
Logical Reasoning for Higher-Order Functions with Local State

Nobuko Yoshida
Imperial College London

yoshida@doc.ic.ac.uk

Kohei Honda
Queen Mary, University of London

kohei@dcs.qmul.ac.uk

Martin Berger
Queen Mary, University of London

martinb@dcs.qmul.ac.uk

Abstract
We introduce an extension of Hoare logic for call-by-value higher-
order functions with ML-like local reference generation. Local ref-
erences may be generated dynamically and exported outside their
scope, may store higher-order functions, and may be used to con-
struct complex mutable data structures. This primitive can be fully
captured by a predicate which asserts reachability of a reference
name from a possibly higher-order datum. The logic enjoys a strong
match with the semantics of programs, in the sense that valid asser-
tions characterise the standard contextual congruence. We explore
the logic’s descriptive and reasoning power with non-trivial pro-
gramming examples combining higher-order procedures and dy-
namically generated local state. Axioms for reachability and local
invariant play a central role for reasoning about the examples.

1. Introduction
Reference Generation in Higher-Order Programming.This pa-
per proposes an extension of Hoare Logic [13] for call-by-value
higher-order functions with ML-like new reference generation [4,
5], and demonstrates its use through non-trivial reasoning exam-
ples. The new reference generation, theref-construct in ML, is
a highly expressive programming primitive. The first and central
significance of this construct is that it induces a local state by gen-
erating a fresh reference inaccessible from the outside. Consider
the following program:

Inc
def= let x = ref(0) in λ().(x :=!x+1; !x) (1.1)

We use the standard notation [35]: in particular, “ref(M)” returns
a fresh reference whose content is the value to whichM evaluates.
“! x” is the dereferencing of an imperative variablex. “;” is a se-
quential composition. In (1.1), a reference with content 0 is newly
created and is never exported to the outside, so that it is hidden
from the outside (i.e. it can never be directly read/written from the
outside). When the anonymous function inInc is invoked, it incre-
ments the content of a local variablex, and returns the new content.
From an outside observer, the procedure returns a different result at
each call, whose source is hidden from external observers. This is
different fromλ().(x :=!x+1; !x) wherex is globally accessible.

Second, local references thus generated may be exported out-
side of its original scope and shared, contributing to expressibil-
ity of significant imperative idioms. The next example shows how
stored procedures interact with new reference generation and its
sharing. We consider the following program from [39, § 6]:

1 a := Inc ; (* ! x = 0 *)
2 b := ! a; (* ! x = 0 *)
3 z1 := (! a)(); (* ! x = 1 *)
4 z2 := (! b)(); (* ! x = 2 *)
5 (! z1)+(! z2)

This program, which we hereafter callIncShared, first assigns, in
Line 1 (l .1), the programInc to a; then, inl .2, assigns the content
of a to b; and invokes, inl .3, the content ofa; then does the same

for that of b in l .4; and finally in l .5 adds up the two numbers
returned from these two invocations. By tracing the reduction of
this program, we can check that if the initial value ofx is 0 (atl .1
andl .2), then the return value of this program is 3. To specify and
understand the behaviour ofIncShared, it is essential to capture
the sharing ofx between two procedures assigned toa and b,
whose scope is originally (atl .1) restricted to !a but gets (atl .2)
extruded to and shared by !b. Controlling sharing by combining
scope extrusion and local reference also allows us to write concise
algorithms that dynamically manipulate mutable data structures
such as linked lists and graphs which may possibly store higher-
order values [35]. Difficulties in formal reasoning about shared
(possibly higher-order) local store, both axiomatic and otherwise,
have been well-known since [14, 27, 29].

Thirdly, and related to the previous two points, local references
can be used for efficient implementation of highly regular observ-
able behaviour, for example purely functional behaviour, through
information hiding. The following program is a simplification of
the standard memoised function, taken from [39, § 1].

memFact
def= let a = ref(0), b = ref(1) in

λx.if x =!a then !b else (a := x; b := fact(x) ; !b)

Abovefact is the standard factorial function. The program shows
a simple case of memoisation whenmemFact is called with a stored
argument ina, it immediately returns the stored return value !b.
If the argument differs from the stored argument, it calculates the
factorial f x, and stores the new pair. The reason whymemFact
behaves indistinguishably from the pure factorial is tantamount to
the following local invariant property[39].

Throughout all possible invocations of this procedure, the
content of b is the factorial of the content of a.

Such local invariants capture one of the basic patterns in program-
ming with local state, and play a key role in the preceding stud-
ies on operational reasoning of program equivalence with local
state [19, 37, 39, 43]. Can we distill this principle axiomatically and
use it for effectively validating properties of higher-order programs
with local state, such asmemFact?

As a further example of local invariant, but this time involving a
higher-order store, the following is yet another implementation of
the factorial function using local state. We start from the following
program which realises a recursion by circular references [21]:

circFact
def= x := λz.if z= 0 then 1 else z× (!x)(z−1)

This program calculates the factorial ofn. But sincex is free in
circFact, if a program reads fromx and stores it in another vari-
able, sayy, assigns a diverging function tox, and feeds the content
of y with 3, then the program diverges rather than returning 6. With
local reference, we can hidex to avoid unexpected interference.

safeFact
def= let x = ref(λy.y) in (circFact; !x)

(aboveλy.y can be any initialising value). The program evaluates to
a function which also calculates the factorial: butx is now invisible

1 2006/8/19

and inaccessible from the outside, so thatsafeFact behaves as
the pure factorial function. In this case, the invariant says that
x always stores the factorial — but notice the reason this stored
procedure can calculate the factorial is precisely becausex stores
this very behaviour. We shall show a general reasoning principle
for local invariants which can verify properties of these two and
many other examples [19, 23, 24, 27, 37, 39], including mutually
recursive multiple stored functions.

Program Logic for Imperative Higher-Order Functions. Start-
ing from their origins in theλ-calculus, typed higher-order func-
tional programming languages such as Haskell and ML, has been
extensively studied, making them an ideal target for formal vali-
dation of programs’ properties on a rigorous semantic basis. Fur-
ther, given expressive power of imperative higher-order functions
(attested by encodability of objects [10, 35, 36] and of low-level
idioms [1]), a study of logics for these languages may have wide
repercussions on logics of programming languages in general.

These languages combine higher-order functions and impera-
tive features including new reference generation. Extending Hoare
logic to these languages leads to technical difficulties due to their
three fundamental features:

• Higher-order functions, including stored ones.

• General forms of aliasing induced by nested reference types.

• Dynamically generated local references and scope exclusion.

In our preceding studies, we presented Hoare logics for the core
parts of ML which capture the first two features [6, 16–18]. On
the basis of these works, the present work introduces an extension
of Hoare logic for ML-like local reference generation. As noted
above, this construct radically enriches programs’ behaviour, and
has defied its clean axiomatic treatment so far. A central challenge
is to identify a simple but expressive logical primitive, equipped
with proof rules (for Hoare triples) and axioms (for assertions),
enabling tractable assertions and verification.

The program logic proposed in the present paper introduces a
predicate representing (un)reachability of a reference from an arbi-
trary datum in order to capture new reference generation. Since we
are working with higher-order programs, a datum and a reference
may as well be, or store, a higher-order function. We shall show
that this predicate is fully axiomatisable using (in)equality when it
only involves first-order data types (the result is closely related with
known axiomatisations of reachability [32]). However we shall also
show that the predicate becomes undecidable in itself when higher-
order types are involved, indicating its inherent intractability.

A good news is, however, this predicate enables us to obtain
a simple compositional proof rule for new reference generation,
preserving all the proof rules for the remaining constructs from our
foregoing program logics. At the level of assertions, we can find
a set of useful axioms for (un)reachability, which are effectively
combined with logical primitives and associated axioms for higher-
order functions and aliasing, which were studied in our preceding
works [6, 18]. These axioms for reachability are closely related
with reasoning principles studied in existing semantic studies on
local state, such as the principle of local invariant. Some of the non-
trivial reasoning examples are presented in later sections, which
include those involving local invariants and those involving higher-
order mutable data structures with circular pointers.

Outline. Section 2 presents the programming language, the asser-
tion language and proof rules. Section 3 outlines the semantics of
the logic and its properties. Section 4 explores axioms of the asser-
tion language. Sections 5 and 6 discuss the use of the logic through
non-trivial reasoning examples. Section 7 gives comparisons with
related works and concludes with further topics. Online Appendix
[3] lists auxiliary definitions and omitted derivations. Detailed def-
initions and proofs are found in the full version [2].

2. Assertions for Local State
2.1 A Programming Language

As our target programming language, we use call-by-value PCF
with unit, sums and products, augmented with imperative con-
structs. Letx,y, . . . range over an infinite set of variables, and
X,Y, . . . over an infinite set of type variables. Then types, values
and programs are given by the following grammar.

α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+β
| Ref(α) | X | µX.α

V,W ::= c | xα | λxα.M | µ fα⇒β.λyα.M | 〈V,W〉 | injα+β
i (V)

M,N ::= V | MN | M := N | ref(M) | !M

| op(M̃) | πi(M) | 〈M,N〉 | injα+β
i (M)

| if M then M1 else M2

| case M of {ini(x
αi
i).Mi}i∈{1,2}

We use the standard notation [35]. We use constantsc (unit (),
booleanst, f, numbersn and locationsl , l ′, ...) and fist-order op-
erationsop (+,−,×, ¬, ∧, . . .). Locations only appear at runtime
when references are generated.M̃ etc. denotes a vector andε the
empty vector. A program isclosedif it has no free variables. We
freely use shorthands likeM;N, λ().M, andlet x = M in N. Typ-
ing is standard: we take the equi-isomorphic approach [35] for re-
cursive types.Nat, Bool andUnit atomic types. We leave illustra-
tion of each construct to standard textbooks [35], except for the
focus of the present study,ref(M), which behaves as: firstM of
typeα is evaluated and becomes a valueV; then afreshreference
of typeRef(α) with initial contentV is generated. This behaviour
is formalised by the following reduction rule:

(ref(V), σ)−→ (ν l)(l , σ] [l 7→V]) (l fresh)

Above σ is a store, a finite map from locations to closed values,
denoting the initial state; whereasσ] [l 7→ V] is the result of
disjointly adding a pair(l ,V) to σ. The resulting configuration uses
a binder (the use of theν-binding simplifies the correspondence
with models in §3). Its general form is(ν l̃)(M,σ) where l̃ is a
vector of distinct locations occurring inσ (the order is irrelevant).
We write (M,σ) for (ν ε)(M,σ). The one-step reduction−→ over
configurations is defined using the standard rules [35] except for
the above rule and for closing it underν-bindings.

A basisΓ;∆ is a pair of finite maps, one from variables to non-
reference types (Γ,Γ′, . . .), the other from locations and variables
to reference types (∆,∆′, . . .). Θ,Θ′, ... combine two kinds of bases.
The typing rules are standard [35]. The sequent has the formΓ;∆ `
M : α which reads:M has typeα underΓ;∆. We omitΓ or ∆ if it is
empty. A storeσ is typed under∆, written∆` σ, when, for eachl in
its domain,σ(l) is a closed value which is typedα under∆, where
we assume∆(l) = Ref(α). A configuration(M,σ) is well-typedif
for someΓ;∆ andα we haveΓ;∆ `M : α and∆ ` σ. The standard
type safety holds for well-typed configurations.Henceforth we only
consider well-typed programs and configurations.

2.2 A Logical Language

The logical language we shall use is that of standard first-order
logic with equality [26, § 2.8], extended with assertions for evalua-
tion [17, 18] (for imperative higher-order functions) and quantifica-
tions over store content [6] (for aliasing). On this basis we add a bi-
nary predicate which asserts reachability of a reference name from
a datum and its dual. The grammar follows, letting? ∈ {∧,∨,⊃}
andQ ∈ {∀,∃}.

e ::= x | c | op(ẽ) | 〈e,e′〉 | πi(e) | inji(e) | !e

C ::= e= e′ | ¬C |C?C′ | Qx.C | QX.C

| {C} e•e′ = x {C′} | [!e]C | 〈!e〉C | e ↪→ e′ | e#e′

2 2006/8/19

The first set of expressions (e,e′, . . .) are termswhile the second
set formulae(A,B,C,C′ . . .). Terms include variables, constantsc
(unit (), numbersn, booleanst, f and locationsl , l ′, ...), pairing,
projection, injection and standard first-order operations. !e denotes
the dereference of a referencee.

Formulae include the standard logical connectives and quantifi-
cation [26]. We include, following [6, 17], quantifications over type
variables (X,Y, . . .). We also use truthT (definable as 1= 1) and
falsity F (which is¬T). x 6= y stands for¬(x = y).

The remaining formulae are those specifically introduced for
describing program behaviour. Their use will be illustrated using
concrete examples soon: here we informally outline their ideas.
{C} e•e′ = x{C′} is calledevaluation formula, introduced in [18],
which intuitively says:If we apply a function e to an argument e′

starting from an initial state satisfying C, then it terminates with a
resulting value (name it x) and a final state together satisfying C′.

[!e]C and〈!e〉C areuniversal/existential content quantifications,
introduced in [6] for treating general aliasing.[!e]C (with e of a
reference type) says:Whatever value we may store in a reference
denoted by e, the assertion C is valid.〈!e〉C is interpreted dually.

Finally, e1 ↪→ e2 (with e2 of a reference type), calledreacha-
bility predicate, plays an essential role in the present logic. It says
that:We can reach the reference named by e2 from a datum denoted
by e1. As an example, ifx denotes a starting point of a linked list,
x ↪→ y says a referencey occurs in one of the cells reachable from
x. y#x [12, 40] is the negation ofx ↪→ y, which says:One can never
reach a reference y starting from a datum denoted by x.

Convention. Logical connectives are used with standard prece-
dence/association, using parentheses as necessary to resolve ambi-
guities.fv(C) (resp.fl(C)) denotes the set of free variables (resp.
locations) inC. Note thatx in [!x]C and 〈!x〉C occurs free, while
in {C} e• e′ = x {C′} it occurs bound with scopeC′. We of-
ten write !x̃ to mean !x1..!xn with x̃ = x1..xn. C1 ≡ C2 stands for
(C1 ⊃ C2)∧ (C2 ⊃ C1). We write x̃#y for ∧ixi #y; similarly for
x#ỹ. We write{C}e1•e2{C′} for {C}e1•e2 = z{z= ()∧C′} with
z 6∈ fv(C′). Terms are typed starting from variables. A formula is
well-typed if all occurring terms are well-typed.Hereafter we as-
sume all terms and formulae we use are well-typed.Type annota-
tions are often omitted in concrete assertions.

2.3 Assertions for Local State

We explain assertions for local state with examples.

1. Considerx := y;y := z;w := 1. After its run, we can reachz by
dereferencingy, andy by dereferencingx. Hencez is reachable
from y, y from x, hencez from x. So the final state satisfies
x ↪→ y∧y ↪→ z∧x ↪→ z.

2. Next, assumingw is newly generated, we may wish to sayw is
unreachablefrom x, to ensure freshness ofw. For this we assert
w#x, which, as noted, stands for¬(x ↪→w). x#y always implies
x 6= y. Note thatx ↪→ x≡ x ↪→!x≡ T andx#x≡ F. But !x ↪→ x
may or may not hold (since there may be a cycle betweenx’s
content andx in the presence of recursive types).

3. The assertionx = 6 saysx of type Nat is equal to 6. As-
sumingx has typeRef(Nat), !x = 2 meansx stores 2. Then
∀i.{!x = i}u• ()=z{!x = z∧!x = i +1} asserts that the function
u, upon receiving unit(), increments the content ofx and re-
turns it. For example forλ().(x :=!x+ 1; !x) namedu satisfies
it. For a stronger specification, we may refine this assertion by
also specifying which references a program may write to. The
following located assertion[6] is used for this purpose.

inc(u,x) = ∀i.{!x = i}u• () = z{!x = z∧!x = i +1}@x

Above “@x”, called write set, indicates that the evaluation
alters at mostx, leaving content of other references unchanged.

Intuitively, this formula stands for the following assertion with
r andh fresh.

∀X, rRef(X),hX ,x, i.
{!x= i∧ r 6= x∧!r =h}u• ()=z{!x = i +1∧!x = z∧!r =h}

The assertion says: “for anyr of any reference type distinct
from x, its contenth stays invariant after the run,” that is at
mostx is modified during the run. The exact semantic account
of located assertions is given in [3, B.2].

4. We consider reachability in (higher-order) functions. Assume
λ().(x := 1) is namedfw andλ().!x is namedfr . Since fw can
write to x, we have fw ↪→ x. Similarly fr ↪→ x. Next suppose
let x = ref(z) in λ().x has namefc andz’s type isRef(Nat).
Then fc ↪→ z (for example, consider !(fc()) := 1). Howeverx
is not reachable fromλ().((λy.())(λ().x)) since semantically it
never touches/usesx.

5. The programλnNat.ref(n), namedu, meets the following spec-
ification. Leti be fresh.

∀X.∀iX .∀nNat.{T}u•n=z{z#i∧ !z= n}@/0

Sincei is universally quantified from the outside, it represents
an arbitrary datum in theinitial state. The assertion says a
referencez, which is created by applyingu to n, is disjoint from
any suchi, i.e.z is fresh unreachable from any other datum.

We list convenient abbreviations for evaluation formulae for repre-
senting “freshness”. Below leti be fresh.

• {C}e•e′=z{νx.C′} = ∀X, iX .{C}e•e′=z{∃x.(x 6= i∧C′)}
• {C}e•e′=z{ν#x.C′} = ∀X, iX .{C}e•e′=z{∃x.(x#i∧C′)}
• {C}e•e′=z{#z.C′} = ∀X, iX .{C}e•e′=z{z#i∧C′}

In the first line,νx saysx is distinct from any names in the initial
state, giving the weakest form of freshness (x may be replaced by a
vector).zandx are distinct by the binding condition. In the second,
is used instead of inequality. The third is when the return value is
unreachably fresh. Its use for 5 above yields:

∀n.{T}u•n=z{#z.!z= n}@/0

2.4 Proof Rules

This subsection summarises judgements and proof rules for local
reference generation. The judgement consists of a program and
a pair of formulae following Hoare [13], augmented with a fresh
name calledanchor[16–18].

{C}M :u {C′}
which says:If we evaluate M in the initial state satisfying C, then
it terminates with a value, name it u, and a final state, which
together satisfy C′. As this reading indicates, our judgements are
about total correctness. They have identical shape as those in [6,
18], even though described computational situations can be quite
different, with bothC andC′ possibly specifying behaviours and
data structures with local state.

The same sequent is used for both validity and provability. If
we wish to be specific, we prefix it with either̀ (for provabil-
ity) or |= (for validity). Let Γ;∆ be the minimum basis ofM. In
{C}M :u {C′}, u is theanchorof the judgement, which shouldnot
be in dom(Γ,∆)∪ fv(C); andC is thepre-conditionandC′ is the
post-condition. Theprimary namesaredom(Γ,∆)∪{u}, while the
auxiliary names(ranged over byi, j,k, ...) are those free names in
C andC′ which are not primary. An anchor is used for naming the
value fromM and for specifying its behaviour.

We also use the following abbreviation similar to those with
evaluation formulae. Below leti be fresh.

• {C}M{C′} stands for{C}M :u {u = ()∧C′} with u 6∈ fv(C′).

3 2006/8/19

• {C}M :u{C′}@w̃ intuitively stands for{C∧y 6= w̃∧!y= i}M :u
{C′∧!y= i} with y fresh.w̃ is a write set (cf. § 2.3).

• {C}M :m {νx.C′} stands for{C}M :m {∃x.(x 6= i∧C′)}.
• {C}M :m {ν#x.C′} stands for{C}M :m {∃x.(x#i∧C′)}.
• {C}M :m {#m.C′} stands for{C}M :m {m#i∧C′}.

The full compositional proof rules are given in Figure 1 in Ap-
pendix A. In spite of the semantic enrichment, all compositional
proof rules stay as in the base logic [6] except for adding the fol-
lowing rule for reference generation.

[Ref]
{C}M :m {C′}

{C} ref(M) :u {#u.C′[!u/m]}
The rule says that the newly generated cell is unreachable from any
datum in the initial state: then the result of evaluatingM is stored
in that cell which is namedu.

Invariant rules are useful for modular reasoning. Their use with
(un)reachability needs some care. Supposex is unreachable from
y; after runningy := x, x becomes reachable fromy. Hence the
following simple invariant rule for unreachability is unsound.

[UnsoundInv with #]
{C}M :m {C′}

{C∧e#e′}M :m {C′∧e#e′}
However the general invariant rule introduced in our preceding
study [6] works in harmony with the (un)reachability predicate.

[Inv]
{C}M :m {C′}@w̃ [!w̃]C0 ≡C0

{C∧C0}M :m {C′∧C0}@w̃

The side condition says that the assertionC0 is invariant under all
contents of the variables in the write set ofM, thus ensuring that
the writing byM does not alterC0. We then have:

[Inv-Val] {C}V :m {C′}
{C∧C0}V :m {C′∧C0}

[Inv-#] {C}M :m {C′}@x no dereference occurs in ˜e
{C∧x#ẽ}M :m {C′∧x#ẽ}@x

which are direct instances of [Inv] (for the former we observe
{C} V :m {C′} implies{C} V :m {C′}@/0 for anyV; for the latter
we note[!x]x#ẽ≡ x#ẽ is always valid under the side condition,1

cf. Proposition 2, clause 3-(5) later).
p
Another useful structural rule is the following variation of the

standard consequence rule.

[ConsEval]

{C0}M :m {C′
0} x fresh; ĩ auxiliary

∀ĩ.{C0}x• ()=m{C′0} ⊃ ∀ĩ.{C}x• ()=m{C′}
{C}M :m {C′}

This rule subsumes the standard consequence rule. In the present
logic, the rule further enables non-trivial reasoning on fresh refer-
ences, as we shall discuss later.

3. Models and Soundness
3.1 Models

We introduce operationally-based semantics of the logic, based on
term models. For capturing local state, models incorporate hidden
locations using aν-binder [30]. We illustrate the key idea using the
Introduction’sInc (in (1.1)). We modelInc namedu as:

(νl)({u : λ().(l :=!l +1; !l)}, {l 7→ 0}) (3.1)

(3.1) says that there is a behaviour namedu and a reference named
l , that this reference stores 0, and thatl is hidden. By augmenting

1 This side condition is indispensable: consider{T}x := x{T}@x, for which
it is wrong to conclude{x#!x}x := x{x#!x}@x.

(3.1) with fresh j mapped to any location/datum from the initial
state (hence disjoint froml), we may assert:

∃x.(!x = 0 ∧ ∀i.{!x = i}u• ()=z{!x = z∧!x = i +1}@x ∧ x 6= j)

which corresponds to the freshness assertion “νx.C”.

Definition 1 (models) Anopen model of typeΘ = Γ;∆, with ∆
closed, is a tuple(ξ,σ) where:

• ξ, calledenvironment, is a finite map fromdom(Θ) to closed
values such that, for eachx ∈ dom(Γ), ξ(x) is typed asΘ(x)
under∆, i.e.∆ ` ξ(x) : Θ(x).

• σ, calledstore, is a finite map from labels to closed values such
that for eachl ∈ dom(σ), if ∆(l) has typeRef(α), thenσ(l) has
typeα under∆, i.e.∆ ` σ(l) : α.

A modelof type Γ;∆ is a structure(νl̃)(ξ,σ) with (ξ,σ) being an
open model of typeΓ;∆ ·∆′ with dom(∆′) = {l̃}. (νl̃) act as binders,
inducing the standardα-equality.M,M′, . . . range over models.

An open model maps variables and locations to closed values: a
model then specifies part of the locations as “hidden” (for treatment
of type variables see Appendix B).

Models in the above sense are very concrete. Since assertions
in the present logic are intended to capture observable behaviour
of programs, the semantics of the logic uses models quotiented by
an observationally sound equivalence. Below(νl̃)(M,σ) ⇓ means
(νl̃)(M,σ)−→n (νl̃ ′)(V,σ′) for somen.

Definition 2 AssumeMi
def= (νl̃ i)(x̃ : Ṽi ,σi) under the same typing.

Then we writeM1 ≈ M2 if the following clause holds for each
well-typed, closedC[·] in which no labels from̃l1,2 occcur:

(νl̃1)(C[〈Ṽ1〉],σ1) ⇓ iff (νl̃2)(C[〈Ṽ2〉],σ2) ⇓
where〈Ṽ〉 is then-fold pairings of a vector of values.

Definition 2 in effect takes models up to the standard contextual
congruence. We could have used a different program equivalence
(for example call-by-valueβη convertibility), as far as it is obser-
vationally adequate. Note we have

(νl̃)(ξ ·x:V1,σ · l 7→W1) ≈ (νl̃)(ξ ·x:V2,σ · l 7→W2)

wheneverV1∼=V2 andW1∼=W2, where∼= is the standard contextual
congruence on programs [35] (for reference Appendix B in [3] lists
the definition of∼=).

3.2 Semantics of Reachability.

Let σ be a store andS⊂ dom(σ). Then thelabel closure of S inσ,
written ncl(S,σ), is the minimum setS′ of locations such that: (1)
S⊂ S′ and (2) If l ∈ S′ thenfl(σ(l))⊂ S′.

Lemma 1 For all σ, we have:

1. S⊂ ncl(S,σ); S1 ⊂ S2 implies ncl(S1,σ) ⊂ ncl(S2,σ); and
ncl(S,σ) = ncl(ncl(S,σ),σ)

2. ncl(S1,σ)∪ncl(S2,σ) = ncl(S1∪S2,σ)

We now set:
M |= e1 ↪→ e2 if [[e2]]ξ,σ ∈ ncl(fl([[e1]]ξ,σ),σ)

for each(νl̃)(ξ,σ)≈M
(3.2)

Above[[ei]]ξ,σ is the obvious interpretation ofei (see Appendix B).
The clause says that the set of hereditarily reachable names from
e1 includese2 up to≈. For programs in § 2.3 (4), we can check
fw ↪→ x, fr ↪→ x and fc ↪→ z hold under fw : λ().(x := 1), fr :
λ().!x, fc : let x = ref(z) in λ().x (regardless of the store part).

The following characterisation of # is often useful for justifying
axioms for fresh names.

4 2006/8/19

Proposition 1 (partition) M |= x#u iff for somel̃, V , l and σ1,2,
we haveM≈ (νl̃)(ξ ·u : V ·x : l , σ1]σ2) such thatncl(fl(V),σ1]
σ2) = fl(σ1) = dom(σ1) and l∈ dom(σ2).

The proof is easy by Lemma 1. The characterisation says that ifx is
unreachable fromu then, up to≈, the store can be partitioned into
one covering all reachable names fromu and another containingx.

3.3 Soundness and observational completeness.

The definitions of satisfiabilityM |= C other than reachability is
given in Appendix B in [3] (logical connectives are interpreted
classically: type variables are treated syntactically [17]). LetM be
a model(νl̃)(ξ,σ) of typeΓ;∆, andΓ;∆ `M : α with u fresh. Then
the validity|= {C}M :u {C′} is given by:

|= {C}M :u {C′} def≡ ∀M.(M |= C ⇒ M[u:M] ⇓M′ |= C′)

where we writeM[u : N] ⇓ M′ when (Nξ,σ) ⇓ (νl̃ ′)(V,σ′) and
M′ = (νl̃ l̃ ′)(ξ ·u:V, σ′). Above we demand, for well-definedness,
thatM includes all variables inM, C andC′ exceptu.

Theorem 1 (soundness)̀ {C}M :u {C′} implies|= {C}M :u {C′}.

Another basic property of the logic is that its judgements distin-
guish programs just as the observational congruence does (obser-
vational completeness [6, 18]). Write∼= for the standard contextual
congruence [35] for the programs; andM1 ∼=L M2 : α when we
have|= {C}M1 :u {C′} iff |= {C}M2 :u {C′}.

Theorem 2 (observational completeness)For eachΓ;∆ `Mi : α
(i = 1,2), we have M1 ∼=L M2 iff M1 ∼= M2.

4. Axioms for Reachability
This section studies axioms for assertions involving (un)reachability.
We start from basic axioms. The proofs use Lemma 1. Note our
types include recursive types (taken up to tree unfolding [35]).

Proposition 2 (axioms for reachability) The following assertions
are valid (we assume appropriate typing).

1. (1) x ↪→ x; (2) x ↪→ y∧y ↪→ z ⊃ x ↪→ z;
2. (1) y#xα with α ∈ {Unit,Nat,Bool}; (2) x#y ⇒ x 6= y;

(3) x#w∧w ↪→ u ⊃ x#u.
3. (1) 〈x1,x2〉 ↪→ y ≡ x1 ↪→ y∨x2 ↪→ y;

(2) inji(x) ↪→ y ≡ x ↪→ y; (3) x ↪→ yRef(α) ⊃ x ↪→!y;
(4) xRef(α) ↪→ y∧x 6= y ⊃ !x ↪→ y.
(5) [!x]y ↪→ x ≡ y ↪→ x ≡ 〈!x〉y ↪→ x.

3-(5) says that altering the content ofx does not affect reachability
to x (because: for an update ofx to invalidatey ↪→ x, y should
first reachx). Note [!x]x ↪→ y is not valid at all. The dual of 3-(5),
[!x]x#y≡ x#y≡ 〈!x〉x#y, was used for deriving[Inv-#] in §2.4 (we
cannot substitute !x for y in [!x]x#y to avoid name capture [6]).

Let us sayα is finite if it does not contains an arrow type or a
type variable. We saye↪→ e′ is finite if ehas a finite type. The proof
of the theorem below again relies on Proposition 2.

Theorem 3 (elimination) Suppose all reachability predicates in C
are finite. Then there exists C′ such that C≡C′ and no reachability
predicate occurs in C′.

A straightforward coinductive extension of the above axioms (see
[2]) gives a complete axiomatisation when the types also contain
recursive types, but not function types.

For analysing reachability, it is useful to define the following
“one-step” reachability predicate. Belowe2 is of a reference type.

M |= e1 Be2 if [[e2]]ξ,σ ∈ fl([[e1]]ξ,σ)
for each(νl̃)(ξ,σ)≈M

(4.1)

We can show(νl̃)(ξ,σ) |= xB l ′ is equivalent tol ′ ∈
T
{fl(V) |V ∼=

ξ(x)}, (the latter saysl ′ is in the support off in the sense of
[12, 38, 43]). Now define:

xB1 y ≡ xBy

xBn+1 y ≡ ∃z.(xBz∧ !zBn y) (n≥ 1)

We also setxB0 y≡ x = y. By definition we observe:

Proposition 3 x ↪→ y ≡ ∃n.(xBn y) ≡ (x = y ∨ xBy ∨ ∃z.(xB
z∧z 6= y∧z ↪→ y)).

Proposition 3, combined with Theorem 3, suggests if we can clarify
one-step reachability at function types then we will be able to clar-
ify the reachability relation as a whole. Unfortunately this relation
is inherently intractable.

Proposition 4 (undecidability of B and ↪→) (1) M |= f α⇒β Bx is
undecidable. (2) M |= f α⇒β ↪→ x is undecidable.

The proof of (1) reduces the satisfiability to the halting problem of
PCFv-terms. We then reduce (2) to (1). The result holds even if we
take call-by-valueβη-equality as the underlying equality.

Proposition 4 does not imply we cannot obtain useful axioms for
(un)reachability involving function types. We discuss a collection
of basic axioms in the following.

Proposition 5 (unreachable function)The following is valid:
{C} f •y=z{C′}@w̃⊃ {C∧x# f yw̃} f •y=z{C′∧x#zw̃}@w̃ .

Proposition 5 says that ifx is unreachable from a functionf , its
argumenty and its write set ˜w, then the execution of this function
does not return or writex.

When we do need to reason about a function with local state,
its behaviour often crucially relies on an invariant on its local store.
Let us first consider a function from a base type to a base type
which writes to local references of a base type. Even programs of
this kind pose fundamental difficulties in reasoning [27]. Take:

compHide
def= let x = ref(7) in λy.(y >!x) (4.2)

The program behaves as a pure functionλy.(y > 7). For this pur-
pose it keeps the obvious local invariant, !x= 7. We demand this as-
sertion to survive under arbitrary invocations of this function: thus
(naming the functionu) we arrive at the following invariant:

C0 = !x = 7 ∧ ∀y.{!x = 7}u•y = z{!x = 7}@/0 (4.3)

The assertion (4.3) says that: (1) the invariant !x = 7 holds now;
and that (2) once the invariant holds, it continues to hold for ever
(notex can never be exported due to the type ofy andz, so that only
u will touch x). We then observe:

C1 = ∀y.{!x = 7}u•y = z{z= (y > 7)}@/0 (4.4)

The programcompHide is easily given the following judgement:

{T}compHide :u {ν#x.(C0 ∧ C1)} (4.5)

(for the notationν#x see § 2.4.) Thus, notingC0 is only about
the content ofx, we concludeC0 continues to hold automatically.
Hence we cancelC0 together withx:

{T}compHide :u {∀y.{T}u•y = z{z= (y > 7)}} (4.6)

which describes a purely functional behaviour. We now show the
underlying reasoning principle as an axiom. First we introduce a

5 2006/8/19

notation for invariant. Below we assumezandw̃ are fresh and have
atomic types (Unit, Bool or Nat) or their products/sums.

InvA(u,C0, x̃, w̃) = C0 ∧ ∀y.{C0}u•y = z{C0}@x̃w̃ (4.7)

InvA(u,C0, x̃, w̃) says: (1)C0 holds now; and (2) wheneverC0 holds
then the application converges and againC0 holds. We sayC is
stateless exceptx̃, iff: (1) each dereference !y for y 6∈ {x̃} occurs ei-
ther in pre/post conditions of evaluation formulae or under[!y]/〈!y〉;
(2) (un)reachability predicates occur in pre/post conditions of eval-
uation formulae; and (3) evaluation formula never occur negatively
nor under content quantifications. Above a formulaC occursnega-
tively if it occurs inC1 of C1 ⊃C2 or in C of ¬C.

Proposition 6 (axiom for information hiding (1)) Assume C0 is
stateless except̃x and xi 6∈ fv(C,C′,E′) for each xi ∈{x̃}. Then:

(AIHA) {E}m• ()=u{ν#x̃.(E1∧E′)} ⊃ {E}m• ()=u{E2∧E′}
is valid, where with m fresh and

• E1 = (InvA(u,C0, x̃, w̃) ∧ ∀y.{C0∧ [!x̃]C}u•y=z{C′}@w̃x̃)
• E2 = ∀y.{C}u•y=z{C′}@w̃

The axiom(AIHA) is used together with [ConsEval] in order to
entail from E1 to E2 within the proof derivation. Its validity is
proved using Proposition 1.

The axiom says thatif a function u with a fresh reference xi is
generated, and if it has a local invariant C0 on the content of xi ,
then we can cancel C0 together with xi . We note:

• C0 being stateless except ˜x, ensures that satisfiability ofC0 is
not affected by state change except at that ofxi .

• [!x̃]C says that whetherC holds or not does not depend on ˜x:
literally it means that for each content of ˜x we haveC holds.

Coming back tocompHide, we can takeC0 to be !x = 7, w̃ to be
the empty string,C andE′ to beT andC′ to bez= (y > 7).

We now extend the axiom for general higher-order functions,
after refining the invariant notation.

Inv(u,C0, x̃, r̃, w̃) = C0∧∀y.{C0∧ x̃# r̃y}u•y = z{C0∧ x̃#zw̃}@w̃x̃

where{r̃w̃yz} ∩ (fv(C0)∪ {x̃}) = /0 andy is of a base type. This
time, sinceu may return an arbitrary (higher-order) function as its
result z, we cannot guarantee thatx is never exported. Thus we
directly demand it, saying:if w̃ is to be written, then the content ofw̃
and a return value z should never reachx̃, under the unreachability
assumptionx# r̃y (here ˜r indicate those values whose disjointness
from x̃ is needed for the invariant).

Proposition 7 (axiom for information hiding (2)) Let (AIH) be
an axiom given by replacingInvA(u,C0, x̃, w̃) with Inv(u,C0, x̃, r̃, w̃)
in Proposition 6. Then(AIH) is valid.

(AIHA) and(AIH) assume that the invariantC0 only talks about the
content ofx. This does not have to be so. We consider the extension
of (AIHA) in this regard:(AIH) is similarly generalised.

Proposition 8 (axiom for information hiding (3)) Let (AIHA∃) be
the result of replacing, in(AIHA), ν#x̃ with ν#x̃.∃g̃ with g̃ only
occurring in C0. Then(AIHA∃) is valid.

Another simple extension, which we do not discuss here, allows a
return value to be a composite one. Next, the following axiom stip-
ulates how an invariant istransferredby functional applications.

Proposition 9 (invariant by application) Suppose C0 is stateless
exceptx̃. Then the following is valid.

(Inv(f ,C0, x̃, r̃, w̃) ∧ {T}g• f = z{T})
⊃ {C0∧ x̃#gr̃}g• f = z{x̃#z∧C0}.

The axiom says that the result of applying a functiong disjoint
from a local referencexi , to the argumentf which satisfies the local
invariant, again keeps the local invariant.

5. Reasoning Examples (1): Functions and Local
State

5.1 Shared Stored Function

This section demonstrates the usage of the proposed logic through
concrete examples. Some of the lengthy derivations are omitted,
which are found in Online Appendix [3].

We first treatIncShared from Introduction, a simple example
of shared local state with stored functions. We use a proof rule
for the combination of “let” and new reference generation, easily
derivable from the proof rules in Section 2 through the standard
decomposition of “let” into application and abstraction.

[LetRef]
{C}M :m {C0} {C0[!x/m]∧x#ẽ} N :u {C′} x /∈ fpn(ẽ)

{C} let x = ref(M) in N :u {νx.C′}
Above fpn(e) denotes the set offree plain namesof e which are
reference names ine that does not occur in dereference, defined as:
fpn(x) = {x}, fpn(c) = fpn(!e) = /0, fpn(〈e,e′〉) = fpn(e)∪ fpn(e′),
fpn(πi(e)) = fpn(e) andfpn(inji(e)) = fpn(e). The rule reads:

Assume(1) running M from C leads to C0, with the resulting
value named m; and(2) running N from C0 with m as the
content of x together with the assumption x is unreachable
from each ei , leads to C′ with the resulting value named u.
Then running the letref command from C leads to C′ whose
x is fresh and hidden.

We note:

• The side conditionx 6∈ fpn(ei) is essential for consistency (e.g.
without it, we could assumex#x, i.e.F).

• νx.C′ cannot be strengthened to #x.C′ sinceN may storex in
an existing reference.

One may note the rule directly gives a proof rule for general new
reference declaration [27, 37, 41],new x := M in N, which has the
same operational behaviour aslet x = ref(M) in N.

We can now treatIncShared from Introduction:

IncShared
def= a:=Inc;b:=!a;c1 :=(!a)();c2 :=(!b)();(!c1+!c2)

Naming it u, the assertion !inc′(u,x,n) below captures its be-
haviour:

inc(x,u) = ∀ j.{!x = j}u• ()= j +1{!x = j +1}@x.

inc′(u,x,n) = !x = n∧ inc(x,u).

The following derivation forIncShared sheds light on how shared
higher-order local state can be transparently reasoned in the present
logic. For brevity we work with the implicit global assumption that
a,b,c1,c2 are pairwise distinct and safely omit an anchor from the
judgement when the return value is a unit type.

1.{T} Inc :u {νx.inc′(u,x,0)}

2.{T} a := Inc {νx.inc′(!a,x,0)} (1, Assign)

3.{inc′(!a,x,0)} b :=!a {inc′(!a,x,0)∧ inc′(!b,x,0)} (Assign)

4.{inc′(!a,x,0)} c1 := (!a)() {inc′(!a,x,1)∧!c1 = 1} (Assign)

5.{inc′(!b,x,1)} c2 := (!b)() {inc′(!b,x,2)∧!c2 = 2} (App etc.)

6.{!c1 = 1∧!c2 = 2} (!c1)+(!c2) :u {u = 3} (Deref etc.)

7.{T} IncShared :u {νx.u = 3} (2–6, LetOpen)

8.{T} IncShared :u {u = 3} (Conseq)

6 2006/8/19

Line 1 is by [LetRef]. Line 7 uses the following derived rule (noting
sequential composition is a special case of “let”):

[LetOpen]
{C}M :x {νỹ.C0} {C0} N :u {C′}
{C} let x = M in N :u {νỹ.C′}

To shed light on how the difference in sharing is captured in infer-
ences, Appendix C in [3] lists the inference for a program which
assignsdistinctcopies ofInc to a andb.

5.2 Information Hiding (1): Memoisation

Next we treat a memoised factorial [39] from Introduction.

memFact
def= let a = ref(0), b = ref(1) in

λx.if x =!a then !b else (a := x; b := fact(x) ; !b)

Our target assertion specifies the behaviour of a pure factorial.

Fact(u) = ∀x.{T}u•x = y{y = x!!!}@/0.

The following inference starts from the body of the “let”, which
we nameV. We set:E1a = C0 ∧ ∀x.{C0}u• x=y{C0}@ab, and
E1b = ∀x.{C0∧C}u•x=y{C′}@abwhere we letC0 be !b=(!a)!!!,
C,E′ be T, and C′ be y = x!!!. Note C0 is stateless exceptab,
cf. Prop.6.

1.{T}V :u {∀x.{!b=(!a)!!!}u•x=y{y=x!!! ∧ !b=(!a)!!!}@ab}

2.{T}V :u {E1a ∧ E1b} (1, Conseq)

3.{ab#i}V :u {ab#i ∧ E1a ∧ E1b} (2, Inv-Val)

4.{T} memFact :u {ν#ab.(E1a∧E1b)} (3, LetRef)

5.{T}m•()=u{ν#ab.(E1a∧E1b)} ⊃ {T}m•()=u{Fact(u)} (?)

6.{T} memFact :u {Fact(u)} (4, 5, ConsEval)

Line 2 used{C} f •x=y{C1∧C2}@w̃⊃∧i=1,2{C} f •x= y{Ci}@w̃
(from [6, 18]).(?) in Line 5 is by(AIHA) in Proposition 6.

5.3 Information Hiding (2): Stored Circular Procedures

We next considercircFact from Introduction, which uses a self-
recursive higher-order local store.

circFact
def= x := λz.if z= 0 then 1 else z× (!x)(z−1)

safeFact
def= let x = ref(λy.y) in (circFact; !x)

In [18], we have derived the following judgement.

{T}circFact :u {CircFact(u,x)}@x (5.1)

where

CircFact(u,x) = ∀n.{!x= u}!x•n= z{z= n!∧!x= u}@/0∧ !x= u

which says:

After executing the program, x stores a procedure which
would calculate a factorial if x stores that behaviour, and
that x does store the behaviour.

We now showsafeFact namedu satisfiesFact(u). Below we
use:CFa = !x = u∧∀n.{!x = u}!x•n = z{!x = u}@/0 as well as
CFb = ∀n.{!x = u}!x•n = z{z= n!!!}@/0.

1.{T}λy.y :m {T}@/0

2.{T}circFact ; !x :u {CircFact(u,x)}@x

3.{T}circFact ; !x :u {CFa ∧ CFb}@x (2, Conseq)

4.{x#i}circFact ; !x :u {x#i∧CFa∧CFb}@x (3, Inv-#)

5.{T}safeFact :u {ν#x.(CFa∧CFb)}@/0 (4, LetRef)

6.{T}m•()=u{ν#x.(CFa∧CFb)} ⊃ {T}m•()=u{Fact(u)} (?)

7.{T}safeFact :u {Fact(u)}@/0 (5, 6, ConsEval)

Line 1 is immediate. Line 2 is (5.1). Line 6,(?) is by (AIHA),
Proposition 6, settingC0 =!x = u, C,E′ = T andC′ = y = x!!!. Note
this example can again use(AIHA) since the behaviour in question
is indeed first-order.

The reasoning easily extends to programs which use multiple
locally stored, and mutually recursive, procedures. Consider:

mutualParity
def= x := λn.if y=0 then f else not((!y)(n−1));

y := λn.if y=0 then t else not((!x)(n−1))

After these two assignments, the application(!x)n, with n a natural
number, returns true ifn is odd, false if not; while(!y)n acts dually.
Informally the state of affairs may be described thus:

x stores a procedure which checks if its argument is odd, if y
stores a procedure which does the dual; whereas y stores a
procedure which checks whether its argument is even or not
if x stores a procedure which does the dual.

Observe mutual circularity of this description. As before, we can
avoid unexpected interference atx andy using local references.

safeOdd
def= let x,y = ref(λn.t) in (mutualParity; !x)

safeEven
def= let x,y = ref(λn.t) in (mutualParity; !y)

Above λn.t can be any initialising value. Now thatx,y are inac-
cessible, the programs behave as pure functions, e.g.safeOdd(3)
always returns true without any side effects, similarlysafeOdd(16)
always returns false, To formally validate these behaviours, we can
first verify the body of the “let” satisfies the following assertions.

{T}mutualParity :u {∃gh.IsOddEven(gh, !x!y,xy,n)} (5.2)

where, withEven(n)≡ ∃x.(n=2×x) andOdd(n)≡ Even(n+1):

IsOddEven(gh,wu,xy,n) =
(IsOdd(w,gh,n,xy) ∧ IsEven(u,gh,n,xy) ∧ !x = g∧ !y = h)
IsOdd(u,gh,n,xy) =
{!x = g∧ !y = h}u•n=z{z= Odd(n) ∧ !x = g∧ !y = h}@xy

IsEven(u,gh,n,xy) =
{!x = g∧ !y = h}u•n=z{z= Even(n) ∧ !x = g∧ !y = h}@xy

Our aim is to derive the following judgements starting from (5.2).

{T}safeOdd :u {∀n.{T}u•n=z{z= Odd(n)}@/0} (5.3)

{T}safeEven :u {∀n.{T}u•n=z{z= Even(n)}@/0} (5.4)

We reason forsafeOdd (the case forsafeEven is symmetric). We
first identify the local invariant:

C0 = !x = g∧ !y = h ∧ IsEven(h,gh,n,xy)

The free variableh suggests the use of(AIHA∃). SinceC0 only talks
aboutg, h and the content ofx andy, we knowC0 is stateless except
xy. We now observeIsOddEven(gh, !x!y,xy,n) is the conjunction
of:

Odda = C0 ∧ ∀n.{C0}u•n=z{C0}@xy

Oddb = ∀n.{C0}u•n=z{z=Odd(n)}@xy

We can now apply(AIHA∃) to obtain (5.3).

5.4 Information Hiding (3): Higher-Order Invariant

We move to a local invariant for higher-order functions, taking
a program which instruments an original program with a simple
profiling, counting the number of times of invocation [43, p.104].

profile
def= let x = ref(0) in λy.(x :=!x+1; f y)

where for simplicity we assumey has a base type. Sincex is never
exposed, this program should behave precisely asf . Since f can
return a higher-order value, we need to use(AIH). We use the

7 2006/8/19

following assertions, assumingx 6∈ fv(C,C′).

E = ∀y.{T} f •y=z{T}@w̃ ∧ ∀y.{C} f •y = z{C′}@w̃

E0 = ∀y.{C ∧ x# f yw̃} f •y = z{x#zw̃ ∧ C′}@w̃

E1 = ∀y.{T} f •y=z{T}@w̃ ∧
∀y.{[!x]C∧x# f yw̃}u•y=z{C′∧x#zw̃}@xw̃

E2 = ∀y.{C}u•y=z{C′}@w̃.

Our aim is to derive the following assertion.

{E} profile :u {E2} (5.5)

which says:if f satisfies the specification∀y.{C} f •y = z{C′} and
moreover if it is total, thenprofile satisfies the same specifica-
tion. The derivation follows.

1.{T}x :=!x+1{T}@x (Assign)

2.{[!x]C∧E∧x# f yw̃} x :=!x+1 {C∧E∧x# f yw̃}@x(Inv, Conseq)

3.{C∧E∧E0∧x# f yw̃} f y :z {C′∧x#zw̃}@w̃ (App, Conseq)

4.{C∧E∧x# f yw̃} f y :z {C′∧x#zw̃}@w̃ (3, Conseq)

5.{[!x]C∧E∧x# f yw̃}x := x+1; f y :z {C′∧x#zw̃}@xw̃ (2, 4, Seq)

6.{E} λy.(x := x+1; f y) :u {E1}@/0 (5, Abs, Inv)

7.{E}profile{ν#x.E1}@/0 (LetRef)

8.{E}m• () = u{ν#x.E1} ⊃ {E}m• () = u{E2} (?)

9.{E}profile :u {E2}@/0 (7, 8, ConsEval)

Line 2 uses: for anyC,x we have [!x][!x]C ≡ [!x]C. Also by
[!x]E ≡ E, and by[!x]x# f yw̃≡ x# f yw̃ (by Proposition 2 (3)-5),
[Inv] becomes applicable. Line 4 usesE ⊃ E0 by the reachability
axiom in Proposition 5 (setting ˜r = f). Line 8 (?) uses(AIH),
Proposition 6, settingC0,E′ to beT.

5.5 Information Hiding (4): Nested Local Invariant

The next example, which is from [19, 27], uses a function with local
state as an argument to another function.

MeyerSieber
def=

let x = ref(0) in let f = λ().x :=!x+2 in
(g f ; if even(!x) then () else Ω())

where Ω def= µ f.λ().(f ()) (note Ω() immediately diverges) and
even(n) tests evenness ofn. Sincex is local, and becauseg will
have no way to accessx except by callingf , the local invariant that
x stores an even number is maintained. HenceMeyerSieber may
as well satisfy the following judgement.

{E∧C} MeyerSieber {C′}@w̃ (5.6)

where we set, withx,m 6∈ fv(C,C′):

E = ∀ f .(A⊃ ({T}g• f{T}∧{C}g• f{C′}@w̃))
A = {T} f • () = z{T}@/0

(Above the omission of an anchor ofUnit type inE follows Con-
vention in §2.2). (5.6) says that:if feeding g with the observable
behaviour of f as an argument always terminates and further sat-
isfies{C}g• f{C′}@w̃, thenMeyerSieber starting from C also
terminates with the final state C′ and the write set̃w.

For the derivation of (5.6) we use the following assertions (ε is
the empty string).

I = Inv(f ,Even(!x),x,ε,ε)
G0 = {Even(!x)∧x#g}g• f{Even(!x)}
G1 = {T}g• f{T}

The derivation of (5.6) requires

{Even(!x)∧I∧G1} g• f {Even(!x)}⊃{Even(!x)∧G0} g• f {Even(!x)}
for which we apply the axiom in Proposition 9.

5.6 Information Hiding (5): Object

As a final example of this section, we treat information hiding for a
program with state, a small object encoded in imperative higher-
order functions, taken from [19] (cf.[10, 35, 36]). The following
program generates a simple object each time it is invoked.

cellGen
def= λz.

 let x0,1 = ref(z) in let y = ref(0) in(
λ().if even(!y) then !x0 else !x1,
λw.(y :=!y+1 ; x0,1 := w

)
The object has a getter and a setter. Instead of having one local
variable, it uses two with the same content, of which one is read
at each odd-turn of the “read” requests, another at each even-turn.
When writing, it writes the same value to both. Since having two
variables in this way does not differ from having only one observa-
tionally, we expect the following judgement to holdcellGen:

{T} cellGen :u {CellGen(u)} (5.7)

where we set:

CellGen(u) = ∀z.{T}u•z= o{ν#x.(Cell(o,x)∧!x = z)}@/0
Cell(o,x) = ∀v.{!x = v}π1(o)• () = z{z= v =!x}@/0 ∧

∀w.{T}π2(o)•w{!x = w}@x

Cell(o,x) says thatπ1(o), the getter ofo, returns the content of a
local variablex; andπ2(o), the setter ofo, writes the received value
to x. ThenCellGen(u) says that, whenu is invoked with a value, say
z, an object is returned with its initial fresh local state initialised to
z. Note both specifications only mention a single local variable. A
straightforward derivation of (5.7) uses !x0 =!x1 as the invariant to
erasex1: then weα-convertsx0 to x to obtain the required assertion
Cell(o,x) (Appendix C in [3]).

6. Reasoning Examples (2): Higher-Order
Mutable Data Structures

6.1 Circular Lists

This section introduces a reasoning method applicable to a general
class of higher-order mutable data types through examples. The
method uses a predicate on navigating paths over a network of data
nodes for asserting on such a network; and the (un)reachability for
their dynamic generation. Types play a prominent role.

We first consider the following program, which stores the con-
stant 0 function at all nodes of a cyclic list [20, §1]. Let:

List(α) = µX.(Unit+(Ref(α)×Ref(X))).

which describes a mutable list using a sum (nil or cons) and a
product (two cons cells, the first storing a value of typeα and the
second the next node). The program then reads:

cyclesimple
def=

µ f.λxRef(List(Nat⇒Nat)).case !x of
in1(()) : ()
in2(〈y1,y2〉) : (y1 := λxNat.0 ; if y2 6= zthen f y2 else ())

cyclesimple receives a node in a cyclic list. By its type, the content
of the node is eitherin1(()), a nil node, orin2(〈y1,y2〉), a cons
cell. If the argument is the latter, the program stores the zero
function in its first field, and via its second field moves to the
next cell and processes it, until coming back to the initial cellz.
We can check that, as far asz is part of a cycle, the evaluation of
cyclesimplez zeroes all the nodes reachable fromz.

8 2006/8/19

An assertion for this program should specify the expected shape
of the argument (i.e. it is a cycle) and how it is transformed into
exactly the same cycle except for all of its fields storing the zero
functions. We start from defining easy-to-read notations for the data
types of the two components of a list, the nil and the cons.

nil(u) ≡ u = inj1(())
cons(u,y1,y2) ≡ u = inj2(〈y1,y2〉)

Below we introduce the key building blocks of the proposed
method, adaptable to a wide range of higher-order data structures.

path(g,0,g′)≡ g = g′

path(g, p+1,g′)≡ ∃y.∃yy′(cons(!g,y,y′)∧path(y′,n,g′))

path(g, p,g′) indicates that traversingp-nodes fromg leads tog′.
Its semantics is transparently given from that of the original logical
language. The following two predicates, defined from the path
predicate, is useful for asserting oncyclesimple.

isCycle(g)≡ ∃p 6= 0. path(g, p,g)

distance(g, p,g′)≡ path(g, p,g′)∧∀q.(path(g,q,g′)⊃ p≤ q)

isCycle(g) says the nodeg is part of a cycle (its negation is linear-
ity); whereasdistance(g, p,g′) says the distance (minimum path)
betweeng and g′ is p-steps, which is useful when carrying out
inductive reasoning on a cyclic list. We can now write down the
expected judgement forcyclesimple:

{T} cyclesimple :u {cycleSimple(u)} (6.1)

with the following main assertioncycleSimple(u):

{isCycle(z)} u•z{allZeros(z)}@{w|valnode(z,w)} (6.2)

where we set:

valnode(z,y) ≡ ∃pgy′.(path(z, p,g)∧ cons(!g,y,y′))
allZeros(z) ≡ ∀y.(valnode(z,y)⊃ iszero(!y))

iszero(f) ≡ ∀x.{T} f •x = y{y = 0}@/0

(6.2) also uses an evaluation formula with a generalised write set
defined by a predicate. The assertion{C}x•y = z{C′}@{w|E(w)}
roughly corresponds to:

∀wi.{C∧¬E(w)∧!w = i}x•y = z{C′∧!w = i}
saying all references that may be updated by this evaluation are
within the set{w|E(w)} (see [3, B.2] for precise semantics), allow-
ing us to specify an unbounded number of references as a write set.
ThuscycleSimple(u) says:If the program u receives an argument z
which is a node of a cyclic list, then it fills all the data fields of this
list with the zero function, and does nothing else, precisely cap-
turing the behaviour ofcyclesimple. The derivation of (6.1) uses
distance above for induction for recursion [2].

6.2 Trees

We now treat a program which dynamically generate data structures
(notecyclesimple alters, but not generates, a list). We use a slightly
more complex data type:

Tree(α) def= µX.(Ref(α+(X×X)))

A network of nodes of this type can form a tree, a dag, or a graph.
The following program is intended to work only for trees of this
type, creating an isomorphic copy of an original tree (cf. [41, §6]).

treeCopy
def= µ f.λxTree(α).case !x of

in1(n) : ref(inj1(n))
in2(〈y1,y2〉) : ref(inj2(〈 f y1, f y2〉))

NotetreeCopy has typeTree(α)⇒Tree(α). The program carries
out an inductive copy for the tree structure, but does a direct copy

at stored data, possibly inducing a sharing. To assert and validate
for treeCopy, we again use the path predicate. Since a one-step
traversal can take either the left branch or the right one, the notion
of a path becomes slightly more complex, for which we use the
following expressions (added as terms to our logical language).

p ::= ε | l .p | r.p

Above l andr mean left and right branches. Using these terms we
can now define the path predicate. First let’s set, for brevity:

atom(uTree(α),xα) ≡ u = inj1(x)

branch(uTree(α),yα
1 ,yTree(α)

2) ≡ u = inj2(〈y1,y2〉)
We can now define the path predicate. We use the same notation
path(g, p,g′) (which is henceforth exclusively about trees, withg
andg′ of typeTree(α)).

path(g,ε,g′)≡ g = g′

path(g, l .p,g′)≡ ∃y1y2.(branch(!g,y1,y2)∧path(y1, p,g′))

path(g, r.p,g′)≡ ∃y1y2.(branch(!g,y1,y2)∧path(y2, p,g′))

The first clause says that the empty path leads fromg to g; the
second thatl .p leads fromg to g′ iff we go left from g and, from
there,p leads tog′. The third is the symmetric case.

As for linked lists, the path predicate allows us to shape the
assertions useful for specifying the behaviour oftreeCopy.

match(g, p1, p2)≡ ∃y.(path(g, p1,y)∧path(g, p2,y))
leaf(g, p,x)≡ ∃y.(path(g, p,y)∧atom(!y,x))

iso(g,g′)≡ ∀p1p2.(match(g, p1, p2)≡match(g′, p1, p2))

∧ ∀px.(leaf(g, p,x)≡ leaf(g′, p,x))

As before,match(g, p1, p2) asserts two pathsp1,2 from g lead to an
identical node;leaf(g, p,x) says we reach a leaf storingx (of type
α) from g following p. iso(g,g′) asserts two collections of nodes,
respectively reachable fromg and g′, form isomorphic labelled
directed graphs. Further we set:

tree (g)≡ ∀p1, p2.(p1 6= p2 ⊃ ¬match(g, p1, p2))

distance(g, p,g′)≡ path(g, p,g′)∧∀q.(path(g,q,g′)⊃ pvlex q)

tree (g) saysg is a tree iff it has no sharing.distance(g, p,g′)
defines the shortest path fromg to g′, where paths are ordered by
the lexicographic orderingvlex (with the “left” smaller than the
“right”). This gives a basis for inductive reasoning. Note ifg is a
tree thendistance(g, p,g′) is equivalent topath(g, p,g′).

As a final preparation, we need a notation for a generation of an
unbounded number of fresh references. For this purpose we extend
the notation{C}e•e′ = z{ν#x.C′} in §2.3 as follows.

{C}e•e′=z{ν#{x|E(x)}.C′}
which stands for, withi fresh:

∀X, iX .{C}e•e′=z{(∀x.(E(x)⊃ x#i))∧C′)}
indicating the set{x | E(x)} of references are newly generated. We
can now assert fortreeCopy, naming itu, with g typed asTree(α):

treecopy[α](u) =
{tree (g)}u•g=g′{ν#{h| reach(g′,h)}. iso(g,g′)}@/0

where reach(g′,h) stand for∃p.path(g′, p,h) and g is of type
Tree(α). The assertion reads:

Whenever u is invoked with a tree g of type Tree(α), it
creates a tree g′ whose reachable nodes are fresh and are
isomorphic to those of the original, with no write effects.

Note α may as well be a higher-order type. Note also the newly
generated nodes may share a↪→-reachable references with the

9 2006/8/19

original tree at data whenα is higher-order, so that we cannot
use g′ ↪→ h instead ofreach(g′,h) based on the path predicate.
As far as its argument is restricted to proper trees, (6.2) is the full
specification oftreeCopy. As such, it entails other assertions the
program satisfies. For example it implies the following assertion
stating a relative disjointness between two trees [41, § 6]:

treesep[α](u) = {tree (x)}u•x=y{iso(x,y)∧disjoint(x,y)}
Above we setdisjoint(x,y) ≡ ¬∃p.(path(x, p,y)∨ path(y, p,x)).
The derivation of the judgement{T} treeCopy :u {treecopy(u)}
usesdistance for induction and is straightforward.

6.3 Dags and Graphs

When trees become dags, we allow sharing but not circularity.

isCycle(g) ≡ ∃p.(path(g, p,g)∧ p 6= ε)
dag (g) ≡ ∀h.(reach(g,h)⊃ ¬isCycle(h))

dag(g) assertsg is a dag iff it has no circularity. SinceisCycle(g)⊃
∃p.match(g, p, p · p), we havetree (g)⊃ dag (g). A simple exten-
sion of treeCopy to create a fresh duplicate of an original dag,
calleddagCopy, is given in Appendix D in [3]. The program sat-
isfies {T}dagCopy :u {dagcopy[α](u)}, wheredagcopy[α](u) is
given as, withg typedTree(α):

{dag (g)}u•g=g′{ν#{h| reach(g′,h)}. iso(g,g′)}@/0

The derivation of{T}dagCopy :u {dagcopy(u)} is given in [2],
which uses the samedistance predicate in induction for recursion.

Finally a programgraphCopy (given in Appendix D in [3])
makes a fresh duplicate of an arbitrary datumg of typeTree(α), in-
cluding those with circularity. The program satisfies the judgement
{T}graphCopy :u {graphcopy[α](u)} wheregraphcopy[α](u) is:

∀gTree(α).{T}u•g=g′{ν#{h| reach(g′,h)}. iso(g,g′)}@/0

The assertiongraphcopy[α](u) says:When fed with any graph
of type Tree(α), u creates its fresh duplicate, and does nothing
else. This assertion is the simplest of the three assertions for copy
algorithms we have seen so far, and is also the strongest. In the
following comparisons of assertions, we include an assertion for a
polymorphic variant ofgraphcopy[α](u) [17].

Proposition 10 Fix α. Then each of the following implications is
valid and strict.

∀X.graphcopy[X](u) ⊃ graphcopy[α](u) ⊃ dagcopy[α](u)
⊃ treecopy[α](u) ⊃ treesep[α](u).

7. Related Work and Conclusion
This paper proposed a Hoare-like program logic for imperative
higher-order functions with dynamic reference generation, a core
part of ML-like languages [4, 5]. Target programming languages
of our preceding logics [6, 16–18] do not include local state. As
is well-known [19, 23, 24, 27, 37, 39], local state in higher-order
functions radically adds semantic complexity. To our knowledge,
the present work proposed the first Hoare-like program logic for
this class of languages: nor do we know the preceding Hoare-
like logics which can assert and verify the demonstrated reasoning
examples. In the following we discuss related works and conclude
with further topics.

7.1 Related Works

Reasoning Principles for Functions with Local State.There are
many studies of equivalences over higher-order programs with lo-
cal state. An early work by Meyer and Sieber [27] presents many in-
teresting examples and reasoning principles based on denotational
semantics. Mason and Talcott [23, 24] give a series of detailed stud-
ies on equational axioms for an untyped version of the language

treated in the present paper, including those involving local invari-
ants. Pitts and Stark [37, 39, 43] present powerful operationally-
based reasoning principles for the same language as the present
work treats, with the reasoning principle for local invariants for
higher-order types [39]. Sumii and Pierce [44] present a fully ab-
stract bisimulation technique for equational reasoning on higher-
order functions with dynamic sealing and type abstraction. Their
bisimulations are parameterised by related seals, which are close to
parameterisation by related stores in Pitts-Stark’s principle. Build-
ing on [44], Koutavas and Wand [19] propose a fully abstract bisim-
ulation technique for the untyped version of the language we treat,
and apply the techniques for reasoning about several non-trivial
programs with local store. They use denotational technique in re-
laxing a condition for bisimulations.

Our axioms for information hiding in § 4, which capture the
basic patterns of programming with local state, are closely related
with these reasoning principles. The proposed logic differs in that
its aim is to offer a method for describing and validating diverse
properties of programs beyond program equivalence, represented
as logical assertions. The equivalence-based approach for program
validation and the assertion-based one are complimentary, to which
Theorem 2 would offer a basis of integrated usage. For example,
we may consider deriving a property of the optimised versionM′

of M: if we can easily verify{C}M :u {C′} and if we knowM∼= M′,
we can conclude{C}M′ :u {C′}, which is useful ifM is better
structured thanM′. Such a link can be further substantiated through
a mechanised logic for semantics of higher-order behaviour along
the line of Longley and Pollack’s recent work [22].

Hoare Logics (1): Local Variables and ML-like Languages.To
our knowledge, Hoare and Wirth [15] is the first to present a rule
for local variable declaration (given for Pascal). In our notation, a
version of their rule may be written as follows.

[Hoare-Wirth]
{C∧x 6= ỹ}P{C′} x 6∈ fv(C′)∪{ỹ}
{C[e/!x]} new x := ein P {C′}

Because this rule assumes references are never exported outside of
their original scope, there is no need to havex in C′. Since aliasing
is not permitted in [15] either, we can further dispense withx 6= ỹ in
the premise.[LetRef] in § 5.1 differs from this rule in that it can treat
new references generation exported beyond their original scope;
aliased references; and higher-order procedures (both as programs
and as stored values). We can check [Hoare-Wirth] is derivable
from [LetRef] and[Assign].

Among the studies on verification methods for ML-like lan-
guages [5, 31],Extended ML[42] is a formal development frame-
work for Standard ML. A specification is given by combining a
module’ signature and algebraic axioms on them. Correctness of
an implementation w.r.t. a specification is verified by incremen-
tal syntactic transformations.Larch/ML [45] is a design proposal
of a Larch-based interface language for ML. Integration of typing
and interface specification is the main focus of the proposal in [45].
These two works do not (aim to) offer a program logic with compo-
sitional proof rules; nor do either of these works treat specifications
for functions with dynamically generated references.

Hoare Logics (2): Reachability. A seminal work by Nelson [32]
first presented the use of reachability predicates for reasoning about
linked lists. Based on [32], Lahiri and Qadeer [20] study a tractable
axiomatisation of cyclic lists and apply the resulting axiomatisation
to the development of a VC generator/checker for a first-order pro-
cedural language. The key idea in their axiomatisation is to identify
a head cell (or cells) of a cycle and use it for a straightforward in-
ductive definition of reachability and associated invariant. For ex-
ample, an invariant for the example program in §6.1 (which is from
[20]) can be written as follows:

I(x,h) = B(x,h)∧∀g.(R(h,g)⊃((x 6=h∧R(x,g))∨ iszero(x)))

10 2006/8/19

whereB(x,h) saysx reaches (is blocked by) a headh; R(x,y) says
we can reachy from x; andiszero(x) says the datum in the consx is
zero. ThusI(x,h) saysx reaches a headh; and all cells starting from
h reachingx are zeroed. We can then showI(x,z) is an invariant
of the body command ofcsbody. This can be used for validating
cyclesimple zeroes all fields in a cyclic list w.r.t. partial correctness.

As noted, the interest and significance of their method lies in
simple inductive axiomatisations amenable to mechanical valida-
tion. Assertions and reasoning for higher-order behaviour with dy-
namic reference generation, including a general class of data struc-
tures and their dynamic generation, are not among their concerns
and are not considered in their work. An interesting question is
whether we can apply their ideas on effective axiomatisation to a
large class of mutable data structures treatable in our method.

Hoare Logics (3): Separation Reynolds, O’Hearn and others
[9, 34, 41] study a reasoning method for dynamically generated
and deallocated mutable data structures using a spacial conjunc-
tion, C ∗C′. Taking the tree copy in § 6.2 (which is from [41]),
they start from a predicater 7→ x which is roughly equivalent to
alloc(r)∧ !r = x in our notation, withalloc(r) indicating a refer-
encer is allocated. To compare with their logic, considerτ which
is thestructural description of a tree: for example,τ = ((1,(2,3)))
indicates a tree whose leaves store 1,2,3 from left to right. Then
Tree(τ)(u) asserts allocation of aτ-tree with the rootu, in the way:

Tree((1,(2,3))(u) = ∃xy.(u 7→ xy∗x 7→ 1∗Tree((2,3))(y)

whereC1∗C2 indicates the conjunction ofC1,2 together with all the
alloc-declared references ofC1 and those ofC2 are disjoint. We can
then prove, writingtreeCopyImp(x,y) for an imperative version of
treeCopy which stores the result of copy iny:

{Tree(τ)(x)}treeCopyImp(x,y){Tree(τ)(x)∗Tree(τ)(y)} (7.1)

In comparison with the proposed logic, we observe:

(1) The use of∗ demands all concerned references are explicitly
declared in assertions, made possible by the use of structural
description (τ of Tree(τ)(u) in (7.1)) above. The shape of the
description usable for reasoning becomes highly complex [9]
when data structures involve non-trivial sharing (as in dags
and graphs). In contrast, § 6 has shown that our approach not
only dispenses with the need for structural description but also
allows concise and uniform assertions and reasoning for data
structures with different degrees of sharing.

(2) As in (7.1), Reynolds’s approach represents fresh data gener-
ation by relative spatial disjointness from the original datum,
using the separating conjunction. This method does capture
a significant part of the program’s properties. The proposed
logic represents freshness as temporal disjointness through the
generic (un)reachability from arbitrary datum in the initial state.
Proposition 10 demonstrates that this approach leads to strictly
stronger (more informative) assertion, from which the assertion
equivalent to the other approach can be derived.

(3) The presented approach enables uniform treatment of known
data types in verification, including product, sum, reference,
list, tree, closure, etc., through the use of anchors. This is a sim-
ple and general method which allows us to assert and compo-
sitionally verify trees, graphs, dags, stored procedures, higher-
order functions with local state and other data types on a uni-
form basis, with precise match with observational semantics.

See [6] for further comparisons. Reynolds [41] criticises the use
of reachability for describing data structure, taking the in-place
reversal of a linear list as an example. As discussed in Section 6, a
tractable reasoning is possible for such examples using reachability
combined with [Inv].

Birkedal et al. [8] present a “separation logic typing” for a
variant of Idealised Algol where types are constructed from for-
mulae of disjunction-free separation logic. The typing system uses
the subtyping calculated via categorical semantics, on which their
study focusses. In [7], they extend the original separation logic
with higher-order predicates, and demonstrate how the extension
helps modular reasoning on priority queues. Both of these works
treat neither exportable fresh reference generation nor higher-
order/stored procedures in full generality, so that it would be diffi-
cult to assert and validate examples treated in § 5 and § 6. It is an
interesting future topic to examine the use of higher-order predicate
abstraction in the present logic.

Meta-logical Study on Freshness.Freshness of names is recently
studied from the viewpoint of formalising binding relations in pro-
gramming languages and computational calculi. Pitts and Gabbay
[12, 38] extend First-Order Logic is extended with constructs to
reason about freshness of names based on the theory of permu-
tations. The key syntactic additions are the (interdefinable) “fresh”
quantifier Nand the freshness predicate #, mediated by the swap-
ping (finite permutation) predicate. Miller and Tiu [28] are moti-
vated by the significance of generic (or eigen-) variables and quan-
tifiers at the level of both formulae and sequents, and splits uni-
versal quantification in two, introduce a self-dual freshness quanti-
fier ∇ and develop the corresponding sequent calculus of Generic
Judgements. While these logics are not program logics, their logical
machinery may well be usable in the present context. As noted in
Proposition 3, reasoning about↪→ or # is tantamount to reasoning
aboutB, which denotes the support (the semantic notion of freely
occurring locations) of a datum/program. A characterisation of the
support by the swapping operation may lead to deeper understand-
ing of axiomatisations of reachability.

There are mechanisation of Hoare logics in higher-order logics,
including [11, 25, 33]. While these works do discuss some aspects
of imperative programs the proposed logic treats (such as pointer-
based data structures), none so far may offer a general assertion
method and compositional proof rules for ML-like reference gen-
eration or their combination with higher-order functions.

7.2 Further Topics

The present work is intended to be but a modest initial step in logi-
cally capturing the richness of the universe of behaviours of higher-
order functions with local state. Many challenges remain before
we reach a mature engineering basis for using the logical method
studied in this paper. Some of the significant future topics include:
Further development of reasoning principles as axioms, including
those on local invariants (are there a basic set of axioms captur-
ing most of the reasoning principles?); Partial correctness logic;
Coverage of the whole of SML/CAML; Extensions of the proposed
method to higher-order languages with monadic encapsulation of
imperative features such as Haskell and untyped higher-order lan-
guages such as Scheme (we strongly believe both are feasible and
rewarding); Exploration of effective reasoning/validation methods
for general mutable data structure, including semi-automatic veri-
fication;andintegration with program development method.

References
[1] Flint project. http://flint.cs.yale.edu/flint/.

[2] A full version of this paper. http://www.doc.ic.ac.uk/˜yoshida/local.

[3] On-line appendix. www.doc.ic.ac.uk/˜yoshida/local.

[4] Standard ML home page. http://www.smlnj.org.

[5] The Caml home page. http://caml.inria.fr.

[6] M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing
for higher-order imperative functions. InICFP’05, pages 280–293,
2005. Full version is available at: www.dcs.qmul.ac.uk/˜kohei/logics.

[7] B. Biering, L. Birkedal, and N. Torp-Smith. Bi hyperdoctrines and
higher-order separation logic. InESOP’05, LNCS, pages 233–247.

11 2006/8/19

[8] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-
logic typing and higher-order frame rules. InLICS’05, pages 260–269.

[9] R. Bornat, C. Calcagno, and P. O’Hearn. Local reasoning, separation
and aliasing. InWorkshop SPACE, 2004.

[10] K. Bruce, L. Cardelli, and B. Pierce. Comparing object encodings.
Infomation and Computation, 155(1/2):108–133, 1999.

[11] J.-C. Filliatre. Verification of non-functional programs using
interpretations in type theory.JFP, 13(4):709–745, 2003.

[12] M. Gabbay and A. Pitts. A New Approach to Abstract Syntax
Involving Binders. InProc. LICS ’99, pages 214–224, 1999.

[13] C. A. R. Hoare. An axiomatic basis of computer programming.
CACM, 12, 1969.

[14] C. A. R. Hoare. Proof of correctness of data representations.Acta
Inf., 1:271–281, 1972.

[15] C. A. R. Hoare and N. Wirth. Axiomatic semantics of Pascal.
ACM TOPLAS, 1(2):226–244, 1979.

[16] K. Honda. From process logic to program logic. InICFP’04, pages
163–174. ACM Press, 2004.

[17] K. Honda and N. Yoshida. A compositional logic for polymorphic
higher-order functions. InPPDP’04, pages 191–202. ACM, 2004.

[18] K. Honda, N. Yoshida, and M. Berger. An observationally com-
plete program logic for imperative higher-order functions. In
Proc. LICS’05, pages 270–279, 2005. Full version is is available
at: www.dcs.qmul.ac.uk/˜kohei/logics.

[19] V. Koutavas and M. Wand. Small bisimulations for reasoning about
higher-order imperative programs. InProc. POPL, 2006.

[20] S. K. Lahiri and S. Qadeer. Verifying properties of well-founded
linked lists. InPOPL’06, pages 115–126. ACM, 2006.

[21] P. Landin. A correspondence between algol 60 and church’s lambda-
notation.Comm. ACM, 8:2, 1965.

[22] J. Longley and R. Pollack. Reasoning about cbv functional programs
in isabelle/hol. InTPHOLs, volume 3223 ofLecture Notes in
Computer Science, pages 201–216. Springer, 2004.

[23] I. A. Mason and C. L. Talcott. Inferring the equivalence of functional
programs that mutate data.Theor. Comput. Sci., 105(2):167–215,
1992.

[24] I. A. Mason and C. L. Talcott. References, local variables and
operational reasoning. InLICS, pages 186–197, 1992.

[25] F. Mehta and T. Nipkow. Proving pointer programs in higher-order
logic. Information and Computation, 159:200–227, May 2005.

[26] E. Mendelson.Introduction to Mathematical Logic. Wadsworth Inc.,
1987.

[27] A. R. Meyer and K. Sieber. Towards fully abstract semantics for local
variables. InPOPL’88, 1988.

[28] D. Miller and A. Tiu. A proof theory for generic judgments.ACM
Transactions on Computational Logic, to appear.

[29] R. Milner. An algebraic definition of simulation between programs.
In IJCAI, pages 481–489, 1971.

[30] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
parts I and II.Info. & Comp., 100(1):1–77, 1992.

[31] R. Milner, M. Tofte, and R. W. Harper.The Definition of Standard
ML. MIT Press, 1990.

[32] G. Nelson. Verifying reachability invariants of linked structures. In
POPL ’83, pages 38–47. ACM Press, 1983.

[33] Z. Ni and Z. Shao. Certified assembly programming with embedded
code pointers. InPOPL’06, 2006.

[34] P. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information
hiding. InProc. POPL’04, 2004.

[35] B. C. Pierce.Types and Programming Languages. MIT Press, 2002.

[36] B. C. Pierce and D. N. Turner. Simple type-theoretic foundations for
objecr-oriented programming.JFP, 4(2):207–247, 1993.

[37] A. M. Pitts. Reasoning about local variables with operationally-based
logical relations. InAlgol-Like Languages, volume 2, chapter 17,
pages 173–193. Birkhauser, 1997. Reprinted from LICS’06.

[38] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Information and Computation, 186:165–193, 2003.

[39] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with
local state. InHigher Order Operational Techniques in Semantics,
pages 227–273. CUP, 1998.

[40] J. C. Reynolds. Idealized Algol and its specification logic. InTools

Figure 1 Proof Rules

[Var] −
{C[x/u]} x :u {C}

[Const] −
{C[c/u]} c :u {C}

[In1]
{C}M :v {C′[inj1(v)/u]}
{C} inj1(M) :u {C′} [Proj1]

{C}M :m {C′[π1(m)/u]}
{C} π1(M) :u {C′}

[Case] {C
-x̃}M :m {C-x̃

0 } {C0[inji(xi)/m]}Mi :u {C′ -x̃}
{C} case M of {ini(xi).Mi}i∈{1,2} :u {C′}

[Add]
{C}M1 :m1 {C0} {C0}M2 :m2 {C′[m1 +m2/u]}

{C}M1 +M2 :u {C′}

[Abs] {C∧A-xĩ}M :m {C′}
{A} λx.M :u {{C}u•x= m{C′}}

[App] {C}M :m {C0} {C0} N :n {C1 ∧ {C1}m•n = u {C′}}
{C}MN :u {C′}

[If] {C}M :b {C0} {C0[t/b]}M1 :u {C′} {C0[f/b]}M2 :u {C′}
{C} if M then M1 else M2 :u {C′}

[Pair]
{C}M1 :m1 {C0} {C0}M2 :m2 {C′[〈m1,m2〉/u]}

{C} 〈M1,M2〉 :u {C′}

[Deref] {C}M :m {C′[!m/u]}
{C} !M :u {C′}

[Assign] {C}M :m {C0} {C0} N :n {C′{|n/ !m|}}
{C} M := N {C′}

[Rec] {A
-xi ∧∀ jNat � i.B(j)[x/u]} λy.M :u {B(i)-x}

{A} µx.λy.M :u {∀i.B(i)}

[Ref] {C}M :m {C′}
{C} ref(M) :u {#u.C′[!u/m]}

[Conseq] C⊃C0 {C0}M :u {C′
0} C′

0 ⊃C′

{C}M :u {C′}

and Notions for Program Construction, 1982.

[41] J. C. Reynolds. Separation logic: a logic for shared mutable data
structures. InLICS’02, 2002.

[42] D. Sannella and A. Tarlecki. Program specification and development
in Standard ML. InPOPL’85, pages 67–77. ACM, 1985.

[43] I. Stark. Names and Higher-Order Functions. PhD thesis, University
of Cambridge, Dec. 1994.

[44] E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. In
POPL’04, pages 161–172. ACM Press, 2004.

[45] J. Wing, E. Rollins, and A. Zaremski. Thoughts on a Larch/ML and
a new Application for LP. InFirst International Workshop on Larch,
Dedham 1992, pages 297–312. Springer-Verlag, 1992.

A. Appendix: Proof Rules
Figure 1 presents all compositional proof rules. We assume that
judgements are well-typed in the sense that, in{C}M :u {C′} with
Γ;∆ ` M : α, Γ,∆,Θ ` C and u : α,Γ,∆,Θ ` C′ for someΘ s.t.
dom(Θ)∩ (dom(Γ,∆)∪{u}) = /0. C-x̃ indicatesfv(C)∩{x̃}= /0.

In [Abs,Rec], A,B denotestatelessformulae exceptε (empty
string), as given in §4 (just before Proposition 6, page 6). As
examples,{!y = i}u• (){!y = i + 1} ∧ 〈!x〉!x = 3 is stateless: but
neither !x = 1 nor〈!x〉!y = 1 is.

[Assign] useslogical substitutionwhich uses content quantifi-
cation to represent a substitution for an aliased reference [6].

C{|e2/!e1|}
def= ∃m.(〈!e1〉(C ∧ !e1 = m) ∧ m= e2).

with m fresh. IntuitivelyC{|e2/!e1|} describes the situation where
a model satisfyingC is updated at a memory cell referred to bye1
(of a reference type) with a valuee2 (of its content type), withe1,2
interpreted in the current model.

We also use structural rules in the reasoning. For a summary of
significant structural rules, see [2], Appendix B.

12 2006/8/19

B. Appendix: Models
B.1 Observational Congruence

Programs Write (νl̃)(M,σ) ⇓ (νl̃ ′)(V,σ′) for (νl̃)(M,σ) →∗

(νl̃ ′)(V,σ′); and (νl̃)(M,σ) ⇓ for (νl̃)(M,σ) ⇓ (νl̃ ′)(V,σ′) for
some (νl̃ ′)(V,σ′). Let Γ;∆ ` M1,2 : α. Then we writeΓ;∆ `
(νl̃1)(M1,σ1) ∼= (νl̃2)(M2,σ2) if, for each typed closing context
C[·] of typeUnit which is typable under∆ and in which no labels
from l̃1,2 occur, we have:

(νl̃1)(C[M1], σ1) ⇓ iff (νl̃2)(C[M2], σ2) ⇓

We often write(νl̃1)(M1,σ1) ∼= (νl̃2)(M2,σ2), leaving type infor-
mation implicit.

Models Given modelsMΓ;∆
i = (νl̃ i)({yi : Vi1, ..,yi : Vin},σi) for

i = 1,2, we setΓ;∆ `M1 ≈M2 iff

(νl̃1)(〈V11, ..,V1n〉,σ1)∼= (νl̃2)(〈V21, ..,V2n〉,σ2)

B.2 Semantics

Let Γ;∆ ` e : α, Γ;∆ `M andM = (νl̃)(ξ,σ). Then theinterpreta-
tion of e under(ξ,σ), denoted[[e]]ξ,σ is inductively given by:

[[x]]ξ,σ = ξ(x) [[!e]]ξ,σ = σ([[e]]ξ,σ)
[[()]]ξ,σ = () [[n]]ξ,σ = n [[b]]ξ,σ = b [[l]]ξ,σ = l
[[op(ẽ)]]ξ,σ = op([[ẽ]]ξ,σ) [[〈e,e′〉]]ξ,σ = 〈[[e]]ξ,σ, [[e′]]ξ,σ〉
[[πi(e)]]ξ,σ = πi([[e]]ξ,σ) [[inji(e)]]ξ,σ = inji([[e]]ξ,σ)

Then we define semantics of the assertions as follows (the new
notations are illustrated below): All omitted cases are by de Morgan
duality. Letu,u′,u′′ be fresh.

• M |= e1 = e2 if M[u : e1]≈M[u : e2].
• M |= C1∧C2 if M |= C1 andM |= C2.

• M |= ¬C if not M |= C.

• M |= ∀xα.C if (1) ∀e.(M[x : e] |= C) and∀V.(M[x : V] |= C)
whenα is any type; and (2)∀M′.((νl)(M′/x)≈M⊃M′ |=C)
s.t.M′(x) = l whenα is a reference type.

• M |= ∀X.C if for all closed typeα, M·X :α |= C.

• M |= [!x]C if ∀M′.(M
[!x]
≈ M′ ⊃M′ |= C).

• M |= {C}e•e′=x{C′} if, wheneverM[u:N]⇓M0 andM0/u |=
C for someN, we haveM[x : L] ⇓ M′ |= C′ where we set

L
def= let u = ein u′ = e′ in let u′′ = N in uu′.

• M |= e1 ↪→e2 if (νl̃)(ξ,σ)≈M implies[[e2]]ξ,σ∈ncl(fl([[e1]]ξ,σ),σ)

Above we use the following notations (assuming well-typedness):
M[u : N] ⇓ M′ appears in § 3.1.M[e 7→ V] denotes the obvious
substitution (withe of a reference type).M/u = (νl̃)(ξ,σ) if M =
(νl̃)(ξ ·u:V,σ); otherwiseM/u = M. For M1,2 of the same type,

M1
[!x]
≈ M2 iff ∀V.(M1[x 7→V]≈M2[x 7→V]).

In the satisfaction of∀xα.C above, we consider the case the
location is hidden. In∀X.C, we augment a modelM with a map
from type variables to closed types.

For evaluation formula, the defining clause says:

In any initial hypothetical state satisfying C evolvable from
the current state, the application of e1 to e2 (both evaluated
in the current state) terminates and the result z and the final
state satisfy C′.

Following [6, 18], we consider hypothetical initial state since a
function can be invoked any time later, not only at the present
state. The satisfaction of its generalised located assertion (which
subsumes its finite counterpart):

M |= {C}e•e′=x{C′}@{z|E(z)}

iff it satisfies the clause of the evaluation formula above and the
following, letting M0

def= (νl̃)(ξ,σ0) and M′ ≈ (νl̃ l̃ ′)(ξ,σ′),
∀Ṽ.((νl̃)(ξ,σ0[l̃1 7→ Ṽ]) ≈ (νl̃ l̃ ′)(ξ,σ′[l̃1 7→ Ṽ])) where l ∈ {l̃1}
iff (νl̃)(ξ ·z : l ,σ0) |= E. This says:

The value stored at each location z satisfying¬E(z) in M0,
is exactly preserved when the application atM0 results in
M′, takingM′ up to≈.

For formal details, see [2, C.2].

C. Derivations for Examples in Section 5
This appendix lists the derivations omitted in Section 5.

C.1 Derivation for [LetRef]

We can derive[LetRef] as follows.

1. {C}M :m {C0} (premise)

2. {C0[!x/m]∧x#ẽ} N :u {C′} with x /∈ fpn(ẽ) (premise)

3. {C} ref(M) :x {#x.C0[!x/m]} (1,Ref)

4. {C} ref(M) :x {#x.(C0[!x/m]∧x#ẽ)} (Subsn-times)

5. {C} ref(M) :x {νy.(C0[!x/m]∧x#ẽ∧x = y)} (Conseq)

6. {C0[!x/m]∧x#ẽ∧x = y} N :u {C′∧x = y} (2, Invariance)

7. {C} let x = ref(M) in N :u {νy.(C′∧x = y)} (5,6,LetOpen)

8. {C} let x = ref(M) in N :u {νx.C′} (Conseq)

Lines 5 and 8 use the standard logical law (discussed below). Lines
4 and 7 use the following derived/admissible proof rules:

[Subs]
{C}M :u {C′} u 6∈ fpn(e)
{C[e/i]}M :u {C′[e/i]}

[LetOpen]
{C}M :x {νỹ.C0} {C0} N :u {C′}
{C} let x = M in N :u {νỹ.C′}

[LetOpen] opens the “scope” of ˜y to N. The crucial step is Line 5,
which turns freshness “#” into locality “ν” through the standard
law of equality and existential,C≡ ∃y.(C ∧ x = y) with y fresh.

C.2 Derivation for IncUnShared

For illustration, we contrast the inference ofIncShared with:

IncUnShared
def= a:=Inc;b:=Inc;c1:=(!a)();c2:=(!b)();(!c1+!c2)

This program assigns toa andb two separate instances ofInc. This
lack of sharing betweena andb in IncUnShared is captured by the
following derivation:

1.{T} Inc :m {νx.inc′(u,x,0)}

2.{T} a := Inc {νx.inc′(!a,x,0)}

3.{inc′(!a,x,0)} b := Inc {νy.inc′′(0,0)}

4.{inc′′(0,0)} c1 := (!a)() {inc′′(1,0)∧!c1 = 1}

5.{inc′′(1,0)} c2 := (!b)() {inc′′(1,1)∧!c2 = 1}

6.{!c1 = 1∧!c2 = 1} (!c1)+(!c2) :u {u = 2}

7.{T} IncUnShared :u {νxy.u = 2}

8.{T} IncUnShared :u {u = 2}

Aboveinc′′(n,m) = inc′(!a,x,n)∧ inc′(!b,y,m)∧x 6= y. Notex 6= y
is guaranteed by [LetRef]. This is in contrast to the derivation
for IncShared, where, in Line 3,x is automatically shared after
“b :=!a” which leads to scope extrusion.

13 2006/8/19

Figure 2 mutualParity derivations

1. {(n≥ 1⊃ IsEven′(!y,gh,n−1,xy)) ∧ n = 0} f :z {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (Const)

2. {(n≥ 1⊃ IsEven′(!y,gh,n−1,xy)) ∧ n≥ 1}
not((!y)(n−1)) :z {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (Simple, App)

3. {n≥ 1⊃ IsEven′(!y,gh,n−1,xy)} if n = 0 then f else not((!y)(n−1)) :m {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (IfH)

4. {T} λn.if n = 0 then f else not((!y)(n−1)) :u
{ ∀gh,n≥ 1.{IsEven′(h,gh,n−1,xy)}u•n=z{z= Odd(n) ∧ !x = g∧ !y = h}@/0}@/0 (Abs, ∀)

5. {T} Mx :u { ∀gh,n≥ 1.(IsEven(h,gh,n−1,xy)⊃ IsOdd(u,gh,n,xy))}@/0 (Conseq)

6. {T} x := Mx{ ∀gh,n≥ 1.(IsEven(h,gh,n−1,xy)⊃ IsOdd(!x,gh,n,xy)) ∧ !x = g}@x (Assign)

7. {T} y := My{ ∀gh,n≥ 1.(IsOdd(g,gh,n−1,xy)⊃ IsEven(!y,gh,n,xy)) ∧ !y = h}@y (Similar with Line 6)

8. {T} mutualParity
{∀gh.n≥ 1.((IsEven(h,gh,n−1,xy)∧ IsOdd(g,gh,n−1,xy))⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h) }@xy (∧-Post)

9. {T} mutualParity
{∀n≥ 1gh.((IsEven(h,gh,n−1,xy)∧ IsOdd(g,gh,n−1,xy)∧!x = g∧!y = h)⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

10. {T} mutualParity
{∀n≥ 1gh.((IsEven(!y,gh,n−1,xy)∧ IsOdd(!x,gh,n−1,xy)∧!x = g∧!y = h)⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

11. {T} mutualParity
{∀n≥ 1.(∃gh.(IsEven(!x,gh,n−1,xy)∧ IsOdd(!y,gh,n−1,xy)∧!x = g∧!y = h)⊃

∃gh.(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

12. {T} mutualParity{∃gh.IsOddEven(gh, !x!y,xy,n)}@xy

C.3 Derivation for mutualParity and safeEven

Let us define:

Mx
def= λn.if y = 0 then f else not((!y)(n−1))

My
def= λn.if y = 0 then t else not((!x)(n−1))

We also use:

IsOdd′(u,gh,n,xy) = IsOdd(u,gh,n,xy)∧ !x = g∧ !y = h
IsEven′(u,gh,n,xy) = IsEven(u,gh,n,xy)∧ !x = g∧ !y = h

We use the following derived rules and one standard structure rule
appeared in [18].

[Simple] −
{C[e/u]}e :u {C}

[IfH] {C∧e}M1 :u {C′} {C∧¬e}M2 :u {C′}
{C}if ethen M1 else M2 :u {C′}

[∧-Post] {C}M :u {C1} {C}M :u {C2}
{C}M :u {C1∧C2}

Figure 2 lists the derivation forMutualParity. In Line 5, we use
the following axiom for the evaluation formula from [18]:

{C∧A} e1 •e2 = z{C′} ≡ A ⊃ {C}e1 •e2 = z{C′}
whereA is stateless formula and we here setA = IsEven(h,gh,n−
1,xy). Line 9 is the standard logical implication (∀x.(C1 ⊃C2) ⊃
(∃x.C1 ⊃ ∃x.C2)). Now we derive forsafeEven. Let us define:

ValEven(u) = ∀n.{T}u•n=z{z= Even(n)}@/0
C0 = !x = g∧ !y = h ∧ IsOdd(g,gh,n,xy)

Evena = C0 ∧ ∀n.{C0}u•n=z{C0}@xy
Evenb = ∀n.{C0}u•n=z{z=Even(n)}@xy

The derivation is similar tosafeFact.

1.{T}λn.t :m {T}@/0

2.{T}mutualParity ; !y :u {∃gh.IsOddEven(gh,gu,xy,n)}@xy

3.{T}mutualParity ; !y :u {∃gh.(Evena ∧ Evenb)}@xy

4.{xy#i j}mutualParity ; !y :u
{∃gh.(xy#i j ∧ Evena ∧ Evenb)}@xy

5.{T}safeEven :u {ν#xy∃gh.(Evena ∧ Evenb)}@/0

6.{T}m•()=u{ν#xy∃gh.(Evena∧Evenb)}
⊃ {T}m•()=u{ValEven(u)} (by (AIHA∃))

7.{T}safeEven :u {ValEven(u)}@/0

C.4 Derivation for Meyer-Seiber

For the derivation of (5.6) we use (ε is the empty string):I =
Inv(f ,Even(!x),x,ε,ε), G0 = {Even(!x)∧ x#g}g• f{Even(!x)},
andG1 = {T}g• f{T}. The derivation follows. BelowM1,2 is the

14 2006/8/19

body of the first/second lets, respectively.

1.{Even(!x)∧G0} g f {Even(!x)} (App)

2.{Even(!x)∧ I ∧G1} g f {Even(!x)} (1, Conseq)

3.{E∧ [!x]C∧ I ∧x#g} g f {C′}@w̃x (App)

4.{E∧ [!x]C∧ I ∧x#g} g f {Even(!x)∧C′}@w̃x (2, 3, Conj)

5.{Even(!x)∧C′} if even(!x) then () else Ω() {C′}@/0 (If)

6.{E∧ [!x]C∧ I ∧x#g}M2{C′}@w̃x (4, 5, Seq)

7.{Even(!x)}λ().x :=!x+2 :f {I}@/0 (Abs etc.)

8.{E∧ [!x]C∧Even(!x)∧x#g} M1 {C′}@w̃x (7, 6, LetRef)

9.{E∧C} 0 :m {E∧C∧Even(m)}@/0 (Const)

10.{E∧C} MeyerSieber {C′}@w̃ (9, LetRef)

Line 2 uses the axiom in Proposition 9. Line 4 uses the standard
structural rule. Line 10 cancels[!x] from [!x]C which is possible
sincem does not occur inC.

C.5 Derivation for Object

We need the following generalisation: The procedureu in (AIH) is
of a function typeα⇒ β: when values of other types such asα×β
or α + β are returned, we can make use of a generalisation. For
simplicity we restrict our attention to the case when types do not
contain recursive or reference types.

Inv(uα×β,C0, x̃, r̃, w̃) = ∧i=1,2Inv(πi(u),C0, x̃, r̃, w̃)

Inv(uα+β,C0, x̃, r̃, w̃) = ∧i=1,2∀yi .(u = inji(yi)⊃ Inv(yi ,C0, x̃, r̃, w̃))
Inv(uα,C0, x̃, r̃, w̃) = T (α ∈ {Unit,Nat,Bool})

Using this extension, we can generalise(AIH) so that the cancelling
of C0 is possible for all components ofu. For example, ifu is a pair
of functions, those two functions need to satisfy the same condition
as in (AIH). This is what we shall use forcellGen. We call the
resulting generalised axiom(AIHc).

Let cell be the internalλ-abstraction ofcellGen. First, it is
easy to obtain:

{T} cell :o {I0 ∧ G1 ∧ G2 ∧ E′} (C.1)

where, withI0 =!x0 =!x1 andE′ =!x0 = z.

G1 = {I0}π1(o)• () = v{v =!x0∧ I0}@/0
G2 = ∀w.{I0}π1(o)•w{!x0 = w∧ I0}@x0x1

which will become, after taking off the invariantI0:

G′
1 = {T}π1(o)• () = v{v =!x1}@/0

G′
2 = ∀w.{T}π1(o)•w{!x0 = w}@x0.

Note I0 is stateless exceptx0. In G1, notice the empty write
set means !x1 does not change from the pre to the postcondi-

tion. We now present the inference. We setcell′
def= let y =

ref(0) in cell below.

1.{T} cell :o {I0∧G1∧G2∧E′}

2.{T} cell′ :o {I0∧G1∧G2∧E′} (LetRef)

3.{T}let x1= zincell′ :o {ν#x1.(I0∧G1∧G2)∧E′} (LetRef)

4.{T} let x1 = zin cell′ :o {G′
1∧G′

2∧E′} (AIHc, ConsEval)

5.{T} let x0,1 = zin cell′ :o {ν#x.(G′
1∧G′

2∧E′)} (LetRef)

6.{T} cellGen :u {CellGen(u)} . (Abs)

D. Algorithms for Dag and Graph
This appendix lists the programs for the dag copy and graph copy.
The detailed derivation can be found in [2]. First we show the
algorithm for the dag copy.

dagCopyα def= λgTree(α)let x = ref(/0) in Main g

Main
def= µ f.λg.if dom(!x,g) then get(!x,g) else

case !g of
in1(n) : new(inj1(n),g)
in2(y1,y2) : new(inj2(〈 f y1, f y2〉),g)

new
def= λ(y,g).let g′= ref(y) in (x:=put(!x,〈g,g′〉);g′)

When the program is called with the root of a dag, it first creates
an empty table stored in a local variablex. The table remembers
those nodes in the original dag which have already been processed,
associating them with the corresponding nodes in the fresh dag.
Before creating a new node, the program checks if the original
node (sayg) already exists in the table. If not, a new node (say
g′) is created, andx now stores the new table which adds a tuple
〈g,g′〉 to the original. The program assumes, for brevity, a pre-
defined data type for a table (which in fact is realisable as, say,
lists), with associated procedures.get(t,g) to get the image ofg
in t; put(t,〈g,g′〉) to add a new tuple wheng is not in the domain;
dom(t,g) andcod(t,g) to judge ifg is in the pre/post-image oft, as
well as the constant/0 for the empty table.

Next we present a copying algorithm which works with any
graph ofTree-type, including those with circular edges.

graphCopyα def= λgTree(α).let x = ref(/0) in Main g

Main
def= µ f.λg.if dom(!x,g) then get(!x,g) else

case !g of
in1(n) : new(inj1(n),g)
in2(y1,y2) :
let g′ = new(tmp,g)
in g′ := inj2(〈 f y1, f y2〉);g′

wheretmp = inj1(0). graphCopyα is essentially identical with
dagCopyα except when it processes a branch node, sayg. Since its
subgraphs can have a circular link tog or above, we should first
registerg and its corresponding fresh node, sayg′ (the latter with a
temporary content), before processing two subgraphs.

Finally the polymorphic version ofgraphCopyα is simply given
by ΛX.graphCopyX , using the standard universal type abstraction.

15 2006/8/19

