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Abstract. We introduce an extension of Hoare logic for call-by-value higher-order func-
tions with ML-like local reference generation. Local references may be generated dynam-
ically and exported outside their scope, may store higher-order functions and may be used
to construct complex mutable data structures. This primitive is captured logically using a
predicate asserting reachability of a reference name from a possibly higher-order datum and
quantifiers over hidden references. We explore the logic’s descriptive and reasoning power
with non-trivial programming examples combining higher-order procedures and dynami-
cally generated local state. Axioms for reachability and local invariant play a central role
for reasoning about the examples.
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1 Introduction

Reference Generation in Higher-Order Programming. This paper proposes an extension of
Hoare Logic [13] for call-by-value higher-order functions with ML-like new reference gener-
ation [1, 2], and demonstrates its use through non-trivial reasoning examples. New reference
generation, embodied for example in ML’s ref-construct, is a highly expressive programming
primitive. The first key functionality of this construct is to introduce local state into the dynamics
of programs by generating a fresh reference inaccessible from the outside. Consider the following
program:

Inc
def= let x = ref(0) in λ().(x :=!x+1; !x) (1.1)

where “ref(M)” returns a fresh reference whose content is the value which M evaluates to; “!x”
denotes dereferencing the imperative variable x; and “;” is sequential composition. In (1.1), a
reference with content 0 is newly created, but never exported to the outside. When the anonymous
function in Inc is invoked, it increments the content of the local variable x, and returns the new
content. The procedure returns a different result at each call, whose source is hidden from external
observers. This is different from λ().(x :=!x+1; !x) where x is globally accessible.

Secondly, local references may be exported outside of their original scope and be shared,
contributing to expressivity of significant imperative idioms. Let us show how stored procedures
interact with new reference generation and its sharing. We consider the following program from
[39, § 6]:

incShared
def= a :=Inc;b :=!a;z1 :=(!a)();z2 :=(!b)();(!z1+!z2) (1.2)

The initial content of the hidden x is 0; Following the standard semantics of ML [31], the assign-
ment b :=!a copies the code (or a pointer to the code) from a to b while sharing the store x. Hence
the content of x is incremented every time the functions stored in a and b are called sharing the
same store x, returning 3 at the end the program incShared. To understand the behaviour of
incShared precisely and give it an appropriate specification, we must capture the sharing of x
between the procedures assigned to a and b. From the viewpoint of visibility, the scope of x is
originally restricted to the function stored in a but gets extruded to and shared by the one stored
in b. If we replace b :=!a by b := Inc as follows, two separate instances of Inc (hence with
separate hidden stores) are assigned to a and b, and the final result is not 3 but 2.

incUnShared
def= a :=Inc;b :=Inc;z1 :=(!a)();z2 :=(!b)();(!z1+!z2) (1.3)

Controlling sharing by local reference is essential to writing concise algorithms that manipu-
late functions with shared store as well as mutable data structures such as trees and graphs, but
complicates formal reasoning, even for relatively small programs [14, 27, 29].

Thirdly, through information hiding, local references can be used for efficient implementation
of highly regular observable behaviour, for example, purely functional behaviour. The following
program, taken from [39, § 1], called memFact, is a simple memoised factorial.

memFact
def= let a = ref(0), b = ref(1) in

λx.if x =!a then !b else (a := x ; b := fact(x) ; !b) (1.4)

Here fact is the standard factorial function. To external observers, memFact behaves purely
functionally. The program implements a simple case of memoisation: when memFact is called
with a stored argument in a, it immediately returns the stored value !b without calculation. If
x differs from what is stored at a, the factorial f x is calculated and the new pair is stored. If a
function to calculate is complex with typical input values and if we use a larger memory to store,
then such memoisation cancels calculation substantially: But for this to be meaningful we first of
all need a memoised function to behave indistinguishably from the original function except for
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efficiency. So we ask: why can we say memFact is indistinguishable from the pure factorial func-
tion? The answer to this question can be articulated clearly through the local invariant property
[39] which can be informally stated as follows:

Throughout all possible invocations of memFact, the content of b is the factorial of the
content of a.

Such local invariants capture one of the basic patterns in programming with local state, and play a
key role in preceding studies of operational reasoning about program equivalence in the presence
of local state [22, 37, 39, 46]. Can we distill this principle axiomatically and use it for effectively
validating properties of higher-order programs with local state, such as memFact?

As a further example of local invariants, this time involving mutually recursive stored func-
tions, consider the following program:

mutualParity
def= x := λn.if n=0 then f else not((!y)(n−1));

y := λn.if n=0 then t else not((!x)(n−1))
(1.5)

After running mutualParity, the application (!x)n returns true if n is odd, false if not, and
(!y)n acts dually. But since x and y are free, a program may disturb mutualParity’s functioning
by inappropriate assignment. But since x is free, if a program reads from x and stores it in another
variable, say z, assigns a diverging function to x, and feeds the content of z with 7, then the
program diverges rather than returning the truth.

With local state, we can avoid unexpected interference at x and y.

safeOdd
def= let x = ref(λn.t), y = ref(λn.t) in (mutualParity; !x) (1.6)

safeEven
def= let x = ref(λn.t), y = ref(λn.t) in (mutualParity; !y) (1.7)

(Here λn.t can be any initialising value.) Now that x,y are inaccessible, the programs behave
like pure functions, e.g. safeOdd(3) always returns true without any side effects. Similarly
safeOdd(16) always returns false. In this case, the invariant says:

Throughout all possible invocations, !x is a procedure which checks if its argument is
odd, provided y stores a procedure which does the dual, whereas !y is a procedure which
checks if its argument is even, whenever x stores a dual procedure.

Later we present general reasoning principles for local invariants which can verify properties of
these two and many other non-trivial examples [22, 24, 25, 27, 37, 39].

Contribution. This paper studies a Hoare logic for imperative higher-order functions with dy-
namic reference generation, a core part of ML-like languages. Starting from their origins in the
λ-calculus, the syntactic and semantic properties of typed higher-order functional programming
languages such as Haskell and ML, have been extensively studied, making them an ideal target
for formal validation of programs’ properties on a rigorous semantic basis. Further, given expres-
sive power of imperative higher-order functions (attested by encodability of objects [8, 35, 36]
and of low-level idioms [45]), a study of logics for these languages may have wide repercussions
on logics of programming languages in general.

These languages [1, 2] directly combine higher-order functions and imperative features in-
cluding new reference generation. Extending Hoare logic to these languages leads to technical
difficulties due to their three fundamental features:

• Higher-order functions, including stored ones.
• General forms of aliasing induced by nested reference types.
• Dynamically generated local references and scope exclusion.
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The first is the central feature of these languages; the second arises by allowing reference types
to occur in other types; on the third we discussed already. These three are fundamental elements
of practical typed higher-order programming, but have defied clean logical treatment. In our pre-
ceding studies, we presented Hoare logics for the core parts of ML which capture the first two
features [4, 17, 19, 20]. On the basis of these works, the present work introduces an extension
of Hoare logic for ML-like local reference generation. As noted above, this construct radically
enriches programs’ behaviour, and has defied its clean axiomatic treatment so far. A central chal-
lenge is to identify a simple but expressive logical primitive, equipped with proof rules (for Hoare
triples) and axioms (for assertions), enabling tractable assertions and verification.

The program logic proposed in the present paper introduces a predicate representing reacha-
bility of a reference from an arbitrary datum in order to capture new reference generation. Since
we are working with higher-order programs, a datum and a reference may as well be, or store, a
higher-order function. We shall show that this predicate is fully axiomatisable using (in)equality
when it only involves first-order data types (the result is closely related with known axiomatisa-
tions of reachability [34]). However we shall also show that the predicate becomes undecidable
in itself when higher-order types are involved, indicating its inherent intractability.

A good news is, however, this predicate enables us, when combined with a pair of mutually
dual hiding quantifiers (i.e. quantifiers ranging over variables denoting hidden references), to
obtain a simple compositional proof rule for new reference generation, preserving all the compo-
sitional proof rules for the remaining constructs from our foregoing program logics.

At the level of assertions, we can find a set of useful axioms for (un)reachability and the
hiding quantifiers, which are usable being effectively combined with logical primitives and as-
sociated axioms for higher-order functions and aliasing studied in our preceding works [4, 20].
These axioms for reachability and hiding quantifiers are closely related with reasoning principles
studied in existing semantic studies on local state, such as the principle of local invariant. The
local invariant axioms capture common patterns in reasoning about local state, and enable us to
verify the examples in [22, 24, 25, 27, 37, 39] axiomatically, including programs discussed above.
The program logic also satisfies strong completeness properties including the standard relative
completeness as briefly discussed in the main sections. As a whole our program logic offers an
expressive reasoning framework in which (relatively) simple programs such as pure functions
can be reasoned using simpler primitives while programs with more complex behaviours such
as those with non-trivial use of local state is reasoned using incrementally more involved logical
constructs and axioms.

Outline. This paper is a full version of [49], with complete definitions and detailed explanations
and proofs. The present version not only gives more detailed analysis for the properties of the
models, axioms and proof rules, but also more examples with full derivations and comprehensive
comparisons with related work.

Section 2 presents the programming language and the assertion language. Section 3 gives the
semantics of the logic. Section 4 proposes the proof rules and proves the soundness. Section 5
explores axioms of the assertion language. Sections 6 discusses the use of the logic through non-
trivial reasoning examples centring on local invariants. Section 7 summaries extensions including
the three completeness results of the logic, and gives the comparisons with related works, and
conclude with further topics. Appendix lists auxiliary definitions and detailed proofs. More large
examples of reasoning mutable data structures can be found in [48].

2 Assertions for Local State

2.1 A Programming Language

Our target programming language is call-by-value PCF with unit, sums, products and recursive
types, augmented with imperative constructs. Let x,y, . . . range over an infinite set of variables
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(or names), and X,Y, . . . over an infinite set of type variables. Then types, values and programs
are given by:

α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+β | Ref(α) | X | µX.α

V,W ::= c | xα | λxα.M | µ f α⇒β.λyα.M | 〈V,W 〉 | injα+β

i (V )

M,N ::= V | MN | M := N | ref(M) | !M | op(M̃) | πi(M) | 〈M,N〉 | injα+β

i (M)
| if M then M1 else M2 | case M of {ini(x

αi
i ).Mi}i∈{1,2}

We use the standard notation [12, 35] like constants c (unit (); booleans t, f; numbers n; and
location labels also called simply locations l, l′, ...) and first-order operations op (+,−,×, =
, ¬, ∧, . . .). Locations only appear at runtime when references are generated. M̃ etc. denotes a
vector and ε the empty vector. A program is closed if it has no free variables. We use abbreviations
such as:

λ().M def= λxUnit.M (x 6∈ fv(M))

M;N def= (λ().N)M

let x = M in N def= (λx.N)M (x 6∈ fv(M))

We use the standard notion of types for imperative λ-calculi [12, 35] and use the equi-isomorphic
approach [35] for recursive types. Nat, Bool and Unit are called base types. We leave illustration
of each language construct to standard textbooks [35], except for reference generation ref(M),
the focus of the present study. ref(M) behaves as: first M of type α is evaluated and becomes a
value V ; then a fresh reference of type Ref(α) with initial content V is generated. This behaviour
is formalised by the following reduction rule:

(ref(V ), σ)−→ (ν l)(l, σ] [l 7→V ]) (l fresh)

Above σ is a store, a finite map from locations to closed values, denoting the initial state, whereas
σ] [l 7→ V ] is the result of disjointly adding a pair (l,V ) to σ. The resulting configuration uses
a ν-binder, which lets us directly capture the observational meaning of programs. The general
form is (ν l̃)(M,σ) where l̃ is a vector of distinct locations occurring in σ (the order is irrelevant).
We write (M,σ) for (ν ε)(M,σ) with ε denoting the empty vector. The full rules are listed in
Appendix A.1.

An environment Γ,∆, ... is a finite map from variables to types and from locations to reference
types. The typing rules are standard [35] which are left to Appendix A.2. Sequents have form
Γ ` M : α, to be read: M has type α under Γ. A store σ is typed under ∆, written ∆ ` σ, when,
for each l in its domain, σ(l) is a closed value which is typed α under ∆, where we assume
∆(l) = Ref(α). A configuration (M,σ) is well-typed if for some Γ and α we have Γ ` M : α and
Γ ` σ. Standard type safety holds for well-typed configurations. Henceforth we only consider
well-typed programs and configurations.

2.2 A Logical Language

The logical language we shall use is that of standard first-order logic with equality [26, § 2.8],
extended with the constructs for (1) higher-order application [19, 20] (for imperative higher-order
functions); (2) quantifications over store content [4] (for aliasing); (3) reachability and quantifi-
cations over hidden names (for local state). For (1) we decompose the original construct [19, 20]
into more elementary constructs, which becomes important for precisely capturing semantics of
higher-order programs with local state and for obtaining strong completeness properties of the
logic, as we shall discuss in later sections.
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The grammar follows, letting ? ∈ {∧,∨,⊃}, Q ∈ {∃,∀,ν,ν} and Q′ ∈ {∃,∀}.

e ::= x | c | op(ẽ) | 〈e,e′〉 | injα1+α2
i (e) | !e

C ::= e=e′ | ¬C | C ?C′ | Qxα.C | Q′X.C | [!e]C | 〈!e〉C
| e• e′ = x{C} | �C | ♦C | e ↪→ e′ | e#e′

The first grammar (e,e′, . . .) defines terms; the second formulae (A,B,C,C′,E, . . .). Terms include
variables, constants c (unit (), numbers n, booleans t, f and locations l, l′, ...), pairing, injection
and standard first-order operations. !e denotes the dereference of a reference e. Formulae include
standard logical connectives and first-order quantifiers [26].

The remaining constructs in the logical language are for capturing behaviours of imperative
higher-order functions with local state. First, the universal and existential quantifiers, ∀x.C and
∃x.C, are standard. We include, following [4, 19], quantification over type variables (X,Y, . . .).
We also use the two quantifications for aliasing introduced in [4]. [!x]C is universal content
quantification of x in C, while 〈!x〉C is existential content quantification of x in C. In both, x
should have a reference type. [!x]C says C holds regardless of the value stored in a memory cell
named x; and 〈!x〉C says C holds for some value that may be stored in the memory cell named
x. In both, what is being quantified is the content of a store, not the name of that store. In [!x]C
and 〈!x〉C, C is the scope of the quantification. The free variable x is not a binders: we have
fv(〈!x〉C) = fn([!x]C) = {x}∪ fv(C) where fv(C) denotes the set of free variables in C. We define
〈!e〉C as a shorthand for ∃x.(x = e∧ 〈!x〉C), assuming x /∈ fv(C). Likewise, [!e]C is short for
∀x.(x = e ⊃ [!x]C) with x being fresh. The scope of a content quantifier is as small as possible,
e.g. [!x]C ⊃C′ stands for ([!x]C)⊃C′.

The result of decomposing the original evaluation formulae [19, 20], e • e′ = x{C} and �C,
are together used for describing the behaviour of functions. 3 e• e′ = x{C}, which we call (one-
sided) evaluation formula, intuitively says:

The application of a function e to an argument e′ starting from the present state will
terminate with a resulting value (name it x) and a final state, together satisfying C′.

whereas �C, which we read always C, intuitively means:

C holds in any possible state reachable from the current one.

Its dual is written ♦C (defined as ¬�¬C), which we read someday C. We call � (resp. ♦ )
necessity (resp. possibility) operators. As a typical usage of these primitives, consider:

�(C ⊃ f • x = y{C′}) (2.1)

This can be read: “for now or any future state, once C holds, then the application of f to x
terminates, with both a return value y and a final state satisfying C′”. Note this is the meaning
of the original evaluation formulae in [19, 20]. This this decomposed form can represent the
original evaluation formulae in [19, 20]. Further it can describe those situations which cannot be
represented in original formulae in the presence of local state (see § 2.3 for examples); and can
generalise the local invariant axiom in Proposition 5.14 from [49]. Thus this decomposed form
is strictly more expressive: it also allows a more streamlined theory.

There are two new logical primitives for representing local state. First, the hiding-quantifiers,
νx.C (for some hidden reference x, C holds) and νx.C (for each hidden reference x, C holds),
quantify over reference variables, i.e. the type of x above should be of the form Ref(β). These
quantifiers range over hidden references, such as x generated by Inc in (1.1) in § 1. The need for
having these quantifiers in addition to the standard ones is illustrated in § 5.3, Proposition 5.7.

The second new primitive for local state is e1 ↪→ e2 (with e2 of a reference type), which we
call the reachability predicate. This predicate says:

3 We later show �C is expressible by e• e′ = x{C}: nevertheless treating the latter independently is more
convenient for our technical development.
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We can reach the reference denoted by e2 from a datum denoted by e1.

As an example, if x denotes a starting point of a linked list, x ↪→ y says a reference y occurs in
one of the cells reachable from x. We set its dual [10, 42], written e#e′, to mean ¬e′ ↪→ e. This
negative form says:

One can never reach a reference e starting from a datum denoted by e′.

# is frequently used for representing freshness of new references.
Terms are typed inductively starting from types for variables and constants and signatures for

operators. The typing rules for terms follow the standard ones for programs [35] and are given in
Figure 3 in Appendix A.2. We write Γ ` e : α when e has type α such that free variables in e have
types following Γ; and Γ `C when all terms in C are well-typed under Γ.

Equations between terms of different types will always evaluate to F.4 The falsity F is defin-
able as 1 6= 1, and its dual T

def= ¬F. The syntactic substitution C[e/!x] is also used frequently:
the definition is standard, save for some subtlety regarding substitution into the post-condition
of evaluation formulae, details can be found in Appendix B in [4]. Henceforth we only treat
well-typed terms and formulae.

Further notational conventions follow.

Notation 2.1 (Assertions).

– In the subsequent technical development, logical connectives are used with their standard
precedence/association, with content quantification given the same precedence as standard
quantification (i.e. they associate stronger than binary connectives). For example,

¬A ∧ B ⊃ ∀x.C ∨ 〈!e〉D ⊃ E

is a shorthand for ((¬A) ∧ B) ⊃ (((∀x.C) ∨ (〈!e〉D)) ⊃ E). The standard binding conven-
tion is always assumed.

– C1 ≡C2 stands for (C1 ⊃C2)∧ (C2 ⊃C1), stating the logical equivalence of C1 and C2.
– e 6= e′ stands for ¬e = e′.
– Logical connectives are used not only syntactically but also semantically, i.e. when dis-

cussing meta-logical and other notions of validity.
– We write {C} e1 • e2 = z {C′} for C ⊃ e1 • e2 = z{C′}.
– e1 • e2 = e′{C} stands for e1 • e2 = x{x = e′ ∧C} where x is fresh and e′ is not a variable;

e1 •e2{C} stands for e1 •e2 = (){C}; and e1 •e2 ⇓ (resp. e1 •e2 ⇑) stands for the convergence
e1 • e2 = x{T} (resp. the divergence e1 • e2 = x{F}). We apply the same abbreviations to
{C} e1 • e2 = z {C′}.

– For convenience of rule presentation we will use projections πi(e) as a derived term. They
are redundant in that any formula containing projections can be translated into one without:
for example π1(e) = e′ can be expressed as ∃y.e = 〈e′,y〉.

– We denote fl(C) (resp. fl(C)) for the set of the free variables (resp. free locations) in C.
– [!x1..xn]C for [!x1]..[!xn]C. Similarly for 〈!x1..xn〉C.
– We write ẽ#e for ∧iei #e; e# ẽ for ∧ie#ei; and ẽ# ẽ′ for ∧i jei #e′j.

2.3 Assertions for Local State

We explain assertions with examples.

1. The assertion x = 6 says that x of type Nat is equal to 6.

4 To be precise, “terms of unmatchable types”: this is because of the presence of type variables: for example
the equation “xX = 1Nat” can hold depending on models but “xRef(X) = 1Nat” never hold.
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2. Assuming x has type Ref(Nat), !x = 2 means x stores 2.
3. Consider x := y;y := z;w := 1. After its run, we can reach z by dereferencing y, and y by

dereferencing x. Hence z is reachable from y, y from x, hence z from x. So the final state
satisfies x ↪→ y∧ y ↪→ z∧ x ↪→ z.

4. Next, assuming w is newly generated, we may wish to say w is unreachable from x, to ensure
freshness of w. For this we assert w#x, which, as noted, stands for ¬(x ↪→ w). x#y always
implies x 6= y. Note that x ↪→ x ≡ x ↪→!x ≡ T and x#x ≡ F. But !x ↪→ x may or may not hold
(since there may be a cycle between x’s content and x in the presence of recursive types).

5. We consider reachability in procedures. Assume λ().(x := 1) is named as fw, similarly λ().!x
as fr. Since fw can write to x, we have fw ↪→ x. Similarly fr ↪→ x. Next suppose let x =
ref(z) in λ().x has name fc and z’s type is Ref(Nat). Then fc ↪→ z (e.g. consider !( fc()) :=
1). However x is not reachable from λ().((λy.())(λ().x)) since semantically it never touches
x.

6. � !x = 1 says that x’s content is unchanged from 1 forever, which is logically equivalent
to F (since x might be updated in the future). Instead ♦ !x = 1 ≡ T. On the other hand,
�x = 1 ≡ ♦x = 1 ≡ x = 1 (since a value of a functional variable are not affected by the
state).

7. The following program:
f def= λ().(x :=!x+1; !x) (2.2)

satisfies the following assertion, when named u:

�∀iNat.{!x = i}u• ()=z{!x = z∧!x = i+1}

saying:
now or for any future state, invoking the function u increments the content of x and
returns that content.

Stating it for a future state is important since a closure is potentially invoked many times in
different states.

8. We often wish to say that the write effects of an application are restricted to specific locations.
The following located assertion [4] is used for this purpose: e• e′ = x{C}@ẽ where each ei
is of a reference type and does not contain a dereference. ẽ is called effect set, which would
be modified by the evaluation. As an example:

inc(u,x) def= �∀i.{!x = i}u• ()=z{z =!x ∧ !x = i+1}@x (2.3)

is satisfied by f in (2.2), saying that a function named u, when invoked, will: (1) increment
the content of x and (2) return the original content of x, without touching any state except x.

9. Assuming u denotes the result of evaluating Inc in the Introduction, we can assert, using the
existential hiding quantifier:

νx.(!x = 0 ∧ inc(u,x)) (2.4)

which says: there is a hidden reference x storing 0 such that, whenever u is invoked, it stores
to x and returns the increment of the value stored in x at the time of invocation.

10. The function f1
def= λnNat.ref(n), named u, meets the following specification. Let i and X

be fresh.

fresh
def= �∀nNat.∀X.∀iX.u•n = z{νx.(!z = n ∧ z# i∧ z = x)}@ /0. (2.5)

The above assertion says that u, when applied to n, will always return a hidden fresh reference
z whose content is n and which is unreachable from any datum existing at the time of the
invocation; and in the execution it will leave no writing effects to the existing state. Since i
ranges over arbitrary data, unreachability of x from each such i in the post-condition indicates
that x is freshly generated and is not stored in any existing reference.
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11. Now let us consider the following three formulae:

fresh1
def= ∀nNat.∀X.∀iX.u•n = z{νx.(!z = n ∧ z# i∧ z = x)}@ /0 (2.6)

fresh2
def= ∀nNat.∀X.∀iX.�u•n = z{νx.(!z = n ∧ z# i∧ z = x)}@ /0 (2.7)

fresh3
def= �∀nNat.∀X.∀iX.�u•n = z{νx.(!z = n ∧ z# i∧ z = x)}@ /0 (2.8)

Each formula is read as follows:
– fresh1 means that the procedure u, when invoked in the present state with number n, will

create a cell with that content which is fresh in the current state.
– fresh2 means that the procedure u, when invoked with number n in the present or any

future state, will create a cell with content n which is fresh in the current state. For
example the following program satisfies this assertion (naming it as u):

f2
def= let x = ref(0) in λyNat.(x := y; x) (2.9)

Initially (2.9) does return a fresh reference: but from the next time it returns the same
reference cell albeit with the new value specified. So it will be fresh with respect to the
current state (for which we are asserting this formula) but not with respect to each initial
state of invocation.

– fresh3 means that, pinning down the present or any future state, if we invoke the proce-
dure u in that pinned down state or in any further future state, it will create a cell which
is fresh in that pinned down state.

Then we have:

fresh≡ fresh3 ⊃ fresh2 ⊃ fresh1 (2.10)

which we shall prove by the axioms of� later. The program (2.9) satisfies fresh1 and fresh2,
but does not satisfy fresh (nor fresh3) since f2 returns the same location. On the other hand, f1
satisfies all of fresh, fresh1, fresh2 and fresh3. This example demonstrates that a combination
of � and a decomposed evaluation formula gives precise specifications in the presence of
the local state.5

Notation 2.2. One may write (2.5) using the following more concise notation:

fresh
def= � ∀nNat.u•n = new z{!z = n}@ /0. (2.11)

Since X and i are bound occurrences this does not lose precision. The “new” above indicates
freshness with respect to the starting state of evaluation: but by � this starting state ranges over
any states now and in future. In general, we define the following abbreviation, with X and i fresh:

e• e′ = new z{C} def≡ ∀X, iX.e• e′ = z{νy.(z = y ∧ z# i ∧ C} (2.12)

3 Models and Semantics

3.1 Models

We introduce the semantics of the logic based on term models. Our purpose is to have a pre-
cise and clear correspondence between programs’ behaviour and assertions. For this reason an

5 Note that in fresh and fresh3, it is essential that we put universal quantifications ∀X and ∀iX after � ,
which has not been possible in the two-sided evaluation formulae used in the logics for pure and imper-
ative higher-order functions without local state in [4, 17, 19, 20], see (2.1), page 7.
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operationally given model fits best (see Remark 3.3 later). For capturing local state, our models
incorporate hidden locations using ν-binders, suggested by the π-calculus [30]. For example, let
us consider the program Inc in the Introduction.

Inc
def= let x = ref(0) in λ().(x :=!x+1; !x) (3.1)

Recall that after running Inc, we reach a state where a hidden name stores 0, to be used by the
resulting procedure when invoked. Hence, Inc named u, is modelled as:

(νl)({u : λ().(l :=!l +1; !l)}, {l 7→ 0}) (3.2)

which says that the appropriate behaviour is at u, in addition to a hidden reference l storing 0.

Definition 3.1. (models) Assume Γ does not contain free reference variables and set ∆ = {Γ(l) | l ∈
dom(Γ)}. Then an open model of type Γ is a tuple (ξ,σ) where:

– ξ, called environment, is a finite map from dom(Γ) to closed values such that, for each
x ∈ dom(Γ), ξ(x) is typed as Γ(x) under ∆, i.e. ∆ ` ξ(x) : Γ(x).

– σ, called store, is a finite map from labels to closed values such that for each l ∈ dom(σ), if
Γ(l) has type Ref(α), then σ(l) has type α under ∆, i.e. ∆ ` σ(l) : α.

When Γ includes free type variables, ξ maps them to closed types, with the obvious corresponding
typing constraints. A model of type Γ is a structure (νl̃)(ξ,σ) with (ξ,σ) being an open model of
type Γ with dom(∆) = {l̃}. (νl̃) acts as binders. M,M′, . . . range over models.

An open model maps variables and locations to closed values: a model then specifies part of the
locations as “hidden”. Since assertions in the present logic are intended to capture observable
program behaviour, the semantics of the logic uses models quotiented by an observationally
sound equivalence, which we choose to be the standard contextual congruence itself. Below
(νl̃)(M,σ) ⇓ means (νl̃)(M,σ)−→n (νl̃′)(V,σ′) for some n.

Definition 3.2. Assume Mi
def= (νl̃i)(x̃ : Ṽi,σi) typable under Γ. Then we write M1 ≈ M2 if the

following clause holds for each typed context C[ · ] which is typable under {Γ(l) | l ∈ dom(Γ)}
and in which no labels from l̃1,2 occur:

(νl̃1)(C[〈Ṽ1〉],σ1) ⇓ iff (νl̃2)(C[〈Ṽ2〉],σ2) ⇓ (3.3)

where 〈Ṽ 〉 is the n-fold pairings of a vector of values.

Definition 3.2 in effect takes models up to the standard contextual congruence. We could have
used a different program equivalence (for example call-by-value βη convertibility), as far as it is
observationally adequate. Note we have

(νl̃)(ξ · x :V1,σ · l 7→W1) ≈ (νl̃)(ξ · x :V2,σ · l 7→W2) (3.4)

whenever V1 ∼= V2 and W1 ∼= W2, where ∼= is the standard contextual congruence on programs
[35] (for reference Appendix A.3 lists the definition of ∼= of PCFv).

To see the reason why we take the models up to the observational congruence, let us consider
the following program:

Inc2
def= let x = ref(0), y = ref(0) in λ().(x :=!x+1;y :=!y+1; (!x+!y)/2) (3.5)

which is contextually equivalent to Inc. Then we have the following model for Inc2.

(νll′)({u : λ().(x :=!x+1;y :=!y+1; (!x+!y)/2), x : l, y : l′}, {l 7→ 0, l′ 7→ 0}) (3.6)

Since the two programs originate in the same abstract behaviour, we wish to identify the model
in (3.2) and the above model, taking them up to the equivalence.
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Remark 3.3. The model as given above can be presented algebraically using a language of cat-
egories [46]. One method, which can treat hiding as above categorically, uses a class of toposes
which capture renaming through symmetries [16]. We can also use the “swapping”-based treat-
ment of binding following [11]. Note however that the use of such different presentations (with
respective merits) does not alter the equational and other properties of models and satisfaction.
Here we take the simplest approach to capture the effects of hidden stores as essential part of
models and inquire their effects on validity in as an intuitive setting as possible.

3.2 Semantics of Equality

For the rest of this section, we give the semantics of the assertions one by one, mainly focussing
on the key features which concerns local state and which therefore differ from the previous logics
[4]. In this subsection we treat the satisfaction for equality.

When we consider the satisfaction of the equality, a key example is the programs incShared
in (1.2) and incUnShared in (1.3) in Introduction. After the second assignment of (1.2) and
(1.3), we consider whether we can assert “!a = !b” (i.e. the content of a and b are equal). For
this inquiry, let us first recall the following defining clause for the satisfaction of equality of two
logical terms from [4] which follows the standard definition of logical equality. First we set, with
Γ ` e : α, Γ `M and an open model M = (ξ,σ), an interpretation of e under M as follows.6

[[x]]ξ,σ = ξ(x) [[!e]]ξ,σ = σ([[e]]ξ,σ) [[c]]ξ,σ = c [[op(ẽ)]]ξ,σ = op([[ẽ]]ξ,σ)

[[〈e,e′〉]]ξ,σ = 〈[[e]]ξ,σ, [[e′]]ξ,σ〉 [[inji(e)]]ξ,σ = inji([[e]]ξ,σ)

which are all standard. Then we define:

(the definition from [4]) M |= e1 = e2
def≡ [[e1]]M ≈ [[e2]]M (3.7)

Note (3.7) says that e1 = e2 is true under an open model M iff their interpretations in M are
congruent. Now suppose we apply (3.7) to the question of !a = !b in incUnShared. Since the
two instances of Inc stored in a and b have the identical denotation (or identical behaviours:
note they are exactly the same programs), the equality !a = !b holds for incUnShared if we use
(3.7). However this interpretation is wrong: we observe that, in incUnShared, running !a twice
and running !a and !b consecutively lead to different observable behaviours, due to their distinct
local states (which can be easily represented using evaluation formulae). Hence we must have
!a 6= !b, which says the standard definition (3.7) is not applicable in the presence of the local
state. On the other hand, running !a and running !b have always identical observable effects: that
is we can always replace the content of a with the content b in incShared, hence the equality
!a = !b may as well hold for incShared.

The reason that the standard equality does not hold is because two currently identical stateful
procedures will in future demonstrate distinct behaviours. On the other hand, two identical func-
tions which share the same local state always show the same behaviour hence in incShared we
obtain equality.

This analysis indicates that we need to consider programs placed in contexts to compare
them precisely, leading to the following extension for the semantics for the equality, assuming
M

def= (νl̃)(ξ,σ):

M |= e1 = e2
def≡ M[u : e1]≈M[u : e2] (3.8)

where M[u:e] denotes (νl̃)(ξ ·u : [[e]]ξ,σ,σ) with u fresh and the variables and labels in e should be
free in M. Note M[u : e] offers the notion of a “program-in-context” when e denotes a program:

6 Since a model in [4] does not have a local state it suffices to consider open models.
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for example let us consider a model for the state immediately after the assignment b :=!a in
incShared: then the model may be written as (taking a and b to be locations):

MincShared = (νl)

 /0,
a 7→ λ().(l :=!l +1; !l),
b 7→ λ().(l :=!l +1; !l),
l 7→ n

 (3.9)

we get (writing the map for a,b, l above as σ for brevity):

MincShared[u :!a] = (νl)(u : λ().(l :=!l +1; !l), σ) (3.10)

Note the function assigned to u shares l in the environment: we are interpreting the dereference
!a “in context”. Similarly we obtain:

MincShared[u :!b] = (νl)(u : λ().(l :=!l +1; !l), σ) (3.11)

By which we conclude MincShared |=!a =!b: if the results of interpreting two terms in context are
equal then we know their effects to the model are equal. We leave it to the reader to check the
inequality between !a and !b for the corresponding model representing incUnShared.

The definition of equality above satisfies the standard axioms of the equality as we shall see
later in § 5. It is also accompanied by a notion of symmetry which can be used for checking
(in)equality, introduced below.

Definition 3.4 (permutation). Let M
def= (νl̃)(ξ · v :V ·w :W, σ) where M is typed under Γ and

V,W have the same type under Γ. Then, we set:

M
(vw

wv

) def= (νl̃)(ξ · v :W ·w :V, σ) (3.12)

called a permutation of M at u and w. We extend the notion to an arbitrary bijection ρ on dom(Γ),
writing M[ρ]. A permutation ρ on M is a symmetry on M when M[ρ]≈M.

Proposition 3.5 (symmetries).

1. Given M1,2 and a bijection ρ on free variables in the domain of M1,2, we have M1 ≈M2 iff
M1[ρ]≈M2[ρ].

2. If M1 ≈M2 and ρ is symmetry of M1, then ρ is symmetry of M2.

Proof. The proofs of the following results are obvious by definition. �

We illustrate how we can use the result above to capture the subtlety of equality of behaviours
with shared local state. Let us consider the following models M1 and M2, which represent the sit-
uations analogous to incShared and incUnShared (again after running the second assignment).
The defining clause for equality validate, using M1[u :v]≈M1[u :w]:

M1 = (νl)
(

v : λ().(l :=!l +1; !l),
w : λ().(l :=!l +1; !l), l 7→ 0

)
|= v = w (3.13)

On the other hand, we have:

M2 = (νll′)
(

v : λ().(l :=!l +1; !l),
w : λ().(l′ :=!l′+1; !l′),

l 7→ 0,
l′ 7→ 0

)
|= v 6= w (3.14)

This is because
(uv

vu

)
is a symmetry of M2[u :v], but not of M2[u :w]. The latter can be examined

by comparing the following two models (writing “u,w : V ” to denote “u : V,w : V ”):

M2[u :w] = (νll′)
(

v : λ().(l :=!l +1; !l),
u,w : λ().(l′ :=!l′+1; !l′),

l 7→ 0,
l′ 7→ 0

)
(3.15)

(M2[u :w])
(uv

vu

)
= (νll′)

(
u : λ().(l :=!l +1; !l),
v,w : λ().(l′ :=!l′+1; !l′),

l 7→ 0,
l′ 7→ 0

)
(3.16)
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which semantically differ when e.g. v and w are invoked consecutively. Hence by Proposition 3.5
(2), M1[u : v] 6≈ M1[u : w], justifying the above inequality v 6= w. The permutations also help to
prove the axioms of the equality in § 5.

3.3 Semantics of Necessity and Possibility Operators

We define, with u fresh,

M[u :N] ⇓M′ when (Nξ,σ) ⇓ (νl̃′)(V,σ′) with M = (νl̃)(ξ, σ) and M′ = (νl̃ l̃′)(ξ ·u :V, σ
′)

which intuitively means that M can reduce to M′ through an arbitrary effects on M by an external
program: in other words, M′ is a hypothetical future state (or “possible world”) of M. Then we
generate M M′ by

1. M M

2. if M M0 and M0[u : N] ⇓M′, then M M′

Thus M M′ reads:

M may evolve to M′ by interaction with zero or more typable programs.

Note is reflexive and transitive. If M M′ and M′ adds the new domain {x1..xn}, then x1..xn

is its increment and we often explicitly write M
x1..xn M′.

The semantics of �C says that for any target of evolution, C should hold:

M |=�C
def≡ ∀M′.(M M′ ⊃M′ |= C). (3.17)

Dually we set:

M |=♦C
def≡ ∃M′.(M M′ ∧ M′ |= C). (3.18)

3.4 Semantics of Evaluation Formulae

The semantics of the evaluation formula is given below:

M |= e• e′ = x{C} def≡ ∃M′.(M[x : ee′] ⇓M′ ∧ M′ |= C)

which says that in the current state, if we apply e to e′, then the return value (named x) and the
resulting state together satisfy C.

We already motivated a need of the decomposition of original evaluation formulae in [4] into
the simplified evaluation formulae and the necessity operator in § 2.3. Let us write the original
evaluation formulae in [4, 20] as {C}e• e′=x{C′}. Then we can translate this in the present
language as:

{C}e• e′=x{C′} def≡ ∃ f ,g.( f = e∧g = e′∧�{C} f •g=x{C′})

that is, we interpret e and e′ in the present state and name them f and g, and assert that, now or in
any future state in which C is satisfied, if we apply f to g, then it returns x which, together with
the resulting state, satisfies C′. The original clause says:

In any initial hypothetical state which is reachable from the present state and which
satisfies C, the application of e to e′ terminates and both the result x and the final state
satisfy C′.
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To see the reason why we require � to state the specification of the function, we set:

M
def= (νl)(u : λ().!l, w : λ().l :=!l +1, l 7→ 5) (3.19)

We can check the set of all legitimate hypothetical states from this state (i.e. M′ such that M[z :
N] ⇓M′, without insignificant z portion in M′) can be enumerated by:

M′ def= (νl)(u := λ().!l, w : λ().l :=!l +1, l 7→ m) (3.20)

for each m ≥ 5 (since the only way an outside program can affect this model is to increment the
content of l). Thus we have, for M in (3.19):

M |=�w• () = x{x ≥ 5} (3.21)

which says in any future state where w is invoked, it always returns something no less than 5,
which is operationally reasonable.

We can use this formula for specifying the following program:

L def= let x = ref(5) in
let u = λ().!x in

let w = λ().x :=!x+1 in
( f w) ; if x ≥ 5 then t else f

(3.22)

When the application f w takes place, some unknown computation occurs which may change the
value of x: but as far as f w terminates, it always returns t. To reach (3.21), we need to consider
all possible M′ with the effect from the outside. Since such M′ satisfies (3.19), we can conclude
the program L always returns t (if f w terminates).

3.5 Semantics of Universal and Existential Quantifications

The universal and existential quantifiers also need to incorporate local state. We need one defini-
tion to identify a set of terms which do not change the state of any models. Below MΓ indicates
M which is typable under Γ.

Definition 3.6 (Functional Terms). We define the set of functional terms of type Γ, denoted FΓ,
or often simply F leaving its typing implicit, as:

F
def= {N | ∀MΓ.(M[u : N] ⇓M′ ⊃M∼= M′/u)}

where M/u def= (νl̃)(ξ,σ) if M = (νl̃)(ξ · u : V,σ); and M/u def= M when u 6∈ fv(M). We write
L,L′, ... for functional terms, often leaving their types implicit.

Above M∼= M′/u ensures that L does not affect M during evaluating of L in M. Note values are
always functional terms.

Then we define:

M |= ∀x.C
def≡ ∀L ∈ F.(M[x :L] ⇓M′ ⊃M′ |= C) (3.23)

Dually, we have:

M |= ∃x.C
def≡ ∃L ∈ F.(M[x :L] ⇓M′ ∧ M′ |= C) (3.24)

If we restrict L above to a value, then the definition coincides with the original one in [4]. We need
to extend values to functional terms so that a term can read information from hidden locations
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(which is essentially the same as in the definition of satisfaction of equality e1 = e2). As a simple
example, consider:

M
def= (νl1, l2)(y : l1, l1 7→ l2, l2 7→ 2)

Under this model, we wish to say M |= ∃x.x =!y. But if we only allow values to range over x,
this standard tautology does not hold for M. Using the functional term !y ∈ F, we can expand the
entry x with !y, and we have:

M[x :!y] ⇓ (νl1l2)(x : l1 · y : l1, l1 7→ l2, l2 7→ 2) def= M′ ∧ M′ |= x = y

Thus using a functional terms L instead of a value V for a quantified variable is necessary due
to the similar reason for the semantics of the equality. Thus defined, the universal and existential
quantifiers satisfy the standard axioms, some of which are studied later with the property of the
functional terms.

3.6 Semantics of Hiding

The universal hiding-quantifier has the following semantics.

M |= νx.C
def≡ ∀M′.((νl)M′ ≈M ⊃ M′[x : l] |= C) (3.25)

where l is fresh, i.e. l 6∈ fl(M) where fl(M) denotes free labels in M. The notation (νl)M′ denotes
addition of the hiding of l to M′, as well as indicating that l occurs free in M′. M[x : l] adds x : l
to the environment part of M.

Dually, with l fresh again:

M |= νx.C
def≡ ∃M′.((νl)M′ ≈M ∧ M′[x : l] |= C) (3.26)

which says that x denotes a hidden reference, say l, and the result of taking it off from M satisfies
C where l is again fresh.

As an example of satisfaction, let:

M
def= (νl)({u : λ().(l :=!l +1; !l)}, {l 7→ 0}) (3.27)

then we have:
M |= νx.C (3.28)

with
C def= !x = 0 ∧ �∀i.{!x = i}u• () = z{z =!x ∧ !x = i+1} (3.29)

using the definition in (3.26) above. To see this holds, let

M′ def= ({u : λ().(l :=!l +1; !l)}, {l 7→ 0}) (3.30)

then we have (νl)M′ def≡ M and M′[x : l] |= C. Here M represents a situation where l is hidden
and u denotes a function which increments and returns the content of l; whereas M′ is the result
of taking off this hiding, exposing the originally local state, cf. [9].

Note that even the type of x is a reference type, ∀x.C substantially differs from νx.C. The
former says that for any reference x, which can be either (1) an existing free reference; (2) an
existing hidden reference reachable through dereferences; or (3) a fresh reference with an arbi-
trary content, the model satisfies C. On the other hand, the latter means that for any reference x
which is hidden in the present model, C should hold: in this case x cannot be a free reference
name hence (1) is not included.
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3.7 Semantics of Content Quantifications

Next we define the semantics of the content quantification. Let us write M[x 7→V ] for (νl̃)(ξ,σ[l 7→
V ]) with ξ(x) = l. In [4] (without local state), M |= [!x]C is defined as ∀V.M[x 7→V ] |= C which
means that for all content of x, C holds. In the presence of the local state, we simply extend the
use of values to the use of functional terms in the sense of Definition 3.6 as follows:

M |= [!e]C
def≡ ∀L ∈ F.M[e 7→ L] |= C (3.31)

where we write M[e 7→L] for (νl̃)(ξ,σ[l′ 7→V ]) where M =(νl̃)(ξ,σ), [[e]]ξ,σ = l′ and (νl̃)(Lξ,σ)⇓≈
(νl̃)(V,σ). Thus we consider the update through the assignment of an external functional term L
to a location in M under local names. By this definition, all of the axioms and the invariant rules
in [4] stay as the same.

3.8 Semantics of Reachability

We now define the semantics of reachability. Let σ be a store and S ⊂ dom(σ). Then the label
closure of S in σ, written lc(S,σ), is the minimum set S′ of locations such that: (1) S ⊂ S′ and (2)
If l ∈ S′ then fl(σ(l))⊂ S′. The label closure satisfies the following natural properties.

Lemma 3.7. For all σ, we have:

1. S ⊂ lc(S,σ); S1 ⊂ S2 implies lc(S1,σ)⊂ lc(S2,σ); and lc(S,σ) = lc(lc(S,σ),σ)
2. lc(S1,σ)∪ lc(S2,σ) = lc(S1∪S2,σ)
3. S1 ⊂ lc(S2,σ) and S2 ⊂ lc(S3,σ), then S1 ⊂ lc(S3,σ)
4. there exists σ′ ⊂ σ such that lc(S,σ) = fl(σ′) = dom(σ′).

Proof. (1,2) are direct from the definition. (3,4) immediately follow from (1,2).

For reachability, we define:

M |= e1 ↪→ e2 if [[e2]]ξ,σ ∈ lc(fl([[e1]]ξ,σ),σ) for each (νl̃)(ξ,σ)≈M

The clause says the set of hereditarily reachable names from e1 includes e2 modulo ≈.
For the programs in § 2.3 (5), we can check fw ↪→ x, fr ↪→ x and fc ↪→ z hold under fw :

λ().(x := 1), fr : λ().!x, fc : let x = ref(z) in λ().x (regardless of the store part).
The following characterisation of # is often useful for justifying axioms for fresh names.

Below σ = σ1]σ2 indicates that σ is the union of σ1 and σ2, assuming dom(σ1)∩dom(σ2) = /0.

Proposition 3.8 (partition). M |= x#u if and only if for some l̃, V , l and σ1,2, we have M ≈
(νl̃)(ξ ·u : V · x : l, σ1]σ2) such that lc(fl(V ),σ1]σ2) = fl(σ1) = dom(σ1) and l ∈ dom(σ2).

Proof. For the only-if direction, assume M |= x#u. By the definition of (un)reachability, we can
set (up to ≈) M

def= (νl̃′)(ξ · u : V · x : l, σ) such that l 6∈ lc(fl(V ),σ). Now take σ1 such that
lc(fl(V ),σ) = lc(fl(V ),σ1) = fl(σ1) = dom(σ1) by Lemma 3.7. Note by definition l 6∈ dom(σ1).
Now let σ2

def= σ\dom(σ1). Since l ∈ dom(σ), we know l ∈ dom(σ2), hence done. The if-direction
is obvious by definition of reachability. ut

The characterisation says that if x is unreachable from u then, up to≈, the store can be partitioned
into one covering all reachable names from u and another containing x.

Now we give the full definition of the satisfaction. For readability, we first list the auxiliary
definitions many of which have already been stated before.
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Notation 3.9. (a) M[u :e] denotes (νl̃)(ξ ·u : [[e]]ξ,σ,σ) where we always assume u is fresh and
the variables and labels in e are free in M.

(b) M/u denotes (νl̃)(ξ,σ) if M = (νl̃)(ξ ·u :V,σ); and if u 6∈ fv(M) we set M/u = M.
(c) M[u :N] ⇓M′ when (Nξ,σ) ⇓ (νl̃′)(V,σ′) and M′ = (νl̃ l̃′)(ξ ·u :V, σ′) with M = (νl̃)(ξ, σ).
(d) M M′ is generated by: (1) M M; and (2) if M M0 and M0[u : N] ⇓M′, then M M′.
(e) We write M[e 7→V ] for (νl̃)(ξ,σ[l 7→V ]) with M = (νl̃)(ξ,σ) and [[e]]ξ,σ = l.

Definition 3.10 (Satisfaction). The semantics of the assertions follows. All omitted cases are by
de Morgan duality.

1. M |= e1 = e2 if M[u : e1]≈M[u : e2].
2. M |= C1∧C2 if M |= C1 and M |= C2.
3. M |= ¬C if not M |= C.
4. M |=�C if ∀M′.(M M′ ⊃M′ |= C).
5. M |= ∀x.C if ∀L ∈ F.(M[x :L] ⇓M′ ⊃M′ |= C)
6. M |= νx.C if ∀M′.((νl)M′ ≈M ⊃ M′[x : l] |= C)
7. M |= ∀X.C if for all closed type α, M·X :α |= C.
8. M |= [!e]C if for each ∀L ∈ F.M[e 7→ L] |= C.
9. M |= e1 ↪→ e2 if for each (νl̃)(ξ,σ)≈M, [[e2]]ξ,σ ∈ lc(fl([[e1]]ξ,σ),σ).

10. M |= e• e′ = z{C} if ∃M′.(M[x : ee′] ⇓M′ ∧ M′ |= C).
11. M |= e• e′ = z{C}@w̃ if

∃M′.( M[z : ee′] ⇓M′ ∧ M′ |= C′ ∧
∀M′′.(M[z : let x̃ = !w̃ in let y = ee′ in w̃ := x̃] ⇓M′′ ⊃ M′′ ≈M[z : ()]))

In the defining clauses above, we assume fv(e,e1,2,e′) ⊂ fv(M), fl(e,e1,2,e′) ⊂ fl(M), fv(L) ⊂
fv(M) and fl(L)⊂ fl(M), as well as well-typedness of models and formulae.

In Definition 3.10 above, (2) and (3) are standard. (7) is from [19]. Others have already been
explained. In (11), the program let x̃ = !w̃ in let y = ee′ in w̃ := x̃ first keeps the content
of w̃ in x̃ and executes the application ee′; then finally restores the original content in w̃. By
M′′ ≈ M[z : ()] the resulting model M′′ has no state change w.r.t. the original model M, this
means ee′ only updates at w̃ up to ≈.

This concludes the introduction of the satisfaction relation for the present logic. The proper-
ties of models are explored further in the rest of this section and § 5.

3.9 Thin and Stateless Formulae

In this subsection, we introduce two kinds of formulae which play a key role in the reasoning
principles in the present logic, in particular the proof rules discussed in the next section.

The first definition introduces formulae in which the thinning of unused variables from mod-
els can be done, as in the standard logic.

Definition 3.11 (Thin Formula). Let Γ `C and y ∈ dom(Γ) such that y /∈ fv(C). Then we say
C is thin with respect to y if for each M typable under Γ, M |= C implies M/y |= C. We say C is
thin if under each typing and for each y 6∈ fv(C), C is thin w.r.t. y.

In a thin formula C, reference names which do not appear in C do not affect the meaning of
C. There are formulae which are not thin (we see some examples below) but they are of a very
special kind and from our experience they never appear in practical reasoning including our
reasoning examples in § 6.

As examples of formulae which are not thin, when an evaluation formula occurs negatively,
formulae can become not thin. Consider the following satisfaction:

(νll′)(u : λ().!l′, x : l, l 7→ l′, l′ 7→ 1) |= ♦u• () = z{z = 2}
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which means that u is a function which might return 2 someday since a value stored in l′ can be
changed via x (for example, by the command !x := 2). When we delete x from the above model,
the behaviour of u will change as follows.

(νl′)(u : λ().!l′, l′ : 1) |= �u• () = z{z = 1}

since now u always returns 1 when it is invoked. The above judgement entails:

(νl′)(u : λ().!l′, l′ : 1) 6|= ♦u• () = z{z = 2}

Hence ♦u• () = z{z = 2} is not thin. Similarly ♦�u• () = zz = 0 is not a thin formula.
As noted, formulae which are not thin hardly appear in reasoning; all formulae appearing in

§ 6 are thin; the proof rules always generate thin formulae from thin formulae. We shall however
work with general formulae since many results hold for none-thin formulae too.

The following syntactic characterisation of the thin formulae is useful.

Proposition 3.12 (Syntactically Thin Formula).

1. If Γ `C, Γ ` y : α and α ∈ {Unit,Bool,Nat}, then C is thin with respect to y.
2. e = e′,e 6= e′,e ↪→ e′ and e#e′ are thin.
3. If C,C′ are thin w.r.t. y, then C∧C′, C∨C′, ∀xα.C for all α, ∃xα.C with α∈ {Unit,Bool,Nat},
∃X.C, ∀X.C, νx.C, νx.C, �C, [!x]C and e• e′ = x{C′} are thin w.r.t. y.

Proof. (1,2) are immediate. For (3), suppose C and C′ are thin, x 6∈ fv(C,C′) and M |= C∧C′.
Then M |= C hence M/x |= C, similarly for C′, hence M/x |= C∧C′. Similarly for other cases.
Next let C be thin w.r.t. x and M |= νy.C. Then there exists M′ such that (νl)M′ ≈M and M′[y :
l] |= C. Then (νl)M′/x≈M/x. By induction, M′[y : l]/x |= C, as desired. Next let C be thin w.r.t.
x. Suppose M |= e•e′ = z{C}, i.e. M[z : ee′]⇓M′ and M′ |=C. Then we have M/x[z : ee′]⇓M′/x.
Since C is thin, we have M′/x |= C, as required. ut

The next set of formulae are stateless formulae whose validity does not depend on the state
part of the model (which come from the class of formulae with the same names in [4, 20]).

Definition 3.13 (Stateless Formula). C is stateless iff C ⊃ �C is valid. We use A,B,A′,B′, . . .
range over stateless formulae.

Proposition 3.14 (Stateless Formulae).

1. For all C, �C is stateless.
2. If C is stateless then C ≡�C ≡��C.

Proof. Both are immediate from the definition, see also § 5.2 for further related results. ut

By the definition of�C, if C is stateless then C holds in any future state starting from the present
state. The following generalisation of this notion says that the validity of a formula does not
depend on the stateful part of models except at specific locations. This notion is used for the
axioms for local invariants later.

Definition 3.15 (Stateless Formula Except x̃). We say C is stateless except x̃ if, whenever M |=
C and M M′ such that M and M′ coincide in their content at x̃ of reference types, i.e.

1. M≈ (νl̃0)(ξ, σ);
2. M′ ≈ (νl̃0 l̃1)(ξ ·ξ′, σ′); and
3. σ(ξ(xi)) = σ′(ξ(xi)) for each xi ∈ {x̃},

then M′ |= C.
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Definition 3.15 uses internal representation of models. Alternatively we may define a x̃-preserving
term which has the shape:

let ỹ = !x̃ in let z = N′ in (x̃ := ỹ;z) (3.32)

then say C is stateless except x̃ if whenever M |= C and M[u : N] ⇓M′ where N is a x̃-preserving
term we have M′ |= C.

Note that if x̃ is empty in Definition 3.15 then the third clause is vacuous: hence in this case
the definition means that for each M such that M |= C we have M M′ implies M′ |= C, that is
C is stateless.

It is convenient to be able to check the statelessness of formulae (relative to references) syn-
tactically. For inductive characterisation, we introduce the following notion. As always we as-
sume the standard bound name convention.

Definition 3.16 (Tame Formulae). The set of tame formulae are generated by the following
rules:

– e1 = e2 and e1 6= e2 are tame.
– e1 ↪→ e2 and e1 #e2 are tame.
– For any C, �C is tame.
– if C is tame then ∀yα.C, ∃yα.C, ∃X.C, ∀X.C, [!y]C and 〈!y〉C are all tame.
– if C,C′ are tame then C∧C′ and C∨C′ are tame.

If C is tame and !x (with x being free or bound) occurs neither in the scope of � nor in the scope
of [!x] or 〈!x〉 then we say !x is an active dereference in C.

The following result (though not used in the present work) is notable for carrying over the rea-
soning techniques from the logic for aliasing [4].

Proposition 3.17 (Decomposition). Suppose C is tame. Then there is tame C′ such that C ≡C′

and C′ does not contain content quantifications except under the scope of � .

Proof. The proof precisely follows that of [4, §6.1, Theorem 1]. ut

We can now introduce syntactic stateless formulae.

Definition 3.18 (Syntactic Stateless Formulae). We say C is syntactically stateless except x̃ if
C is tame and only names from x̃ are among the active dereferences in C.

Proposition 3.19. 1. If C is syntactically stateless except x̃ then C is stateless except x̃.
2. If [!x̃]C is syntactically stateless then C is stateless except x̃.

Proof. (1) is by induction of the generation of tame formulae. Base cases and�C are immediate.
Among inductive cases the only non-trivial case is quantifications of references. Suppose C is
tame and contains active dereferences at x̃y.

– If the validity of C relies on y (i.e. for M1,2 which differ only at y we have M1 |= C and
M2 6|= C) then ∀yα.C is falsity: if not ∀yα.C and C are equivalent. In either case we know C
is stateless except x̃.

– If validity of C relies on y then ∃yα.C is truth: if not ∃yα.C and C are equivalent. The rest is
the same.

– If validity of [!y]C relies on the content of y then [!y]C is falsity: the rest is the same. Similarly
for 〈!y〉C.

The cases of C∧C′ and C∨C′ are immediate by induction. (2) is an immediate corollary of (1).
ut

By (2) above we only have to check [!x̃]C is syntactically stateless to conclude C is stateless
except x̃.
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4 Proof Rules and Soundness

4.1 Hoare Triple

This subsection summaries judgements and a proof rule for local state. The main judgement
consists of a program and a pair of formulae following Hoare [13], augmented with a fresh name
called anchor [17, 19, 20].

{C}M :u {C′}.
which says:

If we evaluate M in the initial state satisfying C, then it terminates with a value, name it
u, and a final state, which together satisfy C.

Note that our judgements are about total correctness. Sequents have identical shape as those in
[4, 20]: the described computational situations is however quite different, where both C and C′

may describe behaviours and data structures with local state.
The same sequent is used for both validity and provability. If we wish to be specific, we prefix

it with either ` (for provability) or |= (for validity). We assume that judgements are well-typed
in the sense that, in {C} M :u {C′} with Γ ` M : α, Γ,∆ `C and u : α,Γ,∆ `C′ for some ∆ such
that dom(∆)∩ (dom(Γ)∪{u}) = /0.

In {C}M :u {C′}, the name u is the anchor of the judgement, which should not be in dom(Γ)∪
fv(C); and C is the pre-condition and C′ is the post-condition. The primary names are dom(Γ)∪
{u}, while the auxiliary names (ranged over by i, j,k, ...) are those free names in C and C′ which
are not primary. An anchor is used for naming the value from M and for specifying its behaviour.
We use the abbreviation {C}M{C′} to denote {C}M :u {u = ()∧C′}.

4.2 Proof Rules

The full compositional proof rules and new structure rules are given in Figure 1. In each proof
rule, we assume all occurring judgements to be well-typed and no primary names in the premise(s)
to occur as auxiliary names in the conclusion. We write C-x̃ to indicate fv(C)∩{x̃}= /0. Despite
our semantic enrichment, all compositional proof rules in the base logic [4] ([Rec-Ren] from
[18]) syntactically stay as they are, except for:

– adding the rule for the reference generation
– revising [Abs] and [App] using the one side evaluation formula
– adding the thin-ness condition in the post-condition of the conclusion in [Case], [App], [As-

sign] and [Deref]

The thinness condition is required when the anchor names used in the premise contribute to C′ in
the conclusion. The reason for this becomes clearer when we prove the soundness. This condition
doe not jeopardise the completeness of our logic. All reasoning examples we have explored meet
this condition including those in § 6.

Note that in [Add], since C′ is always thin with respect to mi by Proposition 3.12 (1), we do
not have to state this condition explicitly. Similarly for [If] since C′ is always thin with respect to
b.

[Assign] uses logical substitution which is built with content quantification to represent sub-
stitution of content of a possibly aliased reference [4].

C{|e2/!e1|}
def= ∀m.(m = e2 ⊃ [!e1](!e1 = m⊃C)).

with m fresh (we have the dual characterisation by 〈!e1〉). Intuitively C{|e2/!e1|} describes the
situation where a model satisfying C is updated at a memory cell referred to by e1 (of a reference
type) with a value e2 (of its content type), with e1,2 interpreted in the current model.
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Fig. 1 Proof Rules

[Var] −
{C[x/u]} x :u {C}

[Const] −
{C[c/u]} c :u {C}

[Add] {C}M1 :m1 {C0} {C0}M2 :m2 {C′[m1 +m2/u]}
{C}M1 +M2 :u {C′}

[In1]
{C}M :v {C′[inj1(v)/u]}
{C} inj1(M) :u {C′} [Case] {C

-x̃}M :m {C-x̃
0 } {C0[inji(xi)/m]}Mi :u {C′ -x̃}

{C} case M of {ini(xi).Mi}i∈{1,2} :u {C′}

[Proj1]
{C}M :m {C′[π1(m)/u]}
{C} π1(M) :u {C′} [Pair]

{C}M1 :m {C0} {C0}M2 :n {C′[〈m,n〉/u]}
{C} 〈M1,M2〉 :u {C′}

[Abs] {A-xĩ∧C}M :m {C′}
{A} λx.M :u {�∀xĩ.({C}u• x = m{C′})} [App]

{C}M :m {C0} {C0} N :n {m•n = u{C′}}
{C}MN :u {C′}

[If ] {C}M :b {C0} {C0[t/b]}M1 :u {C′} {C0[f/b]}M2 :u {C′}
{C} if M then M1 else M2 :u {C′}

[Deref ] {C}M :m {C′[!m/u]}
{C} !M :u {C′} [Assign] {C}M :m {C0} {C0} N :n {C′{|n/ !m|}}

{C} M := N {C′}

[Rec-Ren] {A- f } λx.M :u {B}
{A} µ f .λx.M :u {B[u/ f ]} [Ref ] {C}M :m {C′}

{C} ref(M) :u {νx.(C′[!u/m]∧u# iX ∧u = x)}

[Aux∀V] {C
-i} V :u {C′}

{C} V :u {∀i.C′} [Aux∀]
{C-i} M :u {C′} α is base type

{C} M :u {∀iα.C′}

[Conseq]C ⊃C0 {C0}M :u {C′
0}C′

0 ⊃C′

{C}M :u {C′}

[Cons-Eval]

{C0}M :m {C′
0} x fresh; ĩ auxiliary

�∀X̃.∀ĩ.{C0}x• ()=m{C′
0} ⊃ �∀X̃.∀ĩ.{C}x• ()=m{C′}

{C}M :m {C′}
We require C′ is thin w.r.t. m in [Case] and [Deref], and C′ is thin w.r.t. m,n in [App, Assign].

In rule [Ref], u# i indicates that the newly generated cell u is unreachable from any i of
arbitrary type X in the initial state: then the result of evaluating M is stored in that cell. 7

For the structural rules (i.e. those which only manipulate assertions), those given in [4, §7.3]
for the base logic stay valid except that the universal abstraction rule. [Aux∀] in [4, §7.3] needs
to be weakened as [Aux∀] and [Aux∀V] in Figure 1. We observe the original structural rule, which
does not have this condition, is not valid in the presence of new reference generation. For example
we can take:

{T} ref(3) :u {u# i∧!u = 3} (4.1)

which is surely valid. But without the side condition, we can infer the following from (4.1).

{T} ref(3) :u {∀i.(u# i∧!u = 3)}

which does not make sense (just substitute u for i). This is because of a new name generation
for which i cannot range over: such an interplay with new name generation is not possible if the
target program is a value, or if i is of a base type.

We also have an additional useful structural rule, given as [Cons-Eval] in Figure 1. This is a
strengthened version of the standard consequence rule, and is used when incorporating the axiom

7 One may write the conclusion of this rule in a notation close to Notation 2.2 (page 10) such as
{C} ref(M) :new u {C′[!u/m]} which may be useful for readability. In this paper however we inten-
tionally do not introduce this or other abbreviations for the sake of clarity.
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of the local invariant of the evaluation formula for derivations of the examples in § 6. The full list
of the structural rules can be found in Appendix B.

4.3 Located Judgements

The proof rules which explicitly denote a write set introduced in [4] as for the located evaluation
formula are of substantial help in reasoning about programs. The located Hoare triples forms:

{C}M :u {C′}@ẽ

where each ei is of a reference type and does not contain a dereference. ẽ is called effect set. We
prefix it with either ` (for provability) or |= (for validity) again if we wish to specific.

The full rules are listed in Figure 4 (proof rules) and Figure 5 (structure rules) in Appendix B.
All rules come from [4] except for the new name generation rule and the universal quantification
rule, both corresponding to the new rules in the basic proof system. The structures rules are also
revised along the line of Figure 1.

4.4 Invariance Rules for Reachability

Invariance rules are useful for modular reasoning. A simplest form is when there is no state
change:

[Inv-Val]
{C}V :m {C′}

{C∧C0}V :m {C′∧C0}
Alternatively if a formula is stateless it continues to hold irrespective of state change.

[Inv-Stateless]
{C}M :m {C′}

{C∧�C0}M :m {C′∧�C0}

When used with (un)reachability predicate, however, one needs some care. Since reachability is
a stateful property, it is generally not invariant under state change. For example, suppose x is
unreachable from y; after running y := x, x becomes reachable from y. Hence the following rule
is unsound.

[Unsound-Inv]
{C}M :m {C′}

{C∧ e#e′}M :m {C′∧ e#e′}
(unsound)

However from the following general invariance rule [Inv], we can derive an invariance rule for
# .

[Inv] {C}M :m {C′}@w̃ C0 is tame
{C∧ [!w̃]C0}M :m {C′∧ [!w̃]C0}@w̃

In [Inv], the effect set w̃ gives the minimum information by which the assertion we wish to add,
C0, can be stated as an invariant since [!w̃]C0 says that C0 holds regardless of the content of w̃.
Thus C0 can stay invariant after execution of M. Unlike the existing invariance rules as found in
[43], we need no side condition “M does not modify stores mentioned in C0”: C and C0 may even
overlap in their mentioned references, and C does not have to mention all references M may read
or write.

Then the following instance from [Inv] are useful.

[Inv-# ] {C}M :m {C′}@x no dereference occurs in ẽ
{C∧ x# ẽ}M :m {C′∧ x# ẽ}@x

In [Inv-# ], we note [!x]x# ẽ≡ x# ẽ is always valid if ẽ contains no dereference !e, cf. Proposition
5.8 3-(5) later. Hence x# ẽ is stateless except x. The side condition is indispensable: consider
{T}x := x{T}@x, which does not imply {x#!x}x := x{x#!x}@x.
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4.5 Soundness

Let M be a model (νl̃)(ξ,σ) of type Γ, and Γ `M : α with u fresh. Then validity |= {C}M :u {C′}
is given by (with M including all variables in M, C and C′ except u):

|= {C}M :u {C′} def≡ ∀M.(M |= C ⊃ (M[u :M] ⇓M′ ∧ M′ |= C′)

where the notation M[u : N] ⇓ M′ appeared in Definition 3.10(c). This is equivalent to, with
V def= λ().M:

∀M.(M[m : V ] |=�{C}m• ()=u{C′}) (4.2)

Similarly the semantics of the located judgement:

|= {C} M :u {C′}@x̃ (4.3)

is given through the corresponding located assertion, using the following term (let z be fresh).

V def= let z = ref(0) in λ().if !z = 0 then let m = M in (z :=!z+1;m) else Ω (4.4)

where Ω is a diverging closed term (in fact any closed program works). The use of the counter
z is to prevent leakage of information from m after the evaluation: after evaluation m can never
reveal any information thus it is the same thing as evaluating M once.

With this V we set the definition of (4.3) as follows:

∀M.(M[m : V ] |=�{C}m• ()=u{C′}@x̃) (4.5)

Among the proof rules the only non-trivial addition from the preceding systems (in fact the only
difference) is the rule for reference generation. For its soundness we use the following set of
reference names.

Definition 4.1 (Plain Name). We write fpn(e) for the set of free plain names of e, defined as:
fpn(x) = {x}, fpn(c) = fpn(!e) = /0, fpn(〈e,e′〉) = fpn(e)∪ fpn(e′), and fpn(inji(e)) = fpn(e).

fpn(e) is a set of reference names in e that do not occur dereferenced.

Lemma 4.2. Let u /∈ fpn(e). Then with u fresh, for all M, we have: M[u :ref(M)] ⇓M′ implies
M′ |= u#e.

Proof. M′ has shape: (νl̃l)(ξ · u : l,σ · [l 7→ V ]) with u 6∈ fv(ξ), l 6∈ fl(σ,ξ) and (νl̃0)(Mξ,σ0) ⇓
(νl̃0)(V,σ). Then one can check [[i]]ξ·u:l,σ·[l 7→V ] = [[i]]ξ,σ 6∈ lc(l,σ · [l 7→V ]) = lc(l, [l 7→V ]). ut

We can now establish:

Theorem 4.3 (soundness). ` {C}M :u {C′} implies |= {C}M :u {C′}.

Proof. Except [Ref], all rules precisely follow [4, §8.2] (albeit the use of thinness which allows
the same reasoning as in [4, §8.2] to go through). For [Ref], we have, with l fresh:

M |= C ⇒ M[m :M] ⇓M′ ∧ M′ |= C′

⇒ M[m :M][u :ref(m)] ⇓ (νl)M′′ ∧ M′′ |= C′ ∧ !u = m Hypothesis
with M′′ def= M′[u : l][l 7→V ]

⇒ M[u :ref(M)] ⇓ (νl)M′′/m ∧ M′′/m |= C′[!m/u] ∧ u# i Lemma 4.2
⇒ M′′/m[x : l] |= C′[!m/u] ∧ u# i ∧ x = u
⇒ (νl)M′′/m |= νx.(C′[!m/u] ∧ u# i ∧ x = u)

See Appendix B.1 for the full proofs. ut

Theorem 4.4 (soundness). ` {C}M :u {C′}@ẽ implies |= {C}M :u {C′}@ẽ.

Proof. As above (and for remaining rules as in [4, §8.2]). See Appendix B.1 for the invariant
rules. ut
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5 Axioms and Local Invariant

This section studies the basic axioms for the logical constructs, including those for the local state.

5.1 Axioms for Equality

Equality, logical connectives and quantifications satisfy the standard axioms (quantifications need
a modest use of thin-ness, see Proposition 5.7 later). For logical connectives, this is direct from
the definition. For equality and quantification, however, this is not immediate, due to the non-
standard definition of their semantics.

First we check the equality indeed satisfies the standard axioms for equality. We start from
the following lemmas.

Lemma 5.1. Let M has a type Γ below.

1. (injective renaming) Let u,v ∈ dom(Γ). Then M |= C iff M[uv/vu] |= C[uv/vu].
2. (permutation) Let u,v ∈ dom(Γ). Then we have M |= C iff

(uv
vu

)
M |= C[uv/vu].

3. (exchange) Let u,v 6∈ fv(e,e′). Then we have M[u :e][v :e′] |= C iff M[v :e′][u :e] |= C.
4. (partition and monotonicity) Let M = (l̃)(ξ,σ) be of type Γ and M′ = (l̃)(l̃′)(ξ ·ξ′,σ ·σ′) be

such that (fl(σ′)∪fl(ξ′))∩{l̃}= /0. Further let Γ `C. Then M |= C iff M′ |= C. In particular
with u 6∈ fv(C) we have M |= C iff M[u :V ] |= C.

5. (symmetry) M |= e1 = e2 iff for fresh and distinct u,v: M[u :e1][v :e2]≈M[u :e2][v :e1].
6. (substitution) M[u :x][v :e]≈M[u :x][v :e[u/x]]; and M[u :e][v :e′]≈M[u :e][v :e′[e/u]].

Proof. All are elementary, mostly by induction on C (proving at the same time an assertion and
its negation). ut

In (4) above, note that the extended part in M′ on the top of M may refer to free labels of M but
(since M is a model) no labels in M can ever refer to (free or bound) labels in M′.

We are now ready to establish the standard axioms for equality.

Lemma 5.2. (axioms for equality) For any model M and x, y, z and C:

1. M |= x = x, M |= x = y⊃ y = x and M |= (x = y∧ y = z)⊃ x = z.
2. M |= (C(x,y)∧ x = y)⊃C(x,x).

where C(x,y) indicates C together with some of the occurrences of x and y, while C(x,x) is the
result of substituting x for the latter, see [26, §2.4].

Proof. For the first clause, reflexivity is because M[u :x]≈M[u :x], while symmetry and transi-
tivity are from those of ≈. For the second clause, we proceed by induction on C. We show the
case where C is e1 = e2. The case C is e1 ↪→ e2 is straightforward by definition. Other cases are
by induction on C.

It suffices to prove M |= x = y and M |= C imply M |= C[x/y].

M |= x = y⇒M[u :x][v :y]≈M[u :y][v :x] (5.1)
⇒M[u :x][v :y][w :ei]≈M[u :y][v :x][w :ei] (5.2)

Here (5.1) is by Lemma 5.1.5 and (5.2) follows from the congruency of ≈.

M[u :x][v :y][w :ei]≈M[u :x][v :y][w :ei[v/y]] (Lem. 5.1(6))
≈M[u :y][v :x][w :ei[v/y]] (5.1)
≈M[u :y][v :x][w :ei[vv/xy]] (Lem. 5.1(6))
≈M[u :y][v :x][w :ei[xx/xy]] (Lem. 5.1(6))
≈M[w :ei[xx/xy]][u :y][v :x] (Lem. 5.1(3))
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M |= e1 = e2 ⇒M[u :x][v :y] |= e1 = e2 (Lem. 5.1(4))
⇒M[u :x][v :y][w :e1]≈M[u :x][v :y][w :e2]

Thus we get

M[w :e1[xx/xy]][u :y][v :x]≈M[u :x][v :y][w :e1]
≈M[u :x][v :y][w :e2]
≈M[w :e2[xx/xy]][u :y][v :x]

This allows to conclude to:

M[w :e1[xx/xy]]≈M[w :e2[xx/xy]]

which is equivalent to M |= C(x,x), as required.

5.2 Axioms for Necessity Operators

We list basic axioms for Necessity and Possibility Operators. Below recall we set♦C
def≡ ¬(�¬C).

Proposition 5.3 (Necessity Operator).

1. �(C1 ⊃C2)⊃�C1 ⊃�C2; �C ⊃C; ��C ≡�C; C ⊃♦C. Hence �C ⊃♦C.
2. (permutation and decomposition)

(a) �e1 = e2 ≡ e1 = e2 and �e1 6= e2 ≡ e1 6= e2 if ei does not contain dereference.
(b) �(C1∧C2)≡�C1∧�C2.
(c) �(C1∨C2)⊃�C1∨�C2.
(d) �∀x.C ≡ ∀x.�C and �∀x.�C ≡�∀x.C.
(e) ∃x.�C ⊃�∃x.C.
(f) �νx.C ≡ νx.�C; and νx.�C ⊃�νx.C.
(g) �∃X.C ≡ ∃X.�C; and �∀X.C ≡ ∀X.�C.
(h) � [!x]C ≡ [!x]�C ≡�C and 〈!x〉�C ≡�C ⊃�〈!x〉C.

Proof. The interesting axioms are�∀x.�C≡�∀x.C and�νx.C≡ νx.�C. For�∀x.C⊃�∀x.�C,
we have, with u,w fresh:

M |=�∀x.C ≡ ∀M′.(M[u : N][w : N′] ⇓M′ ⊃ ∀L ∈ F.(M′[x : L] ⇓M′′ ⊃M′′ |= C))
⇒ ∀M′′

0 ,L
′ ∈ F.(M[u : N][x : L′][w : N′] ⇓M′′

0 ⊃M′′
0 |= C)

⇒ ∀M0.(M[u : N] ⇓M0 ⊃ ∀M′
0,L

′ ∈ F.(M0[x : L′][w : N′] ⇓M′′
0 ⊃M′′

0 |= C)
⇒ M |=�∀x.�C

The other direction is obvious by �C ⊃C. For νx.�C ⊃�νx.C, we derive, with u fresh:

M |= νx.�C ≡ ∃M′.((νl)M′ ≈M∧∀M′′.(M′[x : l][u : N] ⇓M′′ def= (νl̃)M′′′[x : l][u : V ]⊃M′′ |= C))
≡ ∀M0.(M[u : N] ⇓M0 ⊃ ∃M′

0.(M0 ≈ (νl)M′
0∧M′

0[x : l] |= C))
with M0

def= (νl̃)(νl)M′′′[u : V ], M′
0

def= (νl̃)M′′[u : V ]
≡ M |=�νx.C

This concludes the proofs. ut

The second axiom in (d) derives fresh = fresh3 in the last example of § 2.3.
The following proposition says that �C can be translated into the evaluation formula. Recall

e• e′ ⇑ (defined in Notation 2.1, 8) means the application leads to the divergence.
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Proposition 5.4 (Perpetuity).

1. (perpetuity, 1) �C ⊃ ∀X,Y. f X⇒Y.xX.( f • x ⇓⊃ f • x = z{�C}) with z fresh.
2. (perpetuity, 2) If C is thin then �C ≡ ∀X,Y. f X⇒Y.xX.( f • x ⇓⊃ f • x = z{�C}) with z

fresh.
3. (encoding of necessity) �C ≡ ∀X. f α.((! f )• () = z{(! f )• () ⇑} ⊃ (! f )• () = z{�C}) with

α = Ref(Unit→ X) and z fresh.

Proof. Throughout we use �C ≡��C. For (1) suppose M |=�C and M[ f : L][x : L′][z : f x] ⇓
M′. Then step by step we reach M′ |=�C by the definition of�C. For (2) we show the converse.
Suppose M |=�C and M[u : N] ⇓M′. By assumption M[ f : λ().N][z : f ()] ⇓M′[ f : λ().N] such
that M′[ f : λ().N] |=C. By thinness we obtain M′ |=C as required. For (3) see Appendix C.2. ut

Above (1) says that if �C holds and if a procedure is executed and terminates then �C (hence
in particular C) holds again. (2) gives a complete characterisation of �C by evaluation formulae
when C is thin, while (3) gives the same for general formulae (the complexity of formulae is to
avoid thinness).

5.3 Axioms for Hiding

Next we list basic axioms for hiding quantifiers. The most convenient axiom is the elimination
of the hiding quantifiers which are introduced by the reference generation. To formulate this, we
need a preparation.

Definition 5.5 (Monotone/Anti-Monotone Formulae). C is monotone if M |= C and l 6∈ fl(C)
imply (νl)M |= C. C is anti-monotone if ¬C is monotone.

The proof of the following proposition is similar to Proposition 3.12.

Proposition 5.6 (Syntactic Monotone/Antimonotone Formulae).

1. T , F, e = e′, e 6= e′, e ↪→ e′ and e#e′ are monotone.
2. If C,C′ are monotone, then C∧C′, C∨C′, ∀xα.C for all α, ∃xα.C with α ∈ {Unit,Bool,Nat},
∃X.C, ∀X.C, νx.C, νx.C, �C, [!x]C, and e• e′ = x{C′} are monotone.

3. The conditions exactly dual to 1 and 2 give antimonotone formulae.

Proposition 5.7 (Axioms for ν). Below we assume there is no capture of variables in types and
formulae.

1. (introduction) C ⊃ νx.C if x 6∈ fv(C)
2. (elimination) νx.C ≡C if x 6∈ fv(C) and C is monotone.
3. For any C we have C ⊃ ∃x.C. Given C such that x 6∈ fv(C) and C is thin with respect to x, we

have ∃x.C ⊃C.
4. For any C we have ∀x.C ⊃C. For C such that x 6∈ fv(C) and C is thin with respect to x, we

have C ⊃ ∀x.C.
5. νx.(C1∧C2)⊃ νx.C1∧νx.C2.
6. νx.(C1∨C2)≡ νx.C1∨νx.C2.
7. νy.∀x.C ≡ ∀x.νy.C
8. ∃x.νy.C ⊃ νy.∃x.C and νy.∃xα.C ≡ ∃xα.νy.C with α ∈ {Unit,Bool,Nat}.
9. νy.νx.C ⊃ νx.νy.C; and νy.νx.C ≡ νx.νy.C.

10. νy.∃X.C ≡ ∃X.νy.C; and νy.∀X.C ⊃ ∀X.νy.C.
11. νy.[!x]C ⊃ [!x]νy.C and νy.〈!x〉C ⊃ 〈!x〉νy.C
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Proof. (1) is by definition. For (2), we have:

M |= νx.C ⊃ ∃M′, l.((νl)M′ ∼= M ∧ M′[x : l] |= C)
⊃ ∃M′, l.((νl)M′ ∼= M ∧ M′ |= C) Lemma 5.1 (4)
⊃ (νl)M′ |= C C is monotone

The remaining cases are easy induction. ut

For (1) and (2), it is notable that we do not generally have C ⊃ νx.C even if C is thin. Neither
νx.C ⊃C with x 6∈ fv(C) holds generally.

For the counterexample of C⊃ νx.C without the side condition, let M
def= ({x : l, x′ : l}, {l 7→

5}). Then M |= x = x′ but we do not have M |= νy.y = x′ since l is certainly not hidden (x is
renamed to fresh y to avoid confusion).

For the counterexample of νx.C ⊃ C with x 6∈ fv(C), let M
def= (νl)({u : λ().!l}, {l 7→ 5}).

Then we have:

({u : λ().!l, x : l}, {l 7→ 5}) |=�∀i.{!x = i}u• () = z{z =!x∧!x = i}

By definition of M |= νx.C, we have:

M |= νx.�∀i.{!x = i}u• () = z{z =!x∧!x = i}
⇒ M |= νx.�{!x = 0}u• () = z{z = 0}
⇒ M |= νx.�{∃y.!y = 0}u• () = z{z = 0} (∗)

(The last entailment is by the axiom (e3) in [4].) On the other hand, by definition of M, we have:
M |= �{T}u • () = z{z = 5}. Hence if we apply νx.C ≡ C to (∗), we have M |= �{∃y.!y =
0}u• () = z{z = 0}, which contradicts M |=�{T}u• () = z{z = 5}.

Note this shows that integrating these quantifiers into the standard universal and existential
quantifiers lets the latter lose their standard axioms, motivating the introduction of ν-operator:
from Proposition 5.7 (1,2,3), either ∃x.C ⊃ νx.C or νx.C ⊃ ∃x.C (with x typed by a reference
type) does not hold in general.

The content quantifications have also the useful axioms. Appendix C.3 lists the selected ones.

5.4 Axioms for Reachability

We start from the axioms for reachability. Note that our types include recursive types.

Proposition 5.8 (axioms for reachability). The following assertions are valid.

1. (1) x ↪→ x; (2) x ↪→ y∧ y ↪→ z ⊃ x ↪→ z;
2. (1) y#xα with α ∈ {Unit,Nat,Bool}; (2) x#y ⇒ x 6= y; (3) x#w∧w ↪→ u ⊃ x#u.
3. (1) 〈x1,x2〉 ↪→ y ≡ x1 ↪→ y∨x2 ↪→ y; (2) inji(x) ↪→ y ≡ x ↪→ y; (3) x ↪→ yRef(α) ⊃ x ↪→!y;

(4) xRef(α) ↪→ y∧ x 6= y ⊃ !x ↪→ y; (5) [!x]y ↪→ x ≡ y ↪→ x and [!x]x#y ≡ x#y.

Proof. 1, 2 and 3.(1–4) are direct from the definition (e.g. for 3-(2) we observe l ∈ fl(inji(V )) iff
l ∈ fl(V )). For 3-(5), suppose M |= y ↪→ x, and take M′ which only differs from M in the stored
value at (the reference denoted by) x. Since M |= y ↪→ x holds, there is a shortest sequence of
connected references from y to x which, by definition, does not include x as its intermediate node.
Hence this sequence also exists in M′, i.e. M′ |= y ↪→ x, proving [!x]y ↪→ x ≡ y ↪→ x. Similarly,
we can prove [!x]x#y ≡ x#y. ut

3-(5) says that altering the content of x does not affect reachability to x. Note [!x]y#x≡ y#x is not
valid at all. 3-(5) was already used for deriving [Inv-# ] in §4.2 (notice that we cannot substitute
!x for y in [!x]x#y to avoid name capture [4]).

Let us say α is finite if it does not contains an arrow type or a type variable. We say e ↪→ e′ is
finite if e has a finite type.
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Theorem 5.9 (elimination). Suppose all reachability predicates in C are finite. Then there exists
C′ such that C ≡C′ and no reachability predicate occurs in C′.

Proof. By Proposition 5.8 2-(1) and 3. ut

For analysing reachability with function types, it is useful to we define the following “one-step”
reachability predicate. Below e2 is of a reference type.

M |= e1B e2 if [[e2]]ξ,σ ∈ fl([[e1]]ξ,σ) for each (νl̃)(ξ,σ)≈M (5.3)

The predicate f B l′ means l′ occurs in any ∼=-variant of the program f .
The following is straightforward from the definition.

Proposition 5.10 (Support). (νl̃)(ξ,σ) |= xB l′ iff l′ ∈
T
{fl(V ) | V ∼= ξ(x)}.

The latter says that l′ is in the support [10, 38, 46] of x.
We set xBn y for n≥ 0 by:

xB0 y ≡ x = y

xB1 y ≡ xB y

xBn+1 y ≡ ∃z.(xB z ∧ !zBn y) (n≥ 1)

By definition, we immediately observe:

Proposition 5.11. x ↪→ y ≡ ∃n.(xBn y)≡ (x = y ∨ xB y ∨ ∃z.(xB z∧ z 6= y∧ z ↪→ y)).

Proposition 5.11, combined with Theorem 5.9, suggests that if we can clarify one-step reach-
ability at function types then we will be able to clarify the reachability relation as a whole.
Unfortunately this relation is inherently intractable.

Proposition 5.12 (undecidability of B and ↪→). (1) M |= f α⇒βB x is undecidable. (2) M |=
f α⇒β ↪→ x is undecidable.

Proof. For (1), let V def= λ().if M = () then l else Ref(0) with a closed PCFv-term M of type
Unit. Then f : V, x : l |= f Bx iff M ⇓, reducing the satisfiability to the halting problem of PCFv-
terms. For (2), take the same V so that the type of l and x is Ref(Nat) in which case B and ↪→
coincide. ut

The same result holds for call-by-value βη-equality. Proposition 5.12 indicates inherent intractabil-
ity of B and ↪→.

However Proposition 5.12 does not imply that we cannot obtain useful axioms for (un)reachability
for function types. We now discuss a collection of basic axioms with function types. First, the
following axiom says that if x is unreachable from f , y and w̃, then the application of f to y with
the write set w̃ never exports x.

Proposition 5.13 (unreachable functions). For an arbitrary C, the following is valid with i and
X fresh:

�{C∧ x# f yw̃} f •y=z{C′}@w̃ ⊃ �∀X, iX.{C∧ x# f iyw̃} f •y=z{C′∧ x# f iyzw̃}@w̃

Proof. See Appendix C.4. ut
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5.5 Local Invariant

We now introduce an axiom for local invariants. Let us first consider a function which writes
to a local reference of a base type. Even programs of this kind pose fundamental difficulties in
reasoning, as shown in [27]. Take the following program:

compHide
def= let x = ref(7) in λy.(y >!x) (5.4)

The program behaves as a pure function λy.(y > 7). Clearly, the obvious local invariant !x = 7
is preserved. We demand this assertion to survive under arbitrary invocations of compHide: thus
(naming the function u) we arrive at the following invariant:

C0
def≡ !x = 7 ∧ �∀y.{!x = 7}u• y = z{!x = 7}@ /0 (5.5)

Assertion (5.5) says: (1) the invariant !x = 7 holds now; and that (2) once the invariant holds, it
continues to hold for ever (note x can never be exported due to the type of y and z, so that only u
will touch x). Using this assertion, compHide satisfies the following with i fresh:

{T}compHide :u {νx.(x# iX ∧ C0 ∧ C1)} (5.6)

C1
def≡ �∀y.{!x = 7}u• y = z{z = (y > 7)}@ /0. (5.7)

Thus, noting C0 is only about the content of x (in fact it is syntactically stateless except x in the
sense of Definition 3.18, page 20), we can conclude C0 continues to hold automatically over any
future computation by any programs. Hence we cancel C0 together with x:

{T}compHide :u {�∀y.u• y = z{z = (y > 7)}} (5.8)

which describes a purely functional behaviour. Below we stipulate the underlying reasoning prin-
ciple as an axiom. Let y,z be fresh. We define:

Inv(u,C0, x̃)
def≡ C0 ∧ (�∀yi.{C0}u• y ⇓⊃�∀yi.{C0}u• y=z{C0 ∧ x̃#z}) (5.9)

where C0 ⊃ x̃# iy. Inv(u,C0,x) says that currently C0 holds; and that if C0 holds, applying u to y
results in, if it ever converges, C0 again and the returned z is disjoint from x̃. The axiom also uses:

x ↪→′ ỹ
def≡ ∀z.(x ↪→ z⊃ z ∈ {ỹ} (5.10)

Thus x ↪→′ ỹ says that all references reachable from x are inside {ỹ}. We write x̃ ↪→′ ỹ for the
conjunction ∧ixi ↪→′ ỹ. The axiom follows.

Proposition 5.14 (axiom for information hiding). Assume C0≡C′
0∧ x̃# iy∧ g̃ ↪→′ x̃, C′

0 is state-
less except x̃, C is antimonotone, C′ is monotone, i,m are fresh and {x̃, g̃}∩(fv(C,C′)∪{w̃}) = /0.
Then the following is valid:

(AIH) ∀X.∀iX.m• ()=u{(νx̃.∃g̃.E1)∧E} ⊃ ∀X.∀iX.m• ()=u{E2∧E}

with

– E1
def≡ Inv(u,C0, x̃)∧�∀yi.{C0∧C}u• y=z{C′}@w̃x̃ and

– E2
def≡ �∀y.{C}u• y=z{C′}@w̃.

Proof. See Appendix C.5. ut
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(AIH) is used with the refined consequence rule [Cons-Eval] (cf. Figure 1, page 22) to simplify
from E1 to E2, eliminating hidings. Its validity is proved using Proposition 3.8. The axiom 8 says:

if a function u with a fresh reference xi is generated, and if it has a local invariant C0 on
the content of xi, then we can cancel C0 together with xi.

Note that:

– The statelessness of C0 except x̃ ensures that satisfiability of C0 is not affected by state change
except at x̃; and

– ∃g̃ in E1 allows the invariant to contain usual free variables, extending applicability of the
axiom, for example in the presence of circular references as we shall use in §6 for safeEven.
g̃ ↪→′ x̃ ensures that g̃ are contained in the x̃-hidden part of the model.

Coming back to compHide, we take, for (AIH):

1. C′
0 to be !x = 7 which is syntactically stateless except x;

2. C0 to be C′
0∧ x# i;

3. s̃ and w̃ empty,
4. both C and E to be T (which is anti-monotonic by Proposition 5.6, page 27), and
5. C′ to be z = (y > 7) (which is monotonic by the same proposition),

thus arriving at the desired assertion.
(AIH) eliminates ν from the post-condition based on local invariants. The following axiom

also eliminates νx, this time solely based on freshness and disjointness of x.

Proposition 5.15 (ν-elimination). Let x 6∈ fv(C) and m, i,X be fresh. Then the following is valid:

∀X, iX.m• ()=u{νx̃.([!x̃]C∧ x̃#uiX)} ⊃ m• ()=u{C} (5.11)

Proof. See Appendix C.6. ut

This proposition says that if a hidden (and newly created) location x in the post-state is completely
hidden and is disjoint from any asserted data including the used function itself and those in the
pre-state, then we can safely neglect it (in this sense it is a garbage collection rule when we are
not concerned with newly created variables).

The following axiom stipulates how an invariant can be transferred by a function (caller)
which uses another function (callee) when the latter (caller) exclusively affect a set of references
unreachable from the former (callee).

Proposition 5.16 (invariant by application). Assume C0 is stateless except at x̃, C0 ⊃ x̃#y and
y 6∈ fv(C0). Then the following is valid.

(�∀y.{C0} f • y=z{C0}@x̃ ∧ �{C}g• f =z{C′}) ⊃ �{C∧C0∧ x̃#g}g• f = z{C0∧C′}

Proof. See Appendix C.7. ut

The axiom says that the result of applying a function g disjoint from each local reference xi in x̃,
to the argument function f which satisfies a local invariant exclusively at x̃, again preserves that
local invariant.

Proposition 5.16 may be considered as a higher-order version of Proposition 5.13 and in fact
is closely related in that both depend on localised effects of a function at references.

8 In Proposition 5.14, we believe that the monotonicity of C′ and anti-monotonicity of C are unnecessary,
though the present proof uses them.

31



6 Reasoning Examples

This section demonstrates the usage of the proposed logic through concrete reasoning examples.

6.1 New Reference Declaration

We first show a useful derived rule given by the combination of “let” and new reference genera-
tion.

[LetRef]
{C}M :m {C0} {C0[!x/m]∧ x# ẽ} N :u {C′} x /∈ fpn(ẽ)

{C} let x = ref(M) in N :u {νx.C′}

where C′ is thin w.r.t. m. Above fpn(e) denotes the set of free plain names of e which are reference
names in e that do not occur dereferenced, defined in Definition 4.1. The notation x# ẽ appeared
in Notation 2.1 in § 2.3. The rule reads:

Assume (1) executing M with precondition C leads to C0, with the resulting value named
m; and (2) running N from C0 with m as the content of x together with the assumption x
is unreachable from each ei, leads to C′ with the resulting value named u. Then running
let x = Ref(M) in N from C leads to C′ whose x is fresh and hidden.

The side condition x 6∈ fpn(ei) is essential for consistency (e.g. without it, we could assume x#x,
i.e. F); and νx.C′ cannot be strengthened to x# i ∧ C′ since N may store x in an existing reference.
The rule directly gives a proof rule for new reference declaration [27, 37, 43], new x := M in N,
which has the same operational behaviour as let x = ref(M) in N.

We can derive [LetRef] as follows. Below i is fresh.

1. {C}M :m {C0} (premise)

2. {C0[!x/m]∧ x# ẽ} N :u {C′} with x /∈ fpn(ẽ) (premise)

3. {C} ref(M) :x {νy.(C0[!x/m]∧ x# i∧ x = y)} (1,Ref)

4. {C} ref(M) :x {νy.(C0[!x/m]∧ x# ẽ∧ x = y)} (Subs n-times)

5. {C0[!x/m]∧ x# ẽ∧ x = y} N :u {C′∧ x = y} (2, Invariance)

6. {C} let x = ref(M) in N :u {νy.(C′∧ x = y)} (4,5,LetOpen)

7. {C} let x = ref(M) in N :u {νx.C′} (Conseq)

[LetOpen] is the rule for let to open the scope:

[LetOpen]
{C}M :x {νỹ.C0}@ẽ1 {C0} N :u {C′}@ẽ2

{C} let x = M in N :u {νỹ.C′}@ẽ1ẽ2

where C′ is thin w.r.t. x. [Subs] is found in Figure 6 in Appendix.

6.2 Shared Stored Function

We present a simple example of hiding-quantifiers and unreachability using incShared in (1.2)
from § 1.

incShared
def= a :=Inc;b :=!a;c1 :=(!a)();c2 :=(!b)();(!c1+!c2)
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Naming it u, the assertion inc′(u,x,n) below captures its behaviour:

inc(x,u)
def≡ �∀ j.{!x = j}u• ()= j +1{!x = j +1}@x.

inc′(u,x,n)
def≡ !x = n∧ inc(x,u).

The following derivation for incShared sheds light on how shared higher-order local state can
be transparently reasoned in the present logic. For brevity we work with the implicit global
assumption that a,b,c1,c2 are pairwise distinct and safely omit an anchor from the judgement
when the return value is a unit type.

1. {T} Inc :u {νx.inc′(u,x,0)}

2. {T} a := Inc {νx.inc′(!a,x,0)} (1, Assign)

3. {inc′(!a,x,0)} b :=!a {inc′(!a,x,0)∧ inc′(!b,x,0)} (Assign)

4. {inc′(!a,x,0)} c1 := (!a)() {inc′(!a,x,1)∧!c1 = 1} (Assign)

5. {inc′(!b,x,1)} c2 := (!b)() {inc′(!b,x,2)∧!c2 = 2} (App etc.)

6. {!c1 = 1∧!c2 = 2} (!c1)+(!c2) :u {u = 3} (Deref etc.)

7. {T} incShared :u {νx.u = 3} (2–6, LetOpen)

8. {T} incShared :u {u = 3} (Conseq)

Line 1 is by [LetRef]. Line 8 uses Proposition 5.7(2), νx.C ⊃C.
To shed light on how the difference in sharing is captured in inferences, we list the inference

for a program which assigns distinct copies of Inc to a and b,

incUnShared
def= a :=Inc;b :=Inc;c1 :=(!a)();c2 :=(!b)();(!c1+!c2)

This program assigns to a and b two separate instances of Inc. This lack of sharing between a
and b in incUnShared is captured by the following derivation:

1.{T} Inc :m {νx.inc(u,x,0)}

2.{T} a := Inc {νx.inc(!a,x,0)}

3.{inc(!a,x,0)} b := Inc {νy.inc′(0,0)}

4.{inc′(0,0)} z1 := (!a)() {inc′(1,0)∧!z1 = 1}

5.{inc′(1,0)} z2 := (!b)() {inc′(1,1)∧!z2 = 1}

6.{!z1 = 1∧!z2 = 1} (!z1)+(!z2) :u {u = 2}

7.{T} incUnShared :u {νxy.u = 2}

8.{T} incUnShared :u {u = 2}

Above inc′(n,m)
def≡ inc(!a,x,n)∧ inc(!b,y,m)∧x 6= y. Note x 6= y is guaranteed by [LetRef]. This

is in contrast to the derivation for incShared, where, in Line 3, x is automatically shared after
“b :=!a” which leads to scope extrusion.
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6.3 Memoised Factorial (from [39])

Next we treat a memoised factorial (1.4) in Introduction.

memFact
def= let a = ref(0), b = ref(1) in

λx.if x =!a then !b else (a := x ; b := fact(x) ; !b)

Above fact is the standard factorial function.
Our target assertion specifies the behaviour of a pure factorial.

Fact(u)
def≡ �∀x.u• x = y{y = x!!!}@ /0.

The following inference starts from the let-body of memFact, which we name V . We set:

E1a
def≡ �∀xi.{C0}u• x=y{C0∧ab#y}@ab

E1b
def≡ �∀xi.{C0∧C}u• x=y{C′}@ab

and we set C0 to be ab# ix ∧ !b =(!a)!!!, C to be T, and C′ to be y = x!!!. Note that !b =(!a)!!! is
stateless except ab by Proposition 5.8(5); and that, by the type of x being Nat and Proposition
5.8 2-(1), we have ab#x ≡ T.

We can now reason:

1.{T}V :u {∀xi.{C0}u• x=y{C0 ∧ C′}}@ /0

2.{T}V :u {!b=(!a)!!!∧E1a∧E1b} (1, Conseq)

3.{ab# i}V :u {ab# i∧!b=(!a)!!!∧E1a∧E1b} (2 Inv-#)

4.{T} memFact :u {νab.(C0∧E1a∧E1b)} (2, LetRef)

5.m•()=u{νab.(C0∧E1a∧E1b)} ⊃ m•()=u{Fact(u)} (?)

6.{T} memFact :u {Fact(u)} (4,5,ConsEval)

Line 2 uses the axiom {C} f • x=y{C1∧C2}@w̃ ⊃ ∧i=1,2{C} f • x = y{Ci}@w̃ (in [4]). Line 5
uses (AIH).

6.4 Information Hiding (2): Stored Circular Procedures

We next consider the stored higher order functions which mimic the stored procedure.
We start a simple one circFact from [20] which uses a self-recursive higher-order local

store.
circFact

def= x := λz.if z = 0 then 1 else z× (!x)(z−1)
safeFact

def= let x = ref(λy.y) in (circFact; !x)

In [20], we have derived the following judgement.

{T}circFact :u {CircFact(u,x)}@x (6.1)

where
CircFact(u,x)

def≡ �∀n.{!x = u}!x•n = z{z = n!∧!x = u}@ /0 ∧ !x = u

which says:

After executing the program, x stores a procedure which would calculate a factorial if x
stores that behaviour, and that x does store the behaviour.
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We now show safeFact named u satisfies Fact(u). Below we use:

CFa
def≡ �∀n.{!x = u}!x•n = z{!x = u}@ /0

CFb
def≡ �∀n.{!x = u}!x•n = z{z = n!!!}@ /0

(note that x#z≡ T and x#n≡ T by Proposition 5.8 (2)-1).

1.{T}λy.y :m {T}@ /0

2.{T}circFact ; !x :u {CircFact(u,x)}@x

3.{T}circFact ; !x :u {!x = u ∧ CFa ∧ CFb}@x (2, Conseq)

4.{x# i}circFact ; !x :u {x# i∧!x = u∧CFa∧CFb}@x (3, Inv-#)

5.{T}safeFact :u {νx.(C0∧CFa∧CFb)}@ /0 (4, LetRef)

6.m•()=u{νx.(C0∧CFa∧CFb)} ⊃ m•()=u{Fact(u)} (?)

7.{T}safeFact :u {Fact(u)}@ /0 (5, 6, ConsEval)

Line 1 is immediate. Line 2 is (6.1). Line 6, (?) is by (AIH), Proposition 5.14, setting C0
def≡

x# i ∧ !x = u, C
def≡ E

def≡ T and C′ def≡ y = x!!!.

6.5 Mutually Recursive Stored Functions

Now we investigate the program from (1.6) in Introduction. The reasoning easily extends to
programs which use multiple locally stored, and mutually recursive, procedures.

We first verify the let-body in Appendix D.1.

{T}mutualParity :u {∃gh.IsOddEven(gh, !x!y,xy,n)} (6.2)

where, with Even(n)≡ ∃x.(n=2× x) and Odd(n)≡ Even(n+1):

IsOddEven(gh,wu,xy,n)
def≡ (IsOdd(w,gh,n,xy) ∧ IsEven(u,gh,n,xy) ∧ !x = g ∧ !y = h)

IsOdd(u,gh,n,xy)
def≡ �∀n.{!x = g ∧ !y = h}u•n=z{z = Odd(n) ∧ !x = g ∧ !y = h}@xy

IsEven(u,gh,n,xy)
def≡ �∀n.{!x = g ∧ !y = h}u•n=z{z = Even(n) ∧ !x = g ∧ !y = h}@xy

where IsOdd(u,gh,n,xy) says that

x stores a procedure which checks if its argument is odd if y stores a procedure which
does the dual, and x does store the behaviour.

Similarly for IsEven(u,gh,n,xy). Our aim is to derive the following judgement for safeEven
starting from (6.2) (the case for safeOdd is symmetric).

{T}safeEven :u {∀n.�u•n = z{z = Even(n)}@ /0}

We first identify the local invariant:

C0
def≡ !x = g ∧ !y = h ∧ IsEven(h,gh,n,xy) ∧ xy# i jn ∧ gh ↪→′ xy

Note we have a free variable h. Since C0 only talks about g, h and the content of x and y, we
know !x = g ∧ !y = h ∧ IsEven(h,gh,n,xy) is stateless except x,y; and xy#n ≡ xy#z ≡ T by
Proposition 5.8 (2)-1.
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Let us define:

ValEven(u)
def≡ �∀n.{T}u•n=z{z = Even(n)}@ /0

Evena
def≡ �∀n.{C0}u•n=z{C0}@xy

Evenb
def≡ �∀n.{C0}u•n=z{z=Even(n)}@xy

The derivation is given as follows.

1.{T}λn.t :m {T}@ /0

2.{T}mutualParity ; !y :u {∃gh.IsOddEven(gh,gu,xy,n)}@xy

3.{T}mutualParity ; !y :u {∃gh.(!x = g∧!y = h∧ IsOdd(g,gh,n,xy)∧Evena ∧ Evenb)}@xy

4.{xy# i j}mutualParity ; !y :u {∃gh.(C0 ∧ Evena ∧ Evenb)}@xy

5.{T}safeEven :u {νxy.∃gh.(C0 ∧ Evena ∧ Evenb)}@ /0

6.{T}m•()=u{νxy∃gh.(C0 ∧ Evena∧Evenb)} ⊃ {T}m•()=u{ValEven(u)} (by (AIH))

7.{T}safeEven :u {ValEven(u)}@ /0

As we can see, the derivation has as the same pattern as memoFact and safeFact.

6.6 Higher-Order Invariant (from [46, p.104])

We move to a program whose invariant behaviour depends on another function. The program
instruments an original program with a simple profiling (counting the number of invocations).

profile
def= let x = ref(0) in λy.(x :=!x+1; f y)

Since x is never exposed, this program should behave precisely as f . Thus our aim is to derive:

{�∀y.{C} f • y = z{C′}@w̃} profile :u {�∀y.{C}u• y = z{C′}@w̃} (6.3)

with x 6∈ fv(C,C′) (by the bound name condition) and arbitrary anti-monotonic C and monotonic
C′.

This judgement says:

if f satisfies the specification E
def≡ �∀y.{C} f • y = z{C′}@w̃, then profile satisfies

the same specification E.

To derive (6.3), we first set C0, the invariant, to be x# f iyw̃.
As with the previous derivations, we use two subderivations.
First we derive:

E
def≡ �∀y.{C} f • y = z{C′}@w̃

⊃ E0
def≡ �∀yi.{C ∧ x# f iyw̃} f • y=z{C′}@w̃x Axiom (e8) in [20]

⊃ E1
def≡ �∀yi.{C ∧ x# f iyw̃} f • y = z{x#z f iyw̃}@w̃x Proposition 5.13

⊃ E2
def≡ �∀yi.{C ∧ x# f iyw̃} f • y = z{C′ ∧ x#z f iyw̃}@w̃x Axiom (e8) in [20]

where Axiom (e8) in [20] is given as:

(C ⊃C0 ∧ {C0}x• y=z{C′
0} ∧ C′

0 ⊃C) ⊃ {C}x• y=z{C′}
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and from E1 ⊃ E2, we use the first axiom in Proposition 5.3 (1). We also let E3
def≡ �∀yi.{[!x]C ∧

C0} f • y = z{C′ ∧ C0}@w̃x. The inference follows.

1.{T}x :=!x+1{T}@x (Assign)

2.{[!x]C∧E ∧ x# f iyw̃} x :=!x+1 {C∧E ∧ x# f iyw̃}@x (Inv-# , Conseq)

3.{C∧E ∧C0} f y :z {C′∧C0}@w̃x (App, Conseq)

4.{[!x]C∧E ∧C0}x := x+1; f y :z {C′∧C0}@xw̃ (2, 3, Seq)

5.{E} λy.(x := x+1; f y) :u {E3}@ /0 (4, Abs, Inv)

6.{E} λy.(x := x+1; f y) :u {Inv(u,C0,x)}@ /0 (Similar to 1-5 from E2)

7.{E}profile{νx.(Inv(u,C0,x) ∧ E3)}@ /0 (5, 6, LetRef)

8.m• () = u{νx.(Inv(u,C0, x̃) ∧ E3)} ⊃ m• () = u{E} (?)

9.{E}profile :u {E}@ /0 (7, 8, ConsEval)

Above in Line 2, we note E is tame (because of � ) and [!x]E, hence [Inv] becomes applicable.
Line 6 is inferred by Proposition 5.14.

6.7 Nested Local Invariant (from [22, 27])

The next example uses a function with local state as an argument to another function. Let Ω
def=

µ f .λ().( f ()). even(n) tests for evenness of n.

MeyerSieber
def= let x = ref(0) in let f = λ().x :=!x+2

in (g f ; if even(!x) then () else Ω())

Note Ω() immediately diverges. Since x is local, and because g will have no way to access
x except by calling f , the local invariant that x stores an even number is maintained. Hence
MeyerSieber satisfies the judgement:

{E ∧C} MeyerSieber {C′} (6.4)

where, with x,m 6∈ fv(C,C′):

E
def≡ ∀ f .(� f • (){T}@ /0 ⊃ �{C}g• f{C′})

(anchors of type Unit are omitted). The judgement (6.4) says that:

if feeding g with a total and effect-free f always satisfies {C}g• f{C′}, then MeyerSieber
starting from C also terminates with the final state C′.

Note such f behaves as skip.
For the derivation of (6.4), from an axiom for reachability we can derive E ⊃ E ′ where

E ′ def≡ ∀ f .(� f • (){T}@x ⊃ �{[!x]C∧ x#g}g• f{[!x]C′})

Further λ().x :=!x+2 named f satisfies both A1
def≡ �{T} f •(){T}@x and A2

def≡ �{Even(!x)} f •
(){Even(!x)}@x.

From A1 and E ′ we obtain A′1
def≡ �{[!x]C∧ x#g}g• f{[!x]C′}.
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Using Proposition 5.16, A′1 and A2 we obtain:

{Even(!x)∧ [!x]C∧E ∧ x#gi}M{[!x]C′∧ x# i}

with M def= let f = λ().x :=!x+2 in (g f ; if even(!x) then () else Ω()).
We then apply a variant of [LetRef] (replacing C0[!x/m] in the premise of [LetRef] in §4.2

with [!x]C0∧ !x = m) to obtain

{E ∧C} MeyerSieber {νx.([!x]C′∧ x# i)}

Finally by Prop. 5.15 (noting the returned value has a base type, cf. Prop.5.8 2-(1)), we reach
{E ∧C} MeyerSieber {C′}. The full derivation is given in Appendix D.2.

6.8 Information Hiding (5): Object

As a final example of this section, we treat information hiding for a program with state, a small
object encoded in imperative higher-order functions, taken from [22] (cf.[8, 35, 36]). The follow-
ing program generates a simple object each time it is invoked.

cellGen
def= λz.

let x0,1 = ref(z) in let y = ref(0) in(
λ().if even(!y) then !x0 else !x1,
λw.(y :=!y+1 ; x0,1 := w)

) 
The object has a getter and a setter. Instead of having one local variable, it uses two with the
same content, of which one is read at each odd-turn of the “read” requests, another at each even-
turn. When writing, it writes the same value to both. Since having two variables in this way
does not differ from having only one observationally, we expect the following judgement to hold
cellGen:

{T} cellGen :u {CellGen(u)} (6.5)

where we set:

CellGen(u)
def≡ �∀zi.u• z = new o{Cell(o,x)∧!x = z}@ /0

Cell(o,x)
def≡ �∀v.{!x = v}π1(o)• () = z{z = v ∧ !x = v}@ /0 ∧�∀w.π2(o)•w{!x = w}@x

Using the abbreviation in (2.12) in Notation 2.2 in § 2.3, Cell(o,x) says that π1(o), the getter of
o, returns the content of a local variable x; and π2(o), the setter of o, writes the received value
to x. Then CellGen(u) says that, when u is invoked with a value, say z, an object is returned
with its initial fresh local state initialised to z. Note both specifications only mention a single
local variable. A straightforward derivation of (6.5) uses !x0 =!x1 as the invariant to erase x1:
then we α-converts x0 to x to obtain the required assertion Cell(o,x). See Appendix D.3 for full
inferences.

7 Extension, Related Work and Future Topics

For the space sake, detailed comparisons with existing program logics and reasoning methods,
in particular with Clarke’s impossibility result, Caires-Cardelli’s spatial logic [9] (which contain
a hiding quantifier used in a concurrency setting), as well as other logics such as LCF, Dynamic
logic, higher-order logic and specification logic are left to our past papers [4, 17, 19, 20]. Below
we focus on directly related work that treats locality and freshness in higher-order languages.
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7.1 Three Completeness Results

We discuss the completeness properties of the proposed logic. A strong completeness property
called descriptive completeness is studied in [18], which is provability of a characteristic asser-
tion for each program (i.e. an assertion characterising a program’s behaviour uniquely up to the
observational congruence). In [18], we have shown that, for our base logic, this property directly
leads to two other completeness properties, relative completeness (which says that provability
and validity of judgements coincide) and observational completeness (which says that validity
precisely characterises the standard contextual equivalence).

The proof of descriptive completeness closely follows [18]. Relative and observational com-
pleteness are its direct corollaries. For the space sake, we only state the latter, which we regard
as a basic semantic property of the logic.

Write ∼= for the standard contextual congruence for programs [35]; further write M1 ∼=L M2
to mean (|= {C}M1 :u {C′} iff |= {C}M2 :u {C′}). We have:

Theorem 7.1 (observational completeness). For each Γ;∆ `Mi : α (i = 1,2), we have M1 ∼=L

M2 iff M1 ∼= M2.

Following [18], the proposed logic also satisfies the standard relative completeness for formulae
representing total correctness properties; and for each program the logic can derive its character-
istic formula. Theorem 7.1 is in fact a consequence of this last completeness property. The results
and proofs are detailed in [3].

7.2 Local Variable in Hoare Logic

To our knowledge, Hoare and Wirth [15] are the first to present a rule for local variable declara-
tion. In our notation, their rule is written as follows.

[Hoare-Wirth]
{C∧ x 6= ỹ}P{C′} x 6∈ fv(C′)∪{ỹ}
{C[e/!x]} new x := e in P {C′}

Because this rule assumes references are never exported beyond their original scope, there is no
need to have x in C′. Since aliasing is not permitted in [15] either, we can also dispense with
x 6= ỹ in the premise. [LetRef] in § 6.2 differs from [Hoare-Wirth] in that the former can treat
aliased references, higher-order procedures and new references generation extruded beyond their
original scope. [Hoare-Wirth] is derivable from [LetRef], [Assign] and ν-elimination in Prop. 5.15.

Among the studies on verification methods for ML-like languages [2, 31], Extended ML [44]
is a formal development framework for Standard ML. A specification is given by combining a
module’ signature and algebraic axioms on them. Correctness of an implementation w.r.t. a spec-
ification is verified by incremental syntactic transformations. Larch/ML [47] is a design proposal
of a Larch-based interface language for ML. Integration of typing and interface specification is
the main focus of the proposal in [47]. These two works do not (aim to) offer a program logic
with compositional proof rules; nor do either of these works treat specifications for functions
with dynamically generated references.

7.3 Related Work and Future Topics

Reasoning Principles for Functions with Local State. There is a long tradition of studying
equivalences over higher-order programs with local state. Meyer and Sieber [27] present ex-
amples and reasoning principles based on denotational semantics. Mason, Talcott and others
[21, 24, 25] investigate equational axioms for an untyped version of the language treated in the
present paper, including local invariance. Pitts and Stark [37, 39, 46] present powerful operational
reasoning principles for the same ML-fragment considered here, including reasoning principle
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for local invariance at higher-order types [39]. Our axioms for information hiding in § 5, which
capture a basic pattern of programming with local state, are closely related with these reason-
ing principles. Our logic differs in that its aim is to offer a method for describing and validating
properties of programs beyond program equivalence. Equational and logical approaches are com-
plimentary: Theorem 7.1 offers a basis for integration. For example, we may consider deriving a
property of the optimised version M′ of M: if we can easily verify {C}M :u {C′} and if we know
M ∼= M′, we can conclude {C}M′ :u {C′}, which is useful if M is better structured than M′.

Separation Logic. The approach by Reynolds et al. [43] represents fresh data generation by rel-
ative spatial disjointness from the original datum, using a sub-structural separating conjunction.
This method captures a significant part of program properties. The proposed logic represents
freshness as temporal disjointness through generic (un)reachability from arbitrary data in the
initial state. The presented approach enables uniform treatment of known data types in verifica-
tion, including product, sum, reference, closure, etc., through the use of anchors, which matches
the observational semantics precisely: we have examined this point through several examples,
including objects from [22], circular lists from [23], and tree-, dag- and graph-copy from [7].
These results will be reported in future expositions. Reynolds [43] criticises the use of reachabil-
ity for describing data structures, taking in-place reversal of a linear list as an example. Following
§ 6, tractable reasoning is possible for such examples using reachability combined with [Inv] and
located assertions, see [48].

Birkedal et al. [6] present a “separation logic typing” for a variant of Idealised Algol where
types are constructed from formulae of disjunction-free separation logic. The typing system uses
subtyping calculated via categorical semantics, the focus of their study. The work [5] extends
separation logic with higher-order predicates (higher-order frame rule), and demonstrates how the
extension helps modular reasoning about priority queues. Both works consider neither exportable
fresh reference generation nor higher-order/stored procedures in full generality, so it would be
difficult to represent assertions and validate the examples in § 6. Examining the use of higher-
order predicate abstraction in the present logic is an interesting future topic.

Other Hoare Logics. Nanevski et al. [32, 33] study Hoare Type Theory (HTT) which combines
dependent types and Hoare triples with anchors based on monadic understanding of computa-
tion. HTT aims to provide an effective general framework which unifies standard static checking
techniques and logical verifications. Their system emphasises the clean separation between static
validation and assertions. In their later work [32], the integration of programs and specifications
in HTT is further pursued by introducing local state. Because of their basis in type theory, one
interesting aspect is that their “Hoare Triple” of the form “{P}x : A{Q}” is in fact a type and
that A can contain an arbitrary complex specification. Note that the use of type theory does pro-
hibit potentially useful assertions about circular data structures and references (this is called a
“smallness” condition). The use of monad in their logic poses a question whether if we equip
the underlying programming language with monad what reasoning principles we may obtain as
a refinement of the present program logic.

Reus and Streicher [41] present a Hoare logic for a simple language with higher-order stored
procedures, extended in [40], with primitives for the dynamic allocation and de-allocation of
references. Soundness is proved with denotational methods, but completeness is not proved. Their
assertions contain quoted programs, which is necessary to handle recursion via stored functions.
Their language does not allow procedure parameters and general reference creation.

No work mentioned in this section studies local invariance.

Meta-Logical Study on Freshness. Freshness of names has recently been studied from the
viewpoint of formalising binding relations in programming languages and computational calculi.
Pitts and Gabbay [10, 38] extend first-order logic with constructs to reason about freshness of
names based on the theory of permutations. The key syntactic additions are the (inter-definable)
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“fresh” quantifier Nand the freshness predicate #, mediated by a swapping (finite permutation)
predicate. Miller and Tiu [28] are motivated by the significance of generic (or eigen-) variables
and quantifiers at the level of both formulae and sequents, and split universal quantification in
two, introduce a self-dual freshness quantifier ∇ and develop the corresponding sequent calculus
of Generic Judgements. While these logics are not program logics, their logical machinery may
well be usable in the present context. As noted in Proposition 5.11, reasoning about ↪→ or #
is tantamount to reasoning about B, which denotes the support (the semantic notion of freely
occurring locations) of a datum/program. A characterisation of support by the swapping operation
may lead to deeper understanding of reachability axiomatisations.
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A Appendix: Reductions and Typing Rules

A.1 Reductions

A reduction relation, or often reduction for short, is a binary relation between configurations,
written

(νl̃)(M,σ1) −→ (νl̃′)(N,σ2)
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The relation is generated by the following rules. First, we have the standard rules for the call-by-
value PCF:

(λx.M)V → M[V/x]

π1(〈V1,V2〉) → V1

if t then M1 else M2 → M1

(µ f .λg.N)W → N[W/g][µ f .λg.N/ f ]

case in1(W ) of {ini(xi).Mi}i∈{1,2}→M1[W/x1]

The induced reduction becomes that for open configurations (hence for configurations with empty
binder) by stipulating:

M −→M′

(M,σ)−→ (M′,σ)

Then we have the reduction rules for imperative constructs, i.e. assignment, dereference and
new-name generation.

(!l, σ) → (σ(l), σ)

(l := V, σ) → ((), σ[l 7→V ])

(ref(V ), σ) → (ν l)(l, σ] [l 7→V ])

(new x := V in N,σ) −→ (ν l)(N[l/x],σ] [l 7→V ]) (l fresh)

Fig. 2 Typing Rules

[Var] −
Γ,x : α ` x : α

[Label] −
Γ · l : α ` l : α

[Constant] −
Γ ` cC : C

[Add]
Γ `M1,2 : Nat

Γ `M1+M2 : Nat
[Eq]

Γ `M1,2 : Nat
Γ `M1 =M2 : Bool

[If ] Γ `M : Bool Γ ` Ni : αi (i = 1,2)
Γ ` if M then N1 else N2 : α

[Abs] Γ,x :α `M : β

Γ ` λxα.M : α⇒β
[App] Γ `M : α⇒β Γ ` N : α

Γ `MN : β

[Rec] Γ,x :α⇒β ` λyα.M : α⇒β

Γ ` µxα⇒β.λyα.M : α⇒β
[Iso] Γ `M : α α≈ β

Γ `M : β

[Deref ] Γ `M : Ref(α)
Γ `!M : α

[Assign] Γ `M : Ref(α) Γ ` N : α

Γ `M := N : Unit

[Ref] Γ `V : α

Γ ` ref(V ) : Ref(α) [New]Γ `M : α Γ,x : Ref(α) ` N : β

Γ ` new x := M in N : β

[Inj] Γ `M : αi
Γ ` ini(M) : α1+α2

[Case] Γ `M : α1+α2 Γ,xi :αi ` Ni : β

Γ ` case M of {ini(x
αi
i ).Ni}i∈{1,2} : β

[Pair] Γ `Mi : αi (i = 1,2)
Γ ` 〈M1,M2〉 : α1×α2

[Proj] Γ `M : α1×α2
Γ ` πi(M) : αi (i = 1,2)
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Finally we close −→ under evaluation contexts and ν-binders.

(νl̃1)(M,σ)→ (νl̃2)(M′,σ′)
(νl̃ l̃1)(E[M],σ)→ (νl̃ l̃2)(E[M′],σ′)

where l̃ are disjoint from both l̃1 and l̃2, E[ · ] is the left-to-right evaluation context (with eager
evaluation), inductively given by:

E[ · ] ::= (E[ · ]M) | (VE[ · ]) | 〈V,E[ · ]〉 | 〈E[ · ],M〉 | πi(E[ · ]) | ini(E[ · ])
| op(Ṽ ,E[ · ],M̃) | if E[ · ] then M else N | case E[ · ] of {ini(xi).Mi}i∈{1,2}
| !E[ · ] | E[ · ] := M | V := E[ · ] | ref(E[ · ]) | new x := E[ · ] in M

A.2 Typing Rules

The typing rules are standard [35], which we list in Figure 2 for reference (from first-order
operations we only list two basic ones). In the first rule of Figure 2, cC indicates a constant c
has a base type C.

We also list the typing rules for terms and formulae in Figure 3.

Fig. 3 Typing rules for terms and formulae

−
Γ ` x : Γ(x)

−
Γ ` n : Nat

−
Γ ` t, f : Bool

−
Γ ` l : Γ(l)

Γ ` e : Bool
Γ ` ¬e : Bool

Γ ` ei : αi
Γ ` 〈e1, e2〉 : α1×α2

Γ ` e : αi
Γ ` injα1+α2

i (e) : α1 +α2

Γ ` e : Ref(α)
Γ `!e : α

Γ ` ei : αi
Γ ` e1 = e2

Γ `C
Γ ` ¬C

Γ `C1,2
Γ `C1 ?C2

? ∈ {∧,∨,⊃} Γ · x :α `C
Γ ` Qxα.C

Q ∈ {∀,∃}

Γ · x :Ref(α) `C
Γ ` Qx.C Q ∈ {ν,ν} Γ `C

Γ ` QX.C Q ∈ {∀,∃} Γ ` e : Ref(α) Γ `C
Γ ` [!e]C

Γ ` e : Ref(α) Γ `C
Γ ` 〈!e〉C

Γ ` e1 : α⇒β Γ ` e2 : α Γ · z : β `C
Γ ` e1 • e2 = z{C}

Γ `C
Γ `�C

Γ `C
Γ ` ♦C

Γ ` e : α Γ ` e′ : Ref(β)
Γ ` e ↪→ e′

Γ ` e : Ref(α) Γ ` e′ : β

Γ ` e#e′

A.3 Observational Congruence

Define:
(νl̃)(M,σ) ⇓ (νl̃′)(V,σ′)

def≡ (νl̃)(M,σ)→∗ (νl̃′)(V,σ′)

Further set:

(νl̃)(M,σ) ⇓ def≡ (νl̃)(M,σ) ⇓ (νl̃′)(V,σ′) for some (νl̃′)(V,σ′).

Assume Γ, l̃1,2 : α̃1,2 `M1,2 : α. Then we write

Γ ` (νl̃1)(M1,σ1)∼= (νl̃2)(M2,σ2)
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if, for each typed context C[ · ] which produces a closed program which is typed as Unit under ∆

and in which no labels from l̃1,2 occur, the following holds:

(νl̃1)(C[M1], σ1) ⇓ iff (νl̃2)(C[M2], σ2) ⇓

which we often write (νl̃1)(M1,σ1) ∼= (νl̃2)(M2,σ2) leaving type information implicit. We also
write Γ`M1 ∼= M2, or simply M1 ∼= M2 leaving type information implicit, if, l̃i = σi = /0 (i = 1,2).

B Appendix: Proof Rules

Fig. 4 Derived compositional rules for located assertions

[Var] −
{C[x/u]} x :u {C}@ /0

[Const] −
{C[c/u]} c :u {C}@ /0

[Add] {C}M1 :m1 {C0}@ẽ1 {C0}M2 :m2 {C′[m1 +m2/u]}@ẽ2
{C}M1 +M2 :u {C′}@ẽ1ẽ2

[In1]
{C}M :v {C′[inj1(v)/u]}@ẽ
{C} inj1(M) :u {C′}@ẽ

[Case] {C
-x̃}M :m {C-x̃

0 }@ẽ1 {C0[inji(xi)/m]}Mi :u {C′ -x̃}@ẽ2
{C} case M of {ini(xi).Mi}i∈{1,2} :u {C′}@ẽ1ẽ2

[Proj1]
{C}M :m {C′[π1(m)/u]}@ẽ
{C} π1(M) :u {C′}@ẽ

[Pair]
{C}M1 :m1 {C0}@ẽ1 {C0}M2 :m2 {C′[〈m1,m2〉/u]}@ẽ2

{C} 〈M1,M2〉 :u {C′}@ẽ1ẽ2

[Abs] {C∧A-xĩ}M :m {C′}@ẽ
{A} λx.M :u {�∀xĩ.({C}u• x = m{C′})}@ /0

[Rec-Ren] {A-x} λy.M :u {B}@ẽ
{A-x} µx.λy.M :u {B[u/x]}@ẽ

[App]{C}M :m {C0}@ẽ {C0}N :n {m•n = u{C′}ẽ2}@ẽ1
{C}MN :u {C′}@ẽẽ1ẽ2

[If ] {C}M :b {C0}@ẽ1 {C0[t/b]}M1 :u {C′}@ẽ2 {C0[f/b]}M2 :u {C′}@ẽ2
{C} if M then M1 else M2 :u {C′}@ẽ1ẽ2

[Deref ] {C}M :m {C′[!m/u]}@ẽ
{C} !M :u {C′}@ẽ

[Assign] {C}M :m {C0}@ẽ1 {C0} N :n {C′{|n/ !m|}}@ẽ2 C0 ⊃ m = e′

{C} M := N {C′}@ẽ1ẽ2e′

[Ref] {C}M :m {C′}@ẽ
{C} ref(M) :u {νx.(C′[!u/m]∧u# iX ∧u = x)}@ẽ

We require C′ is thin w.r.t. m in [Case] and [Deref], and C′ is thin w.r.t. m,n in [App, Assign].

B.1 Proofs of Soundness

We prove the soundness theorem. We use the following lemma.

Lemma B.1 (Substitution and Thinning).

1. If M |= C∧u = V , then M[u : V ] |= C.
2. Suppose m,m1,m2 6∈ fv(M,C)∪{u,v}. Then:

(a) If (νl̃)M[m : V ][u : inji(m)] |= C, then (νl̃)M[u : inji(V )] |= C.
(b) If (νl̃)M[m : V ][u : π1(m)] |= C, then (νl̃)M[u : π1(V )] |= C.
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Fig. 5 Structural Rules for Located Judgements.

[Inv] {C}M :m {C′}@w̃
{C∧ [!w̃]C0}M :m {C′∧ [!w̃]C0}@w̃

[Inv-Val] {C}V :m {C′}@ /0

{C∧C0}V :m {C′∧C0}@ /0
[Inv-# ] {C}M :m {C′}@x no dereference occurs in ẽ

{C∧ x# ẽ}M :m {C′∧ x# ẽ}@x

[Cons] C ⊃C0 {C0}M :u {C′
0}@ẽ C′

0 ⊃C′

{C}M :u {C′}@ẽ
[Cons-Eval]

{C0}M :m {C′
0}@ẽ x fresh; ĩ auxiliary

∀ĩ.{C0}x• ()=m{C′
0} ⊃ ∀ĩ.{C}x• ()=m{C′}

{C}M :m {C′}@ẽ

[∧-⊃] {C∧A}V :u {C′}@ /0

{C}V :u {A⊃C′}@ /0
[⊃-∧] {C}M :u {A⊃C′}@ẽ

{C∧A}M :u {C′}@ẽ

[∨-Pre] {C1}M :u {C}@ẽ {C2}M :u {C}@ẽ
{C1∨C2}M :u {C}@ẽ [∧-Post] {C}M :u {C1}@ẽ {C}M :u {C2}@ẽ

{C}M :u {C1∧C2}@ẽ

[Aux∃]
{C}M :u {C′ -i}@ẽ
{∃i.C}M :u {C′}@ẽ

[Aux∀V ] {C-i}V :u {C′}@ẽ
{C}V :u {∀iα.C′}@ẽ

[Aux∀]
{C-i}M :u {C′}@ẽ α is of a base type.

{C}M :u {∀iα.C′}@ẽ

[Auxinst]
{C(iα)}M :u {C′(iα)}@~e α atomic

{C(cα)}M :u {C′(cα)}@~e
[Auxabst]

∀cα. {C(cα)}M :u {C′(cα)}@ẽ
{C(iα)}M :u {C′(iα)}@ẽ

[Weak] {C}M :m {C′}@ẽ
{C}M :m {C′}@ẽe′

[Thinning] {C∧!e′ = i}M :m {C′∧!e′ = i}@ẽe′ i fresh
{C}M :m {C′}@ẽ

Fig. 6 Other Located Proof Rules.

[New] {C}M :m {C0}@ẽ1 {C0[!x/m]∧ x# ẽ} N :u {C′}@ẽ2x x /∈ fpn(ẽ)
{C} let x = ref(M) in N :u {νx.C′}@ẽ1ẽ2

[Rec] {A-xi∧∀ j � i.B( j)[x/u]} λy.M :u {B(i)-x}@ẽ
{A} µx.λy.M :u {∀i.B(i)}@ẽ

[Let] {C}M :x {C0}@ẽ {C0} N :u {C′}@ẽ′

{C} let x = M in N :u {C′}@ẽẽ′
[LetOpen] {C}M :x {νỹ.C0}@ẽ1 {C0} N :u {C′}@ẽ2

{C} let x = M in N :u {νỹ.C′}@ẽ1ẽ2

[Simple] −
{C[e/u]}e :u {C}@ẽ [IfH] {C∧ e} M1 {C′}@ẽ {C∧¬e} M2 {C′}@ẽ

{C} if e then M1 else M2 {C′}@ẽ

[AppS]C ⊃ {C}e• (e1..en) = u{C′}@ẽ′

{C} e(e1..en) :u {C′}@ ẽ′
[Subs] {C}M :u {C′}@ẽ′ u 6∈ fpn(e)

{C[e/i]}M :u {C′[e/i]}@ẽ′

[Seq] {C} M {C0}@ẽ {C0} N {C′}@ẽ′

{C} M;N {C′}@ẽẽ′
[Seq-Inv] {C1} M {C′

1}@ẽ1 {C2} N {C′
2}@ẽ2

{C1 ∧ [!ẽ1]C2} M;N {C′
2 ∧ 〈!ẽ2〉C′

1}@ẽ1ẽ2

C′ is thin w.r.t. m in [New and x in [Let, LetOpen]. C′
1 and C2 are tame in [Seq-Inv].
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(c) If (νl̃)M[m1 : V1][m2 : V2][u : 〈m1, m2〉] |= C, then (νl̃)M[u : 〈V1, V2〉] |= C.
(d) Suppose l 6∈ fl(M). Then (νl̃l)M[m : l][u : V ][l 7→V ] |= C implies (νl̃)M[u : V ] |= C
(e) Suppose l 6∈ fl(M) and fv(V )∪fl(V ) = /0. Then (νl)M[m : l][l 7→V ] |= C implies M |= C.
(f) Suppose l 6∈ fl(M) and fv(V )∪fl(V ) = /0. Then M[m : l][l 7→V ] |= C implies M |= C.

3. M |= ∀m.(m = e2 ⊃ [!e1](!e1 = m⊃C)) iff M[x 7→ [[e]]ξ,σ] |= C

Below we write:

M ⇓M′ |= C′ for M ⇓M′ ∧ M′ |= C′

We start with [Var].

M |= C[x/u] ⇒ M |= C∧u = x
⇒ M[u :x] |= C Lemma B.1(1)

Similarly for [Const] using Lemma B.1(1). Next, [Add] is proved as follows:

M |= C ⇒ M[m1 :M1] ⇓M1 |= C0 IH
⇒ M1[m2 :M2] ⇓M2 |= C′[m1 +m2/u] IH
⇒ M[m1 :M1][m2 :M2][u :m1 +m2] ⇓M′ |= C′

⇒ M[u :M1 +M2] ⇓M′/m1m2 |= C′ Proposition 3.12 (1)

[Inj1] is proved as:

M |= C ⇒ M[m :M] ⇓ (νl̃)M′[m : V ] |= C′[inj1(m)/u] IH
⇒ M[m :M][u :inj1(m)] ⇓ (νl̃)M′[m : V ][u : inj1(V )] |= C′ Lemma B.1(1)
⇒ (νl̃)M′[u : inj1(V )] |= C′ Lemma B.1(2-a)
⇒ M[u :inj1(M)] |= C′

[Proj] and [Pair] are similarly proved using Lemma B.1(2-b,c) respectively.
For [Case], we reason:

M |= C ⇒ M[m :M] ⇓ (νl̃′)M0[m : inji(V )] |= C0

if M = (νl̃)(ξ,σ), (νl̃)(Mξ,σ) ⇓ (νl̃′)(inji(V ),σ′), and M0 = (ξ,σ′)

⇒ (νl̃′)M0[m :inji(V )] |= C0∧m = inji(xi)

⇒ (νl̃′)M0[m :inji(xi)][u :Mi] ⇓ (νl̃′′)M′[m :inji(V )][u :W ] |= C′

⇒ (νl̃′′)M′[u :W ] |= C′

The last line is by the thinness of C′ with respect to m.
Now we reason for [Abs]. We note, if A is stateless (cf. Definition 3.13) and M |= A, then:

M[u :M] ⇓M′ with u fresh implies M′ |= A.

M |= A⊃M[u :λx.M] |=�∀xĩ.{C}u• x=m{C′}
≡ M |= A⊃M[u :λx.M][x :Nx][ĩ : Ñ][k :N] ⇓M′ ∧ M≈M′/xĩ ∧ M′ |= {C}u• x=m{C′}
≡ M |= A⊃ ((M[u :λx.M][x :Nx][ĩ : Ñ][k :N] ⇓M′ ∧ M≈M′/xĩ ∧ M′ |= C)

⊃M′[m : ux] ⇓M′′ ∧ M′′ |= C′)
≡ M |= A⊃ ((M[u :λx.M][x :Nx][ĩ : Ñ][k :N] ⇓M′ ∧ M≈M′/xĩ ∧ M′ |= C∧A)

⊃M′[m : ux] ⇓M′′ ∧ M′′ |= C′)
⊂ M′ |= A∧C ⊃ (M′[m :M] ⇓M′′∧M′′ |= C′)
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[App] is reasoned as follows. Below k fresh.

M |= C ⇒ M[m :M] ⇓M0 |= C0

⇒ M[n :N] ⇓M1 |= C1∧m•n = n{C′}
⇒ M[m :M][n :N][u :mn] ⇓M′ |= C′

⇒ M[m :M][n :N][u :MN] ⇓M′ |= C′

⇒ M[u :MN] ⇓M′/mn |= C′

The last line is derived by the thinness of C′ with respect to m,n.
For [Deref ], we infer:

M |= C ⇒ M[m :M] ⇓M′ |= C′[!m/u]
⇒ M[m :!M] ⇓M′/m |= C′

For [Assign] Assume u is fresh.

M |= C ⇒ M[m :M] ⇓M0 |= C0

⇒ M0[n :N] ⇓M′ |= C′{|n/!m|}
⇒ M′[m 7→ n] ⇓M′′ |= C′ Lemma B.1(3)
⇒ M[u :M := N] ⇓M′′/mn[u :()] |= C′ ∧ u = ()

For [Rec-Ren],

M |= A ⇒ M[u :λx.M] |= B

⇒ M[ f :µ f .λx.M][u :λx.M] |= A

⇒ M[ f :µ f .λx.M][u :µ f .λx.M] |= A

⇒ M[u :µ f .λx.M] |= f = u⊃ A

⇒ M[u :µ f .λx.M] |= A[u/ f ] Lemma B.1(1)

[If] is similar with [Add] using Proposition 1.
[Ref] appeared in the main text (the second last line uses Lemma B.1(2-d) to delete m).
We complete all cases. ut

B.2 Soundness of Invariant Rule

Among the structural rules, here we prove the soundness of the main invariance rule, [Inv] in
Figure 5.

Lemma B.2. Suppose C is tame and M |= C. Suppose M
u1..un M′ and M ≈ M/u1..un. Then

M′ |= C.

Proof. By mechanical induction on C noting it only contains evaluation formulae under � . ut

Lemma B.3. Suppose M |= [!w̃]C and C is tame. Then for each M and M′ if (M[u :M] ⇓M′ and
M[z : let x̃ = !w̃ in let y = M in w̃ := x̃] ⇓M′′ s.t. M′′/z≈M then we have M′ |= C.

Proof. For simplicity we assume w̃ is a singleton (the general case is the same). Let M |= [!w]C
and C be tame. Suppose M[u : M] ⇓ M′ such that only the content of w is affected. We let with
appropriate closed V0:

M[x :!w][y : ref(V0)][u : let m = M in (y :=!w;w := x;m)] ⇓M′′ M≈M′′/xyu (B.1)
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Hence by Lemma B.2 we have:
M′′ |= [!w]C (B.2)

Further note
M′′[w 7→!y] ⇓M′′′ M′ ≈M′′′/xy (B.3)

By (B.2) and (B.3) we obtain M′′′ |= C. By Lemma B.2 and this, we have M′ |= C, as required.
ut

We now prove:

Proposition B.4. The following rule is sound.

[Inv] {C}M :m {C′}@w̃ C0 is tame
{C∧ [!w̃]C0}M :m {C′∧ [!w̃]C0}@w̃

Proof. Assume {C}M :u {C′}@w̃. Then by definition, for each M such that M |= C we have:

M[u :M] ⇓M′ |= C′ (B.4)
M[z : let x̃ = !w̃ in let y = ee′ in w̃ := x̃] ⇓M′′ s.t. M′′/z≈M (B.5)

Then:

M `C ∧ [!w̃]C0
⇒ M ` [!w̃][!w̃]C0 (by the axiom [!w̃][!w̃]C0 ≡ [!w̃]C0)
⇒ ∀M′,M.((M[u :M] ⇓M′ ∧

M[z : let x̃ = !w̃ in let y = ee′ in w̃ := x̃] ⇓M′′ ≈M[z : ()]⊃M′ |= [!w̃]C0)
⇒ M′ |= C′ ((B.4,B.5) above)
⇒ M′ |= C′ ∧ [!w̃]C0

Hence we have {C∧ [!w̃]C0}M :m {C′∧ [!w̃]C0}@w̃, as required. ut

C Appendix: Soundness of the Axioms

This appendix lists the omitted proofs from Section 5. In § C.2, we prove the basic lemma and
propositions. In § C.3, we show the axioms for the content quantifications. In § C.5, we prove
(AIH)-axioms.

Proof of the Basic Axioms

C.1 Proofs of Lemma 5.1

For (1), both directions are simultaneously established by induction on C, proving for both C and
its negation. If C is e1 = e2, we have, letting M

def= (νỹ)(ξ,σ), δ
def= [uv/vu] and ξ′

def= ξδ:

M |= e1 = e2
⇒ M[x : e1]≈M[x : e2]
⇒ (νỹ)(ξ · x : [[e1]](ξ,σ), σ)∼=id (νỹ)(ξ · x : [[e2]](ξ,σ), σ)
⇒ (νỹ)(ξ′·x : [[e1δ]](ξ′,σ), σ)∼=id (νỹ)(ξ′·x : [[e2δ]](ξ′,σ), σ) (∗)
⇒ Mδ[x : e1δ]≈Mρ[x : e2δ]
⇒ Mδ |= (e1 = e2)δ
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Above (∗) used [[ei]](ξ,σ)
def= [[eiδ]](ξ′,σ). Dually for its negation. The rest is easy by induction. (2)

is by precisely the same reasoning. (3) is immediate from (1) and (2). (4) is similar, for which we
again show a base case.

M′ |= e1 = e2
⇔ M[x : e1]≈M[x : e2] (Def)
⇔ M[x : e1][u : e]≈M[x : e2][u : e] (congruency of ≈)
⇔ M[u : e][x : e1]≈M[u : e][x : e2] ((3) above)

Dually for the negation. For (5), the “only if” direction:

M |= e1 = e2
⇔ M[u : e1]≈M[u : e2] (Def)
⇔ M[u : e1][v : e2]≈M[u : e2][v : e2] ∧

M[u : e2][v : e2]≈M[u : e2][v : e1] ((3) above)
⇒ M[u : e1][v : e2]≈M[u : e2][v : e1].

Operationally, the encoding of models simply removes all references to u,v and replaces them by
positional information: hence all relevant difference is induced, if ever, by behavioural differences
between e1 and e2, which however cannot exist by assumption. The “if” direction is immediate
by projection.

(6) is best argued using concrete models. For the former, let M = (νỹ)(ξ,σ) and let ξ(x) =W .
We infer:

M[u :x][v :e] def= (νỹ)(ξ·u : W ·v : eξ, σ)
def= (νỹ)(ξ·u : W ·v : (e[u/x])ξ, σ)

For the latter, let M = (νỹ)(ξ,σ) and W = [[e]]ξ,σ (the standard interpretation of e by ξ and σ).
We then have

M[u :e][v :e′] ≈ (νỹ)(ξ·u : W ·v : [[e′]]ξ,σ, σ)
def= (νỹ)(ξ·u : W ·v : [[e′[e/u]]]ξ,σ, σ)

The last line is because the interpretation is homomorphic. ut

C.2 Proof of Proposition 5.4

Proposition 5.4. �C ≡ ∀X. f α.((! f ) • () = z{(! f ) • () ⇑} ⊃ (! f ) • () = z{C}) with α =
Ref(Unit→ X).

Let C′ def= ∀X. f α.(! f • () = z{(! f ) • () ⇑} ⊃ (! f ) • () = z{C}) and L = let x = N in f :=
λ().Ω;x where Ω is a divergence term with type X.

For �C ⊃C′, we have:

M |=�C ⊃ ∀N1,N2.(M[ f : N1][u : N2] ⇓M′ ⊃M′ |= C)
⊃ M[ f : ref(L)][u : (! f )()] ⇓M′ ∧ M′ |= C

For C′ ⊃�C,

M |= C′ ⊃ (νl)(M[ f : ref(L)][u : (! f )()]) ⇓ (νl)(M′[ f : l][l 7→ λ().Ω]) |= C
⊃ M′ |= C Lemma B.1 (2-e)
⊃ ∀M′.(M M′ ⊃M′ |= C)
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C.3 Axioms for Content Quantifications

The axiomatisation of content quantification in [4] uses the the well-known axioms [26, §2.3]
for standard quantifiers. In spite of presence of local state, most of the axioms are valid in the
presence of local state, though complete axiomatisation remains to be studied.

Proposition C.1 (Axioms for Content Quantifications). Recall A denotes the stateless for-
mula.

1. [!x]A≡ A
2. [!x]!y = z≡ x 6= y∧!y = z
3. [!x]([!x]C1 ⊃C2)⊃ ([!x]C1 ⊃ [!x]C2).
4. [!x][!x]C ≡ [!x]C
5. [!x][!y]C ≡ [!y][!x]C
6. [!x](C1∧C2)≡ [!x]C1∧ [!x]C2
7. [!x]C1∨ [!x]C2 ⊃ [!x](C1∨C2)

Proof. For (1), assume M |= �A. By definition, for all N, if M[u : N] ⇓M′, then M′ |= A. This
implies: for all V and L ∈ F, if M[u : x := V ;L] ⇓ M′, then M′ |= A, which means M |= [!x]A.
Others are proved as in [4, Appendix C].

C.4 Proof of Proposition 5.13

Proposition 5.13. For an arbitrary C, the following is valid with i,X fresh:

�{C∧ x# f yw̃} f •y=z{C′}@w̃ ⊃ �∀X, iX.{C∧ x# f iyw̃} f •y=z{C′∧ x# f iyzw̃}@w̃

Proof. The proof traces the transition of state using the elementary fact that the set of names and
labels in a term always gets smaller as reduction goes by. Suppose we have

M |=�{x# f yw∧C} f •y=z{C′}@w

with x 6∈ fv(C,C′) The definition of the evaluation formula says:

(M M0 ∧ M0 |= x# f ywi∧C) ⊃ ∃M′.(M[z : f y] ⇓M′∧M′ |= C′)).

We prove such M′ always satisfies M′ |= x# f iyzw. Assume

M0 ≈ (ν~l)(ξ,σ0]σx)

with ξ(x) = l, ξ(y) = Vy, ξ( f ) = Vf and ξ(w) = lw such that

lc(fl(Vf ,Vy, lw),σ0]σx) = fl(σ0) = dom(σ0)

and lx ∈ dom(σx). By this partition, during evaluation of z : f y, σx is unchanged, i.e.

(ν~l)(ξ · z : f y,σ0]σx)→→ (ν~l)(ξ · z : VfVy,σ0]σx)→→ (ν~l′)(ξ · z : Vz,σ
′
0]σx)

Then obviously there exists σ1 such that σ1 ⊂ σ′0 and

lc(fl(Vz, lw),σ′0]σx) = fl(σ1) = dom(σ1)

Hence by Proposition 3.8, we have M0 |= x# f yiwz, completing the proof. ut
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C.5 Proof of Propositions 5.14

Proposition 5.14. Assume C0≡C′
0∧ x̃# iy∧ g̃ ↪→′ x̃, C′

0 is stateless except x̃, C is anti-monotone,
C′ is monotone, i,m are fresh and {x̃, g̃}∩ (fv(C,C′)∪{w̃}) = /0. Then the following is valid:

(AIH) ∀X.∀iX.m• ()=u{(νx̃.∃g̃.E1)∧E} ⊃ ∀X.∀iX.m• ()=u{E2∧E}

with

– E1
def≡ Inv(u,C0, x̃)∧�∀yi.{C0∧C}u• y=z{C′}@w̃x̃ and

– E2
def≡ �∀y.{C}u• y=z{C′}@w̃.

Proof. W.l.o.g. we assume all vectors are unary, setting r̃ = r, w̃ = w, x̃ = x and g̃ = g. The proof
proceeds as follows, starting from the current model M0.

Stage 1 We take M such that:
M0

m
 M

We then take off the hiding, name it x and the result is called M∗

(νl)(M∗/x)≈M.

Stage 2 We further let M evolve so that:

M
u
 M′

We then again take off the corresponding hiding, name it x and the result is called M′
∗

(νl)(M′
∗/x)≈M′

Stage 3 We show if M∗ satisfies C0 then again M′
∗ satisfies C0 again:

M∗ |= C0 ⊃ M′
∗ |= C0

using Inv(u,C0, x̃) as well as the unreachability of x from u.

By reaching Stage 3, we know if M |= C then it is also the case M∗ |= C0∧C hence we can use
the assumption (together with monotonicity of C′):

∀yi.{C0∧C}u• y=z{C′}@w̃x̃

hence we know we arrive at C′ as a result.
We now implement these steps. We set:

E ≡ T. (C.1)

The trivialisation of E (taken as truth) is just for simplicity and does not affect the argument.
Now fix an arbitrary M0 and suppose we reach:

M0
m
 M (C.2)

This gives the status of the postcondition of the whole formula (to be precise this is through the
encoding in § 4.5, (4.4), page 24 to relate m• () and the transition above). Assuming the hidden
x in the formula in E1 is about a (fresh) l we can set:

M
def= (νl)(νl̃′)(ξ,σ · [l 7→V ]) |= νx.∃g.E1 (C.3)
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as well as by revealing l:

M∗
def= (νl̃′)(ξ · x : l ·g : U,σ · [l 7→V ]) |= E1 (C.4)

Note by assumption we have:
l 6∈ fl(ξ,σ). (C.5)

Further U does not contain any hidden or free locations from M by g ↪→′ x̃.
Now we consider the right-hand side of E1, �∀yi.{C0∧C}u • y = z{C′}@w̃x̃ by taking for

fresh N:
M[ f : N] ⇓M′ (C.6)

Corresponding to the relationship between M and M∗ we set:

M∗[ f : N] ⇓M′
∗ (C.7)

Note we have
(νl)(M′

∗/xg)≈M′ (C.8)

We now show:
M∗ |= C0 ⊃ M′

∗ |= C0 (C.9)

that is C0 is invariant under the evaluation (effects) of N. Assume

M∗ |= C0 (C.10)

First observe
M∗ |= C0 ∧ x#yrw (C.11)

Now in the standard way N can be approximated by a finite term, that is a term which does
not contain recursion except divergent programs. We take N as such an approximation without
loss of generality. Such N can be written as a sequence of let expressions including assignments.
Without loss of generality we focus on a “let” expression which is either a function call or an
assignment. Then at each evaluation we have either:

– The let has the form let x = uV in M′ that is it invokes u;
– The let has the form let x = WV in M′ where W is not u.
– The let has the form w′ := V ;M′.

We observe:

– In the first case u is directly invoked: thus by the invariance Inv(u,C0, x̃), C0 continues to
hold. Note w′ is not x since N has no access to x except through u.

– In the second case of the let (i.e. u is not called), since x is disjoint from all visible data, by
Proposition 5.13 we know x (hence the content of x) is never touched by the execution of the
function body after the invocation, until again u is called (if ever): since C0 is insensitive to
state change except at x (by being stateless except x), it continues to hold again in this case.

– In the third case again x is not touched hence C0 continues to hold.

Thus we have:
M′

∗ |= C0 (C.12)

Now suppose we have
M |= C (C.13)

By anti-monotonicity of C we have
M∗/xg |= C (C.14)
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By Lemma 5.1 (4), page 25, we can arbitrarily weaken a disjoint extension (at x and g) so that:

M∗ |= C (C.15)

Thus we know:
M′

∗ |= C0 ∧ C (C.16)

Now we can apply:
M′ |= νx.∃g.∀y.{C0∧C}u• y=z{C′}@w̃x (C.17)

by which we know:
M′

∗[z : uy] ⇓M′′
∗ |= C′ (C.18)

Accordingly let
M′[z : uy] ⇓M′′ ≈ (νl)(M′′

∗/x) (C.19)

for which we know, by (C.18) and (C.19) together with monotonicity of C′:

M′′ |= C′ (C.20)

Hence we know:
M |= {C}u• y = z{C′}@w (C.21)

which is the required assertion. ut

C.6 Proof of Proposition 5.15

Proposition 5.15. Let x 6∈ fv(C) and m, i,X be fresh. Then the following is valid:

∀X, iX.m• ()=u{νx̃.([!x̃]C∧ x̃#uiX)} ⊃ m• ()=u{C}

Proof. For simplicity, set x̃ to be a singleton x. Assume

M[u : m()] ⇓M′

By assumption we can set

M′ ≈ (νl)(νl̃′)(ξ ·u : V,σ · l 7→W )

such that
(νl̃′)(ξ ·u : V · x : l,σ · l 7→W ) |= [!x]C

where l is not reachable from anywhere else in the model. By Lemma B.1 we obtain (νl̃′)(ξ ·u :
V,σ) |= C, that is M′ |= C, as required. ut

C.7 Proof of Proposition 5.16

Assume C0 is stateless except x̃ and suppose:

M |= Inv( f ,C0, x̃) ∧ {T}g• f = z{T}). (C.22)

Further assume M M0 and

M0 |= C0∧ x̃#gr̃ and M0[z : f g] ⇓M′. (C.23)

By Inv( f ,C0, x̃) we know that once C0 holds and f is invoked, it continues to hold. By {T}g• f =
z{T}, we know the application g f always terminates. Now this application invokes f zero or
more times. First time it can only apply f to some x̃-unreachable datum. Similarly for the second
time, since the context cannot obtain x̃-reachable datum (given g itself is x̃-unreachable). By
induction the same holds up to the last invocation. In each invocation, C0 is invariant. Further,
other computations in f g never touch the content of x̃, hence because of C0 being stateless except
x̃, we know C0 is again invariant in such computations. Thus we conclude that C0 still holds in
the post-condition, and that the return value being x̃-unreachable, i.e. x̃#z, as required. ut
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D Derivations for Examples in Section 6

This appendix lists the derivations omitted in Section 6.

D.1 Derivation for mutualParity

Let us define:
Mx

def= λn.if y = 0 then f else not((!y)(n−1))
My

def= λn.if y = 0 then t else not((!x)(n−1))

We also use:

IsOdd′(u,gh,n,xy)
def≡ IsOdd(u,gh,n,xy)∧ !x = g ∧ !y = h

IsEven′(u,gh,n,xy)
def≡ IsEven(u,gh,n,xy)∧ !x = g ∧ !y = h

Then we have: Figure 7 lists the derivation for MutualParity. In Line 4, h in the evaluation
formula can be replaced by !y and vice versa because of !y = h and the universal quantification
of h.

∀h.(!y = h∧{C}h•n = z{C′}) ≡ ∀h.(!y = h∧{C}(!y)•n = z{C′})

In Line 5, we use the following axiom for the evaluation formula from [20]:

{C∧A} e1 • e2 = z{C′} ≡ A ⊃ {C}e1 • e2 = z{C′}

where A is stateless and we set A = IsEven(h,gh,n− 1,xy). Line 9 is derived as Line 4 by
replacing h and g by !y and !x, respectively. Line 11 is the standard logical implication (∀x.(C1 ⊃
C2)⊃ (∃x.C1 ⊃ ∃x.C2)).

D.2 Derivation for Meyer-Sieber

For the derivation of (6.4) we use:

E
def≡ ∀ f .(�{T} f • (){T}@ /0 ⊃ �{C}g• f{C′})

We use the following [LetRef] which is derived by [Ref] where C′ is replaced by [!x]C′.

[LetRef]
{C}M :m {C0} {[!x]C0∧!x = m∧ x# ẽ} N :u {C′} x /∈ fpn(ẽ)

{C} let x = ref(M) in N :u {νx.C′}

with C′ think w.r.t. m. The derivation follows. Below M1,2 is the body of the first/second lets,
respectively.

1.{Even(!x)∧ [!x]C′} if even(!x) then () else Ω() {[!x]C′}@ /0 (If)

2.{[!x]C} g f {[!x]C′} (cf. § 6.7)

3.{Even(!x)∧ [!x]C} g f {Even(!x)∧ [!x]C′} (2, Inv)

4.{E ∧ [!x]C∧Even(!x)∧ x#gi}let f = ... in (g f ; ...){[!x]C′∧ x# i} (3, Seq, Let)

5.{E ∧C} MeyerSieber {νx.([!x]C′∧ x# i)} (4, LetRef)

6.{E ∧C} MeyerSieber {C′} (9, Prop. 5.15)
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Fig. 7 mutualParity derivations

1. {(n≥ 1⊃ IsEven′(!y,gh,n−1,xy)) ∧ n = 0} f :z {z = Odd(n) ∧ !x = g ∧ !y = h}@ /0

(Const)

2. {(n≥ 1⊃ IsEven′(!y,gh,n−1,xy)) ∧ n≥ 1}
not((!y)(n−1)) :z {z = Odd(n) ∧ !x = g ∧ !y = h}@ /0 (Simple, App)

3. {n≥ 1⊃ IsEven′(!y,gh,n−1,xy)}
if n = 0 then f else not((!y)(n−1)) :m {z = Odd(n) ∧ !x = g ∧ !y = h}@ /0 (IfH)

4. {T} λn.if n = 0 then f else not((!y)(n−1)) :u
{ �∀gh,n≥ 1.{IsEven′(h,gh,n−1,xy)}u•n=z{z = Odd(n) ∧ !x = g ∧ !y = h}@ /0}@ /0

(Abs, ∀, Conseq)

5. {T} Mx :u { ∀gh,n≥ 1.(IsEven(h,gh,n−1,xy)⊃ IsOdd(u,gh,n,xy))}@ /0 (Conseq)

6. {T} x := Mx{ ∀gh,n≥ 1.(IsEven(h,gh,n−1,xy)⊃ IsOdd(!x,gh,n,xy)) ∧ !x = g}@x
(Assign)

7. {T} y := My{ ∀gh,n≥ 1.(IsOdd(g,gh,n−1,xy)⊃ IsEven(!y,gh,n,xy)) ∧ !y = h}@y

8. {T} mutualParity
{∀gh.n≥ 1.((IsEven(h,gh,n−1,xy)∧ IsOdd(g,gh,n−1,xy))⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h) }@xy (∧-Post)

9. {T} mutualParity
{∀n≥ 1gh.((IsEven(h,gh,n−1,xy)∧ IsOdd(g,gh,n−1,xy)∧!x = g∧!y = h)⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

10. {T} mutualParity
{∀n≥ 1gh.((IsEven(!y,gh,n−1,xy)∧ IsOdd(!x,gh,n−1,xy)∧!x = g∧!y = h)⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

11. {T} mutualParity
{∀n≥ 1.(∃gh.(IsEven(!x,gh,n−1,xy)∧ IsOdd(!y,gh,n−1,xy)∧!x = g∧!y = h)⊃
∃gh.(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

12. {T} mutualParity{∃gh.IsOddEven(gh, !x!y,xy,n)}@xy

D.3 Derivation for Object

We need the following generalisation. The procedure u in (AIH) is of a function type α⇒ β: when
values of other types such as α×β or α+β are returned, we can make use of a generalisation. For
simplicity we restrict our attention to the case when types do not contain recursive or reference
types.

Inv(uα×β,C0, x̃)
def≡ ∧i=1,2Inv(πi(u),C0, x̃)

Inv(uα+β,C0, x̃)
def≡ ∧i=1,2∀yi.(u = inji(yi)⊃ Inv(yi,C0, x̃))

Inv(uα,C0, x̃)
def≡ T (α ∈ {Unit,Nat,Bool})

Using this extension, we can generalise (AIH) so that the cancelling of C0 is possible for all
components of u. For example, if u is a pair of functions, those two functions need to satisfy
the same condition as in (AIH). This is what we shall use for cellGen. We call the resulting
generalised axiom (AIHc).
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Let cell be the internal λ-abstraction of cellGen. First, it is easy to obtain:

{T} cell :o {I0 ∧ G1 ∧ G2 ∧ E ′} (D.1)

where, with I0
def≡ !x0 =!x1 ∧ x0 # iw (noting x#v≡ T). and E ′ def≡ !x0 = z.

G1
def≡ �{I0}π1(o)• () = v{v =!x0∧ I0}@ /0

G2
def≡ �∀w.{I0}π1(o)•w{!x0 = w∧ I0}@x0x1

which will become, after taking off the invariant I0:

G′
1

def≡ �π1(o)• () = v{v =!x1}@ /0

G′
2

def≡ �∀w.π1(o)•w{!x0 = w}@x0.

Note I0 is stateless except for x0. In G1, notice the empty write set means !x1 does not change
from the pre to the post-condition. We now present the inference. Below we set cell′ def= let y =
ref(0) in cell and i,k fresh.

1.{T} cell :o {!x0 =!x1∧G1∧G2∧E ′}

2.{T} cell′ :o {!x0 =!x1∧G1∧G2∧E ′} (LetRef)

3.{T}let x1 = z incell′ :o {νx1.(I0∧G1∧G2)∧E ′} (LetRef)

4.{T} let x1 = z in cell′ :o {G′
1∧G′

2∧E ′} (AIHc, ConsEval)

5.{T} let x0,1 = z in cell′ :o {νx.( x#k∧Cell(o,x)∧!x = z )} (LetRef)

6.{T} cellGen :u {CellGen(u)} . (Abs)
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