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Abstract. This paper presents two different paradigms of description of commu-
nication behaviour, one focussing on global message flows and another on end-
point behaviours, as formal calculi based on session types. The global calculus
originates from Choreography Description Language, a web service description
language developed by W3C WS-CDL working group. The end-point calculus is
a typed π-calculus. The global calculus describes an interaction scenario from a
vantage viewpoint; the endpoint calculus precisely identifies a local behaviour of
each participant. After introducing the static and dynamic semantics of these two
calculi, we explore a theory of endpoint projection which defines three principles
for well-structured global description. The theory then defines a translation under
the three principles which is sound and complete in the sense that all and only
behaviours specified in the global description are realised as communications
among end-point processes. Throughout the theory, underlying type structures
play a fundamental role.

1 Introduction

Communication-Centred Programming. The explosive growth of Internet and World
Wide Web in the last decades led to, in the form of de facto standards, an omnipresent
naming scheme (URI/URL), omnipresent communication protocols (HTTP and TCP/IP)
and an omnipresent message format (XML). These three elements offer the key infras-
tructural bases for application-level distributed programming. The software systems
which make use of these and other common web standards for distributed communi-
cations are often called web services. Web services are an active area of infrastructural
development, involving two major standardisation bodies, W3C and Oasis, and other
private and public organizations.

One of the application domains which can naturally exploit the infrastructural ba-
sis of web services is the so-called business protocols. A business protocol is a series
of structured and automated interactions among two or more business entities used
for achieving their goals. Business protocols are inherently inter-domain, are often
regulation-bound, and demand clear shared understanding about its meaning among
multiple organisations with possibly conflicting interests. Numerous business protocols
will be designed and implemented. Some business protocols such as industry standard
will last long once specified; others would arise from temporary business needs and may
undergo frequent updates. Because of its inherent inter-organizational nature, there is a
strong demand for a common standard for specifying well-founded and correct business
protocols.
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Global Description of Interaction. One of the standardisation efforts for a language
to specify business protocols is the Web Services Choreography Description Language
(WS-CDL) [40], developed by W3C’s WS-CDL Working Group since 2004 in col-
laboration with π-calculus experts as scientific advisors. WS-CDL is a specification
language which directly describes global information flows and their structures, close
to, for example, the standard notation for cryptographic protocols [26], UML sequence
diagrams [27] and message sequence charts (MSC) [21]. Unlike these predecessors,
in order to enable precise description and specification of complex business protocols,
WS-CDL offers a fully expressive description language for channel based communi-
cation, equipped with standard control constructs (e.g. sequencing, conditionals and
loops) and is conceived with potential for type-based and other formal validation. The
underlying intuition behind choreography can be summarised as follows.

“Dancers dance following a global scenario without a single point of control.”

WS-CDL is a language for describing such a “global scenario” for business protocols.
The description can then be executed by individual distributed processes without a sin-
gle point of control.1 Another significant feature of WS-CDL is its use of sessions for
organizing communication behaviour: at the outset of each unit of a business protocol,
a session is established between each pair of communication parties so that involved
communications can be distinguished from any other instances of business protocols.

Endpoint Projection. A global description of communication behaviour arguably of-
fers conceptual clarity not found in endpoint-based descriptions, partly because a global
interaction flow is often the central objective a communication-based application is in-
tended to realise. Real execution of the description, however, is always through commu-
nication among endpoints which (as the notion of choreography dictates) may as well
involve no centralised control. Thus we ask:

How can we project a global description to endpoint processes so that their
interactions precisely realise the original global description?

Such a projection may be called endpoint projection (EPP), the term originating from
WS-CDL WG.

What are criteria for a good EPP? We naturally desire an EPP to be sound and
complete, in the sense that all and only globally described behaviour is realised as com-
munications among endpoints. We may regard such an EPP as giving the semantics of
a global description.

An appropriate notion of EPP leads to significant engineering usage of a global
description:

1. (code generation) For a global description with full algorithmic details, we can
create a (perhaps multi-language) complete distributed application by projecting it
to each of its endpoints.

1 An contrasting idea in web service is orchestration where one master component, “conduc-
tor”, directly controls activity of one or more slave components, which is useful in the intra-
organisational applications.
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2. (prototype generation) Projection can also be used for generating a skeleton code
for each endpoint which only contains basic communication behaviour, to be elab-
orated to full code.

3. (conformance) A team of programmers initially agree on a shared global specifica-
tion for interactions among endpoints: during/after programming, each programmer
can check if her/his code conforms to the specification by conformance checking
against projection. This scheme also applies to conformance of existing services/li-
braries to a given scenario.

4. (runtime monitoring, testing and debugging) At runtime, each endpoint can check
if ongoing communications at his/her site conform to the global description by
checking against its projection to that endpoint. The monitoring can also be used
for debugging and testing existing code.

5. (property validation) Various static analyses/logical validation can be done for a
global description so that they make sense for each endpoint through EPP.

Many of these ideas come from discussions in WS-CDL working group and are partly
already realised in an open-source reference implementation of WS-CDL [28]. For ex-
ample, runtime monitoring is a basic expected use of WS-CDL with relevance to reg-
ulatory concerns, especially for financial protocols. For all of these uses, EPP should
be built on a clear, precise understanding of semantics of global and local descriptions,
guaranteeing exact match between them.

This Work. The present paper introduces two typed calculi for interaction, one being a
distillation of WS-CDL and another an applied version of the π-calculus, and develops
a theory of endpoint projection. Our central contribution is the identification of natu-
ral descriptive principles for global descriptions which induce a type-preserving EPP
that is sound and complete with respect to their operational semantics. There are three
principles:

– Connectedness, a basic local causality principle.
– Well-threadedness, a stronger locality principle based on session types [10, 14, 16,

18, 37, 39].
– Coherence, a consistency principle for description of each participant in a global

description.

These principles are stipulated incrementally on the basis of well-typedness. They not
only enunciate natural disciplines for well-structured global description, but also offer
gradually deeper analysis of global descriptions. The EPP has the following shape:

I 7→ A[P] | B[Q] | C[R] | · · ·
where I is a global description, A, B and C are participants to the protocol and P, Q and
R are projections of I onto A, B and C respectively. When applied to well-structured
interactions, the mapping thus defined satisfies the following three properties:

– Type preservation: the typing is preserved through EPP.
– Soundness: nothing but behaviours (reductions) in I are in the image of its EPP.
– Completeness: all behaviours in I are in the image of its EPP.
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The EPP theory is intended as a theoretical basis of global description languages in-
cluding, but not limited to, WS-CDL. The theory opens a conduit between global de-
scriptions and accumulated studies on process calculi, allowing the exploitation of rich
theories for engineering concerns. A version of EPP theory will be published as an
associated document of WS-CDL 1.0, and will form a part of an open-source imple-
mentation of WS-CDL [28].

Related Works. As far as we know, this work is the first to present the typed calcu-
lus based on global description of communication behaviour, integrated with the the-
ory of endpoint projection. Global methods for describing communication behaviour
have been practiced in several different engineering scenes in addition to WS-CDL
(for which this work is intended to serve as its theoretical underpinning). Representa-
tive examples include the standard notation for cryptographic protocols [26], message
sequence charts (MSC) [21], and UML sequence diagrams [27]. These notations are in-
tended to offer a useful aid at the design/specification stage, and do not offer full-fledged
programming language, lacking in e.g. standard control structures and/or value passing.
Petri-nets [38] may also be viewed as offering a global description, though again they
are more useful as a specification/analytical tool.

DiCons (which stands for “Distributed Consensus”), which is independently con-
ceived and predates WS-CDL, is a notation for global description and programming of
Internet applications introduced and studied by Baeton and others [4]. DiCons chooses
to use programming primitives close to user’s experience in the web, such as web server
invocation, email, and web form filing, rather than general communication primitives.
Its semantics is given by either MSCs or direct operational semantics. DiCons does not
use session types or other channel-based typing. An analogue of the theory of endpoint
projection has not been developed in the context of DiCons.

The present work shares with many recent works its direction towards well-structured
communication-centred programming using types. Pict [31] is the programming lan-
guage based on the π-calculus, with rich type disciplines including linear and polymor-
phic types (which come from the studies on types for the π-calculus discussed in the
next paragraph). Polyphonic C] [5] uses a type discipline for safe and sophisticated ob-
ject synchronisation. Compagnoni, Dezani, Gay, Vasconcelos and others have studied
interplay of session type disciplines with different programming constructs and program
properties [10, 14, 16, 18, 37, 39]. The EPP theory offers a passage through which these
studies (all based on endpoint languages and calculi) can be reflected onto global de-
scriptions, as we have demonstrated for session types in the present work. In the context
of session types, the present work extends the session structure with multiple session
names which is useful for having parallel communications inside a session.

Many theories of types for the π-calculus are studied. In addition to the study of
session types mentioned above, these include input/output types [24, 30], linear types
[17, 22], various kinds of behavioural types [3, 6, 7, 19, 20, 35, 36, 41] and combination
of behavioural types and model checking for advanced behavioural analysis [32, 33],
to name a few. Among others, behavioural types offer an advanced analyses for such
phenomena as deadlock freedom. We are currently studying how these advanced type-
based validationon techniques on the basis of the present simple session type discipline
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will lead to effective validation techniques. Again these theories would become appli-
cable to global descritpions through the link established by the EPP theory.

Gordon, Fournet, Bhargavan and Corin studied security-related aspects of web ser-
vices in their series of works (whose origin lies in the security-enhanced pi-calculus
called spi-calculus [2]). In their recent work [8], the authors have implemented part of
WS-Security libraries using a dialect of ML, and have shown how annotated application-
level usage of these security libraries in web services can be analysed with respect to
their security properties by translation into the π-calculus [9]. The benefits of such a tool
can be reflected onto the global descriptions through the theory of EPP, by applying the
tool to projections.

Laneve and Padovani [23] give a model of orchestrations of web services using an
extensions of π-calculus to join patterns. They propose a typing system for guaranteeing
a notion of smoothness i.e. a constraint on input join patterns such that their subjects
(channels) are co-located in order to avoid a classical global consensus problem dur-
ing communication. Reflecting the centralised nature of orchestration (cf. footnote 1),
neither a global calculus nor endpoint projection is considered. A bisimulation-based
correspondence between choreography and orchestration in the context of web services
has been studied in [11] by Busi and others, where a notion of state variables is used in
the semantics of the orchestration model. They operationally relate choreographies to
orchestration. Neither strong type systems nor disciplines for end-point projection are
studied in their work.

Outline. Section 2 previews the key technical ideas using concrete examples. Sections
3 and 4 outline the global and endpoint calculi, introducing their static and dynamic
semantics. Section 5 develops the theory of endpoint projection. Section 6 summarises
further results and applications of end-point projection. Section 7 concludes with further
topics. The appendix presents a larger example illustrating how the endpoint projection
concretely works. Many examples and the full technical developments of the theory are
found in the full versions [12, 13].

Acknowledgements. The present work is part of ongoing collaboration between W3C
WS-CDL working group and a team of π-calculus experts, led by Robin Milner. Its de-
velopment has benefitted from the extensive discussions with WS-CDL working group
members. In particular we thank Steve Ross-Talbot and Gary Brown for our many fas-
cinating (and ongoing) conversations.

2 Preview of Key Technical Ideas

2.1 Buyer-Seller Protocol.

This section gives an outline of key technical ideas. Throughout we consider a simple
business protocol from [34], which we call “Buyer-Seller Protocol”, and its variations.
In the core protocol, the participants involved are a Buyer, a Seller and a Shipper. We
first describe the protocol in the following sequence diagram.
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Buyer ShipperSeller

Accept
Choice

{

Quote

quoteCh

Reject

delivCh

DeliveryDetails

DeliveryDetails

In words, the protocol consists of the following actions.

(1) Buyer asks Seller, through a specified channel, to offer a quote (denoted quote) for
buying a specific good;

(2) Seller replies with a quote;
(3) Buyer then answers with either an accept or a reject.
(4) In the case of acceptance,

(4-1) Seller sends the order to the Shipper;
(4-2) Shipper sends the delivery details back to the Seller.
(4-3) Seller forwards them to Buyer: the protocol terminates.

(5) In the case of rejection, the protocol terminates.

Note the diagram is ambiguous on the branching Actions (4) and (5): the purpose of
such diagrams is to offer an informal overview rather than precise specification. Nev-
ertheless, protocols tend to be complex, with nondeterministic and conditional choices,
loops, timeout and other elements. This motivates a need of a syntactic means, i.e. a
language, for describing such protocols.

Some of the central elements of such a language (WS-CDL is one example) may be
determined by observing that the whole intention of specifying such protocols is to in-
stantiate it repeatedly, including its shared usage (e.g. the Buyer role can be assumed by
any potential and possibly concurrent buyers). This consideration leads to the following
two simple engineering principles.

Service Channel Principle (SCP): Invocation channels (e.g. a channel at which Buyer
first communicates to Seller, similarly Seller to Shipper) can be shared and invoked
repeatedly.

Session Principle (SP): A sequence of conversations belonging to a protocol should
not be confused with other concurrent runs of this or other protocols by the par-
ticipants: in other words, each such sequence should form one logical unit of a
conversation, or a session.

(SCP) does not preclude a channel is only known to a closed number of participants. It
corresponds to a replicated channel in the π-calculus, or, more accurately, a replicated
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channel which is not prefixed by other input prefixes (such channels are called uniformly
receptive in [35] and server channels in [6]. (SP) can have complex forms, but a most
basic one is a dyadic one which allows simple and robust type abstraction with tractable
type checking [14, 18, 39]. 2 These two principles are central for the whole technical
development in the paper.

2.2 A Language for Global Description of Communication.

The following presents the full description of Buyer-Seller Protocol in the global cal-
culus, whose syntax and semantics we shall formally introduce later.

1. Buyer→ Seller : quoteCh(ν s).
2. Seller→Buyer : s〈Quote, 300, x〉. {
3. {Buyer→Seller : s〈Accept〉.
4. Seller→ Shipper : delivCh(ν t).
5. Shipper→Seller : t〈DelivDetails, vdetails, xdetails〉.
6. Seller→Buyer : s〈DelivDetails, xdetails, ydetails〉. 0 }
7. +

8. {Buyer→Seller : s〈Reject〉. 0}
9. }

Line 1 describes Action (1) in the previous informal description of the protocol. The
quoteCh is a service channel, which may be considered as a publicly known URL for a
specific service. The invocation marks the start of a session between the buyer and the
seller: the ν-bound s is a session name, a fresh name that will be used for later commu-
nication in this session. Unlike standard process calculi, the syntax no longer describes
input and output actions separately: the information exchange is directly described.

Line 2 describes Action (2) in the scenario, Seller’s reply to Buyer. The session has
already been started and now the two participants communicate using the session name
s. In addition, three factors involved: Quote identifies the particular operation used in
this communication (i.e. request of quote), 300 is the quote sent by Seller; x is a variable
located at Buyer where the communicated value will be stored.

Lines 3/8 describe Action (3), where Buyer communicates its choice (Accept or
Reject) to Seller through s. Two series of actions which follow these choices are com-
bined by + in Line 7. If Accept is chosen, Seller sends Shipper the Buyer’s details
via the service channel delivCh of Shipper, creating a fresh session name t (Line 4).
Then in Line 5, Shipper sends back the shipping details through t. Finally Seller for-
wards the details to Buyer in Line 6, where the protocol terminates. In Line 8, Buyer
communicates Reject, in which case the protocol immediately terminates.

The code above offers a precise global description of the informal scenario above,
drawing on (SCP) and (SP). Sessions offer logical grouping of threads of interactions,

2 In implementations of web services, sessions are implemented using so-called co-relation
identities (which may be considered as nonces in cryptographic protocols). This and the
channel-based representation usually employed in the study of session types are logically
equivalent, as discussed in [2].

7



where each thread starts with a procedure-call-like service invocation. This last feature
can be seen more clearly in the following refinement of the code above.

1. Buyer→ Seller : quoteCh(ν s).
2. rec X. {
3. Seller→Buyer : s〈Quote, q, x〉.
4. if reasonable(x)@Buyer then
5. {Buyer→Seller : s〈Accept〉.
6. Seller→ Shipper : delivCh(ν t).
7. Shipper→Seller : t〈DelivDetails, vdetails, xdetails〉.
8. Seller→Buyer : s〈DelivDetails, xdetails, ydetails〉. 0 }
9. else
10. {Buyer→Seller : s〈Reject〉. q :=q−1@Seller. X } }
11. }

Above if Buyer chooses Reject, the protocol recurs to Line 3 after decrementing the
quote. In Line 4, we assume a unary predicate reasonable(x) evaluated at Seller (“@”
indicates a location, similarly in Line 10). Note the session notation makes it clear that
all Quote-messages from Seller to Buyer in the recursion are done within a single
session. Later in this preview we shall present another example where such session
information plays a crucial role in tractable endpoint projection.

For comparison we present the endpoint counterpart of the first simple global code.
The first is the endpoint code of Buyer.

Buyer[ QuoteCh(νs). sB Quote(x). {
{ sC Accept. sB DeliveryDetails(ydetails). 0 } +

{ sC Reject. 0} } ]

Above Buyer[P] indicates a participant (a named agent) whose behaviour is given by
P. The Seller’s code is given as:

Seller[ ! QuoteCh(s). sC Quote〈300〉. {
{ sB Accept.

DeliveryCh(νt). t B DeliveryDetails(xdetails).
sC DeliveryDetails〈xdetails〉. 0 } +

{Reject. 0 } } ]

The code of Shipper is similar. Observe endpoint descriptions clearly depict local
communication behaviour. However they do not directly describe how interaction pro-
ceeds globally, which may often be the central concern of the designers and users of a
communication-centred application. The two service channels (QuoteCh and DeliverCh)
are replicated and ready to receive invocations, following (SCP).

As may be seen above, extraction of behaviour from a global description relies on
session information. We illustrate this point further. Consider the following snippet of

8



global description, where a and b are used to indicate the lack of session information.

Buyer→Seller : a〈QuoteReq, pname1, pname1〉.
Seller→Buyer : b〈QuoteRes, quote1, quote1〉.
Buyer→Seller : a〈QuoteReq, pname2, pname2〉.
Seller→Buyer : b〈QuoteRes, quote2, quote2〉. I

Here Buyer requests a quote twice: it may look that the behaviour of Seller is such that
it allows a consecutive quote requests in one go. This ambuity is resolved if we put a
session information:

Buyer→Seller : ch(s)〈QuoteReq, pname1, pname1〉.
Seller→Buyer : s〈QuoteRes, quote1, quote1〉.
Buyer→Seller : ch(t)〈QuoteReq, pname2, pname2〉.
Seller→Buyer : t〈QuoteRes, quote2, quote2〉. I

(1)

(Above we use a construct which combines a session initiation and an in-session com-
munication. This is convenient for practice: our theoretical treatment in the present
paper separates these two for clearer formal presentation, with no loss of generality via
a simple encoding.) Using the session information, we infer:

!ch(s)[〈QuoteReq〉(pname).s〈QuoteRes〉(quote).P]

Note the endpoint behaviour would have been quite different if we represent all request-
replies as belonging to a single session.

2.3 Disciplines for Global Description.

Even if a global flow of interaction is the primary concern of an application designer,
in implementation, a global scenario has to be realised by distributed end-points com-
municating with each other. Thus we need to bridge the world of global description to
endpoint descriptions. Our ultimate aim is to have global descriptions such that their
operational content, or endpoint realisation, is transparent from these descriptions.

Having such a bridge is non-trivial because a global calculus allows description of
communication behaviour that does not make sense at endpoints. As the first such issue,
let us consider the following code snippet for global description:

Buyer→ Seller : ch1(ν s).
Shipper→ Depot : ch2(ν t). 0

Above Shipper is supposed to contact Depot only after Buyer performed a request
to Seller. Implementing such a system demands Shipper is notified once the initial
communication is performed, i.e. there is an implicit communication from Seller to
Shipper:

Buyer→ Seller : ch1(ν s).
Seller→ Shipper : ch(ν s′).
Shipper→ Depot : ch2(ν t). 0
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With this insertion, the description is realisable purely through explicitly specified mes-
sage exchanges. The criteria which says each participant acts only as a result of its local
event (such as reception of a message) is called connectedness. We shall give its formal
definition in Section 5.

Connectedness is an intuitive idea for well-structured global description. The next
condition is more subtle. Consider the following (connected) interaction:

Buyer→ Seller : ch1(ν s).
Seller→ Shipper : ch2(ν t).
Shipper→ Buyer : ch3(ν u).
Buyer→Seller : s〈op, v, x〉. I

Above we assume Buyer offers a service channel ch3 which is useful for Shipper. We
claim that this global code (regardless of ensuing interaction at I) is unrealisable at
endpoints, at least under the natural type discipline and code organisation.

The first action tells that there is a thread in Buyer which invokes Seller. This thread
becomes inactive in the second line. In the third line, a service at ch3 in Buyer is in-
voked. In the final line, Buyer communicates to Seller via a session name s opened in
the first action. So, at the endpoint, we should have the following two chunks of the
code:

ch1(νs). sC op〈v〉.P | ! ch3(t).Q

The first chunk is for the initial invocation and ensuring reception of op in the same
session, while the second is a service at ch3 (by (SCP) this channel should be ready to
receive invocations). Note that, by sCop〈v〉 belonging to a session s, this action cannot
be located under ch3. On the other hand, the code of Seller should be:

! ch1(s). ch2(νt). t B op(x)

Finally, the code of Shipper becomes:

! ch2(t). ch3(νu).R

We can now have the three endpoint processes get engaged in communications: First,
Buyer invokes ch1, then Seller invokes ch2 of Shipper: up to here the interaction follows
the original global scenario. However, at this point, the action sB op(x) is free to react
with its dual action sCop〈v〉, before Shipper invokes Seller’s the other component, the
service at ch3. Thus the sequencing in the global description can be violated.

The fundamental issue here is that the given global code assumes a false (unrealis-
able) dependency among actions: the last action belongs to a thread which started from
the invocation of ch1, while the description says it should take place as the direct result
of the third action at a distinct thread which has been opened by the invocation at ch3.
If a global description is free from such false dependency, we say it is well-threaded.
We shall see in Section 5 that checking well-threadedness is simple and mechanical.

Well-threadedness not only eliminates false dependency but also allows consistent
extraction of threads (i.e. sequences of actions) from a given global code. These threads
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become the constituents of endpoint processes in EPP. The final well-structuring princi-
ple is concerned with this composition. It is often necessary to merge threads to obtain
the final endpoint behaviour of a single service.3 Consider the following parallel com-
position:

Buyer→ Seller : ch(ν s). Seller→Buyer : s〈op1, e, x1〉. I1 |
Buyer→ Seller : ch(ν t). Seller→Buyer : t〈op2, e, x2〉. I2

where op1 , op2. Here Buyer invokes Seller’s service at ch twice in parallel. Now con-
sider constructing the code for this service at channel ch: then we need to merge these
two threads into one endpoint behaviour. But the global description is contradictory,
since in one invocation the service reacts with op1, while in another the service reacts
with op2. The description is not self-consistent.

A central issue is that, in a global description, the descriptions of a single endpoint
behaviour (especially a service at a service channel) can be scattered in different por-
tions of the code. Thus, without these scattered descriptions being consistent with each
other, we cannot merge them into a single behaviour. We call such mergeability, co-
herence: coherence is not simply about identity of the behaviour, as in the above case,
since distinct input branches may be described in different portions of a global code.
The details are given in Section 5. Coherence can again be checked mechanically.

With coherence as the final well-structuredness condition, we can now project a
global code to endpoint behaviours that precisely realise the original global scenario.

3 The Gobal Calculus

3.1 Syntax

The syntax of the global calculus is given by the following BNF. I, I ′, . . . denote terms
of the calculus, also called interactions. Below ch, ch′ . . . range over service chan-
nels, intuitively denoting the shared channels of (web) services; s, t, . . . range over ses-
sion names; s̃ indicates a vector of session names; A, B,C, . . . range over participants;
x, y, z, . . . over local variables in each participant; X, X ′, . . . over term variables; and
e, e′, . . . over arithmetic and other first-order expressions.

I ::= A→ B : ch(ν s̃). I (init)
| A→B : s〈op, e, y〉. I (comm)
| x@A := e. I (assign)
| I1 | I2 (par)
| if e@A then I1 else I2 (ifthenelse)
| I1 + I2 (sum)
| (νs) I (new)
| X (recvar)
| µX. I (rec)
| 0 (inaction)

3 This merging already takes place in the extraction of code in (1) above, though in a trivial way.
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Table 1 Reduction Relation for the Global Calculus

(G-I)
−

(σ, A→ B : ch(ν s̃). I)→ (σ, (νs̃) I)
(G-C)

σ′ = σ[x@B 7→ v] σ ` e@A ⇓ v
(σ, A→B : s〈op, e, x〉. I)→ (σ′, I)

(G-A)
σ′ = σ[x@A 7→ v] σ ` e@A ⇓ v

(σ, x@A := e. I)→ (σ′, I)
(G-S)

i = 1, 2
(σ, I1 + I2)→ (σ′, Ii)

(G-IT)
σ ` e@A ⇓ tt

(σ, if e@A then I1 else I2)→ (σ, I1)
(G-IF)

σ ` e@A ⇓ ff
(σ, if e@A then I1 else I2)→ (σ, I2)

(G-P)
(σ, I1)→ (σ′, I′1)

(σ, I1 | I2)→ (σ′, I′1 | I2)
(G-R)

(σ, I)→ (σ′, I′)
(σ, (νs̃) I)→ (σ′, (νs̃) I′)

(G-R)
(σ, I[µX.I/X])→ (σ′, I′)

(σ, µX.I)→ (σ′, I′)
(G-S)

I ≡ I′′ (σ, I)→ (σ, I′) I′ ≡ I′′′

(σ, I′′)→ (σ′, I′′′)

The term (init) denotes a session initiation by A to B on service channel ch with fresh
session channels s̃ and continuation I. The interaction (com) is the in-session commu-
nication over a session channel s. Note that y is free and does not bind I. The operators
| and + denote respectively parallel and choice operators. (νs) I is the π-calculus-like
name restriction, binding s in I. (ifthenelse) and (assign) are the standard conditional
and assignment (e@A indicates e is located at A). µX. I is recursion, where the variable
X is bound in I. 0 denotes termination. The free and bound session channels and term
variables are defined in the usual way.

The presented syntax is intended as the minimum one for presenting examples and
for the EPP theory. Section 6 discusses natural additional syntactic constructs.

3.2 Dynamics

The dynamics of the global calculus is given by reduction relation close to that of im-
perative languages. A state σ assigns a value to the variables located at each participant.
We shall write σ@A to denote the portion of σ local to A, and σ[y@A 7→ v] to denote a
new state which is identical with σ except that σ′@A(y) is equal to v. The reduction is
the binary relation→ generated by the rules in Table 1. “(σ, I) → (σ′, I′)” says that
I in the state σ performs one-step computation and becomes I ′ with the new state σ′.

Rule (I) is for session initiation: after A initiates a session with B on service
channel ch, A and B share s̃ locally (indicated by binding (νs̃) ), and the next I is
unfolded. The initiation channel ch will play an important role for typing and the end-
point projection later. (C) is a key rule: the expression e is evaluated into v in the
A-portion of the state σ and then assigned to the variable x located at B resulting in
new the state σ[x@B 7→ v]. Note that the same variable (say x) can be located at
different participants, so that σ@A(x) and σ@B(x) are distinct. Similarly to the session
initiation, the session channel s is attached. The rule (S) makes use of structural
congruence. The structural congruence relation is the least congruence relation ≡ on I

12



Table 2 Typing Rules for Global Calculus

(G-TI)
Γ, ch@B : (s̃)α ` I B ∆ · s̃ [B, A] :α

Γ, ch@B : (s̃)α ` A→ B : ch(ν s̃). I B ∆

(G-TC)
Γ ` I B ∆ · s̃ [A, B] :α j Γ ` e@A :θ j Γ ` x@B :θ j s ∈ {s̃} j ∈ J

Γ ` A→B : s〈opj, e, x〉. I B ∆ · s̃ [A, B] : s J Σi∈Jopi(θi). αi

(G-TCI)
Γ ` I B ∆ · s̃ [B, A] :α j Γ ` e@A :θ j Γ ` x@B :θ j s ∈ {s̃} j ∈ J

Γ ` A→B : s〈opj, e, x〉. I B ∆ · s̃ [B, A] : s I Σi∈Jopi(θi). αi

(G-TA)
Γ ` x@A :θ Γ ` e@A :θ Γ ` I B ∆

Γ ` x := e@A. I B ∆

(G-TS)
Γ ` I1 B ∆ Γ ` I2 B ∆

Γ ` I1 + I2 B ∆
(G-TI)

Γ ` e@A :bool Γ ` I1 B ∆ Γ ` I2 B ∆

Γ ` if e@A then I1 else I2 B ∆

(G-TP)
Γ ` I1 B ∆1 Γ ` I2 B ∆2

Γ ` I1 | I2 B ∆1 • ∆2
(G-TR1)

Γ ` I B ∆, s̃1 ss̃2[A, B] :α
Γ ` (νs) I B ∆, s̃1 s̃2 :⊥

(G-TR2)
Γ ` I B ∆, s̃1 ss̃2 :⊥

Γ ` (νs) I B ∆, s̃1 s̃2 :⊥ (G-TR3)
Γ ` I B ∆, ε :⊥
Γ ` (νs) I B ∆

(G-TR)
Γ · X :∆ ` I B ∆

Γ ` µX. I B ∆
(G-TV)

Γ, X :∆ well-formed
Γ, X :∆ ` X B ∆

(G-TZ)
Γ well-formed ∀i , j. {s̃i} ∩ {s̃ j} = ∅

Γ ` 0B⋃
i s̃i[Ai, Bi]end

such that | and + are commutative monoids and such that it satisfies alpha-conversion
and the rule (νs) I1|I2 ≡ (νs) (I1|I2) for s < fn(I2).

Consider, for instance, the interaction

Buyer→ Seller : QuoteCh(ν s).
Seller→Buyer : s〈Quote, 300, x〉. I′

and let us evaluate it in the stateσ. By applying rule (I), we get the pair (σ, (νs) Seller→
Buyer : s〈Quote, 300, x〉. I′). Now, by applying rules (R) and (C) together in the
state σ we get the pair (σ[x@Buyer 7→ 300], (νs) I ′).

3.3 Typing

We use a generalisation of session types [18] as the type discipline for the global calcu-
lus. The grammar of types follows.

α ::= s I Σiopi(θi). αi | s J Σiopi(θi). αi

| α |α | end | µt. α | t

13



where θ, θ′, . . . range over value types. α, α′, . . . are session types. s I Σiopi(θi). αi

is a branching input type at session channel s, indicating possibilities for receiving
any of the operators from opi (which are pairwise distinct) with a value of type θi;
s J Σiopi(θi). αi, a branching output type at s, is the exact dual of the above. The
type α1 |α2 is a parallel composition of α1 and α2, abstracting parallel composition of
two sessions. We take | to be commutative and associative, with end, the inaction type
indicating session termination, being the identity. We demand session channels in α1
and those in α2 to be disjoint: this will guarantee a linear use of session channels. t is
a type variable, while µt.α is a recursive type, where µt binds free occurrences of t in
α. In recursive types, we assume each recursion is guarded, i.e., in µt.α, α is an n-ary
parallel composition of input/output types. Recursive types are regarded as regular trees
in the standard way [29].

Note that session channels occur free in session types: this is necessary to allow
multiple session channels to appear in a single session in parallel. Thus, we can faith-
fully capture the behaviour of web services where it is possible to exchange different
data simultaneously, leading to a generalisation of session types in the literature. Let us
show a simple example:

s J Quote(int). end | s′ J Extra(String). end

Here a participant is sending a quote (integer) at s and extra information about the
product at s′ in a single session: without using distinct session channels, two commu-
nications can get confused.

The duality for session types plays the key role to guarantee dyadic interaction [18].
The co-type, or dual, of α, written α, is given as follows.

s J Σiopi(θi). αi = s I Σiopi(θi). αi

s I Σiopi(θi). αi = s J Σiopi(θi). αi

µt. α = µt. α t = t end = end

For instance, the co-type of s I Quote(int). end is s J Quote(int). end, exchanging
input and output.

Each time a session is initiated via a service channel, session channels are freshly
generated. Thus, the interface of a service should indicate a vector of session names to
be exchanged, in addition to how they are used. This is represented by a service type, in
which concrete instances of session names in a session type are abstracted, written: (s̃)α
where s̃ is a vector of pairwise distinct session channels covering all session channels in
α, and α does not contain free type variables. (s̃) binds occurrences of session channels
in s̃ in α, which induces the standard alpha-equality.

A typing judgement has the following form:

Γ ` I B ∆

where Γ is service typing and ∆ session typing. ∆ maps session channels to their loca-
tions and session types and Γ located service channels and recursive variables to service
types and session typing, respectively. The grammar of service/session typings follow.

14



Below in s̃[A, B] we assume A , B.

Γ ::= ∅ | Γ, ch@A : (s̃)α | Γ, x@A :θ | Γ, X :∆
∆ ::= ∅ | ∆, s̃[A, B] :α | ∆, s̃ :⊥

In a service typing, three forms of assignments are used: ch@A : (s̃)α says that a service
channel ch is located at A and offers a service interface represented by a service type
(s̃)α; x@A :θ says that a variable x located at A may store values of type θ; finally, X :∆
is for recursion i.e. when the interaction recurs to X, the behaviour will own a session
typing ∆.

A session typing uses the primary form of assignment s̃[A, B] :α which says that a
vector of session channels s̃, all belonging to a same session which is between A and
B, has the session type α when seen from the viewpoint of A. We write Γ1, Γ2 (∆1,∆2)
if there is no overlap between the free variables/names in Γ1 (∆1) and Γ2 (∆2). The
notation fsc(∆) denotes the set of free service/session channels in ∆.

The typing rules are given in Table 2. Rule (G-TC) states that I should contain a
session type α j between A and B such that its session channels contain s. The commu-
nicated value e is typed in the source (A) while the variable x is typed in the target (B),
with the same type θ j. In the conclusion, a branching type should include the operator
op j whose value type is θ j. In (G-TC), the session type in focus is given with the
direction from A to B, i.e. it abstracts the structure of the interaction in this session from
the viewpoint of A. While this is consistent, we may also regard it from the receiver
viewpoint (B). Thus we have the symmetric variant (G-TCI).

Rule (G-TP) uses the linearity condition found in [18]. This is done by the oper-
ator • where s̃[A, B] : α ∈ ∆1 • ∆2 iff either

1. s̃[A, B] : α1 ∈ ∆1, {s̃}[A, B] : α2 ∈ ∆2 and α = α1 | α2;
2. s̃[A, B] : α ∈ ∆1 and {s̃} ∩ fsc(∆2) = ∅, or its symmetric case;

Note different session channels can be used in parallel, while service channels can be
shared by multiple threads of interactions.

Rule (G-TI) types session initiation. Since s̃ is to be abstracted as session chan-
nels belonging to a single session, we demand that there is a ch@B : (s̃)α in the typing
environment. Since s̃ is directed from B to A, α designates a session type seen from
B’s viewpoint resulting in s [B, A] : α where both A and B need be mentioned since a
session is always between two parties. Note that ch@B : (s̃)α is also assumed in the
premise since ch may have already been used elsewhere (as a service channel can be
shared).

In (G-TR1), hiding of session names is introduced after the session initiation so
that they can no longer be abstracted by (G-TI). α is no longer necessary, so we
replace it with ⊥. Rule (G-TR2) is used for removing unnecessary hidden session
names one by one: when s̃ is empty, we take it off with (G-TR3).

In Rule (G-TZ) we demand each session type used in the conclusion is a dis-
tinct vector of session channels and Γ is well-formed. A service type Γ is well-formed
whenever ch@Ai : (s̃i)αi ∈ Γ (i = 1, 2) implies A1 = A2 and (s̃1)α1 = (s̃2)α2. Moreover,
x@Ai :θi, X :∆i ∈ Γ implies θ1 = θ2, A1 = A2 and ∆1 = ∆2. Similarly, a session typing ∆

is well-formed when for all s̃1[A1, B1]α1 and s̃2[A2, B2]α2 in ∆ such that {s̃1} ∩ {s̃2} , ∅
we have s̃1 = s̃2, A1 = A2, B1 = B2 and α1 = α2.

15



Proposition 1. Γ ` I B ∆ implies Γ and ∆ are well-formed.

As a simple example, we type the Buyer-Seller interaction I. Service channel QuoteCh
is assigned with service type

(s) s J Quote(integer). (
s I QuoteAccept(null). s J DeliveryDetails(null). end+

s I QuoteReject(string). end)

Instead, service channel DeliveryCh has service type

(t) t J DeliveryDetails(string). end

Denoting two types by (s)α1 and (t)α2 respectively, we can prove QuoteCh : (s)α1, DeliveryCh :
(t)α2 ` I B ∅.

The type discipline has also a minimal typing. To formulate minimality, we use the
inclusion ordering ≤, defined based on simulation as in [16] with the key justifying
rules being:

J ⊂ J′ ∀i ∈ J. αi ≤ α′i
s I Σi∈Jopi(θi). αi ≤ s I Σi∈J′opi(θi). α′i

J ⊂ J′ ∀i ∈ J. αi ≤ α′i
s J Σi∈Jopi(θi). αi ≤ s J Σi∈J′opi(θi). α′i

The relation ≤ is extended pointwise to session typings and service typings. In brief,
α ≤ α′ indicates α is the result of cutting off some branches from α′ at zero or more
points. We now observe:

Proposition 2. Let Γ ` I B ∅ for some Γ. Then there exists Γ0 such that Γ0 ` I and
whenever Γ′ ` I B ∅ we have Γ0 ≤ Γ′.

Theorem 3 (Subject Reduction). Assume Γ ` σ. Then Γ ` IB∆ and (σ, I)→ (σ′, I′)
imply Γ ` σ′ and Γ ` I B ∆′ for some ∆′ such that fsc(∆′) ⊂ fsc(∆).

4 The End-Point Calculus

4.1 Syntax

The end-point calculus is an applied version of the π-calculus [25]. The main syntactic
terms are processes (P,Q, . . .) and networks (M,N, . . .) and are defined by the following
grammar.

P ::= ! ch(s̃). P | ch(νs̃). P | sB Σiopi(ỹi).Pi

| sC op〈ẽ〉. P | x := e. P | if e then P1 else P2

| P ⊕ P | P | Q | (νs) P | X | µX. P | 0

N ::= A[ P ]σ | N | N | (νs) N | ε
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Table 3 Semantics of the End-Point Calculus

(EP-I)
−

A[ ! ch(s̃). P | P′ ]σ | B[ ch(νs̃). Q | Q′ ]σ′ → (νs̃) (A[ ! ch(s̃). P | P | P′ ]σ | B[ Q | Q′ ]σ′ )

(EP-C)
σ ` e ⇓ v

A[ sB Σiopi(xi).Pi | P′ ]σ | B[ sC opj〈e〉Q |Q′ ]σ′ → A[ P j | P′ ]σ[x 7→v j] | B[ Q | Q′ ]σ′

(EP-A)
σ ` e ⇓ v

A[ x := e. P | P′ ]σ → A[ P | P′ ]σ[x 7→v]

The first two productions for processes describe terms meant for session initiation and
the following two are for communication. This is in the style of [18], except ỹi in the
second construct (branching input) do not induce binders. x := e. P assigns a value v
to x in its store and then continues as P. The rest is all standard. Networks are paral-
lel composition of participants. The latter are represented by the term A[ P ]σ which
indicates a participant A whose behaviour is given by P and whose local state is σ.

4.2 Reduction

The reduction semantics for the end-point calculus follows the π-calculus. We report
the full definition in [1], but list the three key rules in Table 3.

(EP-I) defines the session initiation: two participant A and B will synchronize
starting a session whenever they are executing a service offer ! ch(s̃). P and a request of
service ch(νs̃). Q respectively. The synchronisation will result into sharing fresh session
names s̃ local to A and B. These session names are then used in (EP-C) for commu-
nication. In (EP-C), we use assignment to local variables rather than value passing
for correspondence with the global calculus. (EP-A) updates the store associated
in each participant.

4.3 Session Types for the End-Point Calculus

As mentioned above, the aim of the end-point calculus is to give a model on which we
can project the global calculus. For this reason we need to define session types [18] as
well. We use the same set of session and service types as the global calculus.

In the end-point calculus, we have the two type judgements

Γ `A P B ∆ Γ ` M B ∆

respectively for processes and networks. Γ (service typing) and ∆ (session typing) above
are given by the following grammar.

Γ ::= ∅ | Γ, ch@A : (s̃)α | Γ, ch@A : (s̃)α
| Γ, x@A : θ | Γ, X : ∆

∆ ::= ∅ | ∆, s̃@A : α | ∆, s̃ : ⊥
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Table 4 Session Types for Processes in the End-Point Calculus

(EP-TB)
K ⊆ J s ∈ s̃ Γ ` x j : θ j Γ `A P j B ∆ · s̃@A : α j

Γ ` sB Σi∈Jopi(xi).Pi B ∆ · s̃@A : s I Σi∈Kopi(θi). αi

(EP-TS)
j ∈ J ⊆ K Γ ` e : θi Γ `A P B ∆ · s̃@A : α j

Γ `A sC opj〈e〉.P B ∆ · s̃@A : s J Σi∈Kopi(θi). αi

(EP-TS)
Γ `A P B s̃@A :α

Γ, ch@A : (s̃)α `A ! ch(s̃). P B ∅

(EP-TR)
Γ, ch@B : (s̃)α `A P B ∆ · s̃@A : α

Γ, ch@B : (s̃)α `A ch(νs̃).P B ∆

(EP-TP)
Γi `A Pi B ∆i Γ1 � Γ2 ∆1 � ∆2

Γ `A P1 | Q2 B ∆1 � ∆2

As before, we stipulate that, whenever we write e.g. Γ1, Γ2, there are no free channel-
s/variables shared between two typings. The selected rules for the typing processes are
given in Table 4.

The rule (EP-TB) for input in-session communication involves branching with
distinct operators: the typing can have less branches than the real process, so that the
process is prepared to receive any operator specified in the type. Rule (EP-TS) is
its dual: the typing can have more branches than the real process, so that the process
invokes with operators at most those specified in types. Combining (EP-TB) and (EP-
TS), an output never tries to invoke a non-existent option in its matching input.

Rule (EP-TS) is for typing the inputting side of initialisation. Note we do not
allow those session channels other than the target of initialisation to be present as the
session typing in the premise: this prevents free session channels to be under the repli-
cated input, guaranteeing their linear usage. The typing in the conclusion means (by our
convention) that ch or ch does not occur in Γ. The outputting side of initialisation (rule
(EP-TR)) is analogous, except that the linearity constraint needs not be specified. We
assume that A and B are not identical. The fact we allow ch@B : (s̃)α to occur in the
premise means an invocation to a service can be done as many times as needed (as far as
it is type correct). (EP-TP) uses the operators � and �: ∆1 � ∆2 means two channels
of the same domain have a dual type each other [18]; and the result of the composition
of the dual types become ⊥, which denotes the same channel cannot be composable
further. This operation guarantees a linear use of session channels. The full definition
can be found in [1].

As an example, we type the end-point process of the seller, seen in Section 2. If we
consider the service types (s)α1 and (t)α2 in the previous example in Section 3.3, we
have

QuoteCh : (s)α1, DeliveryCh : (t)α2 ` Seller[ Protocol ]σ B ∅
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Note that, in the end-point types the service channel DeliveryCh is overlined: this is
because the channel is located at the shipper’s. This is not the case in the global calculus
as we only have a global view of channels. With well-formedness similar to the global
calculus, we have:

Proposition 4. Γ ` M B ∆ implies Γ and ∆ are well-formed.

For the end-point calculus, we consider a subtyping relation on session types following
[16]. 4 This relation plays a basic role in our subsequent technical development. The
subtyping is written α � β. Intuitively, α1 � α2 indicates that α1 is more gentle, or
dually α2 is less constrained, in behaviour. The subtyping relation is given based on
simulation following [16], whose key justifying rules are:

J ⊃ J′ αi � βi

s I Σi∈Jopi(θi). αi ≤ s I Σi∈J′opi(θi). βi

which says that if the initial input offers more options, and if subsequent behaviours are
more gentle, then it is more gentle.

J ⊂ J′ αi � βi

s J Σi∈Jopi(θi). αi ≤ s J Σi∈J′opi(θi). βi

which says that if the initial output has less emissions and if subsequent behaviours
are more gentle then it is more gentle. Note this relation is different from the inclusion
ordering ≤ in §3.3.

The following result says that we can always find a representative typing for a given
process, and, moreover, we can do so effectively. Such a type is minimum among all
assignable typings w.r.t. the subtyping relation, so that we call it the minimal typing of a
given term. Below and henceforth we write Γ ` M for Γ ` M B ∅, similarly for Γ `A P.

Definition 5 (minimal typing). Let Γ0 ` M. We call Γ0 the minimal service typing of
M whenever for all Γ such that Γ ` I we have Γ0 � Γ, where � is taken pointwise at
each channels.

Proposition 6 (existence of minimal typing). For each typable M, its minimal service
typing Γ0 exists. Further such Γ0 is algorithmically calculable from M.

Theorem 7 (subject reduction). If Γ ` N B ∆ and N → N ′ then Γ ` N′ B ∆.

Unlike the global calculus, the untyped end-point calculus can have communication
error. Its absence is guaranteed by the type system. Let us say M has a communication
error when:

M ≡ C[A[sB Σiopi(xi).Pi|R]σ|B[sC op〈e〉.Q|S ]σ′ ]

where in both cases op < {opi} and C[ ] is a reduction context (i.e. a context whose hole
is not under a prefix). That is, M has a communication error when it contains an input
and an output at a common channel which however do not match in operator names. A
basic corollary of Theorem 7 follows.

Corollary 8 (lack of communication error). If Γ ` NB∆ and N →∗ M, then M never
contains a communication error.

4 The direction of the subtyping is converse to (and consistent with) [16].
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5 The End-Point Projection

This section establishes a formal link from the global calculus to the end-point calcu-
lus: a global description which conforms to the three properties, connectedness, well-
threadedness and coherency can be mapped to the end-points preserving the three desir-
able properties, type preservation, and soundness and completeness of the operational
semantics. Throughout we only consider well-typed terms for both the global and end-
point calculi.

5.1 Connectedness

To define connectedness, we need to say which participant initiates an action in a given
interaction I: this participant should be the place where the preceding event happens.
First assume we annotate recursion variable with a participant name, e.g. µX A. I etc.

Definition 9 (initiating participants). Given a hiding-free interaction I, its initiating
participants, denoted top(I), is inductively given as follows:

top(I)
def
=



{A} if I ∈ Z
∅ if I ≡ 0
top(I′) if I ≡ µXA. I′

top(I1) ∪ top(I2) if I ≡ I1 | I2 or I1 + I2

where Z = {if e@A then I1 else I2, A→ B : ch(ν s̃). I′, A→B : s〈op, e, x〉. I, x@A :=
e. I′, XA} . If A ∈ top(I), we say A is an initiating participant of I.

The map top(I) generates a set of participants that initiates the first action of I. We can
now present the definition of connectedness.

Definition 10 (connectedness). The collection of connected interactions Con is induc-
tively generated as follows.

1. {0, XA} ⊆ Con.
2. A→ B : ch(ν s). I′, A→B : s〈op, e, x〉. I′, µXB. I′ and x@B := e. I′ are in Con if

I′ ∈ Con and top(I′) = {B}.
3. if e@A then I1 else I2, I1 + I2 and I1 | I2 are in Con if I1, I2 ∈ Con and {A} =

top(I1) = top(I2).

Connectedness says that, in communication actions, only the message reception leads to
activity (at the receiving participant), and that such activity should immediately follow
the reception of messages. We note connectedness enjoys a subject reduction property,
shared by well-threadedness and coherence.

5.2 Well-Threadedness

In order to formally introduce the notion of well-threadedness, we need to annotate a
global interaction with threads.
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Definition 11 (annotated interaction). Annotated interactions, denoted by A,A′, . . .,
are given by the following grammar.

A ::= Aτ1 → Bτ2 : ch(ν s̃). A | x@Aτ := e. A | A1 |τ A2

| Aτ1→Bτ2 : s〈op, e, y〉. A | µτXA. A | A1 +τ A2

| if e@Aτ then A1 else A2 | XA
τ | 0

where τi ∈ N (called thread) and τ1 , τ2 in the first two lines.

In the abstract syntax tree of the terms in the global calculus, each node is annotated
with threads (given as natural numbers). The notions such as connectedness easily ex-
tend to annotated interactions. The following is an annotated interaction of a previous
example:

Buyer1 → Seller2 : ch1(ν s). Seller2 → Buyer3 : ch2(ν t).

Buyer3→Seller2 : t〈op1, v1, x〉.
Seller2→Buyer1 : s〈op2, v2, y〉

Our task now is to find a notion of “consistent annotation” for annotated interactions, so
that causality specified globally can be precisely realisable locally. For this purpose it is
convenient to consider each A as an inverted abstract syntax tree. Each node has a con-
structor which is annotated by either one thread or, if it is initiation or communication,
an ordered pair of threads.

Definition 12. 1. If a node in A is initialisation or communication from B to C and
is annotated by (τ1, τ2), then τ1 (resp. τ2) is the active (resp. passive) thread by B
(resp. by C) of that node. If the node has other constructors, its annotating thread is
both active and passive.

2. If a node occurs (resp. directly) above some node, then the former is a (resp. direct)
predecessor of the latter. Symmetrically we define (direct) successor.

Note if a node is a predecessor of another then the former execution should temporarily
precedes that of the latter. We can now introduce the consistency condition for thread
annotation. Below in (G2) we assume the bound name condition for session names.

Definition 13. An annotated connected interaction A is globally consistent or simply
consistent if the following conditions hold.

(G1) Freshness Condition: For each node of A, if it starts with initialisation, then its
passive thread should be fresh w.r.t. all of its predecessors (if any).

(G2) Session Consistency: If a node of A starts with a communication between B and
C via (say) s and another node of A starts with a communication via s or an initial-
isation which opens s, then the thread by B (resp. by C) of the former node should
coincide with the thread by B (resp. by C) of the latter node.

(G3) Causal Consistency: If a node of A is the direct successor of another node of A,
then the latter’s active thread should coincide with the former passive thread.
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(G1) says a fresh thread starts when a service is invoked. (G2) says two distinct in-
teractions in the same session (which are, by typing, always between the same pair of
participants) should be given the same threads w.r.t. each participant. (G3) says if A has
an input annotated as a (passive) thread then its immediately following output should
be annotated by the same (but this time active) thread.

Below we say I has an annotation A when removing all annotations from A coin-
cides with I.

Definition 14 (well-threaded interactions). I is well-threaded when it is connected
and has a consistent annotation.

Note well-threadedness implies connectedness (hence well-typedness). In [1], we
give a type discipline accepting all and only well-threaded interactions, from which we
can derive a sound and complete inductive algorithm to check well-threadedness.

5.3 Coherence and End-Point Projection

We now define coherence and then end-point projection. First, we give the notion of
mergeability of threads. In the rest of the paper, a typed term (in the end-point calculus)
is a typed sequent Γ `A P B ∆ or Γ ` M B ∆. Moreover, a relation over typed
processes or networks (in the end-point calculus) is typed if each related pair of typed
terms have the same typing.

Definition 15 (mergeability). Mergeability relation, denoted ./, is the smallest typed
equivalence over terms up to ≡ closed under all typed contexts and the rule:

∀i ∈ J ∩ K. Pi ./ Qi ∀ j ∈ J\K, k ∈ K\J. op j , opk

sB ΣJop j(x j). P j ./ sB ΣKopk(xk). Qk

When P ./ Q, we say P and Q are mergeable.

The relation ./ checks whether two given processes behave without contradicting when
they come to the same course of interactions, i.e. when the same input branch is selected
by the interacting party. Thus the rules above say that we can allow differences in input
branches which do not overlap, but we do demand each pair of behaviours with the
same operation to be identical.

Definition 16 (merge operator). t is a partial commutative binary operator on pro-
cesses, such that (1) if P is a prefixed process with a service channel as its subject, then
P t 0 = 0 t P = P; and (2) sB Σi∈Jopi(yi). Pi t sB Σi∈Kopi(yi). Qi is defined as:

Σi∈J∩Kopi(yi). (Pi t Qi) + Σi∈J\Kopi(yi). Pi +

+ Σi∈K\Jopi(yi). Qi

where we assume that every time t is applied in the defining clause, say to P and Q, we
have P ./ Q; and otherwise it is the identity. When these conditions are not satisfied,
the operation is undefined.
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Before introducting projection onto threads, we add a further annotation to each
recursion and each recursion variable. Given µτXA.A in an annotated interaction, let
{τi} be the set of threads occurring in, but not initiated in, A. Then we further annotate
this recursion as µτ:{τi}X and each free XA

τ in A as XA
τ:{taui}. The added information is

used for taking off unnecessary recursion from endpoint processes.5

Definition 17 (thread projection). Let A be consistently annotated. Then the partial
operation TP(A, τ) is defined as follows:

– TP(Aτ1 → Bτ2 : b(ν s̃). A, τ) def
=

b(νs̃). TP(A, τ1) if τ = τ1
! b(s̃). TP(A, τ2) if τ = τ2
TP(A, τ) otherwise

– TP(Aτ1→Bτ2 : s〈opi, ei, xi〉. A, τ) def
=

sC op〈e〉. TP(A, τ) if τ = τ1
sB opi(xi). TP(A, τ) if τ = τ2
TP(A, τ) otherwise

– TP(if e@Aτ′ then A1 else A2, τ) def
={

if e then TP(A1, τ
′) else TP(A2, τ

′) if τ = τ′

TP(A1, τ) t TP(A2, τ) otherwise

– TP(x@Aτ′ := e. A, τ) def
={

x := e. TP(A, τ′) if τ = τ′

TP(A, τ) otherwise

– TP(A1 ?
τ′ A2, τ) def

={
TP(A1, τ

′) ? TP(A2, τ
′) if τ = τ′

TP(A1, τ) t TP(A2, τ) otherwise

– TP(µτ
′:{τ̃i}XA. A, τ) def

= µX. TP(A, τ) if τ ∈ {τ̃i}, 0 if else.
– TP(XA

τ:{τ̃i}, τ) def
= X if τ ∈ {τ̃i}, 0 if else.

– TP(0, τ) def
= 0

where ? ∈ {⊕, |}. If TP(A, τ) is undefined then we set TP(A, τ) =⊥.

Note the thread projection already uses the definedness of the t operator. The notion
of coherence assumes this thread-level mergeability, extending it to inter-thread consis-
tency. As noted in §2, the need for inter-thread consistency arises because the descrip-
tion of the behaviour of a service may as well be scattered over more than one places
in a global description. Since each service channel ch uniquely defines a service, we
can collect all threads contributing to its behaviour by taking the passive thread of each
session initialisation at ch.

We now define coherence of well-threaded annotated interaction. Below, given an
annotated interaction A, we write τ1 ≡A τ2 whenever τ1 and τ2 in A belong to the same
service channel.

5 The use of this added information does not affect behaviour, but is needed for type preservation.
The added annotation is only used for thread projection.

23



Definition 18 (coherence). We say A is coherent if it is consistently annotated (hence
well-threaded) and satisfies:

1. For each thread τ in A, TP(A, τ) is well-defined.
2. For each pair of threads τ1, τ2 in A with τ1 ≡A τ2, we have TP(A, τ1) ./ TP(A, τ2).

Proposition 19. Given a well-typed I, it is decidable whether I is coherent (hence con-
nected and well-threaded) or not.

We can now define the endpoint projection.Below we call an interaction I restriction-
free whenever it contains no terms of the form (νs) I ′ as its subterm.

Definition 20 (end-point projection). Let I be a restriction-free and coherent interac-
tion with free session names s̃ and let A be one of its consistent annotations. Then the
end point projection of (νs̃) I under σ, denoted EPP((νs̃) I, σ), is given as the following
network.

(νs̃) ΠA∈part(I) A[ Π[τ]

⊔

τ′∈[τ]

TP(A, τ′) ]σ@A

where part(I) denotes the set of participants mentioned in I.

5.4 Pruning and Main Theorems

Suppose we have an interaction composed by two branches where the first two interac-
tions are Buyer → Seller : ch(ν s). Seller→Buyer : s〈ack〉 and then in one branch we
have Buyer→Seller : s〈go〉 and in the other Buyer→Seller : s〈stop〉. We then get that
Buyer and Seller are respectively projected as

ch(νs).sB ack().sC go〈〉 ⊕ ch(νs).sB ack().sC stop〈〉
! ch(s).sC ack〈〉.(sB ok() + sB stop())

By the dynamics of the choice operator, dropping one branch reduces to Seller →
Buyer : s〈ack〉. Buyer→Seller : s〈go〉. Its end-point projection is the network:

Buyer[ ch(νs).sB ack().sC go〈〉 ]σ@Buyer |
Seller[ ! ch(s).sC ack〈〉.sB go() ]σ@Seller

(2)

However the original end-point projection reduces as:

Buyer[ ch(νs).sB ack().sC go〈〉 ]σ@Buyer |
Seller[ ! ch(s).sC ack〈〉.(sB go() ⊕ sB stop()) ]σ@Seller

(3)

There is discrepancy between (2) and (3): the former has lost one branch, while (3)
keeps it. Notice this lost branch is inessential from the viewpoint of the internal dy-
namics of the configuration: “stop” is never used the global description obtained from
reduction.

This example shows that a global interaction can lose information during reduction
which is still kept in the corresponding reduction in its EPP, due to persistent behaviour
at service channels. This motivates the introduction of the asymmetric relation of prun-
ing that we shall use to state a property of the end-point projection. Below we write !R
when R is a n-fold composition of replications.
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Definition 21 (pruning). Assume Γ `A P B ∆, Γ, Γ′ `A Q B ∆ and, moreover,
Γ `A P B ∆ is a minimal typing. If further we have Q ≡ Q0|!R where Γ ` Q0 B ∆,
Γ′ `A R and P ./ Q0, then we write Γ `A P ≺ Q B ∆ or P ≺ Q for short; and say P
prunes Q.

The pruning P ≺ Q indicates P is the result of cutting off “unnecessary branches” of
Q, in the light of P’s own typing. ≺ is in fact a typed strong bisimulation in the sense
that P ≺ Q means they have precisely the same observable behaviours except for the
visible input actions at pruned inputs, either branches or replicated channels. Thus in
particular it satisfies the following condition.

Lemma 22 (pruning lemma). ≺ is a strong reduction bisimulation in the sense that
it satisfies the following two clauses:

1. If M ≺ N and M → M′ then N → N′ such that M′ ≺ N′.
2. If M ≺ N and N → N′ then M → M′ such that M′ ≺ N′.

Further ≺ is transitive.

As noted ≺ satisfies a stronger property of being a strong bisimulation w.r.t. typed
transitions under the minimal typing of the l.h.s. processes. We have finally arrived at
the main results of this paper.

Theorem 23 (End-Point Projection). Assume I is coherent. Assume further Γ ` IB∆

and Γ ` σ. Then we have:

1. (type preservation) If Γ ` I B∆ is the minimal typing of I, then Γ ` EPP(I, σ)B∆′

where ∆′ is the result of replacing each occurrence of type assignment in ∆, say
s̃@A : α, with s̃ : ⊥. In particular, if Γ ` I then Γ ` EPP(I, σ).

2. (soundness) if EPP(I, σ) → N then there exists I ′ such that (σ, I) → (σ′, I′) and
EPP(I′, σ′) ≺ N.

3. (completeness) If (σ, I)→ (σ′, I′) then EPP(I, σ)→ N such that EPP(I ′, σ′) ≺ N.

Proof Outline. For (1), type preservation, we use an auxiliary typing system for anno-
tated interactions that infers a minimal typing for each thread. This per-thread minimal
typing coincides with the minimal typing of the projection of the corresponding thread
in the endpoint calculus. Further the minimal typing of the whole global term is the re-
sult of merging all of its per-thread minimal typings, similarly for the endpoint calculus.

For (2) and (3), consider coherent I = ΠiIi and its projection:

M def
= A[{Pl}l∈L]σA | B[{Qm}m∈M]σB | C[{Rn]n∈N}σC

Above for simplicity we consider only three participants, ignore hiding, and let each
Pl etc. be a thread projection (the reasoning is similar in the general case). For (2),
soundness, assume M → M′. By induction there is the corresponding redex in I. The
rest is case analysis of the redex, taking the results of reducing Ii of I and either a thread
(if it is not interaction) or a pair of threads (if it is). We then collect all threads again
and compare the results. As a simple case, Pl

def
= x := e.P′l results in P′l with an altered
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state, while Ii
def
= x@A :=e.I′i results in I′i with the same state. The projection of I ′i is the

same as the projection of Ii except it loses x := e from the corresponding thread, in this
case Pl, that is we get P′l . For all other cases it is possible the projection can lose some
branches or the whole replicated process, which we equate by ≺ . (3), completeness, is
by a similar reasoning. For details, see [13]. ut

By Corollary 8 and lemma 22, Theorem 23 immediately implies:

Corollary 24.

1. (error freedom) If Γ ` I and Γ ` σ, then EPP(I, σ) has no communication error.
2. (soundness) if EPP(I, σ) →n N then there exists I′ such that (σ, I) →n (σ′, I′)

and EPP(I′, σ′) ≺ N.
3. (completeness) If (σ, I)→n (σ′, I′) then EPP(I, σ)→n N such that EPP(I′, σ′) ≺ N.

6 Extensions and Applications of EPP Theory

6.1 Local variable declaration.

We consider extensions and applications of the theory of EPP. First, we augment the
syntax of global/local calculi with one useful construct, local variable declaration:

newvar x@A := e in I newvar x := e in P

This construct is indispensable especially for repeatedly invocable behaviours, i.e. those
of services. Suppose a bookseller is invoked by two buyers simultaneously, each asking
a quote for a different book. If these two threads share a variable, these two requests
will get confused. The use of local variable declaration can avoid such confusion. The
dynamics and typing of this construct are standard [29]. For endpoint projection, it is
treated just as assignment.

6.2 Intra-Participant Interaction.

In §3.3, we demanded that, in the grammar of service typing, A , B in s̃[A, B]. This
means well-typed global terms never have an intra-participant interaction. This is a nat-
ural assumption in a business protocol which primarily specifies inter-organisational in-
teractions: however it can be restrictive in other contexts. Under connectedness (whose
definition does not change), we can easily adapt the EPP theory to the inclusion of intra-
participant interactions. First, the typing rules in Table 2, page 13, takes off (G-TCI)
and refines (G-TC) so that the typing s̃[A, B] : α always reflects the direction of the
interaction just inferred. This allows us to treat the case when A and B are equal. The key
change is in well-threadedness. When A = B, the condition (G2) (session consistency)
in Definition 13 is problematic since we do not know which of the two threads should
be given to which participant. However stipulating the following condition solves this
ambiguity:
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Local Causal Consistency: If there is a downward sequence of actions which starts from
an active thread τ and ends with an action in which τ occurs for the first time (i.e. τ
occurs in no intermediate actions in the sequence), then the latter τ occurs passively.

We also note this condition is a consequence of (G1–3) in the theory without intra-
participant interaction so that we are not adding any extra constraint to inter-participant
interactions.

6.3 Name Passing.

An extension which is technically significant and practically useful is the introduction
of channel passing. Channel passing is often essential in business protocols. As an
example, consider the following refinement of Buyer-Seller Protocol.

Buyer wants to buy a hardware from Seller, but Buyer knows no Seller’s ad-
dress on the net, i.e. it does not know Seller’s service channel. The only thing
Buyer knows is a service channel hardware of a DirectoryService, which will
send back the address of a Seller to Buyer which in turn interacts with that
Seller through the obtained channel.

In such a situation, Buyer has no prior knowledge of not only the seller’s channel but
also the participant itself. In a global description including its typing, participant names
play a basic role. Can we leave the name of a participant and its channels unknown and
still have a consistent EPP theory? This has been an open problem left in WS-CDL’s
current specification (which allows channel passing only for a fixed participant). Below
we restrict our attention to service channel passing, excluding session name passing
(which poses an additional technical issue [18]).

First, at the level of he endpoint calculus, it suffices to use the channel passing in
the standard π-calculus.

DirectoryService(s).s(y).y(t).P

which describes the initial behaviour of Buyer. Note y is an imperative variable, so that
y(t).P first reads the content of y then uses it for communication. The typing rules are
extended accordingly.

In the global calculus, we introduce a syntactic variable Y , called a participant
placeholder, for denoting anonymous participants. For example we can write:

A→ Y : x(ν s̃). I Y→Y ′ : s〈op, e, y〉. I

The newly added A→ Y : x(ν s̃). I intuitively says:

A starts a session with session names s̃ on the service channel stored in x at
the location A.

The participant at which the service is offered is left unknown by placing a placeholder
Y . However this will be instantiated once the variable x at A is inspected. For example, if
x is evaluated to ch@B in the store, the interaction takes place as in A→ B : ch(ν s̃). I.
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As an example, we present the buyer-seller-directory scenario discussed above:

Buyer→ Directory : hardware(ν s).
Directory→Buyer : s〈sell, hware@amazon.co.uk, x〉.
( Buyer→ Y : x(ν s′). Y→Buyer : s′〈OK, data, y〉 |

Buyer→Directory : s〈more, ””, z〉.
Directory→Buyer : s〈sell, hardware@pcworld.co.uk, x〉.

Buyer→ Y ′ : x(ν s′′). Y ′→Buyer : s′′〈OK, data, y〉)
Note that, depending on the channel sent from Directory, Y and Y ′ are assigned to
different participants.

The dynamics of the global calculus adds the rule which infers:

(σ, A→ Y : x(ν s̃). I)→ (σ, (νs̃) I[B/Y])

whenever we have σ@A(x) = ch@B.
For types, we first extend the basic types θ with (s̃)α. We then add, with the obvious

extension to the syntax of types:

Γ ` x@W1 : (s̃)α Γ ` I B ∆ · s̃ [W2,W1] : α
Γ ` W1 → W2 : x(ν s̃). I B ∆

Other typing rules can be extended to deal with terms containing the participant variable
Y in the same manner.

Finally, for the EPP theory, we need no change in the notion of connectedness. For
well-threadedness, we first annotate placeholders regarding, e.g. A → Y : x(ν s̃). I as
the start of a new thread for Y , so we annotate it as Aτ1 → Yτ2 : x(ν s̃). I with τ2
fresh. The definition of well-threadedness remains the same. Coherence however needs
additional consideration. The variable x@A can store different channels from different
participants. For this purpose we use a typing system which records a possible set of
assignment, in the shape x@W1 : C where C is a set of channels which may be instan-
tiated into C. If some concrete channel is in C, the behaviour of that channel becomes
constrained by coherence. This set C is inferred, starting from some fixed set, by adding
ch (as in x@W1 : C∪{ch@B}) when we infer, e.g. W1→W2 : s〈opj, ch@B, x〉. I, where
Wi can be either of participants or placeholders.

Leaving the technical details to [1, 13], we give a flavour of how this extension
works by the end-point projection of the example above. We first consider the annotated
interaction for placeholders.

Buyer1 → Y3 : x(ν s′). Y3→Buyer1 : s′〈OK, data, y〉
In the projection of this thread, we have placed a hole − which should be substituted
with the appropriate service channels.

TP(A, 3) = ! (s′). s′ C OK〈data〉
Thus, checking coherence consists in updating the definition of the function threads
which induces the thread equivalence classes. But what equivalence classes should
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threads 3 and 4 belong to? We can use the prediction of all the possible values x can
assume at runtime, i.e. hware@amazon.co.uk and hardware@pcworld.co.uk. We have
to make sure that thread 3 belongs to both threads(A, hware) and threads(A, hardware).
Then, if we are end-point projecting in amazon.co.uk we will substitute hware to in
both thread projections, and if we are end-point projecting pcworld.co.uk we will sub-
stitute hardware instead.

6.4 Conformance.

By relating global descriptions to their local counterpart, the presented theory allows us
to make the best of the rich results from the study of process calculi. One such applica-
tion is conformance checking (and its dynamic variant, runtime monitoring), discussed
in Introduction. Our purpose is to have a formal criteria to say the communication be-
hvaiour of a program P conforms to a global specification I.

Conformance concerns the possibility of checking whether an existing system tal-
lies with a given specification. In process algebra and concurrency in general, this way
of reasoning usually leads to system relations such as (inverse of) simulation or bisimu-
lation. Given an implemented system, say P, the idea is to check whether P conforms to
a well-typed specification in the global calculus. Then, using the end-point projection,
we can generate an end-point network (which is in the same language as the given im-
plemented system). This suggests that we must perform our comparison in the end-point
calculus.

One interesting mechanism to be exploited is the typing system: the end-point pro-
jection generates not only a network consistent with the global specification, but also
a type for the generated network. This can already be used for a first comparison with
the given system: if this does not type, then the given system does not conform to the
specification.

Unfortunately, there are cases where types may reveal as conform, systems which
are not. Our solution is to adopt a notion of typed simulation, guaranteeing safety (for
a stronger notion of conformance, see e.g. [11, 15]). Thus, the given system must be
simulated by the specification with its minimal type in order conform to it.

Let us clarify this with an example in the buyer-seller scenario. Let P be the process

QuoteCh(νs). sB Quote(x).
if (x ≤ 100) then sC Accept〈〉 else sC Reject〈〉

Consider now a system (already implemented) with the following end-point processes
(referred to as System):

Buyer[P] | Seller[ ! QuoteCh(s). sC Quote〈300〉.
sB (Accept() + Reject() + Restart())]

Suppose we want to check that the system above conforms to a specification given
in the global calculus. The following specification says that the buyer either accepts or
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rejects the quote.

Buyer→ Seller : QuoteCh(ν s).
Seller→Buyer : s〈Quote, 300, x〉.

Buyer→Seller : s〈Accept〉 + Buyer→Seller : s〈Reject〉
We recall the end point projection of the specification above (referred to as Spec)::

Buyer[ QuoteCh(νs). sB Quote(x).
( sC Accept〈〉 ⊕ sC Reject〈〉 ) ] |

Seller[ ! QuoteCh(s). sC Quote〈300〉.
sB (Accept() + Reject())]

Assuming we have a type for the specification, we can deduce, from the projection,
α, the minimal type for QuoteCh, equal to

s J Quote(int). s I ( Accept(null) + Reject(null) )

Notice that QuoteCh : (s)α, even though it is not minimal, types the network Sys-
tem as well (its minimal type is instead obtained by adding an extra option to the
branching corresponding to the operation Restart). This observation gives a hint that
System is conform to the specification. In fact, this is true as all the options specified in
the type are mimicked by the Spec (so the specification simulates the implementation).

In order to show that checking only the type is not enough, let us consider another
system, say System2, where the buyer’s behaviour is instead P | P. In this case, the
network is still typed by QuoteCh : (s)α but, because of P occurring twice, System2
is not type-simulated by Spec and then not conform to the specification.

In summary, let I be a global description consisting of A and other participants.
Suppose P is a program which implements A’s behaviour. Then we can check the con-
formance of P against the specification I by projecting I to A, which we call S , and
check P conforms to S ; the relation “P conforms to S ” can be taken as, for example,
the converse of the weak similarity with respect to typed transitions under the mini-
mal typing of S (for the formal definition, see [13]). We can use this notion via either
hand-calculation (coinduction), model checking (e.g. mobility workbench), mechanical
syntactic approximation, or as a basis of runtime monitoring.

7 Conclusions

This paper introduced a new formalism based on global description of communication
behaviour, and the corresponding applied π-calculus. Both calculi are based on a new
extension of session types, which can handle parallel interaction in one session. A the-
ory of endpoint projection is developed, giving the three well-structuredness conditions
on global descriptions. The sound and complete mapping from them to the correspond-
ing endpoint processes is established.

Global descriptions have been practiced in various engineering contexts for a long
time: the present work is a trial to realise its potential as a general programming method,
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centring on type structures for communication and the end-point projection. The EPP
theory needs be further explored for all basic concurrent programming primitives, in-
cluding general sequencing, various mutual exclusion operations, exceptions, timeout
and other useful primitives. While channel passing in our language can encode a syn-
chronisation mechanism, a valuable future topic is its interaction with primitives for
locking primitives and software transaction memory, since the notion of atomicity un-
dergoes a fundamental change when we move to communication-centered program-
ming.
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A An Example of Endpoint Projection

In the following we illustrate the formal notion of endpoint projection we have devel-
oped in the paper using a fairly large toy example involving five participants. First, we
explain the example in English; then we introduce the description in the global calculus;
finally we project the description to endpoint processes.

A.1 Global Description in English

The example is an extension of the buyer-seller example introduced in section 2. The
participants involved in this protocol are

1. Buyer (B)
2. Seller (S )
3. Vendor (V)
4. CreditChecker (CC)
5. RoyalMail (RM)

The protocol proceeds as follows:

1. Buyer requests a service chCC for company check to the credit checker Cred-
itChecker by sending its name.

2. At this point CreditChecker can either give a positive or negative answer.
3. If the answer is positive:

(a) Buyer asks Seller for a quote about product prod;
(b) Seller then asks Vendor for service chV

(c) Seller starts recursion and asks Vendor for a quote about product prod;
(d) Vendor replies with a quote quote;
(e) Seller forwards quote to Buyer increasing it by 10 units (quote+10);
(f) if the quote is reasonable (reasonable(quote + 10)) then:

i. Buyer sends Seller a confirmation (quoteOK) together with the credit (cred);
ii. Seller then contacts CreditChecker for checking the credit;

iii. If the credit is good then:
A. Seller contacts Shipper (service chS h);
B. Seller sends the delivery address;
C. Shipper sends a confirmation;
D. Seller forwards confirmation to Buyer;

iv. If the credit is bad:
A. CreditChecker tells Buyer;
B. Buyer tells Seller terminating the protocol;

(g) if the quote is not reasonable the protocol goes back to point 3c;

4. If the answer is negative then the protocol terminates.
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A.2 Global Description in the Calculus

The global description consists of several components for readability. We directly give
annotated interaction. The main description is:

1. B1 → CC2 : chCC(ν s). CC2→B1 : s〈ack〉.
2. B1→CC2 : s〈companyCheck, sellerName, compName〉.
3. {
4. CC2→B1 : s〈good〉. Igood

5. +

6. CC2→B1 : s〈bad〉. 0
7. }

where Igood in Line 4 is:

1. B1 → S 3 : chS (ν t). S 3→B1 : r〈ack〉.
2. B1→S 3 : t〈quoteReq, prod, prod〉.
3. S 3 → V4 : chV (ν r).
4. V4→S 3 : r〈ack〉.
5. µX3. {
6. S 3→V4 : r〈quoteReq, prod, prod〉.
7. V4→S 3 : r〈quoteRes, quote, quote〉.
8. S 3→B1 : t〈quoteRes, quote + 10, quote〉.
9. if reasonable(quote)@B1 then
10. B1→S 3 : t〈quoteOK, cred, cred〉.
11. S 3 → CC5 : chCC(ν u).
12. CC5→S 3 : u〈ack〉.
13. S 3→CC5 : u〈personalCreditCheck, cred:adr, cred:adr〉.
14. {
15. CC5→S 3 : u〈good〉. I′good
16. +

17. CC5→S 3 : u〈bad〉.
18. S 3→B1 : t〈yourCreditIsBad〉. 0
19. }
20. else B1→S 3 : t〈quoteNotOK〉. X3

21. }
where I′good in Line 15 is:

1. S 3 → R6 : chR(ν p).
2. R6→S 3 : p〈ack〉.
3. S 3→R6 : p〈deliv, adr, adr〉.
4. R6→S 3 : p〈conf〉.
5. S 3→B1 : t〈conf〉. 0

We can check these descriptions are typable, strongly connected, well-threaded and
coherent. For connectedness, the descritption given above uses a lot of acks. As we
discussed in the long version, many of these acks are in fact unnecessary by using a
relaxed notion of connectedness.
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A.3 End-Point Projection of the Global Interaction

Following the definition of EPP in the paper, we first project the global descrtiption
onto each thread. The first one is Buyer’s only thread.

TP(I, 1) = chCC(νs). sB ack(). sC companyCheck〈sellerName〉.
{ sB good(). chS (νt). t B ack(). t C quoteReq〈prod〉.
µX. t B quoteRes(quote).

if reasonable{quote} then t C quoteOK〈cred〉.
{t B yourCreditIsBad()
+

t B conf()}
else t C quoteNoteOK〈〉. X

+

sB bad(). 0 }

Note this thread starts before the recursion and go through inside the (global) recursion.
Thus the projected endpoint behaviour also contains recursion.

The next projection is onto the first thread of CreditChecker (note this participant
has two threads, 2 and 5).

TP(I, 2) = ! chCC(s). sC ack〈〉. sB companyCheck(compName).
{ sC good〈〉.
⊕
sC bad〈〉. 0 }

Note no recursion is involved in this thread projection, simply because the thread 2 does
not occur inside the recursion.

Next we jump to Thread 5, which is another component of CreditChecker.

TP(I, 5) = ! chCC(u). uC ack〈〉. uB personalCreditCheck(cred:adr)
(uC good〈〉
+

uC bad〈〉

Note the process does not include the recursion either. This is because it is inside a
recursion and it initiates a new thread there. As a result the code is identical with the
projection onto Thread 2.
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We now move to the projection onto the unique thread of Seller, which is Thread 3.

TP(I, 3) = ! chS (t). t C ack〈〉. t B quoteReq(prod). chV (νr). t B ack().
µX. r C quoteReq〈prod〉. r B quoteRes(quote).

t C quoteRes〈quote + 10〉.
{ t B quoteOK(cred). chCC(νu). uB ack().

uC personalCreditCheck〈cred:adr〉.
{uB good(). chR(νp). pB ack()
pC deliv〈adr〉. pB conf()t C conf〈〉
+

uB bad(). t C CreditIsBad〈〉 }
+

t B quoteNoteOK(). X

As before, this thread starts outside of the recursion in the global description and is also
used inside, so that both the recursion and the recursion variable are used as they are,
leading to the recursive behaviour of the process. Note how the use of session functions
as a way to handle recursion appropriately in EPP.

The projection onto the unique thread of Vendor follows.

TP(I, 4) = ! chV (r). t C ack〈〉.
µX. r B quoteReq(prod). r C QuoteRes〈quote〉. X

Finally we end with the projection onto Thread 6, giving the simple behaviour of
RoyalMail.

TP(I, 6) = ! chR(p). pC ack〈〉. pB deliv(adr). pC conf〈〉

As before, Thread 6 does noont contain recursion since it is fully inside the (global)
recursion, initiating a thread there.

As noted, there are two threads (2 and 5) that belong to the same class of equivalence
i.e. they are part of the same service channel chCC . This means that we must merge
the two threads in the final EPP. By applying the merge operator, and noting they are
evidently mergeable, we get the following process:

! chCC(u). uC ack〈〉.

u B


personalCreditCheck(cred:adr). (uC good〈〉 ⊕ bad〈〉)

+

companyCheck(compName). (uC good〈〉 ⊕ bad〈〉)



By which we have arrived at the endpoint behaviours of all participants realising the
original global description.

The projection works because of the linear usage of channels inside each session
and service channel principle, as well as the three well-structuredness conditions. We
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believe many business protocols conform to these conditions (modulo relaxation of con-
nectedness we discussed in the long version). How these conditions can be extended in
disciplined ways to allow more “untamed” protocols (such as those involving excep-
tions) to be treated in the theory, is an interesting subject of further studies.
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