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Abstract. We introduce an extension of Hoare logic for call-by-value higher-
order functions with ML-like local reference generation. Local references may
be generated dynamically and exported outside their scope, may store higher-
order functions, and may be used to construct complex mutable data structures.
This primitive can be fully captured by a predicate which asserts reachability of
a reference name from a possibly higher-order datum. The logic enjoys a strong
match with the semantics of programs, in the sense that valid assertions char-
acterise the standard contextual congruence. We explore the logic’s descriptive
and reasoning power with non-trivial programming examples combining higher-
order procedures and dynamically generated local state. Axioms for reachability
and local invariant play a central role for reasoning about the examples.

1 Introduction

Reference Generation in Higher-Order Programming. This paper proposes an ex-
tension of Hoare Logic [15] for call-by-value higher-order functions with ML-like new
reference generation [3, 4], and demonstrates its use through non-trivial reasoning ex-
amples. The new reference generation, theref-construct in ML, is a highly expressive
programming primitive. The first and central significance of this construct is that it
induces a local state by generating a fresh reference inaccessible from the outside. Con-
sider the following program:

Inc
def= let x = ref(0) in λ().(x :=!x+1; !x) (1.1)

We use the standard notation [38]: in particular, “ref(M)” returns a fresh reference
whose content is the value to whichM evaluates. “!x” is the dereferencing of an im-
perative variablex. “;” is a sequential composition. In (1.1), a reference with content
0 is newly created and is never exported to the outside, so that it is hidden from the
outside (i.e. it can never be directly read/written from the outside). When the anony-
mous function inInc is invoked, it increments the content of a local variablex, and
returns the new content. From an outside observer, the procedure returns a different re-
sult at each call, whose source is hidden from external observers. This is different from
λ().(x :=!x+1; !x) wherex is globally accessible.

Second, local references thus generated may be exported outside of its original
scope and shared, contributing to expressibility of significant imperative idioms. The
next example shows how stored procedures interact with new reference generation and
its sharing. We consider the following program from [42, § 6]:
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1 a := Inc ; (* ! x = 0 *)
2 b := ! a; (* ! x = 0 *)
3 z1 := (! a)(); (* ! x = 1 *)
4 z2 := (! b)(); (* ! x = 2 *)
5 (! z1 )+(! z2 )

This program, which we hereafter callIncShared, first assigns, in Line 1 (l .1), the
programInc to a; then, in l .2, assigns the content ofa to b; and invokes, inl .3, the
content ofa; then does the same for that ofb in l .4; and finally inl .5 adds up the two
numbers returned from these two invocations. By tracing the reduction of this program,
we can check that if the initial value ofx is 0 (at l .1 and l .2), then the return value
of this program is 3. To specify and understand the behaviour ofIncShared, it is es-
sential to capture the sharing ofx between two procedures assigned toa andb, whose
scope is originally (atl .1) restricted to !a but gets (atl .2) extruded to and shared by !b.
Controlling sharing by combining scope extrusion and local reference also allows us to
write concise algorithms that dynamically manipulate mutable data structures such as
linked lists and graphs which may possibly store higher-order values [38]. Difficulties
in formal reasoning about shared (possibly higher-order) local store, both axiomatic and
otherwise, have been well-known since [16, 30, 32].

Thirdly, and related to the previous two points, local references can be used for effi-
cient implementation of highly regular observable behaviour, for example purely func-
tional behaviour, through information hiding. The following program is a simplification
of the standard memoised function, taken from [42, § 1].

memFact
def= let a = ref(0), b = ref(1) in

λx.if x =!a then !b else (a := x; b := fact(x) ; !b)

Above fact is the standard factorial function. The program shows a simple case of
memoisation whenmemFact is called with a stored argument ina, it immediately re-
turns the stored return value !b. If the argument differs from the stored argument, it
calculates the factorialf x, and stores the new pair. The reason whymemFact behaves
indistinguishably from the pure factorial is tantamount to the followinglocal invariant
property[42].

Throughout all possible invocations of this procedure, the content of b is the
factorial of the content of a.

Such local invariants capture one of the basic patterns in programming with local state,
and play a key role in the preceding studies on operational reasoning of program equiva-
lence with local state [22, 40, 42, 46]. Can we distill this principle axiomatically and use
it for effectively validating properties of higher-order programs with local state, such as
memFact?

As a further example of local invariant, but this time involving a higher-order store,
the following is yet another implementation of the factorial function using local state.
We start from the following program which realises a recursion by circular references
[24]:

circFact
def= x := λz.if z= 0 then 1 else z× (!x)(z−1)
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This program calculates the factorial ofn. But sincex is free incircFact, if a program
reads fromx and stores it in another variable, sayy, assigns a diverging function tox,
and feeds the content ofy with 3, then the program diverges rather than returning 6.
With local reference, we can hidex to avoid unexpected interference.

safeFact
def= let x = ref(λy.y) in (circFact; !x)

(aboveλy.y can be any initialising value). The program evaluates to a function which
also calculates the factorial: butx is now invisible and inaccessible from the outside,
so thatsafeFact behaves as the pure factorial function. In this case, the invariant says
that x always stores the factorial — but notice the reason this stored procedure can
calculate the factorial is precisely becausex stores this very behaviour. We shall show a
general reasoning principle for local invariants which can verify properties of these two
and many other examples [22, 26, 27, 30, 40, 42], including mutually recursive multiple
stored functions.

Program Logic for Imperative Higher-Order Functions. Starting from their ori-
gins in theλ-calculus, typed higher-order functional programming languages such as
Haskell and ML, has been extensively studied, making them an ideal target for formal
validation of programs’ properties on a rigorous semantic basis. Further, given expres-
sive power of imperative higher-order functions (attested by encodability of objects
[10, 38, 39] and of low-level idioms [1]), a study of logics for these languages may have
wide repercussions on logics of programming languages in general.

These languages combine higher-order functions and imperative features including
new reference generation. Extending Hoare logic to these languages leads to technical
difficulties due to their three fundamental features:

• Higher-order functions, including stored ones.

• General forms of aliasing induced by nested reference types.

• Dynamically generated local references and scope exclusion.

In our preceding studies, we presented Hoare logics for the core parts of ML which
capture the first two features [6, 18, 20, 21]. On the basis of these works, the present
work introduces an extension of Hoare logic for ML-like local reference generation.
As noted above, this construct radically enriches programs’ behaviour, and has defied
its clean axiomatic treatment so far. A central challenge is to identify a simple but
expressive logical primitive, equipped with proof rules (for Hoare triples) and axioms
(for assertions), enabling tractable assertions and verification.

The program logic proposed in the present paper introduces a predicate representing
(un)reachability of a reference from an arbitrary datum in order to capture new reference
generation. Since we are working with higher-order programs, a datum and a reference
may as well be, or store, a higher-order function. We shall show that this predicate is
fully axiomatisable using (in)equality when it only involves first-order data types (the
result is closely related with known axiomatisations of reachability [35]). However we
shall also show that the predicate becomes undecidable in itself when higher-order types
are involved, indicating its inherent intractability.
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A good news is, however, this predicate enables us to obtain a simple compositional
proof rule for new reference generation, preserving all the proof rules for the remaining
constructs from our foregoing program logics. At the level of assertions, we can find a
set of useful axioms for (un)reachability, which are effectively combined with logical
primitives and associated axioms for higher-order functions and aliasing, which were
studied in our preceding works [6, 21]. These axioms for reachability are closely related
with reasoning principles studied in existing semantic studies on local state, such as the
principle of local invariant. Some of the non-trivial reasoning examples are presented
in later sections, which include those involving local invariants and those involving
higher-order mutable data structures with circular pointers.

Outline. Section 2 presents the programming language, the assertion language and
proof rules. Section 3 outlines the semantics of the logic and its properties. Section
4 explores axioms of the assertion language. Sections 5 and 6 discuss the use of the
logic through non-trivial reasoning examples. Section 7 gives comparisons with related
works and concludes with further topics. Appendix lists auxiliary definitions and omit-
ted derivations.

2 Assertions for Local State

2.1 A Programming Language

As our target programming language, we use call-by-value PCF with unit, sums and
products, augmented with imperative constructs. Letx,y, . . . range over an infinite set
of variables, andX,Y, . . . over an infinite set of type variables. Then types, values and
programs are given by the following grammar.

α,β ::= Unit | Bool | Nat | α⇒β | α×β | α+β | Ref(α) | X | µX.α

V,W ::= c | xα | λxα.M | µ fα⇒β.λyα.M | 〈V,W〉 | injα+β
i (V)

M,N ::= V | MN | M := N | ref(M) | !M

| op(M̃) | πi(M) | 〈M,N〉 | injα+β
i (M)

| if M then M1 else M2 | case M of {ini(x
αi
i ).Mi}i∈{1,2}

We use the standard notations [38]. We use constantsc (unit (), booleanst, f, numbers
n and locationsl , l ′, ...) and fist-order operationsop (+,−,×, =, ¬, ∧, . . .). Locations
only appear at runtime when references are generated.M̃ etc. denotes a vector andε the
empty vector. A program isclosedif it has no free variables. We freely use shorthands
like M;N, λ().M, andlet x= M in N. Typing is standard: we take the equi-isomorphic
approach [38] for recursive types.Nat, Bool andUnit atomic types. We leave illustration
of each construct to standard textbooks [38], except for the focus of the present study,
the reference generationref(M), which behaves as: firstM of typeα is evaluated and
becomes a valueV; then afresh reference of typeRef(α) with initial contentV is
generated. This behaviour is formalised by the following reduction rule:

(ref(V), σ)−→ (ν l)(l , σ] [l 7→V]) (l fresh)
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Above σ is a store, a finite map from locations to closed values, denoting the initial
state; whereasσ] [l 7→V] is the result of disjointly adding a pair(l ,V) to σ. The result-
ing configuration uses a binder (the use of theν-binding simplifies the correspondence
with models discussed in §3). Its general form is(ν l̃)(M,σ) wherel̃ is a vector of dis-
tinct locations occurring inσ (the order is irrelevant). We write(M,σ) for (ν ε)(M,σ).
The one-step reduction−→ over configurations is defined using the standard rules [38]
except for the above rule and for closing it underν-bindings. The full rules are listed in
Appendix A.1.

A basisΓ;∆ is a pair of finite maps, one from variables to non-reference types
(Γ,Γ′, . . .), the other from locations and variables to reference types (∆,∆′, . . .). Θ,Θ′, ...
combine two kinds of bases. The typing rules are standard [38], which is left to Ap-
pendix A.2. The sequent has the formΓ;∆ ` M : α which reads:M has typeα under
Γ;∆. We omitΓ or ∆ if it is empty. A storeσ is typed under∆, written∆ ` σ, when, for
eachl in its domain,σ(l) is a closed value which is typedα under∆, where we assume
∆(l) = Ref(α). A configuration(M,σ) is well-typedif for someΓ;∆ andα we have
Γ;∆ ` M : α and∆ ` σ. The standard type safety holds for well-typed configurations.
Henceforth we only consider well-typed programs and configurations.

2.2 A Logical Language

The logical language we shall use is that of standard first-order logic with equality [29,
§ 2.8], extended with assertions for evaluation [20, 21] (for imperative higher-order
functions) and quantifications over store content [6] (for aliasing). On this basis we add
a binary predicate which asserts reachability of a reference name from a datum and its
dual. The grammar follows, letting? ∈ {∧,∨,⊃} andQ ∈ {∀,∃}.

e ::= x | c | op(ẽ) | 〈e,e′〉 | πi(e) | inji(e) | !e

C ::= e= e′ | ¬C |C?C′ | Qx.C | QX.C

| {C} e•e′ = x {C′} | [!e]C | 〈!e〉C | e ↪→ e′ | e#e′

The first set of expressions (e,e′, . . .) aretermswhile the second setformulae(A,B,C,C′ . . .).
Terms include variables, constantsc (unit (), numbersn, booleanst, f and locations
l , l ′, ...), pairing, projection, injection and standard first-order operations. !edenotes the
dereference of a referencee.

Formulae include the standard logical connectives and quantification [29]. Quanti-
fied reference variables, e.g.x in ∀xRef(α).C, range over both free and hidden locations
(for the alternative formulation, see Appendix C.3). We include, following [6, 20], quan-
tifications over type variables (X,Y, . . .). We also use truthT (definable as 1= 1) and
falsity F (which is¬T). x 6= y stands for¬(x = y).

The remaining formulae are those specifically introduced for describing program
behaviour. Their use will be illustrated using concrete examples soon: here we infor-
mally outline their ideas.{C} e•e′ = x {C′} is calledevaluation formula, introduced in
[21], which intuitively says:If we apply a function e to an argument e′ starting from an
initial state satisfying C, then it terminates with a resulting value (name it x) and a final
state together satisfying C′.
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[!e]C and〈!e〉C areuniversal/existential content quantifications, introduced in [6]
for treating general aliasing.[!e]C (with e of a reference type) says:Whatever value
we may store in a reference denoted by e, the assertion C is valid.〈!e〉C is interpreted
dually.

Finally, e1 ↪→ e2 (with e2 of a reference type), calledreachability predicate, plays
an essential role in the present logic. It says that:We can reach the reference named by
e2 from a datum denoted by e1. As an example, ifx denotes a starting point of a linked
list, x ↪→ y says a referencey occurs in one of the cells reachable fromx. y#x [14, 43]
is the negation ofx ↪→ y, which says:One can never reach a reference y starting from a
datum denoted by x.

Convention. Logical connectives are used with standard precedence/association, using
parentheses as necessary to resolve ambiguities.fv(C) (resp.fl(C)) denotes the set of
free variables (resp. locations) inC. Note thatx in [!x]C and〈!x〉C occurs free, while in
{C} e•e′ = x {C′} it occurs bound with scopeC′. With ẽ= e1..en, we often write !ẽ
for !e1..!en; and [!ẽ]C for [!e1]..[!en]C. C1 ≡C2 stands for(C1 ⊃C2)∧ (C2 ⊃C1). We
write x̃#y for ∧ixi #y; similarly for x#ỹ. We write{C}e1•e2{C′} for {C}e1•e2 = z{z=
()∧C′}with z 6∈ fv(C′). Terms are typed starting from variables. A formula is well-typed
if all occurring terms are well-typed.Hereafter we assume all terms and formulae we
use are well-typed.Type annotations are often omitted in concrete assertions.

2.3 Assertions for Local State

We explain assertions for local state with examples.

1. Considerx := y;y := z;w := 1. After its run, we can reachzby dereferencingy, and
y by dereferencingx. Hencez is reachable fromy, y from x, hencez from x. So the
final state satisfiesx ↪→ y∧y ↪→ z∧x ↪→ z.

2. Next, assumingw is newly generated, we may wish to sayw is unreachablefrom
x, to ensure freshness ofw. For this we assertw#x, which, as noted, stands for
¬(x ↪→ w). x#y always impliesx 6= y. Note thatx ↪→ x≡ x ↪→!x≡ T andx#x≡ F.
But !x ↪→ x may or may not hold (since there may be a cycle betweenx’s content
andx in the presence of recursive types).

3. The assertionx= 6 saysx of typeNat is equal to 6. Assumingx has typeRef(Nat),
!x = 2 meansx stores 2. Then∀i.{!x = i}u• ()=z{!x = z∧!x = i +1} asserts that
the functionu, upon receiving unit(), increments the content ofx and returns it. For
example forλ().(x :=!x+ 1; !x) namedu satisfies it. For a stronger specification,
we may refine this assertion by also specifying which references a program may
write to. The followinglocated assertion[6] is used for this purpose.

inc(u,x) = ∀i.{!x = i}u• () = z{!x = z∧!x = i +1}@x

Above “@x”, called write set, indicates that the evaluation alters at mostx, leav-
ing content of other references unchanged. Intuitively, this formula stands for the
following assertion withr andh fresh.

∀X, rRef(X),hX ,x, i.{!x= i∧ r 6= x∧!r =h}u• ()=z{!x = i +1∧!x = z∧!r =h}

6



The assertion says: “for anyr of any reference type distinct fromx, its contenth
stays invariant after the run,” that is at mostx is modified during the run. The exact
semantic account of located assertions is given in Appendix C.

4. We consider reachability in (higher-order) functions. Assumeλ().(x := 1) is named
fw and λ().!x is namedfr . Since fw can write tox, we have fw ↪→ x. Similarly
fr ↪→ x. Next supposelet x= ref(z) in λ().xhas namefc andz’s type isRef(Nat).
Then fc ↪→ z (for example, consider !( fc()) := 1). Howeverx is not reachable from
λ().((λy.())(λ().x)) since semantically it never touches/usesx.

5. The programλnNat.ref(n), namedu, meets the following specification. Leti be
fresh.

∀X.∀iX .∀nNat.{T}u•n=z{z#i∧ !z= n}@/0

Sincei is universally quantified from the outside, it represents an arbitrary datum
in the initial state. The assertion says a referencez, which is created by applyingu
to n, is disjoint from any suchi, i.e.z is fresh, unreachable from any other datum.

We list convenient abbreviations for evaluation formulae for representing “freshness”.
Below let i be fresh.

• {C}e•e′=z{νx.C′} = ∀X, iX .{C}e•e′=z{∃x.(x 6= i∧C′)}
• {C}e•e′=z{ν#x.C′} = ∀X, iX .{C}e•e′=z{∃x.(x#i∧C′)}
• {C}e•e′=z{#z.C′} = ∀X, iX .{C}e•e′=z{z#i∧C′}

In the first line,νx saysx is distinct from any names in the initial state, giving the
weakest form of freshness (x may be replaced by a vector).z andx are distinct by the
binding condition. In the second, # is used instead of inequality. The third is when the
return value is unreachably fresh. Its use for 5 above yields:

∀n.{T}u•n=z{#z.!z= n}@/0

2.4 Proof Rules

This subsection summarises judgements and proof rules for local reference generation.
The judgement consists of a program and a pair of formulae following Hoare [15],
augmented with a fresh name calledanchor[18, 20, 21].

{C}M :u {C′}

which says:

If we evaluate M in the initial state satisfying C, then it terminates with a value,
name it u, and a final state, which together satisfy C′.

As this reading indicates, our judgements are about total correctness. They have iden-
tical shape as those in [6, 21], even though described computational situations can be
quite different, with bothC andC′ possibly specifying behaviours and data structures
with local state.

The same sequent is used for both validity and provability. If we wish to be specific,
we prefix it with either̀ (for provability) or|= (for validity). Let Γ;∆ be the minimum
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basis ofM. In {C}M :u {C′}, u is theanchorof the judgement, which shouldnot be in
dom(Γ,∆)∪ fv(C); andC is thepre-conditionandC′ is thepost-condition. Theprimary
namesaredom(Γ,∆)∪{u}, while theauxiliary names(ranged over byi, j,k, ...) are
those free names inC andC′ which are not primary. An anchor is used for naming the
value fromM and for specifying its behaviour.

We also use the following abbreviation similar to those with evaluation formulae.
Below let i be fresh.

• {C}M{C′} stands for{C}M :u {u = ()∧C′} with u 6∈ fv(C′).
• {C}M :u{C′}@x̃ intuitively means{C∧y 6= x̃∧!y= i}M :u {C′∧!y= i} with y fresh

(for the exact semantics, see Appendix C.4). ˜x is a write set as for located assertions
(cf. § 2.3)

• {C}M :m {νx.C′} stands for{C}M :m {∃x.(x 6= i∧C′)}.
• {C}M :m {ν#x.C′} stands for{C}M :m {∃x.(x#i∧C′)}.
• {C}M :m {#m.C′} stands for{C}M :m {m#i∧C′}.

The full compositional proof rules are given in Figure 2 in Appendix B. In spite of the
semantic enrichment, all compositional proof rules in the base logic [6] stay as they
were, except for adding the following rule for reference generation.

[Ref]
{C}M :m {C′}

{C} ref(M) :u {#u.C′[!u/m]}

The rule says that the newly generated cell is unreachable from any datum in the initial
state: then the result of evaluatingM is stored in that cell which is namedu. All the
so-called structural rules (i.e. those rules which only manipulate assertions) in [6] also
remain valid except for an additional condition in one rule, see Appendix B.

Invariant rules are useful for modular reasoning. Their use with (un)reachability
needs some care. Supposex is unreachable fromy; after runningy := x, x becomes
reachable fromy. Hence the following simple invariant rule for unreachability is un-
sound.

[UnsoundInv with #]
{C}M :m {C′}

{C∧e#e′}M :m {C′∧e#e′}
However the general invariant rule introduced in our preceding study [6] works in har-
mony with the (un)reachability predicate.

[Inv]
{C}M :m {C′}@w̃ [!w̃]C0 ≡C0

{C∧C0}M :m {C′∧C0}@w̃

The soundness of this rule is established in Appendix C.6. The side condition[!ẽ]C0 ≡
C0 says that the assertionC0 is invariant under any possible contents of the variables in
the write set ofM, thus ensuring that the writing byM does not alterC0. We then have:

[Inv-Val] {C}V :m {C′}
{C∧C0}V :m {C′∧C0}

[Inv-#] {C}M :m {C′}@x no dereference occurs in ˜e
{C∧x#ẽ}M :m {C′∧x#ẽ}@x
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which are direct instances of [Inv] (for the former we observe{C} V :m {C′} implies
{C}V :m {C′}@/0 for anyV; for the latter we note[!x]x#ẽ≡ x#ẽ is always valid under
the side condition,1 cf. Proposition 7, clause 3-(5) later).

Another useful structural rule is the following variation of the standard consequence
rule.

[ConsEval]

{C0}M :m {C′
0} x fresh; ĩ auxiliary

∀ĩ.{C0}x• ()=m{C′
0} ⊃ ∀ĩ.{C}x• ()=m{C′}

{C}M :m {C′}
This rule subsumes the standard consequence rule. In the present logic, the rule further
enables non-trivial reasoning on fresh references, as we shall discuss later.

3 Models and Soundness

3.1 Models

We introduce operationally-based semantics of the logic, based on term models. For
capturing local state, models incorporate hidden locations using aν-binder [33]. We
illustrate the key idea using the Introduction’sInc (in (1.1)). We modelInc namedu
as:

(νl)({u : λ().(l :=!l +1; !l)}, {l 7→ 0}) (3.1)

(3.1) says that there is a behaviour namedu and a reference namedl , that this refer-
ence stores 0, and thatl is hidden. By augmenting (3.1) with freshj mapped to any
location/datum from the initial state (hence disjoint froml ), we may assert:

∃x.(!x = 0 ∧ ∀i.{!x = i}u• ()=z{!x = z∧!x = i +1}@x ∧ x 6= j)

which corresponds to the freshness assertion “νx.C”.

Definition 1. (models) Anopen model of typeΘ = Γ;∆, with ∆ closed, is a tuple(ξ,σ)
where:

– ξ, calledenvironment, is a finite map fromdom(Θ) to closed values such that, for
eachx∈ dom(Γ), ξ(x) is typed asΘ(x) under∆, i.e.∆ ` ξ(x) : Θ(x).

– σ, calledstore, is a finite map from labels to closed values such that for eachl ∈
dom(σ), if ∆(l) has typeRef(α), thenσ(l) has typeα under∆, i.e.∆ ` σ(l) : α.

A modelof typeΓ;∆ is a structure(νl̃)(ξ,σ) with (ξ,σ) being an open model of type
Γ;∆ · ∆′ with dom(∆′) = {l̃}. (νl̃) act as binders, inducing the standardα-equality.
M,M′, . . . range over models.

An open model maps variables and locations to closed values: a model then specifies
part of the locations as “hidden”. An environment also maps type variables to closed
types as needed, whose treatment is left to Appendix C.

1 This side condition is indispensable: consider{T}x := x{T}@x, for which it is wrong to
conclude{x#!x}x := x{x#!x}@x.
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Models in the above sense are very concrete. Since assertions in the present logic
are intended to capture observable behaviour of programs, the semantics of the logic
uses models quotiented by an observationally sound equivalence. Below(νl̃)(M,σ) ⇓
means(νl̃)(M,σ)−→n (νl̃ ′)(V,σ′) for somen.

Definition 2. AssumeMi
def= (νl̃ i)(x̃ : Ṽi ,σi) typable underΓ;∆. Then we writeM1 ≈

M2 if the following clause holds for each closing typed contextC[ · ] which is typable
under∆ and in which no labels from̃l1,2 occur:

(νl̃1)(C[〈Ṽ1〉],σ1) ⇓ iff (νl̃2)(C[〈Ṽ2〉],σ2) ⇓

where〈Ṽ〉 is then-fold pairings of a vector of values.

Definition 2 in effect takes models up to the standard contextual congruence. We could
have used a different program equivalence (for example call-by-valueβη convertibil-
ity), as far as it is observationally adequate. Note we have

(νl̃)(ξ ·x:V1,σ · l 7→W1) ≈ (νl̃)(ξ ·x:V2,σ · l 7→W2)

wheneverV1
∼= V2 andW1

∼= W2, where∼= is the standard contextual congruence on
programs [38] (for reference Appendix C.1 lists the definition of∼=).

3.2 Semantics of Reachability.

Let σ be a store andS⊂ dom(σ). Then thelabel closure of S inσ, writtenncl(S,σ), is
the minimum setS′ of locations such that: (1)S⊂ S′ and (2) If l ∈ S′ thenfl(σ(l))⊂ S′.

Lemma 3. For all σ, we have:

1. S⊂ ncl(S,σ); S1⊂S2 impliesncl(S1,σ)⊂ ncl(S2,σ); andncl(S,σ)= ncl(ncl(S,σ),σ)
2. ncl(S1,σ)∪ncl(S2,σ) = ncl(S1∪S2,σ)
3. S1 ⊂ ncl(S2,σ) and S2 ⊂ ncl(S3,σ), then S1 ⊂ ncl(S3,σ)
4. there existsσ′ ⊂ σ such thatncl(S,σ) = fl(σ′) = dom(σ′).

Proof. (1–4) are direct from the definition. (5, 6) immediately follow from (1–4).ut

We now set:

M |= e1 ↪→ e2 if [[e2]]ξ,σ ∈ ncl(fl([[e1]]ξ,σ),σ) for each(νl̃)(ξ,σ)≈M (3.2)

Above [[ei ]]ξ,σ is the obvious interpretation ofei in the open model (see Appendix C).
The clause says that the set of hereditarily reachable names frome1 includese2 up to
≈. For programs in § 2.3 (4), we can checkfw ↪→ x, fr ↪→ x and fc ↪→ z hold under
fw : λ().(x := 1), fr : λ().!x, fc : let x = ref(z) in λ().x (regardless of the store part).

The following characterisation of # is often useful for justifying axioms for fresh
names. Belowσ = σ1]σ2 indicatesσ is the union ofσ1 andσ2 such thatdom(σ1)∩
dom(σ2) = /0.
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Proposition 4 (partition). M |= x#u if and only if for somẽl, V , l andσ1,2, we have
M≈ (νl̃)(ξ ·u : V ·x : l , σ1]σ2) such thatncl(fl(V),σ1]σ2) = fl(σ1) = dom(σ1) and
l ∈ dom(σ2).

Proof. For the only-if direction, assumeM |= x#u. By the definition of (un)reachability,

we can set (up to≈) M
def= (νl̃ ′)(ξ · u : V · x : l , σ) such thatl 6∈ ncl(fl(V),σ). Now

takeσ1 such thatncl(fl(V),σ) = ncl(fl(V),σ1) = fl(σ1) = dom(σ1) by Lemma 3. Note

by definition l 6∈ dom(σ1). Now let σ2
def= σ\dom(σ1). Sincel ∈ dom(σ), we know

l ∈ dom(σ2), hence done. The if-direction is obvious by definition of reachability.ut

The characterisation says that ifx is unreachable fromu then, up to≈, the store can be
partitioned into one covering all reachable names fromu and another containingx.

3.3 Soundness and observational completeness.

The definitions of satisfiabilityM |= C other than reachability is given in Appendix C
(logical connectives are interpreted classically: type variables are treated syntactically
[20]). Let M be a model(νl̃)(ξ,σ) of typeΓ;∆, andΓ;∆ `M : α with u fresh. Then the
validity |= {C}M :u {C′} is given by:

|= {C}M :u {C′} def≡ ∀M.(M |= C ⇒ M[u:M] ⇓M′ |= C′)

where we writeM[u:N] ⇓M′ when(Nξ,σ) ⇓ (νl̃ ′)(V,σ′) andM′ = (νl̃ l̃ ′)(ξ ·u:V, σ′).
Above we demand, for well-definedness, thatM includes all variables inM, C andC′

exceptu. The soundness result follows.

Theorem 5 (soundness).̀ {C}M :u {C′} implies|= {C}M :u {C′}.

Proof. See Appendix C.5. ut

Another basic property of the logic is that its judgements distinguish programs just as
the observational congruence does (observational completeness [6, 21]). Write∼= for
the standard contextual congruence [38] for the programs; andM1

∼=L M2 : α when we
have|= {C}M1 :u {C′} iff |= {C}M2 :u {C′}.

Theorem 6 (observational completeness).For eachΓ;∆ ` Mi : α (i = 1,2), we have
M1

∼=L M2 iff M1
∼= M2.

Proof. (outline) LetV1 andV2 be closed andV1 6∼= V2. Then there exists an finite canon-
ical form U in the sense of [6, §8.4] (in the language without local state) s.t.UVi ⇓
andUVj ⇑ with i 6= j. This is intuitively because a finite computation needed for con-
vergence can be realised by finitely many “fresh” names: Then we translate away all
“new” constructs to calls to finite reference generators using relatively fresh names.
The rest is precisely as in [21, §6] and [6, §8], translatingU above to a characteristic
formula then to a differentiating assertion. ut
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4 Axioms for Reachability

This section studies axioms for assertions involving (un)reachability. We start from
basic axioms. The proofs use Lemma 3. Note our types include recursive types (taken
up to tree unfolding [38]).

Proposition 7 (axioms for reachability). The following assertions are valid (we as-
sume appropriate typing).

1. (1) x ↪→ x; (2) x ↪→ y∧y ↪→ z ⊃ x ↪→ z;
2. (1) y#xα with α ∈ {Unit,Nat,Bool}; (2) x#y ⇒ x 6= y;

(3) x#w∧w ↪→ u ⊃ x#u.
3. (1) 〈x1,x2〉 ↪→ y ≡ x1 ↪→ y∨x2 ↪→ y;

(2) inji(x) ↪→ y ≡ x ↪→ y; (3) x ↪→ yRef(α) ⊃ x ↪→!y;
(4) xRef(α) ↪→ y∧x 6= y ⊃ !x ↪→ y.
(5) [!x]y ↪→ x ≡ y ↪→ x ≡ 〈!x〉y ↪→ x.

Proof. (1–4) are direct from the definition (e.g. for (2) we observel ∈ fl(inji(V)) iff
l ∈ fl(V)). For (5), supposeM |= y ↪→ x, and takeM′ which only differ fromM in the
stored value at (the reference denoted by)x. SinceM |= y ↪→ x holds, there is a shortest
sequence of connected references fromy to x which, by definition, does not includex as
its intermediate node. Hence this sequence also exists inM′, i.e.M′ |= y ↪→ x, proving
[!x]y ↪→ x ≡ y ↪→ x. This also means〈!x〉[!x]y ↪→ x ≡ 〈!x〉y ↪→ x. By the axiom of
content quantification we have〈!x〉[!x]y ↪→ x ≡ [!x]y ↪→ x, hence done. ut

3-(5) says that altering the content ofx does not affect reachabilityto x. Note[!x]x ↪→ y
is not valid at all. The dual of 3-(5):

[!x]x#y≡ x#y≡ 〈!x〉x#y

was already used for deriving[Inv-#] in §2.4 (we cannot substitute !x for y in [!x]x#y
to avoid name capture, cf. [6, §5.2 (long version)]).

Let us sayα is finite if it does not contains an arrow type or a type variable. We say
e ↪→ e′ is finite if ehas a finite type.

Theorem 8 (elimination). Suppose all reachability predicates in C are finite. Then
there exists C′ such that C≡C′ and no reachability predicate occurs in C′.

Proof. By Proposition 7 (3). ut

A straightforward coinductive extension of the above axioms (see [2]) gives a complete
axiomatisation when the types also contain recursive types, but not function types.

For analysing reachability, it is useful to define the following “one-step” reachability
predicate. Belowe2 is of a reference type.

M |= e1Be2 if [[e2]]ξ,σ ∈ fl([[e1]]ξ,σ) for each(νl̃)(ξ,σ)≈M (4.1)
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We can show(νl̃)(ξ,σ) |= xB l ′ is equivalent tol ′ ∈
T
{fl(V) | V ∼= ξ(x)}, (the latter

saysl ′ is in the support off in the sense of [14, 41, 46]). Now define:

xB1 y ≡ xBy

xBn+1 y ≡ ∃z.(xBz∧ !zBn y) (n≥ 1)

We also setxB0 y ≡ x = y. By definition we have:

Proposition 9. x ↪→ y ≡ ∃n.(xBn y)≡ (x = y∨ xBy∨ ∃z.(xBz∧z 6= y∧z ↪→ y)).

Proposition 9, combined with Theorem 8, suggests if we can clarify one-step reachabil-
ity at function types then we will be able to clarify the reachability relation as a whole.
Unfortunately this relation is inherently intractable.

Proposition 10 (undecidability of B and ↪→). (1) M |= f α⇒βBx is undecidable.(2)
M |= f α⇒β ↪→ x is undecidable.

Proof. For (1), letV
def= λ().if M = () then l else Ref(0) with a closed PCFv-termM

of typeUnit. Then f : V, x : l |= f B x iff M ⇓, reducing the satisfiability to the halting
problem of PCFv-terms. For (2), take the sameV so that the type ofl andx is Ref(Nat)
in which caseB and↪→ coincide. ut

The proof above indicates that the same result holds even if we take call-by-valueβη-
equality as the underlying equality. Further the result also implies that the validity of
∀ f ,x.(A⊃ f B x) is undecidable, since we can represent any PCFv-term as a formula
using the method [19].

Proposition 10 does not imply we cannot obtain useful axioms for (un)reachability
involving function types. We discuss a collection of basic axioms in the following.

Proposition 11 (unreachable function).The following assertion is valid:
{C} f •y=z{C′}@w̃⊃ {C∧x# f yw̃} f •y=z{C′∧x#zw̃}@w̃ .

Proof. See Appendix D. ut

Proposition 11 says that ifx is unreachable from a functionf , its argumenty and its
write setw̃, then the execution of this function does not return or writex.

When we do need to reason about a function with a local state, its behaviour often
crucially relies on a invariant on its local store. Let us first consider a function from
a base type to a base type which writes to local references of a base type. Even pro-
grams of this kind pose fundamental difficulties in reasoning, as show in [30]. Take the
following program:

compHide
def= let x = ref(7) in λy.(y >!x) (4.2)

The program behaves as a pure functionλy.(y> 7). For this purpose it keeps the obvious
local invariant, !x = 7. We demand this assertion to survive under arbitrary invocations
of this function: thus (naming the functionu) we arrive at the following invariant:

C0 = !x = 7 ∧ ∀y.{!x = 7}u•y = z{!x = 7}@/0 (4.3)
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The assertion (4.3) says that: (1) the invariant !x = 7 holds now; and that (2) once the
invariant holds, it continues to hold for ever (notex can never be exported due to the
type ofy andz, so that onlyu will touch x). We then observe:

C1 = ∀y.{!x = 7}u•y = z{z= (y > 7)}@/0 (4.4)

The programcompHide is easily given the following judgement:

{T}compHide :u {ν#x.(C0 ∧ C1)} (4.5)

(for the notationν#x see § 2.4.) Thus, notingC0 is only about the content ofx, we
concludeC0 continues to hold automatically. Hence we cancelC0 together withx:

{T}compHide :u {∀y.{T}u•y = z{z= (y > 7)}} (4.6)

which describes a purely functional behaviour. We now show the underlying reasoning
principle as an axiom. First we introduce a notation for invariant. Below we assumez
andw̃ are fresh and have atomic types (Unit, Bool or Nat) or their products/sums.

InvA(u,C0, x̃, w̃) = C0 ∧ ∀y.{C0}u•y = z{C0}@x̃w̃ (4.7)

InvA(u,C0, x̃, w̃) says: (1)C0 holds now; and (2) wheneverC0 holds then the application
converges and againC0 holds.

Definition 12. (stateless formulae) We sayC is stateless except̃x, iff: (1) each deref-
erence !y for y 6∈ {x̃} occurs either in pre/post conditions of evaluation formulae or
under[!y]/〈!y〉; (2) (un)reachability predicates occur in pre/post conditions of evalua-
tion formulae; and (3) evaluation formulae never occur negatively nor under content
quantifications. We sayC is statelessif it is stateless exceptε (whereε is the empty
string).A,B, . . . range over stateless formulae.

Above a formulaC occursnegativelyif it occurs inC1 of C1 ⊃C2 or in C of ¬C. The
property of stateless formulae is studied in Appendix D.2.

Proposition 13 (axiom for information hiding (1)). Assume C0 is stateless except̃x
and xi 6∈ fv(C,C′,E′) for each xi ∈{x̃}. Then the assertion:

(AIHA) {E}m• ()=u{ν#x̃.(E1∧E′)} ⊃ {E}m• ()=u{E2∧E′}

is valid, where with m fresh and

– E1 = (InvA(u,C0, x̃, w̃) ∧ ∀y.{C0∧ [!x̃]C}u•y=z{C′}@w̃x̃)
– E2 = ∀y.{C}u•y=z{C′}@w̃

Proof. See Appendix D.4. ut

The axiom(AIHA) is used together with [ConsEval] in order to reachE2 from E1 within
the proof derivation. Its validity is proved using Proposition 4. The axiom says:

if a function u with a fresh reference xi is generated, and if it has a local invari-
ant C0 on the content of xi , then we can cancel C0 together with xi .
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We note:

– C0 being stateless except ˜x ensures that satisfiability ofC0 is not affected by state
change except at ˜x (see Appendix D.2 for properties of stateless formulae).

– [!x̃]C says that whetherC holds or does not depend on ˜x: literally it means that for
each content of ˜x we haveC holds.

Coming back tocompHide, we can takeC0 to be !x = 7, w̃ to be the empty string,C
andE′ to beT andC′ to bez= (y > 7).

We now extend the axiom to higher-order functions, after refining the invariant no-
tation.

Inv(u,C0, x̃, r̃, w̃) = C0∧∀y.{C0∧ x̃# r̃y}u•y = z{C0∧ x̃#zw̃}@w̃x̃

where{r̃w̃yz}∩ (fv(C0)∪{x̃}) = /0 and we assumey is of a base type, its product/sum
or its combination.2 This time, sinceu may take an arbitrary higher-order function as
argumenty and return arbitrary higher-order function as resultz, we cannot guarantee
thatx is never exported. Thus we directly demand it, saying:if w̃ is to be written, then
the content ofw̃ and a return value z should never reachx̃, under the unreachability
assumptionx# r̃y (here ˜r indicate those values whose disjointness from ˜x is needed for
the invariant).

Proposition 14 (axiom for information hiding (2)). Let (AIH) be an axiom given by
replacingInvA(u,C0, x̃, w̃) with Inv(u,C0, x̃, r̃, w̃) in Proposition 13. Then(AIH) is valid.

Proof. See Appendix D.4. ut

(AIHA) and (AIH) assume that the invariantC0 only talks about the content ofx. This
does not have to be so. We consider the extension of(AIHA) in this regard:(AIH) is
similarly generalised.

Proposition 15 (axiom for information hiding (3)). Let (AIHA∃) be an axiom given by
replacing, in(AIHA), ν#x̃ with ν#x̃.∃g̃, whereg̃ only occur in C0. Then(AIHA∃) is valid.

Proof. See Appendix D.4. ut

Another simple extension, which we do not discuss here, allows a return value to be a
composite one. Next, the following axiom stipulates how an invariant istransferredby
functional applications.

Proposition 16 (invariant by application). Suppose C0 is stateless exceptx̃. Then the
following is valid.

(Inv( f ,C0, x̃, r̃, w̃) ∧ {T}g• f = z{T}) ⊃ {C0∧ x̃#gr̃}g• f = z{x̃#z∧C0}.

Proof. See Appendix D.5. ut

The axiom says that the result of applying a functiong disjoint from a local reference
xi , to the argumentf which satisfies the local invariant, again keeps the local invariant.

2 The type ofy is not an essential part of this axiom scheme: our current proof is however done
under this restriction.
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5 Reasoning Examples (1): Functions and Local State

5.1 Shared Stored Function

This section demonstrates the usage of the proposed logic through concrete examples.
Some of the lengthy derivations are omitted but key ideas are provided.

We first treatIncShared from Introduction, a simple example of shared local state
with stored functions. We use a proof rule for the combination of “let” and new refer-
ence generation, easily derivable from the proof rules in Section 2 through the standard
decomposition of “let” into application and abstraction (see the derivation in Appendix
E.1).

[LetRef]
{C}M :m {C0} {C0[!x/m]∧x#ẽ} N :u {C′} x /∈ fpn(ẽ)

{C} let x = ref(M) in N :u {νx.C′}
Above fpn(e) denotes the set offree plain namesof e which are reference names in
e that does not occur in dereference, defined as:fpn(x) = {x}, fpn(c) = fpn(!e) = /0,
fpn(〈e,e′〉) = fpn(e)∪ fpn(e′), fpn(πi(e)) = fpn(e) andfpn(inji(e)) = fpn(e). The rule
reads:

Assume(1) running M from C leads to C0, with the resulting value named
m; and (2) running N from C0 with m as the content of x together with the
assumption x is unreachable from each ei , leads to C′ with the resulting value
named u. Then running the letref command from C leads to C′ whose x is fresh
and hidden.

We note:

• The side conditionx 6∈ fpn(ei) is essential for consistency (e.g. without it, we could
assumex#x, i.e.F).

• νx.C′ cannot be strengthened to #x.C′ sinceN may storex in an existing reference.

One may note the rule directly gives a proof rule for general new reference declaration
[30, 40, 44],new x := M in N, which has the same operational behaviour aslet x =
ref(M) in N.

We can now treatIncShared from Introduction:

IncShared
def= a:=Inc;b:=!a;c1 :=(!a)();c2 :=(!b)();(!c1+!c2)

Naming itu, the assertioninc′(u,x,n) below captures its behaviour:

inc(x,u) = ∀ j.{!x = j}u• ()= j +1{!x = j +1}@x.

inc′(u,x,n) = !x = n∧ inc(x,u).

The following derivation forIncShared sheds light on how shared higher-order lo-
cal state can be transparently reasoned in the present logic. For brevity we work with
the implicit global assumption thata,b,c1,c2 are pairwise distinct and safely omit an

16



anchor from the judgement when the return value is a unit type.

1.{T} Inc :u {νx.inc′(u,x,0)}

2.{T} a := Inc {νx.inc′(!a,x,0)} (1, Assign)

3.{inc′(!a,x,0)} b :=!a {inc′(!a,x,0)∧ inc′(!b,x,0)} (Assign)

4.{inc′(!a,x,0)} c1 := (!a)() {inc′(!a,x,1)∧!c1 = 1} (Assign)

5.{inc′(!b,x,1)} c2 := (!b)() {inc′(!b,x,2)∧!c2 = 2} (App etc.)

6.{!c1 = 1∧!c2 = 2} (!c1)+(!c2) :u {u = 3} (Deref etc.)

7.{T} IncShared :u {νx.u = 3} (2–6, LetOpen)

8.{T} IncShared :u {u = 3} (Conseq)

Line 1 is by [LetRef]. Line 7 uses the following derived rule (noting sequential compo-
sition is a special case of “let”):

[LetOpen]
{C}M :x {νỹ.C0} {C0} N :u {C′}
{C} let x = M in N :u {νỹ.C′}

Line 8 uses∃x.C⊃C whenC contains neither evaluation formulae or occurrences ofx
(this restriction comes from the quantified variable ranging over not only free locations
but also hidden ones, see Appendix C.3 for further discussions). To shed light on how
the difference in sharing is captured in inferences, Appendix E.2 lists the inference for
a program which assignsdistinctcopies ofInc to a andb.

5.2 Information Hiding (1): Memoisation

Next we treat a memoised factorial [42] from Introduction.

memFact
def= let a = ref(0), b = ref(1) in

λx.if x =!a then !b else (a := x; b := fact(x) ; !b)

Our target assertion specifies the behaviour of a pure factorial.

Fact(u) = ∀x.{T}u•x = y{y = x!!!}@/0.

The following inference starts from the body of the “let”, which we nameV. We set:
E1a = C0 ∧ ∀x.{C0}u•x=y{C0}@ab, andE1b = ∀x.{C0∧C}u•x=y{C′}@abwhere
we letC0 be !b=(!a)!!!, C beT andC′ bey = x!!!. Note thatC0 is stateless exceptab (in
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the sense of Definition 12, page 14).

1.{T}V :u {∀x.{!b=(!a)!!!}u•x=y{y=x!!! ∧ !b=(!a)!!!}@ab}

2.{T}V :u {E1a ∧ E1b} (1, Conseq)

3.{ab#i}V :u {ab#i ∧ E1a ∧ E1b} (2, Inv-Val)

4.{T} memFact :u {ν#ab.(E1a∧E1b)} (3, LetRef)

5.{T}m•()=u{ν#ab.(E1a∧E1b)} ⊃ {T}m•()=u{Fact(u)} (?)

6.{T} memFact :u {Fact(u)} (4, 5, ConsEval)

Line 2 used{C} f •x=y{C1∧C2}@w̃⊃∧i=1,2{C} f •x = y{Ci}@w̃ (from [6, 21]).(?)
in Line 5 is by(AIHA) in Proposition 13.

5.3 Information Hiding (2): Stored Circular Procedures

We next considercircFact from Introduction, which uses a self-recursive higher-order
local store.

circFact
def= x := λz.if z= 0 then 1 else z× (!x)(z−1)

safeFact
def= let x = ref(λy.y) in (circFact; !x)

In [21], we have derived the following judgement.

{T}circFact :u {CircFact(u,x)}@x (5.1)

where

CircFact(u,x) = ∀n.{!x = u}!x•n = z{z= n!∧!x = u}@/0 ∧ !x = u

which says:

After executing the program, x stores a procedure which would calculate a
factorial if x stores that behaviour, and that x does store the behaviour.

We now showsafeFact namedu satisfiesFact(u). Below we use:CFa = !x = u∧
∀n.{!x = u}!x•n = z{!x = u}@/0 as well asCFb = ∀n.{!x = u}!x•n = z{z= n!!!}@/0.

1.{T}λy.y :m {T}@/0

2.{T}circFact ; !x :u {CircFact(u,x)}@x

3.{T}circFact ; !x :u {CFa ∧ CFb}@x (2, Conseq)

4.{x#i}circFact ; !x :u {x#i∧CFa∧CFb}@x (3, Inv-#)

5.{T}safeFact :u {ν#x.(CFa∧CFb)}@/0 (4, LetRef)

6.{T}m•()=u{ν#x.(CFa∧CFb)} ⊃ {T}m•()=u{Fact(u)} (?)

7.{T}safeFact :u {Fact(u)}@/0 (5, 6, ConsEval)
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Line 1 is immediate. Line 2 is (5.1). Line 6,(?) is by (AIHA), Proposition 13, setting
C0 =!x = u, C = E′ = T andC′ = y = x!!!. Note this example can again use(AIHA) since
the behaviour in question is indeed first-order.

The reasoning easily extends to programs which use multiple locally stored, and
mutually recursive, procedures. Consider:

mutualParity
def= x := λn.if y=0 then f else not((!y)(n−1));

y := λn.if y=0 then t else not((!x)(n−1))

After these two assignments, the application(!x)n, with n a natural number, returns true
if n is odd, false if not; while(!y)n acts dually. Informally the state of affairs may be
described thus:

x stores a procedure which checks if its argument is odd, if y stores a procedure
which does the dual; whereas y stores a procedure which checks whether its
argument is even or not if x stores a procedure which does the dual.

Observe mutual circularity of this description. As before, we can avoid unexpected
interference atx andy using local references.

safeOdd
def= let x,y = ref(λn.t) in (mutualParity; !x)

safeEven
def= let x,y = ref(λn.t) in (mutualParity; !y)

Aboveλn.t can be any initialising value. Now thatx,y are inaccessible, the programs
behave as pure functions, e.g.safeOdd(3) always returns true without any side effects,
similarly safeOdd(16) always returns false, To formally validate these behaviours, we
can first verify the body of the “let” satisfies the following assertions.

{T}mutualParity :u {∃gh.IsOddEven(gh, !x!y,xy,n)} (5.2)

where, withEven(n)≡ ∃x.(n=2×x) andOdd(n)≡ Even(n+1):

IsOddEven(gh,wu,xy,n) = (IsOdd(w,gh,n,xy) ∧ IsEven(u,gh,n,xy) ∧ !x = g∧ !y = h)
IsOdd(u,gh,n,xy) = {!x = g∧ !y = h}u•n=z{z= Odd(n) ∧ !x = g∧ !y = h}@xy

IsEven(u,gh,n,xy) = {!x = g∧ !y = h}u•n=z{z= Even(n) ∧ !x = g∧ !y = h}@xy

Our aim is to derive the following judgements starting from (5.2).

{T}safeOdd :u {∀n.{T}u•n=z{z= Odd(n)}@/0} (5.3)

{T}safeEven :u {∀n.{T}u•n=z{z= Even(n)}@/0} (5.4)

We reason forsafeOdd (the case forsafeEven is symmetric). We first identify the
local invariant:

C0 = !x = g∧ !y = h ∧ IsEven(h,gh,n,xy)

The free variableh suggests the use of(AIHA∃). SinceC0 only talks aboutg, h and the
content ofxandy, we knowC0 is stateless exceptxy. We now observeIsOddEven(gh, !x!y,xy,n)
is the conjunction of:

Odda = C0 ∧ ∀n.{C0}u•n=z{C0}@xy

Oddb = ∀n.{C0}u•n=z{z=Odd(n)}@xy
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We can now apply(AIHA∃) to obtain (5.3). Full inferences can be found in Appendix
E.3.

5.4 Information Hiding (3): Higher-Order Invariant

We move to a local invariant with higher-order functions, taking a program which in-
struments an original program with a simple profiling, counting the number of times of
invocation [46, p.104].

profile
def= let x = ref(0) in λy.(x :=!x+1; f y)

where we restricty to a base type or a sum/product of base types (cf. (4.8), page 15).
Sincex is never exposed, this program should behave precisely asf . Sincef can return
a higher-order value, we need to use(AIH). We use the following assertions, assuming
x 6∈ fv(C,C′).

E = ∀y.{T} f •y=z{T}@w̃ ∧ ∀y.{C} f •y = z{C′}@w̃

E2 = ∀y.{C}u•y=z{C′}@w̃.

Our aim is to derive the following assertion.

{E} profile :u {E2} (5.5)

which says:

if f satisfies the specification∀y.{C} f • y = z{C′} and moreover if it is total,
thenprofile satisfies the same specification.

The derivation uses the following auxiliary assertions.

E0 = ∀y.{C ∧ x# f yw̃} f •y = z{x#zw̃ ∧ C′}@w̃

E1 = ∀y.{T} f •y=z{T}@w̃ ∧ ∀y.{[!x]C∧x# f yw̃}u•y=z{C′∧x#zw̃}@xw̃

The inference follows.

1.{T}x :=!x+1{T}@x (Assign)

2.{[!x]C∧E∧x# f yw̃} x :=!x+1 {C∧E∧x# f yw̃}@x (Inv, Conseq)

3.{C∧E∧E0∧x# f yw̃} f y :z {C′∧x#zw̃}@w̃ (App, Conseq)

4.{C∧E∧x# f yw̃} f y :z {C′∧x#zw̃}@w̃ (3, Conseq)

5.{[!x]C∧E∧x# f yw̃}x := x+1; f y :z {C′∧x#zw̃}@xw̃ (2, 4, Seq)

6.{E} λy.(x := x+1; f y) :u {E1}@/0 (5, Abs, Inv)

7.{E}profile{ν#x.E1}@/0 (LetRef)

8.{E}m• () = u{ν#x.E1} ⊃ {E}m• () = u{E2} (?)

9.{E}profile :u {E2}@/0 (7, 8, ConsEval)
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Above Line 2 uses: for anyC,x we have[!x][!x]C≡ [!x]C. Also by [!x]E ≡ E and by
[!x]x# f yw̃≡ x# f yw̃ (by Proposition 7 (3)-5), [Inv] becomes applicable. Line 4 uses
E ⊃ E0 by the reachability axiom in Proposition 11 (setting ˜r = f ). Line 8 (?) uses
(AIH), Proposition 13, settingC0 to beT.

5.5 Information Hiding (4): Nested Local Invariant

The next example, which is from [22, 30], uses a function with local state as an argu-
ment to another function.

MeyerSieber
def= let x = ref(0) in

let f = λ().x :=!x+2 in (g f ; if even(!x) then () else Ω())

whereΩ def= µ f.λ().( f ()) (noteΩ() immediately diverges) andeven(n) tests evenness of
n. Sincex is local, and becauseg will have no way to accessx except by callingf , the
local invariant thatx stores an even number is maintained. HenceMeyerSieber may
as well satisfy the following judgement.

{E∧C} MeyerSieber {C′}@w̃ (5.6)

where we set, withx,m 6∈ fv(C,C′):

E = ∀ f .(A⊃ ({T}g• f{T}∧{C}g• f{C′}@w̃))
A = {T} f • () = z{T}@/0

(Above the omission of an anchor ofUnit type inE follows Conventionin §2.2). The
judgement (5.6) says that:if feeding g with the observable behaviour of f as an ar-
gument always terminates and further satisfies{C}g• f{C′}@w̃, thenMeyerSieber
starting from C also terminates with the final state C′ and the write set̃w.

For the derivation of (5.6) we use the following assertions (ε is the empty string).

I = Inv( f ,Even(!x),x,ε,ε)
G0 = {Even(!x)∧x#g}g• f{Even(!x)}
G1 = {T}g• f{T}

The derivation of (5.6) requires

{Even(!x)∧ I ∧G1} g• f {Even(!x)} ⊃ {Even(!x)∧G0} g• f {Even(!x)}

for which we apply the axiom in Proposition 16. The full derivation is given in Ap-
pendix E.4.

5.6 Information Hiding (5): Object

As a final example of this section, we treat information hiding for a program with state,
a small object encoded in imperative higher-order functions, taken from [22] (cf.[10,
38, 39]). The following program generates a simple object each time it is invoked.

cellGen
def= λz.

let x0,1 = ref(z) in let y = ref(0) in(
λ().if even(!y) then !x0 else !x1,
λw.(y :=!y+1 ; x0,1 := w

) 
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The object has a getter and a setter. Instead of having one local variable, it uses two with
the same content, of which one is read at each odd-turn of the “read” requests, another
at each even-turn. When writing, it writes the same value to both. Since having two
variables in this way does not differ from having only one observationally, we expect
the following judgement to holdcellGen:

{T} cellGen :u {CellGen(u)} (5.7)

where we set:

CellGen(u) = ∀z.{T}u•z= o{ν#x.(Cell(o,x)∧!x = z)}@/0
Cell(o,x) = ∀v.{!x = v}π1(o)• () = z{z= v =!x}@/0 ∧∀w.{T}π2(o)•w{!x = w}@x

Cell(o,x) says thatπ1(o), the getter ofo, returns the content of a local variablex;
andπ2(o), the setter ofo, writes the received value tox. ThenCellGen(u) says that,
whenu is invoked with a value, sayz, an object is returned with its initial fresh local
state initialised toz. Note both specifications only mention a single local variable. A
straightforward derivation of (5.7) uses !x0 =!x1 as the invariant to erasex1: then we
α-convertsx0 to x to obtain the required assertionCell(o,x). See Appendix E.5 for full
inferences.

6 Reasoning Examples (2): Higher-Order Mutable Data
Structures

6.1 Circular Lists

This section introduces a reasoning method applicable to a general class of higher-order
mutable data types through examples. The method uses a predicate on navigating paths
over a network of data nodes for asserting on such a network; and the (un)reachability
for their dynamic generation. Types play a prominent role.

We first consider the following program, which stores the constant 0 function at all
nodes of a cyclic list [23, §1]. Let:

List(α) = µX.(Unit+(Ref(α)×Ref(X))).

which describes a mutable list using a sum (nil or cons) and a product (two cons cells,
the first storing a value of typeα and the second the next node of the list). The program
then reads:

cyclesimple
def=

µ f.λxRef(List(Nat⇒Nat)).case !x of
in1(()) : ()
in2(〈y1,y2〉) : (y1 := λxNat.0 ; if y2 6= zthen f y2 else ())

cyclesimple receives a node in a cyclic list. By its type, the content of the node is either
in1(()), a nil node, orin2(〈y1,y2〉), a cons cell. If the argument is the latter, the program
stores the zero function in its first field, and via its second field moves to the next cell
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and processes it, until coming back to the initial cellz. We can check that, as far asz is
part of a cycle, the evaluation ofcyclesimplez zeroes all the nodes reachable fromz.

An assertion for this program should specify the expected shape of the argument
(i.e. it is a cycle) and how it is transformed into exactly the same cycle except for all
of its fields storing the zero functions. We start from defining easy-to-read notations for
the data types of the two components of a list, the nil and the cons.

nil(u) ≡ u = inj1(())
cons(u,y1,y2) ≡ u = inj2(〈y1,y2〉)

Below we introduce the key building blocks of the proposed method, adaptable to a
wide range of higher-order mutable data structures.

path(g,0,g′) ≡ g = g′

path(g, p+1,g′) ≡ ∃y,y′(cons(!g,y,y′)∧path(y′, p,g′))

path(g, p,g′) indicates that traversingpth-nodes fromg leads tog′. Its semantics is
transparently given from that of the original logical language. The following two pred-
icates, defined from the path predicate, is useful for asserting forcyclesimple.

isCycle(g)≡ ∃p 6= 0. path(g, p,g)
distance(g, p,g′)≡ path(g, p,g′)∧∀q.(path(g,q,g′)⊃ p≤ q)

isCycle(g) says the nodeg is part of a cycle (its negation is linearity of a list); whereas
distance(g, p,g′) says the distance (minimum path) betweeng andg′ is p-steps, which
is useful when carrying out inductive reasoning on a cyclic list. We can now write down
the expected judgement forcyclesimple:

{T} cyclesimple :u {cycleSimple(u)} (6.1)

with the following main assertioncycleSimple(u):

{isCycle(z)} u•z{allZeros(z)}@{w|valnode(z,w)} (6.2)

where we set:

valnode(z,y) ≡ ∃pgy′.(path(z, p,g)∧ cons(!g,y,y′))
allZeros(z) ≡ ∀y.(valnode(z,y)⊃ iszero(!y))

iszero( f ) ≡ ∀x.{T} f •x = y{y = 0}@/0

(6.2) also uses an evaluation formula which uses a generalised write set, described by
a predicate. This generalised located assertion{C}x• y = z{C′}@{w|E(w)} roughly
corresponds to

∀wi.{C∧¬E(w)∧!w = i}x•y = z{C′∧!w = i},
saying that all references that may be updated by this evaluation are within the set
{w|E(w)}, allowing us to specify an unbounded number of references as a write set (for
the precise semantics of the generalised located assertions, see C.2). ThuscycleSimple(u)
says:
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If the program u receives z as an argument and if it is a node of a cyclic list,
then the program fills all the data fields of this list with the zero function, and
does nothing else,

precisely capturing the behaviour ofcyclesimple.
The derivation of (6.1) uses the predicatedistance given above for recursion. We

first set, withx, y andz of typeList(α):

x �z y ≡ ∃p, p′.(distance(z, p,x)∧distance(y, p′,x)∧ p  p′) (6.3)

That is,x �z y iff the distance fromx up to, but not including,z is strictly smaller than
that fromy. Thus�z combined with equality is a well-founded partial order (which is
enough for carrying out induction [13]). The reasoning uses the following judgement for
induction, writingcyclesimple′ for the programcyclesimple minus the initial recursion:

{∀m�z l .B( f ,m)}cyclesimple′ :u {B(u, l)} (6.4)

where we set, withreach(z, l) standing for∃p.path(z, p, l):

B(u, l) ≡ {isCycle(z) ∧ reach(z, l)}u• l{allZerosUpto(l ,z)}@{w|valnodeUpto(l ,w,z)}.

AboveallZerosUpto(x,z) is the variant ofallZeros(x) which says all are zeroed fromx
up to, but not including,z (i.e. just reaching the last node in the cycle, takingz to the
initial node). Similarly forvalnodeUpto(x,w,z). The inference for (6.4) is easy, noting
we have(reach(z, l)∧ cons(l ,v, l ′)∧ l 6= z) ⊃ l ′ �z l . Finally we apply[Rec] (to be
precise, its refinement to well-founded partial order [13], cf. Appendix B) to obtain:

{T}cyclesimple :u {∀l .B(u, l)} (6.5)

By instantiatingl to z via the consequence rule, we arrive at (6.1).

6.2 Trees

We now treat a program which dynamically generate data structures (notecyclesimple
alters, but not generates, a list). We use a slightly more complex data type:

Tree(α) def= µX.(Ref(α+(X×X)))

A network of nodes of this type can form a tree, a dag, or a graph. The following
program is intended to work only for trees of this type, creating an isomorphic copy of
an original tree (cf. [44, §6]).

treeCopy
def= µ f.λxTree(α).case !x of

in1(n) : ref(inj1(n))
in2(〈y1,y2〉) : ref(inj2(〈 f y1, f y2〉))

NotetreeCopy has typeTree(α)⇒Tree(α). The program carries out an inductive copy
for the tree structure, but does a direct copy at stored data, possibly inducing a sharing.
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To assert and validate fortreeCopy, we again use the path predicate. Since a one-step
traversal can take either the left branch or the right one, the notion of a path becomes
slightly more complex, for which we use the following expressions (added as terms to
our logical language).

p ::= ε | l .p | r.p

Above l andr mean left and right branches. Using these terms we can now define the
path predicate. First let us set, for brevity:

atom(uβ,xα) ≡ u = inj1(x)

branch(uβ,yα
1 ,yβ

2) ≡ u = inj2(〈y1,y2〉) (β = Tree(α))

We can now define the path predicate. We use the same notationpath(g, p,g′) (which
is henceforth exclusively aboutTree(α)-typed data, withg andg′ of typeTree(α)).

path(g,ε,g′)≡ g = g′

path(g, l .p,g′)≡ ∃y1y2.(branch(!g,y1,y2)∧path(y1, p,g′))
path(g, r.p,g′)≡ ∃y1y2.(branch(!g,y1,y2)∧path(y2, p,g′))

The first clause says that the empty path leads fromg to g; the second says that the path
l .p leads fromg to g′ iff we go left from g and, from there,p leads tog′. The third is
the symmetric case.

As for linked lists, the path predicate allows us to shape the assertions useful for
specifying the behaviour oftreeCopy.

match(g, p1, p2)≡ ∃y.(path(g, p1,y)∧path(g, p2,y))
leaf(g, p,x)≡ ∃y.(path(g, p,y)∧atom(!y,x))

iso(g,g′)≡ ∀p1p2.(match(g, p1, p2)≡match(g′, p1, p2))
∧ ∀px.(leaf(g, p,x)≡ leaf(g′, p,x))

As before,match(g, p1, p2) asserts two pathsp1,2 from g lead to an identical node;
leaf(g, p,x) says we reach a leaf storingx (of type α) from g following p. iso(g,g′)
asserts two collections of nodes, respectively reachable fromg andg′, form isomorphic
labelled directed graphs. Further we set:

tree (g)≡ ∀p1, p2.(p1 6= p2 ⊃ ¬match(g, p1, p2))
distance(g, p,g′)≡ path(g, p,g′)∧∀q.(path(g,q,g′)⊃ pvlex q)

tree (g) saysg is a tree iff it has no sharing.distance(g, p,g′) defines the shortest path
from g to g′, where paths are ordered by the lexicographic orderingvlex (with the “left”
smaller than the “right”, and the empty string being the least). This gives a basis for in-
ductive reasoning. Note ifg is a tree thendistance(g, p,g′) is equivalent topath(g, p,g′).
The predicatetree (g) also has an equivalent inductive formulation:

disjoint(x,y) ≡ ¬∃p.(path(x, p,y) ∨ path(y, p,x)).
tree (g) ≡ ∃x.atom(u,x) ∨

∃g1,2.(branch(u,g1,g2) ∧ disjoint(g1,g2) ∧^
i=1,2

(tree (gi)∧disjoint(gi ,u))
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which is close to Reynolds’ “separation”-based inductive definition [44] (see Section 7
for further comparisons).

As a final preparation, we need a notation for a generation of an unbounded number
of fresh references. We extend the notation{C}e•e′ = z{ν#x.C′} in §2.3 as follows.

{C}e•e′=z{ν#{x|E(x)}.C′} (6.6)

which roughly means, withi fresh:

∀X, iX .{C}e•e′=z{(∀x.(E(x)⊃ x#i))∧C′)} (6.7)

indicating the set{x | E(x)} of references are newly generated (for the exact semantics,
see Appendix C.2). We can now assert fortreeCopy with the following judgement.

{T} treeCopy :u {treecopy(u)} (6.8)

where we set, withg typedTree(α):

treecopy[α](u) =
{tree (g)}u•g=g′{ν#{h| reach(g′,h)}. iso(g,g′)}@/0 (6.9)

Abovereach(g′,h) stand for∃p.path(g′, p,h). The assertiontreecopy[α](u) reads:

Whenever u is invoked with a tree g of type Tree(α), it creates a tree g′ whose
reachable nodes are fresh and are isomorphic to those of the original, with no
write effects.

Noteα may as well be a higher-order type. Note also the newly generated nodes may
share a↪→-reachable references with the original tree at data whenα is higher-order,
so that we cannot useg′ ↪→ h instead ofreach(g′,h) based on the path predicate. As far
as its argument is restricted to proper trees, (6.9) is the full specification oftreeCopy.
As such, it entails other assertions the program satisfies. For example it implies the
following assertion stating a relative disjointness between two trees, close to [44, § 6]:

treesep[α](u) = {tree (x)}u•x=y{iso(x,y)∧disjoint(x,y)} (6.10)

The derivation of (6.8) can be done in several ways depending on how a recursion
is inferred. One of the methods is to use the size (the number of the nodes) of the
tree. Another method uses, as in §6.1, the order induced bydistance, which we discuss
below. Definex �z y (all of typeTree) as:

x �z y ≡ ∃p, p′.(distance(z, p,x)∧distance(y, p′,x)∧ p′ vlex p∧ p 6= p′) (6.11)

Note if x is a proper subtree ofy which in turn is a subtree ofz then we havex �z y.
Writing treeCopy′ for treeCopy without the initial recursion, we have:

{∀g′ �z g.B′( f ,g′)}etreeCopy′ :u {B′(u,g)} (6.12)

where we set:

B′(u,g) ≡ {tree (z) ∧ reach(z,g)}u•g = g′{ν#{m|reach(g′,m)}. iso(g,g′)}
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For deriving (6.12), we use the inductive reformulation oftree (g) given before, as well
as simple entailments such as(tree (z) ∧ reach(z,g))⊃ tree (g).

We can then apply the proof rule for recursion (with well-founded ordering, cf. Ap-
pendix B) to (6.12) to obtain:

{T}treeCopy′ :u {B′(u,g)} (6.13)

By notingreach(g,g) = T we arrive at (6.8).

{T} treeCopy :u {{tree (x)}u•g=g′{ν#{h| reach(g′,h)}. iso(g,g′)}@/0} (6.14)

Remark. As has been observed, we can also use the ordering based on size of trees:

x � y ≡ ∃n,m.(size(x,n) ∧ size(x,m) ∧ n � m)

wheresize(x,n) says thatx is a tree such that the number of its nodes isn (defined by
the obvious inductive definition). Using� instead of�z, and

B′′(u,g) ≡ {tree (g)}u•g = g′{ν#{m|reach(g′,m)}. iso(g,g′)}

instead ofB′(u,g), we can derive (6.8) directly from the recursion rule. The predicate
�z has the merit in that it applies to data structures of typeTreewhich are not trees, as
we shall discuss in the next subsection.

6.3 Dags and Graphs

When trees become dags, we allow sharing but not circularity.

isCycle(g) ≡ ∃p.(path(g, p,g)∧ p 6= ε)
dag (g) ≡ ∀h.(reach(g,h)⊃ ¬isCycle(h))

dag (g) saysg is a dag iff it has no circularity. SinceisCycle(g)⊃ ∃p.match(g, p, p· p),
we havetree (g)⊃ dag (g). As for trees, there is an inductive characterisation:

dag (g) ≡ ∃x.atom(u,x) ∨
∃g1,2.( branch(u,g1,g2) ∧

^
i=1,2

(dag (gi)∧¬reach(gi ,u)) )

which says a dag is either an atom or consists of a root with two sub-dags from which
there is no upward link to the root node.

A simple extension oftreeCopy to create a fresh duplicate of an original dag, called
dagCopy, is given below:

dagCopyα def= λgTree(α)let x = ref( /0) in Main g

Main
def= µ f.λg.if dom(!x,g) then get(!x,g) else

case !g of
in1(n) : new(inj1(n),g)
in2(y1,y2) : new(inj2(〈 f y1, f y2〉),g)

new
def= λ(y,g).let g′= ref(y) in (x:=put(!x,〈g,g′〉);g′)
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When this program is called with the root of a dag, it first creates an empty table stored
in a local variablex. The table remembers those nodes in the original dag which have
already been processed, associating them with the corresponding nodes in the fresh dag.
Before creating a new node, the program checks if the original node (sayg) already
exists in the table. If not, a new node (sayg′) is created, andx now stores the new table
which adds a tuple〈g,g′〉 to the original.

The program above assumes, for brevity, a pre-defined data type for a table (real-
isable as, say, lists), with associated procedures:get(t,g) to get the image ofg in t;
put(t,〈g,g′〉) to add a new tuple wheng is not in the domain;dom(t,g) andcod(t,g) to
judge ifg is in the pre/post-image oft; and the constant/0 for the empty table.

The program satisfies

{T}dagCopy :u {dagcopy[α](u)}, (6.15)

wheredagcopy[α](u) is given as, withg typed asTree(α):

∀gTree(α).{dag (x)}u•g=g′{ν#{h| reach(g′,h)}. iso(g,g′)}@/0

The derivation of (6.15) centres on its treatment of recursion, for which we use the same
orderx �z y as used in the previous subsection, based on lexicographic ordering. Write
Main′ for Main without its initial recursion. Then we have:

{∀h′ ≤g h.DC(u,h′)} Main′ :u {DC(u,h)} (6.16)

where we set:

DC(u,h) def= ∀org.

{dag (g) ∧ reach(g,h)∧ !x=org∧ con(org)}
u•h = h′

{ν{z| reach(h′,z) ∧ z 6∈cod(org)}(con(!x)∧ !x=org∪〈h,h′〉∗)}@x

which says, notingdag (g)∧ reach(g,h) entailsdag (h):

Suppose h is a dag and x contains a table org which is consistent (i.e. only
relates isomorphic nodes). Then invocation of u with h terminates with the
return value h′ and, moreover: (1) references names reachable from h′ minus
those in the codomain of org are freshly generated; and (2) x stores a table
which is consistent and which adds to org the set of co-reachable nodes from
〈h,h′〉. Further the invocation only modifies x.

〈h,h′〉∗ denotes an isomorphism from those nodes reachable fromh and those fromh′.
The set-basedν-notation is understood as the correspondingν#-notation (cf. (6.6, 6.7)).

The invariantcon(t) (“table t is consistent”) is given by:

con(t) ≡ ∀g,g′.(〈g,g′〉 ∈ t ⊃ iso(g,g′)) ∧
∀g0,g1.(g0 ∈ dom(t)∧ reach(g0,g1)⊃ g1 ∈ dom(t))
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con(t) sayst only associates isomorphic graphs, and that its domain (hence co-domain,
by isomorphism) is closed under reachability. The derivation of (6.16) uses the inductive
characterisation ofdag (g) as well as the above invariant for induction.

From (6.16) we obtain, by[Rec] (cf. Appendix B):

{T} Main :u {DC(u,h)} (6.17)

We instantiateh to g to obtain:

{T} Main :u {DC(u,g)} (6.18)

The application rule then give us:

{!x = /0∧dag (g)} (Maing) :g′ {ν{z| reach(h′,z)}. iso(g,g′)}@x (6.19)

By hidingx:

{dag (g)} let x = ref( /0) in (Maing) :g′ {ν#{z| reach(h′,z)}. iso(g,g′)}@ /0 (6.20)

where the change fromν to ν# is by the following structural rule:

[ν to ν#]
{C} M :u {νx.C′} @ /0
{C} M :u {ν#x.C′} @ /0

which is valid since if a newly created reference is not stored anywhere, then it cannot
be reachable from any initial store, hence any initial datum. Finally by abstraction we
arrive at (6.16).

If we further allow a datum ofTreeto have circular edges, then we have arbitrary
graphs. The programgraphCopy given below operates on just such datum, creating a
fresh duplicate of an arbitrary datum of typeTree(α).

graphCopyα def= λgTree(α).let x = ref( /0) in GMain g

GMain
def= µ f.λg.if dom(!x,g) then get(!x,g) else

case !g of
in1(n) : new(inj1(n),g)
in2(y1,y2) :
let g′ = new(tmp,g)
in g′ := inj2(〈 f y1, f y2〉);g′

wheretmp= inj1(0). graphCopyα is essentially identical withdagCopyα except when
it processes a branch node, sayg. Since its subgraphs can have a circular link tog or
above, we should first registerg and its corresponding fresh node, sayg′ (the latter with
a temporary content), before processing two subgraphs. Registering the pair〈g,g′〉 is
necessary since two subgraphs may as well refer up to a node nearer to the root (more
precisely, this registering becomes necessary when, settingg0 to be the original root,
the minimum path fromg0 to a subgraph, sayh, happens to be a prefix of the minimum
path fromg0 to g itself). The program satisfies the judgement

{T}graphCopy :u {graphcopy[α](u)} (6.21)
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where we set, withg typed asTree(α):

graphcopy[α](u) ≡
{T}u•g=g′{ν#{h| reach(g′,h)}. iso(g,g′)}@/0 (6.22)

The assertiongraphcopy[α](u) says:

When fed with any graph of type Tree(α), u creates its fresh duplicate, and does
nothing else.

This is the simplest of the three assertions for copy algorithms we have seen so far, and
is also the strongest. In the following comparisons of assertions, we use, assuming a
polymorphic extension of the programming language [38] (type abstracting only values)
and that of the logic [20] (treating types syntactically):

graphcopyPoly(u) ≡ ∀X.graphcopy[X](u�X) (6.23)

whereu�α (with u having a type of the shape∀X.β) is a term denoting the type appli-
cation ofu to α [20].

Proposition 17. Fix α. Then each of the following equivalence and implications is
valid, with implications strict.

∃w.(graphcopyPoly(w)∧u=w�α) ≡ graphcopy[α](u) ⊃ dagcopy[α](u)
⊃ treecopy[α](u) ⊃ treesep[α](u).

Proof. Direct from the definition. For the first logical equivalence, note the presented
graphcopy program already works generically, i.e. duplicates graphs of typeTree[α] for
anyα, taken as an untyped program. ThusΛX.graphCopyX gives the desired polymor-
phic program,3 witnessinggraphcopyPoly(w). ut

The derivation of (6.21) refines that of (6.15), especially in induction step. When we
apply f to a node in a graph,dagCopy can assume that the table stored inx contains
pairs of isomorphic nodes. This is no longer so forgraphCopy since it now contains
fresh nodes with temporary content. Thus we need to identify the portion of the table
which contain the pairs whose codomain have already been processed. For this purpose
we use the following predicates.

below(g1,g2,z) ≡ ∃p1,2,q.(
^

i=1,2

distance(z, pi ,gi) ∧ p2 = p1 ·q ∧ p1 6= p2)

above(g1,g2,z) ≡ below(g2,g1,z)
before(g1,g2,z) ≡ g1 �z g2 ∧ ¬below(g1,g2,z)

Thusbelow(g1,g2,z), or equivalentlyabove(g2,g1,z), asserts that, starting fromz, the
minimum path tog1 goes viag2 (note that, if we look the graph with the root at the top,
this does visually meang1 is belowg2). Using these predicates, the content of the table
before and after processing a node, sayg, is described as, withz being the root:

3 If we are to use the implicit (a la Curry) typing for programs as in [5], we would assert for the
untyped version ofgraphCopy simply by ∀X.graphcopy[X](u), in which case we have the
(strict) implication∀X.graphcopy[X](u)⊃ graphcopy[α](u).
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(before processingg) Each nodeh such thatbefore(h,g,z) has already been processed,
i.e. the paths between these nodes in the domain are faithfully reproduced in the
corresponding nodes in the codomain. The table also contains those nodesabove g
(i.e.h such thatabove(h,g,z)) in their domain.

(after processingg) The table inherits the same pairs of nodes without changing them,
and, in addition, each nodeh below g with respect to the root, i.e.h such that
below(h,g,z), has now been processed and added to the table, together withg itself
whose corresponding fresh node isg′. Note this automatically entails that no change
in the table content takes place ifg is already in the domain of the table.

Note that these properties are “chained” through the two invocations off in the pro-
gram, hence through the main invocation. Respectively writing the first and second con-
ditionsconPre(t,g,z) andconPost(t,g,g′,z) with tablet and rootz, (whose definitions
using path predicates are easy), we arrive at the following assertion for induction:

GC( f ) ≡ {conPre(!x,g,z)}
f •g = g′

{ ν{l | below(l ,g′,z) ∧ l 6∈ dom(org)}. conPost(!x,g,g′,z) ) )}@x

Note f still touches onlyx (except creating new names) since those temporary new
nodes aboveg are not modified wheng is processed.

Using this predicate, we can reach the following judgement for the main procedure
before we apply recursion, writingGMain′ for the result of taking off the initial recursion
from GMain.

{∀h′ �g h.GC( f ,h′)} GMain′ :u {GC(u,h)} (6.24)

Note each subgraph ofh is either�g-smaller thanh; or, if not, it is aboveh hence,
by conPre(!x,h,g), is in the table. Thus the inductive hypothesis∀h′ �g h.GC( f ,h′) is
enough for inferring for the two invocations off . From (6.24) we obtain, by the rule
for recursion[Rec] (cf. Appendix B):

{T} GMain :u {∀h.GC(u,h)} (6.25)

The rest is as fordagCopy, first inferring:

{!x = /0} (GMain g) :u { ν{l | below(l ,g′,z)}. conPost(!x,g,g′,g)} @ x (6.26)

Since all nodes reachable fromg are also belowg or g itself,conPost(!x,g,g) means the
table only contains isomorphic nodes. In particular it entailsiso(g,g′). Thus we obtain,
from (6.26) by way of the consequence rule:

{!x = /0} (GMain g) :u { ν{l | below(l ,g′,z)}. iso(g,g′)} @ x (6.27)

From (6.27) we obtain, as we have reasoned fordagCopy:

{T} let x = ref( /0) in (GMain g) :u { ν]{l | below(l ,g′,z)}. iso(g,g′)}@ /0 (6.28)

By applying the rule for abstraction, to (6.28), we finally arrive at(6.21).
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7 Related Work and Conclusion

This paper proposed a Hoare-like program logic for imperative higher-order functions
with dynamic reference generation, a core part of ML-like languages [3, 4]. Target pro-
gramming languages of our preceding logics [6, 18, 20, 21] do not include local state.
As is well-known [22, 26, 27, 30, 40, 42], local state in higher-order functions radically
adds semantic complexity. To our knowledge, the present work proposed the first Hoare-
like program logic for this class of languages: nor do we know the preceding Hoare-like
logics which can assert and verify the demonstrated reasoning examples. In the follow-
ing we discuss related works and conclude with further topics.

7.1 Related Works

Reasoning Principles for Functions with Local State. There are many studies of
equivalences over higher-order programs with local state. An early work by Meyer and
Sieber [30] presents many interesting examples and reasoning principles based on de-
notational semantics. Mason and Talcott [26, 27] give a series of detailed studies on
equational axioms for an untyped version of the language treated in the present paper,
including those involving local invariants. Pitts and Stark [40, 42, 46] present power-
ful operationally-based reasoning principles for the same language as the present work
treats, with the reasoning principle for local invariants for higher-order types [42]. Sumii
and Pierce [47] present a fully abstract bisimulation technique for equational reasoning
on higher-order functions with dynamic sealing and type abstraction. Their bisimula-
tions are parameterised by related seals, which are close to parameterisation by related
stores in Pitts-Stark’s principle. Building on [47], Koutavas and Wand [22] propose a
fully abstract bisimulation technique for the untyped version of the language we treat,
and apply the techniques for reasoning about several non-trivial programs with local
store. They use denotational technique in relaxing a condition for bisimulations.

Our axioms for information hiding in § 4, which capture the basic patterns of pro-
gramming with local state, are closely related with these reasoning principles. The
proposed logic differs in that its aim is to offer a method for describing and validat-
ing diverse properties of programs beyond program equivalence, represented as logical
assertions. The equivalence-based approach for program validation and the assertion-
based one are complimentary, to which Theorem 6 would offer a basis of integrated
usage. For example, we may consider deriving a property of the optimised versionM′

of M: if we can easily verify{C}M :u {C′} and if we knowM ∼= M′, we can conclude
{C}M′ :u {C′}, which is useful ifM is better structured thanM′. Such a link can be fur-
ther substantiated through a mechanised logic for semantics of higher-order behaviour
along the line of Longley and Pollack’s recent work [25].

Hoare Logics (1): Local Variables and ML-like Languages. To our knowledge,
Hoare and Wirth [17] is the first to present a rule for local variable declaration (given
for Pascal). In our notation, a version of their rule may be written as follows.

[Hoare-Wirth]
{C∧x 6= ỹ}P{C′} x 6∈ fv(C′)∪{ỹ}
{C[e/!x]} new x := ein P {C′}
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Because this rule assumes references are never exported outside of their original scope,
there is no need to havex in C′. Since aliasing is not permitted in [17] either, we can
further dispense withx 6= ỹ in the premise.[LetRef] in § 5.1 differs from this rule in
that it can treat new references generation exported beyond their original scope; aliased
references; and higher-order procedures (both as programs and as stored values). We
can check [Hoare-Wirth] is derivable from[LetRef] and[Assign].

Among the studies on verification methods for ML-like languages [4, 34],Extended
ML [45] is a formal development framework for Standard ML. A specification is given
by combining a module’ signature and algebraic axioms on them. Correctness of an
implementation w.r.t. a specification is verified by incremental syntactic transforma-
tions.Larch/ML [48] is a design proposal of a Larch-based interface language for ML.
Integration of typing and interface specification is the main focus of the proposal in
[48]. These two works do not (aim to) offer a program logic with compositional proof
rules; nor do either of these works treat specifications for functions with dynamically
generated references.

Hoare Logics (2): Reachability. A seminal work by Nelson [35] first presented the
use of reachability predicates for reasoning about linked lists. Based on [35], Lahiri and
Qadeer [23] study a tractable axiomatisation of cyclic lists and apply the resulting ax-
iomatisation to the development of a VC generator/checker for a first-order procedural
language. The key idea in their axiomatisation is to identify a head cell (or cells) of a
cycle and use it for a straightforward inductive definition of reachability and associated
invariant. For example, an invariant for the example program in §6.1 (which is from
[23]) can be written as follows:

I(x,h) = B(x,h)∧∀g.(R(h,g)⊃((x 6=h∧R(x,g))∨ iszero(x)))

whereB(x,h) saysx reaches (is blocked by) a headh; R(x,y) says we can reachy from
x; andiszero(x) says the datum in the consx is zero. ThusI(x,h) saysx reaches a head
h; and all cells starting fromh reachingx are zeroed. We can then showI(x,z) is an
invariant of the body command ofcsbody. This can be used for validatingcyclesimple
zeroes all fields in a cyclic list w.r.t. partial correctness.

As noted, the interest and significance of their method lies in simple inductive ax-
iomatisations amenable to mechanical validation. Assertions and reasoning for higher-
order behaviour with dynamic reference generation, including a general class of data
structures and their dynamic generation, are not among their concerns and are not con-
sidered in their work. An interesting question is whether we can apply their ideas on ef-
fective axiomatisation to a large class of mutable data structures treatable in our method.

Hoare Logics (3): Separation Reynolds, O’Hearn and others [9, 37, 44] study a rea-
soning method for dynamically generated and deallocated mutable data structures using
a spacial conjunction,C∗C′. Taking the tree copy in § 6.2 (which is from [44]), they
start from a predicater 7→ x which is roughly equivalent toalloc(r)∧ !r = x in our no-
tation, withalloc(r) indicating a referencer is allocated. To compare with their logic,
considerτ which is thestructural description of a tree: for example,τ = ((1,(2,3)))
indicates a tree whose leaves store 1,2,3 from left to right. ThenTree(τ)(u) asserts
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allocation of aτ-tree with the rootu, in the way:

Tree((1,(2,3))(u) = ∃xy.(u 7→ xy∗x 7→ 1∗Tree((2,3))(y)

whereC1∗C2 indicates the conjunction ofC1,2 together with all thealloc-declared refer-
ences ofC1 and those ofC2 are disjoint. We can then prove, writingtreeCopyImp(x,y)
for an imperative version oftreeCopy which stores the result of copy iny:

{Tree(τ)(x)}treeCopyImp(x,y){Tree(τ)(x)∗Tree(τ)(y)} (7.1)

In comparison with the proposed logic, we observe:

(1) The use of∗ demands all concerned references are explicitly declared in asser-
tions, made possible by the use of structural description (τ of Tree(τ)(u) in (7.1)
above). The shape of the description usable for reasoning becomes highly com-
plex [9] when data structures involve non-trivial sharing (as in dags and graphs).
In contrast, § 6 has shown that our approach not only dispenses with the need for
structural description but also allows concise and uniform assertions and reasoning
for data structures with different degrees of sharing.

(2) As in (7.1), Reynolds’s approach represents fresh data generation by relative spatial
disjointness from the original datum, using the separating conjunction. This method
does capture a significant part of the program’s properties. The proposed logic rep-
resents freshness as temporal disjointness through the generic (un)reachability from
arbitrary datum in the initial state. Proposition 17 demonstrates that this approach
leads to strictly stronger (more informative) assertion, from which the assertion
equivalent to the other approach can be derived.

(3) The presented approach enables uniform treatment of known data types in verifica-
tion, including product, sum, reference, list, tree, closure, etc., through the use of
anchors. This is a simple and general method which allows us to assert and compo-
sitionally verify trees, graphs, dags, lists, stored procedures, higher-order functions
with local state and other data types on a uniform basis, with precise match with
observational semantics.

See [6] for further comparisons. Reynolds [44] criticises the use of reachability for
describing data structure, taking the in-place reversal of a linear list as an example.
Following the method in Section 6, a tractable reasoning is possible for such an example
using reachability combined with [Inv].

Birkedal et al. [8] present a “separation logic typing” for a variant of Idealised Al-
gol where types are constructed from formulae of disjunction-free separation logic. The
typing system uses the subtyping calculated via categorical semantics, on which their
study focusses. In [7], they extend the original separation logic with higher-order pred-
icates, and demonstrate how the extension helps modular reasoning on priority queues.
Both of these works treat neither exportable fresh reference generation nor higher-
order/stored procedures in full generality, so that it would be difficult to assert and
validate examples treated in § 5 and § 6. It is an interesting future topic to examine the
use of higher-order predicate abstraction in the present logic.
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Meta-logical Study on Freshness.Freshness of names is recently studied from the
viewpoint of formalising binding relations in programming languages and computa-
tional calculi. Pitts and Gabbay [14, 41] extend First-Order Logic with constructs to
reason about freshness of names based on the theory of permutations. The key syntac-
tic additions are the (interdefinable) “fresh” quantifierNand the freshness predicate #,
mediated by the swapping (finite permutation) predicate. Miller and Tiu [31] are moti-
vated by the significance of generic (or eigen-) variables and quantifiers at the level of
both formulae and sequents, and splits universal quantification in two, introduce a self-
dual freshness quantifier∇ and develop the corresponding sequent calculus of Generic
Judgements. While these logics are not program logics, their logical machinery may
well be usable in the present context. As noted in Proposition 9, reasoning about↪→ or
# is tantamount to reasoning aboutB, which denotes the support (the semantic notion
of freely occurring locations) of a datum/program. A characterisation of the support by
the swapping operation may lead to deeper understanding of axiomatisations of reach-
ability.

There are mechanisation of Hoare logics in higher-order logics, including [12, 28,
36]. While these works do discuss some aspects of imperative programs the proposed
logic treats (such as pointer-based data structures), none so far may offer a general
assertion method and compositional proof rules for ML-like reference generation or
their combination with higher-order functions.

7.2 Further Topics

The present work is intended to be but a modest initial step in logically capturing the
richness of the universe of behaviours of higher-order functions with local state. Many
challenges remain before we reach a mature engineering basis for using the logical
method studied in this paper. Some of the significant future topics include:Further de-
velopment of reasoning principles as axioms, including those on local invariants (are
there a basic set of axioms capturing most of the reasoning principles?); Partial correct-
ness logic; Coverage of the whole of SML/CAML; Extensions of the proposed method
to higher-order languages with monadic encapsulation of imperative features such as
Haskell and untyped higher-order languages such as Scheme (we strongly believe both
are feasible and rewarding); Exploration of effective reasoning/validation methods for
general mutable data structure, including semi-automatic verification;andintegration
with program development method.

Acknowledgement We thank Andrew Pitts for his comments on an early version of
this paper. The example of the mutual recursion in § 5 was given by Bernhard Reus. We
thank him for his e-mail discussions on this example.
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A Appendix: Reductions and Typing Rules

A.1 Reductions

A reduction relation, or oftenreductionfor short, is a binary relation between configu-
rations, written

(νl̃)(M,σ1) −→ (νl̃ ′)(N,σ2)

The relation is generated by the following rules. First, we have the standard rules for
the call-by-value PCF:

(λx.M)V → M[V/x]

π1(〈V1,V2〉) → V1

if t then M1 else M2 → M1

(µ f.λg.N)W → N[W/g][µ f.λg.N/ f ]

case in1(W) of {ini(xi).Mi}i∈{1,2}→M1[W/x1]

The induced reduction becomes that for open configurations (hence for configurations
with empty binder) by stipulating:

M −→M′

(M,σ)−→ (M′,σ)

Then we have the reduction rules for imperative constructs, i.e. assignment, dereference
and new-name generation.

(!l , σ) → (σ(l), σ)

(l := V, σ) → ((), σ[l 7→V])

(ref(V), σ) → (ν l)(l , σ] [l 7→V])

(new x := V in N,σ) −→ (ν l)(N[l/x],σ] [l 7→V]) (l fresh)

Finally we close−→ under evaluation contexts andν-binders.

(νl̃1)(M,σ)→ (νl̃2)(M′,σ′)
(νl̃ l̃1)(E[M],σ)→ (νl̃ l̃2)(E[M′],σ′)

wherel̃ are disjoint from both̃l1 andl̃2, E[ · ] is the left-to-right evaluation context (with
eager evaluation), inductively given by:

E[ · ] ::= (E[ · ]M) | (VE[ · ]) | 〈V,E[ · ]〉 | 〈E[ · ],V〉 | πi(E[ · ]) | ini(E[ · ])
| op(Ṽ,E[ · ],M̃) | if E[ · ] then M else N | case E[ · ] of {ini(xi).Mi}i∈{1,2}
| !E[ · ] | E[ · ] := M | V := E[ · ] | ref(E[ · ]) | new x := E[ · ] in M

A.2 Typing Rules

The typing rules are standard [38], which we list in Figure 1 for reference (from first-
order operations we only list two basic ones). In the first rule of Figure 1,cC indicates
a constantc has a base typeC. We also use the typing sequent of the form:Θ ` M : α
whereΘ mixes these two kinds of maps.
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Fig. 1 Typing Rules

[Var] −
Θ,x : α ` x : α [Constant] −

Γ;∆ ` cC : C

[Add]
Γ;∆ `M1,2 : Nat

Γ;∆ `M1+M2 : Nat
[Eq]

Γ;∆ `M1,2 : Nat
Γ;∆ `M1=M2 : Bool

[If ] Γ;∆ `M : Bool Γ;∆ ` Ni : αi (i = 1,2)
Γ;∆ ` if M then N1 else N2 : α

[Abs] Θ,x:α `M : β
Θ ` λxα.M : α⇒β [App] Γ;∆ `M : α⇒β Γ;∆ ` N : α

Γ;∆ `MN : β

[Rec] Γ,x:α⇒β ; ∆ ` λyα.M : α⇒β
Γ;∆ ` µxα⇒β.λyα.M : α⇒β

[Iso] Θ `M : α α ≈ β
Θ `M : β

[Deref] Γ;∆ `M : Ref(α)
Γ;∆ `!M : α [Assign] Γ;∆ `M : Ref(α) Γ;∆ ` N : α

Γ;∆ `M := N : Unit

[Ref] Γ;∆ `V : α
Γ;∆ ` ref(V) : Ref(α) [New]Γ;∆ `M : α Γ;∆,x : Ref(α) ` N : β

Γ;∆ ` new x := M in N : β

[Inj] Γ;∆ `M : αi
Γ;∆ ` ini(M) : α1+α2

[Case] Γ;∆ `M : α1+α2 Γ;∆,xi :αi ` Ni : β
Γ;∆ ` case M of {ini(x

αi
i ).Ni}i∈{1,2} : β

[Pair] Γ;∆ `Mi : αi (i = 1,2)
Γ;∆ ` 〈M1,M2〉 : α1×α2

[Proj] Γ;∆ `M : α1×α2
Γ;∆ ` πi(M) : αi (i = 1,2)

B Appendix: Proof Rules

Figure 2 presents all compositional proof rules (at the end we briefly discuss struc-
tural rules). We assume that judgements are well-typed in the sense that, in{C} M :u
{C′} with Γ;∆ ` M : α, Γ,∆,Θ ` C andu : α,Γ,∆,Θ ` C′ for someΘ s.t. dom(Θ)∩
(dom(Γ,∆)∪ {u}) = /0. In the rules,C-x̃ indicatesfv(C)∩ {x̃} = /0. Symbolsi, j, . . .
range over auxiliary names.

In [Abs,Rec], A,B denotestatelessformulae, in the sense of Definition 12.
In [Rec], � in the precondition of the premise can be replaced by (or interpreted

as) an arbitrary well-founded, and possibly partial, order on closed values of some type
[13]. In this case, the universal abstraction oni follows the rule[Aux∀] discussed later.
Including this point, [Rec] is best considered as being derived from the following rule
for recursion:

[Rec-Ren]
{A-x} λy.M :u {B}

{A-x} µx.λy.M :u {B[u/x]}
and the following rule for moving a stateless formula from the precondition to the post-
condition [6, §7.3]

[∧-⊃]
{A∧B}V :u {C}
{A}V :u {B⊃C}

,
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Fig. 2 Proof Rules

[Var] −
{C[x/u]} x :u {C}

[Const] −
{C[c/u]} c :u {C}

[In1]
{C}M :v {C′[inj1(v)/u]}
{C} inj1(M) :u {C′} [Proj1]

{C}M :m {C′[π1(m)/u]}
{C} π1(M) :u {C′}

[Case] {C
-x̃}M :m {C-x̃

0 } {C0[inji(xi)/m]}Mi :u {C′ -x̃}
{C} case M of {ini(xi).Mi}i∈{1,2} :u {C′}

[Add] {C}M1 :m1 {C0} {C0}M2 :m2 {C′[m1 +m2/u]}
{C}M1 +M2 :u {C′}

[Abs] {C∧A-x}M :m {C′}
{A} λx.M :u {{C}u•x= m{C′}}

[App]
{C}M :m {C0} {C0} N :n {C1 ∧ {C1}m•n = u {C′}}

{C}MN :u {C′}

[If ] {C}M :b {C0} {C0[t/b]}M1 :u {C′} {C0[f/b]}M2 :u {C′}
{C} if M then M1 else M2 :u {C′}

[Pair]
{C}M1 :m1 {C0} {C0}M2 :m2 {C′[〈m1,m2〉/u]}

{C} 〈M1,M2〉 :u {C′}

[Deref] {C}M :m {C′[!m/u]}
{C} !M :u {C′} [Assign] {C}M :m {C0} {C0} N :n {C′{|n/ !m|}}

{C} M := N {C′}

[Rec] {A
-xi∧∀ jNat � i.B( j)[x/u]} λy.M :u {B(i)-x}

{A} µx.λy.M :u {∀iNat.B(i)}
[Ref] {C}M :m {C′}

{C} ref(M) :u {#u.C′[!u/m]}

[Conseq] C⊃C0 {C0}M :u {C′
0} C′

0 ⊃C′

{C}M :u {C′}

combined with an induction principle at the level of assertions. The use of less general
[Rec] still gives a useful articulation in inferences.

[Assign] useslogical substitutionwhich uses content quantification to represent a
substitution of content of a possibly aliased reference [6].

C{|e2/!e1|}
def= ∃m.(〈!e1〉(C ∧ !e1 = m) ∧ m= e2).

with m fresh. IntuitivelyC{|e2/!e1|} describes the situation where a model satisfyingC
is updated at a memory cell referred to bye1 (of a reference type) with a valuee2 (of its
content type), withe1,2 interpreted in the current model. The proof rules for the located
judgement is given just as [6], adding the following rule for the reference.

[Ref]
{C}M :m {C′}@ẽx x/∈ fpn(ẽ)∪ fv(ẽ)

{C} ref(M) :u {#x.C′}@ẽ

For the structural rules (i.e. those proof rules which only manipulate assertions in pre/-
post conditions), the structural rules given in [6, §7.3] for the base logic stay valid
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except that the universal abstraction rule[Aux∀] in [6, §7.3] needs be weakened:

[Aux∀-Val]
{C}V :u {C′} i 6∈ fv(C)∪ fv(V) i not of a reference type

{C}V :u {∀i.C′}

Above the condition “i not of a reference type” is needed only whenC′ contains an
evaluation formulae. This comes from the nature of semantics of quantification over ref-
erence variables. An alternative formulation can take off this restriction, see Appendix
C.3.

The restriction to values can be taken off if we restrict the type ofi:

[Aux∀]
{C} M :u {C′}@ẽ i 6∈ fv(C)∪ fv(M)∪ fv(ẽ) i is of a base type

{C} M :u {∀i.C′}@ẽ

where the second side condition (i is of a base type) is not present in [6].
We observe the original structural rule, which does not have this condition, is not

valid in the presence of new reference generation. For example we can take:

{T} ref(3) :u {u#i∧!u = 3}@/0 (B.1)

which is surely valid. But without the side condition, we can infer the following from
(B.1).

{T} ref(3) :u {∀i.(u#i∧!u = 3)}@/0

which does not make sense (just substituteu for i). This is because of a new name
generation for whichi cannot range over: such an interplay with new name generation
is not possible if the target program is a value, or ifi is of a base type.

C Appendix: Models

C.1 Observational Congruence

Programs. Define:

(νl̃)(M,σ) ⇓ (νl̃ ′)(V,σ′)
def≡ (νl̃)(M,σ)→∗ (νl̃ ′)(V,σ′)

Further set:

(νl̃)(M,σ) ⇓ def≡ (νl̃)(M,σ) ⇓ (νl̃ ′)(V,σ′) for some(νl̃ ′)(V,σ′).

AssumeΓ;∆ `M1,2 : α. Then we write

Γ;∆ ` (νl̃1)(M1,σ1)∼= (νl̃2)(M2,σ2)

if, for each typed contextC[ · ] which produces a closed program which is typed asUnit
under∆ and in which no labels from̃l1,2 occur, the following holds:

(νl̃1)(C[M1], σ1) ⇓ iff (νl̃2)(C[M2], σ2) ⇓

which we often write(νl̃1)(M1,σ1)∼= (νl̃2)(M2,σ2) leaving type information implicit.
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Models. Given modelsMi = (νl̃ i)({yi : Vi1, ..,yi : Vin},σi) for i = 1,2, we set:

Γ;∆ `M1 ≈M2
def≡ (νl̃1)(〈V11, ..,V1n〉,σ1)∼= (νl̃2)(〈V21, ..,V2n〉,σ2).

C.2 Semantics

SetΓ;∆` e: α, Γ;∆`M andM = (ξ,σ). Then theinterpretation of e underM, denoted
[[e]]ξ,σ is inductively given by:

[[x]]ξ,σ = ξ(x) [[!e]]ξ,σ = σ([[e]]ξ,σ)
[[()]]ξ,σ = () [[n]]ξ,σ = n [[b]]ξ,σ = b [[l ]]ξ,σ = l
[[op(ẽ)]]ξ,σ = op([[ẽ]]ξ,σ) [[〈e,e′〉]]ξ,σ = 〈[[e]]ξ,σ, [[e′]]ξ,σ〉
[[πi(e)]]ξ,σ = πi([[e]]ξ,σ) [[inji(e)]]ξ,σ = inji([[e]]ξ,σ)

The semantics of the assertions follows. All omitted cases are by de Morgan duality.

1. M |= e1 = e2 if M[u : e1]≈M[u : e2].
2. M |= C1∧C2 if M |= C1 andM |= C2.
3. M |= ¬C if not M |= C.
4. M |= ∀xα.C if (1) ∀e.(M[x : e] |=C) and∀V.(M[x :V] |=C) whenα is any type; and

(2) ∀M′.((νl)(M′/x)≈M⊃M′ |= C) s.t.M′(x) = l whenα is a reference type.
5. M |= ∀X.C if for all closed typeα, M·X :α |= C.

6. M |= [!x]C if ∀M′.(M
[!x]
≈ M′ ⊃M′ |= C).

7. M |= e1 ↪→ e2 if for each(νl̃)(ξ,σ)≈M, [[e2]]ξ,σ ∈ ncl(fl([[e1]]ξ,σ),σ).
8. M |= {C}e•e′=x{C′} if M[u:N] ⇓M0 for someN andM0/u |= C implies

M[x : L] ⇓M′ |= C′ with L
def= let u = ein u′ = e′ in let u′′ = N in uu′.

9. M |= {C}e•e′=x{C′}@w1..wn iff it satisfies the the defining clause in (8) above

as well asM
[!w1..wn]
≈ M′.

10. M |= {C}e•e′=x{C′}@{z|E(z)} iff it satisfies the defining clause of (8) above as

well as the following, lettingM0
def= (νl̃)(ξ,σ0) andM′ ≈ (νl̃ l̃ ′)(ξ,σ′):

∀Ṽ.((νl̃)(ξ,σ0[l̃1 7→ Ṽ])≈ (νl̃ l̃ ′)(ξ,σ′[l̃1 7→ Ṽ])) (C.1)

wherel ∈ {l̃1} iff (νl̃)(ξ ·z : l ,σ0) |= E.

In the defining clauses above, we use the following notations. In each item below, we

assumeM
def= (νl̃)(ξ,σ), fv(e) ⊂ fv(M), fl(e) ⊂ fl(M), fv(N) ⊂ fv(M), fl(N) ⊂ fl(M),

V closed,fl(V)⊂ fl(M), and leave the appropriate typability implicit.

(a) M[u : e] with u fresh and the variables and labels ine free inM, denotes a model
(νl̃)(ξ ·u : [[e]]ξ,σ,σ).

(b) M/u = (νl̃)(ξ,σ) if M = (νl̃)(ξ ·u:V,σ); otherwiseM/u = M (whenu 6∈ fv(M))
(c) We writeM[u : N] ⇓ M′ when(Nξ,σ) ⇓ (νl̃ ′)(V,σ′) andM′ = (νl̃ l̃ ′)(ξ ·u :V, σ′)

with M = (νl̃)(ξ, σ) (this already appeared in §3.3).

(d) We writeM M′ for M[u:e] ⇓M′
0 such thatM′ def= M′

0/u. with u fresh.
(e) We writeM[e 7→V] for (νl̃)(ξ,σ[l 7→V]) with M = (νl̃)(ξ,σ) and[[e]]ξ,σ = l .

(f) ForM1,2 of the same type,M1
[!w̃]
≈ M2 when∀Ṽ.(M1[w̃ 7→ Ṽ]≈M2[w̃ 7→ Ṽ]).

We illustrate some of the defining clauses for satisfaction.
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Quantification. In the satisfaction of universal quantification,∀xα.C, we consider the
case thatx is hidden whenα is a reference type. For this reason such quantifications
over assertions including evaluation formulae need be treated with care: In particular,
the law:

∃x.C⊃C x 6∈ fv(C)

doesnot generally hold if evaluation formulae occur inC, similarly for the dual law
for the universal quantification. In this case, however, the axiom(AIH) and its variants
can be used to take off quantifiers. Other standard laws, such as distribution over con-
nectives, do hold. There is an alternative formulation which treats the case of hidden
references separately, as discussed in the subsequent Appendix C.3.

Content Quantification. M1
[!w]
≈ M2 says, intuitively,M1 andM2 only differ at the

content of the location denoted byw. Thus[!w]C says that, ifC holds inM, thenC still

holds for any model which only differs at the content ofw. The relation
[!w]
≈ satisfies the

following properties:

(a) M
[!w]
≈ M,

(b) M1
[!w1]
≈

[!w1]
≈ M2 impliesM1

[!w1]
≈ M2, and

(c) M1
[!w1]
≈

[!w2]
≈ M2 impliesM1

[!w2]
≈

[!w1]
≈ M2.

From these and other laws we can check content quantifications as defined above satisfy
the same axioms as we presented in [6]. The reason why we cannot simply assign a
value to a reference may be seen by considering the following instance of the invariance
rule:

{C}M :m {C′}@x

{C∧ [!x]C0}M :m {C′∧ [!x]C0}@x

SinceM may as well assign tox an arbitrary value including those which use hidden
stores in the pre-state, it does not suffice to sayC0 is invariant under substitution of
values: if we however say the satisfiability ofC0 does not rely on the content ofx at all,
surelyC0 continues to hold in the poststate (in which only the content ofx could have
differed). The soundness of the invariance rule uses this, as shown in Section C.6.

Evaluation Formulae. In the satisfaction of evaluation formulae, we use the conver-
genceM[u : N] ⇓ M′. which intuitively means thatM can reduce toM′ through an
arbitrary effects onM by an external program: in other words,M′ is a hypothetical
future state (or “possible world”) ofM. Hence the defining clause for the satisfaction
of evaluation formulae says:

In any initial hypothetical state which is reachable from the present state and
which satisfies C, the application of e1 to e2 terminates and both the result z
and the final state satisfy C′.

The subsequent two clauses for satisfaction of located evaluation formulae in addition
delimit the set of locations which may be modified by the evaluation. The last clause

(10), which subsumes the preceding (9) by settingE(z) def= ∨iz= wi , says:
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The value stored in a modelM0 evolved fromM at a location other than those
satisfying E(z) (in M0), does not differ inM′.

Otherwise the condition for its satisfaction is the same as the original evaluation for-
mulae. Note the predicateE(z) is evaluated inM0, the hypothetical initial state (this is
important for e.g. invariance rule, and also allows a natural reading). In the presence
of local state, precisely encoding located assertions into unlocated ones seems difficult.
As discussed in [6, 21], we need to consider hypothetical state in evaluation formulae
since a function can be invoked any time later, not only at the present state.

We further illustrate how the satisfaction for evaluation formulae, especially its no-
tion of hypothetical initial state, capture operational behaviour of applications. We first
observe:

– In [6, 21], the notion of “hypothetical state” means an arbitrary store under the same
typing (since the state is global and, in future when the function is invoked, the store
may have been changed in any way by other programs).

– In the presence of local state, we cannot change the content of references arbitrarily
since some locations may be inaccessible and, hence, remain constant. Thus we
only consider a store which can result from the current one by some external effects
as a hypothetical state.

Note the second “hypothetical state” subsumes the original notion, since when there is
no hiding, a program can arbitrarily update the state of the exposed references.

We now illustrate this idea by examples. First, consider the following model:

M
def= (νl)(u : λ().!l , l 7→ 2) (C.2)

A hypothetical state starting from this state cannot include:

M′ def= (νl)(u : λ().!l , l 7→ 3) (C.3)

since if (C.3) is allowed, we have

M |= ¬{T}u• () = z{z= 2} (C.4)

which is absurd. Note (C.2) meansM≈ (u : λ().2, /0), i.e. this model is stateless: so it
is pointless to consider changing the state of this model.

As a more elaborate example, if we set:

M
def= (νl)(u := λ().!l , w : λ().l :=!l +1, l 7→ 5) (C.5)

We can check the set of all legitimate hypothetical states from this state (i.e.M′ such
thatM[z : N] ⇓M′, without insignificantz portion inM′) can be enumerated by:

M′ def= (νl)(u := λ().!l , w : λ().l :=!l +1, l 7→m) (C.6)

for eachm≥ 5 (since the only way an outside program can affect this model is to
increment the content ofl ). Thus we have, forM in (C.5):

M |= {T}w• () = z{z≥ 5} (C.7)
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which says in anyfuturestate wherew is invoked, it always returns something no less
than 5, which is operationally reasonable.

We can use this fact for semantically justifying:

{∀g.(g• () ⇓⊃ f •g⇓)} L :z {z= t} (C.8)

where we writeg• () ⇓ to denote{T}g• (){T}, and we set:

L
def= let x = ref(5) in

let u = λ().!x in
let w = λ().x :=!x+1 in

( f w) ; if z≥ 5 then t else f

(C.9)

When the applicationf w takes place, some unknown computation occurs which may
change the state: but we know, by assumption onf , that f w terminates; and that, after
the two let’s, which corresponds to the model (C.5) above, we have (C.7). Thus we can
conclude that the program returnst, justifying (C.9).

Syntactically the judgement (C.9) is readily inferred using the axiom in Proposi-
tion 16, which says the invariant survives applications as far as certain condition (in
particular termination) is satisfied.

C.3 On Quantifiers over Reference Variables

In the present approach, universally/existentially quantified reference variables range
over both free and hidden references. In combination of (un)reachability predicate, this
economical approach allows us to logically express significant aspects of functions with
local state, as we have seen in the main sections.

At the same time, this does lead to certain strain in the interplay between such
quantifications and evaluation formulae. As we noted already in C.2, the standard laws
for quantifiers, such as∀xRef(α).C≡C and∃xRef(α)C≡C with x 6∈ fv(C) in both, do not
hold whenC contains evaluation formulae.

If we make ourselves avail an additional quantifier, thus dividing the semantics of
the current quantifiers over reference types into two, then we can mitigate this problem.
This quantifier, which is close to those studied in [11, 31], may be written asHxRef(α).C
(it only quantifiers over reference variables) and is given the following semantics:

M |= HxRef(α).C
def≡ ∃M′.((νl)(M′/x)≈M ∧ M′ |= C ∧ M′(x) = l)

or equivalently

M |= HxRef(α).C
def≡ M≈ (νl̃ l ′)(ξ,σ) ∧ (νl̃)(ξ ·x : l ′, σ) |= C.

That is,M |= Hx.C iff for some hidden location inM, C holds, naming that location as
x. Note the defining clause is nothing but the existential quantifier version of the second
part of the defining clause for the satisfaction for quantifiers given in Appendix C.2.
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Accordingly, we narrow the satisfaction of standard quantifiers over reference variables
as follows. BelowM[x : l 7→V] indicates(νl̃)(ξ · [x : l ],σ · [l 7→V]) underM = (νl̃)(ξ,σ).

M |= ∀xRef(α).C
def≡ ∀eRef(α).M[x : e] |= C ∧

∀eα.M[x : l ′ 7→ e] |= C ∧ ∀Vα.M[x : l ′ 7→V] |= C

with l ′ fresh. The second line says quantified locations can be fresh ones. This allows
the satisfaction closed under extensions of typings and the standard quantification laws.

With this division of quantification over reference variables, we first regain all the
standard laws for universal/existential quantifications for∀/∃. The hiding operatorHx.C
satisfies the laws such as:

Hx.C ≡ Hy.C[y/x] (y fresh)
C ⊃ Hx.C (x 6∈ fv(C))

Hx.C ⊃ ∃x.C (C w/o evaluation formulae)
Hx.(C1∨C2) ≡ (Hx.C1)∨ (Hx.C2)
Hx.(C1∧C2) ⊃ (Hx.C1)∧ (Hx.C2)

Using this operator, we redefine the basic notations in our logic (cf. §2.3):

• {C}e•e′=z{νx.C′} def≡ ∀X, iX .{C}e•e′=z{Hx.(x 6= i∧C′)}

• {C}e•e′=z{ν#x.C′} def≡ ∀X, iX .{C}e•e′=z{Hx.(x#i∧C′)}

• {C}e•e′=z{#z.C′} def≡ ∀X, iX .{C}e•e′=z{Hy.(z#i ∧ z= y ∧ C′)}

Similarly for the abbreviations for the judgements. All the proof rules and axioms using
these derived logical operators we discussed in the main sections and in the appen-
dices (in particular the series of axioms for information hiding) remain valid with this
rephrasing. For proof rules, the rule[Aux∀-Val] (cf. in B) can take off its side condition

[Aux∀-Val]
{C}V :u {C′} i 6∈ fv(C)∪ fv(V)

{C}V :u {∀i.C′}

Combined with this, we can make the convenient abstraction rule:

[Abs]
{C∧A-xĩ}M :m {C′}

{A} λx.M :u {∀xĩ.{C}u•x= m{C′}}

The other proof rules remain identical, including the derived ones we used in the rea-
soning in the main sections and the appendices such as Appendix E. Thanks to the
power of (un)reachability predicates, these two different methods still allows the same
syntactic reasoning principles.

The merits of this alternative approach are that quantifications over reference vari-
ables fully obey the standard laws, and that such axioms as(AIH) can be stated more
concisely. The drawbacks are that it needs an additional quantifier not too easy to handle
(for exampleC⊃Hx.C does not generally hold) and that we need to use e.g. axioms for
information hiding for taking offHx from Hx.C whenC contains an evaluation formula.
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C.4 Semantics of Judgement

Below we fix typings appropriately (as we discuss soon, it suffices to take the minimum
typing covering the assertions and the program which always exists). First, the non-
located judgement:

|= {C} M :u {C′} (C.10)

means
∀M.(M |= C ⊃ M[u : M] ⇓M′ |= C′) (C.11)

Note this is equivalent to saying:

∀M,M0.(M M0 |= C ⊃ M[u : M] ⇓M′ |= C′) (C.12)

This in turn is equivalent to, withV
def= λ().M:

∀M.(M[m : V] |= {C}m• () = u{C′}) (C.13)

Second, the semantics of the located judgement:

|= {C} M :u {C′}@x̃ (C.14)

may most easily be given using the corresponding located assertion following (C.13)

above, withV
def= λ().M:

∀M.(M[m : V] |= {C}m• () = u{C′}@x̃ (C.15)

. We can further generalise (C.14) to denote the set of references:

|= {C} M :u {C′}@{z|E(z)} (C.16)

where we assumez is fresh and(∃z.E(z)) ≡ T. 4 Then the meaning of (C.16) is given
as:

∀M.(M[m : V] |= {C}m• () = u{C′}@{z|E(z)}) (C.17)

Note this subsumes (C.11) since if we setE
def= T in (C.17) the assertion. This concludes

the definition of the semantics of judgements.

C.5 Proofs of Soundness

We prove the soundness theorem. We start with [Var].

M |= C[x/u] impliesM[u:x] |= C.

Similarly [Const] is reasoned:

M |= C[c/u] impliesM[u:c] |= C.

4 The condition(∃z.E(z)) ≡ T prevents pathological cases: for example, ifE(z) ≡ F then the
statement becomes vacuous (under the given translation).
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Next, [Inj1] is reasoned:

M |= C ⇒ M[m:M] ⇓M′ |= C′[inj1(m)/u]
⇒ M[m:M] ⇓M′s.t. M′[u:inj1(m)] |= C′.

⇒ M[m:M][u:inj1(m)] |= C′.

⇒ M[u:inj1(M)] |= C′.

For [Proj] we reason as follows.

M |= C ⇒ M[m:M] ⇓M′ |= C′[π1(m)/u], i.e. M′[u:π1(m)] |= C′

For [Case], we reason:

M |= C ⇒ M[m:Mα+β] ⇓M0 |= C0, if M = (νl̃)(ξ,σ) and(νl̃)(Mξ,σ) ⇓ (νl̃ ′)(inji(xi)ξ,σ′)
⇒ M0[m:inji(xi)] |= C0∧m= inji(xi)
⇒ M0[m:inji(xi)][u:M1] ⇓M′ |= C′

⇒ M[u:case M of {ini(xi).Mi}i∈{1,2}] ⇓M′/m |= C′

Now we reason for [Abs]. We note, ifA is stateless (cf. Definition 12) andM |= A, then:

1. M[u:M] ⇓M′ with u fresh impliesM′ |= A.
2. M≈ (νl)M′∧M′[x: l ] |= A.

Now assumex, ĩ have functional types.

M |= A⊃M[u:λx.M] |= ∀xĩ.{C}u•x=m{C′}
≡ M |= A⊃M[u:λx.M][x:V][ĩ :W̃] |= {C}u•x=m{C′}
≡ M |= A⊃ (M[u:λx.M][x:V][ĩ :W̃][k:N] ⇓M0∧M0 |= C)

⊃ (M0[m:ux] ⇓M′
0∧M′

0 |= C′)
≡ (M |= A∧M[u:λx.M][x:V][ĩ :W̃][k:N] ⇓M0∧M0 |= C)

⊃ (M0[m:ux] ⇓M′
0∧M′

0 |= C′)
≡ (M |= A∧M[u:λx.M][x:V][ĩ :W̃][k:N] ⇓M0∧M0 |= A∧C) (1) above

⊃ (M0[m:ux] ⇓M′
0∧M′

0 |= C′)
⊂ M0 |= A∧C⊃ (M0[m:M] ⇓M′

0∧M′
0 |= C′)

If x has a reference type, we use (2) instead of (1). Then reasoning is identical.

[App] is reasoned as follows.

M |= C ⇒ M[m:M] ⇓M0 |= C0

⇒ M[n:N] ⇓M1 |= C1∧{C1}m•n=n{C′}
⇒ M[m:M][n:N][u:m•n] ⇓M′ |= C′

1

⇒ M[u:MN] ⇓M′/mn|= C′

For [Deref], we infer:

M |= C ⇒ M[m:M] ⇓M′ |= C′[!m/u]
⇒ M[m:!M] ⇓M′/m |= C′

For [Assign] we first note that
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M |= 〈!x〉(C∧!x = m) iff M[x 7→ [[e]]ξ,σ] |= C

Assumeu is fresh.

M |= C ⇒ M[m:M] ⇓M0 |= C0,M0[n:N] ⇓M′ |= C′{|n/!m|}
⇒ M′[m 7→ n] ⇓M′′ |= C′

⇒ M[u:M := N] ⇓M′′/mn[u:()] |= C′

For [Rec], we establish the result for the following variant (already mentioned in Ap-
pendix B):

[Rec-Ren]
{T} λx.M :u {A}

{T} µ f.λx.M :u {A[u/ f ]}

This variant and its relation with [Rec] is discussed below. Choose arbitraryMΘ· f :α⇒β.
ThenM |= T and

(IH) ⇒ ∀M.M[u:λx.M] |= A

⇒ ∀M.M[ f :µ f.λx.M][u:λx.M] |= A

⇒ ∀M.M[u, f :µ f.λx.M] |= A

⇒ ∀M.M[u:µ f.λx.M] |= ∀ f .( f = a⊃ A)
⇒ ∀M.M[u:µ f.λx.M] |= A[u/ f ]

[Rec] is easily derivable with [Rec-Ren] using mathematical induction at the level of
assertions.

For [Ref], which shows the role of a fresh variable representing an arbitrary pre-
state datum, letu /∈ fpn(e). Then, withu fresh, for allM, we have:

M[u:ref(M)] ⇓M′ impliesM′ |= u#e (?)

[because:M′ has shape:
(νl̃ l )(ξ-u ·u : l ,σ-l · [l 7→V])

with (νl̃0)(Mξ,σ0)⇓ (νl̃0)(V,σ). Then one can check[[e]]ξ·u:l ,σ·[l 7→V] = [[e]]ξ,σ 6∈ ncl(l ,σ ·
[l 7→V]) = ncl(l , [l 7→V]). ] We can now reason, using(?):

M |= C ⇒ M[m:M] ⇓M′ |= C′

⇒ M[m:M][u:ref(M)] ⇓M0 ≈M′[u 7→m]
and M′[u 7→m] |= C′∧!u = m∧u#i (?)

⇒ M[u:ref(M)] ⇓M′′/m |= #u.C[!u/m]

We complete all cases. ut

C.6 Soundness of Invariance Rule

Among the structural rules from the base logic [6] (most of which are sound in the
present logic), here we prove the soundness of the invariance rule.

[Inv]
{C}M :m {C′}@w̃ [!w̃]C0 ≡C0

{C∧C0}M :m {C′∧C0}@w̃
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We use the semantics of located judgements in C.4. We later discuss how we can extend
the proof to the case when the write set is defined by a predicate.

Lemma 18. M1
[!w1]
≈ ..

[!wn]
≈ M2 iff M1

[!w1..wn]
≈ M2.

Proof. By definition. ut

We now show the soundness of [Inv]. Below we letu,v,vi ,z etc. to be fresh.

M M0 |= C∧C0. (C.18)

ImmediatelyM0 |= C hence by the premise we have:

M0[m : M] ⇓M′ |= C (C.19)

as well as, by the definition of located assertions and Lemma 18,

M0
[!w1..wn]
≈ M′ (C.20)

We also have, by[!w̃]C0 ≡C0:
M0 |= [!w̃]C0 (C.21)

By (C.20) and (C.21) we know[!w̃]C0, as required. ut

D Appendix: Soundness of the Axioms

This appendix lists omitted proofs from Section 4. In D.1, we discuss the change needed
for the axiomatisation. In D.2 we establish basic lemmas. In D.4, we prove(AIH)-
axioms.

D.1 Remark on Axioms for Content Quantification

The axiomatisation of content quantification in [6] uses the the well-known axioms
[29, §2.3] for standard quantifiers. In spite of presence of local state, the same axioms
are valid in the presence of local state, though complete axiomatisation remains to be
studied. Below we replace “syntactic !x-freedom” with its semantic counterpart since at
this point we do not know a formalisation of the former with enough reasoning power.

We first set〈!x〉C def= ¬[!x](¬C), then set:

(CA1) [!x]([!x]C1 ⊃C2)⊃ ([!x]C1 ⊃ [!x]C2)
(CA2) [!x]C⊃C
(CA3) [!x](!x = m⊃C)≡ 〈!x〉(C∧ !x = m)

Then we use an inference rule, which infers[!x]C fromC if all assumptions used are !x-
free, where we sayC is semantically !x-free when[!x]C≡C, or, equivalently,〈!x〉C≡C
(any assertion of the form[!x]C or 〈!x〉C satisfy these equivalences). From this we obtain
such properties as[!x]〈!x〉C≡ 〈!x〉C, [!x][!x]C≡ [!x]C≡ 〈!x〉[!x]C, [!x][!y]C≡ [!y][!x]C,
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[!x](C1∧C2) ≡ [!x]C1∧ [!x]C2 and [!x]C1∨ [!x]C2 ⊃ [!x](C1∨C2). We can then justify
the following axioms in [6], some of them being used in the present paper.

(L1) C⊃ 〈!x〉C (L2) 〈!x〉〈!x〉C⊃ 〈!x〉C
(L3) 〈!x〉!x = e (L4) 〈!x〉(C1∨C2)≡ 〈!x〉C1∨〈!x〉C2)
(L5) [!x]C1∧〈!x〉C2)⊃ 〈!x〉(C1∧C2) (L6) 〈!x〉(C1∧C2)≡C1∧〈!x〉C2 (C1 !x-free)

which are enough for the reasoning in the present paper.

The proof of soundness of these laws use the properties of
[!x̃]
≈ . As an example,

to prove a basic law〈!x〉C⊃ [!x]〈!x〉C often used for validation of other laws, we first

supposeM |= 〈!x〉C. Then for someM′ [!x]
≈ M we haveM′ |=C. Now take anyM′′ [!x]

≈ M.

SinceM′ [!x]
≈ M′′ by the transitivity of

[!x]
≈ , we concludeM′′ |= 〈!x〉C.

D.2 Basic Lemmas

Lemma 19. SupposeC is stateless except ˜x andM |= C. SupposeM M′ such that
M andM′ coincide in their content at ˜x, i.e.

1. M
def= (νl̃0)(ξ, σ).

2. M′ def= (νl̃0l̃1)(ξ · x̃: l̃ , σ′).
3. σ(ξ(xi)) = σ′(ξ(xi)) for eachxi ∈ {x̃},

Then we haveM′ |= C.

Proof. We first generate the setSof stateless formulae and the setSSof strongly state-
less formulae as follows.

1. If C∈ SSthenC∈ S.
2. Equations and inequations are inSS.
3. Evaluation formulae of the form{C}e•e′ = z{C′}@w̃ whereeande′ do not contain

!xi , are inS.
4. If C1,2 ∈ S(resp. inC1,2 ∈ SS) thenC1 ?C2 ∈ S(resp.C1 ?C2 ∈ SS) for ? ∈ {∧,∨}.
5. If C∈ S(resp. inC∈ SS) thenQy.C∈ S(resp.Qy.C∈ SS).
6. If C∈ SSthen[!y]C∈ SSand〈!y〉C∈ SS.

We use induction on this generation rules to show:

(a) If C∈ SSandM1,2 coincide at ˜x thenM1 |= C iff M2 |= C.
(b) If C ∈ S andM andM′ satisfy the condition stated in Lemma 19, thenM |= C

impliesM′ |= C.

We start from(a). Equations and inequations are triviality. Similarly for conjunction
and disjunction. For quantification, Consider∀y.C∈ SSand assume

M1 |= ∀y.C (D.1)

and
M1 andM2 coincide at ˜x. (D.2)
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Let us writeP for eithereor V. From (D.2) and by definition we have

M1[y : P] andM2[y : P] coincide at ˜x. (D.3)

Take a logical term or valueP. Then from (D.1) we have

M1[y : P] |= C. (D.4)

SinceC∈ SS, by (D.3) and (D.4) as well as by induction hypothesis, we obtainM2[y :
P] |= C, that isM2 |= ∀y.C, as required.

For content quantification, suppose[!y]C ∈ SS(notey 6∈ {x}) and assumeM1 |=

[!y]C andM1 andM2 coincide at ˜x. Now suppose:M′
2

[!y]
≈ M2. We can safely takeM′

2
to be the result of putting a different value aty in M2 (possibly with additional hidden

store). LetM′
1 be the result of putting the same value aty in M1. ThenM′

1

[!y]
≈ M1 hence

M′
1 |=C. By notingM′

1 andM′
2 coincide at ˜xyhence by induction hypothesis we obtain

M′
2 |= C. HenceM2 |= [!y]C, as required.
For (b), first supposeC∈ SS. By (a) and we immediately knowC satisfies(b). For

evaluation formulae, if
M |= {C} f •g = h{C′} (D.5)

and supposeM M′. SupposeM′ M0 |= C. Then by definitionM M0 |= C too.
Moreovere ande′ are identically interpreted inM andM′ because they coincide at
x̃ (see the defining clause of interpretation of evaluation formulae in Appendix C.2),
hence as required. Note the argument extends to a generalised located assertion{C}e•
e′ = z{C′}@{w|E(w)} since in this casew of E(w) is interpreted inM0. Conjunction
and disjunction are immediate. For quantifications, supposeM1 |= ∀y.C and suppose

M1 M2 is witnessed byN, i.e.: M1[u : N] ⇓ M0 andM2
def= M0/u, as well asM1,2

coincide at ˜x. Let M2[y : P] ⇓M′
2 andM1[y : P] ⇓M′

1. By assumption we have

M′
1 |= C. (D.6)

Sincey is not inN andP does not alter any parts of the model (noteP does not contain
neither writes nor applications) we obtain:

M′
1[u : N] ⇓M′′

2 s.t. M′′
2/u = M′

2. (D.7)

Note M′
1,2 coincide at ˜x. By (D.6) and induction hypothesis, we obtainM′

2 |= C, as
required. The existential quantification is similarly reasoned, hence done. ut

Remark. Semantically speaking, the statelessness ofC exceptw̃ may be characterised
by the following axiom:∀m.({C}m• (){T}@w̃ ⊃ {C}m• (){C}@w̃).

Lemma 20.

1. (narrowing)M |= C andl 6∈ fl(C) imply (νl)M |= C
2. (scope opening)((νl)M)[u:N]≡ (νl)(M[u:N]) with l 6∈ fl(N).

Proof. By definition. ut
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Lemma 21. (expose)If we have

1. |= {C}M :u {ν#x.C′},
2. M

def
= (νl̃)(ξ, σ) andM |= C and

3. M[u : M] ⇓M′,

then we haveM′ ≈ (νl̃ l̃ ′l ′′)(ξ ·u : V, σ′) such that(νl̃ l̃ ′)(ξ ·u : V · x : l ′′, σ′) |= C and
l ′′ 6∈ ncl(ξ,σ′).

Proof. We first expand{C}M :u {ν#x.C′} into:

{C}M :u {∃x.(x#i ∧ C′)} (D.8)

with i fresh. Now assumeM |= C as well asM[u : M] ⇓ M′, so that we haveM′ |=
∃x.(x#i ∧ C′). Let M′ def= (νl̃ l̃ ′)(ξ, σ′). By the semantics of∃, we have two cases.

(νl̃ l̃ ′)(ξ ·x : l ′′, σ) |= (x#i ∧ C′) (D.9)

such that either

(A) l 6∈ {l̃ ′} (i.e. l ′′ exists from the prestate) or
(B) l ∈ {l̃ ′} (i.e. l ′′ is newly created).

We show (A) is impossible. Suppose by contradiction (A) is the case. Notingi is in M,
let Ml ′′ be the result of assigningl ′′ to i in M (otherwise leaving all data as inM). Since
i does not occur inC, we still have:

Ml ′′ |= C (D.10)

Hence we have
M[u : M] ⇓M′

l ′′ |= ∃x.(x#i ∧ C′). (D.11)

whereM′
l ′′ is the result of assigningl ′′ to i in M′, otherwise asM′ (note this is possible

sincei is fresh). This immediately means (A) is impossible. Since this holds for each
free label inM, we conclude only (B) is the possibility. So we let:

M′ def= (νl l̃ ′)(ξ ·u : V ·x : l ′′, σ ·σ′) (D.12)

such that
(νl̃ l̃ ′)(ξ ·u : V ·x : l ′′, σ) |= x#i ∧ C′. (D.13)

anddom(σ′) = {l l̃ ′}. We now showl ′′ is not accessible fromξ andσ. Supposel ′′ is
reachable from sayy∈ dom(ξ). Then we takeMy which is the result of assigning the
image ofy to i. By the same argument as before, we obtain:

My[u : M] ⇓M′
y |= ∃x.(x#i ∧ C′). (D.14)

Hence(νl̃ l̃ ′)(ξy · u : V · x : l ′′, σ) |= x#i ∧ C′ whereξy comes fromMy, which is
impossible. Since the same argument holds for any hiddenl ′′ mapped tox and any
variable/label indom(ξ∪σ), we concludel ′′ is unreachable from any prestate datum.

ut
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D.3 Proof of Proposition 11

SupposeM |= {x# f yw∧C} f •y=z{C′}@w. The definition of the evaluation formula
says, withu fresh,

∀N,(M[u : N] ⇓M0∧M0 |= x# f yw∧C ⊃ ∃M′.(M0[z : f y] ⇓M′∧M′ |= C′)).

We prove suchM′ always satisfiesM′ |= x#zw. Assume

M0 ≈ (ν~l)(ξ,σ0]σx)

with ξ(x) = l , ξ(y) = Vy, ξ( f ) = Vf andξ(w) = lw such that

ncl(fl(Vf ,Vy, lw),σ0]σx) = fl(σ0) = dom(σ0)

andlx ∈ dom(σx). By this partition, during evaluation ofz : f y, σx is unchanged, i.e.

(ν~l)(ξ ·z : f y,σ0]σx)→→ (ν~l)(ξ ·z : VfVy,σ0]σx)→→ (ν~l ′)(ξ ·z : Vz,σ′0]σx)

Then obviously there existsσ1 such thatσ1 ⊂ σ′0 and

ncl(fl(Vz, lw),σ′0]σx) = fl(σ1) = dom(σ1)

Hence by Proposition 4, we haveM0 |= x#wz, completing the proof. ut

D.4 Proof of Propositions 13, 14 and 15

In the following we prove Proposition 14. Since Proposition 13 is its special case while
the proof of Proposition 15 is essentially identical (as noted at the end of the proof), this
suffices.

Proposition. AssumeC0 is stateless except ˜x, xi 6∈ fv(C,C′,E′) for eachxi ∈{x̃}. Then
the following is valid.

(AIH) {E}m• ()=u{ν#x̃.(E1∧E′)} ⊃ {E}m• ()=u{E2∧E′}

where withm fresh and

– E1 = InvA(u,C0, x̃, w̃) ∧ ∀y.{C0∧ [!x̃]C}u•y=z{C′}@w̃x̃.
– E2 = ∀y.{C}u•y=z{C′}@w̃

where each quantifiedy is of a base type of a sum/product of base types.

Proof. We first set:

G≡ ν#x.G0 (D.15)

G0 ≡ C0∧G1∧G2 (D.16)

G1 ≡ ∀y.{C0∧ [!x̃]C}u•y=z{C′}@xw̃ (D.17)

G2 ≡ ∀y.{C0∧ x̃#yr̃w̃}u•y=z{C0∧ x̃#zw̃}@w̃x̃ (D.18)
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W.o.l.g. we assume all vectors are unary, setting ˜r = r, w̃ = w and x̃ = x. Since the

argument does not differ, we also setE
def= T. Thus we are to prove, for eachM andM:

M0[u : M] ⇓M |= G ⊃ M0[u : M] ⇓M |= G1∧G2 (D.19)

By Lemma 21 we can set5

M = (νl l̃ ′)(ξ,σ · [l 7→V]) |= G (D.20)

such that
M∗ = (νl̃ ′)(ξ · [x : l ],σ · [l 7→V]) |= C0∧G1∧G2 (D.21)

as well as
l 6∈ fl(ξ,σ). (D.22)

Now assume, for an appropriately typedN and freshf :

M∗[ f : N] ⇓Ma (D.23)

Then we have
M∗[ f : N] ⇓M∗

a such that (νl)M∗
a = Ma. (D.24)

We now inferM∗
a |= C0 from M∗ |= G2 andC0 being stateless exceptx. By (D.21) and

by the satisfaction of conjunction, we obtainM∗ |= G2, i.e.

M∗ |= ∀y.{C0∧x#yrw}u•y = z{C0∧x#zw}@wx (D.25)

Observe
M∗ |= C0 ∧ x#yrw (D.26)

Hence takingN to beuV (an application ofu toV, whose shape is fixed by the assumed
type, i.e. the base type or its composite) for any appropriately typedV (which, by the
definition ofN, cannot containl ), we have, by (D.25):

M∗
a |= C0 ∧ x#yrw. (D.27)

Note the condition thatC0 holds and thatx is disjoint from all visible data is still in-
variant in the resulting state. Hence we can again invokeu from Ma to obtain the same
invariant.

In fact, for any appropriateN such thatM[ f : N] makes sense, it can only touchx
through invokingu. Moreover by assumption we knowC0 stateless exceptx so that,
by Lemma 19, no state change other thanx can change the satisfiability ofC0. Thus,
in M∗[ f : N], as far as zero or more invocations ofu results in the above invariant,C0

continues to hold, that is:
M∗

a |= C (D.28)

By the previous argument we knowx (or its denotation,l ) is disjoint from the other
visible references. That is, notingx 6∈ fv(C), for each active dereference !y, we have
y 6= x, hence we have:

M∗
a |= [!x]C (D.29)

5 For simplicity we assume onlyl is newly added: the general case does not change the argument.

55



Thus we have
M∗

a |= C0 ∧ [!x]C (D.30)

Hence we know:
M∗

a[z : uy] ⇓M∗
b |= C′ (D.31)

Sincex is not used inC′, we conclude, settingMb
def= (νl)M∗

b:

Ma[z : uy] ⇓Mb |= C′ (D.32)

with the write setxw̃. Thus we have

M |= ν#x.{C}u•y = z{C′}@wx (D.33)

Sincex in (D.32) denotes the freshl , this writing (if any) does not count if we start from
Ma, hence we obtain:

M |= {C}u•y = z{C′}@w (D.34)

which is the required assertion.
For Proposition 13, we observe the condition for non-extrusion is guaranteed by

typing. For treating Proposition 15, we only add, throughout the arguments, the assign-
ment of values to ˜g guaranteed by their existential quantification. ut

D.5 Proof of Proposition 16

We show an outline. AssumeC0 is stateless except ˜x and suppose:

M |= Inv( f ,C0, x̃, r̃, w̃) ∧ {T}g• f = z{T}). (D.35)

Further assumeM M0 and

M0 |= C0∧ x̃#gr̃ and M0[z : f g] ⇓M′. (D.36)

By Inv( f ,C0, x̃, r̃, w̃) we know that onceC0 holds andf is invoked, it continues to hold.
By {T}g• f = z{T}, we know the applicationg f always terminates. Now this applica-
tion invokesf zero or more times. First time it can only applyf to some ˜x-unreachable
datum. Similarly for the second time, since the context cannot obtain ˜x-reachable datum
(giveng itself is x̃-unreachable). By induction the same holds up to the last invocation.
In each invocation,C0 is invariant. Further, other computations inf g never touch the
content of ˜x, hence because ofC0 being stateless except ˜x, we knowC0 is again invari-
ant in such computations. Thus we conclude thatC0 still holds in the postcondition, and
that the return value being ˜x-unreachable, i.e. ˜x#z, as required. ut

E Derivations for Examples in Section 5

This appendix lists the derivations omitted in Section 5.
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E.1 Derivation for [LetRef]

We can derive[LetRef] as follows.

1. {C}M :m {C0} (premise)

2. {C0[!x/m]∧x#ẽ} N :u {C′} with x /∈ fpn(ẽ) (premise)

3. {C} ref(M) :x {#x.C0[!x/m]} (1,Ref)

4. {C} ref(M) :x {#x.(C0[!x/m]∧x#ẽ)} (Subsn-times)

5. {C} ref(M) :x {νy.(C0[!x/m]∧x#ẽ∧x = y)} (Conseq)

6. {C0[!x/m]∧x#ẽ∧x = y} N :u {C′∧x = y} (2, Invariance)

7. {C} let x = ref(M) in N :u {νy.(C′∧x = y)} (5,6,LetOpen)

8. {C} let x = ref(M) in N :u {νx.C′} (Conseq)

Lines 5 and 8 use the standard logical law (discussed below). Lines 4 and 7 use the
following derived/admissible proof rules:

[Subs]
{C}M :u {C′} u 6∈ fpn(e)
{C[e/i]}M :u {C′[e/i]} [LetOpen]

{C}M :x {νỹ.C0} {C0} N :u {C′}
{C} let x = M in N :u {νỹ.C′}

[LetOpen] opens the “scope” of ˜y to N. The crucial step is Line 5, which turns freshness
“#” into locality “ ν” through the standard law of equality and existential,C⊃ ∃y.(C ∧
x = y) with y fresh (see Appendix C.3 for discussions on quantifiers over reference
variables).

E.2 Derivation for IncUnShared

For illustration, we contrast the inference ofIncShared with:

IncUnShared
def= a:=Inc;b:=Inc;c1 :=(!a)();c2 :=(!b)();(!c1+!c2)

This program assigns toa andb two separate instances ofInc. This lack of sharing
betweena andb in IncUnShared is captured by the following derivation:

1.{T} Inc :m {νx.inc′(u,x,0)}

2.{T} a := Inc {νx.inc′(!a,x,0)}

3.{inc′(!a,x,0)} b := Inc {νy.inc′′(0,0)}

4.{inc′′(0,0)} c1 := (!a)() {inc′′(1,0)∧!c1 = 1}

5.{inc′′(1,0)} c2 := (!b)() {inc′′(1,1)∧!c2 = 1}

6.{!c1 = 1∧!c2 = 1} (!c1)+(!c2) :u {u = 2}

7.{T} IncUnShared :u {νxy.u = 2}

8.{T} IncUnShared :u {u = 2}
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Above inc′′(n,m) = inc′(!a,x,n)∧ inc′(!b,y,m)∧ x 6= y. Notex 6= y is guaranteed by
[LetRef]. This is in contrast to the derivation forIncShared, where, in Line 3,x is
automatically shared after “b :=!a” which leads to scope extrusion.

E.3 Derivation for mutualParity and safeEven

Let us define:

Mx
def= λn.if y = 0 then f else not((!y)(n−1))

My
def= λn.if y = 0 then t else not((!x)(n−1))

We also use:

IsOdd′(u,gh,n,xy) = IsOdd(u,gh,n,xy)∧ !x = g∧ !y = h
IsEven′(u,gh,n,xy) = IsEven(u,gh,n,xy)∧ !x = g∧ !y = h

We use the following derived rules and one standard structure rule appeared in [21].

[Simple] −
{C[e/u]}e :u {C}

[IfH ] {C∧e}M1 :u {C′} {C∧¬e}M2 :u {C′}
{C}if ethen M1 else M2 :u {C′}

[∧-Post] {C}M :u {C1} {C}M :u {C2}
{C}M :u {C1∧C2}

Figure 3 lists the derivation forMutualParity. In Line 4,h in the evaluation formula
can be replaced by !y and vice vercer because of !y = h and the universal quatification
of h.

∀h.(!y = h∧{C}h•n = z{C′}) ≡ ∀h.(!y = h∧{C}(!y)•n = z{C′})

In Line 5, we use the following axiom for the evaluation formula from [21]:

{C∧A} e1•e2 = z{C′} ≡ A ⊃ {C}e1•e2 = z{C′}

whereA is stateless in the sense of Definition 12 and we setA= IsEven(h,gh,n−1,xy).
Line 9 is derived as Line 4 by replacingh andg by !y and !x, respectively. Line 11 is
the standard logical implication (∀x.(C1 ⊃C2)⊃ (∃x.C1 ⊃ ∃x.C2)). Now we derive for
safeEven. Let us define:

ValEven(u) = ∀n.{T}u•n=z{z= Even(n)}@/0
C0 = !x = g∧ !y = h ∧ IsOdd(g,gh,n,xy)

Evena = C0 ∧ ∀n.{C0}u•n=z{C0}@xy
Evenb = ∀n.{C0}u•n=z{z=Even(n)}@xy
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Fig. 3 mutualParity derivations

1. {(n≥ 1⊃ IsEven′(!y,gh,n−1,xy)) ∧ n = 0} f :z {z= Odd(n) ∧ !x = g∧ !y = h}@/0
(Const)

2. {(n≥ 1⊃ IsEven′(!y,gh,n−1,xy)) ∧ n≥ 1}
not((!y)(n−1)) :z {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (Simple, App)

3. {n≥ 1⊃ IsEven′(!y,gh,n−1,xy)}
if n = 0 then f else not((!y)(n−1)) :m {z= Odd(n) ∧ !x = g∧ !y = h}@/0 (IfH)

4. {T} λn.if n = 0 then f else not((!y)(n−1)) :u
{ ∀gh,n≥ 1.{IsEven′(h,gh,n−1,xy)}u•n=z{z= Odd(n) ∧ !x = g∧ !y = h}@/0}@/0

(Abs, ∀, Conseq)

5. {T} Mx :u { ∀gh,n≥ 1.(IsEven(h,gh,n−1,xy)⊃ IsOdd(u,gh,n,xy))}@/0 (Conseq)

6. {T} x := Mx{ ∀gh,n≥ 1.(IsEven(h,gh,n−1,xy)⊃ IsOdd(!x,gh,n,xy)) ∧ !x = g}@x
(Assign)

7. {T} y := My{ ∀gh,n≥ 1.(IsOdd(g,gh,n−1,xy)⊃ IsEven(!y,gh,n,xy)) ∧ !y = h}@y

8. {T} mutualParity
{∀gh.n≥ 1.((IsEven(h,gh,n−1,xy)∧ IsOdd(g,gh,n−1,xy))⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h) }@xy (∧-Post)

9. {T} mutualParity
{∀n≥ 1gh.((IsEven(h,gh,n−1,xy)∧ IsOdd(g,gh,n−1,xy)∧!x = g∧!y = h)⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

10. {T} mutualParity
{∀n≥ 1gh.((IsEven(!y,gh,n−1,xy)∧ IsOdd(!x,gh,n−1,xy)∧!x = g∧!y = h)⊃

(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

11. {T} mutualParity
{∀n≥ 1.(∃gh.(IsEven(!x,gh,n−1,xy)∧ IsOdd(!y,gh,n−1,xy)∧!x = g∧!y = h)⊃
∃gh.(IsEven(!y,gh,n,xy)∧ IsOdd(!x,gh,n,xy)∧!x = g∧!y = h)}@xy (Conseq)

12. {T} mutualParity{∃gh.IsOddEven(gh, !x!y,xy,n)}@xy

The derivation is similar tosafeFact.

1.{T}λn.t :m {T}@/0

2.{T}mutualParity ; !y :u {∃gh.IsOddEven(gh,gu,xy,n)}@xy

3.{T}mutualParity ; !y :u {∃gh.(Evena ∧ Evenb)}@xy

4.{xy#i j}mutualParity ; !y :u {∃gh.(xy#i j ∧ Evena ∧ Evenb)}@xy

5.{T}safeEven :u {ν#xy∃gh.(Evena ∧ Evenb)}@/0

6.{T}m•()=u{ν#xy∃gh.(Evena∧Evenb)} ⊃ {T}m•()=u{ValEven(u)} (by (AIHA∃))

7.{T}safeEven :u {ValEven(u)}@/0
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E.4 Derivation for Meyer-Seiber

For the derivation of (5.6) we use (ε is the empty string):I = Inv( f ,Even(!x),x,ε,ε),
G0 = {Even(!x)∧ x#g}g• f{Even(!x)}, andG1 = {T}g• f{T}. The derivation fol-
lows. BelowM1,2 is the body of the first/second lets, respectively.

1.{Even(!x)∧G0} g f {Even(!x)} (App)

2.{Even(!x)∧ I ∧G1} g f {Even(!x)} (1, Conseq)

3.{E∧ [!x]C∧ I ∧x#g} g f {C′}@w̃x (App)

4.{E∧ [!x]C∧ I ∧x#g} g f {Even(!x)∧C′}@w̃x (2, 3, Conj)

5.{Even(!x)∧C′} if even(!x) then () else Ω() {C′}@/0 (If)

6.{E∧ [!x]C∧ I ∧x#g}M2{C′}@w̃x (4, 5, Seq)

7.{Even(!x)}λ().x :=!x+2 :f {I}@/0 (Abs etc.)

8.{E∧ [!x]C∧Even(!x)∧x#g} M1 {C′}@w̃x (7, 6, LetRef)

9.{E∧C} 0 :m {E∧C∧Even(m)}@/0 (Const)

10.{E∧C} MeyerSieber {C′}@w̃ (9, LetRef)

Line 2 uses the axiom in Proposition 16. Line 4 uses the standard structural rule. Line
10 cancels[!x] from [!x]C which is possible sincemdoes not occur inC.

E.5 Derivation for Object

We need the following generalisation: The procedureu in (AIH) is of a function type
α ⇒ β: when values of other types such asα×β or α + β are returned, we can make
use of a generalisation. For simplicity we restrict our attention to the case when types
do not contain recursive or reference types.

Inv(uα×β,C0, x̃, r̃, w̃)=∧i=1,2Inv(πi(u),C0, x̃, r̃, w̃)

Inv(uα+β,C0, x̃, r̃, w̃)=∧i=1,2∀yi .(u = inji(yi)⊃ Inv(yi ,C0, x̃, r̃, w̃))
Inv(uα,C0, x̃, r̃, w̃)=T (α ∈ {Unit,Nat,Bool})

Using this extension, we can generalise(AIH) so that the cancelling ofC0 is possible for
all components ofu. For example, ifu is a pair of functions, those two functions need
to satisfy the same condition as in(AIH). This is what we shall use forcellGen. We
call the resulting generalised axiom(AIHc).

Let cell be the internalλ-abstraction ofcellGen. First, it is easy to obtain:

{T} cell :o {I0 ∧ G1 ∧ G2 ∧ E′} (E.1)

where, withI0 =!x0 =!x1 andE′ =!x0 = z.

G1 = {I0}π1(o)• () = v{v =!x0∧ I0}@/0
G2 = ∀w.{I0}π1(o)•w{!x0 = w∧ I0}@x0x1
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which will become, after taking off the invariantI0:

G′
1 = {T}π1(o)• () = v{v =!x1}@/0

G′
2 = ∀w.{T}π1(o)•w{!x0 = w}@x0.

Note I0 is stateless exceptx0. In G1, notice the empty write set means !x1 does not

change from the pre to the postcondition. We now present the inference. We setcell′
def=

let y = ref(0) in cell below.

1.{T} cell :o {I0∧G1∧G2∧E′}

2.{T} cell′ :o {I0∧G1∧G2∧E′} (LetRef)

3.{T}let x1= zincell′ :o {ν#x1.(I0∧G1∧G2)∧E′} (LetRef)

4.{T} let x1 = zin cell′ :o {G′
1∧G′

2∧E′} (AIH c, ConsEval)

5.{T} let x0,1 = zin cell′ :o {ν#x.( G′
1∧G′

2∧E′ )} (LetRef)

6.{T} cellGen :u {CellGen(u)} . (Abs)
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