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Abstract. We introduce an extension of Hoare logic for imperative higher-order func-
tions with local state. Local state may be generated dynamically and exported outside its
scope, may store higher-order functions, and may be used to construct complex shared
mutable data structures. The induced behaviour is captured with a first order predicate
which asserts reachability of reference names. The logic enjoys a strong match with the
semantics of programs, in the sense that valid assertions characterise the standard con-
textual congruence. We explore the logic’s descriptive and reasoning power with non-
trivial programming examples manipulating dynamically generated local state. Axioms
for reachability play a central role for reasoning about the examples.
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1 Introduction

Local State in Imperative Higher-Order Programming. New reference generation
in ML-like languages [1, 2] is a powerful programming primitive. First, a newly cre-
ated reference is hidden from the outside, enhancing modularity through localisation of
read/write effects. Consider the following program:

Inc
def= let x = ref(0) in λ().(x :=!x+1; !x) (1.1)

We use standard notation [31]: in particular,ref(M) returns a fresh reference whose
content is the valueM evaluates to. !x is dereferencing of an imperative variablex.
When the anonymous function inInc is invoked, it increments the content of its local
variablex, and returns the new content. Thus the procedure returns a different result
at each call, whose source is hidden from external observers. This is different from
λ().(x :=!x+1; !x) wherex is globally accessible.

The use of local state is also a source of representation independence. As an exam-
ple,

Inc2
def= let x,y = ref(0) in λ().(x :=!x+1;y :=!y+1; (!x+!y)/2) (1.2)

realises the same observable behaviour asInc. But if x or y is not local, they clearly
have distinct visible behaviours.

Freshness of names of imperative variables generated by programs is a fundamental
element of the semantics of local state. Consider the following program:

λx.let y = ref(1) in if x = y then 0 else 100 (1.3)

This function always returns 100, since a name fed by the environment (x) and the name
of a newly generated location (y) cannot be identical. This freshness guarantees locality
of state by prohibiting (direct) access to that state from the outside of its scope. This fa-
cility can be used for insulating dynamically generated data structures from undesirable
interference by other programs.

As another example, consider the following program with stored higher-order pro-
cedures [33, § 6]:

1 a := Inc ; (* ! x = 0 *)
2 b := ! a; (* ! x = 0 *)
3 z1 := (! a)(); (* ! x = 1 *)
4 z2 := (! b)(); (* ! x = 2 *)
5 (! z1 )+(! z2 )

This program, which we hereafter callIncShared, first assigns, in Line 1 (l .1), the
programInc to a; then, in l .2, assigns the content ofa to b; and invokes, inl .3, the
content ofa; then does the same for that ofb in l .4; and finally inl .5 adds up the two
numbers returned from these two invocations. By tracing the reduction of this program,
we can check that the initial value ofx is 0 (atl .1 andl .2), then the return value of this
program is 3. To specify and understand the behaviour ofIncShared, it is essential to
capture the sharing ofx between two procedures assigned toa andb, whose scope is
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originally (atl .1) restricted to !a but gets (atl .2) extruded to and shared by !b. Note that
if we replaceb :=!a at l .2 byb := Inc, two separate instances ofInc are assigned toa
andb, and the final result is 2. Controlling sharing by combining scope extrusion and
local state is a foundation of many programming disciplines, including manipulation
of dynamically generated mutable data structures (as shown in § 7), but it severely
complicates reasoning even for relatively simple commands.

A further example demonstrates the power of combining stored functions and lo-
cal references. We consider a factorial program which realises a recursion by circular
references, an idea due to Landin [21].

circFact
def= x := λz.if z= 0 then 1 else z× (!x)(z−1)

This program calculates the factorial ofn. But sincex is still free incircFact, if a pro-
gram reads fromx and stores it in another variable, sayy, assigns a diverging function
to x, and feeds the content ofy with 3, then the program diverges rather than returning
6. In the presence of local state, we can hidex to avoid unexpected interference.

safeFact
def= let x = ref(λy.y) in (circFact; !x)

(aboveλy.y can be any initialising value). The program evaluates to a function which
also calculates the factorial: butx is now invisible and inaccessible from the outside, so
that the program behaves as the pure factorial function. The potential distance between
the extensional and internal behaviour of a program with local state can be exploited
for modular programming. But this distance also causes difficulties in reasoning, since
it makes correspondence between programs’ syntactic structures and their behaviours
subtle to establish [20, 24, 32, 33].

Program Logic and Local State. This paper proposes a simple extension of Hoare
logic for treating higher-order imperative programs with local state. Hoare logic has
been highly successful in software engineering, including verification, rigorous soft-
ware development and testing. However there have been three open issues which make
it difficult to extend Hoare logic to imperative higher-order programming languages
such as ML.

• Higher-order functions, including stored ones.

• General forms of aliasing induced by arbitrary nested reference types.

• Treatment of dynamically generated local state and its scope exclusion.

The first is a primary source of the expressive power of higher-order imperative pro-
grams (as seen incircFact). For the second point, since reference types can occur in
other types, we can use references as parameters of function calls, return values and
content of references and other data structures, causing potential aliasing. These three
are fundamental elements of practical typed higher-order programming, but have defied
clean logical treatment.

In preceding studies, the present authors have proposed Hoare logics which capture
the first two features [3, 17–19]. The resulting logics enjoy a tight link with standard
observational semantics in that assertions distinguish programs’ behaviour just as the
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contextual behavioural equivalence does. As already stressed in the context of Hoare
logics [10, 16], this property, observational completeness, is important when, for ex-
ample, we wish to use compositional program logics together with other mathematical
tools based on a firm semantic basis.

On the basis of our preceding works [3, 17–19], this paper introduces a composi-
tional program logic for higher-order functions with dynamically generated local state.
The logic enjoys observational completeness and offers a uniform basis for asserting
and reasoning about the general class of dynamically generated mutable data structures
such as graphs storing higher-order functions at their nodes. Its proof system, combined
with axioms for reachability, enables precise compositional verification of subtle pro-
gramming examples involving higher-order functions and local state, including those
discussed above. To our knowledge, this is the first time a Hoare-like program logic
for imperative higher-order functions with ML-like dynamically generated references
in full type hierarchy are developed.

Outline. In the rest of the paper, Section 2 reviews the target programming language
and its contextual equivalence. Section 3 introduces the assertion language and illus-
trates basic ideas of the assertion language, especially in the way it expresses local
state, through simple examples. Section 4 introduces semantics of assertions. Section 5
presents the proof rules, including both compositional proof rules and structural rules.
Section 6 proves the validity of the axioms, establishes soundness and and observational
completeness of the logic. Section 7 offers examples of reasoning about programs. Sec-
tion 8 gives comparisons with related work and concludes with further topics. Some
auxiliary definitions and proofs are relegated to Appendix.
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2 A Programming Language

2.1 Syntax and Reduction

As our target programming language, we use call-by-value PCF with unit, sums and
products, augmented with imperative constructs [12, 31]. Letx,y, . . . range over an in-
finite set of variables, often callednames. Then types (α,β, . . .), values (V,W, . . .) and
programs (M,N, . . .) are given by the following grammar.

α,β ::= X | Unit | Bool | Nat | α⇒β | α×β | α+β | Ref(α) | µX.α

V,W ::= c | xα | λxα.M | µ fα⇒β.λyα.M | 〈V,W〉 | injα+β
i (V)

M,N ::= V | MN | M := N | ref(M) | !M

| op(M̃) | πi(M) | 〈M,N〉 | injα+β
i (V)

| if M then M1 else M2 | case M of {inji(x
αi
i ).Mi}i∈{1,2}

Above we use the standard notation [12, 31, 43]. The binding is induced in the standard
way. Programs are considered up to the correspondingα-equality.

The language is identical with the one used in [3], except for the inclusion of a con-
struct for reference generation. Constants (c,c′, . . .) include the unit(), natural numbers
n, booleansb (either trutht or falsef), andlocations(l , l ′, ...). Locations appear only
at run-time.op(M̃) (whereM̃ is a vector of programs) is a standardn-ary arithmetic or
boolean operation, such as+, −, ×, = (equality of two numbers),¬ (negation),∧ and
∨. We freely use obvious shorthands likeM;N andlet x = M in N. Type annotations
are often omitted from programs, writing e.g.λx.M.

Since all constructs are standard, we leave their illustration to well-known textbooks
[12, 31, 43], except for the focus of the present study. The reference generation,ref(M),
behaves as:

First M of typeα is evaluated and becomes a valueV; then afreshlocal refer-
encel of typeRef(α) with initial contentV is generated.

Then another form of new name generation [24, 36],new x := M in N, behaves as
follows:

First, M of type α is evaluated; Then, assuming it terminates and becomes a
valueV, it generates afreshlocal reference of typeRef(α) with initial content
V; finally N (which may possibly usex) is evaluated.

Note that

new x := M in N
def= let x = ref(M) in N (2.1)

ref(M) def= new x := M in x (2.2)

In this full version, we shall use both constructs. We formalise this and other behaviour
of programs using the standard (one-step, call-by-value) reduction [12, 31, 43].

A store(σ,σ′, ...) is a finite map from locations to values. We writedom(σ) for the
domain ofσ andfl(σ) for locations occurring in both the domain and co-domain ofσ.
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σ[l 7→ V] denotes the store which maps localtionl to V and otherwise agrees withσ,
for eachl ∈ dom(σ). An open configurationis a pair of a closed program and a store,
written (M, σ). A configurationis an open configuration(M,σ) combined with a set of
locations ofdom(σ), written(ν l̃)(M,σ) (the order of̃l does not matter). We call(ν l̃) in
(ν l̃)(M,σ), the latter’sν -binder, and consider locations iñl occur bound in(ν l̃)(M,σ).
Configurations are always considered up to the inducedα-equality, including that on
programs and stores. We assume the standard bound name convention for configura-
tions. Open configurations are considered as configurations with the empty names in
their ν -binders, i.e. we write(M,σ) for (νε)(M,σ) with ε denoting the empty string.

A reduction relation, or oftenreductionfor short, is a binary relation between con-
figurations, written

(ν l̃)(M,σ1) −→ (ν l̃ ′)(N,σ2)

The relation is generated by the following rules. First, we have the standard rules for
the call-by-value PCF:

(λx.M)V → M[V/x]

π1(〈V1,V2〉) → V1

if t then M1 else M2 → M1

(µ f.λg.N)W → N[W/g][µ f.λg.N/ f ]

case inj1(W) of {inji(xi).Mi}i∈{1,2}→M1[W/x1]

The induced reduction becomes that for open configurations (hence for configurations
with empty binder) by stipulating:

M −→M′

(M,σ)−→ (M′,σ)

Then we have the reduction rules for imperative constructs, i.e. assignment, dereference
and new-name generation.

(!l , σ) → (σ(l), σ)

(l := V, σ) → ((), σ[l 7→V])

(ref(V), σ) → (ν l)(l , σ] [l 7→V])

(new x := V in N,σ) −→ (ν l)(N[l/x],σ] [l 7→V]) (l fresh)

Finally we close−→ under evaluation contexts andν -binders.

(νl̃1)(M,σ)→ (νl̃2)(M′,σ′)
(νl̃ l̃1)(E[M],σ)→ (νl̃ l̃2)(E[M′],σ′)

wherel̃ are disjoint from both̃l1 andl̃2, E[ · ] is the left-to-right evaluation context (with
eager evaluation), inductively given by:

E[ · ] ::= (E[ · ]M) | (VE[ · ]) | 〈V,E[ · ]〉 | 〈E[ · ],V〉 | πi(E[ · ]) | inji(E[ · ])
| op(Ṽ,E[ · ],M̃) | if E[ · ] then M else N | case E[ · ] of {inji(xi).Mi}i∈{1,2}
| !E[ · ] | E[ · ] := M | V := E[ · ] | ref(E[ · ]) | new x := E[ · ] in M

Some notations:
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– (ν l̃)(M,σ) ⇓ stands for(M,σ)−→∗ (ν l̃ ′)(V,σ′), for somel̃ ′, V andσ′.
– (ν l̃)(M,σ) ⇑ iff (ν l̃)(M,σ)−→n for each natural numbern, that is iff (ν l̃)(M,σ) ⇓

does not hold.
– If (ν l̃)(M,σ) and l i does not appear inM and l i ∈ dom(σ), then we writeM as

(ν l̃)(M,σ).

Example 2.1 (reduction, 1) Let us follow the reduction ofIncShared. We set:

– IncShared′
def= b :=!a; l1 := (!a)(); l2 := (!b)();(!l1)+(!l2),

– IncShared′′
def= l1 := (!a)(); l2 := (!b)();(!l1)+(!l2), and

– IncShared′′′
def= l2 := (!b)();(!l1)+(!l2).

Further we setW
def= λ().l :=!l + 1; !l . Omitting irrelevant values in a store, the re-

duction of IncShared follows (we recallM;N stands for(λ().N)M which reduces
as(λ().N)()−→ N: for legibility this reduction is not counted below).

(IncShared, /0)
−→ (ν l)(a := W; IncShared′, {l 7→ 0, a,b, l1, l2 7→ . . .})
−→ (ν l)(IncShared′, {x 7→ 0, a 7→W, b, l1, l2 7→ . . .})
−→ (ν l)(b := W;IncShared′′, {l 7→ 0, a 7→W, b, l1, l2 7→ . . .})
−→ (ν l)(IncShared′′, {l 7→ 0, a,b 7→W, l1, l2 7→ . . .})
−→ (ν l)(z1 := 1;IncShared′′′, {l 7→ 1, a,b 7→W, l1, l2 7→ . . .})
−→ (ν l)(IncShared′′′, {l 7→ 1, a,b 7→W, l1 7→ 1, l2 7→ . . .})
−→ (ν l)(l2 := 2;(!l1)+(!l2), {l 7→ 1, a,b 7→W, l1 7→ 1, l2 7→ . . .})
−→ (ν l)((!l1)+(!l2), {l 7→ 1, a,b 7→W, l1 7→ 1, l2 7→ 2})
−→ (ν l)(3, {l 7→ 1, a,b 7→W, l1 7→ 1, l2 7→ 2})

Observel is shared throughout the reduction.

Example 2.2 (reduction, 2) The following example indicates the expressive power of
new reference generation. We first introduce the following notation:

cons(x,y) def= new h := x in new t := y in 〈h, t〉

that iscons(x, l) generates two new references,h andt, with their respective contentx
(say a natural number) andy (which is either another pair or a terminator, the latter we
writenil), and constructs a pair of these two fresh references. Since both components are
references, we can modify their content: So, in a somewhat analytical way,cons(x,y)
represents a mutable cons cell, as found in Lisp. We can further set

car(l) def= πl (l) cdr(l) def= πr(l)

Note types match. The following program is similar to the one treated by Burstall [6].

L
def= x := cons(0,nil) ; y := cons(2, !x) ; car(!x) := 1
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We can then check, assumingx andy are not aliased:

(L[lx/x][ly/y], {lx, ly 7→ . . .})
−→∗ (νhlh′l)(car(!lx) := 1, {h 7→0, h′ 7→2, l 7→(h′,nil), l ′ 7→(h′, l), lx 7→ l , ly 7→ l ′})
−→∗ (νhlh′l)(h := 1, {h 7→0, h′ 7→2, l 7→(h′,nil), l ′ 7→(h′, l), lx 7→ l , ly 7→ l ′})
−→ (νhlh′l)((), {h 7→1, h′ 7→2, l 7→(h′,nil), l ′ 7→(h′, l), lx 7→ l , ly 7→ l ′})

Analytical as it is, the final configuration precisely indicates the situation wherex andy
store two cells so that the tail of the pair stored iny coincides with the pair stored inx,
as expected. This demonstrates (well-known) representability of procedural idioms in
imperative higher-order functions.

Fig. 1 Typing Rules

[Var] −
Θ,x : α ` x : α [Constant] −

Γ;∆ ` cC : C

[Add]
Γ;∆ `M1,2 : Nat

Γ;∆ `M1+M2 : Nat
[Eq]

Γ;∆ `M1,2 : Nat
Γ;∆ `M1=M2 : Bool

[If ] Γ;∆ `M : Bool Γ;∆ ` Ni : αi (i = 1,2)
Γ;∆ ` if M then N1 else N2 : α

[Abs] Θ,x:α `M : β
Θ ` λxα.M : α⇒β [App] Γ;∆ `M : α⇒β Γ;∆ ` N : α

Γ;∆ `MN : β

[Rec] Γ,x:α⇒β ; ∆ ` λyα.M : α⇒β
Γ;∆ ` µxα⇒β.λyα.M : α⇒β

[Iso] Θ `M : α α≈ β
Θ `M : β

[Deref] Γ;∆ `M : Ref(α)
Γ;∆ `!M : α [Assign] Γ;∆ `M : Ref(α) Γ;∆ ` N : α

Γ;∆ `M := N : Unit

[Ref] Γ;∆ `V : α
Γ;∆ ` ref(V) : Ref(α) [New]Γ;∆ `M : α Γ;∆,x : Ref(α) ` N : β

Γ;∆ ` new x := M in N : β

[Inj] Γ;∆ `M : αi
Γ;∆ ` inji(M) : α1+α2

[Case] Γ;∆ `M : α1+α2 Γ;∆,xi :αi ` Ni : β
Γ;∆ ` case M of {inji(x

αi
i ).Ni}i∈{1,2} : β

[Pair] Γ;∆ `Mi : αi (i = 1,2)
Γ;∆ ` 〈M1,M2〉 : α1×α2

[Proj] Γ;∆ `M : α1×α2
Γ;∆ ` πi(M) : αi (i = 1,2)

2.2 Typing

A basisΓ;∆ is a pair of finite maps, one from variables to non-reference types (Γ, ...,
calledenvironment basis) and the other from variables or labels to reference types (∆, ...,
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calledreference basis). Θ,Θ′, ... combine two kinds of bases. The sequent for the typing
is of the form:

Γ;∆ `M : α
which reads:M has typeα underΓ;∆. We often omitΓ or ∆ if it is empty. We also use
the typing sequent of the form:

Θ `M : α
whereΘ mixes these two kinds of maps, from which the original sequent can be imme-
diately recovered (and vice versa). This latter form is convenient when, for example, a
typing rule treats a variable regardless of its being a reference type or a non-reference
type. The typing rules are standard [31], which we list in Figure 1 for reference (from
first-order operations we only list two basic ones). We take the equi-isomorphic ap-
proach [31] for recursive types. In the first rule of Figure 1,cC indicates a constantc
has a base typeC.

Notation 2.3 We often writeMΓ;∆;α for M such thatΓ;∆ `M : α.

Definition 2.4 A program MΓ;∆;α is closedif dom(Γ) = /0.

One of the basic properties of typed formalisms is subject reduction. To state it, we need
to type configurations. First we type a store by the following rule:

∀l ∈ dom(σ).( (σ(l) = V ∧∆(l) = Ref(α))⊃ ∆ `V : α )
∆ ` σ

That is, a storeσ is typed under∆ when, for eachl in its domain,σ(l) is a closed value
of typeα under∆, assuming∆(l) = Ref(α). Note this means if∆ ` σ andV is stored
(is in the co-domain of)σ, then any locations inV are already indom(∆).

We then type a configuration by the following rule:

∆ · l̃ : α̃ `M : α ∆ · l̃ : α̃ ` σ
∆ ` (ν l̃)(M,σ)

The following is standard [12, 31].

Proposition 2.5 (subject reduction)SupposeΓ;∆0 ` M : α and ∆ ` (ν l̃)(M,σ). Then
if we have a reduction(ν l̃)(M,σ)−→ (ν l̃ ′)(M′,σ′). then we have (1)∆ ` (ν l̃ ′)(M′,σ′)
and (2)∆′ `M′ : α for some∆′ ⊃ ∆0.

Convention 2.6 Henceforth we only consider well-typed programs and configurations.

Write C[ ]Γ
′;∆′;α′

Γ;∆;α for a typed context which expects a program typedα underΓ;∆ to
fill its hole and produces a program typedα′ underΓ′;∆′. A typed context isclosingif
the resulting program is closed. We now define the standard contextual congruence on
programs as follows.

Definition 2.7 (observational congruence) LetΓ;∆ ` M1,2 : α. Then we writeΓ;∆ `
(ν l̃1)(M1,σ1)∼=(ν l̃2)(M2,σ2) often simply(ν l̃1)(M1,σ1)∼=(ν l̃2)(M2,σ2) leaving type
information implicit, if, for each typed contextC[ · ]Unit

Γ;∆;α, the following condition holds:

(ν l̃1)(C[M1], σ1) ⇓ ≡ (ν l̃2)(C[M2], σ2) ⇓
We also writeΓ;∆ ` M1

∼= M2, or simplyM1
∼= M2 leaving type information implicit,

if, l̃ i = σi = /0 (i = 1,2).
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3 Assertions for Local State

3.1 A Logical Language

The logical language we shall use is that of standard first-order logic with equality [23,
§ 2.8], extended with assertions for stateful evaluation [18, 19] (for imperative higher-
order functions) and quantifications over store content [3] (for aliasing). On this basis
we add a first-order predicate which asserts reachability of a reference name from a
datum. The grammar follows, letting? ∈ {∧,∨,⊃} andQ ∈ {∀,∃}.

e ::= xα | () | n | b | l | op(ẽ) | 〈e,e′〉 | πi(e) | inj
α+β
i (e) | !e

C ::= e= e′ | ¬C | C?C′ | Q x.C | Q X.C

| {C} e•e′ = x {C′} | [!e]C | 〈!e〉C | e ↪→ e′

The first set of expressions (e,e′, . . .) aretermswhile the second setformulae(A,B,C,C′ . . .).
Terms include variables, constants (natural numbers, booleans and locations), pair-
ing, projection, injection and standard first-order operations. !edenotes the dereference
(content) of a referencee. Note thate cannot contain actions with side effects. Using
typed terms is not strictly necessary but contributes to clarity and understandability.

The logical language uses the standard logical connectives and quantification [23].
We include, following [3, 18], quantifications over type variables (X,Y, . . .). We also
use truthT (definable as 1= 1) and falsityF (which is¬T). x 6= y stands for¬(x = y).

The remaining formulae are those specifically introduced for describing programs’
behaviour. Their use will be illustrated using concrete examples soon: here we infor-
mally outline their central ideas. First,{C} e•e′ = x{C′} is calledevaluation formula,
introduced in [19], which intuitively says:

If we apply a function e to an argument e′ starting from an initial state satis-
fying C, then it terminates with a resulting value (name it x) and a final state
together satisfying C′.

x binds free occurrences ofx in C′. Having an explicit namex to denote the result in
C′ is crucial; evaluation formulae can be nested arbitrarily, by which we can describe
specifications of arbitrary higher-order functions as assertions. This is a departure from
other logics such as JML which uses specific variablethis to denote the result. See
examples of the assertions in [3, 19] and later in this paper.

[!e]C and〈!e〉C are calleduniversal/existential content quantifications, respectively,
introduced and studied in [3]. The universal content quantification[!e]C (with e of a
reference type) says that:

Whatever (well-typed) value we may store in a reference denoted by e, the
assertion C holds.

〈!e〉C is interpreted dually:

For some possible (well-typed) content of a reference denoted by e, the asser-
tion C holds.
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Note that, in both cases, we valuate validity ofC under a hypothetical content ofe, not
necessarily its real one. From its meaning, we can see variables ine of [!e]C and〈!e〉C
occur free: in particular,x in [!x]C and〈!x〉C is a free occurrence. In the presence of
aliasing, quantifying over names is not the same thing as quantify over their content,
demanding these quantifiers, enabling hypothetical statement over content of imperative
variables. Their usage for structured reasoning for programs with aliasing, together with
their logical status, is detailed in [3].

Finally, e1 ↪→ e2 (which reads: “e2 is reachable frome1”, with e2 of a reference type
and e1 of an arbitrary type) is calledreachability predicate. This predicate is newly
introduced and plays an essential role in the present logic.e1 ↪→ e2 says that:

One can reach (or better: some closed program can reach) the reference re-
ferred to by e2 solely starting from a datum denoted by e1.

As an example, ifx denotes a starting point of a linked list,x ↪→ y says a referencey
occurs in one of the cells reachable fromx. In assertions, we often use its negation,
writteny#x [9, 35], which says one can never reach a referencey starting fromx. Later
we make precise its semantics and discuss methods for deriving this relation through
syntactic axioms.

Note thate does not contain abstractions, applications and assignments which in-
volve non-trivial dynamics (possibly infinite reductions) for its simplification. For ex-
ample, pairing, projections and injections do not include such reduction and useful to
represent data-structures.

Convention. Logical connectives are used with standard precedence/association, using
parentheses as necessary to resolve ambiguities.fv(C) (resp.ftv(C)) denotes the set of
free variables (resp. free type variables) inC. Note thatx in [!x]C and 〈!x〉C occurs
free, whilex in {C} e•e′ = x {C′} occurs bound within its scopeC′. C1 ≡C2 stands
for (C1 ⊃ C2)∧ (C2 ⊃ C1). C-x̃ indicatesfv(C)∩ {x̃} = /0. We write x#~y for ∧ix#yi ;
similarly~x#y stands for∧ixi #y.

Terms are naturally typed starting from variables. A formula is well-typed if all
occurring terms are well-typed.Hereafter we assume all terms and formulae we use are
well-typed.Type annotations are often omitted in examples.

3.2 Assertions for Higher-Order Functions and Aliasing

We start from a quick review of the assertion method introduced and studied in [3, 18,
19] which form the basis of the present work.

1. The assertionx = 6 says thatx of type Nat is equal to 6. Assumingx has type
Ref(Nat), !x = 2 means thatx stores 2.

2. The assertion
∀n.{T}u•n=z{z= 2×n} (3.1)

says a program namedu would double the number whenever it is invoked. The
programλx.x+x namedu satisfies this specification.
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3. The assertion

∀ni.{!x = i}u•n=z{z= ()∧!x = i +n} (3.2)

describes a program of typeNat⇒Unit, which, upon receiving a natural number
n, returns() (the unique closed value of typeUnit) and increments the content ofx
by n. The programλy.x :=!x+y, namedu, has this behaviour.

4. As seen above, a program whose return type isUnit can have only one return value,
(), if any, so that we naturally omit it. Thus we write, abbreviating (3.2) above:

∀ni.{!x = i}u•n{!x = i +n} (3.3)

A similar example (assuming multi-ary arguments):

∀x,y, i, j.{!x = i∧!y = j}u• (x,y){!x = j∧!y = i} (3.4)

which is satisfied by the standard swapping function namedu, given as follows:
λ(x,y).let i = !y in (y :=!x; x := i).

5. For a fuller specification of the swapping function, we may refine the assertion (3.4)
by saying what it does not do, that is it does not touch references except what it has
received as arguments. Such a property is often essential when a program is used
as part of a bigger program. The following notation, calledlocated assertion[3], is
used for this purpose.

∀x,y, i, j.{!x = i∧!y = j}u• (x,y){!x = j∧!y = i}@xy (3.5)

Above “@x̃” indicates that the evaluation touches only ˜x, leaving content of other
references unchanged. The assertion (3.5) in fact stands for the following formula
in our logical language, withr 6= xystanding forr 6= x∧ r 6= y andr andh fresh.

∀X, rRef(X),hX ,x,y, i, j.

{!x= i∧!y= j ∧ r 6= xy∧!r =h}u• (x,y){!x= j∧!y= i∧!r =h} (3.6)

The assertion says:
For any r of any reference type which is distinct from x and y, its content,
denoted by h, stays invariant after the execution of the swapping function,

that is, onlyx andy are touched (thesex andy are calledwrite effects: in this work,
as in [3], we assume write effects do not contain dereferences, which simplifies their
semantics without losing generality). Translation from (3.5) to (3.6) is mechanical,
so that located assertions can be treated just as standard formulae. The ability to
(in)equate and quantify over reference names plays a crucial role in this translation.

6. The located assertion can also be used for refining (3.1):

∀n.{T}u•n = z{z= 2×n}@ /0 (3.7)

asserting that no store is touched by this function, i.e.u has purely functional be-
haviour. In (3.7), only the input/output relation matters: hence without loss of pre-
cision we can further abbreviate it to:

∀n.u•n↘ 2×n (3.8)
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7. Consider the assertion〈!x〉!y = 5 which stands for: “for some content ofx, !y =
5 holds.” Because !y = 5 is equivalent to(x = y∧!x = 5)∨ (x 6= y∧!y = 5), and
because〈!x〉 cancels any constraint about the content ofx (but not aboutx itself),
we know〈!x〉!y = 5 is equivalent tox 6= y⊃!y= 5. Next consider[!x]!y = 5. It says
that whateverx may store, the number stored iny is 5. The assertion is logically
equivalent tox 6= y ∧ !y = 5. In this way,〈!e〉C claimsC holds for the content of a
reference qualified inC if that reference is distinct frome; whereas[!e]C claimsC
holdsandany reference whose content is discussed inC is distinct frome.

8. Using content quantification, we can definelogical substitutionwhich is robust in
the presence of aliasing, used for the proof rule for assignment.

C{|e2/!e1|}
def= ∃m.(〈!e1〉(C ∧ !e1 = m) ∧ m= e2).

with m fresh. IntuitivelyC{|e2/!e1|} describes the situation where a model satisfy-
ing C is updated at a memory cell referred to bye1 (of a reference type) with a
valuee2 (of its content type), withe1,2 interpreted in the current model. Combina-
tion of content quantification and predicate for locality in the present logic offers a
tractable tool for modular reasoning, as demonstrated in Section 5.

3.3 Assertions for Local State

Concrete examples of assertions for local state follow.

1. Consider a simple commandx := y;y := z;w := 1. After its run, we can reach the
referencezby dereferencingy, andy by dereferencingx. Hencez is reachable from
y, y from x, andz from x. That is the final state satisfies

x ↪→ y ∧ y ↪→ z

which also impliesx ↪→ z, by transitivity.
2. Next, assumingw is newly generated, we may wish to sayw is unreachablefrom

x, to ensure the freshness ofw. For this we assert

w#x,

which, as noted, stands for¬(x ↪→ w). Note thatw#x ⊃ w 6= x. Note also that
x ↪→ x≡ T andx#x≡ F, but !x ↪→ x may not beT andx#!x may not beF.

3. Considerx1 := y1;y1 := z1;x2 := y2;y2 := z2. Then we may wish to say that any
content reachable fromx1 (herex1,y1,z1) is unreachable from any content reach-
able fromx2 (herex2,y2,z2), so that we can represent a deep separation of the two
resources. To represent this specification, we assertsx1?x2, which we formally set:

e1 ?e2
def= ∀X,yRef(X).(e1 ↪→ y⊃ y#e2)

which is logically equivalent to∀X,yRef(X).(y#e1∨y#e2). This means anyy reach-
able frome1 is unreachable frome2 and vice verse. That is, all reachable nodes from
e1 are disjoint with those frome2: we have two mutually disjoint data structures.
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4. We consider reachability in (higher-order) functions. Assumeλ().(x := 1) is named
fw and λ().!x is namedfr . Since fw can write tox, we have fw ↪→ x. Similarly
fr ↪→ x. Next supposelet x= ref(z) in λ().xhas namefc andz’s type isRef(Nat).
Then fc ↪→ z (for example, consider !( fc()) := 1). Howeverx is not reachable from
λ().((λy.())(λ().x)) since it cannot touchx in any context.

5. Consider the referenceref(M) def= new x := M in x. It returns a freshly gener-
ated memory cell, initialised to the value pass as an argument. Then the program
λn.ref(n) meets

∀X.∀ jX .∀n.{T}u•n=z{z# jX ∧ !z= n}@/0

where j is fresh. This means that it creates a new referencez whose stored value is
n, and its new name is unreachable from any name (hence fresh). We abbreviate it
as:

∀n.{T}u•n=z{#z.!z= n}@/0

6. Finally we consider a factorial program which realise a recursion by circular refer-
ences, the idea due to Landin [21] in Introduction. In [19], we have shown we can
derive the following post-condition for the above program (with an initial state, say
T).

circfact(x) def= ∃g.(∀n.{!x = g}g•n = z{z= n!∧!x = g}@x ∧ !x = g)

The assertion says:
After executing the program, x stores a procedure which would calculate a
factorial if x indeed stores that behaviour itself, and that x does store that
behaviour.

In circFact, x occurs free. In the present language, we can further hidex as shown
in safeFact in Introduction. Sincex is now invisible and inaccessible from the out-
side, so that the program as a whole behaves as a pure factorial function, satisfying:

∀n.u•n↘ n! (3.9)

We derive (3.9) as the postcondition ofsafeFact from circfact(x) using the axioms
for reachability in Section 7.7.

Further examples of assertions are found later.

3.4 Formulae for Freshness

Below we list three forms of formulae for freshness. First, the following appeared al-
ready:νx saysx is distinct from any names existing in the initial state, giving the most
general (weakest) form of freshness. Belowx is of a reference type.

{C}e•e′=z{νx.C′} def= ∀X, iX .{C}e•e′=z{∃x.(x 6= i∧C′)}

Note thatz andx are distinct variables by the binding condition. We can equivalently
useRef(X) instead of X (the meaning does not change since a reference name cannot
be equated with a variable of non-reference type).
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Next we demand # instead of simple inequality. Belowzagain should be typed with
a reference type.

{C}e•e′=z{#z.C′} def= ∀X, iX .{C}e•e′=z{z#i∧C′}

Notez is bound in the whole formula because it occurs as the result name in the evalu-
ation formula. In contrast, #z.C′ doesnot induce binding onz, as can be seen from the
encoding. It is notable that{C}e•e′=z{#x.C′} (with x andz distinct) is never valid
sincei can then denotex. Thus the binding onz induced by the evaluation formula is
essential for its consistency, analogous to the existential binding in the first freshness
formula.

Finally the strongest disjointness property uses?. belowzmaynotbe of a reference
type.

{C}e•e′=z{?z.C′} def= ∀X, iX .{C}e•e′=z{z? i∧C′} (3.10)

The formula says the invocation ofe with argumente′ results in a chunk of connected
data structure which as a whole is fully disjoint from what existed in the initial state.

The last two forms of freshness formulae have variations, where we combine] with
ν . While we may not use them in the subsequent technical development nor in exam-
ples, they sometimes become useful in reasoning. Letx below be of a reference type.

{C}e•e′=z{ν]x.C′} def= ∀X, iX .{C}e•e′=z{∃x.(x#i ∧ C′)} (3.11)

which says the evaluation ofe•e′ leads to a creation of a referencex which is unreach-
able from anything extant in the initial state. Similarly, and this timex of an arbitrary
type:

{C}e•e′=z{ν ?x.C′} def= ∀X, iX .{C}e•e′=z{∃x.(x? i ∧ C′)} (3.12)

which says that the evaluation ofe•e′ leads to a creation of a chunk of data structure
reachable fromx which is disjoint from anything extant in the initial state. In these
variants too,i can be typedRef(X) instead of X with the same effect.

We may further extend these notations to a set of references, e.g. we may write, with

S
def= {w|E(w)},

{C}e•e′=z{#S.C′} def= ∀X, iX .{C}e•e′=z{∀w.(E(w)⊃ w#i) ∧ C′} (3.13)
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4 Models

This section introduces models for the logic and defines the semantics (satisfaction
relation) of assertions. The class of models we introduce is based on, and extends,
those for our preceding program logics for higher-order behaviour[3, 17–19]. For clear
presentation, we take three steps to introduce them.

Step 1: We first buildopen models, which capture imperative higher-order functions
[19] and aliasing [3]. Open models directly come from [3].

Step 2: We incorporate locality to open models using“ ν ” binders, which hide refer-
ence names.

Step 3: Resulting models are made semantically precise through a quotient construc-
tion, on the basis of which we introduce basic operators for interpretation.

Following [3, 17–19], we use programs themselves to build models, though other op-
tions are possible. The highlight of the section is interpretation of equality which pre-
cisely captures the observational meaning of assertions for behaviour with local state,
answering to one of the issues raised in Introduction.

4.1 Open Models

We first define open models.

Definition 4.1 (open models)Anopen model of typeΘ = Γ;∆, writtenM Γ;∆ is a tuple
(ξ,σ) where:

– ξ, calledenvironment, is a finite map fromdom(Θ) to closed values such that, for
each x∈ dom(Γ), ξ(x) is typed asΘ(x) under∆, i.e.∆ ` ξ(x) : Θ(x).

– σ, calledstore, is a finite map from labels to closed values such that for each l∈
dom(σ), if ∆(l) has typeRef(α), thenσ(l) has typeα under∆, i.e.∆ ` σ(l) : α.

Example 4.2 (open model) As an example, an assertion:

!x = 0 ∧ ∀i.{!x = i}u• ()=z{!x = z∧!x = i +1} (4.1)

may be interpreted using the following open model.

{u : λ().(l :=!l +1; !l)}, {l 7→ 0} (4.2)

We can the interpret identifiers, terms and predicates in (4.1) using (4.2).

4.2 Models with Locality

Open models are close to the standard notion of model in that they are maps interpreting
identifiers in assertions. For capturing local state, we have to foresake this map-like
nature of models and incorporating hidden names. We illustrate the key idea using the
Introduction’s (1.1), reproduced below.

Inc
def= new x := 0 in λ().(x :=!x+1; !x)
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When we run this program, the initial state may for example be given as the empty
open model: then, after runningInc, we reach a state where a hidden name stores 0, to
be used by the resulting procedure when invoked. We represent this state of affairs by
adding a binder (as used in configurations for reduction, cf. §2.1) to (4.2), as follows.

(ν l)({u : λ().(l :=!l +1; !l)}, {l 7→ 0}) (4.3)

(4.3) says that there is a behaviour namedu and a reference namedl which is not aliased
with any other names that this reference stores 0, and that the namel is hidden. Based
on (4.3), we may assert:

∃x.(!x = 0 ∧ ∀i.{!x = i}u• i =z{!x = z∧!x = i +1}) (4.4)

This gives us the following notion of models with hidden names.

Definition 4.3 (models)A modelof typeΓ;∆ is a structure

(ν l̃)(ξ,σ)

where(ξ,σ) is an open model of typeΓ;∆·∆′ with dom(∆′) = {l}. M ,M ′, . . . range
over models.

In (ν~l)(ξ,σ), l̃ act as binders, which gives standardα-equality on models.

4.3 Abstract Models.

Observationally, models in Definition 4.3 are too concrete, consider:

(ν ll ′)({u : λ().(l :=!l +1;l ′ :=!l ′+1; (!l+!l ′)/2)}, {l , l ′ 7→ 0}) (4.5)

The behaviour located atu has the same observable behaviour as that located atu in
(4.3), in spite of its difference in internal structure. Indeed, just as (4.3) originates in
Inc, (4.5) originates in

Inc2
def= new x,y := 0 in λ().(x :=!x+1;y :=!y+1; (!x+!y)/2)

which is contextually equivalent toInc: and if two models originate in the same abstract
behaviour, we wish them to be the same model. For this purpose we use the behavioural
equivalence∼=.

Definition 4.4 Given modelsM Γ;∆
i = (ν l̃ i)({yi : Vi1, ..,yi : Vin},σi) for i = 1,2, we set

Γ;∆ `M1 ≈M2 iff (ν l̃1)(〈V11, ..,V1n〉,σ1)∼= (ν l̃2)(〈V21, ..,V2n〉,σ2)

The≈-congruence classes are calledabstract models.
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4.4 Operations on Models

The following operations and relations on models are used for defining the satisfac-
tion relation for our assertion language. In the next subsection we shall show they are
invariant under≈.

Definition 4.5 (expansion)Let MΓ;∆ def
= (νl̃)(ξ,σ). AssumingΓ;∆ ` N : α and u fresh

we set
M [u:N]

def
= (ν l̃)(ξ·u:Nξ, σ).

NoteM [u:N] is not necessarily a model, because Nξ may not be a value. To obtain a
model, we write

M [u:N] ⇓ (νl̃ l̃ ′)(ξ ·u : V,σ′)

when(Nξ,σ) ⇓ (νl̃ ′)(V,σ′). By determinacy of the reduction,M ′ is uniquely deter-
mined, shouldM [u:N] converge. If not, we writeM [u:N] ⇑.

Definition 4.6 (update)Let MΓ;∆ def
= (νl̃)(ξ,σ) and e and V w.r.t. MΓ;∆ be respectively

typed asRef(α) andα underΓ;∆

M [e 7→V]
def
= (ν l̃)(ξ,σ[l 7→Vξ])

if (ν l̃)(eξ,σ) ⇓ (ν l̃)(l ,σ).

Notation 4.7 Let M = (ν l̃)(ξ ·u : V,σ). Write M /u for (ν l̃)(ξ,σ).

4.5 Properties of Operations

This subsection shows the operations and relations on models introduced in the previ-
ous subsection are closed with respect to≈, so that they can directly be considered as
operations/relations on abstract models.

We start from one important notion in the present model, symmetry, coming from a
process-theoretic nature of our models. We first define permutation concretely.

Definition 4.8 (permutation)Let M Γ;∆ def
= (ν l̃)(ξ ·v:V ·w:W, σ). Then, for any v,w∈

dom(Γ), we set: (vw
wv

)
M def

= (ν l̃)(ξ ·v:W ·w:V, σ).

which we call a (binary)permutation ofM at u andw. We extend this to an arbitrary
bijectionρ ondom(Γ), writing (ρ)M .

Remark 4.9

1. By definition, givenM Γ;∆, if Γ(v) = Γ(w) then a permutation
(uv

vu

)
M has the same

type asM .
2. As a simple example of a permutation, ifu,v are fresh w.r.t.M and{u,v}∩(fv(e)∪

fv(e′)) = /0, then we have:(uv
vu

)
(M [u:e][v:e′]) def= M [u:e′][v:e]

We shall have further examples later.
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3. A permutation in the sense of Definition 4.8 is related with, but different from, a
bijective renaming on a model, which we write e.g.M [uv/vu]. For example, we
have:

(M [u:e][v:e′])[uv/vu] def= M [v:e][u:e′]

Note
(uv

vu

)
M [v : e][u : e′] is essentially the same model asM except they differ in

typing (as a sequence).

Definition 4.10 (symmetry)A permutationρ onM is asymmetry onM when(ρ)M ≈
M .

Any model has the trivial symmetry, identity. To show more examples, we introduce
a semantic presearving encoding from a model to a term. LetM = (ν l̃)({y1 : V1,y2 :
V2, ...,yn : Vn}, [l1 7→W1] · · · [lm 7→Wm]). Then we define:

[[M ]] def= let l1 = ref(W1) in let l2 = ref(W2) in let ln = ref(Wn) in 〈V1, ...,Vn〉

Obviously we have:M1≈M2 iff [[M1]]∼= [[M2]]. The following shows subtlety of sym-
metries.

Example 4.11 (symmetry)

1. The following two models correspond toIncShared andIncUnShared:

M1
def= (ν l)({u : Inc[l/x], v : Inc[l/x]}, {l 7→ 0})

M2
def= (ν ll ′)({u:Inc[l/x], v:Inc[l ′/x]}, {l 7→ 0, l ′ 7→ 0})

Both M1 andM2 have an obvious symmetry
(uv

vu

)
.

2. If we expand these two models, however, we find one retains a symmetry while
another doesn’t. (wv

vw

)
(M1[w:u]) ≈ M1[w:u](wv

vw

)
(M2[w:u]) 6≈ M2[w:u]

To see why the latter is the case, let:

C[ ] def= λx.(let y = π2(x)() in let z= π3(x) in z)[ ]

ThenV[[M2[w:u]]]−→∗ 1 butV[[
(wv

vw

)
M2[w:u]]]−→∗ 2, because of sharing.

Definition 4.12 (witness)Given a partial mapF on models of specific types, we say a
program MwitnessesF if [[F M ]]∼=id M[[M ]] for eachM in the domain ofF .

Remark 4.13 (witness) By having witnesses for these operations, they can be consid-
ered as operations on encodings of concrete models, hence in effect those on abstract
models, by the contextual closure of∼=. Concrete presentation of operations often elu-
cidates the nature of operations: the notion of witness, as well as the subsequent results,
indicates that we can safely work with concrete operations without violating abstract
nature of models, as far as they can be given appropriate witnesses.
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Lemma 4.14 Letdom(Γ;Θ) = {y1, ...,yn} below.

1. GivenΓ;∆ ` N : α,

λmΠΓ.〈m,(..(λy1...yn.N)π1(m)..πn(m))〉

witnesses the expansion fromM of typeΓ;∆ to M [u:N].
2. GivenΓ;∆ ` e : Ref(α) and NΓ;∆;α, the program

λxΠΓ.((..((λy1...yn.e)π1(m))..πn(m)) := N;x)

witnesses the update[[M [e 7→ N]]] of M Γ;∆.
3. For i such that1≤ i ≤ n, the program3.

λmΠΓ.〈π1(m), ..,πi−1(m),πi+1(m), ..,πn(m)〉

witnesses the projectionM /yi .

PROOF: Immediate from the construction. ut

Lemma 4.15 M1 ≈M2 impliesM1[u:N]≈M2[u:N].

PROOF: Let u be fresh,M Γ;∆
i andΓ;∆ `N : α. WriteV for the witness of the expansion

in Definition 4.12. We infer:

M1 ≈M2 ⇒ [[M1]]∼= [[M2]]
⇒V[[M1]]∼= V[[M2]]
⇒ [[M1[u:N]]]∼= [[M2[u:N]]]
⇒M1[u:N]≈M2[u:N]

where the third step uses Lemma 4.14 (1). ut

Lemma 4.16 M1
∼= M2 impliesM1/u∼= M2/u.

PROOF: As in Lemma 4.15, using Lemma 4.14 (3) instead of (1). ut

By successively applying Lemma 4.16, the property extends to arbitrary projections of
models.

Lemma 4.17 M1 ≈M2 implies(νl)M1 ≈ (νl)M2.

PROOF: We prove that ifΓ;∆,x : Ref(α) `M1
∼= M2 : β andΓ;∆ `V : α, then

Γ;∆ ` let x = ref(V) in M1
∼= let x = ref(V) in M2 : β

3 In the third clause, ifi = 1 (resp.i = n) then we take offπi−1(m) (resp.πi+1) from the sequence
〈π1(m), ..,πi−1(m),πi+1(m), ..,πn(m)〉
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Choose appropriately typedC[·].

C[let x = ref(V) in M1]→ (νl)(C[M1[l/x]], l 7→V) ⇓
⇔ (l := V;M1) ⇓
⇔ (l := V;M2) ⇓
⇔C[let x = ref(V) in M2]→ (νl)(C[M2[l/x]], l 7→V) ⇓

as required. Then by definition, we obtain the result. ut
Finally we mention basic properties of permutation and symmetries. First, a permuta-
tion has an obvious witness:

Lemma 4.18 (permutation witness)GivenM Γ;∆ and a bijectionρ ondom(Γ), the op-
erationρ is witnessed by the standard isomorphism onΠ permuting the elements fol-
lowing ρ.

Corollary 4.19 GivenM Γ;∆
1,2 and a bijectionρ ondom(Γ), we haveM1≈M2 iff (ρ)M1≈

(ρ)M2.

Hence we know:

Proposition 4.20 If M1 ≈ M2 and if (ρ) is a symmetry ofM1, then(ρ) is also a sym-
metry ofM2.

4.6 Semantics of Assertions

This subsection defines semantics of assertions. The interpretation of terms is straight-
forward, given as follows.

Definition 4.21 Let Γ;∆ ` e : α, Γ;∆ ` M andM = (ξ,σ). Then theinterpretation of
e underM , denoted[[e]]ξ,σ is inductively given by the clauses below.

– [[x]]ξ,σ = ξ(x).
– [[!e]]ξ,σ = σ([[e]]ξ,σ).
– [[()]]ξ,σ = (), [[n]]ξ,σ = n, [[b]]ξ,σ = b, and[[l ]]ξ,σ = l .
– [[op(ẽ)]]ξ,σ = op([[ẽ]]ξ,σ).
– [[〈e,e′〉]]ξ,σ = 〈[[e]]ξ,σ, [[e′]]ξ,σ〉.
– [[πi(e)]]ξ,σ = πi([[e]]ξ,σ).
– [[inji(e)]]ξ,σ = inji([[e]]ξ,σ).

where the operatorsπi etc. are abused to denote the corresponding ones.

Definition 4.22 (name closure) Letσ be a store in some model andS⊂ dom(σ). Then
the label closure of S inσ, writtencl(S,σ), is the minimumS′ such that: (1)S⊂ S′ and
(2) If l ∈ S′ thenfl(σ(l))⊂ S′.

Lemma 4.23 For all σ, we have:

1. S⊂ cl(S,σ)
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2. S1 ⊂ S2 implies cl(S1,σ)⊂ cl(S2,σ)
3. cl(S,σ) = cl(cl(S,σ),σ)
4. cl(S1,σ)∪cl(S2,σ) = cl(S1∪S2,σ)
5. S1 ⊂ cl(S2,σ) and S2 ⊂ cl(S3,σ), then S1 ⊂ cl(S3,σ)
6. there existsσ′ ⊂ σ such that cl(S,σ) = fl(σ′) = dom(σ′).

We are now ready to define semantics of assertions. To treat type variables, we
augment a modelM with a map from type variables to closed types. In the following,
all omitted cases are by de Morgan duality.

– M |= e1 = e2 if M [u : e1]≈M [u : e2].
– M |= C1∧C2 if M |= C1 andM |= C2.
– M |= ¬C if not M |= C.
– M |= ∀xα.C if for all V, M ′[x:V] |= C; or for each(ν l)M ′ ≈ M with l typed by

α, M ′[x: l ] |= C.
– M |= ∀X.C if for all closed typeα, M ·X: α |= C.
– M |= [!e]C if for all V, M [e 7→V] |= C.
– M |= {C}e•e′=x{C′} if, wheneverM [u:N] ⇓ M0 andM0 |= C with u fresh, we

haveM0[x:ee′] ⇓M ′ |= C′.
– M |= e1 ↪→ e2 if for each(ν l̃)(ξ,σ)≈M , [[e2]]ξ,σ ∈ cl(fl([[e1]]ξ,σ),σ)

The reachability clause says the set of hereditarily reachable names frome1 includes
e2 up to≈. We can check, withfw, fr and fc denotingλ().x := 1, λ().!x andlet x =
ref(z) in λ().x respectively as in § 3.3 (4), we havefw ↪→ x, fr ↪→ x and fc ↪→ z.

The following characterisation of # is often useful for justifying axioms for fresh
names.

Proposition 4.24 (partition)M |= x#u if and only ifM ≈ (ν l̃)(ξ ·u : V ·x : l , σ1]σ2)
such that cl(fl(V),σ1]σ2) = fl(σ1) = dom(σ1) and l∈ dom(σ2).

PROOF: Let σ = σ1]σ2. Notedom(σ1)∩dom(σ2) = /0. For the only-if direction, we
note l 6∈ cl(fl(V),σ) by definition of reachability. Sincel ∈ dom(σ2), there existsσ1

such thatl 6∈ dom(σ1) andcl(fl(V),σ) = cl(fl(V),σ1) = fl(σ1) = dom(σ1), hence done.
The if-direction is obvious by definition of reachability. ut

The characterisation says that ifx is unreachable fromu then, up to≈, the store can be
partitioned into one covering all reachable names fromu and another containingx.

Remark 4.25 (equality with locality) The clause for the satisfaction of the equality
e1 = e2 given above, doesnotuse equality/equivalence of interpreted terms as elements
of some set. In spite of this, Section 6 will show the induced relation satisfies all stan-
dard axioms for equality. We shall also show, in this section, that it captures intuitive
meaning of equality on behaviour with locality. Here we illustrate how the given clause
precisely captures the subtlety of equality of behaviours with shared local state, using
simple examples. The defining clause for equality validate:

(νl)
(

u : λ().(l :=!l +1; !l),
v : λ().(l :=!l +1; !l), l 7→ 0

)
|= u = v
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On the other hand, it also says:

(νll ′)
(

u : λ().(l :=!l +1; !l),
v : λ().(l ′ :=!l ′+1; !l ′), l 7→ 0, l ′ 7→ 0

)
|= u 6= v

Call the first modelM1 and the secondM2 (M1 andM2 are the same models as treated
in Remark 4.11, page 18). We observe:

– In M1, u andv share state, while inM2 they don’t, reminiscent ofIncShared and
IncUnShared in Introduction.

– Intuitively, sayingu andv are equal inM1 makes sense because runningu always
has the same effect as runningv, so behaviourally any description ofu should be
replaceable with those ofv and vice versa.

– But, in M2, runningu andv once each is quite different from running onlyu twice:
u andv are far from being mutually substitutive.

More concretely, both forM1 andM2, we can obviously soundly assert:

∃x.(!x = 0 ∧ inc(u,x) ∧ inc(u,x)) (4.6)

whereinc(u,x) def= ∀i.{!x = i}u• () = z{!x = z∧!x = i + 1}@x. In M1, since we have
u = v, we can apply the law of equality to (4.6), obtaining:

∃x.(!x = 0 ∧ inc(u,x) ∧ inc(v,x)) (4.7)

which indicates that, if we invoke u and then invoke v, the latter returns2 rather than
1. Since this is obviously not the case inM2, it is wrong to sayu = v in M2, justifying
M2 |= u 6= v. Note that, in spite of this,M2 satisfies

∃x.(!x = 0 ∧ inc(u,x)) ∧ ∃x.(!x = 0 ∧ inc(v,x)) (4.8)

which indicates, if compared independently,u andv show precisely the same observable
behaviour, witnessing the contextual congruence of the behaviour atu and the behaviour
atv.

Now supposeM2 |= u= v. By definition this meansM2[w:u]≈M2[w:v]. Since
(uw

wu

)
is obviously a symmetry ofM2[w:u], by Proposition 4.20, it should also be a symmetry
of M2[w : v]. But we have already seen it is not so in Example 4.11 (2) (page 18), a
contradiction. Thus it cannot be the caseM2 |= u = v, that is we haveM2 |= u 6= v, as
required.

Formal properties of the satisfaction relation (such as satisfiability of standard axioms)
will be studied in Section 6.
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5 Judgement and Proof Rules

5.1 Judgement and its Semantics

This section introduces judgements and basic proof rules. A judgement consists of a
program and a pair of formulae following Hoare [14], augmented with a fresh name
calledanchor[17–19].

{C}MΓ;∆;α :u {C′}.

which intuitively says:

If we evaluate M in the initial state satisfying C, then it terminates with a value,
name it u, and a final state, which together satisfy C.

Note the judgement is about total correctness.4 Sequents have identical shape as those in
[3, 19]: the described computational situations is however quite different, where bothC
andC′ may describe behaviours and data structures with local state. The same sequent
is used for both validity and provability. If we wish to be specific, we prefix it with
either` (for provability) or|= (for validity). In {C}MΓ;∆;α :u {C′}:

1. u is theanchorof the judgement, which shouldnot be indom(Γ,∆)∪ fv(C); and
2. C is thepre-conditionandC′ is thepost-condition.

An anchor is used for naming the value fromM and for specifying its behaviour. As in
Hoare logic, the distinction between primary and auxiliary names plays an important
role in both semantics and derivations.

Definition 5.1 (primary/auxiliary names)In {C}MΓ;∆;α :u {C′}, theprimary namesare
dom(Γ,∆)∪{u}, while theauxiliary namesare those free names in C and C′ which are
not primary.

Convention 5.2 Henceforth we assume judgements are always well-typed (including
those in the conclusions of proof rules), in the sense that, in{C}MΓ;∆;α :u {C′}, Γ,∆,Θ`
C and u: α,Γ,∆,Θ ` C′, for someΘ such thatdom(Θ)∩ (dom(Γ,∆)∪ {u}) = /0. In
spite of this, we often omit type information from a program in a judgement, writing
{C}MΓ;∆;α :u {C′} (under monomorphic typing, this in fact does not lose precision).

We now make precise the semantics of judgement.

Definition 5.3 (semantics of judgement) LetM def= (ν x̃)(ξ,σ) be of typeΓ;∆;D, and
Γ;∆ ` N : α with u fresh. The validity|= {C}M :u {C′} is given by:

|= {C}M :u {C′}
def≡ ∀M .(M |= C ⇒ M [u:M] ⇓M ′ |= C′)

(note free names stay Above we demand, for well-definedness, thatM includes all
variables inM, C andC′ exceptu.

4 Total correctness was chosen following [3, 18, 19]. The proof rules for partial correctness are
essentially identical except for recursion.
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Notation 5.4 (judgement for freshness) We use the following abbreviation for judge-
ments similar to those with evaluation formulae in § 3.3. Below leti be fresh.

– {C}M{C′} stands for{C}M :u {u = ()∧C′}.
– {C}M :u{C′}@ẽ stands for{C∧y 6= ẽ∧!y= i}M :u {C′∧!y= i} with y fresh (to be

precise,y andi are respectively typed asRef(X) and X for a fresh X).
– {C}M :m {νx.C′} stands for{C}M :m {∃x.(x 6= i∧C′)} (to be precise,i is typed as

X for a fresh X, similarly in the following).
– {C}M :m {#m.C′} stands for{C}M :m {m#i∧C′}.
– {C}M :m {?m.C′} stands for{C}M :m {m? i∧C′}.

We may also combine these forms as in{C}M :m{νx.C′}@ỹand{C}M :m{ν#x.C′}@ỹ.

5.2 Proof Rules (1): Basic Proof System

The proof rules in a compositional program logic are given as a proof system which
builds assertions following the syntactic structure of programs. Since we are work-
ing with a typed programming language, the proof rules precisely follow the typing
rules presented in Section 2.2. The proof system is augmented withstructural rules
which only manipulate formulae without changing the program itself. These structural
rules often play a fundamental role in deriving/validating required specifications for
programs. In contrast, the proof rules which follow the syntactic structure of programs
may be called compositional proof rules. Figure 2 presensts the full compositional proof
rules in the present logic. There is one rule for each typing rule. Some of the major
structural rules are presented in Figure 3.

For each rule, we stipulate:

– Freei, j, . . . range over auxiliary names; no primary names in the premise(s) occur
as auxiliary names in the conclusion (this may be considered as a variant of the
bound name convention).

– A,A′,B,B′, . . . range overstateless formulae, i.e. those formulae which do not con-
tain active dereferences (a dereference !e is active if it does not occur in pre/post
conditions of evaluation formulae nor under the scope of content quantification of
!e). We also excludex#y and¬A from stateless formulae (they implicitly contain
dereference: see Section 6.2).

In the following, we focus two new aspects of the presented proof rules: the proof rule
for new reference generation, and the proof rule for universal quantification and the
consequence rule with evaluation formula in Figure 3.

Proof Rule for New Reference Generation.The compositional rules in Figure 2 stay
identical with those in the base logic [3] except for adding the rule for new name genera-
tion, in spite of the significant semantic enrichment. [Ref] says that the newly generated
cell is unreachable from any datum in the initial state, and stores whatM evaluates to
in the reference named byu .
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Fig. 2 Compositional Rules

[Var] −
{C[x/u]} x :u {C}

[Const] −
{C[c/u]} c :u {C}

[Add] {C}M1 :m1 {C0} {C0}M2 :m2 {C′[m1 +m2/u]}
{C}M1 +M2 :u {C′}

[Abs] {C∧A-xĩ}M :m {C′}
{A} λx.M :u {∀xĩ.{C}u•x = m{C′}}

[App]
{C}M :m {C0} {C0} N :n {C1 ∧ {C1}m•n = u {C′}}

{C}MN :u {C′}

[If ] {C}M :b {C0} {C0[t/b]}M1 :u {C′} {C0[f/b]}M2 :u {C′}
{C} if M then M1 else M2 :u {C′}

[Pair]
{C}M1 :m1 {C0} {C0}M2 :m2 {C′[〈m1,m2〉/u]}

{C} 〈M1,M2〉 :u {C′}

[Proj1]
{C}M :m {C′[π1(m)/u]}
{C} π1(M) :u {C′}

[In1]
{C}M :v {C′[inj1(v)/u]}
{C} inj1(M) :u {C′}

[Case]
{C-x1x2}M :m {C-x1x2

0 } {C0[inji(xi)/m]}Mi :u {C′
-x1x2} i ∈ {1,2}

{C} case M of {inji(xi).Mi}i∈{1,2} :u {C′}

[Deref] {C}M :m {C′[!m/u]}
{C} !M :u {C′}

[Assign] {C}M :m {C0} {C0} N :n {C′{|n/ !m|}}
{C} M := N {C′}

[Rec] {A
-xi∧∀ j � i.B( j)[x/u]} λy.M :u {B(i)-x}

{A} µx.λy.M :u {∀i.B(i)}

[Ref] {C}M :m {C′}
{C} ref(M) :u {#u.C′[!u/m]}

Variants for New Name Generation. In the side condition of [New], fpn(e) denotes
the set offree plain namesof e which are reference names ine that occur without

being dereferenced. Formallyfpn(e) is inductively defined as:fpn(x) def= {x}, fpn(c) =
fpn(!e) def= /0, for other constructs it acts homomorphically.fpn(ẽ) is short for∪ifpn(ei),
x#ẽ for ∧i x#ei . This new name generation rule reads, in direct correspondence with
the reduction of the “new” construct (cf. §2.1):

Assume:(1) starting from C, the evaluation of M reaches C0, with the resulting
value named m; and(2) starting from C0 with m as content of x (C0[!x/m])
together with the assumption x is unreachable from any existing datum (x#ẽ),
the evaluation of N reaches C with the resulting value named u. Then starting
from C,new x := M in N with its result named u reaches C′.
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Fig. 3 Structural rules

[Promote] {C}V :u {C′}
{C∧C0}V :u {C′∧C0}

[Consequence] C⊃C0 {C0}M :u {C′0} C′0 ⊃C′

{C}M :u {C′}

[∧-⊃] {C∧A}V :u {C′}
{C}V :u {A⊃C′} [⊃-∧] {C}M :u {A⊃C′}

{C∧A}M :u {C′}

[∨-Pre] {C1}M :u {C} {C2}M :u {C}
{C1∨C2}M :u {C}

[∧-Post] {C}M :u {C1} {C}M :u {C2}
{C}M :u {C1∧C2}

[Aux∃]
{C}M :u {C′

-i}
{∃i.C}M :u {C′}

[Aux∀]
{C-i}M :u {C′} i is of a base type

{C}M :u {∀i.C′}

[Auxinst]
{C(iα)}M :u {C′(iα)} α atomic

{C(cα)}M :u {C′(cα)} [Auxabst]
∀cα. {C(cα)}M :u {C′(cα)}
{C(iα)}M :u {C′(iα)}

[StatelessInv] {C}MΓ;∆;α :m {C′}
{C∧A}MΓ;∆;α :m {C′∧A}

[Consequence-Aux] {C0}MΓ;∆;α :u {C′0} C ⊃ ∃ j̃.( C0[ j̃/ĩ] ∧ [!ẽ](C′0[ j̃/ĩ]⊃C′) )
{C}M :u {C′}

[ConsEval]

{C0}M :m {C′0} x fresh; ĩ auxiliary
∀ĩ.{C0}x• ()=m{C′0} ⊃ ∀ĩ.{C}x• ()=m{C′}

{C}M :m {C′}

In [Consequence-Aux], we let !ẽ (resp.ĩ) exhaust active dereferences (resp. auxiliary names) in
C,C′,C0,C′0, while j̃ are fresh and of the same length asĩ.

Fig. 4 Variants of [Ref] and Other Related Rules.

[New] {C}M :m {C0} {C0[!x/m]∧x#ẽ} N :u {C′} x /∈ fpn(ẽ)
{C} new x := M in N :u {νx.C′}

[NewVar] {C}M :m {C0} {C0[!x/m]∧x#ẽ} N :u {C′} x /∈ fpn(ẽ)∪ fv(C′)
{C} new x := M in N :u {C′}

[Subs]
{C}M :u {C′} u 6∈ fpn(e)
{C[e/i]}M :u {C′[e/i]}

[LetOpen]
{C}M :x {νỹ.C0} {C0} N :u {C′}
{C} let x = M in N :u {νỹ.C′}

[Ref’] {C}M :m {C′} u 6∈ fpn(ẽ)
{C} ref(M) :u {C ∧ u#ẽ}
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Some remarks:

– The side conditionx 6∈ fpn(ẽ) is essential for the consistency of the rule: as an
extreme case,x#x is obviously false, similarlyx#〈x,x〉 (cf. § 3.3). Howeverx#!x
is not falsity, and in factshouldhold in the pre-condition forN: immediately after
a new reference is generated, it cannot be stored anywhere.

– The intermediate condition,x#ẽ, gives a much stronger notion of freshness in com-
parison with the postcondition in the conclusion,νx.C′, i.e.∃x.(C′∧x 6= i) for fresh
i. This is because, during the run ofN, x may have been stored somewhere: so all
that we can say isx is distinct from any reference name in the initial configuration
(C′ may assert stronger freshness conditions forx depending onN’s behaviour).

We may also observe that the proof rule has an equipotent variant, listed as the first rule
([NewVar]) in Figure 4. [NewVar] is equi-potent with the original rule when combined
with the consequence rule. Indeed, if we have[NewVar] and if we assume the premise
of [New], we simply addx 6= i to the pre/post condition of the second judgement by
[StatelessInv], then use[Consequence] to existentially abstractx, to reach the premise,
hence the conclusion, of[Newvar]. Conversely, if we have[New] and if we assume
the premise of[NewVar], since the premise directly fits as a premise for[New], we
obtain{C} new x := M in N :u {νx.C′}: but νx.C′ ≡C′ sincex does not occur free
in C′. In inference,[New] is more convenient when we derive the conclusion from the
premise (“forward reasoning”): whereas[NewVar] follows the conventional style of
compositional proof rules, starting from the conclusion to find the premise (“backward
reasoning”). Note also[NewVar] is essentially identical with the original proof rule
for new variable declaration by Hoare and Wirth [13] except adding the condition for
unreacability.

In Section 2, we discussed interplay between freshness and locality. In particular,
we asked howref(M), combined withlet, can commute withnew x := M in N.
This question is best answered by mutual derivations of their proof rules. Below we
show derivation in one direction, deriving[New] from the rule forref(M), listed as
the second rule in Figure 4, leaving the other direction to the reader. [Ref] says that the
newly generated cell is unreachable from any initially existing datum. We further use
the next two rules in Figure 4. [Subs] is the standard substitution rule (the rule implicitly
assumes, by our convention of typability of judgements, thatu 6∈ fn(e) when i occurs
in C: wheni doesnot occur inC, the side-condition demandsu not to occur infpn(e)).
[LetOpen] is a refinement of the standard let rule:

[Let]
{C}M :x {C1} {C1} N :u {C′}
{C} let x = M in N :u {C′}

(There is some interest in deriving [LetOpen] from [Let], which we shall discuss later.)
Using the encoding in (2.1) and the proof rule above, as well as others, we can derive
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[New] as follows.

1. {C}M :m {C0} (premise)

2. {C0[!x/m]∧x#ẽ} N :u {C′} with x /∈ fpn(ẽ) (premise)

3. {C} ref(M) :x {#x.C0[!x/m]} (1,Ref)

4. {C} ref(M) :x {#x.(C0[!x/m]∧x#ẽ)} (Subsn-times)

5. {C} ref(M) :x {νy.(C0[!x/m]∧x#ẽ∧x = y)} (Consequence)

6. {C0[!x/m]∧x#ẽ∧x = y} N :u {C′∧x = y} (2,Invariance)

7. {C} let x = ref(M) in N :u {νy.(C′∧x = y)} (5,6,LetOpen)

8. {C} let x = ref(M) in N :u {νx.C′} (Consequence)

As may be observed, the crucial step in the above derivation is Line 5, whichturns
freshness into locality through the standard law of equality and existential,

C ≡ ∃y.(C ∧ x = y)

with y fresh. This also indicates that allowingν -bound name (herey) to be equated with
even free names (herex) as in the post-condition of Line 5 is inevitable if we wish to
have locality (new) and freshness (ref) interact consistently. This may also offer a case
for the use of existential quantifier in the present setting.

We also record a variant of the [Ref] as the last rule in Figure 4, suggested in the
derivation above. Note the rule is close to the premise of [New] and [NewVar].

The proof rule [LetOpen] used above, which opens the scope of ˜y and which is often
useful, is derivable from [Let] and a couple of structural rules, including [Consequence].
We list below its derivation which elucidates how smoothly the representation of fresh-
ness in the present logic integrates with compositional logic for sequential languages.
The derivation follows (the premises are those of [LetOpen]; for simplicity we treat a
single nameν -binder, whose generalisation is obvious; and we assumei is fresh).

1. {C}M :m {∃y.(y 6= i ∧ C0)} (premise)

2. {C0} N :u {C′} (premise)

3. {y 6= i ∧ C0} N :u {y 6= i ∧ C′} (2, Invariance)

4. {y 6= i ∧ C0} N :u {∃y.(y 6= i ∧ C′)} (3, Consequence)

5. {∃y.(y 6= i ∧ C0)} N :u {∃y.(y 6= i ∧ C′)} (4, Aux∃)

6. {C} let x = M in N :u {νy.C′} (1, 5, Let)

Observe howy 6= i slides from the post-condition of a first judgement to later ones.
Similar scope opening rules are derivable from other rules with non-trivial premises.

Let us list a small example from the Introduction, (1.3), a program which always
returns 100 because of a freshness of local reference, reproduced below.

M
def= new y := 1 in if x = y then 0 else 100 (5.1)
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The desired judgement is{T}M :m {m= 100}. For deriving this judgement, we use:

[Erase]
{C}M :m {νx.C′} x /∈ fn(C′)

{C}M :m {C′}

The derivation follows, omitting trivial reasoning.

1. {T} 1 :m {T}

2. {x 6= y} if x = y then 0 else 100 :u {u = 100}

3. {y#x} if x = y then 0 else 100 :u {u = 100} (2, Consequence)

4. {T} new y := 1 in if x = y then 0 else 100 :u {νx.u = 100} (1,3,New)

5. {T} new y := 1 in if x = y then 0 else 100 :u {u = 100} (4, Erase)

Above Line 2 uses the entailment

y#x ⊃ x 6= y

which is immediate fromx = y⊃ x ↪→ y. Final lines could also have used [NewVar]
instead of [New].

Proof Rule for Universal Abstraction. The structural rules in Figure 3 stay identical
with those in the preceding logic [3] except for a slight change in[Aux∀]. Without this
side condition, the rule is not sound. As a simple example, [Ref’] immediately gives us:

{T} ref(0) :u {u 6= i} (5.2)

from which we cannotconclude

{T} ref(0) :u {∀i.(u 6= i)} (5.3)

since if so we can substituteu for i by the standard law of universal quantification,
reaching an inconsistent judgement{T} ref(0) :u {F}.

Let us further clarify the semantic stauts of (5.2) and its difference from (5.3). Se-
mantically, (5.2) says that, for eachM (implicitly assuming typability), we have, by
referring to the definition of expansion (Definition 4.5, page 17) and semantics of judge-
ment (Definition 5.3, page 23):

M [u:ref(0)] ⇓ (ν l)(M ·u : l , l 7→ 0) |= u 6= i

with l fresh. Notei should be interpreted inM , i.e. it is in the domain ofξ. This means
either i is a non-reference in which caseu 6= i is immediate, or, ifi is a reference, it
cannot be mapped to the same label asu, hence again we haveu 6= i. This is how the
inequalityu 6= i for a freshi can represent freshness ofu.

In contrast, (5.3) says that, again for eachM , we have:

M ·u : l , l 7→ 0 |= ∀i.(u 6= i)
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from which we can deduce, by the semantics of universal abstraction:

M ·u, i : l , l 7→ 0 |= u 6= i

which is a straightforward contradiction. This contradiction is caued simply because
i can be coalesced withi: the quantification in the postcondition is effectiveafter the
post-state is obtained, soi can denote anything in the poststate. In (5.2),i can only be
interpreted inM outside ofu simply because we knowi should already exist inM
and becauseu is added as a singleton (or unaliased) name in the postcondition, so that
i cannot be equated withu. This is essentially why [New] rule is sound, whose formal
proof is given in Section 6.

5.3 Proof Rules (2): Derived Located Rules

We find several rules derivable or admissible in the basic proof system to be of sub-
stantial help in reasoning about programs. The first class of these rules are for located
judgements, listed in Figure 5 and Figure 6. All rules come from [3] except for the new
name generation rule and the universal quantification rule, both corresponding to the
new rules in the basic proof system. In [New] rule, x should be taken off from the write
effects (by the freshness condition, other write effects are guaranteed to be distinct from
x). In the structural rules for located assertions in Figure 6, [Invariance] generalises the
rule of the same name in Figure 3, and is used for modular and extensional reasoning
for programs with write effects.

These rules stay as they originally are in [3] in spite of a major change in semantics
of assertions. A central reason for this is that the operators on models used for inter-
preting the present logic discussed in Section 4 work precisely in the same way as the
set-theoretic operators used for interpreting the logic in [3] (and [19]), up to a certain
abstraction level (for this purpose the behavioural aspect of these operators, or more
directly their≈-closure, cf. Section 4.5, is essential). Thus the soundness of each proof
rule follows precisely the same reasoning as the one given in the preceding models, the
latter based on set-theoretic operations. Let us see how this is so taking the invariance
rule, [Invariance], as an example. Recall that we sayC is !e-freeif [!e]C≡C. By its
premise we assume:

|= {C}M :u {C′}@e (5.4)

where for simplicity we consider a single write effect, which is easily extended. By the
!e-freeness ofC0, we have:

∀M0,∀V.(M0 |= C0 ≡M0[e 7→V] |= C0). (5.5)

Now supposeM |= C ∧ C0, that is we have (a)M |= C and (b)M |= C0. By (a) and
(5.4) we know:

M [u:M] ⇓M ′ |= C′ and ∃W.(M ′/u = M [e 7→W]) (5.6)

The second half in (5.6) is by the write effect. (5.6), (b) and (5.5) indicate:M ′ |= C0,
Hence we reachM [u:M] ⇓M ′ |= C′∧C0.

As we have already explored in our previous work [3, 19], programs of specific
shape allow efficient reasoning rules, some of which are listed in Figure??. More spe-
cific rules for freshness will be introduecd in § 7.
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Fig. 5 Derived compositional rules for located assertions

[Var] −
{C[x/u]} x :u {C}@/0 [Const] −

{C[c/u]} c :u {C}@/0

[Add] {C}M1 :m1 {C0}@ẽ1 {C0}M2 :m2 {C′[m1 +m2/u]}@ẽ2
{C}M1 +M2 :u {C′}@ẽ1ẽ2

[Abs] {C∧A-x}M :m {C′}@ẽ
{A} λx.M :u {{C}u•x=m{C′}@ẽ}@ /0

[App]{C}M :m {C0}@ẽ {C0}N :n {C1 ∧ {C1}m•n=u{C′}@ẽ2}@ẽ1
{C}MN :u {C′}@ẽẽ1ẽ2

[If ] {C}M :b {C0}@ẽ1 {C0[t/b]}M1 :u {C′}@ẽ2 {C0[f/b]}M2 :u {C′}@ẽ2
{C} if M then M1 else M2 :u {C′}@ẽ1ẽ2

[Pair]
{C}M1 :m1 {C0}@ẽ1 {C0}M2 :m2 {C′[〈m1,m2〉/u]}@ẽ2

{C} 〈M1,M2〉 :u {C′}@ẽ1ẽ2

[Proj1]
{C}M :m {C′[π1(m)/u]}@ẽ
{C} π1(M) :u {C′}@ẽ

[In1]
{C}M :v {C′[inj1(v)/u]}@ẽ
{C} inj1(M) :u {C′}@ẽ

[Case]
{C-x1x2}M :m {C-x1x2

0 }@ẽ1 {C0[inji(xi)/m]}Mi :u {C′
-x1x2}@ẽ2 i ∈ {1,2}

{C} case M of {inji(xi).Mi}i∈{1,2} :u {C′}@ẽ1ẽ2

[Deref] {C}M :m {C′[!m/u]}@ẽ
{C} !M :u {C′}@ẽ

[Assign] {C}M :m {C0}@ẽ1 {C0} N :n {C′{|n/ !m|}}@ẽ2 C0 ⊃ m= e′

{C} M := N {C′}@ẽ1ẽ2e′

[New] {C}M :m {C0}@g̃1 {C0[!x/m]∧x#ẽ} N :u {C′}@g̃2x x /∈ fpn(ẽ)∪ fv(g̃1g̃2)
{C} new x := M in N :u {νx.C′}@g̃1g̃2

[Ref] {C}M :m {C′}@ẽx x/∈ fpn(ẽ)∪ fv(ẽ)
{C} ref(M) :u {#x.C′}@ẽ

6 Axioms, Soundness and Observational Completeness

6.1 Axioms for Reachability

This subsection shows axioms of reachability predicate and its negation. There are three
non-standard logical primitives in the present assertion language.

1. Evaluation formulae (for imperative higher-order functions).
2. Content quantification (for aliasing).
3. Reachability (for local state).

31



Fig. 6 Derivable structural rules for located judgements.

[Promote] {C}V :u {C′}@/0
{C∧C0}V :u {C′∧C0}@/0 [Consequence] C⊃C0 {C0}M :u {C′0}@ẽ C′0 ⊃C′

{C}M :u {C′}@ẽ

[∧-⊃] {C∧A}V :u {C′}@/0
{C}V :u {A⊃C′}@/0 [⊃-∧] {C}M :u {A⊃C′}@ẽ

{C∧A}M :u {C′}@ẽ

[∨-Pre] {C1}M :u {C}@ẽ {C2}M :u {C}@ẽ
{C1∨C2}M :u {C}@ẽ

[∧-Post] {C}M :u {C1}@ẽ {C}M :u {C2}@ẽ
{C}M :u {C1∧C2}@ẽ

[Aux∃]
{C}M :u {C′

-i}@ẽ
{∃i.C}M :u {C′}@ẽ

[Aux∀]
{C-i}M :u {C′}@ẽ i is of a base type.

{C}M :u {∀i.C′}@ẽ

[Invariance] {C}M :u {C′}@ẽ C0 is !ẽ-free
{C ∧ C0}M :u {C′∧C0}@ẽ

[Weak] {C}M :m {C′}@ẽ
{C}M :m {C′}@ẽe′

[Thinning] {C∧!e′ = i}M :m {C′∧!e′ = i}@ẽe′ i fresh
{C}M :m {C′}@ẽ

[Consequence-Aux] {C0}MΓ;∆;α :u {C′0}@ẽ C ⊃ ∃ j̃.( C0[ j̃/ĩ] ∧ [!ẽ](C′0[ j̃/ĩ]⊃C′) )
{C}M :u {C′}@ẽ

In [Consequence-Aux], we let !ẽ (resp.ĩ) exhaust active dereferences (resp. auxiliary names) in
C,C′,C0,C′0, while j̃ are fresh and of the same length asĩ.

The axioms for the first two constructs are respectively treated in [19] and [3], including
their interplay with each other. We list basic axioms of reachability, which are useful
for reasoning examples later.

Lemma 6.1 AssumeM |= x#ỹl̃ and fv(N)∪ fl(N) ⊆ ỹl̃. Then for all N with u fresh,
M [u:N] ⇓M ′ impliesM ′ |= x#uỹl̃.

Proposition 6.2 (axioms for reachability). The following assertions are valid (we as-
sume appropriate typing).

1. (1) x ↪→ x; (2) x ↪→ y∧y ↪→ z ⊃ x ↪→ z; (3) x#w∧w ↪→ u ⊃ x#u.
2. (1) y#xα with α ∈ {Unit,Nat,Bool}; (2) 〈x1,x2〉 ↪→ y ≡ x1 ↪→ y∨x2 ↪→ y;

(3) inji(x) ↪→ y ≡ x ↪→ y; (4) x ↪→ yRef(α) ⊃ x ↪→!y;
(5) xRef(α) ↪→ y∧x 6= y ⊃ !x ↪→ y.

3. (1) {C∧x# f y} f •y=z{C′} ⊃ {C∧x# f y} f •y=z{C′∧x]z};
(2) {C∧x# f yw̃} f •y=z{C′}@w̃⊃ {x# f yw̃} f •y=z{C′∧x]zw}@w̃;
(3) {x# f yw̃∧C} f •y=z{C′}@w̃⊃ {x# f yw̃∧C} f •y=z{x# f yzw̃∧C′}@w̃.

PROOF: Axioms in 1 and 2 use Lemma 4.23. Axiom 1-(1) is direct by Lemma 4.23 (1),
while Axiom 1-(2) is by Lemma 4.23 (5). Axiom 1-(3) is proved by a contradiction.
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Fig. 7 Other derived located proof rules.

[AssignVar] C{|e/!x|} ⊃ x = g
{C{|e/!x|}} x := e{C}@g

[AssignSimple] C{|e′/!e|} ⊃ e= g
{C{|e′/!e|}} e := e′ {C}@g

[IfSimple] {C∧e} M1 {C′}@g̃ {C∧¬e} M2 {C′}@g̃
{C} if ethen M1 else M2 {C′}@g̃

[AppSimple]C ⊃ {C}e• (e1..en) = u{C′}@g̃
{C} e(e1..en) :u {C′}@g̃

[NewSimple] {C∧!x = e∧x#ẽ′} N :u {C′}@g̃x x /∈ fpn(ẽ′)∪ fv(g̃)
{C} new x := ein N :u {νx.C′}@g̃

[Let] {C}M :x {C0}@g̃ {C0} N :u {C′}@g̃′

{C} let x = M in N :u {C′}@g̃g̃′

[Seq] {C} M {C0}@g̃ {C0} N {C′}@g̃′

{C} M;N {C′}@g̃g̃′
[Seq-Inv] {C1} M {C′1}@ẽ1 {C2} N {C′2}@ẽ2

{C1 ∧ [!ẽ1]C2} M;N {C′2 ∧ 〈!ẽ2〉C′1}@ẽ1ẽ2

Assume¬w ↪→ x∧w ↪→ u but u ↪→ x. Then by transitivity, we havew ↪→ x, which
contradictsx#w. Axiom 2 (1) is trivial byfv(σ(x)) = /0. Axiom 2 (2) is by Lemma 4.23
(4), while Axiom 2 (3) is by definition of the name closure. Axiom 2 (4) is by Lemma
4.23 (6). Axiom 2 (5) is by Lemma 4.23 (2) and (3). The proof of Axiom 3 (1,2) are
subsumed by that of Axiom 3 (2) below. Axiom 3 (2) is proved by Proposition 4.24 and
the definition of the model of the evaluation formula. SupposeM |= {x# f yw∧C} f•y=
z{C′}@w. The definition of the evaluational formula says, withu fresh,

∀N,(M [u : N] ⇓M0∧M0 |= x# f yw∧C ⊃ ∃M ′.(M0[z : f y] ⇓M ′∧M ′ |= C′)).

We prove suchM ′ always satisfiesM ′ |= x#zw. AssumeM0 ≈ (ν~l)(ξ,σ0]σx) with
ξ(x) = l , ξ(y) = Vy, ξ( f ) = Vf and ξ(w) = lw such thatcl(fl(Vf ,Vy, lw),σ0 ] σx) =
fl(σ0) = dom(σ0) and lx ∈ dom(σx). By this partition, during evaluation ofz : f y, σx

is unchanged, i.e.(ν~l)(ξ ·z : f y,σ0]σx)→→ (ν~l)(ξ ·z : VfVy,σ0]σx)→→ (ν~l ′)(ξ ·z :
Vz,σ′0]σx). Then obviously there existsσ1 such thatσ1 ⊂ σ′0 andcl(fl(Vz, lw),σ′0]
σx) = fl(σ1) = dom(σ1). Hence by Proposition 4.24, we haveM0 |= x#wz, completing
the proof. ut

3 above says that ifx is unreachable from a functionf , its argumenty and its write
variablew, then the same is true for its return valuezandw. Note thatf = λ().x saitsifies
{y= ()} f •y=z{y= ()}@/0 but does not{y= ()} f •y=z{y= ()∧x#wz}@/0 hencex# f
in the precondition is necessary to derivex#z in the postcondition. Similarly forx# f
andx#y.
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6.2 Elimination Results

Finite TypesLet us sayα is finite if it does not contains an arrow type or a type variable.
We saye ↪→ e′ is finite if e has a finite type. We show, for finite and recursively finite
types, the (non-)reachability predicates can be eliminated from the assertion language,
in the sense that each assertion containing such predicates has an equivalent assertion
which does not use them.

Theorem 6.3 Suppose any reachability predicates in C are finite. Then there exists C′

such that C≡C′ and no reachability predicate occurs in C′.

As the first step, we define a simple inductive method for defining reachability from a
datum of a finite type.

Definition 6.4 (i-step reachability)Let α be a finite type. Then the i-step reachabil-
ity predicatereach(xα, yRef(β), iNat) (read:“a referencey is reachable fromx in at
most i-steps”) is inductively given as follows (below we assume y is typedRef(β),
C∈ {Unit,Bool,Nat}, and omit types when evident).

reach(xα, y, 0) ≡ x = y

reach(xC, y, n+1) ≡ F

reach(xα1×α2, y, n+1) ≡ ∨ireach(πi(x), y, n) ∨ reach(x, y, n)
reach(xα1+α2, y, n+1) ≡ ∃x′.(x′ = inl(x) ∧ reach(x′, y, n)) ∨

∃x′.(x′ = inr(x) ∧ reach(x′, y, n)) ∨
reach(x, y, n)

reach(xRef(α), y, n+1) ≡ reach(!x, y, n) ∨ reach(x, y, n)

Remark 6.5 With C being a base type,reach(xC, y, 0)≡ x = y≡ F (since a reference
y cannot be equal to a datum of a base type).

A key lemma follows.

Proposition 6.6 If α is finite, then the following logical equivalence is valid, i.e. is true
in any model.

xα ↪→ y≡ ∃i.reach(xα, y, i)

PROOF: For the “if” direction, we show, by induction oni, reach(xα, y, i) ⊃ xα ↪→ y.
For the base case, we havei = 0, in which case:

reach(xα, y, 0) ⇒ x = y
⇒ x ↪→ y

For induction, let the statement holds up ton. We only show the case of a product. Other
cases are similar.

reach(xα1×α2, y, n+1) ⇒ ∨ireach(πi(x), y, n) ∨ reach(x, y, n)
⇒ ∨iπi(x) ↪→ y ∨ x ↪→ y
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But if π1(x) ↪→ y thenx ↪→ yby the definition of reachability. Similarly whenπ2(x) ↪→ y,
hence done.

For the converse, we show the contrapositive, showing:

M |= ¬∃i.reach(xα, y, i) ⇒ M |= ¬xα ↪→ y

If we haveM |= ¬∃i.reach(xα, y, i) with α finite, then the referencey is not among
references hereditarily reachable fromx (if it is, then eitherx = y or y is the content of
a reference reachable fromx because of the finiteness ofα, so that we can find somei
such thatM |= reach(xα, y, i)), hence done. ut

Now let us define the predicatexα ↪→′ yRef(β) with α finite, by the axioms given in
Axiom 2 in § 6.1 which we reproduce below.

xUnit ↪→′ yRef(β) ≡ F

xBool ↪→′ yRef(β) ≡ F

xNat ↪→′ yRef(β) ≡ F

xα1×α2 ↪→′ yRef(β) ≡ ∃x1,2.(x = 〈x1,x2〉∧
W

i=1,2xi ↪→′ y)
xα1+α2 ↪→′ yRef(β) ≡ ∃x′.((

W
i=1,2x = inji(x

′)) ∧ x′ ↪→′ y)
xRef(α) ↪→′ yRef(β) ≡ x = y∨!x ↪→′ y

The inductive definition is possible due to finiteness. We now show:

Proposition 6.7 If α is finite, then the following logical equivalence is valid.

xα ↪→′ yRef(β) ≡ ∃i.reach(xα, yRef(β), i)

PROOF: reach(xα, yRef(β), i) ⊃ xα ↪→′ yRef(β) is by induction oni. The converse is by
induction onα. Both are mechanical and omitted. ut

Corollary 6.8 If α is finite, then the logical equivalence

xα ↪→ yRef(β) ≡ xα ↪→′ yRef(β)

is valid, i.e.↪→ is completely characterised by the axioms for↪→′ given above.

PROOF: Immediate from Propositions 6.6 and 6.7. ut

Recursively TypesWe say a type isrecursively finitewhen it is closed and contains
neither an arrow type nor type quantifiers. Whenα can be recursively finite, we define
reach(xα, yRef(β), iNat) by precisely the same clauses (taking the iso-recursive approach
[31]). Then we again obtain, by precisely identical arguments:

Proposition 6.9 If α is recursively finite, then the logical equivalence

xα ↪→ y≡ ∃i.reach(xα, y, i)

is valid, i.e. is true in any model.
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Remark 6.10 The literally same argument as for Proposition 6.6 can be used for Propo-
sition 6.9 because, regardless ofα being finite or recursively finite, ifVα can reachy,
theny is indeed found (possibly hereditarily going through the store) at a place where
the type ofy occurs inα. This property does not generally hold whenα contains a
function type, precluding simple operational reasoning based on disjointness.

A convenient axiomatisation of↪→ and its negation in the presence of recursive finite
types uses coinduction for the obvious reason: for example, to sayy is not reachable
from x, we can show the existence of a finite set of pairs including〈x,y〉 which is
closed under one-step reachability and which shows no datum reachable fromx does
not coincide withy. For such assertions, we need a small increment in the grammar of
assertions. First, terms are incremented with finite relations:

e ::= ... | /0 | R

(We may type these expressions with appropriate types.) We also extend the assertion
with:

C ::= ... | 〈x,y〉 ∈ R

For effectively asserting on, and reasoning about, finite relations, we may use simple
axioms for set membership as well as basic operations on sets.

Co-inductive axiomatisation specifies a property of a finite relation, saying if〈x,y〉
is related byR , andR satisfies a certain property, thenx ↪→ y. The axiomatisation
focusses on a certain closure property ofR and is given in Figure 8.

Fig. 8 Axioms for (Non-)Reachability (recursive finite case:α,β are recursively finite)

xα ↪→ yRef(β) ≡ ∃R .(〈x,y〉 ∈ R ∧ Ψ(R ))

whereΨ(R ) is given by the conjunction of:

∀X1,2,z. 〈zX1×X2,y〉 ∈ R ⊃ ∨i=1,2〈πi(z),y〉 ∈ R

∀X1,2,z. 〈zX1+X2,y〉 ∈ R ⊃ ∨i=1,2∃z′.(z= inji(z
′) ∧ 〈z′,y〉 ∈ R )

∀X,z. 〈zRef(X),y〉 ∈ R ⊃ z= y ∨ 〈!z,y〉 ∈ R

Symmetrically
yRef(β) #xα ≡ ∃R .(〈x,y〉 ∈ R ∧ Φ(R ))

whereΦ(R ) is given by the conjunction of:

∀X1,2,z. 〈zX1×X2,y〉 ∈ R ⊃ ∧i=1,2〈πi(z),y〉 ∈ R

∀X1,2,z. 〈zX1+X2,y〉 ∈ R ⊃ ∧i=1,2∃z′.(z= inji(z
′) ∧ 〈z′,y〉 ∈ R )

∀X,z. 〈zRef(X),y〉 ∈ R ⊃ z 6= y ∧ 〈!z,y〉 ∈ R
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Remark 6.11 (content quantification and reachability) Giveneα
1 ↪→ e2 or e1#e2, if α is

finite or recursively finite, then the axiomatisations discussed above offer a simple way
to calculate content-quantified (un)reachability, such as〈!x〉eα

1 ↪→ e2: we simply de-
compose↪→ (or #) into its witness, and check how content quantification interacts with
each (in)equation, using the standard axioms for content quantifiers [3]. Ifα contains
a function type or a type variable, this method does not work. In some cases, however,
we can indeed reason about such interplay easily. For example, the following logical
equivalence is valid in any model under the assumption thatβ is recursively finite and
thatRef(β) does not occur inβ up to the type isomorphism.

(∀X.∀ jX 6= x. j #x) ⊃ (〈!x〉iα ↪→ xRef(β) ≡ [!x]iα ↪→ xRef(β) ≡ iα ↪→ xRef(β)) (6.1)

Equivalently, under the same assumption:

(∀X.∀ jX 6= x. j #x) ⊃ (〈!x〉xRef(β) #iα ≡ [!x]xRef(β) #iα ≡ iα ↪→ xRef(β) (6.2)

Note the axioms do not depend onα. Without going into a rigorous notion of models
we shall discuss in the next section, the reason why (6.1) and (6.2) hold can be easily
understood. By the assumption∀X.∀ jX 6= x. j #x, any datum is unreachable tox except
x itself. Since, by the type ofβ, we can never reachx from the content ofx, this means
changing the content ofx cannot influence the reachability (in fact even under hypo-
thetical content ofx we can only havei ↪→ x≡ i = x) (indeed we believe the condition
on β can be taken away). The proof of the validity of (6.1) and (6.2) can be found in
Appendix.

A usable axiomatisation of↪→ for finite recursive types needs coinduction. For this
purpose we assume a finite relation (whose variables we writeR , . . .) and a set mem-
bership predicate ((x,y) ∈ R ) as part of the logic, with the corresponding axioms (we
do not need such axioms as well-ordering and construction of powerset). Then we set:

xα ↪→′ yRef(β) ≡ ∃R .(〈x,y〉 ∈ R ∧ Ψ(R ))

whereΨ(R ) is given by the conjunction of:

〈zX1×X2,y〉 ∈ R ⊃ ∨i=1,2〈πi(z),y〉 ∈ R

〈zX1+X2,y〉 ∈ R ⊃ ∃z′.(z= inl(z′) ∧ 〈z′,y〉 ∈ R ) ∨
∃z′.(z= inr(z′) ∧ 〈z′,y〉 ∈ R )

〈zRef(X),y〉 ∈ R ⊃ z= y ∨ 〈!z,y〉 ∈ R

where we omit the outermost (type and variable) universal quantification over X1,2 and
z.

Proposition 6.12 If α is recursively finite, then

xα ↪→′ yRef(β) ≡ ∃i.reach(xα, yRef(β), i)

is valid.
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PROOF: reach(xα, yRef(β), i) ⊃ xα ↪→′ yRef(β) is by induction oni. For the converse,
simply go through the chain fromx to y inside a(ny) witnessingR for ↪→′. ut

Thus we obtain, by Propositions 6.9 and 6.12:

Corollary 6.13 If α is recursively finite, then

xα ↪→ yRef(β) ≡ xα ↪→′ yRef(β)

is valid, i.e.↪→ is completely characterised by the axioms for↪→′ given above.

Theorem 6.14 Let C be such that each reachability predicate occurring in C is recur-
sively finite. Then there exists C′ such that C′ ≡ C such that C′ does not contain any
occurrences of reachability predicates.

6.3 Consistency of Logic

Before establishing soundness of the logic, it is necessary to check the consistency of
the logical constructs in the sense that equality, connectives and quantifications sat-
isfy the standard axioms. For logical connectives, this is direct from the definition. For
equality and quantification, however, this is not immediate, due to the non-standard
definition of their semantics.

First we check the equality indeed satisfies the standard axioms for equality. We
start from the following lemmas.

Lemma 6.15 Let M has a typeΓ;∆;D below.

1. (injective renaming) Let u,v∈ dom(Γ). ThenM |= C iff M [uv/vu] |= C[uv/vu].
2. (permutation) Let u,v∈ dom(Γ). Then we haveM |= C iff

(uv
vu

)
M |= C[uv/vu].

3. (exchange) Let u,v 6∈ fv(e,e′). Then we haveM [u:e][v:e′] |=C iff M [v:e′][u:e] |=C.
4. (monotonicity)M |=C impliesM [u:e] |=C. Further if u6∈ fv(C) thenM [u:e] |=C

impliesM |= C.
5. (symmetry)M |= e1 = e2 iff for fresh and distinct u,v: M [u : e1][v : e2] ≈ M [u :

e2][v:e1].
6. (substitution, 1)M [u:x][v:e]≈M [u:x][v:e[u/x]].
7. (substitution, 2)M [u:e][v:e′]≈M [u:e][v:e′[e/u]].

PROOF: For (1), both directions are simultaneously established by induction onC, prov-

ing for bothC and its negation. IfC is e1 = e2, we have, lettingM def= (ν ỹ)(ξ,σ),
δ def= [uv/vu] andξ′ def= ξδ:

M |= e1 = e2

⇒ M [x : e1]≈M [x : e2]
⇒ (ν ỹ)(ξ ·x : [[e1]](ξ,σ), σ)∼=id (ν ỹ)(ξ ·x : [[e2]](ξ,σ), σ)
⇒ (ν ỹ)(ξ′·x: [[e1δ]](ξ′,σ), σ)∼=id (ν ỹ)(ξ′·x: [[e2δ]](ξ′,σ), σ) (∗)
⇒ M δ[x : e1δ]≈M ρ[x : e2δ]
⇒ M δ |= (e1 = e2)δ
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Above (∗) used[[ei ]](ξ,σ)
def= [[eiδ]](ξ′,σ). Dually for its negation. The rest is easy by

induction. (2) is by precisely the same reasoning. (3) is immediate from (1) and (2). (4)
is similar, for which we again show a base case.

M ′ |= e1 = e2

⇔ M [x : e1]≈M [x : e2] (Def)
⇔ M [x : e1][u : e]≈M [x : e2][u : e] (Lem.4.15)
⇔ M [u : e][x : e1]≈M [u : e][x : e2] ((3) above)

Dually for the negation. For (5), the “only if” direction:

M |= e1 = e2

⇔ M [u : e1]≈M [u : e2] (Def)
⇔ M [u : e1][v : e2]≈M [u : e2][v : e2] ∧

M [u : e2][v : e2]≈M [u : e2][v : e1] (Lem.4.15; (3) above)
⇒ M [u : e1][v : e2]≈M [u : e2][v : e1].

Operationally, the encoding of models simply removes all references tou,v and re-
places them by positional information: hence all relevant difference is induced, if ever,
by behavioural differences betweene1 ande2, which however cannot exist by assump-
tion. The “if” direction is immediate by projection.

(6) and (7) are best argued using concrete models. For (6), LetM = (ν ỹ)(ξ,σ) and
let ξ(x) = W. We infer:

M [u:x][v:e] def= (ν ỹ)(ξ·u : W·v : eξ, σ)
def= (ν ỹ)(ξ·u : W·v : (e[u/x])ξ, σ)

For (7), letM = (ν ỹ)(ξ,σ) andW = [[e]]ξ,σ (the standard interpretation ofe by ξ and
σ). We then have

M [u:e][v:e′] ≈ (ν ỹ)(ξ·u : W·v : [[e′]]ξ,σ, σ)
def= (ν ỹ)(ξ·u : W·v : [[e′[e/u]]]ξ,σ, σ)

The last line is because the interpretation is homomorphic. ut

We are now ready to establish the standard axioms for equality.

Lemma 6.16 (axioms for equality)For any modelM and x, y, z and C:

1. M |= x = x, M |= x = y⊃ y = x andM |= (x = y∧y = z)⊃ x = z.
2. M |= (C(x,y)∧x = y)⊃C(x,x).

where C(x,y) and C(x,x) is understood as in [23,§2.4] (i.e. C(x,y) indicates C together
with some of the occurrences of x and y, while C(x,x) is the result of substituting x for
the latter).
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PROOF: For the first clause, reflexivity is becauseM [u:x]≈M [u:x], while symmetry
and transitivity are from those of≈. For the second clause, we proceed by induction on
C. We show the case whereC is e1 = e2. It suffices to proveM |= x = y andM |= C
imply M |= C[x/y].

M |= x = y⇒M [u:x][v:y]≈M [u:y][v:x] (6.3)

⇒M [u:x][v:y][w:ei ]≈M [u:y][v:x][w:ei ] (6.4)

Here (6.3) is by Lemma 6.15.5 and (6.4) follows from Lemma 4.15.

M [u:x][v:y][w:ei ]≈M [u:x][v:y][w:ei [v/y]] (Lem. 6.15.6)

≈M [u:y][v:x][w:ei [v/y]] (Lem. 4.15, 6.3)

≈M [u:y][v:x][w:ei [vv/xy]] (Lem. 6.15.6)

≈M [u:y][v:x][w:ei [xx/xy]] (Lem. 6.15.7)

≈M [w:ei [xx/xy]][u:y][v:x] (Lem. 6.15.3)

M |= e1 = e2 ⇒M [u:x][v:y] |= e1 = e2 (Lem. 6.15.4)

⇒M [u:x][v:y][w:e1]≈M [u:x][v:y][w:e2]

Thus we get

M [w:e1[xx/xy]][u:y][v:x]≈M [u:x][v:y][w:e1]
≈M [u:x][v:y][w:e2]
≈M [w:e2[xx/xy]][u:y][v:x]

This allows to conclude to:

M [w:e1[xx/xy]]≈M [w:e2[xx/xy]]

which is equivalent to:
M |= C(x,x).

as required. ut

Lemma 6.17 (axioms for∀) For any modelM :

1. M |= (∀xα.C)⊃C[e/x] for all e of typeα.
2. M |= (∀xα.(C1 ⊃C2))⊃ (C1 ⊃ ∀xα.C2), provided x in C1.

PROOF: We only show (1) whenα is a value type.

M |= ∀xα.C⇔∀N.M [x:N] |= C ⇒∀e.M [x:e] |= C

(2) is standard. ut
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Lemma 6.18 (content quantification) For anyM .

1. M |= [!x]C⊃C,
2. M |= [!x](!x = m⊃C)≡ 〈!x〉(!x = m∧C),
3. M |= ([!x](C1 ⊃C2))⊃C1 ⊃ [!x]C2 when[!x]C≡C1.

PROOF: For (1)

M |= [!x]C impliesM [x 7→!x] |= C impliesM |= C.

For (2)

M |= [!x](!x = m⊃C)⇔M [x 7→m] |= C

⇔M [x 7→m] |= C∧!x = m

⇔M |= 〈!x〉(C∧!x = m)

Finally, for (3), if [!x]C1≡C1 then:M |=C iff for all V, M [e 7→V] |=C1. Consequently:

M |= [!x](¬C1∨C2)
≡ ∀V. M [e 7→V] 6|= C1 or M [e 7→V] |= C2)
≡M 6|= C1 or ∀V. M [e 7→V] |= C2

≡M |= ¬C1 ∨ [!x]C2

as required. ut
Lemma 6.19 M |= 〈!x〉(C∧!x = m) iff M [x 7→ [[e]]ξ,σ] |= C

PROOF: Straightforward and standard. Below let us setM to be the model(ν l̃)(ξ·x :
l ·m:V, σ·[l 7→W]) (the casex 6∈ fv(C) is obvious).

M |= 〈!x〉(C∧!x = m)
⇔ ∃M ′ = M [x 7→V] s.t.(M ′ |= C∧M ′ |=!x = m)
⇔ (ν l̃)(ξ·x: l ·m:V, σ·[l 7→V])
⇔ M [x 7→m] |= C

as required (note the reasoning is identical with the corresponding proof in [3], or with
the corresponding one in Hoare logic). ut
Notation 6.20 We writeC{|e′/!e|} for ∃m.(〈!x〉(C∧!e= m)∧m= e′) with m fresh.

Lemma 6.21 (plain free reference names) Let u/∈ fpn(e). Then, with u fresh, for all
M:

M [u:ref(M)] ⇓M ′ impliesM ′ |= u#e.

PROOF: M ′ has shape:
(νl̃ l )(ξ-u ·u : l ,σ-l · [l 7→V])

with (νl̃0)(Mξ,σ0) ⇓ (νl̃0)(V,σ). Then one can check[[e]]ξ·u:l ,σ·[l 7→V] = [[e]]ξ,σ 6∈ cl(l ,σ ·
[l 7→V]) = cl(l , [l 7→V]). ut
Lemma 6.22 Suppose A is stateless andM |= A. Then:

1. M [u:M] ⇓M ′ with u fresh impliesM ′ |= A.
2. M ≈ (ν l)M ′∧M ′[x: l ] |= A.

PROOF: By induction onA. ut
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6.4 Soundness of Proof Rules

we are ready to prove:

Theorem 6.23 ` {C}M :u {C′} implies|= {C}M :u {C′}.

PROOF: We start with [Var].

M |= C[x/u] impliesM [u:x] |= C.

Similarly [Const] is reasoned:

M |= C[c/u] impliesM [u:c] |= C.

Next, [Inj1] is reasoned:

M |= C ⇒ M [m:M] ⇓M ′ |= C′[inj1(m)/u]
⇒ M [m:M] ⇓M ′s.t. M ′[u:inj1(m)] |= C′.

⇒ M [m:M][u:inj1(m)] |= C′.

⇒ M [u:inj1(M)] |= C′.

For [Proj] we reason as follows.

M |= C ⇒ M [m:M] ⇓M ′ |= C′[π1(m)/u], i.e. M ′[u:π1(m)] |= C′

For [Case], we reason:

M |= C ⇒ M [m:Mα+β] ⇓M0 |= C0, if M = (ν l̃)(ξ,σ) and(ν l̃)(Mξ,σ) ⇓ (ν l̃ ′)(inji(xi)ξ,σ′)
⇒ M0[m:inji(xi)] |= C0∧m= inji(xi)
⇒ M0[m:inji(xi)][u:M1] ⇓M ′ |= C′

⇒ M [u:case M of {inji(xi).Mi}i∈{1,2}] ⇓M ′/m |= C′

Now we reason for [Abs]. We assumex, ĩ have functional types.

M |= A⊃M [u:λx.M] |= ∀xĩ.{C}u•x=m{C′}
≡ M |= A⊃M [u:λx.M][x:V][ĩ :W̃] |= {C}u•x=m{C′}
≡ M |= A⊃ (M [u:λx.M][x:V][ĩ :W̃][k:N] ⇓M0∧M0 |= C)

⊃ (M0[m:ux] ⇓M ′
0∧M ′

0 |= C′)
≡ (M |= A∧M [u:λx.M][x:V][ĩ :W̃][k:N] ⇓M0∧M0 |= C)

⊃ (M0[m:ux] ⇓M ′
0∧M ′

0 |= C′)
≡ (M |= A∧M [u:λx.M][x:V][ĩ :W̃][k:N] ⇓M0∧M0 |= A∧C) (Lemma 6.22 (1))

⊃ (M0[m:ux] ⇓M ′
0∧M ′

0 |= C′)
⊂ M0 |= A∧C⊃ (M0[m:M] ⇓M ′

0∧M ′
0 |= C′)

If x has a reference type, we use Lemma 6.22 (2) instead of (1). Then reasoning is
identical.
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[App] is reasoned as follows.

M |= C ⇒ M [m:M] ⇓M0 |= C0

⇒ M [n:N] ⇓M1 |= C1∧{C1}m•n=n{C′}
⇒ M [m:M][n:N][u:m•n] ⇓M ′ |= C′1
⇒ M [u:MN] ⇓M ′/mn|= C′

For [Deref], we infer:

M |= C ⇒ M [m:M] ⇓M ′ |= C′[!m/u]
⇒ M [m:!M] ⇓M ′′/m |= C′

For [Assign] we reason as follows, assumingu to be fresh.

M |= C ⇒ M [m:M] ⇓M0 |= C0,M0[n:N] ⇓M ′ |= C′{|n/!m|}
⇒ M ′[m 7→ n] ⇓M ′ |= C′

⇒ M [u:M := N] ⇓M ′/mn[u:()] |= C′

For [Rec], we establish the result for a variant:

[Rec-Ren]
{T} λx.M :u {A}

{T} µ f.λx.M :u {A[u/ f ]}

This variant and its relation with [Rec] is discussed below. Choose arbitraryM Θ· f :α⇒β.
ThenM |= T and

(IH) ⇒ ∀M .M [u:λx.M] |= A

⇒ ∀M .M [ f :µ f.λx.M][u:λx.M] |= A

⇒ ∀M .M [u, f :µ f.λx.M] |= A

⇒ ∀M .M [u:µ f.λx.M] |= ∀ f .( f = a⊃ A)
⇒ ∀M .M [u:µ f.λx.M] |= A[u/ f ]

[Rec] is easily derivable with [Rec-Ren] using mathematical induction at the level of
assertions. Proving the converse derivability (or rather equi-potence) needs a different
method.

For [Ref], we reason:

M |= C ⇒ M [m:M] ⇓M ′ |= C′

⇒ M [m:M][u:ref(M)] ⇓M0 ≈M ′[u 7→m]
and M ′[u 7→m] |= C′∧!u = m∧u#i (Lemma 6.21)

⇒ M [u:ref(M)] ⇓M ′′/m |= #u.C[!u/m]

ut

Remark 6.24 On the soundness of other proof rules from [3, 19], we observe:
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– All proof rules listed in the previous logic [3, 19] are sound in the present logic
except for a minor adjustment in[Aux-∀] (which introduces∀i to the postcondition
if an auxiliary namei does not occur in the pre-condition). Among others this allows
us to have all the derived rules for modular verification in [3] (one of them is the
invariance rule which is already treated above).

– As we have seen in Section 5, the lack of validity of[Aux-∀] in [3, 19] in its general
form stems from the existence of new name generation rather than a particular
choice of assertion language in the present context. For this reason we believe this
is inevitable in any logic which allows description of dynamic new name generation
as treated in the present work. The rule is sound if we restrict the type of an auxiliary
name to be quantified so that it does not include a reference type.

6.5 Observational Completeness (1): FCFs

Basic Ideas. In this subsection and next, we establish observational completeness,
which says the logic differentiates programs precisely as the standard observational
completeness does. The employed arguments are close to what have been given in
[3, 19], taking the following steps.

1. We first reduce the contexts needed to witness semantic difference to finite canon-
ical forms. In particular, we reduce the “new” construct to generators of relative
fresh names. The resulting restricted programs are calledFCFs. Following [3], we
extend the logical language with so-calledvector variables.

2. Next we derive a characteristic formula for each FCF, by induction of the structure
of FCFs. In particular, the preconditions of characteristic formulae we derive are
alwaysopen, in the sense that whenever(ν x̃)(ξ,σ) |= C then(ξ,σ) |= C holds (this
property does not hold for general formulae).

3. Finally, using 1 and 2, we show any differentiating context betweenM1 andM2

can be reduced to a formula which can only be satisfied by one ofM1,2 but not the
other, reaching observational completeness.

Notice if two programs are observationally equivalent then surely they satisfy the same
set of pre/post-conditions, because satisfiability is closed under∼=.

Context Reduction. For establishing this result, we reduce arbitrary differentiating
contexts to programs of specific shape, which we call FCFs. The grammar of FCFs
are from [3, §8.4]. Formally,finite canonical forms, or FCFs for short, ranged over by
F,F ′, . . ., are a subset of typable programs given by the following grammar (which are
read as programs in imperative PCFv in the obvious way).U,U ′, . . . range over FCFs
which are values.

F ::= n | xRef(α) | ωα | λx.F | let x = yU in F

| casexof〈ni : Fi 〉i∈X | casexof〈yi : Fi 〉i∈X

| let x = !y in F | x := U ;F

where:
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– In the second case construct,x andyi should be typed by the same reference type.
– In each of the case constructs,X should be a finite non-empty subset of natural

numbers (it diverges for other values); and

– ωα stands for a diverging closed term of typeα (e.g.ωα def= (µxα⇒α.λy.xy)V with V
any closed value typedα).

Note no “new” construct is used. Reference names are treated in the case construct. We
omit the obvious translation to imperative PCFv-terms and typing rules.

We now outline the proof of the following result.

Lemma 6.25 Let V1 and V2 be closed and V1 6∼= V2. Then there exists an FCF U in the
above sense s.t. UVi ⇓ and UVj ⇑ with i 6= j.

PROOF: Assume∆ `M1 6∼= M2 : α and letC[ · ] andṼ be such that, for example:

(C[M1], r̃ 7→ Ṽ) ⇓ and (C[M2], r̃ 7→ Ṽ) ⇑

which means, through theβV -equality:

(WM1, r̃ 7→ Ṽ) ⇓ and (WM2, r̃ 7→ Ṽ) ⇑

where we setW
def= λx.C[x]. Note the convergence in(WM1, r̃ 7→ Ṽ) ⇓ takes, by the

very definition, only a finite number of reductions. Let it ben. Then (occurrences of)
λ-abstractions inW andṼ can only be applied up ton-times, similarly for other de-
structors. Also all occurrences of “new” construct can only be used at mostn-times. So,
taking some freshn names, we can replace them with generators of a sequence of these
relatively freshn names for each type, each set up as a procedure, called at each place
where “new” is used, using a finite list and a counter as a way to counting it.

Using these decompositions, we transform these programs into FCF values main-
taining the convergence property while being made less defined (we leave the details to
[19, Appendix A]). Once this is done, we obtain (semi-closed) FCF values, which we set
to beF andŨ . The transformation maintains convergence behaviour of(WM1, r̃ 7→ Ṽ).
Further(FM2, r̃ 7→ Ũ) is more prone to divergence than(WM2, r̃ 7→ Ṽ), so it still di-
verges. Thus we obtain

(FM1, r̃ 7→ Ũ) ⇓ and (FM2, r̃ 7→ Ũ) ⇑ .

For detailed illustration of context reduction, see [19, §6 and Appendix A]. ut

For brevity we only consider programs typable by the set of types inductively gen-
erated fromNat, arrow types and reference types. Accordingly, we assume the “if”
construct branches on numerals, judging if it is (say) zero or non-zero, and the syntax
of the assignment has the formM1 := M2 ; N, with the obvious operational semantics.
The technical development is easily extendible to other constructs.
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Vector Variables. Another preparation needed for observational completeness is a
small extension of the logical language. The added construct is not generally used for
assertions, and may not be necessary for observational completenessper se, but we do
use it in our present proof. The construct can be used when a program uses a behaviour
with generic (unknown) side effects in the environment: however, when we use external
programs, an assertion may as well constrain side effects of external behaviours in some
way, so its practical use would be limited. The extension is given at the level of logical
terms, as follows:

e ::= . . . | a | !a

a is calledvector variable, and represents a vector of values. For our present purpose,
we only need to allow constructors on vector variables except for dereferences, as given
above. Vector variables and their dereferences are only used for equations and quan-
tifications, though other constructions are possible (for example injection of a vector
variable makes sense).

For typing vector variables, we need to introduce vector types, which are used only
for typing vector variables.

~α ::= ~X | Ref(~X)
~X denotes a vector of generic types (which can be distinct from each other). We can
consider other sorts of vector types (for example a vector of standard types is surely
useful), but this is all we need in the present context.

There are several natural predicates usable for vector variables and values. Among
them is a membership relation, writtenx∈ a, which saysx is one of the values consti-
tuting the vectora. We write this operationx∈ a. We then define, for aRef(~X)-typed
a:

Max(aRef(~X)) def= ∀Y. ∀xY ,bRef(~X).(x∈ b⊃ x∈ a)

This makes sense since reference names in a model is always finite.
The interpretation of a vector variable and its dereference is given by extending a

model to interpret a vector variable as a sequence of values. As data, we add, in(ξ,σ):

– The environment map,ξ, now also maps vector variables to their values: each vector
variable is mapped to a vector of values of the corresponding types. Ifa is of type
Ref(~Y), then it is mapped to a vector of identicals indom(σ).

– The store map,σ, does not change, still mapping identicals to stored values.

A vector variable of a vector type is then interpreted simply as a vector of values mapped
in the model. We interpret terms as follows:

[[a~X ]](ξ,σ)
def= ξ(a~X)

[[!aRef(~X)]](ξ,σ)
def= !i1...!in ([[a]](ξ,σ) = i1...in)

6.6 Observational Completeness (2): Characteristic Formulae

TCA and Characteristic Assertions Pairs. We first make the class of formulae we
shall use for defining characteristic formulae. Belowv, thecontextual preorder, is the
standard pre-order counterpart of∼=.
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Definition 6.26 (TCAs) An assertionC is a total correctness assertion (TCA) at uif
whenever(ξ ·u : κ,σ) |= C andκv κ′, we have(ξ ·u : κ′,σ) |= C. SimilarlyC is atotal
correctness assertion (TCA) at!x if whenever(ξ,σ · x 7→ κ) |= C andκ v κ′, we have
(ξ,σ ·x 7→ κ′) |= C.

Intuitively, total correctness is a property which is closed upwards — if a programM
satisfies it and there is a more defined programN then N also satisfies it (there are
assertions which describe partial correctness rather than total correctness. For example,

∀x.(u•x↘ x! ∨ u•x⇑)

is a partial correctness assertion for a factorial). Practically all natural total correctness
specification (which does not mention, essentially, non-termination) would be straight-
forwardly describable as a TCA. The present logic, including its proof system, is geared
towards total correctness: from this viewpoint, we may as well restrict our attention to
total correctness assertions. Below we introduce three notions which are about charac-
teristic formulae for total correctness.

Convention 6.27 (TCA pair) We say a pair(C,C′) is aTCA-pair forΓ;∆ `M : α at u,
or simply aTCA-pairwith the concerned typed program implicit, when: (1)C is a TCA
at dom(Γ;∆) and (2)C′ is a TCA at{u}∪dom(∆) and a co-TCA at{Γ̃} (a co-TCAis
given by the same clauses as in Definition 6.26 except changingv with w).

Definition 6.28 (characteristic assertion pair) We say a TCA pair(C,C′) is a charac-
teristic assertion pair (CAP) forΓ;∆ `M : α at u iff we have: (1)|= {C}MΓ;∆;α :u {C′}
and (2)|= {C}NΓ;∆;α :u {C′} impliesΓ;∆ `M vN : α. We also say(C,C′) characterise
Γ;∆ `M : α at uwhen(C,C′) is a CAP forΓ;∆ `M : α atu.

Definition 6.29 (minimal terminating condition) LetΓ ` M : α. Then we sayC is an
minimal terminating condition, or anMTC, for Γ ` M : α iff the following condition
holds: (ξ,σ) |= C if and only (Mξ,σ) ⇓; and (2)(Mξ,σ) ⇓ implies, if (ξ,σ) |= ∃ĩ.C
whereĩ are auxiliary names inC (i.e. fv(C)\dom(Γ)).

An MTC is a condition by which termination or divergence of a program is determined.
In the purely functional sublanguage, this is solely about the class of closing substi-
tutions, while in imperative PCFv, the notion also includes paired stores. We can now
introduce a strengthened version of CAP.

Definition 6.30 (strong CAP) LetΓ;∆ ` M : α. Then we say a TCA pair(C,C′) is a
strong characteristic assertion pair, or strong CAP forΓ;∆ `M : α at u, iff we have:

1. (soundness)|= {C}MΓ;∆;α :u {C′}.
2. (MTC) C is an MTC forM.
3. (closure) If|= {C∧E} N :u {B} andM |= C∧E, thenM [u:M] v M [u:N] (with

the latter preorder defined in the obvious way).

Proposition 6.31 If (C,C′) is a strong CAP of M, then(C,C′) is a CAP of M.
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PROOF: If (C,C′) is a strong CAP forM, then, by definition, for anyξ andσ, we have
(Mξ,σ)v (Nξ,σ). SinceM v N iff ∀ξ,σ.((Mξ,σ)v (Nξ,σ)) we are done. ut

A strong CAP says that a pair(C,C′) defines a program in a way stronger than a CAP in
one point: it demands, in addition to being a CAP, that giving a more focus/restriction
on the precondition (an initial environment and store) leads to a more focus/restriction
on the postcondition (the resulting value and state). Because of this closure property,
the use of strong CAP, instead of CAP, is fundamental for the subsequent technical
development.

Fig. 9 Proof rules for characteristic assertions of FCFs.

−
{T} nΓ;Nat :u {u = n} @ /0

{Ci} FΓ·x:Nat;α
i :u {C′i}

{∨i(x = ni ∧Ci)} casexof〈ni : Fi 〉Γ;α
i :u {∨i(x=ni ∧C′i )}

−
{T} xΓ;Ref(α) :u {u = x} @ /0

{Ci} FΓ·x:Ref(β);α
i :u {C′i}

{∨i(x = yi ∧Ci)} casexof〈yi : Fi 〉Γ;α
i :u {∨i(x=yi ∧C′i )}

{C} FΓ,x:α;β :m {C′}
{T} λx.F Γ;α⇒β :u {∀x.{C}u•x↘m{C′}} @ /0

{T}UΓ;α :z {A} @ /0 {C}FΓ·x:β;γ :u {C′}
{∀a,b. ((!a = b∧Max(a)) ⊃ ∀z.{A∧ !a = b} f •z↘ x{C})} let x = yU in FΓ;γ :u {C′}

{C} F :u {C′}
{C[!x/y]} let y = !x in F :u {C′}

{T}U∆;α :z {A} {C} F :u {C′} fv(A)⊂ {z}∪dom(∆)
{∀z.(A⊃C{|z/!x|})} x := U ; F :u {C′}

−
{F} ωΓ;α :u {F}

From FCFs to Characteristic Formulae. In Figure 9, we present the proof rules for
deriving strong CAPs for FCFs. To be explicit with involved typing, we annotate each
program with its typing of the formMΘ;α whereΘ is the union of the environment
basis and the reference basis. As in [3, 19], the rules use equality instead of termination
preorder for legibility. We observe:

1. In the rules for values (reference names, numerals and abstraction), we use located
judgements for precise description of its behaviour, which are regarded as their
translations into non-located judgements (we assume fresh names are chosen at
each rule for implicit reference names used in located judgements).
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2. In the rule for let-application (the sixth rule), by assuminga and b being fresh
and typed by a generic reference vector type (sayRef(X)) and the corresponding
generic vector type (say X), they can stand for arbitrary reference name and its
content, which is essential for stipulating the (assumed) property off , even in the
setting of local state..

3. In the rule for assignment, we use the logical substitution rather than the syntactic
one, to deal with arbitrary aliasing.

We write:
`char {C}F :u {C′}

if {C}F :u {C′} is provable from these proof rules. In each rule, we assume each premise
is derived in this proof system, not others. We leave the illustration of these rules to [3,
19]. These formulae, especially preconditions, have very restricted shape, which plays
an important role in the technical discussions.

Definition 6.32 A formula C isopenif whenever(ν x̃)(ξ,σ) |= C we have(ξ,σ) |= C.

Proposition 6.33 Whenever̀ char {C}F :u {C′}, the formula C is open.

PROOF: By induction of the rules in Figure 9, noting a reference is never existentially
quantified (distinction in case constructs does not differ by taking of theν -binder). ut

Proposition 6.34 If `char {C} F :u {C′}, then(C,C′) is a strong CAP of F at u.

PROOF: All arguments follow [3, 19]. Below we only show the case of let, which is
most non-trivial.

(Let-Application) We need to say:

If a function denoted by the variable is such that it converges under the present
store, then it converges.

For asserting this and related situation, we use vector variables. For focussing on the
central point of the argument, we stipulate:

Convention 6.35 In the following proof, we deliberately confuse reference names and
identicals for simplicity, treating only the former. This does not change the arguments
since the coalescing of reference names does not play any role in the proof.

Let U andF be typed asUΓ;α, FΓ·x:β;γ, andỹ be non-reference names in the basis.
We set, with ˜r = r1..r i ..rn (n≥ 0):

F ′ def= let x = fU in F (6.5)

ξ0 = ỹ: S̃ (6.6)

ξ1 = a : r̃,b :Ṽ (6.7)

ξ = ξ0 · f :W (6.8)

σ = r̃ 7→ Ṽ (6.9)

C0
def= ∀a,b. ((!a = b∧Max(a)) ⊃ ∀z.{A∧ !a = b} f •z↘ x{C}) (6.10)

such that(ξ,σ) is a model which conforms toΓ, and assume we have:
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(IH1) C,C′ is a strong CAP atu for F (hence in particularC is an MTC forF).
(IH2) T,A is a strong CAP atz for U .

Note, by (IH2), we have|= {T}U :z {A} hence for anyξ0 andI :

ξ0 ·z:Uξ0 |= A (6.11)

Further we observe(ξ,σ) |= Max(aRef(~X)) ⇒ {[[a]]}= dom(σ). In the present case,
we can safely set[[a]] = r̃, using Convention above. We now showC0 is an MTC forF ′,
starting from one direction,(ν x̃)(ξ,σ) |= C0 implies(F ′ξ,σ) ⇓.

(ν x̃)(ξ, σ) |= C0

⇒ (ξ, σ) |= C0 (C0 open)
⇒ (ξ ·ξ1, σ) |= ∀z.{A∧ !a = b} f •z↘ x{C}) (∀, Max)
⇒ z : U1 ·ξ0 |= A ⊃ (z : U1 ·ξ0 ·ξ1 ·ξ, σ) |= {!a = b} f •z↘ x{C}
⇒ z : U1 ·ξ0 |= A ⊃ (ξ ·x : WU1, σ) ⇓ (ξ ·x : S1, σ′1) |= C
⇒ ∀U1 wUξ0 ⊃ (ξ ·x : WU1, σ) ⇓ (ξ ·x : S1, σ′1) |= C (IH2)
⇒ (ξ0 ·x : WU, σ) ⇓ (ξ ·x : S, σ) |= C
⇒ (F ′ξ, σ) ⇓ (IH1)

as required. Next we show(F ′ξ, σ) ⇓ and{x̃}∩ fv(C0) = /0 imply (ν x̃)(ξ,σ) |= C0.

(F ′ξ,σ) ⇓
⇒ (ξ0 ·x : WU, σ) ⇓ (ξ ·x : S, σ) |= C (IH1)
⇒ ∀U1 wUξ0 ⊃ (ξ ·x : WU1, σ) ⇓ (ξ ·x : S1, σ′1) |= C (IH2)
⇒ z : U1 ·ξ0 |= A ⊃ (ξ ·x : WU1, σ) ⇓ (ξ ·x : S1, σ′1) |= C
⇒ z : U1 ·ξ0 |= A ⊃ (z : U1 ·ξ ·ξ1, σ) |= {!a = b} f •z↘ x{C}
⇒ (ξ·ξ1, σ) |= {A∧!a = b} f •z↘ x{C} (e5)
⇒ ∀ξ′1. ( (ξ·ξ′1, σ) |=!a = b∧Max(a) ⊃ {A∧!a = b} f •z↘ x{C})
⇒ (ξ, σ) |= C0

⇒ (ν x̃)(ξ, σ) |= C0

Above, in the second to the last line,ξ′ is an arbitrary interpretation ofa andb. This step
is because, as far as !a = b andMax(a) hold, (apart from how elements are permuted
and duplicated) the content ofa andb are invariant. Finally the last line is because for
any x̃ such that{x̃}∩ fv(C0) = /0, if we have(ξ,σ) |= C0 then we have(ν c̃)(ξ,σ) |= C0.

For the closure condition, letΓ;∆ `M : α and assume

{C0∧E}M :u {C′}. (6.12)

By Proposition 6.33, we safely assumeC0∧E is open. Letdom(∆) = dom(σ) = {r̃}
(the effect of aliasing can be ignored in the following arguments). Following [19, §6.6,
p.58], we reason using the following programs. Let a vector of names ˜zbe fresh below.
We write let z̃ = ! r̃ in F for a sequence of let-derefs and ˜r := Ṽ for a sequence of
assignments.

M0
def= let z̃= ! r̃ in let x = yU in (r̃ := z̃ ; M) (6.13)
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By checking the reduction we have:M∼=∆ M0, so that we hereafter safely useM0 instead
of M without any affect on semantics. Now assume(ν x̃)(ξ, σ) |= C0 ∧ E with C0∧E
open. By open-ness we have(ξ, σ) |= C0 ∧ E. By (6.13) we have, withdom(σ′0) = w̃
and with newly introduced entities existentially quantified:

(ξ·u : M0ξ, σ) −→∗ (ν w̃)(ξ·u : (r̃ := σ(r̃);M)ξ, σ0 ·σ′0) |= C

−→∗ (ν w̃)(ξ·u : Mξ, σ ·σ′0) |= C0 ∧ E

−→∗ (ν ṽw̃)(ξ·u : V ′, σ′) |= C′

where the mixing of reduction and satisfiability should be easily understood. Since the
update of ˜r satisfies the assertionC0∧E (because other parts of the store do not affect
its validity), we know:

{C}(r̃ := σ(r̃);M)ξ, σ0) :u {C′} (6.14)

By |= {C}F :u {C′} we have (again with appropriate existential quantifications)

(ξ·u : F ′ξ, σ)−→∗ (ν w̃)(ξ·u : Fξ, σ0 ·σ′0) |= C−→∗ (ν ṽνw)(ξ·u : V ′′, σ′′) |= C′

By (IH1) and (6.14), we have reached(ν ṽw̃)(ξ·u : V ′′, σ′′) v (ν ṽw̃)(ξ·u : V ′, σ′), as
required. ut

We are now ready to establish the main result of this section, after a definition.

Definition 6.36 (logical equivalence) AssumingΓ;∆ ` M1 : α andΓ;∆ ` M2 : α, we
write Γ;∆ `M1

∼=L M2 : α when|= {C}MΓ;∆α
1 :u {C′} iff |= {C}MΓ;∆;α

2 :u {C′}.

Theorem 6.37 LetΓ;∆ `M1,2 : α. ThenΓ;∆ `M1
∼= M2 : α if and only ifΓ;∆ `M1

∼=L
M2 : α.

PROOF: The “only if” direction is direct from the definition of the model. For the “if”
direction, we prove the contrapositive. SupposeM1

∼=L M2 but M1 6∼= M2. By abstrac-
tion, we can safely assumeM1,2 are semi-closed values. By Lemma 6.25, there exist
semi-closed FCF valuesF andŨ such that, say,

(FM1, r̃ 7→ Ũ) ⇓ and (FM2, r̃ 7→ Ũ) ⇑ . (6.15)

By Proposition 6.34, there are assertions which characteriseF andŨ . Let the charac-
teristic formula forF at f be written[[F ]]( f ). We now reason:

(FM1, r̃ 7→ Ũ) ⇓
⇒ ( f : [F ]·m: [M1] |= {∧i [[Ui ]](!r i)} f •m↘ z{T}
⇒ ∀κ. ( f : κ |= [[F ]] f ⊃ ( f :κ·m: [M1] |= {∧i [[Ui ]]!r i} f •m ↘ z{T}
⇒ |= {T} M1 :m {∀ f .{[[F ]]( f ) ∧ (∧i [[Ui ]](!r i))} f •m ↘ z{T}}

But by (6.15) we have

6|= {T} M2 :m {∀ f .{[[F ]]( f ) ∧ (∧i [[Ui ]](!r i))} f •m↘ z{T}}

that isM1 6∼=L M2, a contradiction. Thus we concludeM1
∼= M2, as required. ut
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7 Reasoning Examples

This section demonstrates how the proposed logical machinery enables accurate de-
scription and reasoning about a variety of programs which combine functions with local
state and which are hard to treat with existing methods. We extensively use the notations
for freshness from § 3.4.

7.1 Stored Procedures with Shared Local State

We first show how the logic can precisely reason about a hidden state shared by stored
procedures, takingIncShared in Introduction as an example. We use:

inc(x,u) def= ∀ j.{!x = j}u• ()= j +1{!x = j +1}@x.

inc′(u,x,n) def= !x = n∧ inc(x,u).

We now reason forIncShared, using [New], showing the key inference steps. For
brevity we work with the implicit global assumption thata,b,c1,c2 are pairwise dis-
tinct and omit an anchor from the judgement when the return value is a unit type.

1.{T} Inc :u {νx.inc′(u,x,0)}

2.{T} a := Inc {νx.inc′(!a,x,0)}

3.{inc′(!a,x,0)} b :=!a {inc′(!a,x,0)∧ inc′(!b,x,0)}

4.{inc′(!a,x,0)} c1 := (!a)() {inc′(!a,x,1)∧!c1 = 1}

5.{inc′(!b,x,1)} c2 := (!b)() {inc′(!b,x,2)∧!c2 = 2}

6.{!c1 = 1∧!c2 = 2} (!c1)+(!c2) :u {u = 3}

7.{T} IncShared :u {νx.u = 3}

8.{T} IncShared :u {u = 3}

Line 1 is by the application of [New].5 In Line 7, we used the following derived “scope-
opening” rule.

[SeqOpen] {C0}M{νx.C} {C}N :u {C1}
{C0}M;N :u {νx.C1}

We contrast the above inference with that of:

a:=Inc;b:=Inc;c1 :=(!a)();c2 :=(!b)();(!c1+!c2)

5 In the short version, we use [LetRef] which is identical with [New] in this long version. Its
mapping and derivation usingref(M) are found in (2.1) in § 2.1 and page 28 in § 5.2, respec-
tively.
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Call this programIncUnShared, which assigns toa andb two separate instances of
Inc. The lack of sharing inIncUnShared is captured by the following derivation:

1.{T} Inc :m {νx.inc′(u,x,0)}

2.{T} a := Inc {νx.inc′(!a,x,0)}

3.{inc′(!a,x,0)} b := Inc {νy.inc′′(0,0)}

4.{inc′′(0,0)} c1 := (!a)() {inc′′(1,0)∧!c1 = 1}

5.{inc′′(1,0)} c2 := (!b)() {inc′′(1,1)∧!c2 = 1}

6.{!c1 = 1∧!c2 = 1} (!c1)+(!c2) :u {u = 2}

7.{T} IncUnShared :u {νxy.u = 2}

8.{T} IncUnShared :u {u = 2}

Above inc(n,m) def= inc′(!a,x,n)∧ inc′(!b,y,m)∧ x 6= y. Note x 6= y is guaranteed by
[New]. This is in contrast to the derivation forIncShared, where, in Line 3,x is auto-
matically shared after “b :=!a”, where extrusion takes place.

Simple as they look, we do not know preceding Hoare-like logics which can derive
these specifications.

7.2 Dynamic Mutable Data Structure (1): Trees

Imperative higher-order functions with local state offer a surprisingly versatile medium
for clean, rigorous description of algorithms which manipulate dynamically generated
mutable data structures. In the following we explore how we can reason about these al-
gorithms tractably and efficiently. One of the aims of our experiments is to see whether
the general nature of the proposed logic leads to remarkably effective reasoning princi-
ples for mutable dynamic data structures with different degrees of sharing, a hard topic
since the inception of program logic.

Let us start from a data structure which has the least sharing,trees. In this long ver-
sion, to compare with the method by Separation Logic in [37, §6], we verify essentially
the same algorithm. The following program creates a new isomorphic copy of a given
tree.

treeCopy
def= µ f.λx.case !x of

inj1(n) : ref(inj1(n))
inj2(〈y1,y2〉) : ref(inj2(〈 f y1, f y2〉))

To type this program, we use recursive types, introduced in Section 6.1 (as noted there,
no change in semantics and proof rules is necessary). We set the type of mutable trees

as Tree
def= µX.(Ref(Nat + (X × X))), and can easily check thattreeCopy has type

Tree→ Tree.
Before asserting fortreeCopy, we first specify trees. To compare with with the

method by Separation Logic in [37, §6] precisely, we first use theS-structures to repre-
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sent the assertions. Subsection??shows the verification withoutS-structures.

treeeNat (u) ≡ atom(!u,eNat)
tree (τ1 · τ2) (u) ≡ ∃m1m2.(branch(!u,m1,m2)∧m1 ?m2∧V

i=1,2(tree τi (mi)∧u#mi))
atom(u,n) ≡ u = inj1(n)

branch(u,y1,y2) ≡ u = inj2(〈y1,y2〉)

So a tree is either an atom (which is a leaf with a numeral) or a branch with two
mutually disjoint subtrees (m1?m2) where the top is also unreachable from the subtrees
(u#mi). τ in treeτ (x) is anS-expression, such as((1,2),3), which uniquely determines
the shape of a tree. Its use follows Reynolds [37] and is often convenient. We includeS-
expressions among standard terms in our logical language. For reference, the grammar
is given as:

τ ::= x | eNat | (τ1,τ2).

Symbolsτ,τ′, . . . are also used as variables forS-expressions for readability. Thustreeτ(u)
is in fact a binary predicate.

We can now assert fortreeCopy, naming itu.

treecopy(u) def= ∀x,τ.{tree τ (x)}u•x=y{?y.tree τ (y)}@/0 (7.1)

treecopy(u) reads:

If u is fed with a tree of shapeτ, then it will return, without observable write
effects, a tree of the same shape whose nodes are all fresh and unreachable
from existing data structures.

As far as its argument is restricted to trees, this is a full specification oftreeCopy. As a
result, it entails, often through easy syntactic calculation, other assertions the program
satisfies. For example it immediately implies:

treecopyS (u) def= ∀x,τ.{tree τ (x)}u•x=y{tree τ (x)∧ tree τ (y)∧x?y}

which is essentially equivalent to Reynolds’s assertion in [37] (the converse implication
may not hold even we add “@/0” to treecopyS(u)). The difference betweentreecopy(u)
andtreecopyS(u) is that the former says the program creates a fresh tree, while the latter
says its execution results in the original tree and another which are mutually disjoint
(the latter in fact leaves a possibility for sharing between the new tree and some old
data structure).

Apart from the assertion itself, a highlight of this subsection is how efficient reason-
ing principles for a specific but significant class of data structures arise as derived proof
rules through concrete derivation. Our aim is to prove the following judgement:

{T} treeCopy :u {treecopy(u)}@/0 (7.2)

We use derived rules for?-freshness in Figure 10. These rules use inductive nature
of ?-freshness (e.g. ifx andy are?-fresh so is〈x,y〉, etc.: In fact there is a rule to treat a
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Fig. 10Proof Rules for?

[Simple?] no reference occurs ine
{C} e :u {?u.(C∧u = e)}@/0 [Ref?] {C}M :m {?u.C′}@ẽ

{C} ref(M) :u {?u.C′[!u/m]}@ẽ

[Pair?] C≡C1∧ [!ẽ1]C2 {Ci}Mi :mi {?mi .C
′
i}@ẽi C′ ≡ 〈!ẽ2〉C′1∧C′2

{C} 〈M1,M2〉 :u {?u.∃m̃.(u=〈m1,m2〉∧m1 ?m2∧C′)}@ẽ1ẽ2

[Inj?] {C}M :m {?m.C′}@ẽ
{C} inj j (M) :u {?u.∃m.(C′∧u = inj j (m))}@ẽ

chunk of “fresh” constructors in one go, saving further inference steps) and are derivable
from the original proof rules: these specialised rules make the best of the special nature
of a class of data structures, here the lack of sharing.
We also use the following rule for typed pattern matching:

[CaseMatch]
{C∧e= inji(ei)}Mi :m {C′}@ẽi i = 1,2

{C} case eof {inji(ei).Mi}i∈{1,2} :u {C′}@ẽ1ẽ2

We first settreecopy′ τ (u) so thattreecopy(u)≡ ∀τ.treecopy′ τ (u), and:

C
def= tree τ (x) ∧ ∀τ′ < τ. treecopy′ τ′ ( f )

Ai
def= tree τi (yi) ∧ τi < τ ∧ ∀τ′ < τ. treecopy′ τ′ ( f )

whereτ′ < τ is the lexical ordering on trees, used for induction for recursion (as we
shall see in the next subsection, we can dispense withτ and use a different ordering).
We start from the case branch for leaves.

1. {C∧atom(!x,n)} inj2(n) :m {?m.(atom(m,n)∧ τ = n)}@/0 (Simple)

2. {C∧atom(!x,n)} ref(inj1(n)) :u {?u.tree τ (u)}@/0 (Ref)

Thus all leaves are?-fresh. We now present the rest of the reasoning, including the
induction.?-freshness is built up starting from induction hypothesis. From Line 8, we
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setM so thattreeCopy
def= µ f.λx.M for brevity.

3. Ai ⊃ {Ai} f •yi =zi{?zi .tree τi (zi)}@/0

4. {Ai} f yi :zi {?zi .tree τi (zi)}@/0 (AppSimple)

5.
{A1∧A2}
inj2(〈 f y1, f y2〉)u

{?u.∃m̃.(branch(u,m1,m2)
V

i=1,2 tree τi (mi)∧m1 ?m2)}@/0
(Pair, Inj)

6. {A1∧A2} ref(inj2(〈 f y1, f y2〉)) :u {?u.tree (τ1 · τ2) (u)}@/0 (Ref)

7. {C∧branch(!x,y1,y2)} ref(inj2(〈 f y1, f y2〉)) :u {?u.tree τ (u)}@/0 Consequence

8. {tree τ (x)∧∀τ′ < τ.treecopy′ τ′ ( f )}M :u {?u.tree τ (u)}@/0 (2, 7, CaseMatch)

9. {∀τ′ < τ.treecopy′ τ′ (u)} λx.M :u {treecopy′ τ (u)}@/0 (Lam)

10. {T} treeCopy :u {treecopy(u)}@/0 (Rec)

We have arrived at (7.2).

7.3 Dynamic Mutable Data Structures (2): DAGs

We continue our experiments, inspecting whether our observation on trees scale to more
complex data structures. We treat directed acyclic graphs, ordags, which allow more
sharing than trees. This example is treated as one of the benchmark examples by Bornat
and others [5].

A dag has the same type asTree, but its specification is more liberal. Again using
S-expressions,dag τ (x) assertsx is a dag whose leaves are labelled asτ. The base case
dag n(x) is the same as trees:

dag (τ1 · τ2) (u) ≡ ∃m1m2.(branch(!u,m1,m2) ∧V
i=1,2(dag τi (mi)∧u#mi))

Thus a dag is the same as a tree except, at each branch, two subgraphs can share each
other’s nodes. It still has a rigid hierarchical structure: the top of a dag is unreachable
from subgraphs.τ in dag τ (x) no longer uniquely determines its shape, for example a
leaf labelled 2 in((1,2),(2,1)) may or may not be shared.

Suppose that we wish to create a new dag from aτ-labelled existing dag. If we use
treeCopy, we lose the original sharing structure — it produces a freshτ-labelled tree
(the verification that{dag τ (x)}u• x = y{?y.tree τ (y)}@ /0 is satisfied bytreeCopy
is literally identical with §7.2). So if we are to preserve sharing, we need to slightly
change the algorithm. One such change follows.

dagCopy
def= λg.new x := /0 in Main g

Main
def= µ f.λg.if dom(!x,g) then get(!x,g) else

case !g of
inj1(n) : newEntry(inj1(n),g)
inj2(y1,y2) : newEntry(inj2(〈 f y1, f y2〉),g)

newEntry
def= λ(y,g).let g′ = ref(y) in (x := put(!x,〈g,g′〉);g′)
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When the program is called with the root of a dag, it first creates an empty table and
stores it to a local variablex. The table will remember those nodes in the original dag
which have already been processed, associating them with the corresponding nodes in
the fresh dag. The rest works astreeCopy except, before creating a new node, the
program checks if the original node (sayg) already exists in the table. If not, a new
node (sayg′) is created, andx now stores the new table which adds a tuple〈g,g′〉 to the
original. The program assumes, for clarity, a pre-defined data type6 for a table inducing
a finite function with a pre-defined “API”, as will be discussed later.

Main Assertion. A key property ofdagCopy is that it creates a fresh dag preserving
the original’s sharing structure. To discuss such matters with precision, a simple way is
to usepath expressions:

p ::= ε | l .p | r.p

A path expression (hereafter simplypath) represents a way to traverse a dag from one
node to another in the forward direction of directed edges. Taking in paths as part of
terms, reachability fromg to g′ throughp is easily defined as:

path(g,ε,g′)≡ g = g′

path(g, l .p,g′)≡ ∃y1y2.(branch(g,y1,y2)∧path(y1, p,g′))
path(g, r.p,g′)≡ ∃y1y2.(branch(g,y1,y2)∧path(y2, p,g′))

The first clause says that the empty path leads us fromg to g; the second thatl .p leads
from g to g′ iff we go left from g (which should be a branch node) and, from there,p
leads us tog′. The third is the symmetric case.

Nextmatch(g, p1, p2) asserts two pathsp1,2 from g lead to the same node, whereas
leaf(g, p,n) says we reach a leaf of labeln from g following p, defined as:

match(g, p1, p2)≡ ∃y.(path(g, p1,y)∧path(g, p2,y))
leaf(g, p,n)≡ ∃y.(path(g, p,y)∧atom(y,n))

The isomorphism between two collections of nodes, respectively reachable fromg and
g′, as labelled directed graphs, is defined as follows.

iso(g,g′)≡ ∀p1p2.(match(g, p1, p2)≡match(g′, p1, p2))
∧∀pn.(leaf(g, p,n)≡ leaf(g′, p,n))

We assert fordagCopy, namedu.

dagcopy(u) ≡ ∀τ,gTree.{dag τ (g)}u•g=g′{?g′.iso(g,g′)}@/0

The assertion says:

WheneverdagCopy is invoked with a dag g, it creates a fresh dag isomorphic
to g, without any write effects.

6 The data type is in fact realisable as, say, lists.
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As may be expected,dagcopy(u) (strictly) entailstreecopy(u). Again disjointness of a
created dag from the existing dag is entailed without being stated, cf. [5]. The judgement
we wish to establish is:

{T}dagCopy :u {dagcopy(u)}@/0 (7.3)

The derivation is essentially mechanical, which we list below.

Intermediate Assertion The intermediate assertion specifies for a “scratch pad”x
which stores a table associating already created new nodes with their originals.

dc τ (u)
def= ∀g,org.

{dag τ (g)∧ !x=org∧ con(org)}
u•g = g′

{#-x{z|g′ ↪→z∧ z 6∈cod(org)}.(con(!x)∧ !x=org∪〈g,g′〉∗)}@x

which says:

Suppose g is a dag and x contains a table org which is consistent (i.e. only
relates isomorphic nodes). Then invocation of u with g terminates with the
return value g′ and, moreover: (1) references names reachable from g′ minus
those in the codomain of org are freshly generated; and (2) x stores a table
which is consistent and which adds to org the set of co-reachable nodes from
〈g,g′〉. Further the invocation only modifies x.

Notations used in the assertion are illustrated in the following.

Consistency.Both the pre/post conditions of (7.4) use the invariantcon(t) (“ t is consis-
tent”) wheret is a table (finite map) mapping original graph nodes to the corresponding
newly created graph nodes (detailed later). The predicate is given as:

con(t) ≡ ∀g,g′.(〈g,g′〉 ∈ t ⊃ iso(g,g′)) ∧
∀g0,g1.(g0 ∈ dom(t)∧g0 ↪→ g1 ⊃ g1 ∈ dom(t))

con(t) sayst only associates isomorphic graphs, and that its domain (hence co-domain,
by isomorphism) is closed under reachability (the notations such as〈g,g′〉 ∈ t are illus-
trated later).

#-Freshness.The post-condition uses the predicate of the form #-x{z|C0(z)}.C which
refines the predicate given at the end of Section 5.3. The predicate is defined as, withi
and X fresh:

#-x{z|C0(z)}.C
def= ∀X.∀zRef(X).((C0(z)∧x#i) ⊃ z#i) ∧ C (7.4)

which says:
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Each reference name z satisfying C0(z) is #-fresh w.r.t. any datum in the pre-
state except those which can reach x (which includes x itself by definition).

The reservation onx is needed since newly generated nodes are immediately stored in
x, so that]-freshness of a newly generated node does not hold w.r.t.x (and any datum
from which we can reachx: in fact, in the present case,x is only reachable fromx, so
x#i is the same thingx 6= i).

Fig. 11Proof Rules for]

[Ref#] {C}M :m {#{z|E}.C′}@ẽ
{C} ref(M) :u {#{z|E[!u/m]∨z=u}.C′[!u/m]}@ẽ

[Pair#]

{C}M1 :m1 {#{z|G1}.C′1}@ẽ
{C′1}M2 :m2 {#{z|G2}.C′[〈m1,m2〉/u]}@ẽ
C ⊃ x∈ ẽ
{C} 〈M1,M2〉 :u {#{z|G1∨G2}.C′}@ẽ

[Inj #]
{C}M :m {#{z|E[inj j (m)/u]}.C′[inj j (m)/u]}@ẽ

{C} inj j (M) :u {#{z|E}.C′@ẽ}

[App#]

{C }M1 :m1{#{z|G1}.C1}@ẽ
{C1}M2 :m2 {#{z|G2}.(C2∧{C2}m1 •m2=u{#{z|G3}.C′}@ẽ)}@ẽ
C ⊃ x∈ ẽ

{C}M1M2 :u {#{z|∨i=1,2,3 Gi}.C′}@ẽ

[AssVar#] {C}M :m {C′{|m/!x|} ∧ r #i}@ẽ
{C} x := M {C′ ∧ (x#i ⊃ r #i)}@ẽx

We use the proof rules for #-freshness in Figure 11. For the notation for #-freshness
see (7.4), §7.3. Among the presented rules, the rule[AssVar#] says:

If r is unreachable fromi, then writing some value tox may change reachability
to i from x, hence from any datum from which we can reachx, but nothing else.

The rule is in fact an instance of[Assign].

Axioms for Table APIs. Tables are finite maps onTree-typed references, equipped
with the following three procedures.

– get(t,g) to get the image ofg in t.
– put(t,〈g,g′〉) to add a new tuple〈g,g′〉 wheng is not in the domain oft.
– dom(t,g) (resp.cod(t,g)) judges ifg is in the pre-image (resp. image) oft.
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We also use/0 for the empty table. By the following axioms we can treat a table as a
set-theoretic finite map. Belowf (x)↘estands for{T} f •x = y{y = e}@/0.

∀g.dom( /0,g)↘f
∀t,g.(dom(t,g)↘t ∨ dom(t,g)↘f)
dom(t,g)↘t ≡ ∃g′.get(t,g)↘g′

get(t,g)↘g′∧ extend(t, t ′) ⊃ get(t ′,g)↘g′

dom(t0,g0)↘f ⊃ ∃t1.(put(t0,〈g,g′〉)↘t1 ∧ get(t1,g)↘g′)
dom(t0,g0)↘f ∧ put(t0,〈g1,g′1〉)↘t1 ∧ g0 6= g1 ⊃ dom(t0,g0)↘f

We omit the axioms forcod(t,g′) which are symmetric todom(t,g). extend(t, t ′) further
sayst ′ adds zero or more tuples tot, i.e.:

extend(t, t ′) ≡ t = t ′ ∨ ∃t0,g,g′.(extend(t, t0)∧dom(t0,g)↘f ∧put(t0,〈g,g′〉)↘ t ′)

The axioms above allow us to use the following set-theoretic notations without loss of
precision.

– 〈g,g′〉 ∈ t stands forget(t,g)↘ g′.
– g∈ dom(t) stands fordom(t,g)↘ t.
– t = t1∪ t2 stands for∀g,g′.(〈g,g′〉 ∈ t ≡

W
i=1,2〈g,g′〉 ∈ ti).

〈g,g′〉∗ is all pairs of nodes co-reachable fromg andg′, i.e.

〈g,g′〉∗ def= {〈z,z′〉 | ∃p.(path(g, p,z)∧path(g′, p,z′))} (7.5)

Derivation (1): The Whole Program We first look at the derivation for the whole
program.

1 u : {T} (abs)
2 lambda g.
3 g′ : {dag τ (g)} (new)
4 new x:= /0 in
5 g′ : {!x = /0} (app)
6 m : {T}
7 Main
8 {∀τ.dc τ (m)}@/0
9 g

10 {(!x = /0∧dag τ (g)) ∧
11 {!x = /0∧dag τ (g)}m•g=g′{#-xS.iso(g,g′)}@x}@/0
12 {#-xS.iso(g,g′)}@x
13 {?g′.iso(g,g′)}@/0
14 {∀g.{dag τ (g)}u•g=g′{?g′.iso(g,g′)}@/0}@/0

Above we set, for brevity:

S(g,org) = {z | g ↪→ z ∧ cod(org,z)↘ f}. (7.6)

Further we writeS for S(g′,org). Some illustrations:
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– l .1 introduces the anchoru, without any pre-condition, whilel .3 introduces the
assumption on the argumentg′.

– In l .5, we introduce the anchorg′ and note the subsequent sub-derivation are for
the application.

– l .6 introduces an anchor for the function part (the “main” program). The pre-
conditionT means it does not add any further assumption (the subsequent reasoning
may use what has been assumed so far, for examplel .3).

– In l .8, we concludeMain namedmsatisfies∀τ.dc τ (m), to be inferred later.
– In l .12, the application is inferred using [App#] (though the standard application

rule suffices in this case).
– From l .12 to l .13, we use the [New] rule. This part may deserve some illustration.

Let, for brevity:M
def= Maing andC

def=!x = /0∧ dag τ (g). Note the sub-derivation
l .5–12 means{C}M{#-xS.iso(g,g′)}, that is, withi fresh (cf.(7.4):

{C}M{∀z.((g′ ↪→ z∧x#i)⊃ z#i)∧ iso(g,g′)}@x

By [New], we can strengthenC with x]i. Since∀ j 6= x⊃ j #x holds, we can ap-
ply (6.2), page 37, Section 6.1, so that the predicatex#i is !x-free. By [Inv] (the
invariance rule for located assertions), we obtain:

{C∧x#i}M{∀z.(g′ ↪→ z⊃ z#i)∧ iso(g,g′)}@x

that is
{C∧x#i}M{?g′.iso(g,g′)}@x.

Since [New] allows us to cancelx in the pre-condition, we obtainl .13.

Derivation (2): NewEntry The derivation forNewEntry is given below.

1 m : {T} (abs)
2 lambda ( y, g).
3 g′ : {!x = org ∧ dom(org,g)↘ f} (let)
4 let h=
5 h : {T} (ref-simple)
6 ref ( y) in
7 {!x = org ∧ dom(org,g)↘ f ∧ !h = y ∧ h#i}@/0
8 g′ : {· · ·} (seq)
9 {T} (assvar#)

10 x:=
11 m : {T}
12 put (! x, < g, h>);
13 {m= org∪{〈g,h〉} ∧ !x=org ∧ !h=y ∧ h#i}@/0
14 {!x = org∪{〈g,h〉 ∧ !h = y ∧ (x#i ⊃ h#i)}}@x
15 h
16 {!x = org∪{〈g,g′〉} ∧ !g′ = y ∧ (x#i ⊃ g′#i)}@x
17 {NE(m)}@/0
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Above:

1. {· · ·} indicates the immediately preceding assertion is repeated.
2. The program usesh instead ofg′ in for let to avoid the collision of names (though

h is in effect namedg′ in the derivation).
3. In the last line,NE(m) is given as:

NE(m)
def= ∀org,y,g.

{!x=org∧ dom(org,g)↘f}m• (y,g)=g′{#-xg′.(!x=org∪{〈g,g′〉}∧ !g′=y)}@x

We illustrate the derivation line-by-line.

– l .1 introduces the anchor for this program. Inl .2, we recally is the content of a
fresh reference to be created, andg is the original node.

– l .3 introducesg′ as the anchor for thelet-block, which continues up tol .16. The
assertion says that the tableorg stored inx does not containg (i.e. g has not been
processed yet).

– l .4 introduces the variableh for thelet.
– l .5–7 reason for the argumentref(y) of thelet command.
– l .8–16 reason for thelet-body. Since thelet command as a whole is namedg′

(in l .3), its body should also be namedg′ in l .8. In the same line, the pre-condition
repeats the post-condition obtained inl .7. l .8 also mentions thelet-body itself is a
sequential composition.

– l .9–14 reason for the first part of the sequential composition, the assignment to a
variablex, using[AssVar#]. l .9 doesnot introduce an anchor since the assignment
is of theUnit-type. The precondition repeats the previous one.

– l .11–13 reasons for the argument (namedm), with the repeated precondition. The
reasoning uses the following valid assertion:

g0 6∈ dom(t0)∧put(t0,〈g0,g′0〉)↘ t1
∀g,g′.(〈g,g′〉 ∈ t1 ≡ (〈g,g′〉 ∈ t0∨ (g = g0∧g′ = g′0)))

which is easily derived from the axioms in §7.3. The post-condition saysm is the
result of adding〈g,h〉 to org.

– Sincex is not aliased (by its type),l .14 simply replaces !x for m in l .13. Similarly,
since the variableh is returned and this is namedg′ in the assertion,l .16 replaces
g′ for h in l .14.

Derivation (3): Main We list the derivation for the main program below.

1 u : {T} (rec)
2 mu f .
3 u : {∀τ′ < τ. dc τ′ ( f )} (abs)
4 lambda g.
5 g′ : {dag τ (g) ∧ !x = org ∧ con(org)} (if)
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6 if dom(! x, g) then
7 g′ : {dom(!x,g)↘ t}
8 get (! x, g)
9 {!x = org ∧ get(t,g)↘ g′}@/0

10 {DG}@/0
11 else
12 g′ : {dom(!x,g)↘ f} (case)
13 case ! g of
14 inl ( n):
15 g′ : {dagn(g)}
16 NewEntry ( inl ( n), g)
17 {#-xg′.(con(!x) ∧ !x = org∪〈g,g′〉)}@x
18 {DG}@x
19 inr ( g1, g2):
20 g′ : ∃τ1,2.(τ = 〈τ1,τ2〉

V
i=1,2dag τi (gi))

21 NewEntry ( inr (< fg1 , fg2 >), g)
22 {DG}@x
23 {DG}@x
24 {DG}@x
25 {dc τ (u)}@/0
26 {∀τ.dc τ (u)}@/0

Above we use the predicateDG (for Dag Generated) which is set to be:

DG
def= #-xS(g,org).(con(!x) ∧ !x = org∪〈g,g′〉∗) (7.7)

where we setS(g,org) = {z | g ↪→ z ∧ cod(org,z)↘ f}. The set-based]-notation used
above is easily decoded into universal quantification, but offers transparent reasoning

The reasoning is simple except the second branch of the case construct, whose de-
tails are presented later. Some illustration:

– l .1 introduces the main anchor,u.
– l .3 introduces the induction hypothesis for the recursion variablef (using the lexi-

cographic ordering onS-expressions).
– l .5 names the abstraction body asg′, places the assumption ong, and stipulates that

the content ofx, org, is consistent.
– The lambda-body is an if-branch. Since its guard is effect-lessdom(!x,g), no state

change needs be considered. Hencel .7 simply adds to the previous condition the
“true” conditiondom(!x,g)↘t, as a new precondition.

– l .9 is transformed tol .10 by the following deduction, after addingcon(org) by [Inv],
noting the write effect is empty.

!x = org ∧ get(!x,g)↘ g′ ∧ con(org)
≡ !x = org ∧ get(!x,g)↘ g′ ∧ con(!x)
≡ !x = org∪〈g,g′〉∗ ∧ con(!x)

The last line uses〈g,g′〉 ∈!x andcon(!x) imply 〈g,g′〉∗ ⊆!x. SinceS(g,org) = /0 we
arrive atDG.
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– From l .11, the else-part is reasoned.l .12 introducesg′ as its anchor (which is what
names the whole if-command), and asserts that the guard does not hold, in addition
to what has been assumed before the if-branch. This else-part is a case construct,
reasoned in the next few lines.

– l .13–18 is the case wheng is a leaf. For the entailment froml .17 tol .18, we infer:

con(org) ∧ !x = org∪〈g,g′〉 ∧ !g′ =!g = inj1(n)
⊃ con(org) ∧ !x = org∪〈g,g′〉∧ iso(g,g′)∧∀z.(g ↪→ z⊃ z= g)
⊃ con(!x)∧!x = org∪〈g,g′〉∗

Above we used:
(z ↪→ g′ ∧ atom(!g′)) ⊃ z= g′

which is easily inferred from the definition and the axiom for reachability.
– l .19–22 is the reasoning for the inductive case, which is going to be detailed in the

next paragraph.
– The remaining lines concludes the reasoning using the proof rules for case, if,λ

and recursion, each directly applied (with nominal use of consequence rule in each
case).

Inductive Case.In the following we present the reasoning for the inductive case. By
calling the procedure twice, it adds]-fresh names one by one, reaching the even-
tual ]-fresh set. The asserted program fragment is given below, starting from the pre-
conditions from the preceding inferences.

1 {dom(!x,g)↘ f ∧ !x = org ∧ ∀τ′ < τ. dc τ′ ( f )}
2 g′ : {∃τ1,2.(τ = 〈τ1,τ2〉 ∧

V
i=1,2dag τi (gi))} (app)

3 m : {T}
4 NewEntry
5 {NE(m)}@/0
6 (n,g) : {· · ·}
7 n : {T} (inr)
8 m : {T} (pair#)
9 g′1 : {T}

10 f g1
11 {#-xS(g′1,org).(con(!x) ∧ !x = org∪〈g1,g′1〉∗)}@x
12 g′2 : {con(!x) ∧ !x = org∪〈g1,g′1〉∗}
13 f g2
14 {#-xS(g′2,org′).C0}@x
15 {#-xS(m,org).∃g′1,2.(C0 ∧ m= 〈g′1,g′2〉)}@x
16 {#-xS(n,org).∃g′1,2.(C0 ∧ n = inr(〈g′1,g′2〉))}@x
17 {#-xS(n,org).(C1 ∧ {C1}m• (n,g) = g′{#-xg′.C2}@x)}@x
18 {#-xS(g′,org).(con(!x) ∧ !x = org∪〈g,g′〉∗)}@x

Above we set:
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1. Two applications off leads to:

C0
def= con(!x) ∧ !x = org∪

[
i=1,2

〈gi ,g
′
i〉∗

which says that the table inx is consistent and it is the result of adding the isomor-
phic pairs reachable from〈gi ,g′i〉 (i = 1,2).

2. After enclosing〈g′1,g′2〉 with injection, we reach:

C1
def= ∃g′1,2.(C0 ∧ n = inr(〈g′1,g′2〉))

3. After further enclosing with a fresh reference, we finally reach:

C2
def= con(!x) ∧ !x = org∪〈g,g′〉∗

All inferences are mechanical. Some illustrations:

– l .1 records all assumptions from the preceding inferences.
– l .2 introduces the anchorg′ for the subprogram in this case branch (which is the

name given to the whole case branch, as well as the encoding if-command). In the
following inferences we consider the same assumption without∃τ1,2.7

– l .3–5 is the inference forNewEntry, for which we records the result of the inference
in §7.3. SinceNE(m) is stateless, once it is inferred, it can be used for all later
inferences.

– l .6–8 introduces anchors, but no new assumptions.
– l .8–15 reasons for the pair of two applications using[Pair#].
– In l .8, the pairing is named asm.
– In l .9–11, we reason forf y1, starting from !x = org, as well as using two stateless

assertions,∀τ′ < τ.dcτ′ ( f ) andτ1 � τ. The reasoning is direct from the assumption.
– In l .12–14, we reason forf y2. We use, following[Pair#],

!x = org∪〈g1,g
′
1〉∗,

in addition to stateless∀τ′ < τ.dcτ′ ( f ) andτ2 � τ. Again the reasoning is mechan-
ical from the assumption.

– l .15 summarisesl .9–14 by applying[Pair#]. Notem= 〈g′1,g′2〉, for which we have:

m= 〈g′1,g′2〉 ⊃ (m ↪→ z ≡ g′1,2 ↪→ z)

so that, setting:

G(g,org) def= g ↪→ z ∧ cod(org,z)↘ f

we obtain:

m= 〈g′1,g′2〉 ⊃ ((G(g′1,org)∨G(g′2,org∪〈g1,g
′
1〉∗))≡G(m,org))

which is used to determine the #-fresh names inl .15
7 Since the final post-condition does not mentionτ1,2, we can quantify the pre-condition again

at the end, so that this does not lose generality.
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– l .16 simply enclosesmwith the injection.
– l .17 combinesl .16 andNE(m), in the form usable for[App#].
– l .18 applies[App#] to l .2–17, obtainingDG. As in l .15, we use:

!g′ = n ⊃ ((G(n,org) ∨ g′ = z) ≡ G(g′,org))

by which we knowS(g′,org) characterises the #-fresh names of the application.

This concludes the proof of the inductive case, hence the whole derivation for the re-
quired judgement fordagCopy.

7.4 Trees and Dages withoutS-Structures

We explain how we can verify the trees and dages without usingS-structures. First we
can simply define the assertions deletingτ from the assertions such as:

tree (u) ≡ ∃y.atom(!u,y) ∨
∃m1m2.(branch(!u,m1,m2)∧m1 ?m2∧V

i=1,2(tree (mi)∧u#mi))
atom(u,n) ≡ u = inj1(n)

branch(u,y1,y2) ≡ u = inj2(〈y1,y2〉)

Similarly for other assertions and predicates. For the derivation, we define the predicate
size(x,n) which denotesthe tree named by x has a size n. This is inductively defined as
follows:

size(u,1) ≡ ∃n.atom(u,n)
size(u,n1 +n2 +1) ∃m1,m2.(branch(u,m1,m2)∧ size(m1,n1)∧ size(m2,n2))

The rest of reasoning is identical using the above ordering instead of that betweenS-
structuresτ < τ′.

The next example, verification of a graph copy, treats a general reasoning method
which does not require any explicit syntax in the assertions.

7.5 Dynamic Mutable Data Structures (3): Graphs

To test how structured reasoning for dynamically created data structures can be rea-
soned about in the present logical theory, we have experimented with a further refine-
ment of the copying algorithm, again found in [5], which works with any argument of
Tree-type, including one with circular edges (noteTreeallows circular linkage).

graphCopy
def= λg.new x := /0 in Main g

Main
def= µ f.λg.if dom(!x,g) then get(!x,g) else

case !g of
inj1(n) : newEntry(inj1(n),g)
inj2(y1,y2) :

let g′ = newEntry(tmp,g)
in g′ := inj2(〈 f y1, f y2〉);g′
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wheretmp= inj1(0). The program is essentially identical withdagCopy except when
it processes a branch node, sayg: since its subgraphs can have a circular link tog or
above, we should first registerg and its corresponding fresh node, sayg′ (the latter with
a temporary content), before processing two subgraphs. The assertion forgraphCopy
(namedu) is even simpler than the one fordagCopy:

graphcopy(u) ≡ ∀gTree.{T}u•g=g′{?g′.iso(g,g′)}@/0

Note we no longer need any requirement ong except for its type (convergence is guaran-
teed because our models cannot hold infinite graphs).graphcopy(u) entailsdagcopy(u)
hence alsotreecopy(u), so a program satisfyinggraphcopy(u) copies a tree just as
treeCopy does and copies a dag just asdagCopy does.

Deriving {T}graphCopy :u {graphcopy(u)}@/0 is almost identical with deriving
the judgement fordagCopy (hencetreeCopy in many places), except for the two
points:con(!x) is not invariance any more (note the table can contain fresh nodes with
temporary content) and we can no longer useS-expressions for well-founded ordering.
For the latter, we can use, for example, the number ofg-reachable nodes minus those in
the domain of !x, which strictly decreases when the induction moves to subgraphs.For
the former, a weaker consistency condition works, which roughly says:

(1) Before processingg, a certain isomorphism holds between nodes in the domain of
!x “before” g and the corresponding ones in the co-domain.

(2) After processingg, the isomorphism also holds between all nodes “under”g and
the corresponding nodes in the co-domain.

Above “before” and “under” are calculated through the lexicographic ordering of the
minimum paths from the original root (the use of the root is solely for defining these
relations and does not violate modular reasoning). In the following we first list these
intermediate assertions, then proceed to the reasoning. We leave the detailed derivations
to Appendix B.

7.6 Higher-Order Mutable Data Structures

Finally we consider replication of trees/dags/graphs which may store values of arbi-
trary types, such as references and higher-order functions. In fact, each of the three
algorithms above already works, as it is, even when we replaceNat with an arbitrary
type. The result is the so-calledshallow copy, where, while the nodes of two graphs are
still disjoint, data at leaves can share references (a simplest case is when stored data are
reference names). The assertion follows.

gcopy(α)(u) ≡ ∀gtree(α).{T}u•g=g′{]S. iso(g,g′)}@/0

wheretree(α) = µX.(Ref(α+(X×X))); andS
def= {h|∃p.path(g′, p,h)} (for the nota-

tion ]S, see § sub:fresh:abbrev). Note the assertion uses the same isomorphism predi-
cate. We conclude:

Proposition 7.1 The following assertions are valid and implications are strict:gcopy(Nat)(u)≡
graphcopy(u), graphcopy(u)⊃ dagcopy(u), dagcopy(u)⊃ treecopy(u) andtreecopy(u)⊃
treecopyS (u).
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7.7 Local State and Information Hiding

As final examples, we show how to reason about programs which use new reference
generation for information hiding, including Landin’s factorial discussed in the Intro-
duction. The expected properties of such a program often crucially depend on main-
taining certain invariants of hidden store throughout invocations. As simple examples,
consider the following two short programs.

profile
def= let x = ref(0) in λy.(x :=!x+1; f y)

compHide
def= let x = ref(7) in λy.(y >!x)

The first is from [40, p.104], the second a variant from [24]. In either program, an
external program can never accessx. Forprofile, the invariant onx’s content is trivial
since its visible behaviour does not depend on it: thusprofile behaves precisely asf
does. ForcompHide, the invariant is that the content ofx stays 7, hence it behaves as
λy.y > 7.

To reason about programs with invariants of this kind, the following axiom, com-
bined with [ConsEval] in Figure 3, is often useful. Belowν#x.C means∃x.(x#i ∧C)
with i fresh ifx has a reference type or∃x.C otherwise.

(AIH) {E}m• ()=u{ν#x̃.C} ⊃ {E}m• ()=u{C′}

wherem is fresh and:

• C
def= C0∧{C0∧C1}u•y=z{C2}∧∀y.{C0∧ x̃#yr̃w̃}u•y=z{C0∧ x̃#zw̃}@w̃x̃ with

xi 6∈ fv(C1)∪ fv(C2) and〈!x̃〉C0 ≡ T.

• C′
def= {C1}u•y=z{C2}@w̃.

(AIH) intuitively says:

Assume C0 is an invarinat of the content of̃x; if C0 holds and ifx̃ are not
reachable from the argument y or from the initial state and read data ri and
write data wj (x̃#yr̃w̃),8 u applied to y never exports̃x to the outside (̃x#zw̃).
Then ifx̃ are fresh, we can ignore C0 from the specification.

Freshness and hiding of ˜x are essential: if they are not hidden, their content may be
modified by external programs, destroying the invariantC0.

The proof of validity of(AIH) uses Proposition 4.24 to show that, in any possible
model,x̃ can never be touched by external programs except by invoking the function
(sayV) denoted byu, thanks to a partition of its store into two disjoint parts, one for
the name closure ofV, and another containingx. ThusC0, which solely relies on the
content of ˜x, stays invariant in any future state.

〈!x〉C0≡T meansC0 asserts about only the content ofx; e.g.〈!x〉!x = 1≡〈!x〉(x = y⊃!y = 1)≡
T, but〈!x〉(x = y∧!y = 1) 6≡ T and〈!x〉y ↪→ x 6≡ T.

8 We can prove the same conclusion without ˜x# r̃ in the precondition of this evaluation formula,
but this widens the applicability of this axiom (hence having ˜x# r̃ is more general).
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Proof of Validity of (AIH). We first show the following useful lemma.

Lemma 7.2 1. (narrowing)M |= C andl 6∈ fl(C) imply (νl)M |= C
2. (scope opening)((νl)M )[u:N]≡ (νl)(M [u:N]) with l 6∈ fl(N).
3. AssumeM0 |= E andM0[u:m()] ⇓M with u,m 6∈ fv(E). SupposeM |= ∃x.(x#i∧

C) with i fresh. Then there existξ,σ, l ,V such thatM ≈ (ν l)M ′ with M ′ =
(ν l̃)(ξ,σ · [l 7→V]) andl 6∈ fl(ξ,σ); andM ′[x: l ] |= C.

PROOF: The proofs of (1,2) are by definition, while (3) is direct from Proposition 4.24.
ut

Now let us define, with the conditions in (AHI):

G≡ ν#x.G0 G0 ≡ C0∧G1∧G2

G1 ≡ {C0∧C1}u•y=z{C2} G2 ≡ ∀y.{C0∧ x̃#yr̃w̃}u•y=z{C0∧ x̃#zw̃}@w̃x̃

W.o.l.g. we assume all vectors are unary, i.e. ˜r = r, w̃ = w andx̃ = x (with x reference).
By Lemma 7.2 (3), we know there existsM such thatM = (ν l̃)(ξ · [x : l ],σ · [l 7→V]) |=
G with l 6∈ fl(ξ,σ). Then our aim is to prove:

M |= G implies M |= C′ (7.8)

ThenM |= {C1}u•y=z{C2}@w̃ means, by definition,

∀N.(M [ f :N] ⇓Ma |= C1 with f fresh ⊃ Ma[z : uy] ⇓Mb `C2)

Then by Lemma 7.2 (1,2), letM0 = (ν l̃)(ξ,σ · [l 7→V]). Then we have:

M0[ f : L] ⇓Ma0 |= C1 with Ma ≈ (νl)Ma0

We now show suchMa0 always satisfyC0, i.e.,

Ma0 |= C0 (7.9)

If we can prove (7.9) above, then we haveMa0 |= C0∧C1. Then byA∧B⊃ A, we have
M0 |= G1. Hence this concludes our aim to prove (7.8).

To prove (7.9), we use the assumptionM0 |=C0∧G2. By x#yrwandx#zw, we know
only U can touchl ; and even so, the result of the application ofuy in L does not affect
the resultz and effect variablew. SetL = uy. Then for ally, if M0[x : l ][ f : uy]⇒M0c,
we haveM0c |= C0 and

M0c ≡ (νl̃ l̃ ′)(ξ ·u : U · f : Vf ·x : l , σ′1] [l 7→V ′
x] ·σ′2)

for someVf ,V ′
x with dom(σ′2)⊂{l̃ ′} andl 6∈ fv(σ′1). Hence we haveM0c |= x#y by def-

inition of reachability. Similarly, byM0 |= G2, for anyL which contains an application
of the form ofuy, M0c can satisfyC0, by usingM0c |= x#y∧C0. Hence we can derive
(7.9), as required.
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Profile. profile and compHide can be easily reasoned using(AIH), together with
[ConsEval] in Figure 3. We start fromprofile. For simplicity, we assumeprofile f y
terminates. Our aim is to obtain:

{{C} f •y= z{C′}@w̃∧{T} f •y{T}@w̃} profile :u {{C}u•y= z{C′}@w̃}, (7.10)

The above Hoare triple said thatprofile behaves just asf behaves, as expected.
First we derive:

E = {T} f •y = z{T}@w̃
⊃ E0 = {x# f yr̃w̃} f •y = z{T}@w̃x Axiom (e8) in [19]
⊃ E′ = {x# f yr̃w̃} f •y = z{x#zw̃}@w̃x Axiom 3 of Proposition 6.2

Let G = {C} f •y = z{C′}@w̃. Using the above entailment, we derive:

1.{E′∧x# f yr̃w̃} f y :z {x#zw̃}@w̃ AppSimple

2.{E∧x# f yr̃w̃} f y :z {x#yw̃}@w̃ Conseq

3.{E∧x# f yr̃w̃}x :=!x+1{E∧x# f yr̃w̃}@x Inv#

4.{E∧x# f yr̃w̃}x :=!x+1; f y :z {E∧x#yw̃}@xw̃ Seq

5.{E}λy.(x :=!x+1; f y) :z {∀y.{x# f yr̃}u•y=z{x#zw̃}@xw̃} Abs

6.{x#i∧G∧E}λy.(x :=!x+1; f y) :u {x#i∧G∧∀y.{x# f yr}u•y=z{x#zw̃}@xw̃}@/0 Invariance

7.{E}profile :u {ν #x.(G∧E′)@xw̃}@/0 New

At Line 1, we use [AppSimple] in Figure 7.

[AppSimple]
C ⊃ {C}e•e′ = u{C′}@ẽ

{C} ee′ :u {C′}@ẽ

From Line 1 to Line 2, we use the standard consequence rule. Line 3 is derived by the
following invariant rule for the assignment.

[Inv#]
{C}M :u {C′}@x̃ jk fresh

{C∧ x̃# j̃}M :u {C′∧ x̃# j̃}@x̃

The proof of the validity of this rule is easy by Proposition 4.24 in § 4.5. Note that a
value has an empty write effect set so that we can always apply the above rule when
M = V. Also note that the condition of the write set is essential; for example, ifM =
y := x, then we can not apply the above rule since after running this assignment,x is
reachable fromy. From Line 3 to Line 4, we use [Seq] rule, the standard sequential
composition rule. From Line 5 to Line 6, we use [Promote] appeared in Figure 6; and
finally from Line 6 to Line 7, we use [New].

[Promote]
{C}V :u {C′}@/0

{C∧C0}V :u {C′∧C0}@/0

Now we can apply [ConsEval] via (AIH) (taking the trivial invariantC0
def= !x≥ 0 ≡ T),

obtaining (7.10) as desired.
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CompHide. ForcompHide, a direct compositional reasoning leads to{T}compHide :u
{G} whereG is the assertion:

ν#x.(!x = 7∧∀n.{!x = 7}u•n=z{z= (n≥ 7)∧!x = 7}@/0)

The detailed derivation is given as follows:

1.{T}λy.y≥ 7{∀n.{!x = 7}u•n=z{z= (n≥ 7)∧!x = 7}@/0}@/0

2.{T}7 :m {m= 7}@/0

3.{x#i∧!x = 7}λy.y≥ 7{∀n.{!x = 7}u•n=z{z= (n≥ 7)∧!x = 7}@/0∧x#i∧!x = 7}@/0

4.{T}compHide :u {ν#x.∀n.{!x = 7}u•n=z{z= (n≥ 7)∧!x = 7}@/0}@/0

From Line 1 to 3, we again use [Promote] (this step is identical with Line 6 inprofile).
We can now apply [ConsEval] with (AIH), settingC0≡!x= 7 as the invariant, and noting
x#n≡ x#z≡ T by Axiom (2-1) in Prop. 6.2, finally reaching

∀n.u•n↘ (n≥ 7)

as the postcondition.

Safe Factorial. We conclude this section with a more substantial use of(AIH), taking
Landin’s factorial from the Introduction.

circFact
def= x := λz.if z= 0 then 1 else z× (!x)(z−1)

safeFact
def= let x = ref(λy.y) in (circFact; !x)

In [19], we have derived the following judgement.

{T}circFact :u {∃g.(∀n.Fact(g, !x,n,x)∧ !x = g)} (7.11)

where

Fact(g,u,n,x) def= {!x = g}u•n = z{z= n! ∧ !x = g}@/0 (7.12)

The postcondition is logical equivalent to:

Fact(u,n,x) def= ∃g.(Fact(g,u,n,x) ∧ u = g) (7.13)

≡ {!x = u}u•n = z{z= n! ∧ !x = u}@/0 ∧ !x = u (7.14)

The judgement (7.11) says:

After executing the program, x stores a procedure which would calculate a
factorial if x stores that behaviour, and that x does store the behaviour.

Our purpose is to show thatsafeFact namedu behaves as a pure factorial function,
i.e. it satisfies the assertion∀n.{T}u•n = z{z= n!}@/0.
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We first deriveFact(u,n,x) for circFact, which is much simpler than one in
(7.11). For the derivation, let:

C(g, !x, j) def= Fact(g, !x, j,x) ∧ !x = g.

We also set, for brevity:

M
def= λy.if y = 0 then 1 else y× (!x)(y−1)

We infer:

1. {(y≥ 1⊃C(g, !x,y−1)) ∧ y = 0} 1 :z {z= y! ∧ !x = g}@/0 (Simple)

2. {(y≥ 1⊃C(g, !x,y−1) ∧ y≥ 1} y× (!x)(y−1) :z {z= y! ∧ !x = g}@/0 (Simple, AppSimple)

3. {y≥ 1⊃C(g, !x,y−1)}
if y = 0 then 1 else y× (!x)(y−1) :z {z= y! ∧ !x = g}@/0 (IfH)

4. {T} λy.if y = 0 then 1 else y× (!x)(y−1) :u
{ ∀g,y≥ 1.{C(g, !x,y−1)}u•y = z{z= y! ∧ !x = g} }@/0 (Abs, ∀)

5. {T} M :u { ∀g,y≥ 1.(Fact(g, !x,y−1,x)⊃ Fact(g,u,y,x)) }@/0 (Conseq)

6. {T} x := M{ ∀g,y≥ 1(Fact(g, !x,y−1,x)⊃ Fact(g, !x,y,x) }@x (Assign)

7. {T} x := M{ ∀g,y≥ 1.((Fact(g, !x,y−1,x)∧!x = g)⊃ (Fact(g, !x,y,x)∧!x = g)) }@x (Conseq)

8. {T} x := M{ ∀y≥ 1.(∃g(Fact(g, !x,y−1,x)∧!x = g)⊃ ∃g(Fact(g, !x,y,x)∧!x = g)) }@x (Conseq)

9. {T} x := M{ ∀y≥ 1.Fact(!x,y,x) }@x (Conseq)

From Line 4 to Line 5, we used the following axiom for evaluation formulae,(e5) in
[19] with A = Fact(g, !x,y−1,x), B =!x = g andC = z= y!∧!x = g.

{A∧B}e•e′ = z{C} ≡ (A⊃ {B}e•e′ = z{C})

From Line 8 to Line 9, we use the following standard entailment.

∀x.(A⊃ B) ⊃ ∃x.A⊃ ∃x.B

Finally we show the main derivation forsafeFact. A derivation follows.

1.{T}λy.y :m {T}@/0

2.{T}circFact ; !x :u {Fact(u,n,x)}@x

3.{x#i}circFact ; !x :u {x#i ∧ Fact(u,n,x)}@x

4.{T}safeFact :u {ν#x.Fact(u,n,x)}@/0

5.{T}safeFact :u {∀n.{T}u•n = z{z= n!}@/0}@/0

Line 1 is immediate. Line 2 is (7.11) with [Deref] and [Seq]. From Line 2 to Line 3,
we use [Inv#]. Line 4 is direct from Lines 1, 3 and [New]. Finally we arrive at Line 5

∀n.u•n↘ n!

by [ConsEval] together with(AIH), letting: E = C1 = T, r̃ = w̃ = /0, C0 =!x = g and
C2 = z= n!, and notingx#n≡ x#z≡ T by Axiom (2-1) in Prop. 6.2.
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Safe Mutual Recursion. Finally we consider the advanced recursion by mutual cir-
cular references. The program demonstrates the power of the higher-order functions.
Consider the following two assignments.

mutualCheck
def=

x := λn.if y = 0 then f else not((!y)(n−1));
y := λn.if y = 0 then t else not((!x)(n−1));

It is easy to see that, after these two assignments,(!x)n returns the truth ifn is odd,
while (!y)m returns the truth ifn is even. This situation may be informally described
thus:

x stores a procedure which computes whether its argument is odd or not us-
ing a procedure stored in y; y stores a procedure which computes whether its
argument is even or not using a procedure stored in x

Note an inherent circularity of this description. Apart from the local state, the first ques-
tion is how we can logically describe such a program specification, and how can we
derive it compositionally.

In the presence of local state, we can hidex,y to avoid unexpected interference as
we have done forsafeFact;

safeMutualOdd
def= let x,y = ref(λn.t) in (mutualCheck; !x)

safeMutualEven
def= let x,y = ref(λn.t) in (mutualCheck; !y)

(aboveλn.t can be any initialising value). The program evaluates to a function which
checks the even of the number:x,y are now hidden and inaccessible from the outside,
so that the program behaves as the pure functions, e.g.,safeMutualOdd(3) returns the
truth, whilesafeMutualOdd(4) returns the false.

We first challenge the derivation ofmutualCheck

{T}mutualCheck :u {∀n.IsOddEven(n,xy)} (7.15)

where:

IsOddEven(n,xy) def= ∃gh.(IsOdd(!x,gh,n,xy) ∧ IsEven(!y,gh,n,xy) ∧ !x = g∧ !y = h)
IsOdd(u,gh,n,xy) def= {!x = g∧ !y = h}u•n=z{z= Odd(n) ∧ !x = g∧ !y = h}@xy

∧ !x = g∧ !y = h

IsEven(u,gh,n,xy) def= {!x = g∧ !y = h}u•n=z{z= Even(n) ∧ !x = g∧ !y = h}@xy
∧ !x = g∧ !y = h

Odd(n) def= ∃x.(n = 2×x+1) Even(n) def= ∃x.(n = 2×x)

Our final aim is to derive the following “pure” assertion by(AIH).

{T}safeMutualOdd :u {∀n.{T}u•n=z{z= Odd(n)}@/0} (7.16)

{T}safeMutualEven :u {∀n.{T}u•n=z{z= Even(n)}@/0} (7.17)
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Let us define:

Mx
def= λn.if y = 0 then f else not((!y)(n−1))

My
def= λn.if y = 0 then t else not((!x)(n−1))

The derivation ofmutualCheck is similar withcircFact.

1. {(n≥ 1⊃ IsEven(!y,gh,n−1,xy)) ∧ n = 0} f :m {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (Const)

2. {(n≥ 1⊃ IsEven(!y,gh,n−1,xy)) ∧ n≥ 1}
not((!y)(n−1)) :z {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (Simple, AppSimple)

3. {n≥ 1⊃ IsEven(!y,gh,n−1,xy)}
if n = 0 then f else not((!y)(n−1)) :m {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (IfH)

4. {T} λn.if n = 0 then f else not((!y)(n−1)) :u
{ ∀gh,n≥ 1.{IsEven(!y,gh,n−1,xy)}u•n=z{z= Odd(n) ∧ !x = g∧ !y = h}@/0 (Abs, ∀)

5. {T} Mx :u { ∀gh,n≥ 1.(IsEven(!y,gh,n−1,xy)⊃ IsOdd(u,gh,n,xy))}@/0 (Conseq)

6. {T} x := Mx{ ∀gh,n≥ 1.(IsEven(!y,gh,n−1,xy)⊃ IsOdd(!x,gh,n,xy))}@x (Assign)

7. {T} y := My{ ∀gh,n≥ 1.(IsOdd(!x,gh,n−1,xy)⊃ IsEven(!y,gh,n,xy))}@y (Conseq)

8. {T} mutualCheck
{∀gh.n≥ 1.((IsEven(!y,gh,n−1,xy)∧ IsOdd(!x,gh,n−1,xy))⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)) }@xy (∧-Post)

9. {T} mutualCheck
{∀n≥ 1.(∃gh.(IsEven(!y,gh,n−1,xy)∧ IsOdd(!x,gh,n−1,xy))⊃

∃gh.(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy))}@xy (Conseq)

10. {T} mutualCheck{∀n.IsOddEven(n,xy)}@xy

Now we derive (7.16):

1.{T}λn.t :m {T}@/0

2.{T}mutualCheck ; !y :u
{∃gh.(!x = g∧ !x = h ∧ ∀n.IsOdd(g,gh,n,xy) ∧ ∀n.IsEven(u,gh,n,xy))}@xy

3.{T}mutualCheck ; !y :u
{∃gh.(C0 ∧ ∀n.{C0}u•n=z{z= Even(n)∧C0}@xy)}@xy

4.{xy#i j}mutualCheck ; !y :u {∃gh.(xy#i j ∧ C0 ∧ ∀n.{C0}u•n=z{z= Even(n) ∧ C0}@xy)}@xy

5.{T}safeMutualEven :u {ν#xygh.(C0 ∧ ∀n.{C0}u•n=z{z= Even(n) ∧ C0}@xy)}@/0

6.{T}safeMutualEven :u {∀n.{T}u•n=z{z= Even(n)}@/0)}@/0 (AIH)

In Line 3, we letC0 =!x = g∧ !y = h ∧ ∀n.IsOdd(g,gh,n,xy) and use the axiom

{C}e•e′=z{C′}@ẽ ⊃ {C ∧ A}e•e′=z{C′ ∧ A}@ẽ

whereA is stateless formula andA= ∀n.IsOdd(g,n,gh,xy). Line 4 is again by[Inv−#].
The final line is by an application of(AIH) noting 〈!xy〉C0 ≡ T andxy#n≡ T, w̃ = /0
andxy#z≡ T. Hence we achieve the main result.
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8 Discussions

8.1 Summary

This paper presented a program logic for imperative higher-order functions with new
reference generation. The target languages of our preceding logics [3, 17–19] do not
include local state: none of the examples treated in the present paper can be asserted
and inferred in these logics. The new axioms on reachability involving general data
types as well as higher-order functions are introduced and are shown to be effective for
reasoning about programming examples which are known to be hard in the literature
[24, 32, 33, 40]

8.2 Related Work.

Below we discuss related works, mainly focussing on local state and freshness. Com-
parisons w.r.t. other elements (e.g. higher-order functions, aliasing, polymorphism) are
relegated to [3, 17–19].

Original Local Variable Rule by Hoare and Wirth. To our knowledge, the first work
which introduced the proof rule for local variable is Hoare and Wirth’s [13]. The rule is
so-called for stack variables, i.e. those local variables which are never exported beyond
their original scope. Since aliasing is not considered, the rule has the following simple
shape.

{C[e/x]}P{C′}
{C}newvar x := e in P{C′}

This can be translated into the following rule in the context of the present logic:

{C}M :m {C0} {C0[!x/m]} N :u {C′} x /∈ fv(C′)
{C} new x := M in N :u {C′}

which is close to, and weaker than, [NewVar] in Figure 4, Page 26 (hence is sound). It is
pleasant to see that, at the level of proof rules, the only essential difference between the
original rule for local variables and the present one lies in the addition of the disjointness
condition through the #-predicate. At the semantic level, incorporation of local state in
the present logic leads to a very different model of assertions and judgement, as we
have seen in Section 4.

Development Framework. The present work proposes a compositional program logic
for a core part of ML [2, 26].Extended ML[38] is a formal development framework for
Standard ML. A specification is given by combining a module’ signature and algebraic
axioms on them. Correctness of an implementation w.r.t. a specification is verified by
incremental syntactic transformations.Larch/ML [42] is a design proposal of a Larch-
based interface language for ML. Integration of typing and interface specification is the
main focus of the proposal in [42]. These two works do not (aim to) offer a program
logic with compositional proof rules; nor do either of these works treat specifications
for functions with dynamically generated references.
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Observational Congruence and Completeness.Stark and Pitts [32, 33, 40] develop
powerful reasoning principles for behavioural equivalences on higher-order functions
using operationally based techniques. Koutavas and Wand [20] recently showed a fully
abstract bisimulation technique for the untyped version of the language treated in the
present work, and applied the techniques to several non-trivial reasoning examples.
Though in quite different settings from program logics, these works elucidate subtleties
in reasoning on higher-order functions with local state, demonstrated through many
subtle examples (such as those due to Meyer-Sieber [24]). Observational completeness
theorem precisely relates their reasoning method to our logic, suggesting a rich techni-
cal interplay.

Higher-Order Logic. Several recent works present mechanisation of Hoare logics in
higher-order logics, cf. [8, 22, 29, 41]. While these works do discuss some aspects of
local state such as pointer-based data structures, they do not (aim to) offer a direct
logical treatment of either ML-like general references or their combination with higher-
order functions.

Reachability Predicate and Logics for Dynamic Data Structures.Assertion-based
reasoning methods for dynamically generated mutable data structures have been stud-
ied from early days of program logics [15], cf. [3, §10]. Nelson would be the first to
use a notion of reachability in this context [28], for reasoning about linearly linked lists
via predicate transformers. His predicate is tailored for this particular data structure,
and can be represented by the first-order part of our reachability predicate. Neither gen-
eral mutable data types, higher-order functions nor ML-like new reference generation,
which are the central elements of the present work, is treated in his work.

A basic difference between these preceding works and the present logic may be
that we take an analytical approach in which central elements of sequential (higher-
order) behaviour are distilled and stratified, to be respectively given their logical artic-
ulations. For example, aliasing and new reference generation are given separate treat-
ments: the former is treated using content quantification while the latter is captured
by freshness predicates. This leads to a uniform understanding of involved semantic
structures through a logical means. Let us discuss this point taking a concrete example.
The following is Burstall’s example for mutable list cells, already given in Section 2.1,
Example 2.2, Page 6.

L
def= x := cons(0,nil) ; y := cons(2, !x) ; car(!x) := 1

Assuming the precondition{x 6= y}, the first command leads to:

νh, l .(!x = 〈h, l〉 ∧ !h = 0∧ !l = nil) (8.1)

Then we obtain:

νh, l ,h′, l ′.(!y = 〈h′, l ′〉 ∧ !h′ = 2∧ !l ′ = x∧ !x = 〈h, l〉 ∧ !h = 0∧ !l = nil) (8.2)

Finally, after the third line, we get:

νh, l ,h′, l ′.(!y = 〈h′, l ′〉 ∧ !h′ = 2∧ !l ′ = x∧ !x = 〈h, l〉 ∧ !h = 1∧ !l = nil) (8.3)
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Note νhlh′l ′.C entails, by definition, these new references are mutually distinct. The
reasoning above is analytical, but it has the merit, in comparison with the methods used
in the above cited preceding works in that we only have to apply a general proof rule to
obtain these assertions.

The analytical presentation given above can be rendered into more efficient and
readable format (both for assertions and for reasoning) by introducing short-hand no-
tations without changing semantics. For example, we may writere f(e) for a new ref-
erence which containse as its content (so, for example,x = 〈re f(0), re f(1)〉 stands for
ν i j .(x = 〈i, j〉 ∧ !i = 0∧! j = 1)). Then the first assertion becomes:

!x = 〈re f(0), re f(nil)〉 (8.4)

The second one:

!y = 〈re f(2), re f(x)〉 ∧ !x = 〈re f(0), re f(nil)〉 (8.5)

And the third assertion:

!y = 〈re f(2), re f(x)〉 ∧ !x = 〈re f(1), re f(nil)〉 (8.6)

which are much more tractable than the original ones (we may further simplify the
structures using the constructor for a mutable list). Derivation of these simplified asser-
tions can use corresponding proof rules. We believe studying various reasoning methods
proposed in this domain in the light of the present logic would lead to enrichment of
reasoning methodologies for mutable data structures on a uniform basis. Among the ex-
isting threads of work, we later discuss how the present framework compares and inter-
acts with the reasoning method based on separating connectives by Reynolds, O’Hearn,
Bornat and others taking concrete examples.

Separation Logic. Reynolds, O’Hearn and others [5, 30, 37] propose, and experiment
with, separating conjunctionfor Hoare logics of aliasing and dynamically generated
data structures. As Reynolds shows [37], their conjunction is effective when data struc-
tures do not have non-trivial sharing, as in trees. When sharing is non-trivial, both
assertions and reasoning tend to become highly complex in their approach: practical
treatment of data with complex sharing is left open in [5]. One of the main issues lies
in the need to encode the whole of a (concrete) target data structure as a formula, de-
manded by the use of separating conjunction itself [5]. Not only does this mean the
size of concrete formulae grows in proportion to that of treated data structures, but also
the construction of the encoding itself becomes onerous for e.g. dags and graphs. In
contrast, our approach allows concise description of such notions as isomorphism with-
out such encodings, as shown in §7. Proposition 7.1 also shows that assertions based
on reachability offer accurate specifications entailing separation. The present logic also
differs in that it can treat (stored) higher-order functions and general data types such as
products, sums and polymorphism. Results similar to observational completeness may
not have been reported for their logics.

Recent work by Birkedal et al. [4] presents a type system for Algol whose types
are constructed from formulae of Separation Logic and whose typing is performed by
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logical entailment, formalised by categorical semantics. Their type system does not
allow compositional logical reasoning for higher-order constructs, nor does it offer ax-
ioms for calculating entailment, which is at the heart of Hoare logic’s practical use.
Their higher-order frame rule captures only static compositionality, hence cannot rea-
son about dynamically allocated data structures we studied in Section 7.

Logics for Fresh Names.Freshness of names is recently studied from the viewpoint of
formalising binding relations by Pitts and Gabbay [9, 34]; and Miller and Tiu [25]. In the
work by Pitts and Gabbay, First-Order Logic is extended with constructs to reason about
freshness of names based on the theory of permutations. The key syntactic additions are
the (interdefinable) “fresh” quantifierNand the freshness predicate #. The latter work
by Miler and Tiu [25] is motivated by the significance of generic, or eigen, variables and
quantifiers at the level of both formulae and sequents, and splits universal quantification
in two, introduce a new quantifier∇ and develop the corresponding sequent calculus of
Generic Judgements. While these works are not done in the context of Hoare logic, their
logical machinery may well be usable in the present context, for example in refinement
of axiomatisation of reachability including function types (which is one of the important
future topics).

8.3 Future Work.

While equational reasoning for higher-order functions with local state have been studied
in the literature (as discussed above), ours would be one of the initial trials to articu-
late this realm logically in Hoare-like assertion methods. In § 6 and 7, we have shown
how axioms for reachability play a central role in non-trivial reasoning with local state.
Clearly logical transformations needed to reach desired judgement in the present logic
(cf. § 7) demand syntactic axioms which go much beyond number theory: some of the
useful axioms for higher-order functions and aliasing are studied in [3, 17, 19], while
those involving fresh names and reachability predicate are discussed in the present pa-
per. A further study on axiom systems, their logical status and their practical use com-
bined with existing tools [7] would be an interesting future research topic.

Several recent proposals of safe low-level languages are inspired by ML, including
[11, 27, 39]. Since higher-order functions and local state are their central elements, it
is interesting to extend the present logic to these languages. Another related interest is
validation of library functions such as C’smalloc which implement new reference gen-
eration, where the properties ofnew should be derivable in a logic rather than stipulated.
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A Proof of Axioms in Remark 6.11

In this appendix we prove:

Proposition A.1 Assumeβ is recursively finite and thatRef(β) does not occur inβ up
to the type isomorphism. Then the following assertion is valid, i.e. is true in any model:

(∀X.∀ jX 6= x. j #x) ⊃ (〈!x〉(iα ↪→ xRef(β)) ≡ [!x](iα ↪→ xRef(β)) ≡ iα ↪→ xRef(β))
(A.1)

which is equivalent to, through dualisation:

(∀X.∀ jX 6= x. j #x) ⊃ (〈!x〉iα #xRef(β) ≡ [!x]iα #xRef(β) ≡ xRef(β)) (A.2)

PROOF: Assumeβ is recursively finite and thatRef(β) does not occur inβ up to the
type isomorphism. Further let:

M def= (ỹ)(ξ ·xRef(β) : j , σ · j 7→W)

Now suppose we have:
M |= ∀X.∀ jX 6= x. j #x.

That is we can set, without loss of generality, thatx occurs neither inξ nor in σ, and
that j = {x}. Note furtherW can never contain any datum from which one can reachx,
by the shape ofβ. By trivial operational reasoning, there is no possibility to havei ↪→ x
except when we havei = x. Thusi ↪→ x is equivalent toi = x whose validity does not
depend on the content ofx, as required. ut

B Graph Copy

Assertion for Main The main body ofgraphCopy, Main, uses a “scratchpad”x, just as
the dagcopy. Thus its specification needs to say how the program changes the original
scratchpad to a new one. The assertion, written:gc(r, i)(u), is given as follows.

gc(r, i)(u) def=
∀g,org.

{!x = org ∧ conPre(org,g, r) ∧ g 6∈ dom(org)⊃ sizeR(g, r, i)}
u•g = g′

{ ]-x{z′ | ∃z.〈z,z′〉 ∈!x ∧ 〈z,z′〉 6∈ org}.
( (g∈ dom(org)⊃!x = org) ∧
(g 6∈ dom(org)⊃ (conPost(!x,g, r)∧ !x=org∪〈g,g′〉∗r ) ) )}@x

Roughlygc(r, i)(u) says:
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u can create an isomorphic copy of an original graph as far as “its size relative
to a root node r” (this notion is made precise later) is no more than i, together
with a consistent change in the content of the scratchpad.

When the argument graph is already in the scratchpad,u does nothing. Note the the
predicategc(r, i)(u) has the same structure asdc τ (u). The predicates used above intu-
itively mean:

– sizeR(g, r, i) says the size ofg relative tor is i.
– !x = org records the initial table inorg.
– conPre(org,g, r) saysorg is consistent as far as those nodes “before”g go, relative

to r.
– underR(z,g′, r) saysz is “under” g′ relative to r. z 6∈ cod(org) saysz is in the

codomain of the tableorg.
– conPost(!x,g, r) saysx contains a table which is consistent as far as those nodes

“under” or “before”g go, relative tor.
– 〈g,g′〉∗r is the pairs of nodes “downwardly reachable” fromg andg′ with common

paths.

The formal definitions of these predicates are given below.

Associated Predicates.Predicates used for defininggc(r, i)(u) are defined below. Through-
outg,g′,h,h′, r, . . . are of typeTree, while p, p′, . . . are paths.

1. Rooted Lexicographic Ordering.We use the standard lexicographic order on paths,
with left smaller than right, a prefix smaller than the whole. To wit, lettingp≺ q denote
p is a prefix ofq:

p≺ q
pv q

pv q
l .pv l .q

pv q
r.pv r.q

−
l .pv r.q

Sincev is the total order, the following predicate is well-defined:

minpathR(r,g, p) ≡ path(r,g, p) ∧ ∀p′.(path(r,g, p′)⊃ pv p′)

ThusminpathR(r,g, p) asserts the shortest path fromr to g is p.
Assumeg1,2 are reachable fromr. Then we can orderg1,2 relative tor using their

minimal paths as follows:

g1 vr g2
def≡ ∃p1,2.(∧i=1,2minpathR(r,gi , pi) ∧ p1 v p2)

g1 vr g2 says the shortest path from the rootr to g2 goes viag1. This ordering reflects
the program’s behaviour: ifg1 vr g2 graphCopy (starting fromr) will reachg1 before
g2.

2. Rooted Prefix Ordering.The rooted prefix relation is definable as follows:

g1 ≺r g2
def≡ ∃p1,2.(∧i=1,2minpathR(r,gi , pi) ∧ p1 ≺ p2)
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3. Rooted Closure Operation.The closure operation is defined as:

〈g0,g′0〉∗r
def=

{〈g,g′〉 | g0 ≺r g, ∃p.path(g0, p,g), path(g′0, p,g′)}

That is,〈g0,g′0〉∗r is the set of “downwardly reachable” nodes fromg0 andg′0, through
common paths.

4. Rooted “Before” Predicate.We define the notion “g1 is beforeg2 relative tor”.

beforeR(g1,g2, r) ≡ (g1 vr g2 ∧ ¬g1 ≺r g2)

ThusbeforeR(g1,g2, r) wheng1 is less thang2 but g1 is not a prefix ofg2. In other
words, it says thatg1 is less thang2 but not “above”g2, i.e. is not in the minimum path
betweenr andg2.

5. Rooted “Under” and “Above” Predicate.The notion “g1 is underg2 relative tor”
is nothing butg2 ≺r g1.

underR(g1,g2, r) ≡ g2 ≺r g1

Dually we define “above” as:

aboveR(g1,g2, r) ≡ g1 ≺r g2

Intuitively, underR(g1,g2, r) saysg2 is betweenr (uppermost) andg1 (below) w.r.t.
minimal paths, whileaboveR(g1,g2, r) saysg1 is betweenr (uppermost) andg2 (below)
w.r.t. minimal paths.

6. Rooted Size.The predicatesizeR(g, r, i) says that the number of nodes downwardly
reachable fromg w.r.t r is i. It is defined by induction oni (we give natural language
definitions, from which their formal counterparts easily follow).

– sizeR(g, r,1) holds iff, as well asg is reachable fromr, eitherg is a leaf or the two
branches ofg are aboveg.

– sizeR(g, r,n+1) (n≥ 1) holds iff sizeR(g′, r,n) for someg′ such thatg′ is an imme-
diate child ofg and, moreover,g′ is strictly belowg (w.r.t. r).

For completeness, we set the predicatesizeR(g, r,0) holds iff g is not reachable fromr.

7. Weak Consistency (1).The consistency conditions for the table relating original
nodes and newly created nodes use the following “one-step isomorphism”.

iso1(〈g1,g
′
1〉, 〈g2,g

′
2〉)

≡ ∧i=l ,r(path(g1, i,g2)≡ path(g′1, i,g
′
2)) ∧

∀n.(atom(!g1,n)≡ atom(!g2,n)) (B.1)
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Note the directedness of the predicate. The consistency used in the pre-condition is
given as:

conPre(t,g, r)
≡ ∀g0.((beforeOrAboveR′(g0,g, r)⊃ g0 ∈ dom(org)) ∧
∀g1,2,g

′
1,2.

( ( beforeR′(g1,g, r) ∧ beforeOrAboveR′(g2,g, r) ∧
〈g1,g

′
1〉,〈g2,g

′
2〉∈ t )

⊃ iso1(〈g1,g
′
1〉, 〈g2,g

′
2〉) )

where we set, for brevity:

beforeR′(h,g, r) def= h 6= g∧beforeR(h,g, r)

beforeOrAboveR(h,g, r) def= beforeR(h,g, r)∨aboveR(h,g, r)

beforeOrAboveR′(h,g, r) def= h 6= g∧beforeOrAboveR(h,g, r)

Note the first and third predicates define strict versions of “before” and “before or
above” relations. The consistency condition says:

1. All nodesstrictly before or aboveg are indom(org);
2. if g1 (source) is strictly “before”g and if g2 (target) is strictly “before” or “above”

g, one step path fromg1 to g2 coincides with the path between the corresponding
fresh nodes.

As further observations:

– By using one-step path, we are avoiding a round-about path going through nodes
“after” g.

– Those nodes “above”ghave already been placed indom(org), but their correspond-
ing fresh nodes usually point to only a temporary datum, so that a pathfrom such
a node may not be shared between the domain and codomain oforg.

– A pathto a node aboveg from those which are strictly “before”g (i.e. those which
are processed) should already be isomorphic.

8. Weak Consistency (2).The consistency for the post-condition is similarly given,
adding those nodes underg as its source.

conPost(t,g, r)
≡ ∀g0.((aroundR(g0,g, r)⊃ g0 ∈ dom(t)) ∧
∀g1,2,g

′
1,2.

( ( beforeOrUnderR(g1,g, r) ∧ aroundR(g2,g, r) ∧
〈g1,g

′
1〉,〈g2,g

′
2〉∈ t )

⊃ iso1(〈g1,g
′
1〉, 〈g2,g

′
2〉) )
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where, for brevity, we set:

beforeOrUnderR(h,g, r) def= beforeR(h,g, r)∨underR(h,g, r).
aroundR(h,g, r) def= beforeR(h,g, r)∨underR(h,g, r)∨aboveR(h,g, r)

The second consistency condition says:

1. If g0 is “before”, “under” or “above”g, theng0 should be indom(org).
2. If g1 (source) is “before” or “under”g and if g2 (target) is “before”, “under” or

“above”g, then one step path fromg1 to g2 coincides with the corresponding newly
created nodes.

The condition is essentially identical with the pre-consistency above except those nodes
“under” g are incremented.

8. Main Intermediate Assertion Revisited.At this point it may be valuable to revisit the
main intermediate assertion, which we reproduce below for readability:

gc(r, i)(u) def= ∀g,org.

{ !x = org ∧ conPre(org,g, r) ∧ g 6∈ dom(org)⊃ sizeR(g, r, i) }
u•g = g′

{ ]-x{z′ | ∃z.(〈z,z′〉 ∈!x ∧ 〈z,z′〉 6∈ org)}.
( (g∈ dom(org)⊃!x = org) ∧
(g 6∈ dom(org)⊃ (conPost(!x,g, r)∧ !x=org∪〈g,g′〉∗r ) ) ) }@x

We may observe the following correspondence between the main assertion and the
program’s behaviour.

– sizeR(g, r, i) does decrease when the program visits one of the branches ofg which
is strictly underg: and if its branch is not strictly underg, then that branch has
already been processed, i.e. has already been placed indom(org).

– If g is not indom(org) hence it has indeed been processed, then those nodes underg
are newly included in the table, together with corresponding freshly created nodes,
except for those which are not in the codomain oforg.

– The domain of the table further adds those nodes downwardly reachable fromg and
g′, whereas its codomain adds their corresponding nodes.

Thus the assertion is nothing but logical articulation of behaviour of the main program.
For brevity, we shall callGP and GG for the precondition and postcondition of

gc(r, i)(u):

GP
def= !x = org ∧ conPre(org,g, r) ∧ g 6∈ dom(org)⊃ sizeR(g, r, i)

GG
def= ]-x{z′ | ∃z.(〈z,z′〉 ∈!x ∧ 〈z,z′〉 6∈ org)}.

( (g∈ dom(org)⊃ !x = org) ∧
(g 6∈ dom(org)⊃ (conPost(!x,g, r)∧ !x=org∪〈g,g′〉∗r ))
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When we applyMain to the root noder, we should be able to derive:

]-x{z|g ↪→ z}. !x = 〈g,g′〉∗r (B.2)

after invokingu with argumentr (the root node), under the assumptions (1)org = /0;
and (2)∀r,n.gc(r,n)(u).

Let us check that this is indeed possible, i.e. the pre-conditionGP is indeed satis-
fied and, fromGG under the conditions (1) and (2), we can derive (B.2). For the pre-
condition, it suffices to showconPre(org,g, r). However becausebeforeR(h, r, r)≡ h=
r and becausebeforeOrAboveR′(h, r, r) never holds for anyh, we immediately know
conPre( /0,g, r), so thatGPholds.

For the postcondition, we calculateGG underorg = /0, g = r andg′ = r ′. First, the
content ofx becomes:

!x = /0∪〈r, r ′〉∗r (B.3)

This entails the first condition ofconPost(!x, r, r). Further, by the second condition of
conPost(!x, r, r), we know

∀g1,2,g
′
1,2.( ∧i=1,2〈gi ,g

′
i〉 ∈!x⊃ iso1((〈g1,g

′
1〉, 〈g2,g

′
2〉) )

Similarly for the remaining condition.
Second, the condition for each]-x-fresh nodeg′ becomes:

∃z.(underR(z, r, r) ∧ 〈z,g′〉 ∈!x)

By (B.3), this is the same thing as:g′ ≺r ′ r ′, that isr ′ ↪→ g′, as required.

Derivation (1): The Whole Program For the derivation for the whole program, we
use:

U ′ = {z | r ′ ↪→ z ∧ z 6∈ cod(org)}
The derivation follows.

1 u : {T} (abs)
2 lambda r .
3 g′ : {T} (new)
4 new x:= /0 in
5 r ′ : {!x = /0} (app)
6 m : {T}
7 Main
8 {∀r,n.gc(r,n)(m)}@/0
9 r

10 {!x = /0∧{!x = /0}m• r = r ′{#-xU ′.iso(r, r ′)}@x}@/0
11 {#-xU ′.iso(r, r ′)}@x
12 {?r ′.iso(r, r ′)}@/0
13 {∀g.{T}u•g=g′{?g′.iso(g,g′)}@/0}@/0

The structure is identical with the derivation for the dagcopy. Since many points overlap
with the reasoning in §7.3, we only discuss the main difference.
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– In l .11, the application is inferred using [App#].

– Froml .11 tol .12, we use the [New] rule. Let, for brevity,M
def= Main andC

def=!x= /0.
Note the sub-derivationl .5–12 means{C}M{#-xU ′.iso(r, r ′)}, that is, withi fresh
(cf.(7.4)):

{C}M{∀z.((r ′ ↪→ z∧x#i)⊃ z#i)∧ iso(r, r ′)}@x

By [New], we can strengthenC by taking its conjunction withx]i. Just as in the
corresponding part in dagcopy (cf.§7.3),x#i is !x-free via (6.2), page 37, Section
6.1. By [Inv] we obtain:

{C∧x#i}M{∀z.(r ′ ↪→ z⊃ z#i)∧ iso(r, r ′)}@x

that is
{C∧x#i}M{?r ′.iso(r, r ′)}@x.

Since [New] allows us to cancelx in the pre-condition, we obtainl .12.

Derivation (2): NewEntry Since the derivation forNewEntry is already given in §7.3,
we only list the outermost derivation.

1 m : {T}
2 NewEntry
3 {NE(m)}@/0

Derivation (3): Main The main body of the program is derived just as in §7.3: the only
notable difference is how the inductive case is inferred.

1 u : {T} (rec)
2 mu f .
3 u : {∀ j < n. gc( j f )} (abs)
4 lambda g.
5 g′ : {sizeR(g, r,n) ∧ !x = org ∧ conPre(org,g, r)} (if)
6 if dom(! x, g) then
7 g′ : {g∈ dom(!x)}
8 get (! x, g)
9 {!x = org ∧ 〈g,g′〉 ∈!x}@/0

10 {GG}@/0
11 else
12 g′ : {g 6∈ dom(!x)} (case)
13 case ! g of
14 inl ( n):
15 g′ : {T}
16 NewEntry ( inl ( n), g)
17 {#-xg′.(!x = org∪〈g,g′〉 ∧ conPre(org,g, r) ∧
18 atom(!g,n) ∧ atom(!g′,n))}@x
19 {GG}@x
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20 inr ( pair <g1, g2>):
21 g′ : {T}
22 let h =
23 NewEntry ( tmp , g) in
24 h := inr ( pair <f y1 , f y2 >);
25 {GG[h/g′]}@x
26 h
27 {GG}@x
28 {GG}@x
29 {GG}@x
30 {gc(r, i)(u)}@/0
31 {∀r, i.gc(r, i)(u)}@/0

Above we make explicit the constructorpair for paring, for a later convenience. As
before, when two assertions are repeated in consecutive lines (such as Line 9 and Line
10), it means the previous assertion implies the following one.

Note the structure of the inference is essentially identical with that fordagCopy.
As in the main program ofdagCopy, the program processesg, its argument, in three
different ways, depending on three sub-cases ofg.

(A) g is already in the table;
(B) g is not in the table andg is a leaf; and
(C) g is not in the table andg is a branch.

In the following pragraphs, we treat each case one by one.

(A) No Processing.This is treated in Lines 7–11. The only non-trivial inference is to
show Line 9 implies Line 10, i.e.:

!x = org ∧ 〈g,g′〉 ∈!x ⊃ GG

Since !x = org, the]-fresh names become, from !x = org:

{g′ | ∃z.(〈z,g′〉 ∈!x ∧ 〈z,g′〉 6∈ org)} = /0.

Next, from〈g,g′〉 ∈!x we obtaing∈ dom(org), in which caseGGsays we should have
!x = org, which indeed holds. Thus we have:

!x = org ∧ 〈g,g′〉 ∈!x⇒ ]-x /0. (g∈ dom(org)⊃ !x = org)
⇒ GG

We have arrived at Line 10.

(B) Base Case.Lines 15 to 19 treat the base case, i.e. the case when (1) the argumentg
is not in the table (has not been processed) and (2)g is a leaf with valuen. Lines 17/18
is inferred using !x-freedom ofconPre(g,org, r), which is easily shown by noting all
terms used inconPre(g,org, r) cannot reachx (we omit the formal reasoning). The only
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non-trivial inference is derivation of Line 19 from Lines 17/18. It suffices to show, again
using !x-freedom ofconPre(g,org, r):

conPre(g,org, r) ∧ !x = org∪〈g,g′〉 ∧ atom(!g,n) ∧ g 6∈ dom(org) (B.4)

entailsGG.
First, for the]-x-free names, a trivial set-theoretic reasoning gives us, under (B.4):

{z′ | ∃z.(〈z,z′〉 ∈!x\org)} (B.5)

Second, we derive the body, i.e.

(g∈ dom(org)⊃!x = org) ∧
(g 6∈ dom(org)⊃ (conPost(!x,g, r)∧ !x=org∪〈g,g′〉∗r ) )

Sinceg 6∈ dom(org), it suffices to derive:

conPost(!x,g, r)∧ !x=org∪〈g,g′〉∗r )

Sincegandg′ are atoms,〈g,g′〉∗r = 〈g,g′〉, hence we only have to deriveconPost(!x,g, r)
from (B.4). First we note, becauseg is an atom:

underR(h,g, r) = {g} (B.6)

We recallconPost(!x,g, r) has the shape:

∀g0.(aroundR(g0,g, r)⊃ g0 ∈ dom(!x)) ∧
∀g1,2,g′1,2.( ( beforeOrUnderR(g1,g, r) ∧ aroundR(g2,g, r) ∧ 〈g1,g′1〉,〈g2,g′2〉∈ t )
⊃ iso1(〈g1,g′1〉, 〈g2,g′2〉) )

For the first component, under (B.4) hence (B.6):

∀g0.(aroundR(g0,g, r)⊃ g0 ∈ dom(!x)) ⇔ ∀g0.(beforeOrAboveR(g0,g, r)⊃ g0 ∈ dom(!x)))
⇐ conPre(org,g, r).

where
beforeOrAboveR(h,g, r) def= beforeR(h,g, r)∨aboveR(h,g, r)

The second component is equivalent to:

∀g1,2,g′1,2.

( ( beforeR(g1,g, r) ∧ beforeOrAboveR(g2,g, r) ∧ 〈g1,g′1〉,〈g2,g′2〉∈ t )
⊃ iso1(〈g1,g′1〉, 〈g2,g′2〉) )

which is easily implied by (B.4) (to be precise byconPre(org,g, r) andatom(!g,n)), as
required.
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(C) Inductive Case.We show the inductive case, the secondcase construct, when the
argument is not in the table and it is a branch.

We first present the asserted program fragment excepting the inference for the two
recursive calls (which is detailed next).

1 {!x = org ∧ conPre(org,g, r) ∧ g 6∈ dom(org)}
2 {∀i < j. gc(i, r)( f ) ∧ sizeR(g, r, j)}
3 g′ : {branch(!g,g1,g2)} (let)
4 let h =
5 g′ : {T}
6 NewEntry ( tmp , g) in
7 {#-xg′.(!x=org∪{〈g,g′〉})}
8 g′ : {...} (seq)
9 {T} (assvar#)

10 h:= inr ( pair <f g1, f g2>);
11 {GG[h/g′]}@x
12 h
13 {GG}@x

The inference above is mechanical except for the omitted part, the reasoning for the
inr(〈 f g1, f g2〉).

1 {g 6∈ dom(org) ∧ !x = org∪〈g,g′〉 ∧ conPre(org,g, r)}
2 {∀i < j. gc(i, r)( f ) ∧ sizeR(g, r, j)}
3 {branch(!g,g1,g2)}
4 n : {T} (inr)
5 inr
6 m : {T} (pair#)
7 pair
8 g′1 : {T}
9 f g1

10 {GG(g1,g′1,org)}@x
11 g′2 : {...}
12 f g2
13 {GG1(g1,g2,g′1,g

′
2,org′)}@x

14 {GG2(g1,g2,m,org′)}@x
15 {GG3(g1,g2,n,org′)}@x
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Above we use a parametrised version ofGGand its refinements:

GG(g,g′,org) def= { ]-x{z′ | ∃z.(〈z,z′〉 ∈!x ∧ 〈z,z′〉 6∈ org)}.
( (g∈ dom(org)⊃ !x = org) ∧
(g 6∈ dom(org)⊃ (conPost(!x,g, r)∧ !x=org∪〈g,g′〉∗r )))

GG1(g1,g2,g
′
1,g

′
2,org) def= { ]-x{z′ | ∃z.(〈z,z′〉 ∈!x ∧ 〈z,z′〉 6∈ org)}.

((g1,2 ∈ dom(org)⊃ !x = org) ∧
((g1,2 ∈ dom(org)⊃ !x = org)⊃

(conPost(!x,g, r)∧ !x=org∪
[

i=1,2

〈gi ,g
′
i〉∗r )) ∧

((g1 ∈ dom(org)∧g2 6∈ dom(org))⊃
(conPost(!x,g, r)∧ !x=org∪〈g2,g

′
2〉∗r )) ∧

((g2 ∈ dom(org)∧g1 6∈ dom(org))⊃
(conPost(!x,g, r)∧ !x=org∪〈g1,g

′
1〉∗r )))

GG2(g1,g2,m,org) def= ∃g′1,2.(m= 〈g′1,g′2〉∧GG1(g1,g2,g
′
1,g

′
2,org))

GG3(g1,g2,n,org) def= ∃g′1,2.(n = inr(〈g′1,g′2〉)∧GG1(g1,g2,g
′
1,g

′
2,org))

We observe:

– From Line 13 to Line 14, i.e. fromGG1(g1,g2,g′1,g
′
2,org) to GG2(g1,g2,m,org),

is direct from the proof rule for pairing.
– From Line 14 to Line 15, i.e. fromGG2(g1,g2,m,org) to GG3(g1,g2,n,org), is

direct from the proof rule for injection.

Thus the only non-trivial inferences in the reasoning above are before and after each re-
cursive application, which we discuss below (the following natural language inferences
are for clarity and can be easily made into formal inferences).
First Application. We show the assumptions in Lines 1–3 together imply the following
precondition for the first application. Once this holds, then by the induction hypothesis
on f , we immediately obtain the postcondition,GG(g1,g′1,org). Below and henceforth

we setorg0
def= org∪〈g,g′〉.

conPre(org,g1, r) ∧ g1 6∈ dom(org0)⊃ sizeR(g1, r,n)

In other words, we should show Lines 1–3 entail:

(a) conPre(org0,g1, r).
(b) If g1 6∈ dom(org0), thensizeR(g1, r,k) such thatk � n.

We noteg1 can be located either:

(i) beforeg;
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(ii) aboveg; or
(iii) strictly belowg.

Condition (a). We obtainconPre(org0,g1, r) by inspecting each of its component.
Firstly we can easily derive

∀h.((beforeOrAboveR′(h,g1, r)⊃ h∈ dom(org0))

from
∀h.((beforeOrAboveR′(h,g, r)⊃ h∈ dom(org))

through the assumption, in any of (i), (ii) and (iii). Secondly, we already know one-step
isomorphism with the following source and target:

– beforeR(h1,g, r) as a source.
– beforeOrAboveR(h1,g, r) as a target

If (i) is the case, since “above”g1 is already before or aboveg, the same holds for
g1. If (ii) is the case, those “above”g1 are a subset of those “above”g, similarly for
“before”, hence done. If (iii) is the case, the “above” nodes addg, while “before” nodes
are unchanged. However in this case no other edges can exist from the nodes strictly
beforeg (since if sog1 itself should be strictly beforeg), hence as required.

Secondly, for the second component:

∀h1,2,h
′
1,2.

( ( beforeR(h1,g1, r) ∧ beforeOrAboveR′(h2,g1, r) ∧
〈h1,h

′
1〉,〈h2,h

′
2〉∈org0 )

⊃ iso1(〈h1,h
′
1〉, 〈h2,h

′
2〉) )

Again we derive this assertion from the pre-condition forg:

∀h1,2,h
′
1,2.

( ( beforeR(h1,g, r) ∧ beforeOrAboveR′(h2,g, r) ∧
〈h1,h

′
1〉,〈h2,h

′
2〉∈org )

⊃ iso1(〈h1,h
′
1〉, 〈h2,h

′
2〉) )

By the reasoning for the first component, we already know the only case when new
edges (one-step paths) should be considered is wheng1 6∈ dom(org), i.e. when (iii)
holds. In this case, however, there is no path from “before” nodes tog1 as noted, hence
in fact there is no additional one step path, as required.

Condition (b). This is easy:

1. If (i) and (ii) hold, then by the pre-consistency we knowg∈ dom(org), a contra-
diction.

2. If (iii) holds, then by definition we know the minimum path fromr to g1 strictly
includes the one fromr to g, i.e. (b) holds.
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hence as required.
Second Application.We haveGG(g1,g′1,org) together with assumptions in Lines 1–3
except for replacing !x = org with !x = org1, where we setorg1 to beorg0∪〈g1,g′1〉
(which is, in detail, equal toorg0 if g1 ∈ dom(org); and toorg0∪〈g1,g′1〉 if else).

We first show this is enough as the precondition for the second recursion. As before,
we need to show:

(a) conPre(org′,g2, r).
(b) If g2 6∈ dom(org), thensizeR(g2, r,k) such thatk � n.

Againg2 can be located either:

(i) beforeg;
(ii) aboveg; or
(iii) strictly belowg.

Condition (a). The first component ofconPre(org′,g2, r) is:

∀h.((beforeOrAboveR′(h,g2, r)⊃ h∈ dom(org1))

The reasoning is essentially the same as forg1 (exceptg1 itself can be “before”g2):

– If (i) or (ii) is the case, i.e. ifg2 is before or aboveg, then surelyg2 is already in
dom(org).

– If (iii) holds, thenbeforeOrAboveR′(h,g2, r) may entailh= g or h= g1 in addition:
however we already knowg andg1 are indom(org), hence done.

For the second component, we wish to have:

∀h1,2,h
′
1,2.

( ( beforeR(h1,g2, r) ∧ beforeOrAboveR′(h2,g2, r) ∧
〈h1,h

′
1〉,〈h2,h

′
2〉∈org1 )

⊃ iso1(〈h1,h
′
1〉, 〈h2,h

′
2〉) ) (B.7)

In order to derive the assertion (B.7) from the immediately preceding postcondition, we
observe there are two cases.

(a-1) g1 6∈ dom(org0), in which case all underg1 are inorg1 and, moreover,conPost(g1,org1, r)
does hold.

(a-2) g1 ∈ dom(org0), in which case nothing has happened in processingg1, so that we
haveorg1 = org0.

We further note:

(I) If g2 is before or aboveg, then (1)beforeR′(h1,g2, r) impliesbeforeR(h1,g, r); and
(2) beforeOrAboveR′(h2,g2, r) impliesbeforeOrAboveR′(h2,g, r).

(II) If g2 is strictly belowg, then we have (1)beforeR′(h1,g2, r) impliesbeforeR(h1,g, r)
or, if (a-1) above holds,h1 is g1 or a node strictly belowg1 (if any); and (2)
beforeOrAboveR′(h2,g2, r) impliesbeforeOrAboveR′(h2,g, r) or h2 = g or, if (a-1)
above holds,h1 is g1 or one of the nodes strictly belowg1 (if any).
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We first consider the case(a-1). We then have:

conPost(org1,g1, r)
≡ ∀h.((aroundR(h,g, r)⊃ h∈ dom(org1)) ∧
∀h1,2,h

′
1,2.

( ( beforeOrUnderR(h1,g1, r) ∧ aroundR(h2,g1, r) ∧
〈h1,h

′
1〉,〈h2,h

′
2〉∈org1 )

⊃ iso1(〈h1,h
′
1〉, 〈h2,h

′
2〉) )) (B.8)

If (I) is the case, then the isomorphism in (B.8) subsumes that of (B.7) since (because
g1 is strictly belowg) (1) beforeR(h1,g, r) implies beforeOrUnderR(h1,g1, r) and (2)
beforeOrAboveR′(h2,g, r) impliesaroundR(h2,g1, r). The case when (II) holds is im-
mediate from the definition.

We next consider the case(a-2). In this case we have, in addition to beingg1 being
above or beforeg:

∀h1,2,h
′
1,2.

( ( beforeR′(h1,g, r) ∧ beforeOrAboveR′(h2,g, r) ∧
〈h1,h

′
1〉,〈h2,h

′
2〉∈org1 )

⊃ iso1(〈h1,h
′
1〉, 〈h2,h

′
2〉) ) (B.9)

Next assumeg2 is strictly belowg (if not, we already know the required result is vacu-
ous). Then we have:

– beforeR′(h1,g2, r) impliesbeforeR(h1,g, r), sinceg1 does not count any more.
– beforeOrAboveR′(h2,g2, r) impliesbeforeOrAboveR′(h2,g, r) or h2 = g2.

Thus it suffices to consider the edges tog2 from those nodes inbeforeR(h1,g, r). How-
ever such edges cannot exist sinceg2 is strictly belowg, hence done.

Condition (b). Again if (i) and (ii) hold, then by the pre-consistency we knowg2 ∈
dom(org1). Hence (iii) is the only possibility, in which caseg ≺r g2 immediately holds.

Finally, the postcondition off g2 becomesGG2(g1,g2,m,org) since the content of !x
becomesorg1 itself if g2 ∈ dom(org) andorg1∪〈g2,g′2〉∗r if g2 6∈ dom(org); while the
added]-x-fresh names are simply incremented using the induction hypothesis, hence
done.

This concludes the inductive case, hence the derivation of the main judgement for
graphCopy.

94


