
Trustworthy Pervasive Healthcare Services via
Multiparty Session Types

Anders S. Henriksen1, Lasse Nielsen1, Thomas T. Hildebrandt2,
Nobuko Yoshida3, and Fritz Henglein1

1 University of Copenhagen
2 IT University of Copenhagen

3 Imperial College London

Abstract This paper proposes a new theory of multiparty session types
with assertions based on symmetric sum types and demonstrates its appli-
cability to collaborative workflows in healthcare systems for clinical prac-
tice guidelines (CPGs). The theory leads to a model-driven implementation
of a prototype tool for CPGs which automatically generates deadlock-free
distributed programs from user-friendly declarative workflows specified as a
Process Matrix spreadsheet. In addition to safety properties, the generated
code can ensure the logical properties declared in a Process Matrix. They
are subsequently interpreted to provide a trustworthy pervasive workflow
execution on Android tablet PCs. We also report on a demonstration of
the prototype to a physician, who after having seen an example healthcare
workflow being executed, was able to specify her own healthcare workflow
declaratively as a Process Matrix spreadsheet and immediately test it on
the Android tablet PCs.

1 Introduction

Healthcare processes are characterised by being highly mobile, collaborative, se-
curity critical, and requiring a high-degree of flexibility and adaptability. Hereto
comes that they typically involve complex decisions based on data collected dur-
ing the process and are regulated, e.g. by law and clinical practice guidelines
(CPGs) [6]. These characteristics make healthcare processes a particular challeng-
ing example of case management processes [?] in need for computerised support
based on formalised and verifiable process models.

CPGs are descriptions of medical treatment procedures, practised globally with
local variations, in order to treat specific medical disorders. CPGs can express
workflows and various cooperations among healthcare processes which are formed
by the diverse collaborative patterns between organisations. That is, a CPG is an
agreement of global protocol or guideline between distributed multiple organisations
or participants. A pattern, which plays a prominent role in CPGs, is what we
will call symmetric, multiparty synchronisation where the participants collectively
decide on one of the possible choices of possible next steps in the protocol.

Such global protocols with symmetric, multiparty synchronizations are natu-
rally expressed in a choreography language, such as the WS-CDL [8] or the recent
BPMN 2.0 Choreography diagram notation [] exemplified in Fig. 1 in § 2. While

workflow models, and also CPGs, traditionally have been represented as flow-
graphs inspired by and based on the seminal work on the Petri Nets model []
and verified using model checking techniques, workflows represented as choreogra-
phies offer an alternative approach to modeling and verification of distributed
workflows, and CPGs in particular, based on type checking. Put shortly, the work
on session types and end-point projections [2] provides a foundation for adding
behavioral types to choreographies and project the choreographies to typed end-
point processes (i.e. corresponding to BPMN processes) that are guaranteed to be
deadlock-free.

Within the last five years, a number of researchers have pointed out that im-
perative flow-graph models such as BPMN processes and choreographies have lim-
itations when it comes to flexibility and adaptability [?]. As an alternative, formal
declarative process notations have been proposed and investigated as a means
to provide more support for adaptability in case management systems in gen-
eral [7,?,?] and health care processes in particular [?] and verified, e.g. using the
logic itself [] or model checking techniques [].

In the present paper we show how the theory of multiparty session types [2]
extended with logical predicates [1] and symmetric sum types [3] can be used to
represent declarative, distributed, collaborative workflows, that can be modeled
declaratively by domain experts and verified statically, i.e. at compile time, using
automatic code generation and type inference.

Concretely we show how collaborative healthcare workflows declared as Process
Matrix spreadsheets can be automatically mapped to session typed distributed pro-
grams which are interpreted to provide a trustworthy pervasive workflow execution
on Android tablet PCs. We then report on a demonstration of the prototype to a
physician, who after having seen an example healthcare workflow being executed,
was able to specify her own healthcare workflow declaratively as a Process Matrix
spreadsheet and immediately test it on the Android tablet PCs.

2 From Spreadsheets via Types to Pervasive Services

In this section we give an overview of the prototype implementation and the dif-
ferent technologies used by means of a simple example workflow. First in § 2.1
we describe the example workflow as a BPMN 2.0 Choreography diagram and the
corresponding Process Matrix spreadsheet.

2.1 Example Workflow as Choreography and Process Matrix

A simple CPG workflow involving three participants is described in Fig. 1 as a
Choreograpy diagram in the Business Process Modelling Notation (BPMN) 2.0.
The described workflow is activated, when a patient is admitted (indicated by the
start event). Then two tests are executed in parallel by a nurse. Note that each
activity box is a communication between the three participants with one initiator
(indicated in the white ribbon) and two receivers (indicated in the shaded ribbons).
Thus, the test results are send by the nurse to the patient and the doctor. Each test
may be repeated, as signaled by the repeating sub-process arrow, e.g. if the test
failed or the result was not clear. Then, depending on the results of the tests, either
the patient is discharged directly, or the doctor prescribes a drug to the patient

2

SimpleTreatmentChoreorgraphy

Test1

Nurse

Patient
Doctor

Test2

Nurse

Patient
Doctor

Prescribe

Doctor

Nurse
Patient

Discharge

result1

result2

prescript ion

no
t o

k

ok

Associate Professor Thomas Hildebrandt 1 of 1 23.05.2012

38 Business Process Model and Notation, v2.0

Merging BPMN uses the term :merge; to refer to the
exclusive combining of two or more paths into
one path (also known as an OR-Join).
A Merging Exclusive Gateway is used to show
the merging of multiple Sequence Flows (see
upper figure to the right).
If all the incoming flow is alternative, then a
Gateway is not needed. That is, uncontrolled
flow provides the same behavior (see lower
figure to the right).

Looping BPMN provides 2 (two) mechanisms for loop-
ing within a Process.

See Next Two Figures

Activity Looping The attributes of Tasks and Sub-Processes
will determine if they are repeated or per-
formed once (see page 197). There are two
types of loops: Standard and Multi-Instance. A
small looping indicator will be displayed at the
bottom-center of the activity.

Sequence Flow Looping Loops can be created by connecting a
Sequence Flow to an :upstream; object. An
object is considered to be upstream if that
object has an outgoing Sequence Flow that
leads to a series of other Sequence Flows,
the last of which is an incoming Sequence
Flow for the original object.

Table 7.2 - BPMN Extended Modeling Elements

38 Business Process Model and Notation, v2.0

Merging BPMN uses the term :merge; to refer to the
exclusive combining of two or more paths into
one path (also known as an OR-Join).
A Merging Exclusive Gateway is used to show
the merging of multiple Sequence Flows (see
upper figure to the right).
If all the incoming flow is alternative, then a
Gateway is not needed. That is, uncontrolled
flow provides the same behavior (see lower
figure to the right).

Looping BPMN provides 2 (two) mechanisms for loop-
ing within a Process.

See Next Two Figures

Activity Looping The attributes of Tasks and Sub-Processes
will determine if they are repeated or per-
formed once (see page 197). There are two
types of loops: Standard and Multi-Instance. A
small looping indicator will be displayed at the
bottom-center of the activity.

Sequence Flow Looping Loops can be created by connecting a
Sequence Flow to an :upstream; object. An
object is considered to be upstream if that
object has an outgoing Sequence Flow that
leads to a series of other Sequence Flows,
the last of which is an incoming Sequence
Flow for the original object.

Table 7.2 - BPMN Extended Modeling Elements

Figure 1. Workflow as BPMN 2.0 Choreography

before discharging, sending the prescription to both the patient and the nurse.
The workflow is ended, when the patient is discharged. The described workflow
is a standard paradigm in CPGs, that is, first a set of tests are performed, and
depending on the results, either more tests are performed, the patient is discharged
or a treatment is executed. In this workflow the treatment consists of simply
prescribing a drug to the patient.

For our demonstrator we do not use BPMN 2.0 choreography diagrams. Instead
we use a simplified version of the declarative Process Matrix representation de-
veloped by our industrial partner Resultmaker in the TrustCare research project.
The process matrix corresponding to the choreography in Fig. 1 is shown in Fig. 2
below.

Id Name P D N Seq Log Condition Input Action

1.1.1 Test1 R R W ¬ pre result1

1.1.2 Test2 R R W ¬ pre result2

1.2.1 Prescribe R W R 1.1.1, 1.1.2 ¬ pre ∧ ¬ (result1 ∧ result2) set(pre)

1.3.1 Discharge R W R 1.1.1, 1.1.2 (result1 ∧ result2) ∨ pre end

Figure 2. Example CPG workflow as Process Matrix.

The process matrix has a row for each activity, and columns providing a
(unique) Id, a name, access control (Read or Write) for each participant (Patient,
Nurse, Doctor), the Sequential predecessor relation, the Logical predecessor rela-
tion (not used in our simple example), activity Conditions (based on data), Input
data, and a possible Action performed when the activity is executed (e.g. setting
a boolean data field or ending the workflow). In more detail, the Action column
contains either the end command or a command given in a small if-then-else
language:

Cmd ::= ε | set(x) | reset(x) | if e then c1 else c2 | {c1; . . . ; cn}.

3

ε command means no action, set and reset sets the value of the variable to true or
false respectively. If-then-else considers a boolean expression and then uses either
of the commands. The bracketed commands are performed in sequence.

The condition field must evaluate to true for an activity to be enabled. Further,
if an activity, like Prescribe or Discharge in our example, has sequential predeces-
sors, every predecessor activity (for which the condition field presently evaluates
to true) must have been executed at least once before the activity can be executed.
This means that by default an activity with no sequential or logical predecessors
and no conditions can be executed at any time and any number of times. In other
words, flexibility is the default, if the flow should be constrained the constraints
must be explicitly given. For instance, if tests should be allowed also after a pre-
scription, possibly leading to a new prescription, one could change the matrix to
the one given in Fig. 3 below.

Id Name P D N Seq Log Condition Input Action

1.1.1 Test1 R R W result1 reset(pre)

1.1.2 Test2 R R W result2 reset(pre)

1.2.1 Prescribe R W R 1.1.1, 1.1.2 ¬ pre ∧ ¬ (result1 ∧ result2) set(pre)

1.3.1 Discharge R W R 1.1.1, 1.1.2 (result1 ∧ result2) ∨ pre end

Figure 3. Example slightly more flexible CPG workflow as Process Matrix.

Besides being easier to implement (it just required an off-the-shelf spreadsheet
program and parsing the standard output format), the notation thus also gives
some extra possibilities for flexiblility in adaptation and execution of the workflow.
These possibilities show more clearly in the experiment we did with a doctor
creating her own CPG Process Matrix spreadsheet as described in § 3.

2.2 Example Workflow as Multiparty Session Type

We now demonstrate how process matrix workflow processes as given above can
be described compactly in multiparty session types with logical predicates as as-
sertions and so-called symmetric sum types.

Multiparty session types [2] define protocols for interactions in a group of par-
ticipants which are guaranteed progress, and correspond in fact closely to chore-
ographies. In addition to defining the protocol, the theory of session types also
allows to verify that a collection of π-calculus processes, corresponding to BPMN
processes in a collaboration diagram describing each participant, follow the speci-
fied protocol. The extension of multiparty session types with assertions [1] elabo-
rates type signatures through logical predicates, which can be used to restrict the
values that are communicated and choices that are made. We also use symmetric
sum types [4] which is an extension of the multiparty session types that can type
nondeterministic choice agreed upon between several participants.

These three main features, multiparty, symmetric synchronisations and logical
predicates are all essential to represent process matrix workflows in a direct and
compact way, and verify practical usecases, not only in the context of CPGs, but
also for workflows in general.

4

µ workflow 〈 t e s t 1 : Bool=false , t e s t 2 : Bool=false , pre : Bool=false ,
r e s u l t 1 : Bool=false , r e s u l t 2 : Bool=false〉 .

{ Test1 [[not pre]] :
3→1 :1 〈Bool 〉 as x ; // The r e s u l t o f t e s t 1
3→2 :2 〈Bool 〉 as y [[x=y]] ; // The r e s u l t o f t e s t 1
workflow 〈 true , t e s t2 , pre , x , r e s u l t 2 〉 ,

Test2 [[not pre]] :
3→1 :1 〈Bool 〉 as x ; // The r e s u l t o f t e s t 2
3→2 :2 〈Bool 〉 as y [[x=y]] ; // The r e s u l t o f t e s t 2
workflow 〈 te s t1 , true , pre , r e su l t 1 , x 〉 ,

Prescribe [[t e s t 1 and t e s t 2 and not pre and not (r e s u l t 1 and r e s u l t 2)]] :
2→1 :3 〈 St r ing 〉 ; // The p r e s c r i p t i o n
2→3 :4 〈 St r ing 〉 ; // The p r e s c r i p t i o n
workflow 〈 te s t1 , t e s t2 , true , r e su l t 1 , r e s u l t 2 〉 ,

Discharge [[t e s t 1 and t e s t 2 and ((r e s u l t 1 and r e s u l t 2) or pre)]] :

end
}

Figure 4. Session type representation of workflow using assertions

Fig. 4 specifies the workflow from Fig. 1 as a multiparty session type with
symmetric sum types and assertions.

The workflow is described by a recursive type (indicated by the initial µ sign),
parametrised by a state: test1 and test2 describe if the respective test actions
have been executed, which is needed because the test actions are sequential pre-
decessors of the prescribe and discharge actions. pre is the condition recording if
the prescription activity has been executed, used to restrict it to be only executed
once and blocking subsequent test1 and test2 actions. Finally, result1 and result2
record the results of the respective tests. After executing an action, the recursive
type is used with an updated state, except if the action like Discharge is an end
action. In the state where both tests have been executed, no prescription has been
made and not both tests where ok (represented as the boolean value true), the
Prescribe action is enabled.

The specification also describes that when Test1 is executed, the result is sent
from participant 3 (the nurse) to participant 1 (the patient) and 2 (the doctor)
(represented by 3→ 1 and 3→ 2).

The logical assertions are also useful for other aspects of the CPG workflows.
Assertions can for example be used to ensure that the prescribed doses of medicine
are below the lethal limit, however this has not been done in our example. In the
example workflow the assertions are also used to ensure, that the result sent to
the patient and the doctor after a test is the same. The results of the tests are
then used to indicate if it makes sense to administer the medicine or discharge the
patient directly.

2.3 Implementation

The demonstrator allows distributed execution of process matrix specified work-
flows on Android tablets. The architecture/use-case is depicted in Fig. 5 below.

The arrow from the CPG cloud indicates that the process designer describes
a workflow (e.g. a CPG) as a process matrix specification in a spreadsheet. The
arrow to the mps (multi-party session types) code generator indicates that it takes
the process matrix as input. In the demonstrator implementation, the process
matrix is given as a comma-separated file produced as a standard output from

5

CPG Process Matrix
Spreadsheet

Mps code
generator

Apims
interpreter

Apims
gui managerAndroid client

Compiletime

Runtime

Thrift
network
protocol

Apims
typechecker

Well typed

Type error

Figure 5. Demonstrator architecture.

an off-the-shelf spreadsheet program. Thus, it enables the process matrix to be
specified in a normal spreadsheet program, that provides a graphical editor, that
is familiar to many end-users, “for free”.

The generated mps code consists of a global multi-party session type, as exem-
plified in Fig. 4, representing the entire workflow, and end-point π-calculus (with
plenum synchronization allowing to implement the symmetric sum types) terms
for each participant.

The generated code is augmented with user-interface information generated
from descriptions written in a separate spreadsheet table. In Fig. 6 we show code
for the process matrix from Fig. 2, that is very close to the actual generated code.
We only show the Doctor part, as the global type is very similar to the one shown
in Fig. 4. (The number 2 appearing in the code several places indicate that this is
participant 2, the doctor).

Corresponding to the recursion in the global session-type in Fig. 4, the gener-
ated mps-code consists of a single loop (line 5-31), where all actions specified in
the matrix correspond to a branch (lines 9, 14, 19, 26) in a single synchronisation.
Each branch is annotated with the writer of that action. Differently from BPMN
Choreographies, a process matrix allows actions with more that one writer. This
will be compiled to several branches in the synchronisation (e.g. if the nurse could
also discharge the patient, there would be a branch a131-n).

The loop maintains a state, which includes the executed state of each action,
and each logical variable. Each writer action receives inputs from the gui (line 20)
and sends them to the reader participants (lines 21, 22).

Predecessors and the activity condition are enforced using the state. Using
an assertion for each branch, we can make sure a branch is only shown when its
predecessors have been executed and the activity condition is true. When looping
in the end of each branch, the executed variables are updated in two ways:

– The executed state of the completed action, is set to true (e.g. a111 in line
12).

– The executed state of any actions that have the completed action as logical
predecessor, is set to false.

6

1 l i n k (3 , wf , s , 2) ;
2 gu iva lue (3 , s , 2 , ” . uid ” , ”d ”) ;
3 gu iva lue (3 , s , 2 , ” a121 d : t i t l e ” , ” Pre s c r i b e ”) ;
4 . . .
5 de f Loop 〈 a111 : Bool , a112 : Bool , a121 : Bool , a131 : Bool ,
6 r e s1 : Bool , r e s2 : Bool , pre : Bool 〉
7 (w: wf 〈 a111 , a112 , a121 , a131 , res1 , res2 , pre 〉@(2 o f 3)) =
8 guisync(3 , w, 2) {
9 a111-n 1 [[not pre]] () :

10 w[7] ? lungs ok ;
11 gu iva lue (3 , w, 2 , ”Lungs ok ? : i n f o ” , lungs ok) ;
12 Loop 〈 true , a112 , a121 , a131 ,
13 (lungs ok or ((not lungs ok) and re s1)) , res2 , pre 〉 (w) ,
14 a112-n 1 [[not pre]] () :
15 w[7] ? throat ok ;
16 gu iva lue (3 , w, 2 , ”Throat ok ? : i n f o ” , throat ok) ;
17 Loop 〈 a111 , true , a121 , a131 , res1 ,
18 (throat ok or ((not throat ok) and re s2)) , pre 〉 (w) ,
19 a121-d [[a111 and a112 and ((not pre) and (not (r e s1 and re s2)))]]
20 (p r e s c r i p t i o n : S t r ing = ””) :
21 w[3] ! p r e s c r i p t i o n ;
22 w[5] ! p r e s c r i p t i o n ;
23 gu iva lue (3 , w, 2 , ” P r e s c r i p t i on : i n f o ” , p r e s c r i p t i o n) ;
24 gu iva lue (3 , w, 2 , ” . a121 d ” , true) ;
25 Loop 〈 a111 , a112 , true , a131 , res1 , res2 , true 〉 (w) ,
26 a131-d [[a111 and a112 and ((r e s1 and re s2) or pre)]]
27 (dis comment : S t r ing = ””) :
28 end
29 }
30 in
31 Loop 〈 false , false , false , false , false , false , false〉 (s)

Figure 6. Mps code for Doctor participant.

The last part of the logic is the extra control column. The effect of the set command
for action a121 can be seen in line 25, where the variable pre is set to true.

The next arrow in Fig. 5 shows that the mps code is type checked with the
Apims type checker. If the code is not well-typed it will in this case be because the
workflow can reach a deadlock state, i.e. a state which is not the final state, but
no activity can be executed. The example process matrices given above produces
well-typed code, however, an innocently looking modification changing the logical
or (∨) in the condition for the Discharge activity to a logical and (∧) would make
it possible to deadlock if both tests are fine (blocking the prescription), which is
now required in order to discharge the patient. The static type checking thus allow
the designer, at Compile time, to catch potential deadlocks before the workflow is
initiated and return to the spreadsheet and revise the specification as indicated by
the arrow back to the Process Matrix Spreadsheet. (Of course the error may also
be in the design of the non-formal CPG description which served as input to the
design of the process matrix).

When the code is well-typed, the Apims interpreter can execute the code of
each participant process, controlling the user interface of the clients (e.g. tablet
pcs, mobile phones or computers), as indicated to the right in the Run time part
of Fig. 5

Besides the core part, maintaining the workflow state and executing each step
as described above, the Apims interpreter consists of a gui manager (linked in as a
separate, replaceable module) that communicates with the clients and maintains a

7

viewpoint for each participant. In more detail, each guisync term introduces a list of
choices for each participant, corrsponding to enabled branches in the workflow, and
each guivalue a list of values for each participant. The gui manager maintains data
structures for these two components, and the clients interact with the workflow
by manipulating these components. The choices can either be accepted, and if all
participants accept a choice the execution can continue with the corresponding
branch.

The values are used to send data to the client. There are several kind of data
being transmitted: meta data, e.g. the human readable name of the different actions
(and specified in the spreadsheet); value data, e.g. the data entered by the other
participants, execution data, e.g. the execution state of each action.

All these different pieces of data are encoded in the key-value pair of each
guivalue. By keeping all data in the values maintained by the interpreter, no in-
formation is kept on the clients and clients can therefore be changed/break down
without ruining the execution.

Figure 7. Screenshot from Android client.

In the example the guivalue in line 2 assigns the Doctor role to the specific
part of the code, this allows the gui manager to know which choices are assigned
to which role. Fig. 7 shows a screenshot of the Android client running the example
workflow as the doctor role, which can be seen in top of the screen. The workflow
is in a state where the nurse has performed the two tests. The other guivalues all
correspond to different parts of the screen. The guivalue in line 3, forms parts of
the meta data, and assigns the human-readable name “Prescribe” to the action
a121-d . The guivalues in lines 11 and 16 are used to show the information received
from the nurse (the result of the tests), which can be seen in the window to the
right. Similarly the guivalue in lines 23 are used to show the values to the right
when the Doctor has entered those. The last guivalue in lines 24 are used to pass
the execution state of the action to the client. This is used to show a small green

8

checkmark for the action, so the user know that it has been performed. In the
screenshot the execution state is false, so the checkmark is not green.

It is important to stress that every participant uses the same generic Android
client. The gui manager uses the generated code to make sure that the Android
client used by the Doctor presents the ”end-point” process of the workflow relevant
for the doctor and the Android client used by the Nurse presents the ”end-point”
relevant for the Nurse. An example screenshot of the Android client running the
example as the nurse role is shown in Fig. 8. It shows the workflow in a state where
the nurse has performed the Lung test, with a negative result, and still needs to
perform the throat test.

Figure 8. Screenshot from Android client.

The communication protocol used relies on Thrift [5] which enables clients
written in other languages to be used together with the Android client already
developed.

When developing for tablet clients there are, in addition to the technical chal-
lenges, user interface challenges, e.g. it is harder to input large pieces of text using
a tablet keyboard instead of a regular keyboard. We have only touched on these
challenges, but a simple, yet quite beneficial approach has been to allow input
using qr-codes scanned though the tablets camera. This enables a user to scan
the drug name and the dose from the physical objects, minimising the amount of
typing needed.

3 Experiment: An End-user Developed Workflow

To test the developed software, we performed a simple experiment with the help
of a physician: Dorthe Furstrand Lauritzen (DFL). The motivation behind the
experiment was to get first hand impressions from a domain expert, to evaluate
the current implementation and set goals for future development. Although DFL
is a physician and not a computer scientist, she has experience with use of it and
in particular implementation of CPGs. However, she had never seen any of the

9

techniques used in the demonstrator before, in particular the declarative process
matrix notation was completely new to her.

The main component of the experiment was to put DFL in the role of the
workflow designer, letting her use the spreadsheets to formalise a simple self-chosen
medical workflow, which can be run on the Android tablets. There are several
aspects of the experiment:

– Letting a medical professional come with a self-chosen workflow, tests the
expressibility of the system.

– Letting a new user interact with the workflow creation tool tests the usability
of the tool.

– Letting a medical professional use the tool, tests the hypothesis: the domain
expert can implement simple workflows, leading to a simpler and more flexible
development process, e.g.

• The domain experts might be able to make simple changes directly without
involving the development team.

• The domain experts can use simple workflows to communicate more di-
rectly and efficiently with the development team.

3.1 The Experiment

The experiment, which took a single day, was set-up as follows: DFL had access to
a computer where the server, the code generator and example spreadsheets were
available. To simplify the interface, all spreadsheets was placed on the desktop
and batch commands performed the code generation and server start. To learn the
syntax DFL, did a small exercise under instruction by one of the authors a few
days before the experiment.

The workflow chosen by DFL model how a healthy woman gets an abortion,
according to DFL was ”a simplification of the simplest workflow I could find”.

Id Name D N S AN OPN Seq Log Condition

1.1.1 Nurse evaluation R W R R R

1.1.2 Patient History W R R R R

1.1.3 Extended history W R R R R abnorm

1.1.4 Preoperative treatment W R R R R cyto

1.1.5 Objective W R R R R

1.1.6 Extended objective W R R R R abnorm2

1.1.7 Ultrasound W R R R R

1.1.8 Formalia W R R R R

1.1.9 Extended formalia W R R R R abnorm3

1.2.0 Information for the patient R W R R R 1.1.1 - 1.1.9

1.2.1 Schedule for OP R R W R W 1.2.0

Figure 9. End-user developed workflow (Flow).

The developed workflow is shown in Fig. 9 and Fig. 10. The roles are: Doctor
(D), Nurse (N), Secretary (S), Anestesiologist (AN) and operation nurse (OPN).

An example screenshot from the running Android client is shown in Fig. 11.

10

Id Input Action

1.1.1 name height weight bP

1.1.2 cave ever birth healthy if ! healthy then set(abnorm);
if cave then set(abnorm);
if ! ever birth then set(cyto)

1.1.3 cavetx healthtx

1.1.4 rp cytotec

1.1.5 gU ia stet c et p ia if ! gU ia then set(abnorm2);
uterus retroflekteret if ! stet c et p ia then set(abnorm2)

1.1.6 sttx gutx

1.1.7 fHR cRL gA

1.1.8 clamydiatested clamydia negative if ! clamydiatested then set(abnorm3);
rhesus negative signed form A if ! clamydia negative then set(abnorm3);

under 18 gA under 12 if rhesus negative then set(abnorm3);
if under 18 then set(abnorm3);
if ! signed form A then reset(1.1.8);
if ! gA under 12 then reset(1.1.8)

1.1.9 rp antibiotics rp anti D signed form B

1.2.0 pt informeret samtykke

1.2.1 op tid gA ved op

Figure 10. End-user developed workflow (Data).

Figure 11. Screenshot from Android client running the experiment workflow.

11

3.2 Evaluation

Generally the experiment turned out very successfully: DFL was easily able to
use the spredsheets to build her own workflow. The instructing author only had
to take over one time to fix a problem. Even though the workflow included fairly
complex logic, DFL was able to create it without any previous programming ex-
perience and despite the unwieldy syntax of the action field. The system seemed
expressive enough to create the simple flow, but during the experience DFL asked
for more complex logic (e.g. comparison of values) and more presentation control
(e.g. grouping of values). The general usability of the tool seemed good, as DFL
was able to start developing her workflow almost from the start. Of course there
are several points that could be improved (most notably the action field). All in
all, it is promising to let a domain expert work directly with the workflow code;
maybe not for the full version, but for rapid prototyping.

4 Formal Theory

This section provides the outline of the formal theory and shows the properties
which the prototype can ensure. Due to the space limitation, detailed definitions
and proofs are left to Appendix and [3]. ASH: Mention guisync and guivalue?

Once given global types as a description of global interactions among commu-
nicating processes, we can consider the following development steps for validating
programs. NY: Andres can write how each step is related to architecture

by citing them?

Step 1 A programmer describes an intended interaction protocol as global type
G with logical predicates, and checks that it is well-formed or not.

Step 2 A programmer generates projections of global type G (called local types)
onto each participant.

Step 3 She develops program code P , one for the local behaviour of each partici-
pant p, incrementally validating its conformance to its local type T by efficient
type-checking.

When programs are executed, their interactions are guaranteed to follow the stip-
ulated scenario without deadlocks.

Going back to the running example from § 2, the local type describing the
behaviour of each participant can be obtained by projection (Step 2) and fol-
lowing this type, its process is implemented by filling input and output binding
of values (Step 3). The local type of the patient and its behaviour described in
as a process is given in Fig. 12. There is a clear one-to-one correspondence be-
tween type and process: for example, the recursive type µ corresponds to the
recursive agent (denoted by def) and the sum type corresponds to the synchroni-
sation (denoted by sync). NY: we need to point the corresponding figures

and code in Implementation

We then type-check processes by following the session typing rules. The typing
judgement extends the original one [1] with symmetric sum types. The judgement
Θ;Γ ` PB∆ states that assuming Θ the process P in the environment Γ performs

12

G�1 = // Local type f o r Pat ient
µ workflow 〈 t e s t 1 : Bool=false ,

t e s t 2 : Bool=false ,
pre : Bool=false ,
r e s u l t 1 : Bool=false ,
r e s u l t 2 : Bool=false〉 .

{ Test1 [[not pre]] :
1? 〈Bool 〉 as x ;
f o r a l l y [[x=y]] ;
workflow 〈 true , t e s t2 , pre , x , r e s u l t 2 〉 ,

Test2 [[not pre]] :
1? 〈Bool 〉 as x ;
f o r a l l y [[x=y]] ;
workflow 〈 te s t1 , true , pre , r e su l t 1 , x 〉 ,

Prescribe [[t e s t 1 and t e s t 2 and
not pre and
not (r e s u l t 1 and r e s u l t 2)]] :

3? 〈 St r ing 〉 as x ;
workflow 〈 te s t1 , t e s t2 , true ,

r e su l t 1 , r e s u l t 2 〉 ,
Discharge [[t e s t 1 and t e s t 2 and

((r e s u l t 1 and r e s u l t 2) or pre)]]
end

}

PP = // Pat ient
a [2 . . 3] (p , d , n) .
de f X〈 t1 : Bool , t2 : Bool , pre : Bool ,

r1 : Bool , r2 : Bool 〉
((p , d , n) : workflow �1 〈 t1 , t2 , pre ,

r1 , r2 〉)=
sync((p , d , n) , 3)
{ Test1 [[not pre]] :

p? (r e s u l t) ;
X〈 true , t2 , pre , r e su l t , r2 〉 ((p , d , n)) ,
Test2 [[not pre]] :
p? (r e s u l t) ;
X〈 t1 , true , pre , r1 , r e s u l t 〉 ((p , d , n)) ,
Prescribe [[t1 and t2 and not pre

and not (r1 and r2)]] :
p? (p r e s c r i p t i o n) ;
X〈 t1 , t2 , true , r1 , r2 〉 ((p , d , n)) ,

Discharge [[t1 and t2 and

((r1 and r2) or pre)]] }
end

}
in X〈 false , false , false , false , false〉 ((p , d , n))

Figure 12. Local type and process for the patient

exactly the session communication described in ∆. By the rules, we can check the
running example is typable, i.e. Θ;Γ ` PP | PD | PN B ∆ where PD and PN
are the doctor and nurse processes implemented similarly to PP and | denotes
the parallel compostion. We end this section by proving subject reduction theorem,
which guarantees that once process is compiled, then there will be no type error
at runtime.

Theorem 1 (Subject reduction). true;Γ ` P . ∅ and P → P ′, then true;Γ `
P ′ . ∅.

The proof can be found in Appendix B and [3]. From this theorem, we can
derive many safety properties as corollaries [2, § 5]. The properties which this
framework guarantees include: (1) type safety: the lack of standard type errors
in expressions; (2) communication safety: communication error freedom (i.e. a
sending action always matched to its corresponding receiving action at the same
channel); (3) session fidelity: the interactions of a typable process exactly follow
the specification described by its global type; and (4) progress: once a communica-
tion has been established, well-typed programs will never stuck at communication
points. The formal definitions and the full proofs of these properties can be found
in [3,1,2].

5 Conclusions, Related and Future work

We have successfully merged the symmetric sum types and the type assertions ex-
tensions of the multiparty session types into a single type language. This enables
the benefits of assertion types – such as value restrictions and more efficient repre-
sentation of some interaction patterns – in the workflows that can be represented
using symmetric sum types. The extended typing judgement still ensure subject

13

reduction. We have implemented the used language and type verification for the
assertion language of classical propositional logic.

The theorem provers we have implemented are based on the LK and CFLKF
proof systems, but the is a vast abundance of theorem provers available [?] [?]
which can enable both more efficient verification (in practice) and more expressive
assertion languages. We can even use a resolution [?] based theorem prover or
indeed any method that can decide assertion validity, as we do not currently use
the derivations for anything. The results we have proved are not as powerful as the
ones proved for the original assertions paper [1]. This is because we do not include
the assertions in the programs, and therefore assertion violations are not detected
during execution which means we cannot prove the well typed terms do not go
wrong result. This is not related to the extension with symmetric sum types, and
thus it should be possible to extend the program syntax with assertions and prove
the result.

Acknowledgements This work was funded in part by the Danish Council for
Strategic Research, Grant #2106-07-0019, the IT University of Copenhagen and
Copenhagen University (the TrustCare project). We need to thank a physi-
cian.

References

1. Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-
by-contract for distributed multiparty interactions. In CONCUR 2010, LNCS, pages
162–176. Springer, 2011.

2. Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In POPL’08, pages 273–284. ACM, 2008.

3. Lasse Nielsen. Regular Expressions and Multiparty Session Types with Applications to
Workflow Based Verification of User Interfaces. PhD thesis, ITU Copenhagen, 2012.

4. Lasse Nielsen, Nobuko Yoshida, and Kohei Honda. Multiparty symmetric sum types.
Arxiv preprint arXiv:1011.6436, 2010.

5. Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable cross-language
services implementation. Available from http://thrift.apache.org/.

6. Annette ten Teije, Silvia Miksch, and Peter Lucas. Computer-based Medical Guidelines
and Protocols: A Primer and Currend Trends. Studies in Health Technology and
Informatics. IOS Press, 2008.

7. Wil M.P van der Aalst and Maja Pesic. A declarative approach for flexible business
processes management. In Proceedings DPM 2006, 2006.

8. Web Services Choreography Working Group. Choreography Description Language.
http://www.w3.org/2002/ws/chor/.

A Multiparty Sum Types with Assertions

This appendix lists the omitted definitions and proofs from the main paper.

A.1 Multiparty Session Types

Global Types We start by defining the global types G in Fig. 13. The type
p → p′ : k〈U〉 as x {A} .G′ expresses that participant p sends a message of type
U along channel k to p′ and then interactions described in G′ take place. Here

14

Global Types
G ::= p→ p′ : k〈S〉 as x {A} .G′

| p→ p′ : k〈U〉.G′
| p→ p′ : k{{Ai} li : Gi}i∈I
| µt〈x̃〉(ẽ).G
| t〈ẽ〉
| end
| {{Al} l : Gl}l∈L;M

Message Types
U ::= S̃ | T@(p,m, n)

Local Types
T ::= k!〈S〉 as x {A} ;T
| k?〈S〉 as x {A} ;T
| k!〈U〉;T | k?〈U〉;T
| k ⊕ {{Al} l : Tl}l∈L
| k & {{Al} l : Tl}l∈L
| µt〈x̃〉(ẽ).T | t〈ẽ〉 | end
| {{Al} l : Tl}l∈L;M

| ∀x : S {A} .T
Simple Types

S ::= bool | int | ... | 〈G〉

Figure 13. Global and Local types

p, p′, q, r . . . denote the participant. The as x {A} parts binds occurrences of x
in G and A to the value communicated, and states that the value must respect
the predicate A. The type p → p′ : k{{Ai} li : Gi}i∈I expresses that p sends one
of the labels li to p′. If lj is sent, then the predicate Aj must be fulfilled, and the
interactions described in Gj take place. Type µt〈x̃〉.G is a recursive type where x̃
is the state, assuming type variables (t, t′, . . .) are guarded in the standard way.
We assume that G in the grammar of sorts is closed, i.e., without free type or
assertion variables. Type end represents the session termination.

The sum type {{Al} l : Gl}l∈L;M represents a synchronisation where the labels
are taken from the set L ∪M . The labels in L are optional, but the labels in M
are mandatory and must be accepted by all the participants. If the predicate Al
is false, the label is ignored, and must be rejected. The mandatory labels will be
underlined to distinguish them from the optional labels (e.g. {l : Gl}l∈{l1};{l2} =
{l1 : Gl1, l2 : Gl2}).

Local Types The local types T are defined in Fig. 13. They describe the com-
munication performed by a single process. Therefore the “from process to process
on channel” syntax is simply changed to sending or receiving on a channel. Thus
the sending type is k!〈U〉 as x {A} ;T and represents sending a message of type
U on channel k respecting the predicate A, followed by the communication de-
scribed by T . The type of receiving is k?〈U〉 as x {A} ;T , the type of selecting is
k ⊕ {{Al} l : Tl}l∈L and the type of branching is k& {{Al} l : Tl}l∈L. The differ-
ence from the original assertion paper is that the symmetric sum type constructor
{{Al} l : Tl}l∈L;M is added where L,M satisfies the conditions similar to those
of a global sum type, and we have introduced a ∀x {A} .T constructor. This is
to capture the local type of message parsing for a participant that is neither the
sender or the receiver in a more intuitive way than the original assertion paper.
In this case the local type should allow only the behaviour that is valid for all
possible messages, and therefore the local type is represented by a forall construct.

The message type T@(p,m, n) is used for delegation. It describes an open
session, and includes information about the participant number p, the number of
session channels m, and the number of participants n in the session together with
a local type T describing the remaining communication.

15

(p0 → p1 : k〈S〉 as x {A} .G′)�p =


m!〈S〉 as x {A} ; (G′�p) if p = p0 and p 6= p1
m?〈S〉 as x {A} ; (G′�p) if p = p1 and p 6= p0
∀x : S {A} .G′�p if p 6= p0 and p 6= p1

(p0 → p1 : k〈U〉.G′)�p =


m!〈U〉; (G′�p) if p = p0 and p 6= p1
m?〈U〉; (G′�p) if p = p1 and p 6= p0
G′�p if p 6= p0 and p 6= p1

(p0 → p1 : k{{Aj} lj : Gj}j∈J)�p =


k ⊕ {{Aj} lj : (Gj�p)}j∈J if p = p0 6= p1
k & {{Aj} lj : (Gj�p)}j∈J if p = p1 6= p0

∀
{∨

j∈J Aj

}
.max≤sub

if p1 6= p 6= p2

{T ′ | ∀j ∈ J.T ′ ≤sub (Gj�p)}
({{Al} l : Gl}l∈L;L′)�p = {{Al} l : (Gl�p)}l∈L;L′

(µt〈x̃〉(ẽ).G)�p = µt〈x̃〉(ẽ).(G�p)

(t〈ẽ〉)�p = t〈ẽ〉
(end)�p = end

Figure 14. Projection from global to local types (�)

P ::= syncs̃,n{{Al} l : Pl}l∈L
| 0
| a[2..n](s̃).P
| a[p](s̃).P
| s!〈ẽ〉;P
| s?(x̃);P
| s!〈〈s̃〉〉;P
| s?((s̃));P

D ::= {Xi〈x̃i〉(s̃i) = Pi}i∈I
e ::= v | x | e and e′ | . . .
A ::= e

synch
inaction
request
accept

sending
reception

delegation
catch

declarations
expressions

assertions

| s / l;P
| s . {l : Pl}l∈L
| if e then P else Q
| P |Q
| (νn)P
| def D in P
| X〈ẽs̃〉
| s : h̃

v ::= a | true | false
h ::= l | ṽ | s̃

selection
branching

conditional
parallel

restriction
recursion
variable

queue

values
messages

Figure 15. The process language

A.2 Projection

A global type G is coherent [2] if and only if the projection G�p is defined for all
participants, and G does not allow racing conditions (linearity). We only consider
coherent global types.

A.3 The process language

This subsection introduces the syntax (Fig. 15) of the asynchronous multiparty
session π-calculus [2] with the new sync primitive, and the judgement P → P ′

(Fig. 16, where e ↓ v denotes the evaluation of the expression e to the value v)
describing the small-step semantics for processes. The syntax defines the values:
{v, w, . . .}, expressions: {e, e′, . . .}, assertions {A,B, . . .} and processes: {P,Q, . . .}
from the sets of channel names: {a, b, . . .}, value variables: {x, y, . . .}, session chan-
nels: {s, t, . . .}, labels: {l,m, . . .} and process variables: {X,Y, . . .}.

Session request (a[2..n](s̃).P) initiates a session with channels s̃ (where s̃ de-
notes a vector s1 . . . sn) over the public channel a with the other n − 1 partic-

16

[Link]

a[2..n](s̃).P1|a[2](s̃).P2| . . . |a[n](s̃).Pn → (νs̃)(P1|P2| . . . |Pn|s1 : ∅| . . . |sm : ∅)
[Send] ẽ ↓ ṽ
s!〈ẽ〉;P |s : h̃→ P |s : h̃ · ṽ

[Recv]

s?(x̃);P |s : ṽ · h̃→ P [ṽ/x̃]|s : h̃

[Label]

s / l;P |s : h̃→ P |s : h̃ · l
[Branch] j ∈ I
s . {li : Pi}i∈I |s : lj · h̃→ Pj |s : h̃

[Deleg]

s!〈〈t̃〉〉;P |s : h̃→ P |s : h̃ · t̃
[SRec]

s?((t̃));P |s : t̃ · h̃→ P |s : h̃

[IfT] e ↓ true
if e then P else Q→ P

[IfF] e ↓ false
if e then P else Q→ Q

[Def] ẽ ↓ ṽ X〈x̃s̃〉 = P ∈ D
def D in X〈ẽs̃〉|Q→ def D in P [ṽ/x̃]|Q

[Scop] P → P ′

(νn)P → (νn)P ′

[Par] P → P ′

P |Q→ P ′|Q
[Defin] P → P ′

def D in P → def D in P ′
[Str] P ′ ≡ → Q ≡ Q′

P ′ → Q′

[Sync] h ∈
⋂n

i=1 Li A1h ↓ true · · · Anh ↓ true
syncs̃,n{{A1l} l : P1l}l∈L1 | ... | syncs̃,n{{Anl} l : Pnl}l∈Ln → P1h | ... | Pnh

Figure 16. The reduction rules

ipants of shape a[p](s̃).Qp for p from 2 to n. ([Link] in Fig. 16). Asynchronous
communication in an established session is performed by sending and receiving
values ([Send,Recv]), transferring a session using session delegation and reception
([Deleg,SRec]), and label selection and branching ([Label,Branch]), where the
branching process offers a number of labels and the selecting process chooses one
of them.

The new syncs̃,n{{Al}l : Pl}l∈L constructor is interpreted as the process par-
ticipating in a plenum decision between all the n processes in the session s̃ reaching
a common decision h from L, which all the processes accept since the assertions
evaluate to true. Afterwards each process p proceeds as described in Pph. In [Sync]

in Fig. 16, h in the premise denotes the common label. In [Sync], the processes can-
not perform the synchronisation if they do not accept some common label, in which
case the processes will be stuck. We also need to know how many participants are
in the session in order to know when the synchronisation can step; otherwise the
processes will be stuck, or some processes will be left behind. The typing system
introduced in the next section ensures that sync satisfies such conditions.

Workflow example (2): Processes We give implementations of the patient,
doctor and nurse in the workflow from § 2 in Fig. 17.

A.4 Typing Processes

The typing judgement extends the original one [1] with symmetric sum types. The
judgement Θ;Γ ` P B ∆ states that assuming Θ the process P in the environ-
ment Γ performs exactly the session communication described in ∆. Formally, the
environments are defined as:

Γ ::= ∅ | Γ, u : 〈G〉 | Γ,X : S̃T̃ ∆ ::= ∅ | ∆, s̃ : T@(p, n)

17

PP = // Pat ient
a [2 . . 3] (p , d , n) .
de f X〈 t1 : Bool , t2 : Bool , pre : Bool ,

r1 : Bool , r2 : Bool 〉
((p , d , n) : workflow �1 〈 t1 , t2 , pre ,

r1 , r2 〉)=
sync((p , d , n) , 3)
{ Test1 [[not pre]] :

p? (r e s u l t) ;
X〈 true , t2 , pre , r e su l t , r2 〉 ((p , d , n)) ,
Test2 [[not pre]] :
p? (r e s u l t) ;
X〈 t1 , true , pre , r1 , r e s u l t 〉 ((p , d , n)) ,
Prescribe [[t1 and t2 and not pre

and not (r1 and r2)]] :
p? (p r e s c r i p t i o n) ;
X〈 t1 , t2 , true , r1 , r2 〉 ((p , d , n)) ,

Discharge [[t1 and t2 and

((r1 and r2) or pre)]] }
end

}
in X〈 false , false , false , false , false〉 ((p , d , n))

PD = // Doctor
a [2] (p , d , n) .
de f X〈 t1 : Bool , t2 : Bool , pre : Bool ,

r1 : Bool , r2 : Bool 〉
((p , d , n) : workflow �2 〈 t1 , t2 , pre ,

r1 , r2 〉)=
sync((p , d , n) , 3)
{ Test1 [[not pre]] :

d? (r e s u l t) ;
X〈 true , t2 , pre , r e su l t , r2 〉 ((p , d , n)) ,
Test2 [[not pre]] :
d? (r e s u l t) ;
X〈 t1 , true , pre , r1 , r e s u l t 〉 ((p , d , n)) ,
Prescribe [[t1 and t2 and

not pre and not (r1 and r2)]] :
p ! 〈 eResult 〉 ; n ! 〈 eResult 〉 ;
X〈 t1 , t2 , true , r1 , r2 〉 ((p , d , n)) ,

Discharge [[t1 and t2 and

((r1 and r2) or pre)]] }
end

}
in X〈 false , false , false , false , false〉 ((p , d , n))

PN = // Nurse
a [3] (p , d , n) .
de f X〈 t1 : Bool , t2 : Bool , adm: Bool , r1 : Bool , r2 : Bool 〉

((p , d , n) : workflow �3 〈 t1 , t2 , adm, r1 , r2 〉)=
sync((p , d , n) , 3)
{ Test1 [[]] :

p ! 〈 eResult 〉 ; d ! 〈 eResult 〉 ; X〈 true , t2 , adm, eResult , r2 〉 ((p , d , n)) ,
Test2 [[]] :
p ! 〈 eResult 〉 ; d ! 〈 eResult 〉 ; X〈 t1 , true ,adm, r1 , eResult 〉 ((p , d , n)) ,
Prescribe [[t1 and t2 and not adm and not (r1 and r2) :
X〈 t1 , t2 , true , r1 , r2 〉 ((p , d , n)) ,

Discharge [[t1 and t2 and ((r1 and r2) or adm)]] :

end
}

in X〈 false , false , false , false , false〉 ((p , d , n))

Figure 17. Implementation of the participants in the workflow from Fig. 1 and Fig. 4

18

The environment Γ contains the global types for shared channels u, and process
variables X and the session type environment ∆ contains the remaining session
communication in Fig. 13, where s̃ : T@(p, n) means s̃ is an open session with
n participants, where T describes the remaining communication for participant
p. Since the process is reduced by each rule-application, the typability question
Θ;Γ ` P B ∆ is decidable when ` A is decidable. We shall leave all typing and
logical rules in Appendix A.5.

Using the global type and its projections we can now typecheck the processes.

A.5 Typing Rules

The main rules are included in Fig. 18. The local types now carry information
about the number of participants n and channels m. The number of participants
and channels is determined at the session initialisation in the rules [Mcast] and
[Macc], where sid(G) denotes channels that appear in G and pid(G) denotes the
participants that appear in G. The rule [Sync] checks that the synchronisation
uses the correct number of participants, the accepted branches includes the manda-
tory ones exactly (if and only if) when their predicate is fulfilled, and does not
accept (only if) the optional ones with a false predicate. It is checked that there is
always an active mandatory option, and finally that each accepted branch is typed
with the correct communication.

A.6 Process congruence

The process semantics uses the notion of process equivalence (≡), and this is
included in Figure 19.

A.7 Symmetric sum types

We include the full set of typing rules. The typing system uses the notion of type
projection (�) and the notion of subtyping (≤) of session-environments which
consists of subtyping of each of the used local types defined in [3].

The expression typing rules (Γ ` e : S)

[True]

Γ ` true : bool

[False]

Γ ` false : bool

[Var]

Γ, x : S ` x : S

[Not] Γ ` e : bool

Γ ` not e : bool

[And] Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 and e2 : bool

[Or] Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 or e2 : bool · · ·

The typing rules (Θ;Γ ` P B∆)

[Subs] Θ;Γ ` P B∆ ` Θ ⇒ ∆ ≤ ∆′
Θ;Γ ` P B∆′

[Sync]

∀l ∈ L′′ : Θ ∧Al;Γ ` Pl B∆, s̃ : Tl@(p, n) L′′ ⊆ L ∪ L′
∀l ∈ L\L′′ :` Θ ⇒ ¬Bl ∀l ∈ L′′ :` Θ ⇒ (Al ⇒ Bl)
∀l ∈ L :` Θ ⇒ (Bl ⇒ Al) ` Θ ⇒

∨
l∈LBl

Θ;Γ ` syncs̃,n{{Al} l : Pl}l∈L′′ B∆, s̃ : {{Bl} l : Tl}l∈L;L′@(p, n)

19

Figure 18. Selected typing rules

[Sync]

∀l ∈ L′′ : Θ ∧Al;Γ ` Pl B∆, s̃ : Tl@(p, n) L′′ ⊆ L ∪ L′
∀l ∈ L\L′′ :` Θ ⇒ ¬Bl ∀l ∈ L′′ :` Θ ⇒ (Al ⇒ Bl)
∀l ∈ L :` Θ ⇒ (Bl ⇒ Al) ` Θ ⇒

∨
l∈LBl

Θ;Γ ` syncs̃,n{{Al} l : Pl}l∈L′′ B∆, s̃ : {{Bl} l : Tl}l∈L;L′@(p, n)

[Mcast]
Γ ` a : 〈G〉

Θ;Γ ` P B∆, s̃ : (G�1)@(1, n)
|s̃| = max(sid(G))
n = max(pid(G))

Θ;Γ ` a[2..n](s̃).P B∆
(fv(G�1) = ∅)

[Macc]
Γ ` a : 〈G〉

Θ;Γ ` P B∆, s̃ : (G�p)@(p, n)
|s̃| = max(sid(G))
n = max(pid(G))

Θ;Γ ` a[p](s̃).P B∆
(fv(G�p) = ∅)

[SendA] Γ ` e : S Θ;Γ ` P B∆, s : T [e/x]@(p, n) ` Θ ⇒ A[e/x]

Θ;Γ ` sk!〈e〉;P B∆, s̃ : k!〈S〉 as x {A} ;T@(p, n)

[RcvA] Θ ∧A;Γ, x : S ` P B∆, s̃ : T@(p, n)

Θ;Γ ` sk?(x);P B∆, s̃ : k?〈S〉 as x {A} ;T@(p, n)
(x /∈ fv(Θ) ∪ fv(∆))

[Sel] Θ;Γ ` P B∆, s̃ : T@(p, n) h ∈ L ` Θ ⇒ Ah

Θ;Γ ` sk / h;P B∆, s̃ : k ⊕ {{Al} l : Tl}l∈L@(p, n)

[Branch] ∀l ∈ L : Θ ∧Al;Γ ` Pl B∆, s̃ : Tl@(p, n)

Θ;Γ ` sk . {l : Pl}l∈L B∆, s̃ : k&{{Al} l : Tl}l∈L@(p, n)

[Conc] Θ;Γ ` P B∆ Θ;Γ ` QB∆′
Θ;Γ ` P |QB∆ ◦∆′ (dom(∆) ∩ dom(∆′) = ∅)

[Subs] Θ;Γ ` P B∆ ` Θ ⇒ ∆ ≤ ∆′
Θ;Γ ` P B∆′

Figure 19. Process congruence (≡)

The relation ≡ is defined as the smallest congruence relation satisfying
P |0 ≡ P P |Q ≡ Q|P
P |(Q|R) ≡ (P |Q)|R (νn)P |Q ≡ (νn)(P |Q) if n /∈ fn(Q)
(νnn′)P ≡ (νn′n)P (νn)0 ≡ 0
def D in 0 ≡ 0 (νs1..sn)Πisi : ∅ ≡ 0
def D in (νn)P ≡ (νn)def D in P if n /∈ fn(D)
(def D in P) | Q ≡ def D in (P | Q) if dpv(D) ∩ fpv(Q) = ∅
def D in def D′ in P ≡ def D and D′ in P if dpv(D) ∩ dpv(D′) = ∅

[Mcast] Γ ` a : 〈G〉 Θ;Γ ` P B∆, s̃ : (G�1)@(1, n)
|s̃| = max(sid(G))
n = max(pid(G))

Θ;Γ ` a[2..n](s̃).P B∆

[Macc] Γ ` a : 〈G〉 Θ;Γ ` P B∆, s̃ : (G�p)@(p, n)
|s̃| = max(sid(G))
n = max(pid(G))

Θ;Γ ` a[p](s̃).P B∆

[SendA] Γ ` e : S Θ;Γ ` P B∆, s : T [e/x]@(p, n) ` Θ ⇒ A[e/x]

Θ;Γ ` sk!〈e〉;P B∆, s̃ : k!〈S〉 as x {A} ;T@(p, n)

20

[RcvA] Θ ∧A;Γ, x : S ` P B∆, s̃ : T@(p, n)

Θ;Γ ` sk?(x);P B∆, s̃ : k?〈S〉 as x {A} ;T@(p, n)
(x /∈ fv(Θ) ∪ fv(∆))

[Send] ∀j.Γ ` ej : Sj Θ;Γ ` P B∆, s : T@(p, n)

Θ;Γ ` sk!〈ẽ〉;P B∆, s̃ : k!〈S̃〉;T@(p, n)

[Rcv] Θ;Γ, x̃ : S̃ ` P B∆, s̃ : T@(p, n)

Θ;Γ ` sk?(x̃);P B∆, s̃ : k?〈S̃〉;T@(p, n)
(x̃ ∩ (fv(Θ) ∪ fv(∆)) = ∅)

[If] Γ ` e : bool Θ ∧ e;Γ ` P B∆ Θ ∧ ¬e;Γ ` QB∆
Θ;Γ ` if e then P else QB∆

[Deleg] Θ;Γ ` P B∆, s̃ : T@(p, n)

Θ;Γ ` sk!〈〈t̃〉〉;P B∆, s̃ : k!〈T ′@(p’, |t̃|, n′)〉;T@(p, n), t̃ : T ′@(p’, n′)

[Srec] Θ;Γ ` P B∆, s̃ : T@(p, n), t̃ : T ′@(p’, n′)

Θ;Γ ` sk?((t̃));P B∆, s̃ : k?〈T ′@(p’, |t̃|, n′)〉;T@(p, n)

[Sel] Θ;Γ ` P B∆, s̃ : T@(p, n) h ∈ L ` Θ ⇒ Ah

Θ;Γ ` sk / h;P B∆, s̃ : k ⊕ {{Al} l : Tl}l∈L@(p, n)

[Branch] ∀l ∈ L : Θ ∧Al;Γ ` Pl B∆, s̃ : Tl@(p, n)

Θ;Γ ` sk . {l : Pl}l∈L B∆, s̃ : k&{{Al} l : Tl}l∈L@(p, n)

[Conc] Θ;Γ ` P B∆ Θ;Γ ` QB∆′
Θ;Γ ` P |QB∆ ◦∆′ (dom(∆) ∩ dom(∆′) = ∅)

[Inact] ∆ end only

Θ;Γ ` 0B∆
[Nres] Θ;Γ, a : 〈G〉 ` P B∆

Θ;Γ ` (νa)P B∆

[Var] ∀j.Γ ` ej : Sj ∆ end only

Θ;Γ,X : (x̃ : S̃) ˜T@(p, n) ` X〈ẽ〉(s̃1...s̃|T̃ |)B∆, T̃ [ẽ/x̃]@(p, n)

[Def] Θ;Γ,X : (x̃ : S̃) ˜T@(p, n), x̃ : S̃ ` P B ˜T@(p, n) Θ;Γ,X : (x̃ : S̃) ˜T@(p, n) ` QB∆
Θ;Γ ` def X〈x̃〉(s̃1, ..., s̃|T̃ |) = P in QB∆

The runtime typing rules (Θ;Γ ` P Bt̃ ∆) Where ∆ in the static typing rules
represents a map from s̃ to T@(p, n), the runtime typing rules uses ∆ as a map from
(s̃, p) to T@(p, n).

The extra t̃ is used to ensure that there is exactly one queue for each session channel in
each open session.

[Subs] Θ;Γ ` P Bt̃ ∆ ` Θ ⇒ ∆ ≤ ∆′
Θ;Γ ` P Bt̃ ∆

′

[Sync]

∀l ∈ L′′ : Θ ∧Al;Γ ` Pl Bt̃ ∆, s̃ : Tl@(p, n) L′′ ⊆ L ∪ L′
∀l ∈ L\L′′ :` Θ ⇒ ¬Bl ∀l ∈ L′′ :` Θ ⇒ (Al ⇒ Bl)
∀l ∈ L :` Θ ⇒ (Bl ⇒ Al) ` Θ ⇒

∨
l∈LBl

Θ;Γ ` syncs̃,n{{Al} l : Pl}l∈L′′ Bt̃ ∆, s̃ : {{Bl} l : Tl}l∈L;L′@(p, n)

[Mcast] Γ ` a : 〈G〉 Θ;Γ ` P Bt̃ ∆, s̃ : (G�1)@(1, n)
|s̃| = max(sid(G))
n = max(pid(G))

Θ;Γ ` a[2..n](s̃).P Bt̃ ∆

21

[Macc] Γ ` a : 〈G〉 Θ;Γ ` P Bt̃ ∆, s̃ : (G�p)@(p, n)
|s̃| = max(sid(G))
n = max(pid(G))

Θ;Γ ` a[p](s̃).P Bt̃ ∆

[SendA] Γ ` e : S Θ;Γ ` P Bt̃ ∆, s : T [e/x]@(p, n) ` Θ ⇒ A[e/x]

Θ;Γ ` sk!〈e〉;P Bt̃ ∆, s̃ : k!〈S〉 as x {A} ;T@(p, n)

[RcvA] Θ ∧A;Γ, x : S ` P Bt̃ ∆, s̃ : T@(p, n)

Θ;Γ ` sk?(x);P Bt̃ ∆, s̃ : k?〈S〉 as x {A} ;T@(p, n)
(x /∈ fv(Θ) ∪ fv(∆))

[Send] ∀j.Γ ` ej : Sj Θ;Γ ` P Bt̃ ∆, s : T@(p, n)

Θ;Γ ` sk!〈ẽ〉;P Bt̃ ∆, s̃ : k!〈S̃〉;T@(p, n)

[Rcv] Θ;Γ, x̃ : S̃ ` P Bt̃ ∆, s̃ : T@(p, n)

Θ;Γ ` sk?(x̃);P Bt̃ ∆, s̃ : k?〈S̃〉;T@(p, n)
(x̃ ∩ (fv(Θ) ∪ fv(∆)) = ∅)

[If] Γ ` e : bool Θ ∧ e;Γ ` P Bt̃ ∆ Θ ∧ ¬e;Γ ` QBt̃ ∆

Θ;Γ ` if e then P else QBt̃ ∆

[Deleg] Θ;Γ ` P Bt̃ ∆, s̃ : T@(p, n)

Θ;Γ ` sk!〈〈t̃〉〉;P Bt̃ ∆, s̃ : k!〈T ′@(p’, |t̃|, n′)〉;T@(p, n), t̃ : T ′@(p’, n′)

[Srec] Θ;Γ ` P Bt̃ ∆, s̃ : T@(p, n), t̃ : T ′@(p’, n′)

Θ;Γ ` sk?((t̃));P Bt̃ ∆, s̃ : k?〈T ′@(p’, |t̃|, n′)〉;T@(p, n)

[Sel] Θ;Γ ` P Bt̃ ∆, s̃ : T@(p, n) h ∈ L ` Θ ⇒ Ah

Θ;Γ ` sk / h;P Bt̃ ∆, s̃ : k ⊕ {{Al} l : Tl}l∈L@(p, n)

[Branch] ∀l ∈ L : Θ ∧Al;Γ ` Pl Bt̃ ∆, s̃ : Tl@(p, n)

Θ;Γ ` sk . {l : Pl}l∈L Bt̃ ∆, s̃ : k&{{Al} l : Tl}l∈L@(p, n)

[Conc] Θ;Γ ` P Bt̃1
∆ Θ;Γ ` QBt̃1

∆′ ∆ � ∆′ t̃1 ∩ t̃2 = ∅
Θ;Γ ` P |QBt̃1∪t̃2 ∆ ◦∆

′

[Inact] ∆ end only

Θ;Γ ` 0Bt̃ ∆

[Nres] Θ;Γ, a : 〈G〉 ` P Bt̃ ∆

Θ;Γ ` (νa)P Bt̃ ∆

[Cres] Θ;Γ,` P Bt̃ ∆, s̃ : {Tp@(p, n)}np=1 {Tp@(p, n)}np=1 coherent s̃ ⊆ t̃
Θ;Γ ` (νs̃)P Bt̃\s̃ ∆

[Var] ∀j.Γ ` ej : Sj ∆ end only

Θ;Γ,X : (x̃ : S̃) ˜T@(p, n) ` X〈ẽ〉(s̃1...s̃|T̃ |)Bt̃ ∆, T̃ [ẽ/x̃]@(p, n)

[Def] Θ;Γ,X : (x̃ : S̃) ˜T@(p, n), x̃ : S̃ ` P B∅ ˜T@(p, n) Θ;Γ,X : (x̃ : S̃) ˜T@(p, n) ` QBt̃ ∆

Θ;Γ ` def X〈x̃〉(s̃1, ..., s̃|T̃ |) = P in QBt̃ ∆

Plus queue rules

B Proofs for subject reduction theorem

We include the proof of subject reduction in Proof B2. The proof uses Lemma B1
which is an extension of Lemma 5.18 from [2]. It states that the [Subs] rules can
be propagated upwards to the [Sel] and [Branch] rules.

Lemma B1 (Extension of Lemma 5.18 from [2]: Permutation).

22

(1) If
[Subs]

[Subs]
D

Γ ` P Bt̃ ∆
Γ ` P Bt̃ ∆′

Γ ` P Bt̃ ∆′′ then
[Subs]

D
Γ ` P Bt̃ ∆

Γ ` P Bt̃ ∆′′ .

(2) If
[Subs]

[X] D
Γ ` P Bt̃ ∆

Γ ` P Bt̃ ∆′ and the second last rule-application X is not Sel or
Branch then the last two rule-applications can be permuted.

Proof:
(1) Is immediate because ≤sub is transitive.

(2) Is proved for each possible rule X. This is done as in the original proof. There
is one new case, and we will prove it now.

Sync: In this case we consider a derivation

[Subs]
[Sync] ∀l ∈ L′′

Dl
Θ ∧Al;Γ ` Pl Bt̃ ∆, s̃ : {Tl@(p, n)} · · ·

Θ;Γ ` syncs̃,n{{Bl} l : Pl}l∈L′′ Bt̃ ∆, s̃ : {{{Al} l : Tl}l∈L;L′@(p, n)}
Θ;Γ ` syncs̃,n{{Bl} l : Pl}l∈L′′ Bt̃ ∆

′, s̃ : {{{Al} l : T ′
l }l∈L;L′@(p, n)}

where Tl ≤sub T
′
l for each l ∈ L′′ and ∆ ≤sub ∆

′. We can therefore create

[Sync] ∀l ∈ L′′
[Subs]

Dl
Γ ` Pl Bt̃ ∆, s̃ : {Tl@(p, n)}

Θ ∧Al;Γ ` l : Pl Bt̃ ∆
′, s̃ : {T ′

l@(p, n)} · · ·
Θ;Γ ` syncs̃,n{{Bl} l : Pl}l∈L′′ Bt̃ ∆

′, s̃ : {{{Al} l : T ′
l }l∈L;L′@(p, n)}

�

Proof B2 (Theorem: Subject Reduction).
We prove

If true;Γ ` P .s̃ ∆, ∆ coherent and P → P ′

then true;Γ ` P ′ .s̃ ∆
′where ∆→0/1 ∆′.

By induction on the derivation of P → P ′.
We prove the case Sync. The remaining cases can be generated by adding assertion
arguments to the proof in [2]. Assume

[Sync] h ∈
⋂n
i=1 Li B1h ↓ true . . . Bnh ↓ true

syncs̃,n{{B1l} l : P1l}l∈L1
| ... | syncs̃,n{{Bnl} l : Pnl}l∈Ln

→ P1h | ... | Pnh
We can assume that the typing true;Γ ` synct̃,n{{B1l} l : P1l}l∈L1

| ... | synct̃,n{{Bnl} l :

Pnl}l∈Ln
Bs̃ ∆, t̃ : {{{Ail} l : Til}l∈L;L′@(i, n)}i∈{1..n} starts with n − 1 applica-

tions of the Conc rule each containing one application of the Sync rule because of
the extension of Lemma 5.18 in B1. This gives us the subderivations:

[Sync]
∀l ∈ Li.

Dil
true ∧Ail;Γ ` Pil Bs̃i ∆i, t̃ : {Til@(i, n)}
∀l ∈ Li. ` true⇒ (Bil ⇒ Ail) · · ·

true;Γ ` synct̃,n{{Bil} l : Pil}l∈Li Bs̃i ∆i, t̃ : {{Ail} l : Til}l∈L′;L@(i, n)

23

for i=1..n such that s̃i ∩ s̃j = ∅ for all i 6= j in 1..n,
⋃n
i=1 s̃i = s̃ and ∆1 ◦ (∆2 ◦

(. . . ◦∆n)) = ∆.
Since each of these subderivations starts with the Sync rule we get that

Dih
true ∧Aih;Γ ` Pih Bs̃i ∆i, t̃ : {Tih@(i, n)} for i = 1..n

Since for each i: Bih ↓ true we have that ` Bih, and since ` true⇒ (Bih ⇒ Aih)
we get that ` Aih by cut elimination of Bih. Finaly by applying cut-elimination of
Aih to each proof in Dih we get that

D′
ih

true;Γ ` Pih Bs̃i ∆i, t̃ : {Tih@(i, n)} for i = 1..n

Now we can apply Conc n− 1 times to create a derivation of
true;Γ ` P1h | . . . | Pnh Bs̃ ∆, t̃ : {Tih@(p, n)}p∈{1..n}.

Since ∆, t̃ : {{{Ail} l : Til}l∈L;L′@(i, n)}i∈{1..n} → ∆, t̃ : {Tih@(i, n)}i∈{1..n},
subject reduction is fulfilled in the Sync case. �

24

