
B. Appendix: Models
B.1 Observational Congruence

Programs Write (νl̃)(M,σ) ⇓ (νl̃ ′)(V,σ′) for (νl̃)(M,σ) →∗

(νl̃ ′)(V,σ′); and (νl̃)(M,σ) ⇓ for (νl̃)(M,σ) ⇓ (νl̃ ′)(V,σ′) for
some (νl̃ ′)(V,σ′). Let Γ;∆ ⊢ M1,2 : α. Then we writeΓ;∆ ⊢
(νl̃1)(M1,σ1) ∼= (νl̃2)(M2,σ2) if, for each typed closing context
C[·] of typeUnit which is typable under∆ and in which no labels
from l̃1,2 occur, we have:

(νl̃1)(C[M1], σ1) ⇓ iff (νl̃2)(C[M2], σ2) ⇓

We often write(νl̃1)(M1,σ1) ∼= (νl̃2)(M2,σ2), leaving type infor-
mation implicit.

Models Given modelsMΓ;∆
i = (νl̃ i)({yi : Vi1, ..,yi : Vin},σi) for

i = 1,2, we setΓ;∆ ⊢ M1 ≈ M2 iff

(νl̃1)(〈V11, ..,V1n〉,σ1) ∼= (νl̃2)(〈V21, ..,V2n〉,σ2)

B.2 Semantics

Let Γ;∆ ⊢ e : α, Γ;∆ ⊢M andM = (νl̃)(ξ,σ). Then theinterpreta-
tion of e under(ξ,σ), denoted[[e]]ξ,σ is inductively given by:

[[x]]ξ,σ = ξ(x) [[!e]]ξ,σ = σ([[e]]ξ,σ)
[[()]]ξ,σ = () [[n]]ξ,σ = n [[b]]ξ,σ = b [[l]]ξ,σ = l
[[op(ẽ)]]ξ,σ = op([[ẽ]]ξ,σ) [[〈e,e′〉]]ξ,σ = 〈[[e]]ξ,σ, [[e′]]ξ,σ〉
[[πi(e)]]ξ,σ = πi([[e]]ξ,σ) [[inji(e)]]ξ,σ = inji([[e]]ξ,σ)

Then we define semantics of the assertions as follows (the new
notations are illustrated below): All omitted cases are by de Morgan
duality. Letu,u′,u′′ be fresh.

• M |= e1 = e2 if M[u : e1] ≈ M[u : e2].

• M |= C1∧C2 if M |= C1 andM |= C2.

• M |= ¬C if not M |= C.

• M |= ∀xα.C if (1) ∀e.(M[x : e] |= C) and∀V.(M[x : V] |= C)
whenα is any type; and (2)∀M

′.((νl)(M′/x) ≈M ⊃M
′ |=C)

s.t.M′(x) = l whenα is a reference type.

• M |= ∀X.C if for all closed typeα, M·X :α |= C.

• M |= [!x]C if ∀M′.(M
[!x]
≈ M′ ⊃ M′ |= C).

• M |= {C}e•e′=x{C′} if, wheneverM[u:N]⇓M0 andM0/u |=
C for some N, we haveM[x : L] ⇓ M′ |= C′ where we set

L
def
= let u = ein u′ = e′ in let u′′ = N in uu′.

• M |= e1 →֒e2 if (νl̃)(ξ,σ)≈M implies[[e2]]ξ,σ∈ncl(fl([[e1]]ξ,σ),σ)

Above we use the following notations (assuming well-typedness):
M[u : N] ⇓ M′ appears in § 3.1.M[e 7→ V] denotes the obvious
substitution (withe of a reference type).M/u = (νl̃)(ξ,σ) if M =
(νl̃)(ξ ·u:V,σ); otherwiseM/u = M. ForM1,2 of the same type,

M1
[!x]
≈ M2 iff ∀V.(M1[x 7→V] ≈ M2[x 7→V]).

In the satisfaction of∀xα.C above, we consider the case the
location is hidden. In∀X.C, we augment a modelM with a map
from type variables to closed types.

For evaluation formula, the defining clause says:

In any initial hypothetical state satisfying C evolvable from
the current state, the application of e1 to e2 (both evaluated
in the current state) terminates and the result z and the final
state satisfy C′.

Following [6, 18], we consider hypothetical initial state since a
function can be invoked any time later, not only at the present
state. The satisfaction of its generalised located assertion (which
subsumes its finite counterpart):

M |= {C}e•e′ =x{C′}@{z|E(z)}

iff it satisfies the clause of the evaluation formula above and the
following, letting M0

def
= (νl̃)(ξ,σ0) and M′ ≈ (νl̃ l̃ ′)(ξ,σ′),

∀Ṽ.((νl̃)(ξ,σ0[l̃1 7→ Ṽ]) ≈ (νl̃ l̃ ′)(ξ,σ′[l̃1 7→ Ṽ])) where l ∈ {l̃1}
iff (νl̃)(ξ ·z : l ,σ0) |= E. This says:

The value stored at each location z satisfying¬E(z) in M0,
is exactly preserved when the application atM0 results in
M′, takingM′ up to≈.

For formal details, see [2, C.2].

C. Derivations for Examples in Section 5
This appendix lists the derivations omitted in Section 5.

C.1 Derivation for [LetRef]

We can derive[LetRef] as follows.

1. {C} M :m {C0} (premise)

2. {C0[!x/m]∧x#ẽ} N :u {C′} with x /∈ fpn(ẽ) (premise)

3. {C} ref(M) :x {#x.C0[!x/m]} (1,Ref)

4. {C} ref(M) :x {#x.(C0[!x/m]∧x#ẽ)} (Subsn-times)

5. {C} ref(M) :x {νy.(C0[!x/m]∧x#ẽ∧x = y)} (Conseq)

6. {C0[!x/m]∧x#ẽ∧x = y} N :u {C′∧x = y} (2, Invariance)

7. {C} let x = ref(M) in N :u {νy.(C′∧x = y)} (5,6,LetOpen)

8. {C} let x = ref(M) in N :u {νx.C′} (Conseq)

Lines 5 and 8 use the standard logical law (discussed below).Lines
4 and 7 use the following derived/admissible proof rules:

[Subs]
{C} M :u {C

′} u 6∈ fpn(e)
{C[e/i]} M :u {C

′[e/i]}

[LetOpen]
{C} M :x {νỹ.C0} {C0} N :u {C

′}
{C} let x = M in N :u {νỹ.C′}

[LetOpen] opens the “scope” of ˜y to N. The crucial step is Line 5,
which turns freshness “#” into locality “ν” through the standard
law of equality and existential,C≡ ∃y.(C ∧ x = y) with y fresh.

C.2 Derivation for IncUnShared

For illustration, we contrast the inference ofIncShared with:

IncUnShared
def
= a:=Inc;b:=Inc;c1:=(!a)();c2:=(!b)();(!c1+!c2)

This program assigns toa andb two separate instances ofInc. This
lack of sharing betweena andb in IncUnShared is captured by the
following derivation:

1.{T} Inc :m {νx.inc′(u,x,0)}

2.{T} a := Inc {νx.inc′(!a,x,0)}

3.{inc′(!a,x,0)} b := Inc {νy.inc′′(0,0)}

4.{inc′′(0,0)} c1 := (!a)() {inc′′(1,0)∧!c1 = 1}

5.{inc′′(1,0)} c2 := (!b)() {inc′′(1,1)∧!c2 = 1}

6.{!c1 = 1∧!c2 = 1} (!c1)+(!c2) :u {u = 2}

7.{T} IncUnShared :u {νxy.u = 2}

8.{T} IncUnShared :u {u = 2}

Aboveinc′′(n,m) = inc′(!a,x,n)∧ inc′(!b,y,m)∧x 6= y. Notex 6= y
is guaranteed by [LetRef]. This is in contrast to the derivation
for IncShared, where, in Line 3,x is automatically shared after
“b :=!a” which leads to scope extrusion.

13 2006/8/18

Figure 2 mutualParity derivations

1. {(n≥ 1⊃ IsEven′(!y,gh,n−1,xy)) ∧ n = 0} f :z {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (Const)

2. {(n≥ 1⊃ IsEven′(!y,gh,n−1,xy)) ∧ n≥ 1}
not((!y)(n−1)) :z {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (Simple, App)

3. {n≥ 1⊃ IsEven′(!y,gh,n−1,xy)} if n = 0 then f else not((!y)(n−1)) :m {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (IfH)

4. {T} λn.if n = 0 then f else not((!y)(n−1)) :u
{ ∀gh,n≥ 1.{IsEven′(h,gh,n−1,xy)}u•n=z{z = Odd(n) ∧ !x = g∧ !y = h}@/0}@/0 (Abs, ∀)

5. {T} Mx :u { ∀gh,n≥ 1.(IsEven(h,gh,n−1,xy) ⊃ IsOdd(u,gh,n,xy))}@/0 (Conseq)

6. {T} x := Mx{ ∀gh,n≥ 1.(IsEven(h,gh,n−1,xy) ⊃ IsOdd(!x,gh,n,xy)) ∧ !x = g}@x (Assign)

7. {T} y := My{ ∀gh,n≥ 1.(IsOdd(g,gh,n−1,xy) ⊃ IsEven(!y,gh,n,xy)) ∧ !y = h}@y (Similar with Line 6)

8. {T} mutualParity
{∀gh.n≥ 1.((IsEven(h,gh,n−1,xy)∧ IsOdd(g,gh,n−1,xy)) ⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h) }@xy (∧-Post)

9. {T} mutualParity
{∀n≥ 1gh.((IsEven(h,gh,n−1,xy)∧ IsOdd(g,gh,n−1,xy)∧!x = g∧!y = h) ⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

10. {T} mutualParity
{∀n≥ 1gh.((IsEven(!y,gh,n−1,xy)∧ IsOdd(!x,gh,n−1,xy)∧!x = g∧!y = h) ⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

11. {T} mutualParity
{∀n≥ 1.(∃gh.(IsEven(!x,gh,n−1,xy)∧ IsOdd(!y,gh,n−1,xy)∧!x = g∧!y = h) ⊃

∃gh.(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

12. {T} mutualParity{∃gh.IsOddEven(gh, !x!y,xy,n)}@xy

C.3 Derivation for mutualParity and safeEven

Let us define:

Mx
def
= λn.if y = 0 then f else not((!y)(n−1))

My
def
= λn.if y = 0 then t else not((!x)(n−1))

We also use:

IsOdd′(u,gh,n,xy) = IsOdd(u,gh,n,xy)∧ !x = g∧ !y = h
IsEven′(u,gh,n,xy) = IsEven(u,gh,n,xy)∧ !x = g∧ !y = h

We use the following derived rules and one standard structure rule
appeared in [18].

[Simple] −
{C[e/u]}e :u {C}

[IfH]
{C∧e}M1 :u {C′} {C∧¬e}M2 :u {C′}
{C}if ethen M1 else M2 :u {C′}

[∧-Post]
{C}M :u {C1} {C}M :u {C2}

{C}M :u {C1∧C2}

Figure 2 lists the derivation forMutualParity. In Line 5, we use
the following axiom for the evaluation formula from [18]:

{C∧A} e1 •e2 = z{C′} ≡ A ⊃ {C}e1 •e2 = z{C′}

whereA is stateless formula and we here setA = IsEven(h,gh,n−
1,xy). Line 9 is the standard logical implication (∀x.(C1 ⊃ C2) ⊃
(∃x.C1 ⊃ ∃x.C2)). Now we derive forsafeEven. Let us define:

ValEven(u) = ∀n.{T}u•n=z{z = Even(n)}@/0
C0 = !x = g∧ !y = h ∧ IsOdd(g,gh,n,xy)

Evena = C0 ∧ ∀n.{C0}u•n=z{C0}@xy
Evenb = ∀n.{C0}u•n=z{z=Even(n)}@xy

The derivation is similar tosafeFact.
1.{T}λn.t :m {T}@/0

2.{T}mutualParity ; !y :u {∃gh.IsOddEven(gh,gu,xy,n)}@xy

3.{T}mutualParity ; !y :u {∃gh.(Evena ∧ Evenb)}@xy

4.{xy#i j}mutualParity ; !y :u
{∃gh.(xy#i j ∧ Evena ∧ Evenb)}@xy

5.{T}safeEven :u {ν#xy∃gh.(Evena ∧ Evenb)}@/0

6.{T}m•()=u{ν#xy∃gh.(Evena∧Evenb)}
⊃ {T}m•()=u{ValEven(u)} (by (AIHA∃))

7.{T}safeEven :u {ValEven(u)}@/0

C.4 Derivation for Meyer-Seiber

For the derivation of (5.6) we use (ε is the empty string):I =
Inv(f ,Even(!x),x,ε,ε), G0 = {Even(!x)∧ x#g}g• f {Even(!x)},
andG1 = {T}g• f {T}. The derivation follows. BelowM1,2 is the

14 2006/8/18

body of the first/second lets, respectively.

1.{Even(!x)∧G0} g f {Even(!x)} (App)

2.{Even(!x)∧ I ∧G1} g f {Even(!x)} (1, Conseq)

3.{E∧ [!x]C∧ I ∧x#g} g f {C′}@w̃x (App)

4.{E∧ [!x]C∧ I ∧x#g} g f {Even(!x)∧C′}@w̃x (2, 3, Conj)

5.{Even(!x)∧C′} if even(!x) then () else Ω() {C′}@/0 (If)

6.{E∧ [!x]C∧ I ∧x#g}M2{C′}@w̃x (4, 5, Seq)

7.{Even(!x)}λ().x :=!x+2 : f {I}@/0 (Abs etc.)

8.{E∧ [!x]C∧Even(!x)∧x#g} M1 {C′}@w̃x (7, 6, LetRef)

9.{E∧C} 0 :m {E∧C∧Even(m)}@/0 (Const)

10.{E∧C} MeyerSieber {C′}@w̃ (9, LetRef)

Line 2 uses the axiom in Proposition 9. Line 4 uses the standard
structural rule. Line 10 cancels[!x] from [!x]C which is possible
sincem does not occur inC.

C.5 Derivation for Object

We need the following generalisation: The procedureu in (AIH) is
of a function typeα ⇒ β: when values of other types such asα×β
or α + β are returned, we can make use of a generalisation. For
simplicity we restrict our attention to the case when types do not
contain recursive or reference types.

Inv(uα×β,C0, x̃, r̃, w̃) = ∧i=1,2Inv(πi(u),C0, x̃, r̃, w̃)

Inv(uα+β,C0, x̃, r̃, w̃) = ∧i=1,2∀yi .(u = inji(yi) ⊃ Inv(yi ,C0, x̃, r̃, w̃))

Inv(uα,C0, x̃, r̃, w̃) = T (α ∈ {Unit,Nat,Bool})

Using this extension, we can generalise(AIH) so that the cancelling
of C0 is possible for all components ofu. For example, ifu is a pair
of functions, those two functions need to satisfy the same condition
as in (AIH). This is what we shall use forcellGen. We call the
resulting generalised axiom(AIHc).

Let cell be the internalλ-abstraction ofcellGen. First, it is
easy to obtain:

{T} cell :o {I0 ∧ G1 ∧ G2 ∧ E′} (C.1)

where, withI0 =!x0 =!x1 andE′ =!x0 = z.

G1 = {I0}π1(o)• () = v{v =!x0∧ I0}@/0
G2 = ∀w.{I0}π1(o)•w{!x0 = w∧ I0}@x0x1

which will become, after taking off the invariantI0:

G′
1 = {T}π1(o)• () = v{v =!x1}@/0

G′
2 = ∀w.{T}π1(o)•w{!x0 = w}@x0.

Note I0 is stateless exceptx0. In G1, notice the empty write
set means !x1 does not change from the pre to the postcondi-

tion. We now present the inference. We setcell′
def
= let y =

ref(0) in cell below.

1.{T} cell :o {I0∧G1∧G2∧E′}

2.{T} cell′ :o {I0∧G1∧G2∧E′} (LetRef)

3.{T}let x1= zincell′ :o {ν#x1.(I0∧G1∧G2)∧E′} (LetRef)

4.{T} let x1 = zin cell′ :o {G′
1∧G′

2∧E′} (AIHc, ConsEval)

5.{T} let x0,1 = zin cell′ :o {ν#x.(G′
1∧G′

2∧E′)} (LetRef)

6.{T} cellGen :u {CellGen(u)} . (Abs)

D. Algorithms for Dag and Graph
This appendix lists the programs for the dag copy and graph copy.
The detailed derivation can be found in [2]. First we show the
algorithm for the dag copy.

dagCopyα def
= λgTree(α)let x = ref(/0) in Main g

Main
def
= µ f.λg.if dom(!x,g) then get(!x,g) else

case !g of

in1(n) : new(inj1(n),g)
in2(y1,y2) : new(inj2(〈 f y1, f y2〉),g)

new
def
= λ(y,g).let g′= ref(y) in (x:=put(!x,〈g,g′〉);g′)

When the program is called with the root of a dag, it first creates
an empty table stored in a local variablex. The table remembers
those nodes in the original dag which have already been processed,
associating them with the corresponding nodes in the fresh dag.
Before creating a new node, the program checks if the original
node (sayg) already exists in the table. If not, a new node (say
g′) is created, andx now stores the new table which adds a tuple
〈g,g′〉 to the original. The program assumes, for brevity, a pre-
defined data type for a table (which in fact is realisable as, say,
lists), with associated procedures.get(t,g) to get the image ofg
in t; put(t,〈g,g′〉) to add a new tuple wheng is not in the domain;
dom(t,g) andcod(t,g) to judge ifg is in the pre/post-image oft, as
well as the constant/0 for the empty table.

Next we present a copying algorithm which works with any
graph ofTree-type, including those with circular edges.

graphCopyα def
= λgTree(α).let x = ref(/0) in Main g

Main
def
= µ f.λg.if dom(!x,g) then get(!x,g) else

case !g of

in1(n) : new(inj1(n),g)
in2(y1,y2) :
let g′ = new(tmp,g)
in g′ := inj2(〈 f y1, f y2〉);g′

wheretmp = inj1(0). graphCopyα is essentially identical with
dagCopyα except when it processes a branch node, sayg. Since its
subgraphs can have a circular link tog or above, we should first
registerg and its corresponding fresh node, sayg′ (the latter with a
temporary content), before processing two subgraphs.

Finally the polymorphic version ofgraphCopyα is simply given
by ΛX.graphCopyX , using the standard universal type abstraction.

15 2006/8/18

