A} {C}F:,{C'} fv(A) C{z} Udom(A)
{Vz.(ADC{z/Ix})} x:=U;F:;, {C'}

A m

From FCFs to Characteristic Formulae. In Figure 9, we present the proof rules for
deriving strong CAPs for FCFs. To be explicit with involved typing, we annotate each
program with its typing of the fornM®® where® is the union of the environment
basis and the reference basis. As in [3, 19], the rules use equality instead of termination
preorder for legibility. We observe:

1. Inthe rules for values (reference names, numerals and abstraction), we use located
judgements for precise description of its behaviour, which are regarded as their
translations into non-located judgements (we assume fresh names are chosen at
each rule for implicit reference names used in located judgements).

48

2. In the rule for let-application (the sixth rule), by assumingnd b being fresh
and typed by a generic reference vector type ®efy X)) and the corresponding
generic vector type (say X), they can stand for arbitrary reference name and its
content, which is essential for stipulating the (assumed) property @fen in the
setting of local state..

3. In the rule for assignment, we use the logical substitution rather than the syntactic
one, to deal with arbitrary aliasing.

We write:

}_char {C}F u {CI}
if {C} F :y {C'} is provable from these proof rules. In each rule, we assume each premise
is derived in this proof system, not others. We leave the illustration of these rules to [3,
19]. These formulae, especially preconditions, have very restricted shape, which plays
an important role in the technical discussions.

Definition 6.32 A formula C isopenif whenevervX)(§,o) = C we have§,o) = C.
Proposition 6.33 Whenevet-q,., {C}F :y {C'}, the formula C is open.

PrROOF By induction of the rules in Figure 9, noting a reference is never existentially
quantified (distinction in case constructs does not differ by taking of tbander). O

Proposition 6.34 If -, {C} F 1y {C'}, then(C,C') is a strong CAP of F at u.

ProoF All arguments follow [3,19]. Below we only show the case of let, which is
most non-trivial.

(Let-Application) We need to say:

If a function denoted by the variable is such that it converges under the present
store, then it converges.

For asserting this and related situation, we use vector variables. For focussing on the
central point of the argument, we stipulate:

Convention 6.35 In the following proof, we deliberately confuse reference names and
identicals for simplicity, treating only the former. This does not change the arguments
since the coalescing of reference names does not play any role in the proof.

LetU andF be typed atJ™@, FT*BY andybe non-reference names in the basis.
We set, withr'=rq..r;..rp, (n > 0):

F' = 1letx= fUinF (6.5)
& = a:f,b:V (6.7)
§& = & - f:w (6.8)
o = iV (6.9)
Co £ Vab. ((la=bAMax(a)) D Vz{Arla=b}fez \ x{C}) (6.10)

such that&, o) is a model which conforms tB, and assume we have:

49

(IH1) C,C'is a strong CAP ati for F (hence in particula€ is an MTC forF).
(IH2) T,Ais astrong CAP atfor U.

Note, by (IH2), we have= {T}U :; {A} hence for an¥, andl:
&o-z2U& = A (6.11)

Further we observéE, o) = Max(aR®)) = {[[a]]} = dom(0). In the present case,
we can safely sdfa] = ', using Convention above. We now sh@yis an MTC forF’,
starting from one directior{vX)(&, o) = Co implies (F'E,0) |.

(VX)(&, o) = Co

= (5 0)Go (Co open)
= (§-&,0) EVZz{Arla=0b}fez \ x{C}) (¥, Max)
= z:U1-{EAD (2:U1-8-81-§, 0) ={la=b}fez \ x{C}
= z:U1-{oFEA D (- x:WU, 0) | (§-x:5,0)) =C
= W1 JU& D (§-x:WU, 0) | (§-x:5,0}) =C (IH2)
= (&o-x:WU, 0) | (§-x:5 0) =C
= (F& ol (IH1)
as required. Next we shoi#'g, o) | and{X} Nfv(Cg) = 0 imply (vX)(§,0) = Co.
(F'&,0)
= (Z0-x:WU, 0) | (£-x:S 0) FC (IH1)
= W1 JU& D (§-x:WU, 0)§(§-x:S,07) =C (IH2)
= z:Up-{EAD E-x:WU, 0) | (§-x:5,0)) EC
= z:U1-{oEAD (2:U1-8-81, 0) ={la=b}f ez x{C}
= (&8, 0) ={AAla=0b}fez \ x{C} (e5)
= V& ((§&, o) Fla=bAMax(a) D {AANla=b}fez\ x{C})
= (& 0o)FG
= (VY& 0) G

Above, in the second to the last lir js an arbitrary interpretation efandb. This step
is because, as far as + b andMax(«a) hold, (apart from how elements are permuted
and duplicated) the content efandb are invariant. Finally the last line is because for
anyX'such that{X} Nfv(Cp) = 0, if we have(g, o) = Co then we havév €)(E,0) E Co.

For the closure condition, €, A+ M : o and assume

{CoAEIM 3 {C'}. (6.12)

By Proposition 6.33, we safely assui@gA E is open. Letdom(A) = dom(o) = {f}

(the effect of aliasing can be ignored in the following arguments). Following [19, §6.6,
p.58], we reason using the following programs. Let a vector of habedrésh below.

We write 1et Z=!f in F for a sequence of let-derefs and="V for a sequence of
assignments.

Mo %' letz=IFinletx=yUin (F:=2; M) (6.13)

50

By checking the reduction we hawd:=2, Mg, so that we hereafter safely uglg instead
of M without any affect on semantics. Now assufmé)(¢, o) =Co A EwithCoAE
open. By open-ness we ha{g o) =Cy A E. By (6.13) we have, withlom(og) = W
and with newly introduced entities existentially quantified:
(8-u:Mog, 0) —* (VW)(&-u: (F:=0(F);M)E, 00-0g) =C
—* (VW)(&-u:ME&, 0-0p5) =ECo A E
—* (viw)(§-u: V', d)=C
where the mixing of reduction and satisfiability should be easily understood. Since the

update ofr "satisfies the asserti@@y A E (because other parts of the store do not affect
its validity), we know:

{C} (F:=0(F);M)E, 0p) 1y {C'} (6.14)
By = {C}F :y, {C'} we have (again with appropriate existential quantifications)
(&-u:F'E, 0) —* (VW)(&-u:F&, 0p-0p) EC —* (vivw)(&-u:V”", o’ =C

By (IH1) and (6.14), we have reach¢dwv)(&-u: V", o) C (viw)(§-u: V', d), as
required. ad

We are now ready to establish the main result of this section, after a definition.

Definition 6.36 (logical equivalence) Assuminig;A+ Mz : a andlM A= M2 @ a, we
write ;A - My 22, My : o whenk= {CIM]% :, {C'} iff = {C}Mr“ w{C'}.

Theorem 6.37 Letl;AF My, :a. Then;AFMiy 2 My :aifand only ifl;AF My 22,
My :a.

PrROOF The “only if” direction is direct from the definition of the model. For the “if”
direction, we prove the contrapositive. Suppde=, M, but M1 2 M,. By abstrac-
tion, we can safely assunid;,2 are semi-closed values. By Lemma 6.25, there exist
semi-closed FCF valudsandU such that, say,

(FMy,F —U) |} and (FMa,F—U)1. (6.15)

By Proposition 6.34, there are assertions which characterisedU. Let the charac-
teristic formula forF at f be written[[F](f). We now reason:

(FMy, F—U) |

= (f:[F]-m:[M4] {A (Uil ('ri)} fem\ z{T}

= VK. (f:kE[Flt D (f:km:Mi] = {Ai[Ui]lir,} fem N, z{T}
= B A{T} M1 i {VEA[FI(F) A (Ai[UilI(Mri))} fFem N\ z{T}}

But by (6.15) we have
ATy Mz im {VEAF A (AU (Tri)) } Fem™\ 2{T}}

that isM1 2, M, a contradiction. Thus we conclutiéy = M, as required. a

51

7 Reasoning Examples

This section demonstrates how the proposed logical machinery enables accurate de-
scription and reasoning about a variety of programs which combine functions with local
state and which are hard to treat with existing methods. We extensively use the notations
for freshness from § 3.4.

7.1 Stored Procedures with Shared Local State

We first show how the logic can precisely reason about a hidden state shared by stored
procedures, takin@ncShared in Introduction as an example. We use:

inc(X,) VJ{'x—J}Uo()—j+l{!x:j+1}@x.

inc’(u, X, n) Mix = nAinc(x,u).

We now reason follncShared, using [New, showing the key inference steps. For
brevity we work with the implicit global assumption thatb, c;,c, are pairwise dis-
tinct and omit an anchor from the judgement when the return value is a unit type.

1{T} Inc:y {vxinc’(u,x,0)}

2{T}a:=Inc {vx.ind'(la,x,0)}

3.{ind'(!a,x,0)} b:=la{inc'('a,x,0) Ainc'('b,x,0)}
4.{inc'(!a,x,0)} c1 := (1a)() {inc'('a,x,1)Alc; = 1}
5.{inc'('b,x,1)} c2 := ('b)() {inc'(b,x,2)Alco = 2}
6.{!c1 = 1Al =2} (Ieg) + (Ie) iy {u= 3}

7.{T} IncShared :, {vx.u=3}

8.{T} IncShared:, {u=3}

Line 1 is by the application oNew].® In Line 7, we used the following derived “scope-

opening” rule.
seqopent e e Tk

We contrast the above inference with that of:

a:=Inc;b:=1Inc;ci:=('a)();c2:=("b)(); (cr+!c2)

5 In the short version, we usé&étRef which is identical with New in this long version. Its
mapping and derivation using:£ (M) are found in (2.1) in § 2.1 and page 28 in § 5.2, respec-
tively.

52

Call this programIncUnShared, which assigns t@ andb two separate instances of
Inc. The lack of sharing ifncUnShared is captured by the following derivation:

1{T} Inc iy {vx.inc'(u,x,0)}

2{T} a:=Inc {vx.ind'(!a,x,0)}
3.{inc’('a,x,0)} b:= Inc {vy.inc"(0,0)}
4.{inc"(0,0)} c1 := ('a)() {inc"(1,0)Alc; = 1}
5.{inc”(1,0)} c2 := ('b)() {inc"(1,1)Alcy = 1}
6.{!c1 = IAlcp =1} (1) + (Iep) w {u=2}
7.{T} IncUnShared :, {vXyu =2}

8.{T} IncUnShared :, {u=2}
Above inc(n,m) def inc’('a,x,n) Ainc’(b,y,m) AX # y. Note x # y is guaranteed by
[New. This is in contrast to the derivation fGhcShared, where, in Line 3x is auto-
matically shared afterty:=!a”, where extrusion takes place.
Simple as they look, we do not know preceding Hoare-like logics which can derive
these specifications.

7.2 Dynamic Mutable Data Structure (1): Trees

Imperative higher-order functions with local state offer a surprisingly versatile medium
for clean, rigorous description of algorithms which manipulate dynamically generated
mutable data structures. In the following we explore how we can reason about these al-
gorithms tractably and efficiently. One of the aims of our experiments is to see whether
the general nature of the proposed logic leads to remarkably effective reasoning princi-
ples for mutable dynamic data structures with different degrees of sharing, a hard topic
since the inception of program logic.
Let us start from a data structure which has the least shdrees In this long ver-
sion, to compare with the method by Separation Logic in [37, §6], we verify essentially
the same algorithm. The following program creates a new isomorphic copy of a given
tree.
treeCopy def pf.AX.case IX of
injy(n) : ref (injy ()
inj,((y1.y2) : ref (injo({fys. fy2)))
To type this program, we use recursive types, introduced in Section 6.1 (as noted there,
no change in semantics and proof rules is necessary). We set the type of mutable trees
as Treed:efux.(Ref(Nat + (X x X))), and can easily check thaikeeCopy has type
Tree— Tree
Before asserting fotreeCopy, we first specify trees. To compare with with the
method by Separation Logic in [37, §6] precisely, we first useSs&uctures to repre-

53

sent the assertions. Subsect®shows the verification withoug-structures.

tree €Nt (U) = atom(!u,eNt)
tree (T1-T2) (U) = Imymy. (branch(lu, my, M) A My + MpA
Ai=12(treeTi (M) Au#m))
atom(u,n) = u=1inj;(n)
branch(U,y1,Y2) = U= inj((y1,Y2))

So a tree is either an atom (which is a leaf with a numeral) or a branch with two
mutually disjoint subtreesif; x M) where the top is also unreachable from the subtrees
(u#m). Tin treeT (X) is anS-expressiorsuch ag(1,2), 3), which uniquely determines
the shape of a tree. Its use follows Reynolds [37] and is often convenient. We iig&lude
expressions among standard terms in our logical language. For reference, the grammar
is given as:

T o= x| Nt (1q,12).

Symbolst, T/, ... are also used as variables &expressions for readability. Thuset (u)
is in fact a binary predicate.
We can now assert farreeCopy, naming itu.

treecopy(U) % VX, T. {tree T (X) fue x=y{xy.tree T (y) } @0 (7.1)
treecopy(u) reads:

If u is fed with a tree of shapg then it will return, without observable write
effects, a tree of the same shape whose nodes are all fresh and unreachable
from existing data structures.

As far as its argument is restricted to trees, this is a full specificatienafCopy. As a
result, it entails, often through easy syntactic calculation, other assertions the program
satisfies. For example it immediately implies:

treecopyS (u) oot VX, T. {tree T (X) fue x=y{tree T (X) AtreeT (¥) AXxY}

which is essentially equivalent to Reynolds’s assertion in [37] (the converse implication
may not hold even we add “@to treecopyS (u)). The difference betweetmeecopy(u)
andtreecopyS (u) is that the former says the program creates a fresh tree, while the latter
says its execution results in the original tree and another which are mutually disjoint
(the latter in fact leaves a possibility for sharing between the new tree and some old
data structure).

Apart from the assertion itself, a highlight of this subsection is how efficient reason-
ing principles for a specific but significant class of data structures arise as derived proof
rules through concrete derivation. Our aim is to prove the following judgement:

{T} treeCopy :y {treecopy(u)} @0 (7.2)

We use derived rules for-freshness in Figure 10. These rules use inductive nature
of x-freshness (e.g. if andy arex-fresh so igx,y), etc.: In fact there is a rule to treat a

54

Fig. 10 Proof Rules fok

_ ; CYM i {xuC'l@é
[Simple o eferencecccursia - rei - {ChHm (MEICE

C=CiA['&]C; {C}Mim (xm.C}@§ C' =(&)CiAC)
{C} (M1,Mp) :y {xudm.(u=(my,mp) Amy xmp AC) 1 @€1&

[Pairx]

{C}M i xmC' I @€

[Inj«] {C} inj]. (M) =y {*U.Hm.(Cl AU = injj(m))}@é

chunk of “fresh” constructors in one go, saving further inference steps) and are derivable
from the original proof rules: these specialised rules make the best of the special nature
of a class of data structures, here the lack of sharing.

We also use the following rule for typed pattern matching:

{CAe=1inji(e)}Mim{C}@& i=12
{C} case eof {inj;(&).Mi}ic(12} u {C'} @&1&

[CaseMatch

We first setreecopy’ T (U) S0 thattreecopy(u) = V1.treecopy’ T (u), and:

C %' treet (X) A VT < T. treecopy’ T (f)

A d:eftreeTi (Vi) A Ti <T A VT <T. treecopy’ T ()

wheret’ < 1 is the lexical ordering on trees, used for induction for recursion (as we
shall see in the next subsection, we can dispensewmatind use a different ordering).
We start from the case branch for leaves.

1. {CAatom(!x,n)} inj,(n) :m {xm.(atom(m,n) AT=n)}@0 (Simple)
2. {CAatom(!x,n)} ref(inj;(Nn)) iy {*U.treeT (u)} @0 (Ref)

Thus all leaves are-fresh. We now present the rest of the reasoning, including the
induction.x-freshness is built up starting from induction hypothesis. From Line 8, we

55

setM so thattreeCopy d:efpf.)\x.M for brevity.
3.A D {A}feyi=7z{xz.treeti (z)} @0

4. {A} Ty iz {*Z.treeT; (z)} @0 (AppSimple)
{Al/\Az}

5. injo((fy1, fya)), (Pair, Inj)
{xu.3m.(branch(u,my, mp) Aj_q ptree Tj (M) Amy x) } @O

6. {A1 AA2} ref(injo((Tya, Ty2))) i {*u.tree (T1- T2) (U) } @O (Ref)

7. {CAbranch(IX,y1,y2)} ref(inj,((fy1, fy2))) v {xu.treeT(u)}@0 Consequence
8. {treeT (X) AVT' < T.treecopy’ T (f)} M iy {*U.treeT (u)} @0 (2, 7, CaseMatch)
9. {VT < T.treecopy’ T (U)} AX.M :y {treecopy’T (u)} @0 (Lam)

10. {T} treeCopy :y {treecopy(u) } @0 (Rec)
We have arrived at (7.2).

7.3 Dynamic Mutable Data Structures (2): DAGs

We continue our experiments, inspecting whether our observation on trees scale to more
complex data structures. We treat directed acyclic graphdags which allow more
sharing than trees. This example is treated as one of the benchmark examples by Bornat
and others [5].

A dag has the same type @gee but its specification is more liberal. Again using
S-expressionsgjagT (X) assertx is a dag whose leaves are labelled aShe base case
dagn(x) is the same as trees:

dag (T1-T2) (U) = Imump. (branch(u, My, mp) A
Ni=12(dagTi (M) Au#m))

Thus a dag is the same as a tree except, at each branch, two subgraphs can share each
other’s nodes. It still has a rigid hierarchical structure: the top of a dag is unreachable
from subgraphst in dag T (x) no longer uniquely determines its shape, for example a
leaf labelled 2 in((1,2), (2,1)) may or may not be shared.

Suppose that we wish to create a new dag frordabelled existing dag. If we use
treeCopy, we lose the original sharing structure — it produces a frektbelled tree
(the verification that{dag T (x) jue x = y{xy.tree T (y)} @0 is satisfied bytreeCopy
is literally identical with §87.2). So if we are to preserve sharing, we need to slightly
change the algorithm. One such change follows.

dagCopy def Ag.new X :=01inMaing

Main 0‘:e}(uf.)\g.if dom(!X,g) then get(!X,g) else
case !gof
inj;(n) : newEntry(inj.(n),q)
inj,(Y1,Y2) i newEntry(inj,((fy1, fy2)),0)

newEntry d:ef)\(y, g).let g = ref(y) in (X:=put(!x,(9,9));d)

56

When the program is called with the root of a dag, it first creates an empty table and
stores it to a local variable The table will remember those nodes in the original dag
which have already been processed, associating them with the corresponding nodes in
the fresh dag. The rest works aseeCopy except, before creating a new node, the
program checks if the original node (sgy already exists in the table. If not, a new
node (sayy) is created, and now stores the new table which adds a tujgey’) to the
original. The program assumes, for clarity, a pre-defined daté fgpa table inducing

a finite function with a pre-defined “API”, as will be discussed later.

Main Assertion. A key property ofdagCopy is that it creates a fresh dag preserving
the original’s sharing structure. To discuss such matters with precision, a simple way is
to usepath expressions

p:=¢|l.p|rp

A path expression (hereafter simpdgth) represents a way to traverse a dag from one
node to another in the forward direction of directed edges. Taking in paths as part of
terms, reachability frong to g’ throughp is easily defined as:

path(g,e,d)=g=¢d
path(ga [pa g/) = 3)’1}’2~(branCh(9a ylayZ) A path(yla pa g,))
path(g,r.p,d’) = Jy1y2.(branch(g,y1,y2) A path(y2, p,g'))

The first clause says that the empty path leads us fréorg; the second thdt p leads
from g to ¢’ iff we go left from g (which should be a branch node) and, from there,
leads us tay’. The third is the symmetric case.

Nextmatch(g, p1, p2) asserts two pathgs; > from g lead to the same node, whereas
leaf(g, p,n) says we reach a leaf of labefrom g following p, defined as:

match(g, p1, P2) = 3y.(path(g, p1,Y) A path(g, p2,Y))
leaf(g, p,n) = 3y.(path(g, p,y) Aatom(y,n))

The isomorphism between two collections of nodes, respectively reachablg frach
d, as labelled directed graphs, is defined as follows.

iSO(g, g/) = vpl pZ'(matCh(gv P1, pZ) = matCh(g/v P1, p2))
AVpn.(leaf(g, p,n) = leaf(d', p,n))

We assert fodagCopy, namedu.
dagcopy(U) = V1,9 {dagT(g)}ueg=g'{+g"iso(g,¢)} @0
The assertion says:

WheneveragCopy is invoked with a dag g, it creates a fresh dag isomorphic
to g, without any write effects.

6 The data type is in fact realisable as, say, lists.

57

As may be expectediagcopy(u) (strictly) entailstreecopy(u). Again disjointness of a
created dag from the existing dag is entailed without being stated, cf. [5]. The judgement
we wish to establish is:

{T}dagCopy :u {dagcopy(u)} @0 (7.3)

The derivation is essentially mechanical, which we list below.

Intermediate Assertion The intermediate assertion specifies for a “scratch pad”
which stores a table associating already created new nodes with their originals.

dct(u)
def Vg, org.
{dagt(g)A!x=o0rg A con(org)}
ueg=g

{#*{z|d — z A z¢ cod(org) } (con(!x) Alx=o0rgu(g,d)*) } @x
which says:

Suppose g is a dag and x contains a table org which is consistent (i.e. only
relates isomorphic nodes). Then invocation of u with g terminates with the
return value § and, moreover: (1) references names reachable fromigus
those in the codomain of org are freshly generated; and (2) x stores a table
which is consistent and which adds to org the set of co-reachable nodes from
(9,d'). Further the invocation only modifies x.

Notations used in the assertion are illustrated in the following.

Consistency.Both the pre/post conditions of (7.4) use the invart@nmi(t) (“t is consis-
tent”) wheret is a table (finite map) mapping original graph nodes to the corresponding
newly created graph nodes (detailed later). The predicate is given as:

con(t) = Vvg,9.((9,9') €t Diso(g.9')) A
V90, 91-(Jo € dom(t) AGo— g1 O g1 € dom(t))
con(t) sayst only associates isomorphic graphs, and that its domain (hence co-domain,

by isomorphism) is closed under reachability (the notations su¢, g5 €t are illus-
trated later).

#-Freshness.The post-condition uses the predicate of the forth{ #Cp(z) } .C which
refines the predicate given at the end of Section 5.3. The predicate is defined as, with
and X fresh:

#*{Z|Co(2)}.C L YX VAR ((Co(z) Ax#) D z#i) A C (7.4)

which says:

58

Each reference name z satisfying(@ is #-fresh w.r.t. any datum in the pre-
state except those which can reach x (which includes x itself by definition).

The reservation or is needed since newly generated nodes are immediately stored in
X, SO that-freshness of a newly generated node does not hold w(and any datum
from which we can reacR: in fact, in the present casgjs only reachable fromx, so

x#1 is the same thing # i).

Fig. 11 Proof Rules for}

Ref#] {C} M m {#{z]E} C'} @€
{C} ret(M) 1y {#{Z[E[lu/m] v z=u}.C[lu/m} @€

{C} M1:m, {#{Z/G1}.C} } @€
{C1} M2 im, {#{Z|G2}.C'[(my, mp) /U] } @€
C D xeé

[Pair#] {C} (M1, M)y {#{Z|G1V G2} .C't @€

{C} M im {#{ZE[in3; (m)/u]}.C'[inj (M) /u]} @&
{C} inj; (M) u { #{ZE}.C @&}

[Inj#]

{CIM1im {#{ZG1}.C1} @€
{C1} M2 im, {#{ZG2}.(Co A {Co}my e mp =u{ #{Z7|G3}.C' }@6) } @&
C D xeé

[App#]

{C} MMz 1y {#{Z] Vi—123 G}.Cl@é

{CIM m {C'{m/Ix} A r#i} @€
[AssVart] {CIx:=M{C A (x#i O r#i)} @éx

We use the proof rules for #-freshness in Figure 11. For the notation for #-freshness
see (7.4), 87.3. Among the presented rules, the[AdeVa#| says:

If r is unreachable from then writing some value tomay change reachability
toi from x, hence from any datum from which we can reachut nothing else.

The rule is in fact an instance ghssign.

Axioms for Table APIs. Tables are finite maps ofreetyped references, equipped
with the following three procedures.

— get(t,Q) to get the image af in t.
— put(t,(g,d’)) to add a new tuplég, g’) wheng is not in the domain of.
— dom(t,g) (resp.cod(t,g)) judges ifg is in the pre-image (resp. image)tof

59

We also usé) for the empty table. By the following axioms we can treat a table as a
set-theoretic finite map. Belof(x)\ e stands fo{ T} f e x = y{y = e} @0.

vg.dom(0,g)\f

Vi, g.(dom(t,g)\,t V dom(t,g)\/f)

dom(t,g)\t = 3g.get(t,9)\.g

get(t,g)\ g Aextend(t,t') D get(t’,g)\.g

dom(to,go)\f D Ft1.(put(to,(9,9))\t1 A get(t1,9)\9')
dom(to,go) \.f A put(to,(91,97))\t1 A Go# 01 DO dom(to,do) \.f

We omit the axioms foeod(t,g’) which are symmetric tdom(t, g). extend(t,t’) further
sayst’ adds zero or more tuplestpi.e.:

extend(t,t’) = t=t' Vv 3to,9,d.(extend(t,tp) A dom(to,g)\.f Aput(to, (g,d)) \. t")

The axioms above allow us to use the following set-theoretic notations without loss of
precision.

- {g,d') €t stands foiget(t,g) \.d"
— g € dom(t) stands fodon(t,g) \, t.

— t=t Utz stands fovg,g'.((9,9') €t = Vi_12(9,9) €ti).
(9,d')* is all pairs of nodes co-reachable frgnandd’, i.e.

def

(9.9)°

{(zZ) | 3p.(path(g, p,2) Apath(d’,p,Z))} (7.5)

Derivation (1): The Whole Program We first look at the derivation for the whole
program.

u:{T} (abs)
lambda g.
g : {dagt(g)} (new)
new x:= 0 in
g :{!x=0} (app)
m:{T}
Main
{Vt.dct(m)} @0
g
{(Ix=0Adagt(g)) A
{Ix=0A/dagt(g)}meg=g'{#”Siso(g,0') }@x} @D
{#7Siso(g. ¢)} @x
{xg'.iso(g,9')} @0
{Vg.{dagt1(g)}ueg=g {*d .iso(g,d') } @0} @0

© ® N o g A W N R

S
w N P O

i
~

Above we set, for brevity:

S(g,org) ={z| g— z A cod(0rg,z) \f}. (7.6)

Further we writeSfor S(¢', org). Some illustrations:

60

— 1.1 introduces the anchar, without any pre-condition, whilé.3 introduces the

assumption on the argumegit

In .5, we introduce the anchgf and note the subsequent sub-derivation are for
the application.

[.6 introduces an anchor for the function part (the “main” program). The pre-
conditionT means it does not add any further assumption (the subsequent reasoning
may use what has been assumed so far, for exang)le

In 1.8, we concludélain namedm satisfiesvt.dc T (m), to be inferred later.

In 1.12, the application is inferred usingpp#] (though the standard application

rule suffices in this case).

From1.12 tol.13, we use theNew rule. This part may deserve some illustration.

Let, for brevity:M gef Maing andC Ll = OAdagTt(g). Note the sub-derivation

[.5-12 meangC}M{#*Siso(g,d')}, that is, withi fresh (cf.(7.4):
{CIM{VzZ((d — zAX#i) D z#i) Aiso(g,d) } @x

By [New], we can strengthe@ with xfi. SinceVj # x D j#Xx holds, we can ap-
ply (6.2), page 37, Section 6.1, so that the predigateis !x-free. By Inv] (the
invariance rule for located assertions), we obtain:

{CAX#i}M{Vz(d — zD z#i) Aiso(g,g') }@x

that is
{CAx#iIM{xd .is0(g,q) } @x.

Since New allows us to cancet in the pre-condition, we obtain13.

Derivation (2): NewEntry The derivation folNewEntry is given below.

© ® N o o A W N e

T~ T e
o o~ W N P O

i
]

m: {T} (abs)
lambda (y, g).
g :{lx=org A dom(org,g) \,f} (let)
let h=
h:{T} (ref-simple)
ref (y) in
{Ix=o0rg A dom(org,g) \,f A lh=y A h#i}@0
g {-} (seq)

{T} (assvar#)
X:=

m:{T}

put (! x, <g, h>);

{m=orgu{(g,h)} A Ix=org A 'h=y A h#i}@0
{Ix=o0rgu{(g,h) A Th=y A (x#i D h#i)}}@x
h

{Ix=o0rgu{(g,d)} A 'g'=y A (x#i>Dd#)}@x
{NE(m)} @0

61

Above:

1. {---} indicates the immediately preceding assertion is repeated.

2. The program usesinstead ofy in for 1et to avoid the collision of names (though
his in effect namedy in the derivation).

3. In the last lineNE(m) is given as:

NE(m)
' vorg,y, g

{!x=o0rg A dom(org,g)\.f} me (y,g) =¢'{#7¢.(x=0rgu{(g,d) } A!d' =y)} @x
We illustrate the derivation line-by-line.

— 1.1 introduces the anchor for this program.l18, we recally is the content of a
fresh reference to be created, ayid the original node.

— |.3 introducegy as the anchor for theet-block, which continues up th16. The
assertion says that the taldgg stored inx does not contaig (i.e. g has not been
processed yet).

— |.4 introduces the variablefor the let.

— 1.5-7 reason for the argumerd£ (y) of thelet command.

— 1.8-16 reason for th&et-body. Since thdet command as a whole is namgd
(in 1.3), its body should also be namg(din |.8. In the same line, the pre-condition
repeats the post-condition obtained.in.|.8 also mentions theet-body itself is a
sequential composition.

— 1.9-14 reason for the first part of the sequential composition, the assignment to a
variablex, using[AssVatt]. 1.9 doesnotintroduce an anchor since the assignment
is of theUnit-type. The precondition repeats the previous one.

— 1.11-13 reasons for the argument (nam@dwith the repeated precondition. The
reasoning uses the following valid assertion:

o ¢ dom(to) A put(to, (Qo,dp)) \ t1
v9,9.((9,d") et = ((9,d) €toV(g=0oAd =0p)))

which is easily derived from the axioms in 87.3. The post-condition saigsthe
result of addingg, h) to org.

— Sincex is not aliased (by its type),14 simply replacesxifor min [.13. Similarly,
since the variablé is returned and this is namedin the assertionl,.16 replaces
g forhinl.14.

Derivation (3): Main We list the derivation for the main program below.

1 |U:{T} (rec)

2 |muf.

3 u:{vt' <1. de? (f)} (abs)
4 lambda g.

5

g :{dagt(g) A !X=o0rg A con(org)} (if)

62

6 if dom(! x, g) then

7 g : {dom(!x,g) \, t}

8 get (! x,Q)

9 {Ix=o0rg A get(t,g) \,g'}@0

10 {DG}@0

1 else

12 d : {dom(!x,g) \,f} (case)

13 case !g of

14 inl (n):

15 g : {dagn(g)}

16 NewEntry (inl (n), @)

17 {#%d .(con(!x) A !x=o0rgu(g,d’))}@x
18 {DG}@X

19 inr (g1, g2):

20 g 1 32T = (11,T2) A\i=12dagTi (Gi))
21 NewEntry (inr (<fgl, fg2 >), g)
22 {DG}@x

23 {DG}@x

24 {DG}@x

2 {dc1(u)}@0

2 | {Vt.dcT(u)} @0

Above we use the predicaG (for Dag Generated) which is set to be:

DG ¥ #7*9(g,org).(con(!x) A Ix=orgu(g,g)*) 7.7)
where we sef(g,org) = {z| g— z A cod(org,z) \,f}. The set-basegtnotation used
above is easily decoded into universal quantification, but offers transparent reasoning
The reasoning is simple except the second branch of the case construct, whose de-
tails are presented later. Some illustration:

— I.1 introduces the main anchar,

— |.3 introduces the induction hypothesis for the recursion variélflesing the lexi-
cographic ordering o8-expressions).

— 1.5 names the abstraction bodygasplaces the assumption gnand stipulates that
the content ok, org, is consistent.

— The lambda-body is an if-branch. Since its guard is effectdess!x, g), no state
change needs be considered. HehZesimply adds to the previous condition the
“true” conditiondom(!x, g)\,t, as a new precondition.

— l.9is transformed tb.10 by the following deduction, after addingn(org) by [Inv],
noting the write effect is empty.

Ix=org A get(!x,g) \.d A con(org)
=Ix=org A get(!x,g) \, g A con(!x)
= Ix=o0rgu{g,g)* A con(!X)

The last line usedy, g') €!x andcon(!x) imply (g,g')* C!x. SinceS(g, org) = 0 we
arrive atDG.

63

— Froml.11, the else-part is reasonéd.2 introduces/ as its anchor (which is what
names the whole if-command), and asserts that the guard does not hold, in addition
to what has been assumed before the if-branch. This else-part is a case construct,
reasoned in the next few lines.

— 1.13-18 is the case wheris a leaf. For the entailment frofil7 tol.18, we infer:

con(org) A Ix=orgu(g,d’) A!d =!g=inj,(n)
D con(org) A !x=orgu(g,d’) Aiso(g,d) A\Vz(g — zD z=g)
D con(!X)Alx=orgu(g,d')*

Above we used:
(z—d A atom(!d)) D z=¢

which is easily inferred from the definition and the axiom for reachability.

— 1.19-22 is the reasoning for the inductive case, which is going to be detailed in the
next paragraph.

— The remaining lines concludes the reasoning using the proof rules for cake, if,
and recursion, each directly applied (with nominal use of consequence rule in each
case).

Inductive Case.In the following we present the reasoning for the inductive case. By
calling the procedure twice, it addsfresh names one by one, reaching the even-
tual §-fresh set. The asserted program fragment is given below, starting from the pre-
conditions from the preceding inferences.

{dom(!x,g) \\f A Ix=o0rg A VU <1. dcT (f)}
g {3t2.(t=(11,T2) A Ai—12dagTi(6i))} (app)
m:{T}
NewEntry
{NE(m)}@0
(ng):{-}
n:{T} (inr)
m: {T} (pair#)
g :{T}
f gl
{#78(dy,0rg).(con(!x) A !Ix=orgU(g1,0;)") }@x
o : {con(!xX) A !x=orgu(g1,07)*}
f g2
{#7S(gp,0r9').Co} @x
{#7S(m,0rg).3g; ,.(Co A M= (gy,95)) }@x
{#78(n,0rg).3d; ,.(Co A n=inr((g),9y)))} @
{#7S(n,0rg).(C1 A {Ci}me(n,g) =g {#7d.C2}@x)} @x
{#79(d,org).(con('x) A !x=orgu(g,d)*)}@x

© © N o G A W N e

P R~ S T
o o A w N P O

i
=]

i
©

Above we set:

64

1. Two applications off leads to:

Cod:efcon(!x) A !X:OI’gU U <glagl/>*

i=1,2

which says that the table bis consistent and it is the result of adding the isomor-
phic pairs reachable fronu;, gf) (i = 1,2).
2. After enclosing(g},d,) with injection, we reach:

def

C1 = 3¢12.(Co A n=1inr((g},0)))

3. After further enclosing with a fresh reference, we finally reach:

C2 &' con(1x) A Ix=orgU(g,g)*

All inferences are mechanical. Some illustrations:

— 1.1 records all assumptions from the preceding inferences.

— |.2 introduces the anchaf for the subprogram in this case branch (which is the
name given to the whole case branch, as well as the encoding if-command). In the
following inferences we consider the same assumption witBoys.’

— |1.3-5is the inference fatewEntry, for which we records the result of the inference
in 8§7.3. SinceNE(m) is stateless, once it is inferred, it can be used for all later
inferences.

— 1.6-8 introduces anchors, but no new assumptions.

— 1.8-15 reasons for the pair of two applications ugiPar #].

— In 1.8, the pairing is named ams.

— In1.9-11, we reason fofy,, starting from X = org, as well as using two stateless
assertionsyt’ < 1.dct’(f) andty < 1. The reasoning is direct from the assumption.

— In1.12-14, we reason fdiy,. We use, followingPair #],

Ix=orgu(g:,91)",

in addition to stateles#t’ < 1.dct’ (f) andt, < 1. Again the reasoning is mechan-
ical from the assumption.
— 1.15 summarisels9-14 by applyingPair #]. Notem= (g}, d,), for which we have:
m= (g1, %) D (M—=2= g1, 2

so that, setting:

G(g,org) def g<— Z A cod(org,z) \f

we obtain:
m=(g1,02) O ((G(dy,0rg) v G(gp,0rgu (g1,91)")) = G(m,org))
which is used to determine the #-fresh namesib

7 Since the final post-condition does not menti@np, we can quantify the pre-condition again
at the end, so that this does not lose generality.

65

— 1.16 simply enclosem with the injection.
— 1.17 combine$.16 andNE(m), in the form usable fofApp#].
— 1.18 applie§App#] to 1.2—-17, obtainindG. As inl.15, we use:

lg'=n > ((G(norg) v ¢'=2) = G(¢,0rg))
by which we knowS(g', org) characterises the #-fresh names of the application.

This concludes the proof of the inductive case, hence the whole derivation for the re-
quired judgement fodagCopy.

7.4 Trees and Dages withouS-Structures

We explain how we can verify the trees and dages without uSisiguctures. First we
can simply define the assertions deletirfgom the assertions such as:

tree (u) = Jy.atom(lu,y) Vv
Imymp. (branch(u, my, mp) A my x MpA
Ai=12(tree (m) Au#m;))
atom(u,n) = u=inj,(n)
branch(u,y1,¥2) = u=inj,((y1,y2))

Similarly for other assertions and predicates. For the derivation, we define the predicate
size(X, n) which denoteshe tree named by x has a sizeTis is inductively defined as
follows:

size(u,1) = In.atom(u,n)
size(Uu,ng+n2+1) Imy, mp.(branch(u,mg, my) Asize(my, ng) Asize(mp, n2))

The rest of reasoning is identical using the above ordering instead of that beBveen
structures < 1.

The next example, verification of a graph copy, treats a general reasoning method
which does not require any explicit syntax in the assertions.

7.5 Dynamic Mutable Data Structures (3): Graphs

To test how structured reasoning for dynamically created data structures can be rea-
soned about in the present logical theory, we have experimented with a further refine-
ment of the copying algorithm, again found in [5], which works with any argument of
Treetype, including one with circular edges (ndteeallows circular linkage).

graphCopy gef Ag.new X :=01inMaing
Main %' pf.Ag.if dom(!X, Q) then get(!X, Q) else
case !gof
inj4(n) : newEntry(inj,(n),Q)
injp(y1,Y2)
let g = newEntry(tmp,Q)
ing = injp((fy1, fy2))df

66

wheretmp = inj;(0). The program is essentially identical withgCopy except when
it processes a branch node, gpysince its subgraphs can have a circular linlgtor
above, we should first registgiand its corresponding fresh node, saythe latter with
a temporary content), before processing two subgraphs. The assertgrafdiCopy
(namedu) is even simpler than the one féagCopy:

graphcopy(u) = Vg% {T}ueg=g'{xg"iso(g,d)} @0

Note we no longer need any requiremenpaxcept for its type (convergence is guaran-
teed because our models cannot hold infinite gragitsphcopy(u) entailsdagcopy(u)
hence alsareecopy(u), SO a program satisfyingraphcopy(u) copies a tree just as
treeCopy does and copies a dag justdagCopy does.

Deriving {T} graphCopy :y {graphcopy(u)}@0 is almost identical with deriving
the judgement fodagCopy (hencetreeCopy in many places), except for the two
points:con(!x) is not invariance any more (note the table can contain fresh nodes with
temporary content) and we can no longer 8sxpressions for well-founded ordering.
For the latter, we can use, for example, the number@fachable nodes minus those in
the domain of X, which strictly decreases when the induction moves to subgraphs.For
the former, a weaker consistency condition works, which roughly says:

(1) Before processing, a certain isomorphism holds between nodes in the domain of
Ix “before” g and the corresponding ones in the co-domain.

(2) After processingy, the isomorphism also holds between all nodes “undeathd
the corresponding nodes in the co-domain.

Above “before” and “under” are calculated through the lexicographic ordering of the
minimum paths from the original root (the use of the root is solely for defining these
relations and does not violate modular reasoning). In the following we first list these
intermediate assertions, then proceed to the reasoning. We leave the detailed derivations
to Appendix B.

7.6 Higher-Order Mutable Data Structures

Finally we consider replication of trees/dags/graphs which may store values of arbi-
trary types, such as references and higher-order functions. In fact, each of the three
algorithms above already works, as it is, even when we replacavith an arbitrary

type. The result is the so-callstiallow copywhere, while the nodes of two graphs are

still disjoint, data at leaves can share references (a simplest case is when stored data are
reference names). The assertion follows.

geopy(a)(u) = Vg"®e% {Tlueg=g'{#Siso(g.9)} @0

wheretreg(a) = pX.(Ref (o + (X x X))); andSZE'{h| 3p.path(d/, p, h)} (for the nota-

tion ¢S, see § sub:fresh:abbrev). Note the assertion uses the same isomorphism predi-
cate. We conclude:

Proposition 7.1 The following assertions are valid and implications are strggiopy (Nat)(u) =
graphcopy(u), graphcopy(u) D dagcopy(u), dagcopy(u) D treecopy(u) andtreecopy(u) D
treecopyS (U).

67

7.7 Local State and Information Hiding

As final examples, we show how to reason about programs which use new reference
generation for information hiding, including Landin’s factorial discussed in the Intro-
duction. The expected properties of such a program often crucially depend on main-
taining certain invariants of hidden store throughout invocations. As simple examples,
consider the following two short programs.

profile et x= ref(0) in Ay.(X:=!x+1;fy)
compHide et x= ref(7) in Ay.(y >!x)

The first is from [40, p.104], the second a variant from [24]. In either program, an
external program can never acc&sBorprofile, the invariant orx's content is trivial
since its visible behaviour does not depend on it: thtusfile behaves precisely ds
does. ForcompHide, the invariant is that the content rfstays 7, hence it behaves as
AYYy > 7.

To reason about programs with invariants of this kind, the following axiom, com-
bined with [ConsEvd] in Figure 3, is often useful. Below#x.C meansix.(x#i AC)
with i fresh ifx has a reference type @k.C otherwise.

(AIH) {Elme ()=u{v#%C} > {E}me ()=u{C}

wheremis fresh and:

o CE'CoA{CoNC Uy =2{Co} AVY.{Co A KHYIW}U®Y=2{Co A KH 2N} @WK with
X & fv(C1) Ufv(Cy) and(IX)Co = T.

o C' T 1Ciluey=2{C,}@W.
(AIH) intuitively says:

Assume g is an invarinat of the content of; if Co holds and ifX are not
reachable from the argument y or from the initial state and read datnd
write data w (X#yfW) 2 u applied to y never exporfsto the outsidef#2W).
Then ifX are fresh, we can ignoreg@rom the specification.

Freshness and hiding afdre essential: if they are not hidden, their content may be
modified by external programs, destroying the invar@nt

The proof of validity of(AIH) uses Proposition 4.24 to show that, in any possible
model, X can never be touched by external programs except by invoking the function
(sayV) denoted by, thanks to a partition of its store into two disjoint parts, one for
the name closure of, and another containing ThusCp, which solely relies on the
content of] stays invariant in any future state.

(Ix)Co = T meansCy asserts about only the contentoe.g.(IX)Ix=1=(IX)(x=yDly=1)=
T, but(IX)(x=yAly=1) £ T and{IX)y — x £ T.

8 We can prove the same conclusion withg#f Tn the precondition of this evaluation formula,
but this widens the applicability of this axiom (hence haw#d is more general).

68

Proof of Validity of (AIH). We first show the following useful lemma.

Lemma 7.2 1. (narrowing)M =C andl ¢ fl(C) imply (V)M =C

2. (scope opening)(vI)M)[u:N] = (vI)(M[u:N]) with | & fI(N).

3. AssumeMp = E andMp[u:m()] § M with u,m¢ fv(E). SupposeM = Ix.(x#i A
C) with i fresh. Then there exis, 0,1,V such thatM ~ (vI)M’ with M’ =

(v)(&,o-[l —V])andl € fl(§,0); andM’[x:1] = C.

PrROOF The proofs of (1,2) are by definition, while (3) is direct from Proposition 4.24.
O

Now let us define, with the conditions in (AHI):

G =v#x.Gy Gy =CoAGLAGy
G1 = {CoACiluey=7Z{Cy} Gy = Vy.{CoAX#yfW}uey=2z{CyAX#2N} @WK

W.0.l.g. we assume all vectors are unary, ii.e.r, W= w andX= x (with x reference).
By Lemma 7.2 (3), we know there existg such thatM = (vI)(&-[x:1],0-[| = V]) =
Gwith | £ fl(€,0). Then our aim is to prove:

ME=G implies M =C (7.8)
ThenM = {C1}uey=2z{Cy} @W means, by definition,
UN.(M[f:N] | Mag=Cy with ffresh D M[z:uy] | Mt Cy)
Then by Lemma 7.2 (1,2), létp = (v)(£,0- [| — V]). Then we have:
Mo[f L] | Mz =C1 with Mz =~ (VI) Mg
We now show suckfyy always satisfiCy, i.e.,
Mz = Co (7.9)

If we can prove (7.9) above, then we ha®y = Cy AC;. Then byAAB D A, we have
Mo |= G1. Hence this concludes our aim to prove (7.8).

To prove (7.9), we use the assumptidfy = Co A Gy. By x#yrw andx#zw, we know
only U can toucH; and even so, the result of the applicatiorugfin L does not affect
the resulz and effect variablev. SetL = uy. Then for ally, if 2[x: 1][f : uy] = Mo,
we haveMy; = Cp and

Mo = (VIT)(E-u:U-F:Vi-x:1, gyw[l — V- ab)

for someVy, V;; with dom(a5) € {I"} andl ¢ fv(a}). Hence we havéq. = x#y by def-
inition of reachability. Similarly, byMp = G, for anyL which contains an application
of the form ofuy, Mo can satisfyCo, by usingMoe = x#y A Co. Hence we can derive
(7.9), as required.

69

Profile. profile andcompHide can be easily reasoned usitwH), together with
[ConsEvdlin Figure 3. We start fromprofile. For simplicity, we assumgrofile fy
terminates. Our aim is to obtain:

{{C}fey=2Z{C'}@WA{T}fey{T}@W} profile:, {{Cluey=2z{C'}@#}, (7.10)

The above Hoare triple said thatofile behaves just aé behaves, as expected.
First we derive:

E ={T}fey=2{T}@W
D Ep={x#fyfW}fey=2z{T}@Wx Axiom (e8) in[19]
D E = {x#fyfW}f ey = z{x#2W} @Wx Axiom 3 of Proposition 6.2

LetG = {C}f ey = z{C'}@W. Using the above entailment, we derive:

L{E Ax# Tyiw} fy:, {x#2W} @W AppSimple
2{E Ax#fyPW} Ty, {x#tyW} @W Conseq
S{EAx# FyFW}x :=IX+ L{E A x# fyfW} @x Inv#
4{E nx#fyfWix:=Ix+1; fy:; {E AX#YW} @xW Seq
5{EINy.(x:=IXx+1; fy) ;7 {Vy.{x# fyf fue y=2z{x#2l} @xW} Abs
6.{x#i AGAEJNY.(X:=IX+1; fy) iy {x# AGAVY{X#Tyrtuey=2z{x#2W}@xW}@0 Invariance
7.{E}profile :, {v#x.(GAE')@xW}@0 New

At Line 1, we use AppSimpléin Figure 7.
D {Cleed =u{C'}@é
{Cled: {C} @€

From Line 1 to Line 2, we use the standard consequence rule. Line 3 is derived by the
following invariant rule for the assignment.

[AppSimp@C

{CIM ;y {C'}@X jk fresh

I A RHTIM (C A R# T @R

The proof of the validity of this rule is easy by Proposition 4.24 in § 4.5. Note that a
value has an empty write effect set so that we can always apply the above rule when
M = V. Also note that the condition of the write set is essential; for examphd, 4f

y := X, then we can not apply the above rule since after running this assignxient,
reachable frony. From Line 3 to Line 4, we useSgq rule, the standard sequential
composition rule. From Line 5 to Line 6, we uderpmoté appeared in Figure 6; and
finally from Line 6 to Line 7, we useNew|.

{C}V {C'}@o

oMot < oIV 2 {C £ Co @B

Now we can apply€ConsEvd] via (AlH) (taking the trivial invarianCy)y >0=T),

obtaining (7.10) as desired.

70

CompHide. ForcompHide, a direct compositional reasoning lead$ 10} compHide
{G} whereG is the assertion:

VHX.(IX=T7AVN{Ix=T}uen=2z{z= (n > 7)Alx = 7}@0)
The detailed derivation is given as follows:

L{TIAyy > 7{Vn{Ix=T}luen=2{z= (n> 7)Alx=7}@0} @0

2{T}7 m {m=71@0

S{X#IAIX=TIAYY > T{Vn{Ix=TIuen=2z{z= (N> 7)AIx=7}@O A X#iAIx = 7} @0

>7
4.{T}compHide iy {v#x.Vn.{IXx=T7}uen=2z{z= (n> 7)AIx=7}@0} @0

From Line 1 to 3, we again usBfomoté (this step is identical with Line 6 iprofile).
We can now applyConsEvdlwith (AlH), settingCyo =!x = 7 as the invariant, and noting
x#n=x#z=T by Axiom (2-1) in Prop. 6.2, finally reaching

vn.uen™, (n>7)

as the postcondition.

Safe Factorial. We conclude this section with a more substantial usg\ifl), taking
Landin’s factorial from the Introduction.

circFact &'x ;= Azif z=0then 1 else zx (x)(z—1)
safeFact & 1et x= ref(Ayy) in (circFact;!X)

In [19], we have derived the following judgement.
{T}circFact :y {3g.(¥n.Fact(g,!x,n,x) A Ix=0)} (7.11)
where
Fact(g, u,n,x) d:‘Ef{!x: gluen=z{z=n! A Ix=g}@0 (7.12)
The postcondition is logical equivalent to:
Fact(u,n,x) def Jg.(Fact(g,u,n,x) A u=g) (7.13)
= {Ix=uluen=2z{z=nl AIX=u}@DO A IX=u (7.14)
The judgement (7.11) says:

After executing the program, x stores a procedure which would calculate a
factorial if x stores that behaviour, and that x does store the behaviour.

Our purpose is to show thaafeFact namedu behaves as a pure factorial function,
i.e. it satisfies the assertioém.{T}uen = z{z=n!} @0.

71

We first deriveFact(u,n,x) for circFact, which is much simpler than one in

(7.11). For the derivation, let:

Clo!xj) E'Fact(g!xj,x) A Ix=g.

We also set, for brevity:

Mm% Ay.if y=0then lelseyx (IX)(y—1)

We infer:
1 {(y>1>C(g!'xy—1) Ay=0}1:{z=y! Alx=g}@0 (Simple)
2 {(y>12C(g,!x,y—1) Ay>1tyx (IX)(y—1) 2 {z=¥! Alx=0}@0 (Simple, AppSimple)
3. {y>1>C(g,!xy—1)}

if y=0thenlelseyx (IX)(y—1):z{z=y! A Ix=g}@0 (IfH)
4. {T}Ayif y=0thenlelseyx (IX)(y—1):y

{ve,y>1{C(g,!xy—1)tuey=z{z=y! NIx=g} } @D (Abs, V)
5. {T} M {Vvg,y>1(Fact(g,!x,y—1,x) D Fact(g,u,y,x)) }@0 (Conseq)
6. {T}x:=M{Vvg,y>1(Fact(g,!x,y—1,x) D Fact(g,!x,y,x) } @x (Assign)
7. {T}x:=M{Vg,y> 1 ((Fact(g,!x,y— 1, x)Alx=g) D (Fact(g,!x,y,X)Alx=g)) }@x (Conseq)
8. {T}x:=M{Vy> 1 (3g(Fact(g,!x,y—1,x)Alx=g) D Jg(Fact(g,!x,y,x)AlIx=g)) }@x (Conseq)
9. {T}x:=M{Vy>LFact(!x,y,x) } @x (Conseq)

From Line 4 to Line 5, we used the following axiom for evaluation formu(a®) in
[19] with A= Fact(g,!x,y—1,x), B=Ix=gandC=z=y!Alx=g.

{AAB}ee€ =2z{C} = (AD {Blee€ =2Z{C})

From Line 8 to Line 9, we use the following standard entailment.

VX.(ADB) D IxAD 3Ix.B

Finally we show the main derivation famfeFact. A derivation follows.

1{TIAYY m {T}@0
2{T}circFact; Ix:y {Fact(u,n,x)}@x

3.{x#i}circFact;Ix:, {x#i A Fact(u,n,x)}@x
4.{T}safeFact :y {v#x.Fact(u,n,x)} @0
5{T}safeFact iy {Vn.{T}uen=2z{z=n!}@0} @0

Line 1 is immediate. Line 2 is (7.11) wittDerefl and [Sed. From Line 2 to Line 3,
we use [nv#]. Line 4 is direct from Lines 1, 3 andNEew. Finally we arrive at Line 5

vn.uen\ n!

by [ConsEvad] together with(AIH), letting: E=C; =T, f=W=0, Cy =!x=g and
Co = z=nl, and notingx#n = x#z= T by Axiom (2-1) in Prop. 6.2.

72

Safe Mutual Recursion. Finally we consider the advanced recursion by mutual cir-
cular references. The program demonstrates the power of the higher-order functions.
Consider the following two assignments.
mutualCheck def
X:=An.if y=0then f else not((ly)(n—1));
y:=An.if y=0then t else not((!x)(n—1));

It is easy to see that, after these two assignméit$n returns the truth i is odd,
while (ly)mreturns the truth ifh is even. This situation may be informally described
thus:

X stores a procedure which computes whether its argument is odd or not us-
ing a procedure stored in y; y stores a procedure which computes whether its
argument is even or not using a procedure stored in x

Note an inherent circularity of this description. Apart from the local state, the first ques-
tion is how we can logically describe such a program specification, and how can we
derive it compositionally.

In the presence of local state, we can higgto avoid unexpected interference as
we have done fogafeFact;

safeMutual0dd &' 1et x,y = ref(An.t) in (mutualCheck;!x)
safeMutualEven & let X,y =ref(An.t) in (mutualCheck;!y)

(aboveAn.t can be any initialising value). The program evaluates to a function which
checks the even of the numbery are now hidden and inaccessible from the outside,
so that the program behaves as the pure functions sefgMutual0dd(3) returns the
truth, whilesafeMutual0dd(4) returns the false.

We first challenge the derivation afitualCheck

{T}mutualCheck :y {Vn.IsOddEveiln,xy)} (7.15)

where:

IsOddEvein, xy) def dgh.(1sOdd!x, gh,n,xy) A IsEverly,gh,n,xy) A Ix=gAly=h)

I1sOdd(u, gh, n,xy) def {Ix=gAly=h}luen=2z{z=0dd(n) A !x=g A ly=h}@xy

AX=gAly=h
IsEverju,gh, n, xy) d:ef{!x:g/\ ly=h}uen=z{z=Ever(n) A Ix=gA ly=h}@xy
AlX=gAly=h

Odd(n) o IX(n=2xx+1) Ever(n) o IX.(n=2xX)

Our final aim is to derive the following “pure” assertion yH).

{T}safeMutualOdd :y {Vn.{T}uen=2z{z= 0Odd(n)} @0} (7.16)
{T}safeMutualEven :y {Vn.{T}uen=2z{z= Ever(n)} @0} (7.17)

73

Let us define:

« E'An.if y=0then f else not((ly)(n— 1))

My e an.if y=_0then t else not((!x)(n—1))

The derivation ofiutualCheck is similar withcircFact.

1. {(n>1>IsEverfly,ghn—1,xy)) A n=0} £ :;{z=0dd(n) Alx=gAly=h}@0 (Const)

2. {(n>1>IsEverfly,ghn—1,xy)) A n>1}

not((ly)(n—1)) :z{z=0dd(n) AIx=g A ly=h}@0 (Simple, AppSimple)
3. {n>1>IsEverly,ghn—1xy)}
if n=0then f else not((!y)(n—1)) :;m {z=0dd(n) A Ix=g A ly=h}@0 (IfH)

4. {T} An.if n=0then f else not((ly)(n—1)) iy
{Vgh,n> 1{IsEverly,gh.n—1,xy)}Juen=2z{z=0Odd(n) AIx=gAly=h}@0 (Abs, V)

5. {T} My:y{Vghn> 1.(IsEver{ly,gh,n—1,xy) D IsOdd(u,gh,n,xy)) } @0 (Conseq)
6. {T}x:=Mx{Vghn>1.(IsEverily,gh n—1,xy) D 1sOdd(!x,gh,n,xy))} @x (Assign)
7. {T}y:=My{Vvghn>1(I1sOdd!x,gh,n—1,xy) D IsEverfly,gh,n,xy))}@y (Conseq)
8. {T} mutualCheck

{vgh.n > 1.((IsEverfly,gh,n— 1,xy) A1sOdd(!x,gh,n—1,xy)) D
(IsEverly,gh,n,xy) A1sOdd(!x,gh,n,xy)) }@xy (A\-Post)

9. {T} mutualCheck
{¥n> 1.(3gh.(IsEvertly,gh,n— 1,xy) A1sOdd!x,gh,n—1,xy)) D
Jgh.(IsEvertly, gh,n,xy) A 1sOdd(!x, gh, n, xy)) } @xy (Conseq)

10. {T} mutualCheck{Vn.IsOddEvefn,xy)}@xy

Now we derive (7.16):

L{T}Ant :m{T}@0

2.{T}mutualCheck;!y:y
{3gh.(Ix=g A Ix=h A ¥n.IsOdd(g,gh,n,xy) A ¥n.IsEverfu,gh,n,xy))}@xy

3.{T}mutualCheck;ly:y
{3gh.(Cy A Vn.{Co}uen=2z{z= Ever(n) ACp}@Xxy) } @xy

4.{xy#ij }mutualCheck;ly:y {3gh.(xy#ij A Co A Vn.{Co}luen=2z{z=Ever(n) A Co}@xy)}@Xxy

5.{T}safeMutualEven :y {v#xygh(Cy A Vn.{Co}uen=2z{z=Ever(n) A Co}@xy)}@0

6.{T}safeMutualEven :, {Vn.{T}uen=2z{z= Even(n)}@0)}@0 (AIH)
In Line 3, we letCo =Ix=g A ly=h A V¥n.IsOdd(g,gh,n,xy) and use the axiom
{Cleed=2{C'}@€ D {C N Alee =2Z{C' A A}@E
whereA is stateless formula aril= ¥n.IsOdd(g, n, gh, xy). Line 4 is again bylnv—#.

The final line is by an application gAIH) noting (!xy)Co = T andxy#n=T, W= 0
andxy#z= T. Hence we achieve the main result.

74

8 Discussions

8.1 Summary

This paper presented a program logic for imperative higher-order functions with new
reference generation. The target languages of our preceding logics [3,17-19] do not
include local state: none of the examples treated in the present paper can be asserted
and inferred in these logics. The new axioms on reachability involving general data
types as well as higher-order functions are introduced and are shown to be effective for
reasoning about programming examples which are known to be hard in the literature
[24,32,33,40]

8.2 Related Work.

Below we discuss related works, mainly focussing on local state and freshness. Com-
parisons w.r.t. other elements (e.g. higher-order functions, aliasing, polymorphism) are
relegated to [3,17-19].

Original Local Variable Rule by Hoare and Wirth. To our knowledge, the first work
which introduced the proof rule for local variable is Hoare and Wirth's [13]. The rule is
so-called for stack variables, i.e. those local variables which are never exported beyond
their original scope. Since aliasing is not considered, the rule has the following simple

shape.
{Cle/x|}P{C'}
{C}newvar x:=ein P{C'}
This can be translated into the following rule in the context of the present logic:

{C}M:m{Co} {Col'x/ml} N:w{C} x¢ v(C)
{C}newx ;=M inN:, {C'}

which is close to, and weaker thahldwVat in Figure 4, Page 26 (hence is sound). Itis
pleasant to see that, at the level of proof rules, the only essential difference between the
original rule for local variables and the present one lies in the addition of the disjointness
condition through the #-predicate. At the semantic level, incorporation of local state in
the present logic leads to a very different model of assertions and judgement, as we
have seen in Section 4.

Development Framework. The present work proposes a compositional program logic
for a core part of ML [2, 26]Extended ML38] is a formal development framework for
Standard ML. A specification is given by combining a module’ signature and algebraic
axioms on them. Correctness of an implementation w.r.t. a specification is verified by
incremental syntactic transformatiohsrch/ML [42] is a design proposal of a Larch-
based interface language for ML. Integration of typing and interface specification is the
main focus of the proposal in [42]. These two works do not (aim to) offer a program
logic with compositional proof rules; nor do either of these works treat specifications
for functions with dynamically generated references.

75

Observational Congruence and CompletenessStark and Pitts [32, 33, 40] develop
powerful reasoning principles for behavioural equivalences on higher-order functions
using operationally based techniques. Koutavas and Wand [20] recently showed a fully
abstract bisimulation technique for the untyped version of the language treated in the
present work, and applied the techniques to several non-trivial reasoning examples.
Though in quite different settings from program logics, these works elucidate subtleties
in reasoning on higher-order functions with local state, demonstrated through many
subtle examples (such as those due to Meyer-Sieber [24]). Observational completeness
theorem precisely relates their reasoning method to our logic, suggesting a rich techni-
cal interplay.

Higher-Order Logic. Several recent works present mechanisation of Hoare logics in
higher-order logics, cf. [8, 22,29, 41]. While these works do discuss some aspects of
local state such as pointer-based data structures, they do not (aim to) offer a direct
logical treatment of either ML-like general references or their combination with higher-
order functions.

Reachability Predicate and Logics for Dynamic Data Structures. Assertion-based
reasoning methods for dynamically generated mutable data structures have been stud-
ied from early days of program logics [15], cf. [3, §10]. Nelson would be the first to
use a notion of reachability in this context [28], for reasoning about linearly linked lists
via predicate transformers. His predicate is tailored for this particular data structure,
and can be represented by the first-order part of our reachability predicate. Neither gen-
eral mutable data types, higher-order functions nor ML-like new reference generation,
which are the central elements of the present work, is treated in his work.

A basic difference between these preceding works and the present logic may be
that we take an analytical approach in which central elements of sequential (higher-
order) behaviour are distilled and stratified, to be respectively given their logical artic-
ulations. For example, aliasing and new reference generation are given separate treat-
ments: the former is treated using content quantification while the latter is captured
by freshness predicates. This leads to a uniform understanding of involved semantic
structures through a logical means. Let us discuss this point taking a concrete example.
The following is Burstall’'s example for mutable list cells, already given in Section 2.1,
Example 2.2, Page 6.

L £ x:=cons(0,nil) ; y:=cons(2,1X) ; car(!x) :=1

Assuming the preconditiofix # y}, the first command leads to:
vhl.(Ix=(h,1) ATh=0A !l =nil) (8.1)
Then we obtain:
vh L 1 (ly= (W IYA N =2A1"=xAIx=(h1) AtTh=0A !l =nil) (8.2)
Finally, after the third line, we get:

Vh LIV (ly= (W1 AR =2 A 1" =xA Ix=(h1) A th=1A Il =nil) (8.3)

76

Note v hIlI’.C entails, by definition, these new references are mutually distinct. The
reasoning above is analytical, but it has the merit, in comparison with the methods used
in the above cited preceding works in that we only have to apply a general proof rule to
obtain these assertions.

The analytical presentation given above can be rendered into more efficient and
readable format (both for assertions and for reasoning) by introducing short-hand no-
tations without changing semantics. For example, we may veitée) for a new ref-
erence which containsas its content (so, for exampbe= (ref(0),ref(1)) stands for
Vij.(x= (i, J) Ali =0AIl]j =1)). Then the first assertion becomes:

Ix= (ref(0),ref(nil)) (8.4)
The second one:
ly=(ref(2),ref(x)) A Ix= (ref(0),ref(nil)) (8.5)
And the third assertion:
ly=(ref(2),ref(x)) A Ix= (ref(1),ref(nil)) (8.6)

which are much more tractable than the original ones (we may further simplify the
structures using the constructor for a mutable list). Derivation of these simplified asser-
tions can use corresponding proof rules. We believe studying various reasoning methods
proposed in this domain in the light of the present logic would lead to enrichment of
reasoning methodologies for mutable data structures on a uniform basis. Among the ex-
isting threads of work, we later discuss how the present framework compares and inter-
acts with the reasoning method based on separating connectives by Reynolds, O'Hearn,
Bornat and others taking concrete examples.

Separation Logic. Reynolds, O’'Hearn and others [5, 30, 37] propose, and experiment
with, separating conjunctiofior Hoare logics of aliasing and dynamically generated
data structures. As Reynolds shows [37], their conjunction is effective when data struc-
tures do not have non-trivial sharing, as in trees. When sharing is non-trivial, both
assertions and reasoning tend to become highly complex in their approach: practical
treatment of data with complex sharing is left open in [5]. One of the main issues lies
in the need to encode the whole of a (concrete) target data structure as a formula, de-
manded by the use of separating conjunction itself [5]. Not only does this mean the
size of concrete formulae grows in proportion to that of treated data structures, but also
the construction of the encoding itself becomes onerous for e.g. dags and graphs. In
contrast, our approach allows concise description of such notions as isomorphism with-
out such encodings, as shown in §7. Proposition 7.1 also shows that assertions based
on reachability offer accurate specifications entailing separation. The present logic also
differs in that it can treat (stored) higher-order functions and general data types such as
products, sums and polymorphism. Results similar to observational completeness may
not have been reported for their logics.

Recent work by Birkedal et al. [4] presents a type system for Algol whose types
are constructed from formulae of Separation Logic and whose typing is performed by

77

logical entailment, formalised by categorical semantics. Their type system does not
allow compositional logical reasoning for higher-order constructs, nor does it offer ax-
ioms for calculating entailment, which is at the heart of Hoare logic’s practical use.
Their higher-order frame rule captures only static compositionality, hence cannot rea-
son about dynamically allocated data structures we studied in Section 7.

Logics for Fresh Names.Freshness of names is recently studied from the viewpoint of
formalising binding relations by Pitts and Gabbay [9, 34]; and Miller and Tiu [25]. In the
work by Pitts and Gabbay, First-Order Logic is extended with constructs to reason about
freshness of names based on the theory of permutations. The key syntactic additions are
the (interdefinable) “fresh” quantifief and the freshness predicate #. The latter work
by Miler and Tiu [25] is motivated by the significance of generic, or eigen, variables and
quantifiers at the level of both formulae and sequents, and splits universal quantification
in two, introduce a new quantifiét and develop the corresponding sequent calculus of
Generic Judgements. While these works are not done in the context of Hoare logic, their
logical machinery may well be usable in the present context, for example in refinement
of axiomatisation of reachability including function types (which is one of the important
future topics).

8.3 Future Work.

While equational reasoning for higher-order functions with local state have been studied
in the literature (as discussed above), ours would be one of the initial trials to articu-
late this realm logically in Hoare-like assertion methods. In § 6 and 7, we have shown
how axioms for reachability play a central role in non-trivial reasoning with local state.
Clearly logical transformations needed to reach desired judgement in the present logic
(cf. 8 7) demand syntactic axioms which go much beyond number theory: some of the
useful axioms for higher-order functions and aliasing are studied in [3, 17, 19], while
those involving fresh names and reachability predicate are discussed in the present pa-
per. A further study on axiom systems, their logical status and their practical use com-
bined with existing tools [7] would be an interesting future research topic.

Several recent proposals of safe low-level languages are inspired by ML, including
[11,27,39]. Since higher-order functions and local state are their central elements, it
is interesting to extend the present logic to these languages. Another related interest is
validation of library functions such as Gia11oc which implement new reference gen-
eration, where the propertieséw should be derivable in a logic rather than stipulated.

78

References

N -

10.

11.

12.
13.

14.
15.
16.
17.
18.

19.

20.

21.

22.

23.
24,

25.

26.

. Standard ML home page. http://www.smlnj.org.
. The Caml home page. http://caml.inria.fr.
. Martin Berger, Kohei Honda, and Nobuko Yoshida. A logical analysis of aliasing for higher-

order imperative functions. I'lCFP’05, pages 280-293, 2005. Full version is available at:
www.dcs.qmul.ac.uk/kohei/logics.

. Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics of separation-logic typing

and higher-order frame rules. Rroc. LICS pages 260-269, 2005.

. Richard Bornat, Cristiano Calcagno, and Peter O'Hearn. Local reasoning, separation and

aliasing. InWorkshop SPACE2004.

. R.M. Burstall. Some techniques for proving correctness of programs which alter data struc-

tures.Machine Intelligence7, 1972.

. David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for program

checking.J. ACM 52(3):365-473, 2005.

. Jean-Christophe Filliatre. Verification of non-functional programs using interpretations in

type theory.JFP, 13(4):709-745, 2003.

. Murdoch Gabbay and Andrew Pitts. A New Approach to Abstract Syntax Involving Binders.

In Proc. LICS '99 pages 214224, 1999.

Irene Greif and Albert R. Meyer. Specifying the Semantics of while Programs: A Tutorial
and Critique of a Paper by Hoare and Lau®€M Trans. Program. Lang. Sys8(4), 1981.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James Ch-
eney. Region-Based Memory Management in Cyclondé2UB1'02. ACM, 2002.

Carl A. Gunter.Semantics of Programming Languag®8iT Press, 1995.

Hoare and Wirth. Axiomatic semantics of pascaACM Trans. Program. Lang. Syst.
1(2):226-244, 1979.

Tony Hoare. An axiomatic basis of computer programmi@G&CM, 12, 1969.

Tony Hoare. Notes on data structurirtructured Programmingages 83-174, 1972.

Tony Hoare and He JifendJnifying Theories of ProgrammingdPrentice-Hall International,
1998.

Kohei Honda. From process logic to program logic. IGFP’04, pages 163-174. ACM
Press, 2004.

Kohei Honda and Nobuko Yoshida. A compositional logic for polymorphic higher-order
functions. INPPDP’04, pages 191-202, 2004.

Kohei Honda, Nobuko Yoshida, and Martin Berger. An observationally complete program
logic for imperative higher-order functions. Rroc. LICS’05 pages 270-279, 2005. Full
version is available at: www.dcs.gmul.ac.uk/’kohei/logics.

Vasileios Koutavas and Mitchell Wand. Small bisimulations for reasoning about higher-order
imperative programs. IRroc. POPL, 2006.

Peter Landin. A correspondence between algol 60 and church’s lambda-notatamm.
ACM, 8:2, 1965.

Farhad Mehta and Tobias Nipkow. Proving pointer programs in higher-order lagicma-

tion and Computation159:200-227, May 2005.

Elliot Mendelson.Introduction to Mathematical LogicWadsworth Inc., 1987.

Albert R. Meyer and Kurt Sieber. Towards fully abstract semantics for local variables. In
POPL'88 1988.

Dale Miller and Alwen Tiu. A proof theory for generic judgment&CM Transactions on
Computational Logicto appear.

Robin Milner, Mads Tofte, and Robert W. HarpeFhe Definition of Standard ML MIT
Press, 1990.

79

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.

43.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed assembly
language ACM Trans. Program. Lang. Sys21(3):527-568, 1999.

Greg Nelson. Verifying reachability invariants of linked structures.P@PL '83 pages
38-47. ACM Press, 1983.

Zhaozhong Ni and Zhong Shao. Certified assembly programming with embedded code
pointers. INPOPL'06, 2006.

Peter O’Hearn, Hongseok Yang, and John C. Reynolds. Separation and information hiding.
In POPL'04, 2004.

Benjamin C. PierceTypes and Programming LanguagésIT Press, 2002.

A. M. Pitts. Reasoning about local variables with operationally-based logical relations. In
Algol-Like Languagesvolume 2, chapter 17, pages 173-193. Birkhauser, 1997. Reprinted
from LICS’06.

A. M. Pitts and |. D. B. Stark. Operational reasoning for functions with local statdigher

Order Operational Techniques in Semantipages 227—-273. CUP, 1998.

Andy M. Pitts. Nominal logic, a first order theory of names and bindilmgormation and
Computation186:165-193, 2003.

John C. Reynolds. Idealized Algol and its specification logic. Tdols and Notions for
Program Construction1982.

John C. ReynoldsTheories of Programming Languagé3ambridge University Press, 1998.
John C. Reynolds. Separation logic: a logic for shared mutable data structuté€S02,

2002.

Donald Sannella and Andrzej Tarlecki. Program Specification and Developemnt in Standard
ML. In POPL'85 pages 6777, 1985.

Zhong Shao. An overview of the FLINT/ML compiler. 1997 ACM Workshop on Types in
Compilation (TIC'97) 1997.

lan Stark. Names and Higher-Order Function®hD thesis, University of Cambridge, De-
cember 1994.

David von Oheimb. Hoare logic for mutual recursion and local variableSSIRTCSvolume

1738 ofLNCS pages 168-180, 1999.

Jannette Wing, Eugene Rollins, and Amy Zaremski. Thoughts on a Larch/ML and a new
Application for LP. InFirst International Workshop on Larch, Dedham 19%&ges 297—

312. Springer-Verlag, 1992.

Glynn Winskel. The formal semantics of programming languages$T Press, 1993.

80

A Proof of Axioms in Remark 6.11

In this appendix we prove:

Proposition A.1 Assume is recursively finite and thaRef([3) does not occur if8 up
to the type isomorphism. Then the following assertion is valid, i.e. is true in any model:

WXV £xj#x) D ()% = xRB) = [1x](i% — xRfB)) = jo@ ., xRef(B))
(A1)
which is equivalent to, through dualisation:

(VXViX£xj#x) D (IiT#xRfB) = 1xi9#xRefB) = xRefB)) (A2)

PrROOF Assumep is recursively finite and theRef(f3) does not occur i3 up to the
type isomorphism. Further let:

M E §)E KB, 0] W)
Now suppose we have:
M =YX VX £ X j#x.

That is we can set, without loss of generality, thaiccurs neither ir§ nor in g, and
thatj = {x}. Note furtheMW can never contain any datum from which one can reach
by the shape d8. By trivial operational reasoning, there is no possibility to hiave x
except when we havie= x. Thusi < x is equivalent ta = x whose validity does not
depend on the content &f as required. O

B Graph Copy

Assertion for Main The main body ographCopy, Main, uses a “scratchpad; just as
the dagcopy. Thus its specification needs to say how the program changes the original
scratchpad to a new one. The assertion, writge(r,i)(u), is given as follows.

ge(ri)(u) =
g, org.
{Ix=o0rg A conPre(org,g,r) A g¢ dom(org) D sizeR(g,r,i)}
ueg=gd
{877 | 3z(zZ) €!x A (zZ) ¢ org}.
((g € dom(org) DIx=org) A
(g & dom(org) D (conPost(!x,g,r) Alx=o0rgu(g,d');))) }@x

Roughlygc(r,i)(u) says:

81

u can create an isomorphic copy of an original graph as far as “its size relative
to a root node r” (this notion is made precise later) is no more than i, together
with a consistent change in the content of the scratchpad.

When the argument graph is already in the scratchpathes nothing. Note the the
predicategc(r,i)(u) has the same structure dst (u). The predicates used above intu-
itively mean:

— sizeR(g,r,i) says the size df relative tor isi.

— Ix=orgrecords the initial table iorg.

— conPre(org,g,r) saysorg is consistent as far as those nodes “befgrgd, relative
tor.

— underR(z,d',r) saysz is “under” ¢ relative tor. z ¢ cod(org) saysz is in the
codomain of the tablerg.

— conPost(!x,g,r) saysx contains a table which is consistent as far as those nodes
“under” or “before”g go, relative tar.

— {(g,d); is the pairs of nodes “downwardly reachable” frgrandg’ with common
paths.

The formal definitions of these predicates are given below.

Associated PredicatesPredicates used for definigg(r,i)(u) are defined below. Through-
outg,d’,h,h' r,... are of typeTreg while p, p/, ... are paths.

1. Rooted Lexicographic Ordering/Ve use the standard lexicographic order on paths,
with left smaller than right, a prefix smaller than the whole. To wit, letiing q denote
p is a prefix ofq:
P=q PEq PEq -
pEq LpClg rptrg lpCrg
SinceL is the total order, the following predicate is well-defined:

minpathR(r,g, p) = path(r,g,p) A Vp'.(path(r,g,p’) D pC p)

ThusminpathR(r,g, p) asserts the shortest path frorto g is p.
Assumeg; » are reachable from. Then we can ordey; » relative tor using their
minimal paths as follows:

o
=

e

01 5r 92 = 3pr2.(Ai=r2minpathR(r,gi, pi) A p1C p2)

01 C; g2 says the shortest path from the rodb g2 goes viag;. This ordering reflects
the program’s behaviour: d; =, g2 graphCopy (starting fromr) will reachg; before
92.

2. Rooted Prefix OrderingThe rooted prefix relation is definable as follows:

(=X
-

52

O1 <r % = 3pr2.(Ai=r2minpathR(r,gi, pi) A p1 < P2)

82

3. Rooted Closure OperatiorThe closure operation is defined as:

(90,0); &

{{9,9) I 9o =r 9, Ip.path(go, p,9), path(gy, p,d’)}

That is, (o, gp); is the set of “downwardly reachable” nodes frgmandgy, through
common paths.

4. Rooted “Before” Predicate We define the notiond is beforeg, relative tor”.

beforeR(g1,02,r) = (91 Cr g2 A =01 <r G2)

ThusbeforeR(g1,02,r) wheng; is less tharg, but g; is not a prefix ofgy. In other
words, it says thag; is less tharg, but not “above’gy, i.e. is not in the minimum path
betweerr andgp.

5. Rooted “Under” and “Above” Predicate.The notion ‘9 is underg, relative tor”
is nothing butgy < g1.

underR(g1,02,r) = G2 <01

Dually we define “above” as:

aboveR(g1,02,F) = 01 <r Q2

Intuitively, underR(g1,02,r) saysgy is betweenr (uppermost) and); (below) w.r.t.
minimal paths, whilaboveR (g1, 92, 1) saysg: is between (uppermost) and, (below)
w.r.t. minimal paths.

6. Rooted SizeThe predicataizeR(g,r,i) says that the number of nodes downwardly
reachable frong w.r.tr isi. It is defined by induction on (we give natural language
definitions, from which their formal counterparts easily follow).

— sizeR(g,r,1) holds iff, as well agy is reachable from, eitherg is a leaf or the two
branches of are abovey.

— sizeR(g,r,n+1) (n > 1) holds iffsizeR(g, r,n) for someg’ such that' is an imme-
diate child ofg and, moreovery is strictly belowg (w.r.t. r).

For completeness, we set the predicateR(g,r,0) holds iff g is not reachable from.

7. Weak Consistency (1)The consistency conditions for the table relating original
nodes and newly created nodes use the following “one-step isomorphism”.

is01((g1,91), (92, %))
= /\i:|.r(path(gla i792) = path(gél_a |7g/2)) A
vn.(atom(!gy,n) = atom(!gy, n)) (B.1)

83

Note the directedness of the predicate. The consistency used in the pre-condition is
given as:

conPre(t,qg,r)
= Vgo.((beforeOrAboveR’(go,g,r) O go € dom(org)) A

V012,012
((beforeR'(g1,9,r) A beforeOrAboveR'(g2,0,r) A

(91,01), (92, 92) €t)
D iso1((91,91), (92,92)))

where we set, for brevity:

beforeR'(h,g,r) %' h# gAbeforeR(h,g,r)

beforeOrAboveR(h,g,r) et beforeR(h,g,r) v aboveR(h,g,r)
52

beforeOrAboveR’(h,g,r) &' h+ g A beforeOrAboveR(h,g,r)

Note the first and third predicates define strict versions of “before” and “before or
above” relations. The consistency condition says:
1. All nodesstrictly before or above are indom(org);

2. if g1 (source) is strictly “beforeyy and if g, (target) is strictly “before” or “above”
0, one step path frorg; to g» coincides with the path between the corresponding

fresh nodes.

As further observations:
— By using one-step path, we are avoiding a round-about path going through nodes

“after” g.
— Those nodes “abovejhave already been placeddom(org), but their correspond-

ing fresh nodes usually point to only a temporary datum, so that affmsthsuch

a node may not be shared between the domain and codomatig. of
— A pathto a node abovg from those which are strictly “beforej (i.e. those which

are processed) should already be isomorphic.
8. Weak Consistency (2)The consistency for the post-condition is similarly given,
adding those nodes undgas its source.
conPost(t,g,r)
= V0o.((aroundR(go,9,r) D go € dom(t)) A

V912,012
((beforeOrUnderR(g1,0,r) A aroundR(gz2,g,r) A

(91,91), (G, Gh) €1)
D isol((g1,01), (92,92)))

84

where, for brevity, we set:

beforeOrUnderR(h,g,r) def beforeR(h,g,r) Vv underR(h,g,r).
aroundR(h,g,r) &' beforeR(h,g,r) v underR(h,g,r) v aboveR(h,g,r)

The second consistency condition says:

1. If go is “before”, “under” or “above’y, thengp should be irdom(org).
2. If g1 (source) is “before” or “undery and if g» (target) is “before”, “under” or

“above”g, then one step path from to g» coincides with the corresponding newly
created nodes.

The condition is essentially identical with the pre-consistency above except those nodes
“under” g are incremented.

8. Main Intermediate Assertion Revisiteflt this point it may be valuable to revisit the
main intermediate assertion, which we reproduce below for readability:

ge(r,i)(u) d:‘Eng,org.
{Ix=o0rg A conPre(org,g,r) A g¢ dom(org) D sizeR(g,r,i) }
ueg=gd
{747 | 3z((z.Z) €'x A (z,Z) € org)}.
((g € dom(org) D!x=org) A
(g € dom(org) D (conPost(!x,g,r) Alx=orgu(g,d');))) }@x

We may observe the following correspondence between the main assertion and the
program’s behaviour.

— sizeR(g,r,1) does decrease when the program visits one of the brancigestoth
is strictly underg: and if its branch is not strictly undey, then that branch has
already been processed, i.e. has already been pladethiforg).

— If gis notindom(org) hence it has indeed been processed, then those nodegunder
are newly included in the table, together with corresponding freshly created nodes,
except for those which are not in the codomairowg.

— The domain of the table further adds those nodes downwardly reachablg &nadh
g, whereas its codomain adds their corresponding nodes.

Thus the assertion is nothing but logical articulation of behaviour of the main program.
For brevity, we shall callGP and GG for the precondition and postcondition of
ge(ri)(u):

GP ® 1= org A conPre(org,g,r) A g ¢ dom(org) D sizeR(g,r,i)
GG £ X7 |32((zZ) eix A (27) ¢ org)}.
((g€ dom(org) D!x=org) A

(g & dom(org) D (conPost(!x,g,r) A!x=0rgu(g,d’);))

85

When we appl\Main to the root node, we should be able to derive:

£7{Zg— z}. x=(g,d'); (B.2)

after invokingu with argumentr (the root node), under the assumptionsdfg = 0;
and (2)vr,n.gc(r,n)(u).

Let us check that this is indeed possible, i.e. the pre-cond@Bris indeed satis-
fied and, fromGG under the conditions (1) and (2), we can derive (B.2). For the pre-
condition, it suffices to showonPre(org, g,r). However becauseeforeR(h,r,r) =h=
r and becauseeforeOrAboveR’(h,r,r) never holds for any, we immediately know
conPre(0,q,r), so thatGP holds.

For the postcondition, we calcula®G underorg =0, g=r andg =r’. First, the
content ofx becomes:

IX = 0U(r,r'); (B.3)

This entails the first condition afonPost(!x,r,r). Further, by the second condition of
conPost(!x,r1,r), we know

V01,2,012-(Ai=1.2(01,Gi) €!x D iso1(((g1,91), (92,02)))

Similarly for the remaining condition.
Second, the condition for ea¢i-fresh nodey’ becomes:

Jz.(underR(zr,r) A (z.d) €!X)
By (B.3), this is the same thing ag: <, I, that isr’ — ¢/, as required.
Derivation (1): The Whole Program For the derivation for the whole program, we

use:
U' = {z|r'—z A z¢cod(org)}

The derivation follows.

u:{T} (abs)
lambda r.
g {T} (new)
new x:= 0 in
r': {Ix=0} (app)
m:{T}
Main
{vr,n.ge(r,n)(m)} @0
r
{IX=0A{Ix=0}mer=r'{#>*U".iso(r,I') } @x} @0
{#XU iso(r,1r')} @x
{*r".iso(r,1") } @0
{vg{T}ueg=g'{xg'"iso(g,¢') } @0} @D

© ® N o o A W N e

RS
N Pk O

i
w

The structure is identical with the derivation for the dagcopy. Since many points overlap
with the reasoning in §87.3, we only discuss the main difference.

86

— In1.11, the application is inferred usingpp#].

— Froml.11tol.12, we use theNew] rule. Let, for brevityM % Main andC Lix = 0.
Note the sub-derivatioh5-12 meangC}M{#*U".iso(r,r')}, that is, withi fresh
(cf.(7.4)):

{CIM{VZ((r" — zAX#i) D z#i) Aiso(r,r') } @x

By [New], we can strengthe@ by taking its conjunction withi. Just as in the
corresponding part in dagcopy (cf.87.8}i is Ix-free via (6.2), page 37, Section
6.1. By [Inv] we obtain:

{CAX#IIM{VZ(r" — zD z#i) Aiso(r,I") } @x

that is
{CAx#iI}M{xr"iso(r,r") } @x.

Since New allows us to cancet in the pre-condition, we obtain12.

Derivation (2): NewEntry Since the derivation fdfewEntry is already given in §7.3,
we only list the outermost derivation.

o |m:{T}
2 NewEntry
s | {NE(m)}@0

Derivation (3): Main The main body of the program is derived just as in 87.3: the only
notable difference is how the inductive case is inferred.

u:{T} (rec)
mu f.
u:{Vvj<n. ge(jf)} (abs)
lambda g.
g : {sizeR(g,r,n) A !x=o0rg A conPre(org,g,r)} (if)
if dom(! x,g) then
g : {gedom(!x)}
get (! x, 9)
{Ix=o0rg A {(g,d) €!x}@0
{GG}@0
else
d:{ggdom('x)} (case)
case !g of
inl (n):
g:{T}
NewEntry (inl (n), Q)
{#*d.(Ix=o0rguU(g,g’) A conPre(org,g,r) A
atom(lg,n) A atom(!d,n))}@x
{GG}@x

© ® N o a A~ W N

R O S
N o o A ®w N P O

.
©

i
©

87

20 inr (pair <gl, g2>):

21 qg:{T}

22 let h =

23 NewEntry (tmp, g) in
2 h = inr (pair <f yl, f y2>);
25 éGG[h/g/]}@x

27 {GG}@x

28 {GG}@x

29 {GG}@X

w | {ge(ri)(u)}@o

a | {Vr,i.ge(r,i)(u)}@0

Above we make explicit the constructpair for paring, for a later convenience. As
before, when two assertions are repeated in consecutive lines (such as Line 9 and Line
10), it means the previous assertion implies the following one.

Note the structure of the inference is essentially identical with thaddgCopy.
As in the main program ofiagCopy, the program processes its argument, in three
different ways, depending on three sub-cases of

(A) gis already in the table;
(B) gis notin the table and is a leaf; and
(C) gis notin the table and is a branch.

In the following pragraphs, we treat each case one by one.

(A) No Processing.This is treated in Lines 7-11. The only non-trivial inference is to
show Line 9 implies Line 10, i.e.:

Ix=org A (g,d)€lx D GG
Since k = org, thef-fresh names become, from+ org:
{d'132((zd) eix A (zd) Zorg)} = 0.

Next, from(g,d’) €!x we obtaing € dom(org), in which case5G says we should have
Ix = org, which indeed holds. Thus we have:

Ix=org A (g,d) €lx= £70. (g € dom(org) D!x = org)
= GG

We have arrived at Line 10.

(B) Base CaselLines 15 to 19 treat the base case, i.e. the case when (1) the argument
is not in the table (has not been processed) and (2 leaf with valuen. Lines 17/18

is inferred using X-freedom ofconPre(g, org, r), which is easily shown by noting all
terms used ironPre(g, org, r) cannot reack (we omit the formal reasoning). The only

88

non-trivial inference is derivation of Line 19 from Lines 17/18. It suffices to show, again
using X-freedom ofconPre(g, org, r):

conPre(g,org,r) A Ix=orgu(g,g’) A atom(!g,n) A g¢ dom(org) (B.4)

entailsGG.
First, for thef™-free names, a trivial set-theoretic reasoning gives us, under (B.4):

{Z | 3z((z.Z) €!x\org)} (B.5)
Second, we derive the body, i.e.

(g € dom(org) D!x=org) A
(g & dom(org) D (conPost(!x,g,r) Alx=o0rgu(g,g’)}))

Sinceg ¢ dom(org), it suffices to derive:
conPost(!x,g,r) A'x=o0rgu(g,g');)

Sincegandg’ are atoms(g,d’); = (g,d'), hence we only have to derizenPost(!x,g,r)
from (B.4). First we note, becaugds an atom:

underR(h,g,r) = {g} (B.6)
We recallconPost(!x,g,r) has the shape:

Vgo.(aroundR(go,0,r) D go € dom(!x)) A
V01,2, »-((beforeOrUnderR(gs,9,r) A aroundR(g2,0,r) A (01,07), (g2,) €L)
D isol({91,07), (92,9)))

For the first component, under (B.4) hence (B.6):

Vgo.(aroundR(go, g,T) D go € dom(!X)) < Vgo.(beforeOrAboveR(go,d,r) D go € dom(!X)))
< conPre(org,g,r).

where .
beforeOrAboveR(h,g,r) % beforeR(h,g,r) Vv aboveR(h,g,r)

The second component is equivalent to:

V912,09 »-
((‘beforeR(g1,0,r) A beforeOrAboveR(g2,0,r) A (01,09}),(02,05) €t)
D is01((g1,9}), (92,95)))

which is easily implied by (B.4) (to be precise bynPre(org,g,r) andatom(!g,n)), as
required.

89

(C) Inductive CaseWe show the inductive case, the secanade construct, when the
argument is not in the table and it is a branch.

We first present the asserted program fragment excepting the inference for the two
recursive calls (which is detailed next).

1 [{Ix=o0rg A conPre(org,g,r) A g¢dom(org)}
2 | {Vi<j. ge(i,r)(f) A sizeR(g,r,j)}
s | ¢ : {branch(!g9,01,02)} (1let)

4 |let h =

5 g:{T}

6 NewEntry (tmp, g) in

7 {#7d . (x=0rgU{(g.9)})}

s [0:{.} (seq)

9 {T} (assvar#)

10 h:= inr (pair <f g1, f g2>);
s | {GGh/g]}@x

12 h

1 | {GG}@x

The inference above is mechanical except for the omitted part, the reasoning for the
inr((fgi, fg2)).

1 | {g¢gdom(org) A Ix=orgu(g,d’) A conPre(org,g,r)}
2 | {Vi<j. ge(i,r)(f) A sizeR(g,r,]))}
s |{branch(!g,01,92)}

4 In:{T} (inr)

s |inr

6 m:{T} (pair#)

7 pair

5 g :{T}

9 f gl

10 {GG(g1,9),0rg)} @x

11 glz{}

12 f g2

i
w

{GGL(91,92,9;,9,,0rd') } @x
{GG2(g1,92,m,org’) } @x
{GG3(91,92,n,0rg') } @x

[
I

.
o

90

Above we use a parametrised versiorGgb and its refinements:

def

GG(g,d',0rg) {1{Z | 3z((zZ) €lx A (z,Z) ¢ org)}.
((g € dom(org) D!x=org) A
(g & dom(org) D (conPost(!x,g,r) A!x=o0rgu{(g,d');)))
{7472 | 3z((z,Z) €'x A (z,Z) € org)}.
((g1.2 € dom(org) D!x=org) A
((g1.2 € dom(org) D!x=org) O

(conPost(!x,g,r) Alx=orgJ U (Gi,d)7)) A
=12

((91 € dom(org) A gz € dom(org)) D
(conPost(!x,g,r) Alx=0rgu(gz2,gb);)) A
((gz2 € dom(org) A g1 & dom(org)) D
(conPost(!x,g,r) A!x=0rgu(gs, d1))))
GG2(g1,g2,morg) = 3gh,.(M= (g, 0) A GGL(g1, 02, 6, G5, 0r))

GGs(gL g2,N, Org) ElgiZ'(” = inr(<g§b g/2>) N GGl(gla O2, gél.v g/2a Ol’g))

%

GG1(01,92, 1,95, 0rQ)

Il

We observe:

— From Line 13 to Line 14, i.e. fron®G1(g1,92, 0}, 95, 0rg) to GG2(gy, g2, m,0rg),
is direct from the proof rule for pairing.

— From Line 14 to Line 15, i.e. fron®G2(g1, g2, m,org) to GG3(gs, gz, n,0rg), is
direct from the proof rule for injection.

Thus the only non-trivial inferences in the reasoning above are before and after each re-
cursive application, which we discuss below (the following natural language inferences
are for clarity and can be easily made into formal inferences).

First Application. We show the assumptions in Lines 1-3 together imply the following
precondition for the first application. Once this holds, then by the induction hypothesis
on f, we immediately obtain the postconditidBG(g1,g;, org). Below and henceforth

we setorg0 d:‘aforgu (9,d).
conPre(org,g1,r) A g1 & dom(org0) D sizeR(gs,r,Nn)

In other words, we should show Lines 1-3 entail:

(@) conPre(org0,qgs,r).
(b) If g1 & dom(org0), thensizeR(gs, r,k) such thak < n.

We noteg; can be located either:

(i) beforeg;

91

(iiy aboveg; or
(iii) strictly belowg.

Condition (a). We obtainconPre(org0,gs,r) by inspecting each of its component.
Firstly we can easily derive

vh.((beforeOrAboveR’(h,g1,r) D h € dom(org0))

from
vh.((beforeOrAboveR’(h,g,r) D h € dom(org))

through the assumption, in any of (i), (ii) and (iii). Secondly, we already know one-step
isomorphism with the following source and target:

— beforeR(hy,g,r) as a source.
— beforeOrAboveR(hy,g,r) as a target

If (i) is the case, since “abovej; is already before or abowg the same holds for
g1. If (i) is the case, those “abovej; are a subset of those “abovg; similarly for
“before”, hence done. If (iii) is the case, the “above” nodesgdshile “before” nodes
are unchanged. However in this case no other edges can exist from the nodes strictly
beforeg (since if sog; itself should be strictly beforg), hence as required.

Secondly, for the second component:

Vhy 2, M.

((beforeR(hy,g1,r) A beforeOrAboveR’(hy,g1,r) A
(ha, h), (hp, hy) € 0rgO)
D isol({hy,h}), (hp,h5)))

Again we derive this assertion from the pre-conditiongor

Vhy 2, b o

((beforeR(hlagar) A beforeOr/—\boveR’(hz,g,r) A
(h1,hy), (hg,h5) €org)
D isol({hy,h}), (hp,h5)))

By the reasoning for the first component, we already know the only case when new
edges (one-step paths) should be considered is whehdom(org), i.e. when (jii)
holds. In this case, however, there is no path from “before” nodgs &3 noted, hence

in fact there is no additional one step path, as required.

Condition (b). This is easy:

1. If (i) and (ii) hold, then by the pre-consistency we kngve dom(org), a contra-
diction.

2. If (iii) holds, then by definition we know the minimum path fromto g; strictly
includes the one fromto g, i.e. (b) holds.

92

hence as required.
Second Application.We haveGG(g1, g}, 0rg) together with assumptions in Lines 1-3
except for replacingd = org with !x = orgl, where we sebrgl to beorgOU (g1,9;)
(which is, in detail, equal torgQ if g1 € dom(org); and toorgOU (g1, d}) if else).

We first show this is enough as the precondition for the second recursion. As before,
we need to show:

(@) conPre(org’,gz,r).
(b) If g2 € dom(org), thensizeR(gz,r,k) such thak < n.

Again g, can be located either:

(i) beforeg;
(iiy aboveg; or
(iii) strictly belowg.

Condition (a). The first component afonPre(ord’, gy, 1) is:
vh.((beforeOrAboveR’(h,gz,r) D h € dom(orgl))

The reasoning is essentially the same agyfdiexceptg; itself can be “before®,):

— If (i) or (ii) is the case, i.e. ifgy is before or above, then surelyy, is already in
dom(org).

— If (iii) holds, thenbeforeOrAboveR’(h, g,r) may entaih = g orh =gl in addition:
however we already knogandg; are indom(org), hence done.

For the second component, we wish to have:

Vhl,27h/l72'
((beforeR(hy,g2,r) A beforeOrAboveR’(hy,g2,r) A
{h1,hy), (he, o) € orgl)
> isol((hy,), (he,h3))) (B.7)

In order to derive the assertion (B.7) from the immediately preceding postcondition, we
observe there are two cases.

(a-1) g1 ¢ dom(org0), in which case all undeg; are inorgl and, moreovetonPost(gy,0rgl,r)
does hold.

(a-2) g1 € dom(org0), in which case nothing has happened in procesgingo that we
haveorgl = org0.

We further note:

(1) If gz is before or above, then (1)beforeR’(hy, gz, r) impliesbeforeR(hy,g,r); and
(2) beforeOrAboveR’(hz, gz, r) impliesbeforeOrAboveR’ (hy, g, r).

(Il) If gz is strictly belowg, then we have (IeforeR’(hy, gz, 1) impliesbeforeR(hy, g, r)
or, if (a-1) above holdsh; is g; or a node strictly belowg; (if any); and (2)
beforeOrAboveR’(hy, g2, 1) impliesbeforeOrAboveR’(hy,g,r) orhy = gor, if (a-1)
above holdsh; is g; or one of the nodes strictly belogy (if any).

93

We first consider the caga-1). We then have:

conPost(orgl,gl,r)
= Vh.((aroundR(h,g,r) D h € dom(orgl)) A
Vhyo, b o.
((beforeOrUnderR(h1,91,r) A aroundR(hz,01,r) A
{(hy, 1)), (hp,) €orgl)
D isol((hy, hy), (h2,h)))) (B.8)

If (1) is the case, then the isomorphism in (B.8) subsumes that of (B.7) since (because
0, is strictly belowg) (1) beforeR(hy,g,r) implies beforeOrUnderR(hy,g1,r) and (2)
beforeOrAboveR’(hy,g,r) implies aroundR(h,,gs,r). The case when (ll) holds is im-
mediate from the definition.

We next consider the caga-2). In this case we have, in addition to beiggbeing
above or beforg:

Vhl,27h€|.,2'
((beforeR'(hy,g,r) A beforeOrAboveR’(h,g,r) A
(hy,hy), (h2,hp) € orgl)
S isol({hy, 1), (haut))) (B.9)

Next assume is strictly belowg (if not, we already know the required result is vacu-
ous). Then we have:

— beforeR(hy,gp,r) impliesbeforeR(hy,g,r), sinceg; does not count any more.
— beforeOrAboveR’ (hz, g2, 1) impliesbeforeOrAboveR’ (hy,g,r) or hy = gs.

Thus it suffices to consider the edgegtdrom those nodes iheforeR(hy, g, r). How-
ever such edges cannot exist siiggés strictly belowg, hence done.

Condition (b). Again if (i) and (ii) hold, then by the pre-consistency we kngwe
dom(orgl). Hence (iii) is the only possibility, in which cage<; g, immediately holds.

Finally, the postcondition of g, becomesG2(gs, g2, m,org) since the content of!
becomew®rgl itself if g, € dom(org) andorglU (gz,d5); if g2 & dom(org); while the
addedt™-fresh names are simply incremented using the induction hypothesis, hence
done.

This concludes the inductive case, hence the derivation of the main judgement for
graphCopy.

94

