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Abstract. We introduce an extension of Hoare logic for call-by-value higher-
order functions with ML-like local reference generation. Local references may
be generated dynamically and exported outside their scope, may store higher-
order functions and may be used to construct complex mutable data structures.
This primitive is captured logically using a predicate asserting reachability of a
reference name from a possibly higher-order datum and quantifiers over hidden
references. The logic enjoys three completeness properties: relative complete-
ness, a logical characterisation of the contextual congruence and derivability of
characteristic formulae. We explore the logic’s descriptive and reasoning power
with non-trivial programming examples combining higher-order procedures and
dynamically generated local state. Axioms for reachability and local invariant
play a central role for reasoning about the examples.

1 Introduction

Reference Generation in Higher-Order Programming. This paper proposes an ex-
tension of Hoare Logic [14] for call-by-value higher-order functions with ML-like new
reference generation [3, 4], and demonstrates its use through non-trivial reasoning ex-
amples. The new reference generation, the ref-construct in ML, is a highly expressive
programming primitive. The first and central significance of this construct is that it
induces a local state by generating a fresh reference inaccessible from the outside. Con-
sider the following program:

Inc
def= let x = ref(0) in λ().(x :=!x+1; !x) (1.1)

We use the standard notation [40]: in particular, “ref(M)” returns a fresh reference
whose content is the value to which M evaluates. “!x” is the dereferencing of an im-
perative variable x. “;” is a sequential composition. In (1.1), a reference with content
0 is newly created and is never exported to the outside, so that it is hidden from the
outside (i.e. it can never be directly read/written from the outside). When the anony-
mous function in Inc is invoked, it increments the content of a local variable x, and
returns the new content. From an outside observer, the procedure returns a different re-
sult at each call, whose source is hidden from external observers. This is different from
λ().(x :=!x+1; !x) where x is globally accessible.

Second, local references thus generated may be exported outside of its original
scope and shared, contributing to expressibility of significant imperative idioms. The
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next example shows how stored procedures interact with new reference generation and
its sharing. We consider the following program from [44, § 6]:

1 a := Inc; (* !x = 0 *)
2 b := !a; (* !x = 0 *)
3 z1 := (!a)(); (* !x = 1 *)
4 z2 := (!b)(); (* !x = 2 *)
5 (!z1)+(!z2)

This program, which we hereafter call IncShared, first assigns, in Line 1 (l.1), the
program Inc to a; then, in l.2, assigns the content of a to b; and invokes, in l.3, the
content of a; then does the same for that of b in l.4; and finally in l.5 adds up the two
numbers returned from these two invocations. By tracing the reduction of this program,
we can check that if the initial value of x is 0 (at l.1 and l.2), then the return value
of this program is 3. To specify and understand the behaviour of IncShared, it is es-
sential to capture the sharing of x between two procedures assigned to a and b, whose
scope is originally (at l.1) restricted to !a but gets (at l.2) extruded to and shared by !b.
Controlling sharing by combining scope extrusion and local reference also allows us to
write concise algorithms that dynamically manipulate mutable data structures such as
linked lists and graphs which may possibly store higher-order values [40]. Difficulties
in formal reasoning about shared (possibly higher-order) local store, both axiomatic and
otherwise, have been well-known since [15, 31, 33].

Thirdly, and related to the previous two points, local references can be used for effi-
cient implementation of highly regular observable behaviour, for example purely func-
tional behaviour, through information hiding. The following program is a simplification
of the standard memoised function, taken from [44, § 1].

memFact
def= let a = ref(0), b = ref(1) in

λx.if x =!a then !b else (a := x ; b := fact(x) ; !b)

Above fact is the standard factorial function. The program shows a simple case of
memoisation when memFact is called with a stored argument in a, it immediately re-
turns the stored return value !b. If the argument differs from the stored argument, it
calculates the factorial f x, and stores the new pair. The reason why memFact behaves
indistinguishably from the pure factorial is tantamount to the following local invariant
property [44].

Throughout all possible invocations of this procedure, the content of b is the
factorial of the content of a.

Such local invariants capture one of the basic patterns in programming with local state,
and play a key role in the preceding studies on operational reasoning of program equiva-
lence with local state [21, 42, 44, 50]. Can we distill this principle axiomatically and use
it for effectively validating properties of higher-order programs with local state, such as
memFact?

As a further example of local invariant, but this time involving a higher-order store,
the following is yet another implementation of the factorial function using local state.
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We start from the following program which realises a recursion by circular references
[24]:

circFact
def= x := λz.if z = 0 then 1 else z× (!x)(z−1)

This program calculates the factorial of n. But since x is free in circFact, if a program
reads from x and stores it in another variable, say y, assigns a diverging function to x,
and feeds the content of y with 3, then the program diverges rather than returning 6.
With local reference, we can hide x to avoid unexpected interference.

safeFact
def= let x = ref(λy.y) in (circFact; !x)

(above λy.y can be any initialising value). The program evaluates to a function which
also calculates the factorial: but x is now invisible and inaccessible from the outside,
so that safeFact behaves as the pure factorial function. In this case, the invariant says
that x always stores the factorial — but notice the reason this stored procedure can
calculate the factorial is precisely because x stores this very behaviour. We shall show a
general reasoning principle for local invariants which can verify properties of these two
and many other examples [21, 27, 28, 31, 42, 44], including mutually recursive multiple
stored functions.

Program Logic for Imperative Higher-Order Functions. Starting from their ori-
gins in the λ-calculus, typed higher-order functional programming languages such as
Haskell and ML, has been extensively studied, making them an ideal target for formal
validation of programs’ properties on a rigorous semantic basis. Further, given expres-
sive power of imperative higher-order functions (attested by encodability of objects
[10, 40, 41] and of low-level idioms [1]), a study of logics for these languages may have
wide repercussions on logics of programming languages in general.

These languages combine higher-order functions and imperative features including
new reference generation. Extending Hoare logic to these languages leads to technical
difficulties due to their three fundamental features:

• Higher-order functions, including stored ones.
• General forms of aliasing induced by nested reference types.
• Dynamically generated local references and scope exclusion.

In our preceding studies, we presented Hoare logics for the core parts of ML which
capture the first two features [6, 17, 19, 20]. On the basis of these works, the present
work introduces an extension of Hoare logic for ML-like local reference generation.
As noted above, this construct radically enriches programs’ behaviour, and has defied
its clean axiomatic treatment so far. A central challenge is to identify a simple but
expressive logical primitive, equipped with proof rules (for Hoare triples) and axioms
(for assertions), enabling tractable assertions and verification.

The program logic proposed in the present paper introduces a predicate representing
(un)reachability of a reference from an arbitrary datum in order to capture new reference
generation. Since we are working with higher-order programs, a datum and a reference
may as well be, or store, a higher-order function. We shall show that this predicate is
fully axiomatisable using (in)equality when it only involves first-order data types (the
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result is closely related with known axiomatisations of reachability [37]). However we
shall also show that the predicate becomes undecidable in itself when higher-order types
are involved, indicating its inherent intractability.

A good news is, however, this predicate enables us to obtain a simple compositional
proof rule for new reference generation, preserving all the compositional proof rules
for the remaining constructs from our foregoing program logics. We also introduce a
pair of mutually dual hiding quantifiers (i.e. quantifiers ranging over variables denoting
hidden references). At the level of assertions, we can find a set of useful axioms for
(un)reachability and the hiding quantifiers, which are effectively combined with logi-
cal primitives and associated axioms for higher-order functions and aliasing studied in
our preceding works [6, 20]. These axioms for reachability and hiding quantifiers are
closely related with reasoning principles studied in existing semantic studies on local
state, such as the principle of local invariant. The status of these new logical primi-
tives is clarified through soundness and three completeness results, including relative
completeness.

Some of the non-trivial reasoning examples are presented in later sections, which
include those involving local invariants and those involving higher-order mutable data
structures with circular pointers.

Outline. Section 2 presents the programming language, the assertion language and
proof rules. Section 3 gives the semantics of the logic and its properties, and proves
soundness and the three completeness results. Section 4 explores axioms of the assertion
language. Sections 5 and 6 discuss the use of the logic through non-trivial reasoning
examples. Section 7 gives comparisons with related works and concludes with further
topics. Appendix lists auxiliary definitions and omitted derivations.

2 Assertions for Local State

2.1 A Programming Language

As our target programming language, we use call-by-value PCF with unit, sums and
products, augmented with imperative constructs. Let x,y, . . . range over an infinite set
of variables, and X,Y, . . . over an infinite set of type variables. Then types, values and
programs are given by the following grammar.

α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+β | Ref(α) | X | µX.α

V,W ::= c | xα | λxα.M | µ f α⇒β.λyα.M | 〈V,W 〉 | injα+β

i (V )
M,N ::= V | MN | M := N | ref(M) | !M

| op(M̃) | πi(M) | 〈M,N〉 | injα+β

i (M)
| if M then M1 else M2 | case M of {ini(x

αi
i ).Mi}i∈{1,2}

We use the standard notations [40]. We use constants c (unit (), booleans t, f, numbers
n and locations l, l′, ...) and fist-order operations op (+,−,×, =, ¬, ∧, . . .). Locations
only appear at runtime when references are generated. M̃ etc. denotes a vector and ε the
empty vector. A program is closed if it has no free variables. We freely use shorthands
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like M;N, λ().M, and let x = M in N. Typing is standard: we take the equi-isomorphic
approach [40] for recursive types. Nat, Bool and Unit atomic types. We leave illustration
of each construct to standard textbooks [40], except for the focus of the present study,
the reference generation ref(M), which behaves as: first M of type α is evaluated and
becomes a value V ; then a fresh reference of type Ref(α) with initial content V is
generated. This behaviour is formalised by the following reduction rule:

(ref(V ), σ)−→ (ν l)(l, σ] [l 7→V ]) (l fresh)

Above σ is a store, a finite map from locations to closed values, denoting the initial
state; whereas σ] [l 7→V ] is the result of disjointly adding a pair (l,V ) to σ. The result-
ing configuration uses a binder (the use of the ν-binding simplifies the correspondence
with models discussed in §3). Its general form is (ν l̃)(M,σ) where l̃ is a vector of dis-
tinct locations occurring in σ (the order is irrelevant). We write (M,σ) for (ν ε)(M,σ).
The one-step reduction −→ over configurations is defined using the standard rules [40]
except for the above rule and for closing it under ν-bindings. The full rules are listed in
Appendix A.1.

A basis Γ;∆ is a pair of finite maps, one from variables to non-reference types
(Γ,Γ′, . . .), the other from locations and variables to reference types (∆,∆′, . . .). Θ,Θ′, ...
combine two kinds of bases. The typing rules are standard [40], which is left to Ap-
pendix A.2. The sequent has the form Γ;∆ ` M : α which reads: M has type α under
Γ;∆. We omit Γ or ∆ if it is empty. A store σ is typed under ∆, written ∆ ` σ, when, for
each l in its domain, σ(l) is a closed value which is typed α under ∆, where we assume
∆(l) = Ref(α). A configuration (M,σ) is well-typed if for some Γ;∆ and α we have
Γ;∆ ` M : α and ∆ ` σ. The standard type safety holds for well-typed configurations.
Henceforth we only consider well-typed programs and configurations.

2.2 A Logical Language

The logical language we shall use is that of standard first-order logic with equality [30,
§ 2.8], extended with assertions for evaluation [19, 20] (for imperative higher-order
functions) and quantifications over store content [6] (for aliasing). On this basis we add
a binary predicate which asserts reachability of a reference name from a datum and its
dual; and the pair of mutually dual quantifiers over hidden references. The grammar
follows, letting ? ∈ {∧,∨,⊃}, Q ∈ {∃,∀,ν,ν} and Q′ ∈ {∃,∀}.

e ::= x | c | op(ẽ) | 〈e,e′〉 | πi(e) | inji(e) | !e

C ::= e = e′ | ¬C |C ?C′ | Qxα.C | QX.C |
| {C} e• e′ = x {C′} | [!e]C | 〈!e〉C | e ↪→ e′ | e#e′

The first set of expressions (e,e′, . . .) are terms; the second set formulae (A,B,C,C′ . . .).
Terms include variables, constants c (unit (), numbers n, booleans t, f and locations
l, l′, ...), pairing, projection, injection and standard first-order operations. !e denotes the
dereference of a reference e.

Formulae include the standard logical connectives and quantification [30]. Quanti-
fiers, ∃x.C and ∀x.C, are standard. The hiding quantifiers, νx.C (read: “for some hidden
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reference x, C holds”) and νx.C (read: “for each hidden reference x, C holds”), which
are mutually dual, are new and quantify only variables of reference types (x’s type is
α = Ref(β)). Semantically, these quantifiers range over hidden references, such as what
Inc in Introduction generates. We also include, following [6, 19], quantifications over
type variables (X,Y, . . .). Type variables can be used only in the typing of auxiliary
variables. We also use truth T (definable as 1 = 1) and falsity F (which is ¬T). x 6= y
stands for ¬(x = y).

The remaining formulae are those specifically introduced for describing program
behaviour. Their use will be illustrated using concrete examples soon: here we infor-
mally outline their ideas. {C} e•e′ = x {C′} is called evaluation formula, introduced in
[20], which intuitively says: If we apply a function e to an argument e′ starting from an
initial state satisfying C, then it terminates with a resulting value (name it x) and a final
state together satisfying C′.

[!e]C and 〈!e〉C are universal/existential content quantifications, introduced in [6]
for treating general aliasing. [!e]C (with e of a reference type) says: Whatever value
we may store in a reference denoted by e, the assertion C is valid. 〈!e〉C is interpreted
dually.

Finally, e1 ↪→ e2 (with e2 of a reference type), called reachability predicate, plays
an essential role in the present logic. It says that: We can reach the reference named by
e2 from a datum denoted by e1. As an example, if x denotes a starting point of a linked
list, x ↪→ y says a reference y occurs in one of the cells reachable from x. y#x [13, 47]
is the negation of x ↪→ y, which says: One can never reach a reference y starting from a
datum denoted by x.

Convention. Logical connectives are used with standard precedence/association, using
parentheses as necessary to resolve ambiguities. fv(C) (resp. fl(C)) denotes the set of
free variables (resp. locations) in C. Note that x in [!x]C and 〈!x〉C occurs free, while in
{C} e • e′ = x {C′} it occurs bound with scope C′. With ẽ = e1..en, we often write !ẽ
for !e1..!en; and [!ẽ]C for [!e1]..[!en]C. C1 ≡ C2 stands for (C1 ⊃ C2)∧ (C2 ⊃ C1). We
write x̃#y for ∧ixi #y; similarly for x# ỹ. We write {C}e1 •e2{C′} for {C}e1 •e2 = z{z =
()∧C′}with z 6∈ fv(C′). Terms are typed starting from variables. A formula is well-typed
if all occurring terms are well-typed. Hereafter we assume all terms and formulae we
use are well-typed. Type annotations are often omitted in concrete assertions.

2.3 Assertions for Local State

We explain assertions for local state with examples.

1. Consider x := y;y := z;w := 1. After its run, we can reach z by dereferencing y, and
y by dereferencing x. Hence z is reachable from y, y from x, thus z from x. So the
final state satisfies x ↪→ y∧ y ↪→ z∧ x ↪→ z.

2. Next, assuming w is newly generated, we may wish to say w is unreachable from
x, to ensure freshness of w. For this we assert w#x, which, as noted, stands for
¬(x ↪→ w). x#y always implies x 6= y. Note that x ↪→ x ≡ x ↪→!x ≡ T and x#x ≡ F.
But !x ↪→ x may or may not hold (since there may be a cycle between x’s content
and x in the presence of recursive types).
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3. The assertion x = 6 says x of type Nat is equal to 6. Assuming x has type Ref(Nat),
!x = 2 means x stores 2. Then ∀i.{!x = i}u • ()= z{!x = z∧!x = i + 1} asserts that
the function u, upon receiving unit (), increments the content of x and returns it. For
example for λ().(x :=!x + 1; !x) named u satisfies it. For a stronger specification,
we may refine this assertion by also specifying which references a program may
write to. The following located assertion [6] is used for this purpose.

inc(u,x) = ∀i.{!x = i}u• () = z{!x = z∧!x = i+1}@x

Above “@x”, called write set, indicates that the evaluation alters at most x, leaving
content of other references unchanged. The assertion says: “for any r of any refer-
ence type distinct from x, its content h stays invariant after the run,” that is at most
x is modified during the run. The exact semantic account of located assertions is
given in Appendix C.

4. We consider reachability in (higher-order) functions. Assume λ().(x := 1) is named
fw and λ().!x is named fr. Since fw can write to x, we have fw ↪→ x. Similarly
fr ↪→ x. Next suppose let x = ref(z) in λ().x has name fc and z’s type is Ref(Nat).
Then fc ↪→ z (for example, consider !( fc()) := 1). However x is not reachable from
λ().((λy.())(λ().x)) since semantically it never touches/uses x.

5. Assuming u denotes the result of evaluating Inc in the Introduction, we can assert,
using the existential hiding quantifier:

νx.(!x = 0 ∧ ∀iNat.{!x = i}u• ()=z{z =!x ∧ !x = i+1}@x) (2.1)

which says: there is a hidden reference x storing 0 such that, whenever u is in-
voked, it stores to x and returns the increment of the value stored in x at the time of
invocation.

6. λnNat.ref(n), named u, meets the following specification. Let i,X be fresh.

∀nNat.∀X.∀iX.{T}u•n=z{νx.(!z = n ∧ z# i∧ z = x)}@ /0. (2.2)

The above assertion says that u, when applied to n, will return a hidden reference z
whose content is n and which is unreachable from any existing datum; and it has no
writing effects to the existing state. Since i ranges over arbitrary data, unreachability
of x from each such i indicates that x is freshly generated and is not stored in any
existing reference.

We list convenient abbreviations for evaluation formulae for representing “freshness”.
Below let i be fresh.

• {C}e• e′=z{ν#x.C′} = ∀X, iX.{C}e• e′=z{νx.(x# i∧C′)}
• {C}e• e′=z{#z.C′} = ∀X, iX.{C}e• e′=z{νy.(z = y ∧ z# i ∧ C′}

In the first line, νx says x is a hidden reference distinct from any names in the initial
state, giving the weakest form of freshness (x may be replaced by a vector). z and x are
distinct by the binding condition. In the second, # is used instead of inequality. The
third is when the return value is unreachably fresh. Its use for 5 above yields:

∀n.{T}u•n=z{#z.!z = n}@ /0
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2.4 Proof Rules

This subsection summarises judgements and proof rules for local reference generation.
The judgement consists of a program and a pair of formulae following Hoare [14],
augmented with a fresh name called anchor [17, 19, 20].

{C} M :u {C′}

which says:

If we evaluate M in the initial state satisfying C, then it terminates with a value,
name it u, and a final state, which together satisfy C′.

As this reading indicates, our judgements are about total correctness. They have iden-
tical shape as those in [6, 20], even though described computational situations can be
quite different, with both C and C′ possibly specifying behaviours and data structures
with local state.

The same sequent is used for both validity and provability. If we wish to be specific,
we prefix it with either ` (for provability) or |= (for validity). Let Γ;∆ be the minimum
basis of M. In {C} M :u {C′}, u is the anchor of the judgement, which should not be in
dom(Γ,∆)∪ fv(C); and C is the pre-condition and C′ is the post-condition. The primary
names are dom(Γ,∆)∪{u}, while the auxiliary names (ranged over by i, j,k, ...) are
those free names in C and C′ which are not primary. An anchor is used for naming the
value from M and for specifying its behaviour.

We also use the following abbreviation similar to those with evaluation formulae.
Below let i be fresh.

• {C}M{C′} stands for {C}M :u {u = ()∧C′} with u 6∈ fv(C′).
• {C}M :u {C′}@x̃ means that x̃ is a write set as for located assertions (cf. § 2.3)
• {C} M :m {ν#x.C′} stands for {C} M :m {νx.(x# i∧C′)}.
• {C} M :m {#m.C′} stands for {C} M :m {νx.(m = x∧m# i∧C′)}.

The full compositional proof rules are given in Figure 2 in Appendix B. In spite of the
semantic enrichment, all compositional proof rules in the base logic [6] stay as they
were, except for adding the following rule for reference generation.

[Ref ]
{C} M :m {C′}

{C} ref(M) :u {#u.C′[!u/m]}

The rule says that the newly generated cell is unreachable from any datum in the initial
state: then the result of evaluating M is stored in that cell which is named u. All the
so-called structural rules (i.e. those rules which only manipulate assertions) in [6] also
remain valid except for an additional condition in one rule, see Appendix B.

Invariant rules are useful for modular reasoning. Their use with (un)reachability
needs some care. Suppose x is unreachable from y; after running y := x, x becomes
reachable from y. Hence the following simple invariant rule for unreachability is un-
sound.

[Unsound Inv with #] {C} M :m {C′}
{C∧ e#e′} M :m {C′∧ e#e′}
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However the general invariant rule strengthen from our preceding study [6] works in
harmony with the (un)reachability predicate.

[Inv] {C} M :m {C′}@w̃
{C∧ [!w̃]C0} M :m {C′∧C0}@w̃

The effect set w̃ gives the minimum information by which the assertion we wish to
add, C0, can be stated as an invariant. Since [!w̃]C0 says C0 holds regardless of the
content of w̃, surely it can stay invariant after execution of M. Unlike the invariant rule
in Separation Logic, we need no side condition “M does not modify stores mentioned
in C0”: C and C0 may overlap in their mentioned references, and C does not have to
mention all references M may read and write. which are direct instances of [Inv] (for
the former we observe {C}V :m {C′} implies {C}V :m {C′}@ /0 for any V ; for the latter
we note [!x]x# ẽ ≡ x# ẽ is always valid under the side condition,1 cf. Proposition 7,
clause 3-(5) later).

Another useful structural rule is the following variation of the standard consequence
rule.

[ConsEval]

{C0} M :m {C′
0} x fresh; ĩ auxiliary

∀ĩ.{C0}x• ()=m{C′
0} ⊃ ∀ĩ.{C}x• ()=m{C′}

{C} M :m {C′}
This rule subsumes the standard consequence rule. In the present logic, the rule further
enables non-trivial reasoning on fresh references, as we shall discuss later.

3 Models, Soundness and Completeness

3.1 Models

We introduce operationally-based semantics of the logic, based on term models. For
capturing local state, models incorporate hidden locations using a ν-binder [34]. We
illustrate the key idea using the Introduction’s Inc (in (1.1)). We model Inc named u
as:

(νl)({u : λ().(l :=!l +1; !l)}, {l 7→ 0}) (3.1)

(3.1) says that there is a behaviour named u and a reference named l, that this refer-
ence stores 0, and that l is hidden. By augmenting (3.1) with fresh j mapped to any
location/datum from the initial state (hence disjoint from l), we may assert:

νx.(!x = 0 ∧ ∀i.{!x = i}u• ()=z{!x = z∧!x = i+1}@x ∧ x 6= j)

which represents the freshness assertion.

Definition 1. (models) An open model of type Θ = Γ;∆, with fv(∆) = /0, is a tuple (ξ,σ)
where:

1 This side condition is indispensable: consider {T}x := x{T}@x, for which it is wrong to
conclude {x#!x}x := x{x#!x}@x.
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– ξ, called environment, is a finite map from dom(Θ) to closed values such that, for
each x ∈ dom(Γ), ξ(x) is typed as Θ(x) under ∆, i.e. ∆ ` ξ(x) : Θ(x).

– σ, called store, is a finite map from labels to closed values such that for each l ∈
dom(σ), if ∆(l) has type Ref(α), then σ(l) has type α under ∆, i.e. ∆ ` σ(l) : α.

When Θ includes free type variables, ξ maps them to closed types, with the obvious
corresponding typing constraints. A model of type (Γ;∆) is a structure (νl̃)(ξ,σ) with
(ξ,σ) being an open model of type Γ;∆ ·∆′ with dom(∆′) = {l̃}. (νl̃) act as binders.
M,M′, . . . range over models.

An open model maps variables and locations to closed values: a model then speci-
fies part of the locations as “hidden”. Since assertions in the present logic are in-
tended to capture observable program behaviour, the semantics of the logic uses mod-
els quotiented by an observationally sound equivalence. Below (νl̃)(M,σ) ⇓ means
(νl̃)(M,σ)−→n (νl̃′)(V,σ′) for some n.

Definition 2. Assume Mi
def= (νl̃i)(x̃ : Ṽi,σi) typable under Γ;∆. Then we write M1 ≈

M2 if the following clause holds for each closing typed context C[ · ] which is typable
under ∆ and in which no labels from l̃1,2 occur:

(νl̃1)(C[〈Ṽ1〉],σ1) ⇓ iff (νl̃2)(C[〈Ṽ2〉],σ2) ⇓

where 〈Ṽ 〉 is the n-fold pairings of a vector of values.

Definition 2 in effect takes models up to the standard contextual congruence. We could
have used a different program equivalence (for example call-by-value βη convertibil-
ity), as far as it is observationally adequate. Note we have

(νl̃)(ξ · x :V1,σ · l 7→W1) ≈ (νl̃)(ξ · x :V2,σ · l 7→W2)

whenever V1 ∼= V2 and W1 ∼= W2, where ∼= is the standard contextual congruence on
programs [40] (for reference Appendix A.3 lists the definition of ∼=).

3.2 Semantics of Reachability and Hiding.

Let σ be a store and S ⊂ dom(σ). Then the label closure of S in σ, written lc(S,σ), is
the minimum set S′ of locations such that: (1) S ⊂ S′ and (2) If l ∈ S′ then fl(σ(l))⊂ S′.

Lemma 3. For all σ, we have:

1. S ⊂ lc(S,σ); S1 ⊂ S2 implies lc(S1,σ)⊂ lc(S2,σ); and lc(S,σ) = lc(lc(S,σ),σ)
2. lc(S1,σ)∪ lc(S2,σ) = lc(S1∪S2,σ)
3. S1 ⊂ lc(S2,σ) and S2 ⊂ lc(S3,σ), then S1 ⊂ lc(S3,σ)
4. there exists σ′ ⊂ σ such that lc(S,σ) = fl(σ′) = dom(σ′).

Proof. (1–4) are direct from the definition. (5, 6) immediately follow from (1–4). ut
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We now set:

M |= e1 ↪→ e2 if [[e2]]ξ,σ ∈ lc(fl([[e1]]ξ,σ),σ) for each (νl̃)(ξ,σ)≈M (3.2)

Above [[ei]]ξ,σ is the obvious interpretation of ei in the open model (see Appendix C).
The clause says that the set of hereditarily reachable names from e1 includes e2 up to
≈. For programs in § 2.3 (4), we can check fw ↪→ x, fr ↪→ x and fc ↪→ z hold under
fw : λ().(x := 1), fr : λ().!x, fc : let x = ref(z) in λ().x (regardless of the store part).

The following characterisation of # is often useful for justifying axioms for fresh
names. Below σ = σ1 ]σ2 indicates σ is the union of σ1 and σ2 such that dom(σ1)∩
dom(σ2) = /0.

Proposition 4 (partition). M |= x#u if and only if for some l̃, V , l and σ1,2, we have
M ≈ (νl̃)(ξ ·u : V · x : l, σ1]σ2) such that lc(fl(V ),σ1]σ2) = fl(σ1) = dom(σ1) and
l ∈ dom(σ2).

Proof. For the only-if direction, assume M |= x#u. By the definition of (un)reachability,
we can set (up to ≈) M

def= (νl̃′)(ξ · u : V · x : l, σ) such that l 6∈ lc(fl(V ),σ). Now take
σ1 such that lc(fl(V ),σ) = lc(fl(V ),σ1) = fl(σ1) = dom(σ1) by Lemma 3. Note by
definition l 6∈ dom(σ1). Now let σ2

def= σ\dom(σ1). Since l ∈ dom(σ), we know l ∈
dom(σ2), hence done. The if-direction is obvious by definition of reachability. ut

The characterisation says that if x is unreachable from u then, up to ≈, the store can be
partitioned into one covering all reachable names from u and another containing x.

The universal hiding quantifier has the following semantics:

M |= νx.C
def≡ ∀M′, l.((νl)(M′/x)≈M ∧ M′(x) = l ⊃M′ |= C)

where l is fresh. Above the initial (νl) adds l to the hiding of M′, M′/x takes off the
x-component from M′, and M′(x) = l says x is assigned a free label l in M′. Dually:

M |= νx.C
def≡ ∃M′, l.((νl)(M′/x)≈M ∧ M′(x) = l ⊃M′ |= C)

where l is again fresh. As an example of satisfaction, let:

M
def= (νl)({u : λ().(l :=!l +1; !l)}, {l 7→ 0})

then we have

M |= νxRef(Nat).(!x = 0 ∧ ∀iNat.{!x = i}u• () = z{z =!x = i+1})

because if we set

M′ def= ({u : λ().(l :=!l +1; !l),x : l}, {l 7→ 0})

then we have
(νl)(M′/x) = M and M′ |= C.

Intuitively, M represents a situation where a reference l is hidden, x denotes l, and u
denotes a function which increments and returns the content of l.
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3.3 Soundness and observational completeness.

The definitions of satisfiability M |= C other than reachability is given in Appendix C
(logical connectives are interpreted classically: type variables are treated syntactically
[19]). Let M be a model (νl̃)(ξ,σ) of type Γ;∆, and Γ;∆ `M : α with u fresh. Then the
validity |= {C}M :u {C′} is given by:

|= {C}M :u {C′} def≡ ∀M.(M |= C ⇒ M[u :M] ⇓M′ |= C′)

where we write M[u :N] ⇓M′ when (Nξ,σ) ⇓ (νl̃′)(V,σ′) and M′ = (νl̃ l̃′)(ξ ·u :V, σ′).
Above we demand, for well-definedness, that M includes all variables in M, C and C′

except u. The soundness result follows.

Theorem 5 (soundness). ` {C}M :u {C′} implies |= {C}M :u {C′}.

Proof. See Appendix C.4. ut

We next discuss the completeness properties of the logic. A strong completeness prop-
erty is descriptive completeness studied in [18], which is provability of a characteris-
tic assertion for each program (i.e. assertions characterising programs’ behaviour). In
[18], we have shown that, for our base logic, this property directly leads to two other
completeness properties, relative completeness (which says that provability and valid-
ity of judgements coincide) and observational completeness (which says that validity
precisely characterises the standard contextual equivalence).

The proof of descriptive completeness closely follows [18]. Relative and observa-
tional completeness are its direct corollaries. Descriptive completeness is established
for a refinement of the present logic, given in Appendix C.3; evaluation formulae and
content quantification are decomposed into a pair of fine-grained operators, which can
represent the original ones. This refinement is not necessary for many reasoning exam-
ples and reading the rest of this paper.

We leave the details to a separated full version [26], and we state only the observa-
tional completeness, which we regard as a basic semantic property of the logic.

Write ∼= for the standard contextual congruence for programs [40]; further write
M1 ∼=L M2 to mean (|= {C}M1 :u {C′} iff |= {C}M2 :u {C′}), with |= as refined in
Appendix C.3. We have:

Theorem 6 (observational completeness). For each Γ;∆ ` Mi : α (i = 1,2), we have
M1 ∼=L M2 iff M1 ∼= M2.

4 Axioms for Reachability

This section studies axioms for assertions involving (un)reachability. We start from
basic axioms. The proofs use Lemma 3. Note our types include recursive types (taken
up to tree unfolding [40]).

Proposition 7 (axioms for reachability). The following assertions are valid (we as-
sume appropriate typing).
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1. (1) x ↪→ x; (2) x ↪→ y∧ y ↪→ z ⊃ x ↪→ z;
2. (1) y#xα with α ∈ {Unit,Nat,Bool}; (2) x#y ⇒ x 6= y;

(3) x#w∧w ↪→ u ⊃ x#u.
3. (1) 〈x1,x2〉 ↪→ y ≡ x1 ↪→ y∨ x2 ↪→ y;

(2) inji(x) ↪→ y ≡ x ↪→ y; (3) x ↪→ yRef(α) ⊃ x ↪→!y;
(4) xRef(α) ↪→ y∧ x 6= y ⊃ !x ↪→ y.
(5) [!x]y ↪→ x ≡ y ↪→ x ≡ 〈!x〉y ↪→ x.

Proof. 1, 2 and 3.(1–4) are direct from the definition (e.g. for 3-(2) we observe l ∈
fl(inji(V )) iff l ∈ fl(V )). For 3-(5), suppose M |= y ↪→ x, and take M′ which only differ
from M in the stored value at (the reference denoted by) x. Since M |= y ↪→ x holds,
there is a shortest sequence of connected references from y to x which, by definition,
does not include x as its intermediate node. Hence this sequence also exists in M′, i.e.
M′ |= y ↪→ x, proving [!x]y ↪→ x ≡ y ↪→ x. This also means 〈!x〉[!x]y ↪→ x ≡ 〈!x〉y ↪→ x.
By the axiom of content quantification we have 〈!x〉[!x]y ↪→ x ≡ [!x]y ↪→ x, hence done.

ut

3-(5) says that altering the content of x does not affect reachability to x. Note [!x]x ↪→ y
is not valid at all. The dual of 3-(5): [!x]x#y ≡ x#y ≡ 〈!x〉x#y was already used for
deriving [Inv-# ] in §2.4 (we cannot substitute !x for y in [!x]x#y to avoid name capture,
cf. [6, §5.2 (long version)]).

Let us say α is finite if it does not contains an arrow type or a type variable. We say
e ↪→ e′ is finite if e has a finite type.

Theorem 8 (elimination). Suppose all reachability predicates in C are finite. Then
there exists C′ such that C ≡C′ and no reachability predicate occurs in C′.

Proof. By Proposition 7 (3). ut

A straightforward coinductive extension of the above axioms (see [2]) gives a complete
axiomatisation when the types also contain recursive types, but not function types.

For analysing reachability, it is useful to define the following “one-step” reachability
predicate. Below e2 is of a reference type.

M |= e1B e2 if [[e2]]ξ,σ ∈ fl([[e1]]ξ,σ) for each (νl̃)(ξ,σ)≈M (4.1)

We can show (νl̃)(ξ,σ) |= xB l′ is equivalent to l′ ∈
T
{fl(V ) | V ∼= ξ(x)}, (the latter

says l′ is in the support of f in the sense of [13, 43, 50]). Now define:

xB1 y ≡ xB y

xBn+1 y ≡ ∃z.(xB z ∧ !zBn y) (n ≥ 1)

We also set xB0 y ≡ x = y. By definition we have:

Proposition 9. x ↪→ y ≡ ∃n.(xBn y)≡ (x = y ∨ xB y ∨ ∃z.(xB z∧ z 6= y∧ z ↪→ y)).

Proposition 9, combined with Theorem 8, suggests if we can clarify one-step reachabil-
ity at function types then we will be able to clarify the reachability relation as a whole.
Unfortunately this relation is inherently intractable.
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Proposition 10 (undecidability of B and ↪→). (1) M |= f α⇒βBx is undecidable. (2)
M |= f α⇒β ↪→ x is undecidable.

Proof. For (1), let V def= λ().if M = () then l else Ref(0) with a closed PCFv-term M
of type Unit. Then f : V, x : l |= f B x iff M ⇓, reducing the satisfiability to the halting
problem of PCFv-terms. For (2), take the same V so that the type of l and x is Ref(Nat)
in which case B and ↪→ coincide. ut

The proof above indicates that the same result holds even if we take call-by-value βη-
equality as the underlying equality. Further the result also implies that the validity of
∀ f ,x.(A ⊃ f B x) is undecidable, since we can represent any PCFv-term as a formula
using the method [18].

Proposition 10 does not imply we cannot obtain useful axioms for (un)reachability
involving function types. We discuss a collection of basic axioms in the following.

Proposition 11 (unreachable function). The following assertion is valid:
{C} f •y=z{C′}@w̃ ⊃ {C∧ x# f yw̃} f •y=z{C′∧ x#zw̃}@w̃ .

Proof. See Appendix D. ut

Proposition 11 says that if x is unreachable from a function f , its argument y and its
write set w̃, then the execution of this function does not return or write x.

When we do need to reason about a function with a local state, its behaviour often
crucially relies on an invariant on its local, or hidden, store. We first list basic axioms
for hiding quantifiers, presented for the existential (which is mainly used in reasoning).
The proofs are all easy and omitted.

Proposition 12 (axioms for ν).

1. C ⊃ νx.C if x 6∈ fv(C)
2. νx.C ≡C if x 6∈ fv(C) and no evaluation formula occurs in C;
3. νx.(C∧u = x)≡C∧νx.u = x where x 6∈ fv(C);
4. νx.(C1∨C2)≡ (νx.C1)∨ (νx.C2);
5. νx.(C1∧C2)⊃ (νx.C1)∧ (νx.C2)

For (1), it is notable that we do not generally have C ⊃ νx.C. Neither νx.C ⊃ C with
x 6∈ fv(C) holds generally.2 Note this shows that integrating these quantifiers into the
standard universal/existential quantifiers let the latter lose their standard axioms, moti-
vating the introduction of ν-operator. (4,5) list some of useful axioms for moving the
scope of x.

2 As a simple example of the former, let M
def= ({x : l, x′ : l}, {l 7→ 5}). Then M |= x = x′

but we do not have M |= νy.y = x′ since l is certainly not hidden (x is renamed to fresh y to

avoid confusion). For the latter, let M
def= (νl)({u : λ().!l}, {l 7→ 5}). Then M |= νx.∀i.{!x =

i}u•() = z{z =!x∧!x = i}. From this, we have M |= νx.∃y, i.{!y = i}u•() = z{z = 0}. Also by
definition of M, M |= {T}u• () = z{z = 5}. Hence M |= ∃y, i.{!y = i}u• () = z{z = 0} does
not hold.
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4.1 Local Invariant

We now introduce an axiom for local invariants. Let us first consider a function which
writes to local reference of a base type. Even programs of this kind pose fundamental
difficulties in reasoning, as show in [31]. Take the following program:

compHide
def= let x = ref(7) in λy.(y >!x) (4.2)

The program behaves as a pure function λy.(y > 7). Clearly, the obvious local invariant
!x = 7 is preserved. We demand this assertion to survive under arbitrary invocations of
compHide: thus (naming the function u) we arrive at the following invariant:

C0 = !x = 7 ∧ ∀y.{!x = 7}u• y = z{!x = 7}@ /0 (4.3)

Assertion (4.3) says: (1) the invariant !x = 7 holds now; and that (2) once the invariant
holds, it continues to hold for ever (note x can never be exported due to the type of y
and z, so that only u will touch x). compHide is easily given the following judgement
with i fresh:

{T}compHide :u {νx.(x# iX ∧ C0 ∧ C1)} (4.4)

with C1 = ∀y.{!x = 7}u • y = z{z = (y > 7)}@ /0. Thus, noting C0 is only about the
content of x, we conclude C0 continues to hold automatically. Hence we cancel C0
together with x:

{T}compHide :u {∀y.{T}u• y = z{z = (y > 7)}} (4.5)

which describes a purely functional behaviour. Below we stipulate the underlying rea-
soning principle as an axiom. Let y,z be fresh. For simplicity of presentation, we assume
y has a base type.3

Inv(u,C0, x̃) = C0 ∧ (∀yi.{C0}u• y=z{T} ⊃ ∀yi.{C0}u• y=z{C0 ∧ x̃#z}) (4.6)

where we assume C0 ⊃ x̃# i. Inv(u,C0,x) says that, first, currently C0 holds; and that
second if C0 holds, then applying u to y results in, if it ever converges, C0 again and the
returned z is disjoint from x̃.

We say C is stateless if M |= C and M[u : N] ⇓ M′ imply M′ |= C. This assertion
can be syntactically defined as syntactically.

Definition 13 (Stateless Formulae). We say C is stateless when: (1) each dereference
!y only occurs either in pre/post conditions of evaluation formulae or under [!y]; (2)
(un)reachability predicates occur in pre/post conditions of evaluation formulae; and (3)
evaluation formulae and content quantifications never occur negatively (using the stan-
dard notion of negative/positive occurrences). A,B, . . . range over stateless formulae.

Above a formula C occurs negatively if it occurs in C1 of C1 ⊃ C2 or in C of ¬C.
The property of stateless formulae is studied in Appendix D.1.

3 That is sufficient for all examples in this paper. The refinement of formulae in § 3.3 allows y
to be of arbitrary type.
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Proposition 14 (axiom for information hiding). Assume C0⊃ x̃# i and [!x̃]C0 is state-
less. Suppose i,m are fresh, {x̃, g̃}∩ (fv(C,C′)∪{w̃}) = /0 and y has a base type. Then
the following assertion is valid

(AIH) {E}m• ()=u{νx̃.∃g̃.(E1∧E ′)} ⊃ {E}m• ()=u{E2∧E ′}

with E1 = Inv(u,C0, x̃)∧∀yi.{C0∧[!x̃]C}u • y = z{C′}@w̃x̃ and E2 = ∀y.{C}u • y =
z{C′}@w̃.

Proof. See Appendix D.3.

(AIH) is used with the consequence rule (Appendix B) to simplify from E1 to E2. Its
validity is proved using Proposition 4. The axiom says: if a function u with a fresh
reference xi is generated, and if it has a local invariant C0 on the content of xi, then we
can cancel C0 together with xi.

The statelessness of [!x̃]C0 ensures that satisfiability of C0 is not affected by state
change except at x̃; and [!x̃]C says that whether C holds does not depend on x̃.

Finally ∃g̃ in E1 allows the invariant to contain free variables, extending applicabil-
ity as we shall use in §5 for safeEven.

Coming back to compHide, we take C0 to be !x = 7∧ x# i, w̃ empty, both C and E ′

to be T and C′ to be z = (y > 7) in (AIH), to reach the desired assertion.
(AIH) eliminates ν from the postcondition based on local invariants. The following

axiom also eliminates νx, this time solely based on freshness and disjointness of x.

Proposition 15 (ν-elimination). Let x 6∈ fv(C) and m, i,X be fresh. Then the following
is valid:

∀X, iX.{E}m• ()=u{νx.([!x]C∧ x#uiX)} ⊃ {E}m• ()=u{C}

This proposition says that if a restricted x in the post-state is completely hidden and
is disjoint from any visible datum, then we can safely neglect it. Note so-called stack-
allocated variables (i.e. statically declared variables in a block in block-structured lan-
guages) are used in this way. The proof is similar to Proposition 14.

The following axiom stipulates how an invariant is transferred by functional appli-
cations. The proof is similar to Propositions 11 and 14.

Proposition 16 (invariant by application). Assume [!x̃]C0 is stateless, y 6∈ fv(C0) and
y has a base type. Then the following is valid.

(∀y.{C0} f •y=z{C0}@x̃ ∧ {C}g• f =z{C′}) ⊃ {C∧C0∧ x̃#g}g• f = z{x̃#z∧C0∧C′}

The axiom says that the result of applying a function g disjoint from a local reference xi,
to the argument f which satisfies the local invariant, again preserves the local invariant.
It may be considered as a higher-order version of Proposition 11.
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5 Reasoning Examples (1): Functions and Local State

5.1 Shared Stored Function

This section demonstrates the usage of the proposed logic through concrete examples.
Some of the lengthy derivations are omitted but key ideas are provided.

We first treat IncShared from Introduction, a simple example of shared local state
with stored functions. We use a proof rule for the combination of “let” and new refer-
ence generation, easily derivable from the proof rules in Section 2 through the standard
decomposition of “let” into application and abstraction (see the derivation in Appendix
E.1).

[LetRef]
{C} M :m {C0} {C0[!x/m]∧ x# ẽ} N :u {C′} x /∈ fpn(ẽ)

{C} let x = ref(M) in N :u {νx.C′}
Above fpn(e) denotes the set of free plain names of e which are reference names in
e that does not occur in dereference, defined as: fpn(x) = {x}, fpn(c) = fpn(!e) = /0,
fpn(〈e,e′〉) = fpn(e)∪ fpn(e′), fpn(πi(e)) = fpn(e) and fpn(inji(e)) = fpn(e). The rule
reads:

Assume (1) running M from C leads to C0, with the resulting value named
m; and (2) running N from C0 with m as the content of x together with the
assumption x is unreachable from each ei, leads to C′ with the resulting value
named u. Then running the letref command from C leads to C′ whose x is fresh
and hidden.

We note:

• The side condition x 6∈ fpn(ei) is essential for consistency (e.g. without it, we could
assume x#x, i.e. F).

• νx.C′ cannot be strengthened to #x.C′ since N may store x in an existing reference.

One may note the rule directly gives a proof rule for general new reference declaration
[31, 42, 48], new x := M in N, which has the same operational behaviour as let x =
ref(M) in N.

We can now treat IncShared from Introduction:

IncShared
def= a :=Inc;b :=!a;c1 :=(!a)();c2 :=(!b)();(!c1+!c2)

Naming it u, the assertion inc′(u,x,n) below captures its behaviour:

inc(x,u) = ∀ j.{!x = j}u• ()= j +1{!x = j +1}@x.

inc′(u,x,n) = !x = n∧ inc(x,u).

The following derivation for IncShared sheds light on how shared higher-order lo-
cal state can be transparently reasoned in the present logic. For brevity we work with
the implicit global assumption that a,b,c1,c2 are pairwise distinct and safely omit an
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anchor from the judgement when the return value is a unit type.

1.{T} Inc :u {νx.inc′(u,x,0)}

2.{T} a := Inc {νx.inc′(!a,x,0)} (1, Assign)

3.{inc′(!a,x,0)} b :=!a {inc′(!a,x,0)∧ inc′(!b,x,0)} (Assign)

4.{inc′(!a,x,0)} c1 := (!a)() {inc′(!a,x,1)∧!c1 = 1} (Assign)

5.{inc′(!b,x,1)} c2 := (!b)() {inc′(!b,x,2)∧!c2 = 2} (App etc.)

6.{!c1 = 1∧!c2 = 2} (!c1)+(!c2) :u {u = 3} (Deref etc.)

7.{T} IncShared :u {νx.u = 3} (2–6, LetOpen)

8.{T} IncShared :u {u = 3} (Conseq)

Line 1 is by [LetRef]. Line 7 uses the following derived rule (noting sequential compo-
sition is a special case of “let”):

[LetOpen]
{C} M :x {νỹ.C0} {C0} N :u {C′}
{C} let x = M in N :u {νỹ.C′}

Line 8 uses Proposition 12-3 (note C does not contain evaluation formulae) and ∃x.C ⊃
C. To shed light on how the difference in sharing is captured in inferences, Appendix
E.2 lists the inference for a program which assigns distinct copies of Inc to a and b.

5.2 Information Hiding (1): Memoisation

Next we treat a memoised factorial [44] from Introduction.

memFact
def= let a = ref(0), b = ref(1) in

λx.if x =!a then !b else (a := x ; b := fact(x) ; !b)

Our target assertion specifies the behaviour of a pure factorial.

Fact(u) = ∀x.{T}u• x = y{y = x!!!}@ /0.

The following inference starts from the body of the “let”, which we name V . We set:
E1a = C0 ∧ ∀x.{C0}u•x=y{C0}@ab, and E1b = ∀x.{C0∧C}u•x=y{C′}@ab where
we let C0 be ab# i∧!b=(!a)!!!, C be T and C′ be y = x!!!. Note that [!ab]C0 is stateless (in
the sense of Definition 13, page 15).

1.{T}V :u {∀x.{!b=(!a)!!!}u• x=y{y=x!!! ∧ !b=(!a)!!!}@ab}

2.{T}V :u {E1a ∧ E1b} (1, Conseq)

3.{ab# i}V :u {ab# i ∧ E1a ∧ E1b} (2, Inv-Val)

4.{T} memFact :u {ν#ab.(E1a∧E1b)} (3, LetRef)

5.{T}m•()=u{ν#ab.(E1a∧E1b)} ⊃ {T}m•()=u{Fact(u)} (?)

6.{T} memFact :u {Fact(u)} (4, 5, ConsEval)
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Line 2 used {C} f • x=y{C1∧C2}@w̃⊃∧i=1,2{C} f • x = y{Ci}@w̃ (from [6, 20]). (?)
in Line 5 is by (AIH) in Proposition 14.

5.3 Information Hiding (2): Stored Circular Procedures

We next consider circFact from Introduction, which uses a self-recursive higher-order
local store.

circFact
def= x := λz.if z = 0 then 1 else z× (!x)(z−1)

safeFact
def= let x = ref(λy.y) in (circFact; !x)

In [20], we have derived the following judgement.

{T}circFact :u {CircFact(u,x)}@x (5.1)

where

CircFact(u,x) = ∀n.{!x = u}!x•n = z{z = n!∧!x = u}@ /0 ∧ !x = u

which says:

After executing the program, x stores a procedure which would calculate a
factorial if x stores that behaviour, and that x does store the behaviour.

We now show safeFact named u satisfies Fact(u). Below we use: CFa = !x = u∧
∀n.{!x = u}!x•n = z{!x = u}@ /0 as well as CFb = ∀n.{!x = u}!x•n = z{z = n!!!}@ /0.

1.{T}λy.y :m {T}@ /0

2.{T}circFact ; !x :u {CircFact(u,x)}@x

3.{T}circFact ; !x :u {CFa ∧ CFb}@x (2, Conseq)

4.{x# i}circFact ; !x :u {x# i∧CFa∧CFb}@x (3, Inv-#)

5.{T}safeFact :u {ν#x.(CFa∧CFb)}@ /0 (4, LetRef)

6.{T}m•()=u{ν#x.(CFa∧CFb)} ⊃ {T}m•()=u{Fact(u)} (?)

7.{T}safeFact :u {Fact(u)}@ /0 (5, 6, ConsEval)

Line 1 is immediate. Line 2 is (5.1). Line 6, (?) is by (AIH), Proposition 14, setting
C0 =!x = u, C = E ′ = T and C′ = y = x!!!. Note this example can again use (AIH) since
the behaviour in question is indeed first-order.

The reasoning easily extends to programs which use multiple locally stored, and
mutually recursive, procedures. Consider:

mutualParity
def= x := λn.if y=0 then f else not((!y)(n−1));

y := λn.if y=0 then t else not((!x)(n−1))

After these two assignments, the application (!x)n, with n a natural number, returns true
if n is odd, false if not; while (!y)n acts dually. Informally the state of affairs may be
described thus:
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x stores a procedure which checks if its argument is odd, if y stores a procedure
which does the dual; whereas y stores a procedure which checks whether its
argument is even or not if x stores a procedure which does the dual.

Observe mutual circularity of this description. As before, we can avoid unexpected
interference at x and y using local references.

safeOdd
def= let x,y = ref(λn.t) in (mutualParity; !x)

safeEven
def= let x,y = ref(λn.t) in (mutualParity; !y)

Above λn.t can be any initialising value. Now that x,y are inaccessible, the programs
behave as pure functions, e.g. safeOdd(3) always returns true without any side effects,
similarly safeOdd(16) always returns false, To formally validate these behaviours, we
can first verify the body of the “let” satisfies the following assertions.

{T}mutualParity :u {∃gh.IsOddEven(gh, !x!y,xy,n)} (5.2)

where, with Even(n)≡ ∃x.(n=2× x) and Odd(n)≡ Even(n+1):

IsOddEven(gh,wu,xy,n) = (IsOdd(w,gh,n,xy) ∧ IsEven(u,gh,n,xy) ∧ !x = g ∧ !y = h)
IsOdd(u,gh,n,xy) = {!x = g ∧ !y = h}u•n=z{z = Odd(n) ∧ !x = g ∧ !y = h}@xy
IsEven(u,gh,n,xy) = {!x = g ∧ !y = h}u•n=z{z = Even(n) ∧ !x = g ∧ !y = h}@xy

Our aim is to derive the following judgements starting from (5.2).

{T}safeOdd :u {∀n.{T}u•n=z{z = Odd(n)}@ /0} (5.3)
{T}safeEven :u {∀n.{T}u•n=z{z = Even(n)}@ /0} (5.4)

We reason for safeOdd (the case for safeEven is symmetric). We first identify the
local invariant:

C0 = !x = g ∧ !y = h ∧ IsEven(h,gh,n,xy)

The free variable h suggests the use of (AIH). Since C0 only talks about g, h and the con-
tent of x and y, we know C0 is stateless except xy. We now observe IsOddEven(gh, !x!y,xy,n)
is the conjunction of:

Odda = C0 ∧ ∀n.{C0}u•n=z{C0}@xy

Oddb = ∀n.{C0}u•n=z{z=Odd(n)}@xy

We can now apply (AIHA∃) to obtain (5.3). Full inferences can be found in Appendix
E.3.

5.4 Information Hiding (3): Higher-Order Invariant

We move to a program whose invariant behaviour depends on another function [50,
p.104]. The program instruments an original program with a simple profiling (counting
the number of invocations), with α a base type.

profile
def= let x = ref(0) in λyα.(x :=!x+1; f y)

20



Since x is never exposed, this program should behave precisely as f . Thus our aim is to
derive:

{∀y.{C} f • y = z{C′}@w̃} profile :u {∀y.{C}u• y = z{C′}@w̃} (5.5)

with x 6∈ fv(C,C′) (by the bound name condition). This judgement says: if f satisfies
the specification E = ∀y.{C} f • y = z{C′}@w̃, then profile satisfies the same spec-
ification E. Note C and C′ are arbitrary. To derive (5.5), we first set C0, the invariant,
to be x# f iw̃. As with the previous derivations, we use two subderivations. First, by the
axiom in Proposition 11, we can derive:

{T}λy.(x :=!x+1; f y) :u {∀yi.{C0}u• y = z{C0∧ x#z}@xw̃} (5.6)

Secondly, again by Prop. 11 we obtain E ⊃ ∀y.{C ∧ x# f w̃} f • y = z{x#zw̃}@w̃. By
this, E being stateless, Prop.7 3-(5) and [Inv-#], we obtain:

{E}λy.(x :=!x+1; f y) :u {∀yi.{C0∧ [!x]C}u• y = z{C′∧ x#z}@xw̃}. (5.7)

By combining (5.6) and (5.7) by the standard structural rule, we can use (AIH), hence
done. The detailed derivation can be found in Appendix E.4.

5.5 Information Hiding (4): Nested Local Invariant

The next example uses a function with local state as an argument to another function.
Let Ω

def= µ f .λ().( f ()). even(n) tests for evenness of n.

MeyerSieber
def= let x = ref(0) in let f = λ().x :=!x+2

in (g f ; if even(!x) then () else Ω())

Note Ω() immediately diverges. Since x is local, and because g will have no way to ac-
cess x except by calling f , the local invariant that x stores an even number is maintained.
Hence MeyerSieber satisfies the judgement:

{E ∧C} MeyerSieber {C′} (5.8)

where, with x,m 6∈ fv(C,C′): E = ∀ f .({T} f • (){T}@ /0 ⊃ {C}g • f{C′}) (anchors
of type Unit are omitted). The judgement (5.8) says that: if feeding g with a total and
effect-free f always satisfies {C}g • f{C′}, then MeyerSieber starting from C also
terminates with the final state C′. Note such f behaves as skip. For the derivation of
(5.8), from an axiom for reachability we can derive E ⊃ E ′ where E ′ = ∀ f .({T} f •
(){T}@x ⊃ {[!x]C∧x#g}g• f{[!x]C′}). Further λ().x :=!x+2 named f satisfies both
A1

def= {T} f • (){T}@x and A2
def= {Even(!x)} f • (){Even(!x)}@x. From A1 and E ′ we

obtain A′1
def= {[!x]C∧ x#g}g• f{[!x]C′}. Using Prop. 16, A′1 and A2 we obtain:

{Even(!x)∧ [!x]C∧E ∧ x#gi}let f = λ().x :=!x+2 in (g f ; ...){[!x]C′∧ x# i}

We then apply a variant of [LetRef] (replacing C0[!x/m] in the premise of [LetRef] in
§2.4 with [!x]C0∧ !x = m) to obtain {E ∧C} MeyerSieber {νx.([!x]C′∧ x# i)}. Finally
by Prop. 15 (noting the returned value has a base type, cf. Prop.7 2-(1)), we reach
{E ∧C} MeyerSieber {C′}. The full derivation is given in Appendix E.5.
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5.6 Information Hiding (5): Object

As a final example of this section, we treat information hiding for a program with state,
a small object encoded in imperative higher-order functions, taken from [21] (cf.[10,
40, 41]). The following program generates a simple object each time it is invoked.

cellGen
def= λz.

let x0,1 = ref(z) in let y = ref(0) in(
λ().if even(!y) then !x0 else !x1,
λw.(y :=!y+1 ; x0,1 := w

) 
The object has a getter and a setter. Instead of having one local variable, it uses two with
the same content, of which one is read at each odd-turn of the “read” requests, another
at each even-turn. When writing, it writes the same value to both. Since having two
variables in this way does not differ from having only one observationally, we expect
the following judgement to hold cellGen:

{T} cellGen :u {CellGen(u)} (5.9)

where we set:

CellGen(u) = ∀z.{T}u• z = o{ν#x.(Cell(o,x)∧!x = z)}@ /0

Cell(o,x) = ∀v.{!x = v}π1(o)• () = z{z = v =!x}@ /0 ∧∀w.{T}π2(o)•w{!x = w}@x

Cell(o,x) says that π1(o), the getter of o, returns the content of a local variable x;
and π2(o), the setter of o, writes the received value to x. Then CellGen(u) says that,
when u is invoked with a value, say z, an object is returned with its initial fresh local
state initialised to z. Note both specifications only mention a single local variable. A
straightforward derivation of (5.9) uses !x0 =!x1 as the invariant to erase x1: then we
α-converts x0 to x to obtain the required assertion Cell(o,x). See Appendix E.6 for full
inferences.

6 Reasoning Examples (2): Higher-Order Mutable Data
Structures

6.1 Circular Lists

This section introduces a reasoning method applicable to a general class of higher-order
mutable data types through examples. The method uses a predicate on navigating paths
over a network of data nodes for asserting on such a network; and the (un)reachability
for their dynamic generation. Types play a prominent role.

We first consider the following program, which stores the constant 0 function at all
nodes of a cyclic list [23, §1]. Let:

List(α) = µX.(Unit+(Ref(α)×Ref(X))).

which describes a mutable list using a sum (nil or cons) and a product (two cons cells,
the first storing a value of type α and the second the next node of the list). The program
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then reads:

cyclesimple
def=

µ f .λxRef(List(Nat⇒Nat)).case !x of
in1(()) : ()
in2(〈y1,y2〉) : (y1 := λxNat.0 ; if y2 6= z then f y2 else ())

cyclesimple receives a node in a cyclic list. By its type, the content of the node is either
in1(()), a nil node, or in2(〈y1,y2〉), a cons cell. If the argument is the latter, the program
stores the zero function in its first field, and via its second field moves to the next cell
and processes it, until coming back to the initial cell z. We can check that, as far as z is
part of a cycle, the evaluation of cyclesimplez zeroes all the nodes reachable from z.

An assertion for this program should specify the expected shape of the argument
(i.e. it is a cycle) and how it is transformed into exactly the same cycle except for all
of its fields storing the zero functions. We start from defining easy-to-read notations for
the data types of the two components of a list, the nil and the cons.

nil(u) ≡ u = inj1(())
cons(u,y1,y2) ≡ u = inj2(〈y1,y2〉)

Below we introduce the key building blocks of the proposed method, adaptable to a
wide range of higher-order mutable data structures.

path(g,0,g′) ≡ g = g′

path(g, p+1,g′) ≡ ∃y,y′(cons(!g,y,y′)∧path(y′, p,g′))

path(g, p,g′) indicates that traversing pth-nodes from g leads to g′. Its semantics is
transparently given from that of the original logical language. The following two pred-
icates, defined from the path predicate, is useful for asserting for cyclesimple.

isCycle(g)≡ ∃p 6= 0. path(g, p,g)
distance(g, p,g′)≡ path(g, p,g′)∧∀q.(path(g,q,g′)⊃ p ≤ q)

isCycle(g) says the node g is part of a cycle (its negation is linearity of a list); whereas
distance(g, p,g′) says the distance (minimum path) between g and g′ is p-steps, which
is useful when carrying out inductive reasoning on a cyclic list. We can now write down
the expected judgement for cyclesimple:

{T} cyclesimple :u {cycleSimple(u)} (6.1)

with the following main assertion cycleSimple(u):

∀z.{isCycle(z)} u• z {allZeros(z)}@{w |valnode(z,w)} (6.2)

where we set:

valnode(z,y) ≡ ∃pgy′.(path(z, p,g)∧ cons(!g,y,y′))
allZeros(z) ≡ ∀y.(valnode(z,y)⊃ iszero(!y))

iszero( f ) ≡ ∀x.{T} f • x = y{y = 0}@ /0
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(6.2) also uses an evaluation formula which uses a generalised write set, described by
a predicate. This generalised located assertion {C}x • y = z{C′}@{w|E(w)} roughly
corresponds to

∀wi.{C∧¬E(w)∧!w = i}x• y = z{C′∧!w = i},

saying that all references that may be updated by this evaluation are within the set
{w|E(w)}, allowing us to specify an unbounded number of references as a write set (for
the precise semantics of the generalised located assertions, see C.1). Thus cycleSimple(u)
says:

If the program u receives z as an argument and if it is a node of a cyclic list,
then the program fills all the data fields of this list with the zero function, and
does nothing else,

precisely capturing the behaviour of cyclesimple.
The derivation of (6.1) uses the predicate distance given above for recursion. We

first set, with x, y and z of type List(α):

x �z y ≡ ∃p, p′.(distance(z, p,x)∧distance(y, p′,x)∧ p  p′) (6.3)

That is, x �z y iff the distance from x up to, but not including, z is strictly smaller than
that from y. Thus �z combined with equality is a well-founded partial order (which is
enough for carrying out induction [12]). The reasoning uses the following judgement for
induction, writing cyclesimple′ for the program cyclesimple minus the initial recursion:

{∀m �z l.B( f ,m)}cyclesimple′ :u {B(u, l)} (6.4)

where we set, with reach(z, l) standing for ∃p.path(z, p, l):

B(u, l) ≡ {isCycle(z) ∧ reach(z, l)}u•l{allZerosUpto(l,z)}@{w|valnodeUpto(l,w,z)}.

Above allZerosUpto(x,z) is the variant of allZeros(x) which says all are zeroed from x
up to, but not including, z (i.e. just reaching the last node in the cycle, taking z to the
initial node). Similarly for valnodeUpto(x,w,z). The inference for (6.4) is easy, noting
we have (reach(z, l)∧ cons(l,v, l′)∧ l 6= z) ⊃ l′ �z l. Finally we apply [Rec] (to be
precise, its refinement to well-founded partial order [12], cf. Appendix B) to obtain:

{T}cyclesimple :u {∀l.B(u, l)} (6.5)

By instantiating l to z via the consequence rule, we arrive at (6.1).

6.2 Trees

We now treat a program which dynamically generate data structures (note cyclesimple
alters, but not generates, a list). We use a slightly more complex data type:

Tree(α) def= µX.(Ref(α+(X×X)))
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A network of nodes of this type can form a tree, a dag, or a graph. The following
program is intended to work only for trees of this type, creating an isomorphic copy of
an original tree (cf. [48, §6]).

treeCopy
def= µ f .λxTree(α).case !x of

in1(n) : ref(inj1(n))
in2(〈y1,y2〉) : ref(inj2(〈 f y1, f y2〉))

Note treeCopy has type Tree(α)⇒Tree(α). The program carries out an inductive copy
for the tree structure, but does a direct copy at stored data, possibly inducing a sharing.
To assert and validate for treeCopy, we again use the path predicate. Since a one-step
traversal can take either the left branch or the right one, the notion of a path becomes
slightly more complex, for which we use the following expressions (added as terms to
our logical language).

p ::= ε | l.p | r.p

Above l and r mean left and right branches. Using these terms we can now define the
path predicate. First let us set, for brevity:

atom(uβ,xα) ≡ u = inj1(x)

branch(uβ,yα
1 ,yβ

2) ≡ u = inj2(〈y1,y2〉) (β = Tree(α))

We can now define the path predicate. We use the same notation path(g, p,g′) (which
is henceforth exclusively about Tree(α)-typed data, with g and g′ of type Tree(α)).

path(g,ε,g′)≡ g = g′

path(g, l.p,g′)≡ ∃y1y2.(branch(!g,y1,y2)∧path(y1, p,g′))
path(g,r.p,g′)≡ ∃y1y2.(branch(!g,y1,y2)∧path(y2, p,g′))

The first clause says that the empty path leads from g to g; the second says that the path
l.p leads from g to g′ iff we go left from g and, from there, p leads to g′. The third is
the symmetric case.

As for linked lists, the path predicate allows us to shape the assertions useful for
specifying the behaviour of treeCopy.

match(g, p1, p2)≡ ∃y.(path(g, p1,y)∧path(g, p2,y))
leaf(g, p,x)≡ ∃y.(path(g, p,y)∧atom(!y,x))

iso(g,g′)≡ ∀p1 p2.(match(g, p1, p2)≡match(g′, p1, p2))
∧ ∀px.(leaf(g, p,x)≡ leaf(g′, p,x))

As before, match(g, p1, p2) asserts two paths p1,2 from g lead to an identical node;
leaf(g, p,x) says we reach a leaf storing x (of type α) from g following p. iso(g,g′)
asserts two collections of nodes, respectively reachable from g and g′, form isomorphic
labelled directed graphs. Further we set:

tree (g)≡ ∀p1, p2.(p1 6= p2 ⊃ ¬match(g, p1, p2))
distance(g, p,g′)≡ path(g, p,g′)∧∀q.(path(g,q,g′)⊃ p vlex q)
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tree (g) says g is a tree iff it has no sharing. distance(g, p,g′) defines the shortest path
from g to g′, where paths are ordered by the lexicographic ordering vlex (with the “left”
smaller than the “right”, and the empty string being the least). This gives a basis for in-
ductive reasoning. Note if g is a tree then distance(g, p,g′) is equivalent to path(g, p,g′).
The predicate tree (g) also has an equivalent inductive formulation:

disjoint(x,y) ≡ ¬∃p.(path(x, p,y) ∨ path(y, p,x)).
tree (g) ≡ ∃x.atom(u,x) ∨

∃g1,2.(branch(u,g1,g2) ∧ disjoint(g1,g2) ∧^
i=1,2

(tree (gi)∧disjoint(gi,u))

which is close to Reynolds’ “separation”-based inductive definition [48] (see Section 7
for further comparisons).

As a final preparation, we need a notation for a generation of an unbounded number
of fresh references. We extend the notation {C}e• e′ = z{ν#x.C′} in §2.3 as follows.

{C}e• e′=z{ν#{x |E(x)}.C′} (6.6)

which roughly means, with i fresh:

∀X, iX.{C}e• e′=z{(∀x.(E(x)⊃ x# i))∧C′)} (6.7)

indicating the set {x | E(x)} of references are newly generated (for the exact semantics,
see Appendix C.1). We can now assert for treeCopy with the following judgement.

{T} treeCopy :u {treecopy(u)} (6.8)

where we set, with g typed Tree(α):

treecopy[α](u) =
∀gTree(α).{tree (g)}u•g=g′{ν#{h | reach(g′,h)}. iso(g,g′)}@ /0

(6.9)

Above reach(g′,h) stand for ∃p.path(g′, p,h). The assertion treecopy[α](u) reads:

Whenever u is invoked with a tree g of type Tree(α), it creates a tree g′ whose
reachable nodes are fresh and are isomorphic to those of the original, with no
write effects.

Note α may as well be a higher-order type. Note also the newly generated nodes may
share a ↪→-reachable references with the original tree at data when α is higher-order,
so that we cannot use g′ ↪→ h instead of reach(g′,h) based on the path predicate. As far
as its argument is restricted to proper trees, (6.9) is the full specification of treeCopy.
As such, it entails other assertions the program satisfies. For example it implies the
following assertion stating a relative disjointness between two trees, close to [48, § 6]:

treesep[α](u) = ∀x.{tree (x)}u• x=y{iso(x,y)∧disjoint(x,y)} (6.10)
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The derivation of (6.8) can be done in several ways depending on how a recursion
is inferred. One of the methods is to use the size (the number of the nodes) of the
tree. Another method uses, as in §6.1, the order induced by distance, which we discuss
below. Define x �z y (all of type Tree) as:

x �z y ≡ ∃p, p′.(distance(z, p,x)∧distance(y, p′,x)∧ p′ vlex p∧ p 6= p′) (6.11)

Note if x is a proper subtree of y which in turn is a subtree of z then we have x �z y.
Writing treeCopy′ for treeCopy without the initial recursion, we have:

{∀g′ �z g.B′( f ,g′)}e treeCopy′ :u {B′(u,g)} (6.12)

where we set:

B′(u,g) ≡ {tree (z) ∧ reach(z,g)}u•g = g′{ν#{m|reach(g′,m)}. iso(g,g′)}

For deriving (6.12), we use the inductive reformulation of tree (g) given before, as well
as simple entailments such as (tree (z) ∧ reach(z,g))⊃ tree (g).

We can then apply the proof rule for recursion (with well-founded ordering, cf. Ap-
pendix B) to (6.12) to obtain:

{T}treeCopy′ :u {∀g.B′(u,g)} (6.13)

By noting reach(g,g) = T we arrive at (6.8).

{T} treeCopy :u {{tree (x)}u•g=g′{ν#{h | reach(g′,h)}. iso(g,g′)}@ /0} (6.14)

Remark. As has been observed, we can also use the ordering based on size of trees:

x � y ≡ ∃n,m.(size(x,n) ∧ size(x,m) ∧ n � m)

where size(x,n) says that x is a tree such that the number of its nodes is n (defined by
the obvious inductive definition). Using � instead of �z, and

B′′(u,g) ≡ {tree (g)}u•g = g′{ν#{m|reach(g′,m)}. iso(g,g′)}

instead of B′(u,g), we can derive (6.8) directly from the recursion rule. The predicate
�z has the merit in that it applies to data structures of type Tree which are not trees, as
we shall discuss in the next subsection.

6.3 Dags and Graphs

When trees become dags, we allow sharing but not circularity.

isCycle(g) ≡ ∃p.(path(g, p,g)∧ p 6= ε)
dag (g) ≡ ∀h.(reach(g,h)⊃ ¬isCycle(h))

dag (g) says g is a dag iff it has no circularity. Since isCycle(g)⊃ ∃p.match(g, p, p · p),
we have tree (g)⊃ dag (g). As for trees, there is an inductive characterisation:

dag (g) ≡ ∃x.atom(u,x) ∨
∃g1,2.( branch(u,g1,g2) ∧

^
i=1,2

(dag (gi)∧¬reach(gi,u)) )
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which says a dag is either an atom or consists of a root with two sub-dags from which
there is no upward link to the root node.

A simple extension of treeCopy to create a fresh duplicate of an original dag, called
dagCopy, is given below:

dagCopyα def= λgTree(α)let x = ref( /0) in Main g

Main
def= µ f .λg.if dom(!x,g) then get(!x,g) else

case !g of
in1(n) : new(inj1(n),g)
in2(y1,y2) : new(inj2(〈 f y1, f y2〉),g)

new
def= λ(y,g).let g′= ref(y) in (x :=put(!x,〈g,g′〉);g′)

When this program is called with the root of a dag, it first creates an empty table stored
in a local variable x. The table remembers those nodes in the original dag which have
already been processed, associating them with the corresponding nodes in the fresh dag.
Before creating a new node, the program checks if the original node (say g) already
exists in the table. If not, a new node (say g′) is created, and x now stores the new table
which adds a tuple 〈g,g′〉 to the original.

The program above assumes, for brevity, a pre-defined data type for a table (real-
isable as, say, lists), with associated procedures: get(t,g) to get the image of g in t;
put(t,〈g,g′〉) to add a new tuple when g is not in the domain; dom(t,g) and cod(t,g) to
judge if g is in the pre/post-image of t; and the constant /0 for the empty table.

The program satisfies

{T}dagCopy :u {dagcopy[α](u)}, (6.15)

where dagcopy[α](u) is given as, with g typed as Tree(α):

∀gTree(α).{dag (x)}u•g=g′{ν#{h | reach(g′,h)}. iso(g,g′)}@ /0

The derivation of (6.15) centres on its treatment of recursion, for which we use the same
order x �z y as used in the previous subsection, based on lexicographic ordering. Write
Main′ for Main without its initial recursion. Then we have:

{∀h′ ≤g h.DC(u,h′)} Main′ :u {DC(u,h)} (6.16)

where we set:

DC(u,h) def= ∀org.

{dag (g) ∧ reach(g,h)∧ !x=org ∧ con(org)}
u•h = h′

{ν{z | reach(h′,z) ∧ z 6∈cod(org)}(con(!x)∧ !x=org∪〈h,h′〉∗)}@x

which says, noting dag (g)∧ reach(g,h) entails dag (h):

Suppose h is a dag and x contains a table org which is consistent (i.e. only
relates isomorphic nodes). Then invocation of u with h terminates with the
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return value h′ and, moreover: (1) references names reachable from h′ minus
those in the codomain of org are freshly generated; and (2) x stores a table
which is consistent and which adds to org the set of co-reachable nodes from
〈h,h′〉. Further the invocation only modifies x.

〈h,h′〉∗ denotes an isomorphism from those nodes reachable from h and those from h′.
The set-based ν-notation is understood as the corresponding ν#-notation (cf. (6.6, 6.7)).

The invariant con(t) (“table t is consistent”) is given by:

con(t) ≡ ∀g,g′.(〈g,g′〉 ∈ t ⊃ iso(g,g′)) ∧
∀g0,g1.(g0 ∈ dom(t)∧ reach(g0,g1)⊃ g1 ∈ dom(t))

con(t) says t only associates isomorphic graphs, and that its domain (hence co-domain,
by isomorphism) is closed under reachability. The derivation of (6.16) uses the inductive
characterisation of dag (g) as well as the above invariant for induction.

From (6.16) we obtain, by [Rec] (cf. Appendix B):

{T} Main :u {∀h.DC(u,h)} (6.17)

We instantiate h to g to obtain:

{T} Main :u {DC(u,g)} (6.18)

The application rule then give us:

{!x = /0∧dag (g)} (Maing) :g′ {ν{z | reach(h′,z)}. iso(g,g′)}@x (6.19)

By hiding x:

{dag (g)} let x = ref( /0) in (Maing) :g′ {ν#{z | reach(h′,z)}. iso(g,g′)}@ /0 (6.20)

where the change from ν to ν# is by the following structural rule:

[ν to ν# ]
{C} M :u {νx.C′} @ /0

{C} M :u {ν#x.C′} @ /0

which is valid since if a newly created reference is not stored anywhere, then it cannot
be reachable from any initial store, hence any initial datum. Finally by abstraction we
arrive at (6.16).

If we further allow a datum of Tree to have circular edges, then we have arbitrary
graphs. The program graphCopy given below operates on just such datum, creating a
fresh duplicate of an arbitrary datum of type Tree(α).

graphCopyα def= λgTree(α).let x = ref( /0) in GMain g

GMain
def= µ f .λg.if dom(!x,g) then get(!x,g) else

case !g of
in1(n) : new(inj1(n),g)
in2(y1,y2) :
let g′ = new(tmp,g)
in g′ := inj2(〈 f y1, f y2〉);g′
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where tmp= inj1(0). graphCopyα is essentially identical with dagCopyα except when
it processes a branch node, say g. Since its subgraphs can have a circular link to g or
above, we should first register g and its corresponding fresh node, say g′ (the latter with
a temporary content), before processing two subgraphs. Registering the pair 〈g,g′〉 is
necessary since two subgraphs may as well refer up to a node nearer to the root (more
precisely, this registering becomes necessary when, setting g0 to be the original root,
the minimum path from g0 to a subgraph, say h, happens to be a prefix of the minimum
path from g0 to g itself). The program satisfies the judgement

{T}graphCopy :u {graphcopy[α](u)} (6.21)

where we set, with g typed as Tree(α):

graphcopy[α](u) ≡
∀gTree(α).{T}u•g=g′{ν#{h | reach(g′,h)}. iso(g,g′)}@ /0

(6.22)

The assertion graphcopy[α](u) says:

When fed with any graph of type Tree(α), u creates its fresh duplicate, and does
nothing else.

This is the simplest of the three assertions for copy algorithms we have seen so far, and
is also the strongest. In the following comparisons of assertions, we use, assuming a
polymorphic extension of the programming language [40] (type abstracting only values)
and that of the logic [19] (treating types syntactically):

graphcopyPoly(u) ≡ ∀X.graphcopy[X](u�X) (6.23)

where u�α (with u having a type of the shape ∀X.β) is a term denoting the type appli-
cation of u to α [19].

Proposition 17. Fix α. Then each of the following equivalence and implications is
valid, with implications strict.

∃w.(graphcopyPoly(w)∧u=w�α) ≡ graphcopy[α](u) ⊃ dagcopy[α](u)
⊃ treecopy[α](u) ⊃ treesep[α](u).

Proof. Direct from the definition. For the first logical equivalence, note the presented
graphcopy program already works generically, i.e. duplicates graphs of type Tree[α] for
any α, taken as an untyped program. Thus ΛX.graphCopyX gives the desired polymor-
phic program,4 witnessing graphcopyPoly(w). ut

The derivation of (6.21) refines that of (6.15), especially in induction step. When we
apply f to a node in a graph, dagCopy can assume that the table stored in x contains
pairs of isomorphic nodes. This is no longer so for graphCopy since it now contains

4 If we are to use the implicit (a la Curry) typing for programs as in [5], we would assert for the
untyped version of graphCopy simply by ∀X.graphcopy[X](u), in which case we have the
(strict) implication ∀X.graphcopy[X](u)⊃ graphcopy[α](u).
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fresh nodes with temporary content. Thus we need to identify the portion of the table
which contain the pairs whose codomain have already been processed. For this purpose
we use the following predicates.

below(g1,g2,z) ≡ ∃p1,2,q.(
^

i=1,2

distance(z, pi,gi) ∧ p2 = p1 ·q ∧ p1 6= p2)

above(g1,g2,z) ≡ below(g2,g1,z)
before(g1,g2,z) ≡ g1 �z g2 ∧ ¬below(g1,g2,z)

Thus below(g1,g2,z), or equivalently above(g2,g1,z), asserts that, starting from z, the
minimum path to g1 goes via g2 (note that, if we look the graph with the root at the top,
this does visually mean g1 is below g2). Using these predicates, the content of the table
before and after processing a node, say g, is described as, with z being the root:

(before processing g) Each node h such that before(h,g,z) has already been processed,
i.e. the paths between these nodes in the domain are faithfully reproduced in the
corresponding nodes in the codomain. The table also contains those nodes above g
(i.e. h such that above(h,g,z)) in their domain.

(after processing g) The table inherits the same pairs of nodes without changing them,
and, in addition, each node h below g with respect to the root, i.e. h such that
below(h,g,z), has now been processed and added to the table, together with g itself
whose corresponding fresh node is g′. Note this automatically entails that no change
in the table content takes place if g is already in the domain of the table.

Note that these properties are “chained” through the two invocations of f in the pro-
gram, hence through the main invocation. Respectively writing the first and second con-
ditions conPre(t,g,z) and conPost(t,g,g′,z) with table t and root z, (whose definitions
using path predicates are easy), we arrive at the following assertion for induction:

GC( f ) ≡ ∀g.{conPre(!x,g,z)}
f •g = g′

{ ν{l | below(l,g′,z) ∧ l 6∈ dom(org)}. conPost(!x,g,g′,z) ) )}@x

Note f still touches only x (except creating new names) since those temporary new
nodes above g are not modified when g is processed.

Using this predicate, we can reach the following judgement for the main procedure
before we apply recursion, writing GMain′ for the result of taking off the initial recursion
from GMain.

{∀h′ �g h.GC( f ,h′)} GMain′ :u {GC(u,h)} (6.24)

Note each subgraph of h is either �g-smaller than h; or, if not, it is above h hence,
by conPre(!x,h,g), is in the table. Thus the inductive hypothesis ∀h′ �g h.GC( f ,h′) is
enough for inferring for the two invocations of f . From (6.24) we obtain, by the rule
for recursion [Rec] (cf. Appendix B):

{T} GMain :u {∀h.GC(u,h)} (6.25)

31



The rest is as for dagCopy, first inferring:

{!x = /0} (GMain g) :u { ν{l | below(l,g′,z)}. conPost(!x,g,g′,g)} @ x (6.26)

Since all nodes reachable from g are also below g or g itself, conPost(!x,g,g) means the
table only contains isomorphic nodes. In particular it entails iso(g,g′). Thus we obtain,
from (6.26) by way of the consequence rule:

{!x = /0} (GMain g) :u { ν{l | below(l,g′,z)}. iso(g,g′)} @ x (6.27)

From (6.27) we obtain, as we have reasoned for dagCopy:

{T} let x = ref( /0) in (GMain g) :u { ν#{l | below(l,g′,z)}. iso(g,g′)}@ /0 (6.28)

By applying the rule for abstraction, to (6.28), we finally arrive at (6.21).

7 Related Work and Conclusion

This paper proposed a Hoare-like program logic for imperative higher-order functions
with dynamic reference generation, a core part of ML-like languages [3, 4]. Target pro-
gramming languages of our preceding logics [6, 17, 19, 20] do not include local state.
As is well-known [21, 27, 28, 31, 42, 44], local state in higher-order functions radically
adds semantic complexity. To our knowledge, the present work proposed the first Hoare-
like program logic for this class of languages: nor do we know the preceding Hoare-like
logics which can assert and verify the demonstrated reasoning examples. In the follow-
ing we discuss related works and conclude with further topics.

7.1 Related Works

Reasoning Principles for Functions with Local State. There are many studies of
equivalences over higher-order programs with local state. An early work by Meyer and
Sieber [31] presents many interesting examples and reasoning principles based on de-
notational semantics. Mason and Talcott [27, 28] give a series of detailed studies on
equational axioms for an untyped version of the language treated in the present paper,
including those involving local invariants. Pitts and Stark [42, 44, 50] present power-
ful operationally-based reasoning principles for the same language as the present work
treats, with the reasoning principle for local invariants for higher-order types [44]. Sumii
and Pierce [51] present a fully abstract bisimulation technique for equational reasoning
on higher-order functions with dynamic sealing and type abstraction. Their bisimula-
tions are parameterised by related seals, which are close to parameterisation by related
stores in Pitts-Stark’s principle. Building on [51], Koutavas and Wand [21] propose a
fully abstract bisimulation technique for the untyped version of the language we treat,
and apply the techniques for reasoning about several non-trivial programs with local
store. They use denotational technique in relaxing a condition for bisimulations.

Our axioms for information hiding in § 4, which capture the basic patterns of pro-
gramming with local state, are closely related with these reasoning principles. The
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proposed logic differs in that its aim is to offer a method for describing and validat-
ing diverse properties of programs beyond program equivalence, represented as logical
assertions. The equivalence-based approach for program validation and the assertion-
based one are complimentary, to which Theorem 6 would offer a basis of integrated
usage. For example, we may consider deriving a property of the optimised version M′

of M: if we can easily verify {C}M :u {C′} and if we know M ∼= M′, we can conclude
{C}M′ :u {C′}, which is useful if M is better structured than M′. Such a link can be fur-
ther substantiated through a mechanised logic for semantics of higher-order behaviour
along the line of Longley and Pollack’s recent work [25].

Hoare Logics (1): Local Variables and ML-like Languages. To our knowledge,
Hoare and Wirth [16] is the first to present a rule for local variable declaration (given
for Pascal). In our notation, a version of their rule may be written as follows.

[Hoare-Wirth]
{C∧ x 6= ỹ}P{C′} x 6∈ fv(C′)∪{ỹ}
{C[e/!x]} new x := e in P {C′}

Because this rule assumes references are never exported outside of their original scope,
there is no need to have x in C′. Since aliasing is not permitted in [16] either, we can
further dispense with x 6= ỹ in the premise. [LetRef] in § 5.1 differs from this rule in
that it can treat new references generation exported beyond their original scope; aliased
references; and higher-order procedures (both as programs and as stored values). We
can check [Hoare-Wirth] is derivable from [LetRef] and [Assign].

Among the studies on verification methods for ML-like languages [4, 35], Extended
ML [49] is a formal development framework for Standard ML. A specification is given
by combining a module’ signature and algebraic axioms on them. Correctness of an
implementation w.r.t. a specification is verified by incremental syntactic transforma-
tions. Larch/ML [52] is a design proposal of a Larch-based interface language for ML.
Integration of typing and interface specification is the main focus of the proposal in
[52]. These two works do not (aim to) offer a program logic with compositional proof
rules; nor do either of these works treat specifications for functions with dynamically
generated references.

Hoare Logics (2): Reachability. A seminal work by Nelson [37] first presented the
use of reachability predicates for reasoning about linked lists. Based on [37], Lahiri and
Qadeer [23] study a tractable axiomatisation of cyclic lists and apply the resulting ax-
iomatisation to the development of a VC generator/checker for a first-order procedural
language. The key idea in their axiomatisation is to identify a head cell (or cells) of a
cycle and use it for a straightforward inductive definition of reachability and associated
invariant. For example, an invariant for the example program in §6.1 (which is from
[23]) can be written as follows:

I(x,h) = B(x,h)∧∀g.(R(h,g)⊃((x 6=h∧R(x,g))∨ iszero(x)))

where B(x,h) says x reaches (is blocked by) a head h; R(x,y) says we can reach y from
x; and iszero(x) says the datum in the cons x is zero. Thus I(x,h) says x reaches a head
h; and all cells starting from h reaching x are zeroed. We can then show I(x,z) is an
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invariant of the body command of csbody. This can be used for validating cyclesimple
zeroes all fields in a cyclic list w.r.t. partial correctness.

As noted, the interest and significance of their method lies in simple inductive ax-
iomatisations amenable to mechanical validation. Assertions and reasoning for higher-
order behaviour with dynamic reference generation, including a general class of data
structures and their dynamic generation, are not among their concerns and are not con-
sidered in their work.

Yorsh et al. [53] introduce a logic for expressing invariance for pointer manipulating
programs with dynamic allocation. Their logic is undecidable, but contains a decidable
sublogic. In our logic, reachability is undecidable, but useful axioms are proposed. They
supply neither proof rules nor axioms, so a direct comparison is difficult.

An interesting question is whether we can apply their ideas on effective axioma-
tisation or mechanisation to a large class of mutable data structures treatable in our
method.

Hoare Logics (3): Separation Reynolds, O’Hearn and others [9, 39, 48] study a rea-
soning method for dynamically generated and deallocated mutable data structures using
a spacial conjunction, C ∗C′. Taking the tree copy in § 6.2 (which is from [48]), they
start from a predicate r 7→ x which is roughly equivalent to alloc(r)∧ !r = x in our no-
tation, with alloc(r) indicating a reference r is allocated. To compare with their logic,
consider τ which is the structural description of a tree: for example, τ = ((1,(2,3)))
indicates a tree whose leaves store 1,2,3 from left to right. Then Tree(τ)(u) asserts
allocation of a τ-tree with the root u, in the way:

Tree((1,(2,3))(u) = ∃xy.(u 7→ xy∗ x 7→ 1∗Tree((2,3))(y)

where C1∗C2 indicates the conjunction of C1,2 together with all the alloc-declared refer-
ences of C1 and those of C2 are disjoint. We can then prove, writing treeCopyImp(x,y)
for an imperative version of treeCopy which stores the result of copy in y:

{Tree(τ)(x)}treeCopyImp(x,y){Tree(τ)(x)∗Tree(τ)(y)} (7.1)

In comparison with the proposed logic, we observe:

(1) The use of ∗ demands all concerned references are explicitly declared in assertions,
made possible by the use of structural description (τ of Tree(τ)(u) in (7.1) above).
The shape of the description usable for reasoning becomes complex [9] when data
structures involve non-trivial sharing (as in dags and graphs). In contrast, § 6 has
shown that our approach not only dispenses with the need for structural description
but also allows concise and uniform assertions and reasoning for data structures
with different degrees of sharing.

(2) As in (7.1), Reynolds’s approach represents fresh data generation by relative spatial
disjointness from the original datum, using the separating conjunction. This method
does capture a significant part of the program’s properties. The proposed logic rep-
resents freshness as temporal disjointness through the generic (un)reachability from
arbitrary datum in the initial state. Proposition 17 demonstrates that this approach
leads to strictly stronger (more informative) assertion, from which the assertion
equivalent to the other approach can be derived.
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(3) The presented approach enables uniform treatment of known data types in verifica-
tion, including product, sum, reference, list, tree, closure, etc., through the use of
anchors. This is a simple and general method which allows us to assert and compo-
sitionally verify trees, graphs, dags, lists, stored procedures, higher-order functions
with local state and other data types on a uniform basis, with precise match with
observational semantics.

See [6] for further comparisons. Reynolds [48] criticises the use of reachability for
describing data structure, taking the in-place reversal of a linear list as an example.
Following the method in Section 6, a tractable reasoning is possible for such an example
using reachability combined with [Inv].

Birkedal et al. [8] present a “separation logic typing” for a variant of Idealised Al-
gol where types are constructed from formulae of disjunction-free separation logic. The
typing system uses the subtyping calculated via categorical semantics, on which their
study focusses. In [7], they extend the original separation logic with higher-order pred-
icates, and demonstrate how the extension helps modular reasoning on priority queues.
Both of these works treat neither exportable fresh reference generation nor higher-
order/stored procedures in full generality, so that it would be difficult to assert and
validate examples treated in § 5 and § 6. It is an interesting future topic to examine the
use of higher-order predicate abstraction in the present logic.

Other Hoare Logics. Nanevski et al [36] studies Hoare Type Theory (HTT) which
combines dependent types and Hoare triples with anchors based on monadic under-
standing of computation. HTT aims to provide an effective general framework which
unifies standard static checking techniques and logical verifications. Their system em-
phasises the clean separation between static validation and assertions. Local store is
not treated and left as an open problem in [36]. Reus and Streicher [46] present a
Hoare logic for a simple language with higher-order stored procedures, extended in
[45], with primitives for the dynamic allocation and deallocation of references. Sound-
ness is proved with denotational methods, but completeness is not proved. Their as-
sertions contain quoted programs, which is necessary to handle recursion via stored
functions. Their language does not allow procedure parameters and general reference
creation. Similarly with [36], but based on a monadic presentation, Krishnaswami [22]
studies a specification logic for a high-level language which explicitly state effects and
their order of execution. His logic does not handle recursive types or polymorphism.
Completeness and invariance rules/axioms are not considered. In our case, aliasing is
handled by content qualification in assertions, not at the programming language level.
Content quantification enables formulating local invariance axioms. Completeness was
not proved in this work.

No work mentioned in this section studies local invariance.

Meta-logical Study on Freshness. Freshness of names is recently studied from the
viewpoint of formalising binding relations in programming languages and computa-
tional calculi. Pitts and Gabbay [13, 43] extend First-Order Logic with constructs to
reason about freshness of names based on the theory of permutations. The key syntac-
tic additions are the (interdefinable) “fresh” quantifier Nand the freshness predicate #,
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mediated by the swapping (finite permutation) predicate. Miller and Tiu [32] are moti-
vated by the significance of generic (or eigen-) variables and quantifiers at the level of
both formulae and sequents, and splits universal quantification in two, introduce a self-
dual freshness quantifier ∇ and develop the corresponding sequent calculus of Generic
Judgements. While these logics are not program logics, their logical machinery may
well be usable in the present context. As noted in Proposition 9, reasoning about ↪→ or
# is tantamount to reasoning about B, which denotes the support (the semantic notion
of freely occurring locations) of a datum/program. A characterisation of the support by
the swapping operation may lead to deeper understanding of axiomatisations of reach-
ability.

There are mechanisation of Hoare logics in higher-order logics, including [11, 29,
38]. While these works do discuss some aspects of imperative programs the proposed
logic treats (such as pointer-based data structures), none so far may offer a general
assertion method and compositional proof rules for ML-like reference generation or
their combination with higher-order functions.

7.2 Further Topics

The present work is intended to be but a modest initial step in logically capturing the
richness of the universe of behaviours of higher-order functions with local state. Many
challenges remain before we reach a mature engineering basis for using the logical
method studied in this paper. Some of the significant future topics include: Further de-
velopment of reasoning principles as axioms, including those on local invariants (are
there a basic set of axioms capturing most of the reasoning principles?); Partial correct-
ness logic; Coverage of the whole of SML/CAML; Extensions of the proposed method
to higher-order languages with monadic encapsulation of imperative features such as
Haskell and untyped higher-order languages such as Scheme (we strongly believe both
are feasible and rewarding); Exploration of effective reasoning/validation methods for
general mutable data structure, including semi-automatic verification; and integration
with program development method.
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A Appendix: Reductions and Typing Rules

A.1 Reductions

A reduction relation, or often reduction for short, is a binary relation between configu-
rations, written

(νl̃)(M,σ1) −→ (νl̃′)(N,σ2)

The relation is generated by the following rules. First, we have the standard rules for
the call-by-value PCF:

(λx.M)V → M[V/x]

π1(〈V1,V2〉) → V1

if t then M1 else M2 → M1

(µ f .λg.N)W → N[W/g][µ f .λg.N/ f ]

case in1(W ) of {ini(xi).Mi}i∈{1,2}→ M1[W/x1]

The induced reduction becomes that for open configurations (hence for configurations
with empty binder) by stipulating:

M −→ M′

(M,σ)−→ (M′,σ)

Then we have the reduction rules for imperative constructs, i.e. assignment, dereference
and new-name generation.

(!l, σ) → (σ(l), σ)

(l := V, σ) → ((), σ[l 7→V ])

(ref(V ), σ) → (ν l)(l, σ] [l 7→V ])

(new x := V in N,σ) −→ (ν l)(N[l/x],σ] [l 7→V ]) (l fresh)

Finally we close −→ under evaluation contexts and ν-binders.

(νl̃1)(M,σ)→ (νl̃2)(M′,σ′)
(νl̃ l̃1)(E[M],σ)→ (νl̃ l̃2)(E[M′],σ′)

where l̃ are disjoint from both l̃1 and l̃2, E[ · ] is the left-to-right evaluation context (with
eager evaluation), inductively given by:

E[ · ] ::= (E[ · ]M) | (VE[ · ]) | 〈V,E[ · ]〉 | 〈E[ · ],V 〉 | πi(E[ · ]) | ini(E[ · ])
| op(Ṽ ,E[ · ],M̃) | if E[ · ] then M else N | case E[ · ] of {ini(xi).Mi}i∈{1,2}
| !E[ · ] | E[ · ] := M | V := E[ · ] | ref(E[ · ]) | new x := E[ · ] in M

A.2 Typing Rules

The typing rules are standard [40], which we list in Figure 1 for reference (from first-
order operations we only list two basic ones). In the first rule of Figure 1, cC indicates
a constant c has a base type C. We also use the typing sequent of the form: Θ ` M : α

where Θ mixes these two kinds of maps.
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Fig. 1 Typing Rules

[Var] −
Θ,x : α ` x : α

[Label] −
Γ;∆ · l : α ` l : α

[Constant] −
Γ;∆ ` cC : C

[Add]
Γ;∆ ` M1,2 : Nat

Γ;∆ ` M1+M2 : Nat
[Eq]

Γ;∆ ` M1,2 : Nat
Γ;∆ ` M1 =M2 : Bool

[If ] Γ;∆ ` M : Bool Γ;∆ ` Ni : αi (i = 1,2)
Γ;∆ ` if M then N1 else N2 : α

[Abs] Θ,x :α ` M : β

Θ ` λxα.M : α⇒β
[App] Γ;∆ ` M : α⇒β Γ;∆ ` N : α

Γ;∆ ` MN : β

[Rec] Γ,x :α⇒β ; ∆ ` λyα.M : α⇒β

Γ;∆ ` µxα⇒β.λyα.M : α⇒β
[Iso] Θ ` M : α α ≈ β

Θ ` M : β

[Deref ] Γ;∆ ` M : Ref(α)
Γ;∆ `!M : α

[Assign] Γ;∆ ` M : Ref(α) Γ;∆ ` N : α

Γ;∆ ` M := N : Unit

[Ref] Γ;∆ `V : α

Γ;∆ ` ref(V ) : Ref(α) [New]Γ;∆ ` M : α Γ;∆,x : Ref(α) ` N : β

Γ;∆ ` new x := M in N : β

[Inj] Γ;∆ ` M : αi
Γ;∆ ` ini(M) : α1+α2

[Case] Γ;∆ ` M : α1+α2 Γ;∆,xi :αi ` Ni : β

Γ;∆ ` case M of {ini(x
αi
i ).Ni}i∈{1,2} : β

[Pair] Γ;∆ ` Mi : αi (i = 1,2)
Γ;∆ ` 〈M1,M2〉 : α1×α2

[Proj] Γ;∆ ` M : α1×α2
Γ;∆ ` πi(M) : αi (i = 1,2)

A.3 Observational Congruence

Define:
(νl̃)(M,σ) ⇓ (νl̃′)(V,σ′)

def≡ (νl̃)(M,σ)→∗ (νl̃′)(V,σ′)

Further set:

(νl̃)(M,σ) ⇓ def≡ (νl̃)(M,σ) ⇓ (νl̃′)(V,σ′) for some (νl̃′)(V,σ′).

Assume Γ;∆, l̃1,2 : α̃1,2 ` M1,2 : α. Then we write

Γ;∆ ` (νl̃1)(M1,σ1)∼= (νl̃2)(M2,σ2)

if, for each typed context C[ · ] which produces a closed program which is typed as Unit
under ∆ and in which no labels from l̃1,2 occur, the following holds:

(νl̃1)(C[M1], σ1) ⇓ iff (νl̃2)(C[M2], σ2) ⇓

which we often write (νl̃1)(M1,σ1)∼= (νl̃2)(M2,σ2) leaving type information implicit.
We also write Γ;∆ ` M1 ∼= M2, or simply M1 ∼= M2 leaving type information implicit,
if, l̃i = σi = /0 (i = 1,2).
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B Appendix: Proof Rules

Fig. 2 Proof Rules

[Var] −
{C[x/u]} x :u {C}

[Const] −
{C[c/u]} c :u {C}

[In1]
{C} M :v {C′[inj1(v)/u]}
{C} inj1(M) :u {C′} [Proj1]

{C} M :m {C′[π1(m)/u]}
{C} π1(M) :u {C′}

[Case] {C
-x̃} M :m {C-x̃

0 } {C0[inji(xi)/m]} Mi :u {C′ -x̃}
{C} case M of {ini(xi).Mi}i∈{1,2} :u {C′}

[Add] {C}M1 :m1 {C0} {C0}M2 :m2 {C′[m1 +m2/u]}
{C}M1 +M2 :u {C′}

[Abs] {C∧A-xĩ} M :m {C′}
{A} λx.M :u {∀xĩ.{C}u• x= m{C′}}

[App]
{C} M :m {C0} {C0} N :n {C1 ∧ {C1} m•n = u {C′}}

{C} MN :u {C′}

[If ] {C} M :b {C0} {C0[t/b]} M1 :u {C′} {C0[f/b]} M2 :u {C′}
{C} if M then M1 else M2 :u {C′}

[Pair]
{C} M1 :m1 {C0} {C0} M2 :m2 {C′[〈m1,m2〉/u]}

{C} 〈M1,M2〉 :u {C′}

[Deref ] {C} M :m {C′[!m/u]}
{C} !M :u {C′} [Assign] {C} M :m {C0} {C0} N :n {C′{|n/ !m|}}

{C} M := N {C′}

[Rec] {A-xi∧∀ j � i.B( j)[x/u]} λy.M :u {B(i)-x}
{A} µx.λy.M :u {∀i.B(i)} [Ref ] {C} M :m {C′}

{C} ref(M) :u {#u.C′[!u/m]}

[Conseq] C ⊃C0 {C0} M :u {C′
0} C′

0 ⊃C′

{C} M :u {C′}

Figure 2 presents all compositional proof rules (at the end we briefly discuss struc-
tural rules). We assume that judgements are well-typed in the sense that, in {C} M :u
{C′} with Γ;∆ ` M : α, Γ,∆,Θ ` C and u : α,Γ,∆,Θ ` C′ for some Θ s.t. dom(Θ)∩
(dom(Γ,∆)∪ {u}) = /0. In the rules, C-x̃ indicates fv(C)∩ {x̃} = /0. Symbols i, j, . . .
range over auxiliary names.

In [Abs,Rec], A,B denote stateless formulae, in the sense of Definition 13.
In [Rec], � in the precondition of the premise can be replaced by (or interpreted

as) an arbitrary well-founded, and possibly partial, order on closed values of some type
[12]. In this case, the universal abstraction on i follows the rule [Aux∀] discussed later.
Including this point, [Rec] is best considered as being derived from the following rule
for recursion:

[Rec-Ren]
{A-x} λy.M :u {B}

{A-x} µx.λy.M :u {B[u/x]}
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and the following rule for moving a stateless formula from the precondition to the post-
condition [6, §7.3]

[∧-⊃]
{A∧B}V :u {C}
{A}V :u {B ⊃C}

,

combined with an induction principle at the level of assertions. The use of less general
[Rec] still gives a useful articulation in inferences.

[Assign] uses logical substitution which uses content quantification to represent a
substitution of content of a possibly aliased reference [6].

C{|e2/!e1|}
def= ∀m.(m = e2 ⊃ [!e1](!e1 = m ⊃C)).

with m fresh. Intuitively C{|e2/!e1|} describes the situation where a model satisfying C
is updated at a memory cell referred to by e1 (of a reference type) with a value e2 (of its
content type), with e1,2 interpreted in the current model. The proof rules for the located
judgement is given just as [6], adding the following rule for the reference.

[Ref]
{C} M :m {C′}@ẽx x /∈ fpn(ẽ)∪ fv(ẽ)

{C} ref(M) :u {#x.C′}@ẽ

For the structural rules (i.e. those proof rules which only manipulate assertions in pre/-
post conditions), the structural rules given in [6, §7.3] for the base logic stay valid
except that the universal abstraction rule [Aux∀] in [6, §7.3] needs be weakened:

[Aux∀-Val]
{C} V :u {C′} i 6∈ fv(C)∪ fv(V )

{C} V :u {∀i.C′}

The restriction to values can be taken off if we restrict the type of i:

[Aux∀]
{C} M :u {C′}@ẽ i 6∈ fv(C)∪ fv(M)∪ fv(ẽ) i is of a base type

{C} M :u {∀i.C′}@ẽ

where the second side condition (i is of a base type) is not present in [6].
We observe the original structural rule, which does not have this condition, is not

valid in the presence of new reference generation. For example we can take:

{T} ref(3) :u {u# i∧!u = 3}@ /0 (B.1)

which is surely valid. But without the side condition, we can infer the following from
(B.1).

{T} ref(3) :u {∀i.(u# i∧!u = 3)}@ /0

which does not make sense (just substitute u for i). This is because of a new name
generation for which i cannot range over: such an interplay with new name generation
is not possible if the target program is a value, or if i is of a base type.
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C Appendix: Models

C.1 Models and Satisfaction

The semantics of the assertions follows. All omitted cases are by de Morgan duality.

1. M |= e1 = e2 if M[u : e1]≈M[u : e2].
2. M |= C1∧C2 if M |= C1 and M |= C2.
3. M |= ¬C if not M |= C.
4. M |= ∀x.C if ∀M′.(M[x :N] ⇓M′ ∧ M≈M′/x ⊃M′ |= C)
5. M |= νx.C if ∀M′, l.((νl)(M′/x)≈M ∧ M′(x) = l ⊃M′ |= C)
6. M |= ∀X.C if for all closed type α, M·X :α |= C.
7. M |= [!x]C if ∀M′.((M[u :N] ⇓M′ ∧ ∀V.M[x 7→V ]≈ (M′/u)[x 7→V ])⊃M′ |= C).
8. M |= e1 ↪→ e2 if for each (νl̃)(ξ,σ)≈M, [[e2]]ξ,σ ∈ lc(fl([[e1]]ξ,σ),σ).
9. M |= {C}x• y=z{C′} if (M[u :N] ⇓M0 ∧ M0 |= C)⊃ (M0[z : xy] ⇓M′ ∧ M′ |=

C′).
10. M |= {C}x•y=z{C′}@w̃ is defined as (M[u :N] ⇓M0 ∧ M0 |= C)⊃ (M0[z : xy] ⇓

M′ ∧ M′ |= C′ ∧M′[w̃ 7→ Ṽ ] ≈ M0[w̃ 7→ Ṽ ]), where the last condition means at
most w̃ are updated.

11. M |= {C}e• e′=x{C′}@{z|E(z)} iff it satisfies the defining clause of (9) above as
well as the following, letting M0

def= (νl̃)(ξ,σ0) and M′ ≈ (νl̃ l̃′)(ξ,σ′):

∀Ṽ .((νl̃)(ξ,σ0[l̃1 7→ Ṽ ])≈ (νl̃ l̃′)(ξ,σ′[l̃1 7→ Ṽ ])) (C.1)

where l ∈ {l̃1} iff (νl̃)(ξ · z : l,σ0) |= E.

In the defining clauses above, we use a following notations. In each item below, we
assume M

def= (νl̃)(ξ,σ), fv(e) ⊂ fv(M), fl(e) ⊂ fl(M), fv(N) ⊂ fv(M), fl(N) ⊂ fl(M),
V closed, fl(V )⊂ fl(M), and leave the appropriate typability implicit.

(a) M[u :e] with u fresh and the variables and labels in e free in M, denotes (νl̃)(ξ ·u :
[[e]]ξ,σ,σ).

(b) M/u = (νl̃)(ξ,σ) if M = (νl̃)(ξ ·u :V,σ); otherwise M/u = M (when u 6∈ fv(M))
(c) M[u : N] ⇓ M′ when (Nξ,σ) ⇓ (νl̃′)(V,σ′) and M′ = (νl̃ l̃′)(ξ · u :V, σ′) with M =

(νl̃)(ξ, σ).
(d) We write M[e 7→V ] for (νl̃)(ξ,σ[l 7→V ]) with M = (νl̃)(ξ,σ) and [[e]]ξ,σ = l.

In (1), the equality defined satisfies all standard axioms. (2) and (3) are standard. (4)
takes any N as far as it does not change the state. (6) is from [19]. (7) is an extension
from [6] where we evaluate N in a given context. (9) says that in any M-initial hypo-
thetical state satisfying C, the application of x to y returns z with final state satisfying C′

(we need to consider hypothetical state since a function can be invoked any time later,
not only at the present state).

We illustrate some of the defining clauses for satisfaction.
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Quantification and Hiding Quantification. In the satisfaction of universal quantifi-
cation over reference variables, it is notable to illustrate the difference between the
standard quantification and the hiding quantification.

– ∀xα.C says that for any reference x, which can be either (1) “existing” (free) ref-
erence or (2) a “fresh” reference with an arbitrary content, satisifes C (this second
part allows natural assertions and reasoning and is needed for satisfying the stan-
dard quantification laws).

– νxα.C says that for any reference x which is hidden in the present model, C should
hold. This generally mean x cannot be a free reference name.

Evaluation Formulae. In the satisfaction of evaluation formulae, we use the conver-
gence M[u : N] ⇓ M′. which intuitively means that M can reduce to M′ through an
arbitrary effects on M by an external program: in other words, M′ is a hypothetical
future state (or “possible world”) of M. Hence the defining clause for the satisfaction
of evaluation formulae says:

In any initial hypothetical state which is reachable from the present state and
which satisfies C, the application of e1 to e2 terminates and both the result z
and the final state satisfy C′.

The subsequent two clauses for satisfaction of located evaluation formulae in addition
delimit the set of locations which may be modified by the evaluation. The last clause
(11), which subsumes the preceding (10) by setting E(z) def= ∨iz = wi, says:

The value stored in a model M0 evolved from M at a location other than those
satisfying E(z) (in M0), does not differ in M′.

Otherwise the condition for its satisfaction is the same as the original evaluation for-
mulae. Note the predicate E(z) is evaluated in M0, the hypothetical initial state (this is
important for e.g. invariance rule, and also allows a natural reading). In the presence
of local state, precisely encoding located assertions into unlocated ones seems difficult.
As discussed in [6, 20], we need to consider hypothetical state in evaluation formulae
since a function can be invoked any time later, not only at the present state.

We further illustrate how the satisfaction for evaluation formulae, especially its no-
tion of hypothetical initial state, capture operational behaviour of applications. We first
observe:

– In [6, 20], the notion of “hypothetical state” means an arbitrary store under the same
typing (since the state is global and, in future when the function is invoked, the store
may have been changed in any way by other programs).

– In the presence of local state, we cannot change the content of references arbitrarily
since some locations may be inaccessible and, hence, remain constant. Thus we
only consider a store which can result from the current one by some external effects
as a hypothetical state.

Note the second “hypothetical state” subsumes the original notion, since when there is
no hiding, a program can arbitrarily update the state of the exposed references.
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We now illustrate this idea by examples. First, consider the following model:

M
def= (νl)(u : λ().!l, l 7→ 2) (C.2)

A hypothetical state starting from this state cannot include:

M′ def= (νl)(u : λ().!l, l 7→ 3) (C.3)

since if (C.3) is allowed, we have

M |= ¬{T}u• () = z{z = 2} (C.4)

which is absurd. Note (C.2) means M≈ (u : λ().2, /0), i.e. this model is stateless: so it
is pointless to consider changing the state of this model.

As a more elaborate example, if we set:

M
def= (νl)(u := λ().!l, w : λ().l :=!l +1, l 7→ 5) (C.5)

We can check the set of all legitimate hypothetical states from this state (i.e. M′ such
that M[z : N] ⇓M′, without insignificant z portion in M′) can be enumerated by:

M′ def= (νl)(u := λ().!l, w : λ().l :=!l +1, l 7→ m) (C.6)

for each m ≥ 5 (since the only way an outside program can affect this model is to
increment the content of l). Thus we have, for M in (C.5):

M |= {T}w• () = z{z ≥ 5} (C.7)

which says in any future state where w is invoked, it always returns something no less
than 5, which is operationally reasonable.

We can use this fact for semantically justifying:

{∀g.(g• () ⇓⊃ f •g ⇓)} L :z {z = t} (C.8)

where we write g• () ⇓ to denote {T}g• (){T}, and we set:

L def= let x = ref(5) in
let u = λ().!x in

let w = λ().x :=!x+1 in
( f w) ; if z ≥ 5 then t else f

(C.9)

When the application f w takes place, some unknown computation occurs which may
change the state: but we know, by assumption on f , that f w terminates; and that, after
the two let’s, which corresponds to the model (C.5) above, we have (C.7). Thus we can
conclude that the program returns t, justifying (C.9).

Syntactically the judgement (C.9) is readily inferred using the axiom in Proposi-
tion 16, which says the invariant survives applications as far as certain condition (in
particular termination) is satisfied.
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C.2 Semantics of Judgement

Below we fix typings appropriately (as we discuss soon, it suffices to take the minimum
typing covering the assertions and the program which always exists). First, the non-
located judgement:

|= {C} M :u {C′} (C.10)

means
∀M.(M |= C ⊃ M[u : M] ⇓M′ |= C′) (C.11)

Let us write M M′ for M[u : e] ⇓ M′
0 such that M′ def= M′

0/u. with u fresh. Then the
above is equivalent to saying:

∀M,M0.(M M0 |= C ⊃ M[u : M] ⇓M′ |= C′) (C.12)

This in turn is equivalent to, with V def= λ().M:

∀M.(M[m : V ] |= {C}m• () = u{C′}) (C.13)

Second, the semantics of the located judgement:

|= {C} M :u {C′}@x̃ (C.14)

may most easily be given using the corresponding located assertion following (C.13)
above, with V def= λ().M:

∀M.(M[m : V ] |= {C}m• () = u{C′}@x̃ (C.15)

. We can further generalise (C.14) to denote the set of references:

|= {C} M :u {C′}@{z|E(z)} (C.16)

where we assume z is fresh and (∃z.E(z)) ≡ T. 5 Then the meaning of (C.16) is given
as:

∀M.(M[m : V ] |= {C}m• () = u{C′}@{z|E(z)}) (C.17)

Note this subsumes (C.11) since if we set E def= T in (C.17) the assertion. This concludes
the definition of the semantics of judgements.

C.3 Refined Assertion Language for Completeness

We use the same notion of models and refine evaluation formula and content quan-
tification. Each is decomposed into a pair, consisting of a modal operator and a more
fine-grained evaluation formula/content quantifier. We only list their satisfaction and
associated changes in proof rules.

We generate M M′ inductively by: (1) M M; and (2) if M M0 and M0[u :
N] ⇓ M′ then M M′. We write M

ũ
 M′ when M M′ and {ũ} = dom(M′) \

dom(M). We now set:

5 The condition (∃z.E(z)) ≡ T prevents pathological cases: for example, if E(z) ≡ F then the
statement becomes vacuous (under the given translation).
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1. M |=�C if ∀M′.(M M′ ⊃M′ |= C).
2. M mod els� C if ∀M′.(M ũ

 M′∧M≈M′/ũ ⊃ M′ |= C).
3. M |= e• e′ = x{C} if ∃M′.(M[x : ee′] ⇓M′ ∧ M′ |= C).
4. M |= [!x]◦C if ∀M′,N.(M[x 7→N]⇓M′∧∀V.(M[x 7→V ]≈M′[x 7→V ]) ⊃ M′ |=C).

�C says that C holds now and in any possible future; �C says that C holds now and in
any possible future which does not change the current state (it may be expanded). One-
sided evaluation formula e • e′ = x{C} says that if we apply e to e′ now, the returned
value and state satisfy C. Finally [!x]◦C says that for any content of x, C holds (without
considering expansion). We recover the original evaluation formula and universal con-

tent quantifiers by the following translations: {C}x•y = z{C′} def≡ �(C ⊃ x•y = z{C′})
and [!x]C

def≡ � [!x]◦C. Accordingly, in the proof system, [Assign] now represents logical
substitution using [!x]◦C as follows: C{|n/!m|} def= [!m]◦(!m = n ⊃C) (we can equiva-
lently use the existential counterpart). [Abs] and [App] also use the decomposed formu-
lae:

[Abs]
{A-xĩ∧C} M :m {C′}

{A} λx.M :u {�∀xĩ.(C ⊃ u• x = m{C′})}

[App]
{C} M :m {C0} {C0} N :n {m•n = u{C′}}

{C} MN :u {C′}
These decompositions are suggested by the proof of descriptive completeness. For the
reasoning about the examples presented above, their use is not practically significant.

C.4 Proofs of Soundness

We prove the soundness theorem. We start with [Var].

M |= C[x/u] implies M[u :x] |= C.

Similarly [Const] is reasoned:

M |= C[c/u] implies M[u :c] |= C.

Next, [Inj1] is reasoned:

M |= C ⇒ M[m :M] ⇓M′ |= C′[inj1(m)/u]
⇒ M[m :M] ⇓M′s.t. M′[u :inj1(m)] |= C′.

⇒ M[m :M][u :inj1(m)] |= C′.

⇒ M[u :inj1(M)] |= C′.

For [Proj] we reason as follows.

M |= C ⇒ M[m :M] ⇓M′ |= C′[π1(m)/u], i.e. M′[u :π1(m)] |= C′
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For [Case], we reason:

M |= C ⇒ M[m :Mα+β] ⇓M0 |= C0, if M = (νl̃)(ξ,σ) and (νl̃)(Mξ,σ) ⇓ (νl̃′)(inji(xi)ξ,σ′)
⇒ M0[m :inji(xi)] |= C0∧m = inji(xi)
⇒ M0[m :inji(xi)][u :M1] ⇓M′ |= C′

⇒ M[u :case M of {ini(xi).Mi}i∈{1,2}] ⇓M′/m |= C′

Now we reason for [Abs]. We note, if A is stateless (cf. Definition 13) and M |= A, then:

1. M[u :M] ⇓M′ with u fresh implies M′ |= A.
2. M≈ (νl)M′∧M′[x : l] |= A.

Now assume x, ĩ have functional types.

M |= A ⊃M[u :λx.M] |= ∀xĩ.{C}u• x=m{C′}
≡ M |= A ⊃M[u :λx.M][x :V ][ĩ :W̃ ] |= {C}u• x=m{C′}
≡ M |= A ⊃ (M[u :λx.M][x :V ][ĩ :W̃ ][k :N] ⇓M0∧M0 |= C)

⊃ (M0[m :ux] ⇓M′
0∧M′

0 |= C′)
≡ (M |= A∧M[u :λx.M][x :V ][ĩ :W̃ ][k :N] ⇓M0∧M0 |= C)

⊃ (M0[m :ux] ⇓M′
0∧M′

0 |= C′)
≡ (M |= A∧M[u :λx.M][x :V ][ĩ :W̃ ][k :N] ⇓M0∧M0 |= A∧C) (1) above

⊃ (M0[m :ux] ⇓M′
0∧M′

0 |= C′)
⊂ M0 |= A∧C ⊃ (M0[m :M] ⇓M′

0∧M′
0 |= C′)

If x has a reference type, we use (2) instead of (1). Then reasoning is identical.
[App] is reasoned as follows.

M |= C ⇒ M[m :M] ⇓M0 |= C0

⇒ M[n :N] ⇓M1 |= C1∧{C1}m•n=n{C′}
⇒ M[m :M][n :N][u :m•n] ⇓M′ |= C′

1

⇒ M[u :MN] ⇓M′/mn |= C′

For [Deref ], we infer:

M |= C ⇒ M[m :M] ⇓M′ |= C′[!m/u]
⇒ M[m :!M] ⇓M′/m |= C′

For [Assign] we first note that

M |= 〈!x〉(C∧!x = m) iff M[x 7→ [[e]]ξ,σ] |= C

Assume u is fresh.

M |= C ⇒ M[m :M] ⇓M0 |= C0,M0[n :N] ⇓M′ |= C′{|n/!m|}
⇒ M′[m 7→ n] ⇓M′′ |= C′

⇒ M[u :M := N] ⇓M′′/mn[u :()] |= C′
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For [Rec], we establish the result for the following variant (already mentioned in Ap-
pendix B):

[Rec-Ren]
{T} λx.M :u {A}

{T} µ f .λx.M :u {A[u/ f ]}

This variant and its relation with [Rec] is discussed below. Choose arbitrary MΘ· f :α⇒β.
Then M |= T and

(IH) ⇒ ∀M.M[u :λx.M] |= A

⇒ ∀M.M[ f :µ f .λx.M][u :λx.M] |= A

⇒ ∀M.M[u, f :µ f .λx.M] |= A

⇒ ∀M.M[u :µ f .λx.M] |= ∀ f .( f = a ⊃ A)
⇒ ∀M.M[u :µ f .λx.M] |= A[u/ f ]

[Rec] is easily derivable with [Rec-Ren] using mathematical induction at the level of
assertions.

For [Ref ], which shows the role of a fresh variable representing an arbitrary pre-
state datum, let u /∈ fpn(e). Then, with u fresh, for all M, we have:

M[u :ref(M)] ⇓M′ implies M′ |= u#e (?)

[because: M′ has shape:
(νl̃l)(ξ-u ·u : l,σ-l · [l 7→V ])

with (νl̃0)(Mξ,σ0) ⇓ (νl̃0)(V,σ). Then one can check [[e]]ξ·u:l,σ·[l 7→V ] = [[e]]ξ,σ 6∈ lc(l,σ ·
[l 7→V ]) = lc(l, [l 7→V ]). ] We can now reason, using (?):

M |= C ⇒ M[m :M] ⇓M′ |= C′

⇒ M[m :M][u :ref(M)] ⇓M0 ≈M′[u 7→ m]
and M′[u 7→ m] |= C′∧!u = m∧u# i (?)
⇒ M[u :ref(M)] ⇓M′′/m |= #u.C[!u/m]

We complete all cases. ut

D Appendix: Soundness of the Axioms

This appendix lists omitted proofs from Section 4. In D.1 we establish basic lemmas.
In D.3, we prove (AIH)-axioms.

D.1 Basic Lemmas

We introduce a small notation: for M1,2 of the same type, we write M1
[!w̃]
≈ M2 when

∀Ṽ .(M1[w̃ 7→ Ṽ ]≈M2[w̃ 7→ Ṽ ]).

Lemma 18. Suppose C is stateless except x̃ and M |= C. Suppose M M′ such that
M and M′ coincide in their content at x̃, i.e.
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1. M
def= (νl̃0)(ξ, σ).

2. M′ def= (νl̃0 l̃1)(ξ · x̃ : l̃, σ′).
3. σ(ξ(xi)) = σ′(ξ(xi)) for each xi ∈ {x̃},

Then we have M′ |= C.

Proof. We first generate the set S of stateless formulae and the set SS of strongly state-
less formulae as follows.

1. If C ∈ SS then C ∈ S.
2. Equations and inequations are in SS.
3. Evaluation formulae of the form {C}e•e′ = z{C′}@w̃ where e and e′ do not contain

!xi, are in S.
4. If C1,2 ∈ S (resp. in C1,2 ∈ SS) then C1 ?C2 ∈ S (resp. C1 ?C2 ∈ SS) for ? ∈ {∧,∨}.
5. If C ∈ S (resp. in C ∈ SS) then Qy.C ∈ S (resp. Qy.C ∈ SS).
6. If C ∈ SS then [!y]C ∈ SS and 〈!y〉C ∈ SS.

We use induction on this generation rules to show:

(a) If C ∈ SS and M1,2 coincide at x̃ then M1 |= C iff M2 |= C.
(b) If C ∈ S and M and M′ satisfy the condition stated in Lemma 18, then M |= C

implies M′ |= C.

We start from (a). Equations and inequations are triviality. Similarly for conjunction
and disjunction. For quantification, Consider ∀y.C ∈ SS and assume

M1 |= ∀y.C (D.1)

and
M1 and M2 coincide at x̃. (D.2)

Let us write P for either e or V . From (D.2) and by definition we have

M1[y : P] and M2[y : P] coincide at x̃. (D.3)

Take a logical term or value P. Then from (D.1) we have

M1[y : P] |= C. (D.4)

Since C ∈ SS, by (D.3) and (D.4) as well as by induction hypothesis, we obtain M2[y :
P] |= C, that is M2 |= ∀y.C, as required.

For content quantification, suppose [!y]C ∈ SS (note y 6∈ {x}) and assume M1 |=

[!y]C and M1 and M2 coincide at x̃. Now suppose: M′
2

[!y]
≈ M2 where we write

We can safely take M′
2 to be the result of putting a different value at y in M2 (pos-

sibly with additional hidden store). Let M′
1 be the result of putting the same value at y

in M1. Then M′
1

[!y]
≈ M1 hence M′

1 |= C. By noting M′
1 and M′

2 coincide at x̃y hence by
induction hypothesis we obtain M′

2 |= C. Hence M2 |= [!y]C, as required.
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For (b), first suppose C ∈ SS. By (a) and we immediately know C satisfies (b). For
evaluation formulae, if

M |= {C} f •g = h{C′} (D.5)

and suppose M M′. Suppose M′ M0 |= C. Then by definition M M0 |= C too.
Moreover e and e′ are identically interpreted in M and M′ because they coincide at
x̃ (see the defining clause of interpretation of evaluation formulae in Appendix C.1),
hence as required. Note the argument extends to a generalised located assertion {C}e•
e′ = z{C′}@{w|E(w)} since in this case w of E(w) is interpreted in M0. Conjunction
and disjunction are immediate. For quantifications, suppose M1 |= ∀y.C and suppose
M1 M2 is witnessed by N, i.e.: M1[u : N] ⇓ M0 and M2

def= M0/u, as well as M1,2
coincide at x̃. Let M2[y : P] ⇓M′

2 and M1[y : P] ⇓M′
1. By assumption we have

M′
1 |= C. (D.6)

Since y is not in N and P does not alter any parts of the model (note P does not contain
neither writes nor applications) we obtain:

M′
1[u : N] ⇓M′′

2 s.t. M′′
2/u = M′

2. (D.7)

Note M′
1,2 coincide at x̃. By (D.6) and induction hypothesis, we obtain M′

2 |= C, as
required. The existential quantification is similarly reasoned, hence done. ut

Remark. Semantically speaking, the statelessness of C except w̃ may be characterised
by the following axiom: ∀m.({C}m• (){T}@w̃ ⊃ {C}m• (){C}@w̃).

Lemma 19.

1. (narrowing) M |= C and l 6∈ fl(C) imply (νl)M |= C
2. (scope opening) ((νl)M)[u :N]≡ (νl)(M[u :N]) with l 6∈ fl(N).

Proof. By definition. ut

Lemma 20. (expose) If we have

1. |= {C}M :u {ν#x.C′},

2. M
def
= (νl̃)(ξ, σ) and M |= C and

3. M[u : M] ⇓M′,

then we have M′ ≈ (νl̃ l̃′l′′)(ξ · u : V, σ′) such that (νl̃ l̃′)(ξ · u : V · x : l′′, σ′) |= C and
l′′ 6∈ lc(ξ,σ′).

Proof. We first expand {C}M :u {ν#x.C′} into:

{C}M :u {∃x.(x# i ∧ C′)} (D.8)

with i fresh. Now assume M |= C as well as M[u : M] ⇓ M′, so that we have M′ |=
∃x.(x# i ∧ C′). Let M′ def= (νl̃ l̃′)(ξ, σ′). By the semantics of ∃, we have two cases.

(νl̃ l̃′)(ξ · x : l′′, σ) |= (x# i ∧ C′) (D.9)

such that either
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(A) l 6∈ {l̃′} (i.e. l′′ exists from the prestate) or
(B) l ∈ {l̃′} (i.e. l′′ is newly created).

We show (A) is impossible. Suppose by contradiction (A) is the case. Noting i is in M,
let Ml′′ be the result of assigning l′′ to i in M (otherwise leaving all data as in M). Since
i does not occur in C, we still have:

Ml′′ |= C (D.10)

Hence we have
M[u : M] ⇓M′

l′′ |= ∃x.(x# i ∧ C′). (D.11)

where M′
l′′ is the result of assigning l′′ to i in M′, otherwise as M′ (note this is possible

since i is fresh). This immediately means (A) is impossible. Since this holds for each
free label in M, we conclude only (B) is the possibility. So we let:

M′ def= (νll̃′)(ξ ·u : V · x : l′′, σ ·σ′) (D.12)

such that
(νl̃ l̃′)(ξ ·u : V · x : l′′, σ) |= x# i ∧ C′. (D.13)

and dom(σ′) = {ll̃′}. We now show l′′ is not accessible from ξ and σ. Suppose l′′ is
reachable from say y ∈ dom(ξ). Then we take My which is the result of assigning the
image of y to i. By the same argument as before, we obtain:

My[u : M] ⇓M′
y |= ∃x.(x# i ∧ C′). (D.14)

Hence (νl̃ l̃′)(ξy · u : V · x : l′′, σ) |= x# i ∧ C′ where ξy comes from My, which is
impossible. Since the same argument holds for any hidden l′′ mapped to x and any
variable/label in dom(ξ∪σ), we conclude l′′ is unreachable from any prestate datum.

ut

D.2 Proof of Proposition 11

Suppose M |= {x# f yw∧C} f •y= z{C′}@w. The definition of the evaluation formula
says, with u fresh,

∀N,(M[u : N] ⇓M0∧M0 |= x# f yw∧C ⊃ ∃M′.(M0[z : f y] ⇓M′∧M′ |= C′)).

We prove such M′ always satisfies M′ |= x#zw. Assume

M0 ≈ (ν~l)(ξ,σ0]σx)

with ξ(x) = l, ξ(y) = Vy, ξ( f ) = Vf and ξ(w) = lw such that

lc(fl(Vf ,Vy, lw),σ0]σx) = fl(σ0) = dom(σ0)

and lx ∈ dom(σx). By this partition, during evaluation of z : f y, σx is unchanged, i.e.

(ν~l)(ξ · z : f y,σ0]σx)→→ (ν~l)(ξ · z : VfVy,σ0]σx)→→ (ν~l′)(ξ · z : Vz,σ
′
0]σx)

Then obviously there exists σ1 such that σ1 ⊂ σ′0 and

lc(fl(Vz, lw),σ′0]σx) = fl(σ1) = dom(σ1)

Hence by Proposition 4, we have M0 |= x#wz, completing the proof. ut
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D.3 Proof of Propositions 14

Proof. We first set:

G ≡ ν#x.G0 (D.15)
G0 ≡ C0∧G1∧G2 (D.16)
G1 ≡ ∀y.{C0∧ [!x̃]C}u• y=z{C′}@xw̃ (D.17)
G2 ≡ ∀y.{C0∧ x̃#yr̃w̃}u• y=z{C0∧ x̃#zw̃}@w̃x̃ (D.18)

By Proposition 11, it is suffice to assume G2. W.o.l.g. we assume all vectors are unary,
setting r̃ = r, w̃ = w and x̃ = x. Since the argument does not differ, we also set E def= T.
Also we set the existential quantification is empty, setting g̃ = /0 (see the end of the
proof).

Thus we are to prove, for each M and M:

M0[u : M] ⇓M |= G ⊃ M0[u : M] ⇓M |= G1∧G2 (D.19)

By Lemma 20 we can set6

M = (νll̃′)(ξ,σ · [l 7→V ]) |= G (D.20)

such that
M∗ = (νl̃′)(ξ · [x : l],σ · [l 7→V ]) |= C0∧G1∧G2 (D.21)

as well as
l 6∈ fl(ξ,σ). (D.22)

Now assume, for an appropriately typed N and fresh f :

M∗[ f : N] ⇓Ma (D.23)

Then we have
M∗[ f : N] ⇓M∗

a such that (νl)M∗
a = Ma. (D.24)

We now infer M∗
a |= C0 from M∗ |= G2 and C0 being stateless except x. By (D.21) and

by the satisfaction of conjunction, we obtain M∗ |= G2, i.e.

M∗ |= ∀y.{C0∧ x#yrw}u• y = z{C0∧ x#zw}@wx (D.25)

Observe
M∗ |= C0 ∧ x#yrw (D.26)

Hence taking N to be uV (an application of u to V , whose shape is fixed by the assumed
type, i.e. the base type or its composite) for any appropriately typed V (which, by the
definition of N, cannot contain l), we have, by (D.25):

M∗
a |= C0 ∧ x#yrw. (D.27)

6 For simplicity we assume only l is newly added: the general case does not change the argument.
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Note the condition that C0 holds and that x is disjoint from all visible data is still in-
variant in the resulting state. Hence we can again invoke u from Ma to obtain the same
invariant.

In fact, for any appropriate N such that M[ f : N] makes sense, it can only touch x
through invoking u. Moreover by assumption we know C0 stateless except x so that,
by Lemma 18, no state change other than x can change the satisfiability of C0. Thus,
in M∗[ f : N], as far as zero or more invocations of u results in the above invariant, C0
continues to hold, that is:

M∗
a |= C (D.28)

By the previous argument we know x (or its denotation, l) is disjoint from the other
visible references. That is, noting x 6∈ fv(C), for each active dereference !y, we have
y 6= x, hence we have:

M∗
a |= [!x]C (D.29)

Thus we have
M∗

a |= C0 ∧ [!x]C (D.30)

Hence we know:
M∗

a[z : uy] ⇓M∗
b |= C′ (D.31)

Since x is not used in C′, we conclude, setting Mb
def= (νl)M∗

b:

Ma[z : uy] ⇓Mb |= C′ (D.32)

with the write set xw̃. Thus we have

M |= ν#x.{C}u• y = z{C′}@wx (D.33)

Since x in (D.32) denotes the fresh l, this writing (if any) does not count if we start from
Ma, hence we obtain:

M |= {C}u• y = z{C′}@w (D.34)

which is the required assertion.
For the case of g̃ is non-empty, we only have to add the assignment of values to g̃

guaranteed by their existential quantification, hence done. ut

E Derivations for Examples in Section 5

This appendix lists the derivations omitted in Section 5.
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E.1 Derivation for [LetRef]

We can derive [LetRef] as follows. Below i is fresh.

1. {C} M :m {C0} (premise)

2. {C0[!x/m]∧ x# ẽ} N :u {C′} with x /∈ fpn(ẽ) (premise)

3. {C} ref(M) :x {νy.(C0[!x/m]∧ x# i∧ x = y)} (1,Ref)

4. {C} ref(M) :x {νy.(C0[!x/m]∧ x# ẽ∧ x = y)} (Subs n-times)

5. {C0[!x/m]∧ x# ẽ∧ x = y} N :u {C′∧ x = y} (2, Invariance)

6. {C} let x = ref(M) in N :u {νy.(C′∧ x = y)} (4,5,LetOpen)

7. {C} let x = ref(M) in N :u {νx.C′} (Conseq)

The last line uses a standard logical law (discussed below). Lines 4 and 6 use the
following derived/admissible proof rules:

[Subs] {C} M :u {C′} u 6∈ fpn(e)
{C[e/i]} M :u {C′[e/i]} [LetOpen] {C} M :x {νỹ.C0} {C0} N :u {C′}

{C} let x = M in N :u {νỹ.C′}
[LetOpen] opens the “scope” of ỹ to N. The crucial step is Line 5, which turns stronger
“#” into “ν” (by definition), using the consequence rule.

E.2 Derivation for IncUnShared

For illustration, we contrast the inference of IncShared with:

IncUnShared
def= a :=Inc;b :=Inc;c1 :=(!a)();c2 :=(!b)();(!c1+!c2)

This program assigns to a and b two separate instances of Inc. This lack of sharing
between a and b in IncUnShared is captured by the following derivation:

1.{T} Inc :m {νx.inc′(u,x,0)}

2.{T} a := Inc {νx.inc′(!a,x,0)}

3.{inc′(!a,x,0)} b := Inc {νy.inc′′(0,0)}

4.{inc′′(0,0)} c1 := (!a)() {inc′′(1,0)∧!c1 = 1}

5.{inc′′(1,0)} c2 := (!b)() {inc′′(1,1)∧!c2 = 1}

6.{!c1 = 1∧!c2 = 1} (!c1)+(!c2) :u {u = 2}

7.{T} IncUnShared :u {νxy.u = 2}

8.{T} IncUnShared :u {u = 2}

Above inc′′(n,m) = inc′(!a,x,n)∧ inc′(!b,y,m)∧ x 6= y. Note x 6= y is guaranteed by
[LetRef]. This is in contrast to the derivation for IncShared, where, in Line 3, x is
automatically shared after “b :=!a” which leads to scope extrusion.
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E.3 Derivation for mutualParity and safeEven

Let us define:

Mx
def= λn.if y = 0 then f else not((!y)(n−1))

My
def= λn.if y = 0 then t else not((!x)(n−1))

We also use:

IsOdd′(u,gh,n,xy) = IsOdd(u,gh,n,xy)∧ !x = g ∧ !y = h
IsEven′(u,gh,n,xy) = IsEven(u,gh,n,xy)∧ !x = g ∧ !y = h

We use the following derived rules and one standard structure rule appeared in [20].

[Simple] −
{C[e/u]}e :u {C}

[IfH] {C∧ e}M1 :u {C′} {C∧¬e}M2 :u {C′}
{C}if e then M1 else M2 :u {C′}

[∧-Post] {C}M :u {C1} {C}M :u {C2}
{C}M :u {C1∧C2}

Figure 3 lists the derivation for MutualParity. In Line 4, h in the evaluation formula
can be replaced by !y and vice versa because of !y = h and the universal quatification
of h.

∀h.(!y = h∧{C}h•n = z{C′}) ≡ ∀h.(!y = h∧{C}(!y)•n = z{C′})

In Line 5, we use the following axiom for the evaluation formula from [20]:

{C∧A} e1 • e2 = z{C′} ≡ A ⊃ {C}e1 • e2 = z{C′}

where A is stateless and we set A = IsEven(h,gh,n−1,xy). Line 9 is derived as Line 4
by replacing h and g by !y and !x, respectively. Line 11 is the standard logical implica-
tion (∀x.(C1 ⊃C2)⊃ (∃x.C1 ⊃ ∃x.C2)). Now we derive for safeEven. Let us define:

ValEven(u) = ∀n.{T}u•n=z{z = Even(n)}@ /0

C0 = !x = g ∧ !y = h ∧ IsOdd(g,gh,n,xy) ∧ x# i ∧ y# j
Evena = C0 ∧ ∀n.{C0}u•n=z{C0}@xy
Evenb = ∀n.{C0}u•n=z{z=Even(n)}@xy

The derivation is given as follows.

1.{T}λn.t :m {T}@ /0

2.{T}mutualParity ; !y :u {∃gh.IsOddEven(gh,gu,xy,n)}@xy

3.{T}mutualParity ; !y :u {∃gh.(Evena ∧ Evenb)}@xy

4.{xy# i j}mutualParity ; !y :u {∃gh.(xy# i j ∧ Evena ∧ Evenb)}@xy

5.{T}safeEven :u {νxy.∃gh.(xy# i j ∧ Evena ∧ Evenb)}@ /0

6.{T}m•()=u{νxy∃gh.(xy# i j ∧ Evena∧Evenb)} ⊃ {T}m•()=u{ValEven(u)} (by (AIH))

7.{T}safeEven :u {ValEven(u)}@ /0
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Fig. 3 mutualParity derivations

1. {(n ≥ 1 ⊃ IsEven′(!y,gh,n−1,xy)) ∧ n = 0} f :z {z = Odd(n) ∧ !x = g ∧ !y = h}@ /0
(Const)

2. {(n ≥ 1 ⊃ IsEven′(!y,gh,n−1,xy)) ∧ n ≥ 1}
not((!y)(n−1)) :z {z = Odd(n) ∧ !x = g ∧ !y = h}@ /0 (Simple, App)

3. {n ≥ 1 ⊃ IsEven′(!y,gh,n−1,xy)}
if n = 0 then f else not((!y)(n−1)) :m {z = Odd(n) ∧ !x = g ∧ !y = h}@ /0 (IfH)

4. {T} λn.if n = 0 then f else not((!y)(n−1)) :u
{ ∀gh,n ≥ 1.{IsEven′(h,gh,n−1,xy)}u•n=z{z = Odd(n) ∧ !x = g ∧ !y = h}@ /0}@ /0

(Abs, ∀, Conseq)

5. {T} Mx :u { ∀gh,n ≥ 1.(IsEven(h,gh,n−1,xy)⊃ IsOdd(u,gh,n,xy))}@ /0 (Conseq)

6. {T} x := Mx{ ∀gh,n ≥ 1.(IsEven(h,gh,n−1,xy)⊃ IsOdd(!x,gh,n,xy)) ∧ !x = g}@x
(Assign)

7. {T} y := My{ ∀gh,n ≥ 1.(IsOdd(g,gh,n−1,xy)⊃ IsEven(!y,gh,n,xy)) ∧ !y = h}@y

8. {T} mutualParity
{∀gh.n ≥ 1.((IsEven(h,gh,n−1,xy)∧ IsOdd(g,gh,n−1,xy))⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h) }@xy (∧-Post)

9. {T} mutualParity
{∀n ≥ 1gh.((IsEven(h,gh,n−1,xy)∧ IsOdd(g,gh,n−1,xy)∧!x = g∧!y = h)⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

10. {T} mutualParity
{∀n ≥ 1gh.((IsEven(!y,gh,n−1,xy)∧ IsOdd(!x,gh,n−1,xy)∧!x = g∧!y = h)⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

11. {T} mutualParity
{∀n ≥ 1.(∃gh.(IsEven(!x,gh,n−1,xy)∧ IsOdd(!y,gh,n−1,xy)∧!x = g∧!y = h)⊃
∃gh.(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

12. {T} mutualParity{∃gh.IsOddEven(gh, !x!y,xy,n)}@xy

E.4 Derivation for profile

We derive:

{∀y.{C} f • y = z{C′}@w̃} profile :u {∀y.{C}u• y = z{C′}@w̃} (E.1)

which says: if f satisfies the specification ∀y.{C} f • y = z{C′} and moreover if it is
total, then profile satisfies the same specification. First we derive:

E = ∀y.{C} f • y = z{C′}@w̃
⊃ E0 = ∀yi.{C ∧ x# i} f • y=z{C′}@w̃x Axiom (e8) in [20]
⊃ E1 = ∀yi.{C ∧ x# i} f • y = z{x#zw̃i}@w̃x Proposition 11
⊃ E2 = ∀yi.{C ∧ x# i} f • y = z{C′ ∧ x# i}@w̃x Axiom (e8) in [20]
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We also let E3 = ∀yi 6= x.{[!x]C ∧ x# i} f •y = z{C′ ∧ x# i}@w̃x. The inference follows.

1.{T}x :=!x+1{T}@x (Assign)

2.{[!x]C∧E ∧ x# i∧ x 6= y} x :=!x+1 {C∧E ∧ x# i∧ x 6= y}@x (Inv-# , Conseq)

3.{C∧E ∧ x# i∧ x 6= y} f y :z {C′∧ x# i∧ x 6= y}@w̃x (App, Conseq)

4.{[!x]C∧E ∧ x# i∧ x 6= y}x := x+1; f y :z {C′∧ x# i∧ x 6= y}@xw̃ (2, 3, Seq)

5.{E} λy.(x := x+1; f y) :u {E2}@ /0 (4, Abs, Inv)

6.{E} λy.(x := x+1; f y) :u {Inv(u,x# i, x̃)}@ /0 (Abs, Inv)

7.{E}profile{νx.(Inv(u,x# i, x̃) ∧ E3)}@ /0 (LetRef)

8.{E}m• () = u{νx.(Inv(u,x# i, x̃) ∧ E3)} ⊃ {E}m• () = u{E} (?)

9.{E}profile :u {E}@ /0 (7,8,ConsEval)

Above Line 2 uses: for any C,x we have [!x][!x]C ≡ [!x]C. Also by [!x]E ≡ E and by
[!x]x# i ≡ x# i (by Proposition 7 (3)-5), [Inv] becomes applicable. Line 6 is inferred by
Proposition 14.

E.5 Derivation for Meyer-Sieber

For the derivation of (5.8) we use:

E = ∀ f .({T} f • (){T}@ /0 ⊃ {C}g• f{C′})

We use the following [LetRef] which is derived by [Ref] where C′ is replaced by [!x]C′.

[LetRef]
{C} M :m {C0} {[!x]C0∧!x = m∧ x# ẽ} N :u {C′} x /∈ fpn(ẽ)

{C} let x = ref(M) in N :u {νx.C′}

The derivation follows. Below M1,2 is the body of the first/second lets, respectively.

1.{Even(!x)∧ [!x]C′} if even(!x) then () else Ω() {[!x]C′}@ /0 (If)

2.{[!x]C} g f {[!x]C′} (cf. § 5.5)

3.{Even(!x)∧ [!x]C} g f {Even(!x)∧ [!x]C′} (2, Inv)

4.{E ∧ [!x]C∧Even(!x)∧ x#gi}let f = ... in (g f ; ...){[!x]C′∧ x# i} (3, Seq, Let)

5.{E ∧C} MeyerSieber {νx.([!x]C′∧ x# i)} (4, LetRef)

6.{E ∧C} MeyerSieber {C′} (9, Prop. 15)
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E.6 Derivation for Object

We need the following generalisation. The procedure u in (AIH) is of a function type
α ⇒ β: when values of other types such as α×β or α + β are returned, we can make
use of a generalisation. For simplicity we restrict our attention to the case when types
do not contain recursive or reference types.

Inv(uα×β,C0, x̃)=∧i=1,2Inv(πi(u),C0, x̃)

Inv(uα+β,C0, x̃)=∧i=1,2∀yi.(u = inji(yi)⊃ Inv(yi,C0, x̃))
Inv(uα,C0, x̃)=T (α ∈ {Unit,Nat,Bool})

Using this extension, we can generalise (AIH) so that the cancelling of C0 is possible for
all components of u. For example, if u is a pair of functions, those two functions need
to satisfy the same condition as in (AIH). This is what we shall use for cellGen. We
call the resulting generalised axiom (AIHc).

Let cell be the internal λ-abstraction of cellGen. First, it is easy to obtain:

{T} cell :o {I0 ∧ G1 ∧ G2 ∧ E ′} (E.2)

where, with I0 =!x0 =!x1 and E ′ =!x0 = z.

G1 = {I0}π1(o)• () = v{v =!x0∧ I0}@ /0

G2 = ∀w.{I0}π1(o)•w{!x0 = w∧ I0}@x0x1

which will become, after taking off the invariant I0:

G′
1 = {T}π1(o)• () = v{v =!x1}@ /0

G′
2 = ∀w.{T}π1(o)•w{!x0 = w}@x0.

Note I0 is stateless except for x0. In G1, notice the empty write set means !x1 does not
change from the pre to the postcondition. We now present the inference. Below we set
cell′

def= let y = ref(0) in cell and i,k fresh.

1.{T} cell :o {I0∧G1∧G2∧E ′}

2.{T} cell′ :o {I0∧G1∧G2∧E ′} (LetRef)

3.{T}let x1 = z incell′ :o {νx1.(x1 # i∧I0∧G1∧G2)∧E ′} (LetRef)

4.{T} let x1 = z in cell′ :o {G′
1∧G′

2∧E ′} (AIHc, ConsEval)

5.{T} let x0,1 = z in cell′ :o {νx.( x#k∧G′
1∧G′

2∧E ′ )} (LetRef)

6.{T} cellGen :u {CellGen(u)} . (Abs)
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