B. Appendix: Models

B.1 Observational Congruence

Programs Write $(\nu \tilde{l})(M,\sigma) \Downarrow (\nu \tilde{l}')(V,\sigma')$ for $(\nu \tilde{l})(M,\sigma) \rightarrow^* (\nu \tilde{l}')(V,\sigma')$; and $(\nu \tilde{l})(M,\sigma) \Downarrow$ for $(\nu \tilde{l})(M,\sigma) \Downarrow (\nu \tilde{l}')(V,\sigma')$ for some $(\nu \tilde{l}')(V,\sigma')$. Let $\Gamma; \Delta \vdash M_{1,2} : \alpha$. Then we write $\Gamma; \Delta \vdash (\nu \tilde{l}_1)(M_1,\sigma_1) \cong (\nu \tilde{l}_2)(M_2,\sigma_2)$ if, for each typed closing context $C[\cdot]$ of type Unit which is typable under Δ and in which no labels from $\tilde{l}_{1,2}$ occur, we have:

$$(\nu \tilde{l}_1)(C[M_1], \sigma_1) \downarrow \quad \text{iff} \quad (\nu \tilde{l}_2)(C[M_2], \sigma_2) \downarrow$$

We often write $(v\tilde{l}_1)(M_1,\sigma_1) \cong (v\tilde{l}_2)(M_2,\sigma_2)$, leaving type information implicit.

Models Given models $\mathcal{M}_i^{\Gamma;\Delta} = (v\tilde{l_i})(\{y_i:V_{i1},..,y_i:V_{in}\},\sigma_i)$ for i=1,2, we set $\Gamma;\Delta \vdash \mathcal{M}_1 \approx \mathcal{M}_2$ iff

$$(\mathsf{v}\tilde{l}_1)(\langle V_{11},..,V_{1n}\rangle,\sigma_1)\cong (\mathsf{v}\tilde{l}_2)(\langle V_{21},..,V_{2n}\rangle,\sigma_2)$$

B.2 Semantics

Let $\Gamma; \Delta \vdash e : \alpha, \Gamma; \Delta \vdash \mathcal{M}$ and $\mathcal{M} = (\nu \tilde{l})(\xi, \sigma)$. Then the *interpretation of e under* (ξ, σ) , denoted $[\![e]\!]_{\xi, \sigma}$ is inductively given by:

$$\begin{split} & [\![x]\!]_{\xi,\sigma} = \xi(x) & [\![!e]\!]_{\xi,\sigma} = \sigma([\![e]\!]_{\xi,\sigma}) \\ & [\![()]\!]_{\xi,\sigma} = () \quad [\![n]\!]_{\xi,\sigma} = n \quad [\![b]\!]_{\xi,\sigma} = b \quad [\![l]\!]_{\xi,\sigma} = l \\ & [\![op(\tilde{e})\!]]_{\xi,\sigma} = \operatorname{op}([\![\tilde{e}]\!]_{\xi,\sigma}) \quad [\![\langle e,e'\rangle\rangle]\!]_{\xi,\sigma} = \langle [\![e]\!]_{\xi,\sigma}, [\![e']\!]_{\xi,\sigma} \rangle \\ & [\![\pi_i(e)]\!]_{\xi,\sigma} = \pi_i([\![e]\!]_{\xi,\sigma}) \quad [\![\operatorname{inj}_i(e)]\!]_{\xi,\sigma} = \operatorname{inj}_i([\![e]\!]_{\xi,\sigma}) \end{split}$$

Then we define semantics of the assertions as follows (the new notations are illustrated below): All omitted cases are by de Morgan duality. Let u, u', u'' be fresh.

- $\mathcal{M} \models e_1 = e_2 \text{ if } \mathcal{M}[u:e_1] \approx \mathcal{M}[u:e_2].$
- $\mathfrak{M} \models C_1 \land C_2$ if $\mathfrak{M} \models C_1$ and $\mathfrak{M} \models C_2$.
- $\mathfrak{M} \models \neg C$ if not $\mathfrak{M} \models C$.
- $\mathcal{M} \models \forall x^{\alpha}.C$ if (1) $\forall e.(\mathcal{M}[x:e] \models C)$ and $\forall V.(\mathcal{M}[x:V] \models C)$ when α is any type; and (2) $\forall \mathcal{M}'.((vl)(\mathcal{M}'/x) \approx \mathcal{M} \supset \mathcal{M}' \models C)$ s.t. $\mathcal{M}'(x) = l$ when α is a reference type.
- $\mathcal{M} \models \forall X.C$ if for all closed type α , $\mathcal{M} \cdot X : \alpha \models C$.
- $\mathfrak{M} \models [!x]C \text{ if } \forall \mathfrak{M}'.(\mathfrak{M} \stackrel{[!x]}{\approx} \mathfrak{M}' \supset \mathfrak{M}' \models C).$
- $\mathcal{M} \models \{C\}e \bullet e' = x\{C'\}$ if, whenever $\mathcal{M}[u:N] \Downarrow \mathcal{M}_0$ and $\mathcal{M}_0/u \models C$ for some N, we have $\mathcal{M}[x:L] \Downarrow \mathcal{M}' \models C'$ where we set $L \stackrel{\text{def}}{=} \text{let } u = e \text{ in } u' = e' \text{ in let } u'' = N \text{ in } uu'.$
- $\mathcal{M} \models e_1 \hookrightarrow e_2 \text{ if } (\forall \tilde{l})(\xi, \sigma) \approx \mathcal{M} \text{ implies } [\![e_2]\!]_{\xi, \sigma} \in \mathsf{ncl}(\mathsf{fl}([\![e_1]\!]_{\xi, \sigma}), \sigma)$

Above we use the following notations (assuming well-typedness): $\mathcal{M}[u:N] \Downarrow \mathcal{M}'$ appears in § 3.1. $\mathcal{M}[e \mapsto V]$ denotes the obvious substitution (with e of a reference type). $\mathcal{M}/u = (v\tilde{l})(\xi,\sigma)$ if $\mathcal{M} = (v\tilde{l})(\xi \cdot u : V, \sigma)$; otherwise $\mathcal{M}/u = \mathcal{M}$. For $\mathcal{M}_{1,2}$ of the same type,

 $\mathfrak{M}_1 \stackrel{[1x]}{\approx} \mathfrak{M}_2$ iff $\forall V.(\mathfrak{M}_1[x \mapsto V] \approx \mathfrak{M}_2[x \mapsto V])$. In the satisfaction of $\forall x^{\alpha}.C$ above, we consider the case the location is hidden. In $\forall X.C$, we augment a model \mathfrak{M} with a map from type variables to closed types.

For evaluation formula, the defining clause says:

In any initial hypothetical state satisfying C evolvable from the current state, the application of e_1 to e_2 (both evaluated in the current state) terminates and the result z and the final state satisfy C'.

Following [6, 18], we consider hypothetical initial state since a function can be invoked any time later, not only at the present state. The satisfaction of its generalised located assertion (which subsumes its finite counterpart):

$$\mathcal{M} \models \{C\}e \bullet e' = x\{C'\} @\{z \mid E(z)\}$$

iff it satisfies the clause of the evaluation formula above and the following, letting $\mathcal{M}_0 \stackrel{\text{def}}{=} (v\tilde{l})(\xi,\sigma_0)$ and $\mathcal{M}' \approx (v\tilde{l}\tilde{l}')(\xi,\sigma')$, $\forall \tilde{V}.((v\tilde{l})(\xi,\sigma_0[\tilde{l}_1 \mapsto \tilde{V}]) \approx (v\tilde{l}\tilde{l}')(\xi,\sigma'[\tilde{l}_1 \mapsto \tilde{V}]))$ where $l \in \{\tilde{l}_1\}$ iff $(v\tilde{l})(\xi \cdot z : l,\sigma_0) \models E$. This says:

The value stored at each location z satisfying $\neg E(z)$ in \mathfrak{M}_0 , is exactly preserved when the application at \mathfrak{M}_0 results in \mathfrak{M}' , taking \mathfrak{M}' up to \approx .

For formal details, see [2, C.2].

C. Derivations for Examples in Section 5

This appendix lists the derivations omitted in Section 5.

C.1 Derivation for [LetRef]

We can derive [LetRef] as follows.

1. $\{C\} M :_m \{C_0\}$	(premise)
2. $\{C_0[!x/m] \land x \# \tilde{e}\} N :_u \{C'\}$ with $x \notin fpn(\tilde{e})$	(premise)
3. $\{C\} \operatorname{ref}(M) :_x \{ \#x.C_0[!x/m] \}$	(1,Ref)
4. $\{C\} \operatorname{ref}(M) :_{x} \{ \#x.(C_{0}[!x/m] \land x \# \tilde{e}) \}$	(Subs <i>n</i> -times)
5. $\{C\} \text{ ref}(M) :_x \{ \text{vy.}(C_0[!x/m] \land x \# \tilde{e} \land x = y) \}$	(Conseq)
6. $\{C_0[!x/m] \land x \# \tilde{e} \land x = y\} \ N :_u \{C' \land x = y\}$	(2, Invariance)
7. $\{C\}$ let $x = ref(M)$ in $N :_{u} \{vy.(C' \land x = y)\}$	(5,6,LetOpen)
8. $\{C\}$ let $x = \operatorname{ref}(M)$ in $N :_{u} \{vx.C'\}$	(Conseq)

Lines 5 and 8 use the standard logical law (discussed below). Lines 4 and 7 use the following derived/admissible proof rules:

$$[Subs] \ \frac{\{C\} \ M:_u \{C'\} \quad u \not\in \mathsf{fpn}(e)}{\{C[e/i]\} \ M:_u \{C'[e/i]\}}$$

$$[LetOpen] \ \frac{\{C\} \ M :_{x} \{ \texttt{v}\tilde{\texttt{y}}.C_{0} \} \quad \{C_{0}\} \ N :_{u} \{C'\}}{\{C\} \ \mathtt{let} \ x = M \ \mathtt{in} \ N :_{u} \{ \texttt{v}\tilde{\texttt{y}}.C'\}}$$

[*LetOpen*] opens the "scope" of \tilde{y} to N. The crucial step is Line 5, which turns freshness "#" into locality "v" through the standard law of equality and existential, $C \equiv \exists y.(C \land x = y)$ with y fresh.

C.2 Derivation for IncUnShared

For illustration, we contrast the inference of IncShared with:

$$\texttt{IncUnShared} \stackrel{\text{def}}{=} a := \texttt{Inc}; b := \texttt{Inc}; c_1 := (!a)(); c_2 := (!b)(); (!c_1 + !c_2)$$

This program assigns to a and b two separate instances of Inc. This lack of sharing between a and b in IncUnShared is captured by the following derivation:

$$\begin{aligned} &1.\{\mathsf{T}\}\; \mathsf{Inc} :_m \{\mathsf{v}x.\mathsf{inc}'(u,x,0)\} \\ &2.\{\mathsf{T}\}\; a := \mathsf{Inc}\; \{\mathsf{v}x.\mathsf{inc}'(!a,x,0)\} \\ &3.\{\mathsf{inc}'(!a,x,0)\}\; b := \mathsf{Inc}\; \{\mathsf{v}y.\mathsf{inc}''(0,0)\} \\ &4.\{\mathsf{inc}''(0,0)\}\; c_1 := (!a)()\; \{\mathsf{inc}''(1,0) \land !c_1 = 1\} \\ &5.\{\mathsf{inc}''(1,0)\}\; c_2 := (!b)()\; \{\mathsf{inc}''(1,1) \land !c_2 = 1\} \\ &6.\{!c_1 = 1 \land !c_2 = 1\}\; (!c_1) + (!c_2) :_u \; \{u = 2\} \\ &7.\{\mathsf{T}\}\; \mathsf{IncUnShared} :_u \; \{vxy.u = 2\} \\ &8.\{\mathsf{T}\}\; \mathsf{IncUnShared} :_u \; \{u = 2\} \end{aligned}$$

Above $\operatorname{inc}''(n,m) = \operatorname{inc}'(!a,x,n) \wedge \operatorname{inc}'(!b,y,m) \wedge x \neq y$. Note $x \neq y$ is guaranteed by [*LetRef*]. This is in contrast to the derivation for IncShared, where, in Line 3, x is automatically shared after "b := !a" which leads to scope extrusion.

13 2006/8/18

1.
$$\{(n \ge 1 \supset IsEven'(!y,gh,n-1,xy)) \land n = 0\}$$
 f: $_z\{z = Odd(n) \land !x = g \land !y = h\} @ 0$ (Conseq)

2. $\{(n \ge 1 \supset IsEven'(!y,gh,n-1,xy)) \land n \ge 1\}$ $not((!y)(n-1)):_z\{z = Odd(n) \land !x = g \land !y = h\} @ 0$ (Simple, App)

3. $\{n \ge 1 \supset IsEven'(!y,gh,n-1,xy)\}$ if $n = 0$ then f else $not((!y)(n-1)):_m\{z = Odd(n) \land !x = g \land !y = h\} @ 0$ (IfH)

4. $\{T\} \lambda n.$ if $n = 0$ then f else $not((!y)(n-1)):_u\{ygh,n \ge 1.\{IsEven'(h,gh,n-1,xy)\}u \bullet n = z\{z = Odd(n) \land !x = g \land !y = h\} @ 0\} @ 0$ (Abs, \forall)

5. $\{T\} M_x :_u\{ \forall gh,n \ge 1.\{IsEven(h,gh,n-1,xy) \supset IsOdd(u,gh,n,xy))\} @ 0$ (Conseq)

6. $\{T\} x := M_x\{ \forall gh,n \ge 1.\{IsEven(h,gh,n-1,xy) \supset IsOdd(!x,gh,n,xy)) \land !x = g\} @ x$ (Assign)

7. $\{T\} y := M_y\{ \forall gh,n \ge 1.\{IsOdd(g,gh,n-1,xy) \supset IsEven(!y,gh,n,xy)) \land !y = h\} @ y$ (Similar with Line 6)

8. $\{T\} \text{ mutualParity} \{ \forall gh,n \ge 1.\{IsEven(h,gh,n-1,xy) \land IsOdd(g,gh,n-1,xy) \supset (IsEven(!y,gh,n,xy) \land !x = g \land !y = h) \} @ xy$ (\land -Post)

9. $\{T\} \text{ mutualParity} \{ \forall n \ge 1gh.(IsEven(h,gh,n-1,xy) \land IsOdd([x,gh,n-1,xy) \land !x = g \land !y = h) \} @ xy}$ (Conseq)

10. $\{T\} \text{ mutualParity} \{ \forall n \ge 1gh.(IsEven(!y,gh,n-1,xy) \land IsOdd(!x,gh,n-1,xy) \land !x = g \land !y = h) \} @ xy}$ (Conseq)

11. $\{T\} \text{ mutualParity} \{ \forall n \ge 1.(IsEven(!y,gh,n-1,xy) \land IsOdd(!x,gh,n-1,xy) \land !x = g \land !y = h) \} @ xy}$ (Conseq)

12. $\{T\} \text{ mutualParity} \{ \forall n \ge 1.(IsEven(!y,gh,n-1,xy) \land IsOdd(!x,gh,n-1,xy) \land !x = g \land !y = h) \} @ xy}$ (Conseq)

C.3 Derivation for mutualParity and safeEven

Let us define:

$$M_x \stackrel{\text{def}}{=} \lambda n. \text{if } y = 0 \text{ then f else } \text{not}((!y)(n-1))$$

 $M_y \stackrel{\text{def}}{=} \lambda n. \text{if } y = 0 \text{ then t else } \text{not}((!x)(n-1))$

12. $\{T\}$ mutualParity $\{\exists gh.IsOddEven(gh,!x!y,xy,n)\}$ @xy

We also use:

$$\begin{array}{ll} \textit{IsOdd'}(u,gh,n,xy) &= \textit{IsOdd}(u,gh,n,xy) \land !x = g \land !y = h \\ \textit{IsEven'}(u,gh,n,xy) &= \textit{IsEven}(u,gh,n,xy) \land !x = g \land !y = h \end{array}$$

We use the following derived rules and one standard structure rule appeared in [18].

Figure 2 lists the derivation for MutualParity. In Line 5, we use the following axiom for the evaluation formula from [18]:

$$\{C \land A\} e_1 \bullet e_2 = z\{C'\} \equiv A \supset \{C\}e_1 \bullet e_2 = z\{C'\}$$

where *A* is stateless formula and we here set A = IsEven(h, gh, n-1, xy). Line 9 is the standard logical implication $(\forall x. (C_1 \supset C_2) \supset (\exists x. C_1 \supset \exists x. C_2))$. Now we derive for safeEven. Let us define:

$$ValEven(u) = \forall n.\{T\}u \bullet n = z\{z = Even(n)\} @ \emptyset$$

$$C_0 = !x = g \land !y = h \land IsOdd(g, gh, n, xy)$$

$$Even_a = C_0 \land \forall n.\{C_0\}u \bullet n = z\{C_0\}@xy$$

$$Even_b = \forall n.\{C_0\}u \bullet n = z\{z = Even(n)\}@xy$$

The derivation is similar to safeFact.

$$1.\{\mathsf{T}\}\lambda n.\mathsf{t}:_m \{\mathsf{T}\}@\emptyset$$

$$2.\{T\}$$
 mutual Parity; $!y:_u \{\exists gh. IsOddEven(gh, gu, xy, n)\} @xy$

$$3.\{T\}$$
mutualParity; $!y:_u \{\exists gh.(Even_a \land Even_b)\} @xy$

$$4.\{xy\#ij\}$$
mutualParity; $!y:_u$
 $\{\exists gh.(xy\#ij \land Even_a \land Even_b)\}$ @xy

$$5.\{T\}$$
safeEven :_u $\{v\#xy\exists gh.(Even_a \land Even_b)\}@\emptyset$

$$6.\{\mathsf{T}\}m \bullet () = u\{\mathsf{v} \# xy \exists gh. (Even_a \land Even_b)\}$$

$$\supset \{\mathsf{T}\}m \bullet () = u\{ValEven(u)\} \qquad (by (\mathsf{A}\mathsf{IH}_{A\exists}))$$

C.4 Derivation for Meyer-Seiber

For the derivation of (5.6) we use (ε is the empty string): $I = \text{Inv}(f, Even(!x), x, \varepsilon, \varepsilon)$, $G_0 = \{Even(!x) \land x \# g\}g \bullet f\{Even(!x)\}$, and $G_1 = \{T\}g \bullet f\{T\}$. The derivation follows. Below $M_{1,2}$ is the

14 2006/8/18

 $^{7.\{\}mathsf{T}\}$ safeEven :_u $\{ValEven(u)\}@\emptyset$

body of the first/second lets, respectively.

$1.\{Even(!x) \land G_0\} \ gf \ \{Even(!x)\}$	(App)
$2.\{Even(!x) \land I \land G_1\} gf \{Even(!x)\}$	(1, Conseq)
$3.\{E \wedge [!x]C \wedge I \wedge x \# g\} gf \{C'\}@\tilde{w}x$	(App)
$4.\{E \wedge [!x]C \wedge I \wedge x \# g\} \ gf \ \{Even(!x) \wedge C'\}@\tilde{w}x$	(2, 3, Conj)
$\boxed{5.\{Even(!x) \land C'\} \text{ if } even(!x) \text{ then } () \text{ else } \Omega()}$	$\{C'\}$ @ \emptyset (If)
$6.\{E \wedge [!x]C \wedge I \wedge x \#g\}M_2\{C'\}@\tilde{w}x$	(4, 5, Seq)
$7.\{Even(!x)\}\lambda().x := !x + 2:_f \{I\}@\emptyset$	(Abs etc.)
$8.\{E \wedge [!x]C \wedge Even(!x) \wedge x \#g\} M_1 \{C'\}@\tilde{w}x$	(7, 6, LetRef)
$9.\{E \wedge C\} \ 0:_m \ \{E \wedge C \wedge Even(m)\} @\emptyset$	(Const)
$10.\{E \wedge C\}$ MeyerSieber $\{C'\}@ ilde{w}$	(9, LetRef)

Line 2 uses the axiom in Proposition 9. Line 4 uses the standard structural rule. Line 10 cancels [!x] from [!x]C which is possible since m does not occur in C.

C.5 Derivation for Object

We need the following generalisation: The procedure u in (AIH) is of a function type $\alpha \Rightarrow \beta$: when values of other types such as $\alpha \times \beta$ or $\alpha + \beta$ are returned, we can make use of a generalisation. For simplicity we restrict our attention to the case when types do not contain recursive or reference types.

$$\begin{split} & \mathsf{Inv}(u^{\alpha \times \beta}, C_0, \tilde{x}, \tilde{r}, \tilde{w}) \ = \ \wedge_{i=1,2} \mathsf{Inv}(\pi_i(u), C_0, \tilde{x}, \tilde{r}, \tilde{w}) \\ & \mathsf{Inv}(u^{\alpha + \beta}, C_0, \tilde{x}, \tilde{r}, \tilde{w}) \ = \ \wedge_{i=1,2} \forall y_i. (u = \mathsf{inj}_i(y_i) \supset \mathsf{Inv}(y_i, C_0, \tilde{x}, \tilde{r}, \tilde{w})) \\ & \mathsf{Inv}(u^{\alpha}, C_0, \tilde{x}, \tilde{r}, \tilde{w}) \ = \ \mathsf{T} \qquad (\alpha \in \{\mathsf{Unit}, \mathsf{Nat}, \mathsf{Bool}\}) \end{split}$$

Using this extension, we can generalise (AIH) so that the cancelling of C_0 is possible for all components of u. For example, if u is a pair of functions, those two functions need to satisfy the same condition as in (AIH). This is what we shall use for cellGen. We call the resulting generalised axiom (AIH_c).

Let cell be the internal λ -abstraction of cellGen. First, it is easy to obtain:

$$\{T\} cell :_{o} \{I_0 \wedge G_1 \wedge G_2 \wedge E'\}$$
 (C.1)

where, with $I_0 = !x_0 = !x_1$ and $E' = !x_0 = z$.

$$G_1 = \{I_0\}\pi_1(o) \bullet () = v\{v = !x_0 \land I_0\} @\emptyset$$

$$G_2 = \forall w.\{I_0\}\pi_1(o) \bullet w\{!x_0 = w \land I_0\} @x_0x_1$$

which will become, after taking off the invariant I_0 :

$$\begin{array}{rcl} G_1' & = & \{\mathsf{T}\}\pi_1(o) \bullet () = v\{v = !x_1\}@\emptyset \\ G_2' & = & \forall w. \{\mathsf{T}\}\pi_1(o) \bullet w \{ !x_0 = w \}@x_0. \end{array}$$

Note I_0 is stateless except x_0 . In G_1 , notice the empty write set means $!x_1$ does not change from the pre to the postcondition. We now present the inference. We set $\text{cell'} \stackrel{\text{def}}{=} \text{let } y = \text{ref}(0)$ in cell below.

$$1.\{\mathsf{T}\} \text{ cell } :_o \{I_0 \wedge G_1 \wedge G_2 \wedge E'\}$$

$2.\{T\}\ cell':_o\ \{I_0\wedge G_1\wedge G_2\wedge E'\}$	(LetRef)
$\overline{3.\{T\}let\;x_1=z\;incell':_o\;\{V\#x_1.(I_0\land G_1\land G_2)\land E'\}}$	(LetRef)
$4.\{T\} $ let $x_1 = z $ in cell $':_o \{G_1' \wedge G_2' \wedge E'\} $ (AIH _c , C)	ConsEval)
$\overline{5.\{T\}\; let\; x_{0,1} = z\; in\; cell'\; :_o\; \{v\#x.(\; G_1' \wedge G_2' \wedge E'\;)\}}$	(LetRef)
$6.\{T\}$ cellGen: _u $\{CellGen(u)\}$.	(Abs)

D. Algorithms for Dag and Graph

This appendix lists the programs for the dag copy and graph copy. The detailed derivation can be found in [2]. First we show the algorithm for the dag copy.

$$\begin{array}{ll} \operatorname{dagCopy}^{\alpha} & \stackrel{\operatorname{def}}{=} & \lambda g^{Tree(\alpha)} \operatorname{let} x = \operatorname{ref}(\emptyset) \ \operatorname{in} \ \operatorname{Main} \ g \\ \\ \operatorname{Main} & \stackrel{\operatorname{def}}{=} & \mu f. \lambda g. \operatorname{if} \ \operatorname{dom}(!x,g) \ \operatorname{then} \ \operatorname{get}(!x,g) \ \operatorname{else} \\ & \operatorname{case} ! g \ \operatorname{of} \\ & \operatorname{in}_1(n) : \operatorname{new}(\operatorname{inj}_1(n),g) \\ & \operatorname{in}_2(y_1,y_2) : \operatorname{new}(\operatorname{inj}_2(\langle fy_1,fy_2\rangle),g) \\ \\ \operatorname{new} & \stackrel{\operatorname{def}}{=} \lambda(y,g).\operatorname{let} \ g' = \operatorname{ref}(y) \ \operatorname{in} \ (x := \operatorname{put}(!x,\langle g,g'\rangle);g') \end{array}$$

When the program is called with the root of a dag, it first creates an empty table stored in a local variable x. The table remembers those nodes in the original dag which have already been processed, associating them with the corresponding nodes in the fresh dag. Before creating a new node, the program checks if the original node (say g) already exists in the table. If not, a new node (say g') is created, and x now stores the new table which adds a tuple $\langle g, g' \rangle$ to the original. The program assumes, for brevity, a predefined data type for a table (which in fact is realisable as, say, lists), with associated procedures. get(t,g) to get the image of g in t; $put(t, \langle g, g' \rangle)$ to add a new tuple when g is not in the domain; dom(t,g) and cod(t,g) to judge if g is in the pre/post-image of t, as well as the constant \emptyset for the empty table.

Next we present a copying algorithm which works with any graph of *Tree*-type, including those with circular edges.

$$\begin{split} \operatorname{graphCopy}^{\alpha} &\stackrel{\mathrm{def}}{=} \quad \lambda g^{\mathit{Tree}(\alpha)}. \mathtt{let} \; x = \mathtt{ref}(\emptyset) \; \mathtt{in} \, \mathtt{Main} \; g \\ \mathtt{Main} &\stackrel{\mathrm{def}}{=} \quad \mu f. \lambda g. \mathtt{if} \; \mathtt{dom}(!x,g) \; \mathtt{then} \; \mathtt{get}(!x,g) \; \mathtt{else} \\ & \mathsf{case} \; !g \; \mathtt{of} \\ & \mathsf{in}_1(n) : \mathsf{new}(\mathsf{inj}_1(n),g) \\ & \mathsf{in}_2(y_1,y_2) : \\ & \mathsf{let} \; g' = \mathsf{new}(\mathsf{tmp},g) \\ & \mathsf{in} \; g' := \mathsf{inj}_2(\langle fy_1,fy_2 \rangle); g' \end{split}$$

where $tmp = inj_1(0)$. graphCopy^{α} is essentially identical with dagCopy^{α} except when it processes a branch node, say g. Since its subgraphs can have a circular link to g or above, we should first register g and its corresponding fresh node, say g' (the latter with a temporary content), before processing two subgraphs.

Finally the polymorphic version of graphCopy $^{\alpha}$ is simply given by ΛX .graphCopy X , using the standard universal type abstraction.

15 2006/8/18