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A multiparty session forms a unit of structured interactions among many participants which

follow a prescribed scenarios specified as a global type signature. When a distributed protocol is
engaged in two or more specifications simultaneously, each session following a distinct global type

can be dynamically merged and interfered by another at runtime (through the channel delegation
operation). Previous work on multiparty session types has ignored this dynamic nature, providing

a limited progress property ensured only within a single session, by assuming non-interference

among different sessions and by forbidding delegation.
This paper develops, besides a more traditional communication type system, a novel static

interaction type system for global progress in dynamically merged and interfered multiparty ses-

sions. High-level session processes equipped with global signatures are translated into low-level
processes, in which type-soundness is guaranteed against the local, compositional type system.

This avoids a global linearity-check without scarifying the original expressivity. The interaction

type system automatically infers causalities of channels for the low level processes, ensuring the
entire protocol, starting from the high-level processes which consist of multiple sessions, does not

get stuck at intermediate sessions also in presence of delegation.
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1. INTRODUCTION

Widespread use of message-based communication for developing network applications to
combine numerous distributed services has provoked urgent interests in structuring se-
ries of interactions to specify and program communication-safe software. The actual de-
velopment of such applications still leaves to the programmer much of the responsibility
in guaranteeing that communication will evolve as agreed by all the involved distributed
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peers. Multiparty session type discipline proposed in [Honda et al. 2008] offers a type-
theoretic framework to validate a messages-exchange among concurrently running multi-
ple peers in the distributed environment, generalising the existing two-party session types
[Honda 1993; Honda et al. 1998]; interaction sequences are abstracted as a global type
signature, which precisely declares how multiple participants communicate and synchro-
nise with each other. Recently the two standardisation bodies for web-based business and
finance protocols [Web Services Choreography Working Group 2002; UNIFI 2002] have
investigated a design and implementation framework for standardising message exchange
rules and validating business logic based on a notion of multiparty sessions, where a global
type plays as a “shared agreement” between a team of programmers who are developing
(possibly) a large size of distributed protocol or software by collaborations.

The initial multiparty session type discipline aims to retain the powerful dynamic fea-
tures from the original binary sessions [Honda et al. 1998], incorporating features such as
recursion and choice of interactions. Among features, session delegation is a key operation
which permits to rely on other parties for completing specific tasks transparently in a type
safe manner. A typical scenario is a web server delegating remaining interactions with a
client to an application server to complete a transaction. The customer and the application
server are initially unknown to each other but later communicate directly (transparently to
the customer), through dynamic mobility of the session. When this mechanism is extended
to multiparty interactions engaged in two or more specifications simultaneously, further
complex interactions can be modelled: each multiparty session following a distinct global
type can be dynamically merged and interfered by another at runtime via the channel del-
egation operation, grouping several structured conversations.

Previous work on multiparty session types [Honda et al. 2008] has ignored this dynamic
nature, providing a limited progress property ensured only within a single session, by as-
suming non-interference among different sessions and by forbidding delegation. More
precisely, although the previous system assures that the multiple participants respect the
protocol, by checking the types of exchanged messages and the order of communications,
it cannot guarantee a global progress, i.e, that a protocol which merges several global sce-
narios will not get stuck in the middle of a session. This limitation prohibits to ensure a
successful termination of a transaction, making the framework practically inapplicable to
a large size of dynamically reconfigured conversations.

This paper develops, besides a more traditional communication type system (§ 4), a
novel static interaction type system (§ 5) for global progress in dynamically merged and
interfered multiparty, asynchronous sessions. High-level session processes equipped with
global signatures are translated into low-level processes which have explicit senders and
receivers (§ 2.5). Type-soundness of low-level processes is guaranteed against the local,
compositional communication type system (§ 4.4).

The new calculus for multiparty sessions offers three technical merits without sacrificing
the original simplicity and expressivity in [Honda et al. 2008]. First it avoids the overhead
of global linearity-check in [Honda et al. 2008]; secondly it provides a more liberal policy
in the use of variables, both in delegation and in recursive definitions; finally it implicitly
provides each participant of a service with a runtime channel indexed by its role with which
he can communicate with all other participants, permitting also broadcast in a natural way.
The use of indexed channels, moreover, permits to define a light-weight interaction type
system for global progress.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.
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Fig. 1. The three buyer protocol interactions

The interaction type system automatically infers causalities of channels for the low level
processes, ensuring the entire protocol, starting from the high-level processes which consist
of multiple sessions, does not get stuck at intermediate sessions also in the presence of
delegation.

2. SYNTAX

Before presenting the syntax of our calculus formally, we provide a small example, in order
to give a basic idea of the functionalities and the linguistic features of our language.

2.1 Merging Two Conversations: Three Buyer Protocol

We introduce our calculus through an example, the three-buyer protocol, extending the
two-buyer protocol from [Honda et al. 2008], which includes the new features, session-
multicasting and dynamically merging two conversations. The overall scenario, involving
a Seller (S), Alice (A), Bob (B) and Carol (C), proceeds as follows.

(1) Alice sends a book title to Seller, then Seller sends back a quote to Alice and Bob.
Then Alice tells Bob how much she can contribute.

(2) If the price is within Bob’s budget, Bob notifies both Seller and Alice he accepts, then
sends his address, and Seller sends back the delivery date.

(3) If the price exceeds the budget, Bob asks Carol to collaborate together by establishing a
new session. Then Bob sends how much Carol must pay, then delegates the remaining
interactions with Alice and Seller to Carol.

(4) If the rest of the price is within Carol’s budget, Carol accepts the quote and notifies
Alice, Bob and Seller, and continues the rest of the protocol with Seller and Alice
transparently, as if she were Bob. Otherwise she notifies Alice, Bob and Seller to quit
the protocol.

Figure 1 depicts an execution of the above protocol where Bob asks Carol to collaborate (by
delegating the remaining interactions with Alice and Seller) and the transaction terminates
successfully.

Then multiparty session programming consists of two steps: specifying the intended
communication protocols using global types, and implementing these protocols using pro-
cesses. The specifications of the three-buyer protocol are given as two separated global
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types: one is Ga among Alice, Bob and Seller and the other is Gb between Bob and Carol.
We write principals with legible symbols though they will actually be coded by numbers:
in Ga we have S = 3, A = 1 and B = 2, while in Gb we have B = 2, C = 1.

Ga = Gb =
1. A −→ S : 〈string〉.
2. S −→ {A,B} : 〈int〉.
3. A −→ B : 〈int〉.
4. B −→ {S,A} : {ok :B−→ S : 〈string〉.
5. S−→ B : 〈date〉;end
6. quit : end}

1. B −→ C : 〈int〉.
2. B −→ C : 〈T 〉.
3. C −→ B : {ok : end, quit : end}.

T =
⊕({S,A},
{ok :!〈S,string〉; ?〈S,date〉;end,
quit : end})

The types give a global view of the two conversations, directly abstracting the scenario
given by the diagram. In Ga, line 1 denotes A sends a string value to S. Line 2 says S
multicasts the same integer value to A and B and line 3 says that A sends an integer to B.
In lines 4-6 B sends either ok or quit to S and A. In the first case B sends a string to S and
receives a date from S, in the second case there are no further communications.

Line 2 in Gb represents the delegation of the capability specified by the action type T of
channels (formally defined later) from B to C (note that S and A in T concern the session
on a).

We now give the code, associated to Ga and Gb, for S, A, B and C in a “user” syntax
formally defined in the following section1:

S = a [3](y3).y3?(title);y3!〈quote〉;y3&{ok : y3?(address);y3!〈date〉;0, quit : 0}

A = a[1](y1).y1!〈"Title"〉;y1?(quote);y1!〈quote div 2〉;y1&{ok : 0, quit : 0}

B = a[2](y2).y2?(quote);y2?(contrib);
if (quote - contrib < 100) then y2⊕ok;y2!〈"Address"〉;y2?(date);0
else b [2](z2).z2!〈quote - contrib - 99〉;z2!〈〈y2〉〉;z2&{ok : 0, quit : 0}

C = b[1](z1).z1?(x);z1?((t));
if (x < 100) then z1⊕ok; t⊕ok; t!〈"Address"〉; t?(date);0
else z1⊕quit; t⊕quit;0

Session name a establishes the session corresponding to Ga. S initiates a session involv-
ing three bodies as third participant by a [3](y3): A and B participate as first and second
participants by a[1](y1) and a[2](y2), respectively. Then S, A and B communicate using
the channels y3, y1 and y2, respectively. Each channel yp can be seen as a port connecting
participant p with all other ones; the receivers of the data sent on yp are specified by the
global type (this information will be included in the runtime code). The first line of Ga is
implemented by the input and output actions y3?(title) and y1!〈"Title"〉. The last line of
Gb is implemented by the branching and selection actions z2&{ok : 0, quit : 0} and z1⊕ok,
z1⊕quit.

In B, if the quote minus A’s contribution exceeds 100e (i.e., quote - contrib≥ 100), an-
other session between B and C is established dynamically through shared name b. The del-

1In the examples we will use the following font conventions: variables (bound by an input action) are in italics
and constants (when their value is not relevant) are in sans serif; string literals are in monospace font and double
quoted.
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Fig. 2. The three buyer protocol (with recursion): additional interactions

egation is performed by passing the channel y2 from B to C (actions z2!〈〈y2〉〉 and z1?((t))),
and so the rest of the session is carried out by C with S and A. We can further enrich this
protocol with recursive-branching behaviours in interleaved sessions (for example, C can
repeatedly negotiate the quote with S as if she were B). What we want to guarantee by static
type-checking is that the whole conversation between the four parties preserves progress
as if it were a single conversation.

2.2 Three Buyer Protocol (with recursion)

We now describe a variant of the example of Section 2.1 that uses recursion; in particular,
the scenario is basically the same, the only part that changes is that, if the price exceeds
the budget, Bob initiates a negotiate with Carol to collaborate together by establishing a
new session: Bob starts asking a first proposal of contribution to Carol. At each step Carol
answers with a new offer. Bob can accept the offer, try with a new proposal or give up.
When Bob decides to end the negotiate (accepting the offer or giving up) he communicated
the exit to Carol and, as before, Carol concludes the protocol with Seller. The auxiliary
process Daniel (D) (as well as the session c) is used as a kind of temporary store for the
delegation channel y2 during the negotiation between Alice and Bob. Figure 2 depicts the
part of the protocol involving possible recursion (case (b), right).

The communication protocols are described by the following global types; these are
similar to the ones of Section 2.1. In particular Ga is exactly the same (since the server
does not notice the further interactions among the buyers). Instead, Gb is now more in-
volved since we have a recursive part which represents the (possibly) recursive negotiation
between Bob and Carol; finally Gc simply register the transfer the delegation channel to
Carol.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.
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S = a [3](y3).y3?(title);y3!〈quote〉;y3&{ok : y3?(address);y3!〈date〉;0, quit : 0}

A = a[1](y1).y1!〈"Title"〉;y1?(quote);y1!〈quote div 2〉;y1&{ok : 0, quit : 0}

B = a[2](y2).y2?(quote);y2?(contrib);
if (quote - contrib < 100) then y2⊕ok;y2!〈"Address"〉;y2?(date);0
else b [2](z2).

def X(x,z,y) =
z!〈x〉;z?(x1);
if good(x1) then z⊕ok;z!〈〈y〉〉;0
else if negotiable(x1) then y⊕more;X(newproposal(x1),z,y)

else y⊕quit;z!〈〈y〉〉;0
in X(firstproposal(quote),z2,y2)

C = b[1](z1). def Y (u) = u?(x′);u!〈offer(x′)〉;
y&{ok : u?((t)); t⊕ok; t!〈"Address"〉; t?(date);0

more : Y (u),
quit : u?((t)); t⊕quit;0}

in Y (z1)

Fig. 3. The three buyer example with recursion.

Ga = Gb =

1. A −→ S : 〈string〉.
2. S −→ {A,B} : 〈int〉.
3. A −→ B : 〈int〉.
4. B −→ {S,A} : {ok :B−→ S : 〈string〉.
5. S−→ B : 〈date〉;end
6. quit : end}

1. µt.B −→ C : 〈int〉.
2. C −→ B : 〈int〉.
3. B −→ C : {ok : B−→ C : 〈T 〉;end,

more : t,
quit : B−→ C : 〈T 〉;end}

T =
⊕({S,A},
{ok :!〈S,string〉; ?〈S,date〉;end,
quit : end})

The code of the example is in Figure 3. Again, it is similar to the previous one, but
for the recursive negotiation between Bob and Carol, and for the presence of the auxiliary
process and session.

2.3 User syntax

The syntax for processes initially written by the user, called user-defined processes, is
based on [Honda et al. 2008]. We start from the following sets: service names, ranged
over by a,b, . . . (representing public names of endpoints), value variables, ranged over by
x,x′, . . . , identifiers , i.e., service names and variables, ranged over by u,w, . . . , channel
variables, ranged over by y,z, t . . . , labels, ranged over by l, l′, . . . (functioning like method
names or labels in labelled records); process variables, ranged over by X ,Y, . . . (used for
representing recursive behaviour). Then processes, ranged over by P,Q . . . , and expres-
sions, ranged over by e,e′, . . . , are given by the grammar in Table I.

For the primitives for session initiation, u [n](y).P initiates a new session through an
identifier u (which represents a shared interaction point) with the other multiple partici-
pants, each of shape u[p](y).Qp where 1≤ p≤ n−1. The (bound) variable y is the channel
used to do the communications. We call p, q,... (ranging over natural numbers) the par-
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P ::= u [n](y).P Multicast Request
| u[p](y).P Accept
| y!〈e〉;P Value sending
| y?(x);P Value reception
| y!〈〈z〉〉;P Session delegation
| y?((z));P Session reception
| y⊕ l;P Selection
| y&{li : Pi}i∈I Branching

u ::= x | a Identifier
v ::= a | true | false Value

| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| (νa)P Hiding
| def D in P Recursion
| X〈e,y〉 Process call

e ::= v | x
| e and e′ | not e . . . Expression

D ::= X(x,y) = P Declaration

Table I. Syntax for user-defined processes

ticipants of a session. Session communications (communications that take place inside an
established session) are performed using the next three pairs of primitives: the sending and
receiving of a value; the session delegation and reception (where the former delegates to
the latter the capability to participate in a session by passing a channel associated with the
session); and the selection and branching (where the former chooses one of the branches
offered by the latter). The rest of the syntax is standard from [Honda et al. 1998].

2.4 Global Types

A global type, ranged over by G,G′, .. describes the whole conversation scenario of a mul-
tiparty session as a type signature. Its grammar is given below:

Global G ::= p→Π : 〈U〉.G′ Exchange U ::= S | T
| p→Π : {li : Gi}i∈I Sorts S ::= bool | . . . | G
| µt.G | t | end

We simplify the syntax in [Honda et al. 2008] by eliminating channels and parallel com-
positions, while preserving the original expressivity (see § 7).

The global type p→ Π : 〈U〉.G′ says that participant p multicasts a message of type
U to participants pk (pk ∈ Π) and then interactions described in G′ take place. Exchange
types U,U ′, ... consist of sorts types S,S′, . . . for values (either base types or global types),
and action types T,T ′, . . . for channels (discussed in §4). Type p→ Π : {li : Gi}i∈I says
participant p multicasts one of the labels li to participants pk (pk ∈ Π). If l j is sent, inter-
actions described in G j take place. Type µt.G is a recursive type, assuming type variables
(t, t′, . . . ) are guarded in the standard way, i.e., type variables only appear under some pre-
fix. We take an equi-recursive view of recursive types, not distinguishing between µt.G
and its unfolding G{µt.G/t} [Pierce 2002, §21.8]. We assume that G in the grammar of
sorts is closed, i.e., without free type variables. Type end represents the termination of the
session. We often write p→ p′ for p→{p′}.

2.5 Runtime Syntax

User defined processes equipped with global types are executed through a translation into
runtime processes. The runtime syntax (Table II) differs from the syntax of Table I since the
input/output operations (including the delegation ones) specify the sender and the receiver,
respectively. Thus, c!〈Π,e〉 sends a value to all the participants in Π; accordingly, c?(p,x)
denotes the intention of receiving a value from the participant p. The same holds for
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P ::= c!〈Π,e〉;P Value sending
| c?(p,x);P Value reception
| c!〈〈p,c′〉〉;P Session delegation
| c?((q,y));P Session reception

| c⊕〈Π, l〉;P Selection
| c&(p,{li : Pi}i∈I) Branching
| (νs)P Hiding session
| s : h Named queue
| ...

c ::= y | s[p] Channel
m ::= (q,Π,v) | (q,p,s[p′]) | (q,Π, l) Message in transit
h ::= m· h | � Queue

Table II. Runtime syntax: the other syntactic forms are as in Table I

delegation/reception (but the receiver is only one) and selection/branching.
We call s[p] a channel with role: it represents the channel of the participant p in the

session s. We use c to range over variables and channels with roles. As in [Honda et al.
2008], in order to model TCP-like asynchronous communications (message order preser-
vation and sender-non-blocking), we use the queues of messages in a session, denoted by
h; a message in a queue can be a value message, (q,Π,v), indicating that the value v was
sent by the participant q and the recipients are all the participants in Π; a channel mes-
sage (delegation), (q,p′,s[p]), indicating that q delegates to p′ the role of p on the session
s (represented by the channel with role s[p]); and a label message, (q,Π, l) (similar to a
value message). The empty queue is denoted by �. With some abuse of notation we will
write h ·m to denote that m is the last element included in h and m ·h to denote that m is the
head of h. By s : h we denote the queue h of the session s. In (νs)P all occurrences of s[p]
and the queue s are bound. Queues and channels with role are generated by the operational
semantics (described later).

We present the translation of Bob (B) in the first three-buyer protocol with the runtime
syntax: the only difference is that all input/output operations specify also the sender and
the receiver, respectively.

B = a[2](y2).y2?(3,quote);y2?(1,contrib);
if (quote - contrib < 100) then y2⊕〈{1,3},ok〉;y2!〈{3},"Address"〉;y2?(3,date);0
else b [2](z2).z2!〈{1},quote - contrib - 99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0}).

It should be clear from this example that starting from a global type and user-defined
processes respecting the global type it is possible to add sender and receivers to each com-
munication obtaining in this way processes written in the runtime syntax. We call pure a
process which does not contain message queues.

3. OPERATIONAL SEMANTICS

The operational semantics consists of some reduction rules and some structural equivalence
rules that permit rearranging the terms in order to apply a specific reduction rule.

Table III shows the rules of the process reduction relation P−→P′ (we use−→∗ and 6−→
with the expected meanings). Rule [Link] describes the initiation of a new session among
n participants that synchronise over the service name a. The last participant a [n](yn).Pn,
distinguished by the overbar on the service name, specifies the number n of participants.
For this reason we call it the initiator of the session. Obviously each session must have a
unique initiator. After the connection, the participants will share the private session name
s, and the queue associated to s, which is initialized as empty. The variables yp in each par-
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.
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a[1](y1).P1 | ... | a [n](yn).Pn −→ (νs)(P1{s[1]/y1} | ... | Pn{s[n]/yn} | s : �) [Link]

s[p]!〈Π,e〉;P | s : h−→ P | s : h · (p,Π,v) (e↓v) [Send]

s[p]!〈〈q,s′[p′]〉〉;P | s : h−→ P | s : h · (p,q,s′[p′]) [Deleg]

s[p]⊕〈Π, l〉;P | s : h−→ P | s : h · (p,Π, l) [Label]

s[p j]?(q,x);P | s : (q,{ j},v) ·h −→ P{v/x} | s : h [Recv]

s[p]?((q,y));P | s : (q,p,s′[p′]) ·h−→ P{s′[p′]/y} | s : h [Srec]

s[p j]&(q,{li : Pi}i∈I) | s : (q,{ j}, li0) ·h −→ Pi0 | s : h (i0 ∈ I) [Branch]

if e then P else Q−→ P (e ↓ true) if e then P else Q−→ Q (e ↓ false) [If-T, If-F]

def X(x,y) = P in (X〈e,s[p]〉 | Q) −→ def X(x,y) = P in (P{v/x}{s[p]/y} | Q) (e ↓ v) [Def]

P−→ P′ ⇒ (νr)P−→ (νr)P′ P−→ P′ ⇒ P | Q−→ P′ | Q [Scop,Par]

P−→ P′ ⇒ def D in P−→ def D in P′ [Defin]

P≡ P′ and P′ −→ Q′ and Q≡ Q′ ⇒ P−→ Q [Str]

Table III. Reduction rules

ticipant p will then be replaced with the corresponding channel with role, s[p]. The output
rules [Send], [Deleg] and [Label] push values, channels and labels, respectively, into the
queue of the session s (in rule [Send], e ↓ v denotes the evaluation of the expression e to the
value v). The rules [Recv], [Srec] and [Branch] perform the corresponding complementary
operations. Note that these operations check that the sender matches, and also that the
message is actually meant for the receiver (in particular, for [Recv], we need to remove
the receiving participant from the set of the receivers in order to avoid reading the same
message more than once).

Processes are considered modulo structural equivalence, denoted by ≡ (Table IV); be-
sides the standard rules [Milner 1999], we have a rule for rearranging messages when the
senders or the receivers are not the same, and also splitting a message for multiple recip-
ients and the rules for garbage-collecting messages that have already been read by all the
intended recipients. By using structural rules we could write the [Recv] and [Branch] rules
in a simpler way, instead of their more verbose versions:

s[p j]?(q,x);P | s : (q,Π,v) ·h −→ P{v/x} | s : (q,Π\ j,v) ·h (p j ∈Π)

s[p j]&(q,{li : Pi}i∈I) | s : (q,Π, li0) ·h −→ Pi0 | s : (q,Π\ j, li0) ·h (p j ∈Π, i0 ∈ I)

We conclude this section by showing some reduction steps using the example of the
three buyer protocol of Section 2; we will consider a simplified version of the example
(i.e., the Buyer3 always selects the ok label, without the if . . . then . . . else . . .) and we
will concentrate on the part involving delegation. Thus, we assume that the seller and the
first two buyers (Alice and Bob) have already established a connection (the session name
is sa) and that Bob is about to establish a connection with Carol; the first line represents
the server that is waiting to conclude the transaction with participant 2. We give some
reduction steps in Table V. In the computation, Carol plays the role of Bob (participant 2
in the session sa) transparently to the seller.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.
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P | 0≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R)

(νr)P | Q≡ (νr)(P | Q) if r /∈ fn(Q)

(νrr′)P≡ (νr′r)P (νr)0≡ 0 def D in 0≡ 0

def D in (νr)P≡ (νr)def D in P if r /∈ fn(D)

(def D in P) | Q≡ def D in (P | Q) if dpv(D)∩ fpv(Q) = /0

def D in (def D′ in P)≡ def D and D′ in P if dpv(D)∩dpv(D′) = /0

s : (q, /0,v) ·h≡ s : h s : (q, /0, l) ·h≡ s : h

s : (q,Π,z) · (q′,Π′,z′) ·h≡ s : (q′,Π′,z′) · (q,Π,z) ·h if Π∩Π′ = /0 or q 6= q′

s : (q,Π,z) ·h≡ s : (q,Π′,z) · (q,Π′′,z) ·h where Π = Π′ ∪Π′′ and Π′ ∩Π′′ = /0

Table IV. Structural equivalence (r ranges over a, s and z ranges over v, s[p] and l.)

(νsa)(sa[3]. (2,{ok : sa[3]?(2,address);sa[3]!〈{2},date〉;0, quit : 0}) |
b[1](z1).z1!〈{2},quote div 2−99〉;z2!〈〈2,sa[2]〉〉; . . .) |
b [2](z2).z2?(1,x);z2?((1, t));z2 / ({1},ok); t / ({1,3},ok); t!〈{3}, . . .〉; t?(3,date)

−→ by using [Link] (and the structural congruence for scope extrusion)

(νsasb)(. . .as above . . . | sb[1]!〈{2},quote div 2−99〉;sb[1]!〈〈2,sa[2]〉〉; . . . |
sb[2]?(1,x);sb[2]?((1, t));sb[2]/ ({1},ok); t / ({1,3},ok); t!〈{3}, . . .〉; t?(3,date))

−→∗ by using [Send] and [Recv] the result of quote div 2−99 is communicated

(νsasb)(. . .as above . . . | sb[1]!〈〈2,sa[2]〉〉;sb[1]. (2,{ok : 0, quit : 0}) |
sb[2]?((1, t));sb[2]/ ({1},ok); t / ({1,3},ok); t!〈{3}, . . .〉; t?(3,date))

−→∗ by using [Deleg] and [Srec]

(νsasb)(. . .as above . . . | sb[1]. (2,{ok : 0, quit : 0}) |
sb[2]/ ({1},ok);sa[2]/ ({1,3},ok);sa[2]!〈{1}, . . .〉;sa[2]?(3,date))

−→∗ by using [Label] and [Branch]

(νsasb)(sa[3]. (2,{ok : sa[3]?(2,address);sa[3]!〈{2},date〉;0, quit : 0}) | 0 |
sa[2]/ ({1,3},ok);sa[2]!〈{3}, . . .〉;sa[2]?(3,date))

Table V. Example of reduction

4. COMMUNICATION TYPE SYSTEM

The previous section defines the syntax and the global types. This section introduces the
communication type system, by which we can check type soundness of the communica-
tions.

4.1 Types and Typing Rules for Pure Runtime Processes

We first define the local types of pure processes, called action types. While global types
represent the whole protocol, action types correspond to the communication actions, rep-
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resenting sessions from the view-points of single participants.

Action T ::= !〈Π,U〉;T send
| ?(p,U);T receive
| ⊕〈Π,{li : Ti}i∈I〉 selection
| &(p,{li : Ti}i∈I) branching

| µt.T recursive
| t variable
| end end

The send type !〈Π,U〉;T expresses the sending to all pk for pk ∈Π of a value or of a channel
of type U , followed by the communications of T . The selection type ⊕〈Π,{li : Ti}i∈I〉
represents the transmission to all pk for pk ∈ Π of a label li chosen in the set {li | i ∈ I}
followed by the communications described by Ti. The receive and branching are dual and
only need one sender. Other types are standard.

The relation between action and global types is formalised by the notion of projection
as in [Honda et al. 2008]. The projection of G onto q (G � q) is defined by induction on G:

(p→Π : 〈U〉.G′) � q =


!〈Π,U〉;(G′ � q) if q = p,

?(p,U);(G′ � q) if q = pk for some pk ∈Π,

G′ � q otherwise.
(p→Π : {li : Gi}i∈I) � q =

⊕(Π,{li : Gi � q}i∈I) if q = p

&(p,{li : Gi � q}i∈I) if q = pk for some pk ∈Π

G1 � q if q 6= p,q 6= pk∀pk ∈Π and
Gi � q = G j � q for all i, j ∈ I.

(µt.G) � q = µt.(G � q) t � q = t end � q = end.

As an example, we list two of the projections of the global types Ga and Gb of the three-
buyer protocol:

Ga � 3 = ?〈1,string〉; !〈{1,2}, int〉;&(2,{ok :?〈2,string〉; !〈{2},date〉;end,quit : end})
Gb � 1 = ?〈2, int〉; ?〈2,T 〉;⊕〈{2},{ok : end,quit : end}〉

where T =⊕〈{1,3},{ok :!〈{3},string〉; ?〈3,date〉;end, quit : end}〉.
The typing judgements for expressions and pure processes are of the shape:

Γ ` e : S and Γ ` P.∆

where Γ is the standard environment which associates variables to sort types, service names
to global types and process variables to pairs of sort types and action types; ∆ is the session
environment which associates channels to action types. Formally we define:

Γ ::= /0 | Γ,u : S | Γ,X : S T and ∆ ::= /0 | ∆,c : T

assuming that we can write Γ,u : S only if u does not occur in Γ, briefly u 6∈ dom(Γ)
(dom(Γ) denotes the domain of Γ, i.e., the set of identifiers which occur in Γ). We use the
same convention for X : S T and ∆ (thus we can write ∆,∆′ only if dom(∆)∩dom(∆′) = /0).

Table VI presents the typing rules for pure processes. Rule bMCASTc permits to type a
service initiator identified by u, if the type of y is the n-th projection of the global type G
of u and the number of participants in G (denoted by pn(G)) is n. Rule bMACCc permits
to type the p-th participant identified by u, which uses the channel y, if the type of y
is the p-th projection of the global type G of u. The successive six rules associate the
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Γ,u : S ` u : S bNAMEc Γ ` true, false : bool
Γ ` ei : bool

Γ ` e1 and e2 : bool
bBOOLc,bANDc

Γ ` u : 〈G〉 Γ ` P.∆,y : G � n pn(G)≤ n
bMCASTc

Γ ` u [n](y).P.∆

Γ ` u : 〈G〉 Γ ` P.∆,y : G � p
bMACCc

Γ ` u[p](y).P.∆

Γ ` e : S Γ ` P.∆,c : T
bSENDc

Γ ` c!〈Π,e〉;P.∆,c : !〈Π,S〉;T

Γ,x : S ` P.∆,c : T
bRCVc

Γ ` c?(q,x);P.∆,c :?(q,S);T

Γ ` P.∆,c : T
bDELEGc

Γ ` c!〈〈p,c′〉〉;P.∆,c : !〈p,T ′〉;T,c′ : T ′

Γ ` P.∆,c : T,y : T ′
bSRECc

Γ ` c?((q,y));P.∆,c :?(q,T ′);T

Γ ` P.∆,c : Tj j ∈ I
bSELc

Γ ` c⊕〈Π, l j〉;P.∆,c :⊕〈Π,{li : Ti}i∈I〉

Γ ` Pi .∆,c : Ti ∀i ∈ I
bBRANCHc

Γ ` c&(p,{li : Pi}i∈I).∆,c : &(p,{li : Ti}i∈I)

Γ ` P.∆ Γ ` Q.∆
′

bCONCc
Γ ` P | Q.∆,∆′

Γ ` e : bool Γ ` P.∆ Γ ` Q.∆

bIFc
Γ ` if e then P else Q.∆

∆ end only
bINACTc

Γ ` 0.∆

Γ,a : 〈G〉 ` P.∆

bNRESc
Γ ` (νa)P.∆

Γ ` e : S ∆ end only
bVARc

Γ,X : S T ` X〈e,c〉.∆,c : T

Γ,X : S T,x : S ` P. y : T Γ,X : S T ` Q.∆

bDEFc
Γ ` def X(x,y) = P in Q.∆

Table VI. Typing rules for pure processes

input/output processes to the input/output types in the expected way. Note that, according
to our notational convention on environments, in rule bDELEGc the channel which is sent
cannot appear in the session environment of the premise, i.e., c′ 6∈ dom(∆)∪{c}. Rule
bCONCc permits to put in parallel two processes only if their sessions environments have
disjoint domains. For example we can derive:

` t⊕〈{1,3},ok〉; t!〈{3},"Address"〉; t?(3,date);0.{t : T}

where T =⊕〈{1,3},{ok :!({3},string); ?〈3,date〉;end, quit : end}〉.
In the typing of the example of the three-buyer protocol the types of the channels y3 and

z1 are the third projection of Ga and the first projection of Gb, respectively. By applying
rule bMCASTc we can then derive a : Ga ` S. /0. Similarly by applying rule bMACCc we
can derive b : Gb ` C. /0.

4.2 Types and Typing Rules for Runtime Processes

We now extend the communication type system to processes containing queues.
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— \〈 /0,Z〉;T ≈ T
— \〈Π,Z〉; \′〈Π′,Z〉;T ≈ \′〈Π′,Z〉; \〈Π,Z〉;T if Π∩Π′ = /0
— \〈Π,Z〉;T ≈ \〈Π′,Z〉; \〈Π′′,Z〉;T if Π = Π′ ∪Π′′,Π′ ∩Π′′ = /0

Table VII. Equivalence relation rules on message types.

Message T ::= !〈Π,U〉 message send
| ⊕〈Π, l〉 message selection
| T;T′ message sequence

Generalised T ::= T action
| T message
| T;T continuation

Message types are the types for queues: they represent the messages contained in the
queues. The message send type !〈Π,U〉 expresses the communication to all pk for pk ∈Π

of a value or of a channel of type U . The message selection type ⊕〈Π, l〉 represents the
communication to all pk for pk ∈Π of the label l and T;T′ represents sequencing of message
types (we assume associativity for ;). For example ⊕〈{1,3},ok〉 is the message type for
the message (2,{1,3},ok). A generalised type is either an action type, or a message type,
or a message type followed by an action type. Type T;T represents the continuation of the
type T associated to a queue with the type T associated to a pure process. An example of
generalised type is ⊕〈{1,3},ok〉; !〈{3},string〉; ?〈3,date〉;end.

In order to take into account the structural congruence between queues (see Table IV)
we consider message types modulo the equivalence relation ≈ induced by the rules shown
in Table VII (with \ ∈ {!,⊕} and Z ∈ {U, l}).

We start by defining the typing rules for single queues, in which the turnstile ` is deco-
rated with {s} (where s is the session name of the current queue) and the session environ-
ments are mappings from channels to message types. The empty queue has empty session
environment. Each message adds an output type to the current type of the channel which
has the role of the message sender. Table VIII lists the typing rules for queues, where ; is
defined by:

∆;{s[q] : T}=

{
∆′,s[q] : T′;T if ∆ = ∆′,s[q] : T′,
∆,s[q] : T otherwise.

For example we can derive `{s} s : (ok,{1,2},3).{s[3] :⊕〈{1,2},ok〉}.
In order to type pure processes in parallel with queues, we need to use generalised types

in session environments and further typing rules. Table IX lists the typing rules for pro-
cesses containing queues. The judgement Γ `Σ P . ∆ means that P contains the queues
whose session names are in Σ. Rule bGINITc promotes the typing of a pure process to the
typing of an arbitrary process, since a pure process does not contain queues. When two
arbitrary processes are put in parallel (rule bGPARc) we need to require that each session
name is associated to at most one queue (condition Σ∩Σ′ = /0). In composing the two
session environments we want to put in sequence a message type and an action type for the
same channel with role. For this reason we define the composition ∗ between local types
as:

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.



14 · L. Bettini et al.

bQINITc
Γ `{s} s : �. /0

Γ `{s} s : h.∆ Γ ` v : S
bQSENDc

Γ `{s} s : h · (q,Π,v).∆;{s[q] : !〈Π,S〉}

Γ `{s} s : h.∆

bQDELEGc
Γ `{s} s : h · (q,p,s′[p′]).∆,s′[p′] : T ′;{s[q] : !〈p,T ′〉}

Γ `{s} s : h.∆

bQSELc
Γ `{s} s : h · (q,Π, l).∆;{s[q] :⊕〈Π, l〉}

Table VIII. Typing rules for queues

Γ ` P.∆

bGINITc
Γ ` /0 P.∆

Γ `Σ P.∆ ∆
′end only

bWEAKc
Γ `Σ P.∆∗∆

′

Γ `Σ P.∆ Γ `Σ′ Q.∆
′

Σ∩Σ
′ = /0

bGPARc
Γ `Σ∪Σ′ P | Q.∆∗∆

′

Γ `Σ P.∆ co(∆,s)
bGSRESc

Γ `Σ\s (νs)P.∆\ s

Γ,a : 〈G〉 `Σ P.∆

bGNRESc
Γ `Σ (νa)P.∆

Γ,X : S T,x : S ` P.{y : T} Γ,X : S T `Σ Q.∆

bGDEFc
Γ `Σ def X(x,y) = P in Q.∆

Table IX. Typing rules for processes

T∗T′ =

T;T′ if T is a message type,
T′;T if T′ is a message type,
⊥ otherwise

where ⊥ represents failure of typing.
We extend ∗ to session environments as expected:

∆∗∆′ = ∆\dom(∆′)∪∆′\dom(∆)∪{c : T∗T′ | c : T ∈ ∆ & c : T′ ∈ ∆′}.

Note that ∗ is commutative, i.e., ∆∗∆′ = ∆′ ∗∆. Also if we can derive message types only
for channels with roles, we consider the channel variables in the definition of ∗ for session
environments since we want to get for example {y : end}∗{y : end} =⊥. An example of
derivable judgement is:
`{s} P | s : (3,{1,2},ok).{s[3] :⊕〈{1,2},ok〉; !〈{1},string〉; ?〈1,date〉;end}

where P = s[3]!〈{1},"Address"〉;s[3]?(1,date);0.

4.3 More on Communication Type System

Definition 4.1. The projection of the generalised local type T onto q, denoted by T � q,
is defined by:

( !〈Π,U〉;T ′) � q =

{
!U ;T ′ � q if q = pk for some pk ∈Π,

T ′ � q otherwise.
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(?(Π,U);T ′) � q =

{
?U ;T ′ � q if q = pk for some pk ∈Π,

T ′ � q otherwise.

(⊕〈Π,{li : Ti}i∈I〉) � q =


⊕{li : Ti � q}i∈I if q = pk for some pk ∈Π,

T1 � q if q 6= pk ∀pk ∈Π and
Ti � q = Tj � q

for all i, j ∈ I.

(&(p,{li : Ti}i∈I)) � q =



&{li : Ti � q}i∈I if q = p,

T1 � q if q 6= p

∀pk ∈Π and
Ti � q = Tj � q

for all i, j ∈ I.

(⊕〈Π, l〉;T) � q =

{
⊕l;T � q if q = pk for some pk ∈Π,

T � q otherwise.

(µt.T ) � q = µt.(T � q) t � q = t end � q = end

Definition 4.2. The duality relation between projections of generalised local types is
the minimal symmetric relation which satisfies:

end ./ end t ./ t T ./ T ′ =⇒ µt.T ./ µt.T ′ !U ;T ./ ?U ;T ′

∀i ∈ I Ti ./ T ′i =⇒ ⊕{li : Ti}i∈I ./ &{li : T ′i }i∈I
∃i ∈ I l = li & T ./ Ti =⇒ ⊕l;T ./ &{li : Ti}i∈I

Definition 4.3. A session environment ∆ is coherent for the session s (notation co(∆,s))
if s[p] : T ∈∆ and T � q 6= end imply s[q] : T ′ ∈∆ and T � q ./ T ′ � p. A session environment
∆ is coherent if it is coherent for all sessions which occur in it.

4.4 Subject Reduction

Since session environments represent the forthcoming communications, by reducing pro-
cesses session environments can change. This can be formalised as in [Honda et al. 2008]
by introducing the notion of reduction of session environments, whose rules are:

—{s[p] : !〈{ j},U〉; T,s[p j] :?(p,U);T ′} ⇒ {s[p] : T,s[p j] : T ′}
—{s[p] : T ;⊕〈Π,{li : Ti}i∈I〉} ⇒ {s[p] : T ;⊕〈Π, li〉;Ti}
—{s[p] :⊕〈{ j}, l〉;T,s[p j] : &(p,{li : Ti}i∈I)} ⇒ {s[p] : T,s[p j] : Ti} if l = li
—{s[p] : !〈 /0,U〉; T} ⇒ {s[p] : T} {s[p] :⊕〈 /0, l〉;T} ⇒ {s[p] : T}
—∆∪∆′′ ⇒ ∆′∪∆′′ if ∆ ⇒ ∆′.

The first rule corresponds to the reception of a value or channel by the participant p j, the
second rule corresponds to the choice of the label li and the third rule corresponds to the
reception of the label l by the participant p j. The fourth and the fifth rules garbage collect
read messages.

Using the above notion we can state type preservation under reduction as follows:

THEOREM 4.4 TYPE PRESERVATION. If Γ `Σ P . ∆ and P −→∗ P′, then Γ `Σ P′ . ∆′

for some ∆′ such that ∆ ⇒∗ ∆′.
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Note that the communication safety [Honda et al. 2008, Theorem 5.5] is a corollary of
this theorem. Thus the user-defined processes with the global types can safely communi-
cate since their runtime translation is typable by the communication type system.

4.5 From User Syntax to Runtime Syntax via Types

Given a user process P and the set of global types associated to the service identifiers which
occur free or bound in P we can add the sender and the receivers to each communication,
by getting in this way a process in the runtime syntax. We define two mappings with
domain the set of user processes: the first one (denote by bG † uc) depends on a global
type G and on a service identifier u, while the second one (denote by bT ‡ yc) depends on
an action type T and on a channel variable y. The mapping bG † uc (Table X) calls the
other mapping with the appropriate projection and channel variable when it is applied to
a session initiation on the identifier u, and leaves the process unchanged otherwise. The
mapping bT ‡ yc (Table XI) adds the sender or the receiver to the communications which
use the channel y and it does not affect the other processes. An interesting clause is the
fifth one, in which bT ′ ‡ y′c is applied to the body of the channel reception y′ (T ′ is the
action type of y′). In the last but one clause T ′ is the unique type such that bT ′ ‡ yc(X(e y))
occurs in (the evaluation of) bT ‡ yc(Q). More precisely we evaluate this type by applying
to Q the mapping bT \ y \ Xc() defined in Table XII.

In order to get the runtime version of an user process P we need to apply to P the
mapping bG † uc, for each service identifier u which occurs free or bound in P, where G is
the global type of u. Note that when u is a bound variable we need to apply bG † xc only
to the scope of x.

We say that a closed user process P = C [y1?(x1);Q1] . . . [ym?(xm);Qm] with bound ser-
vice identifiers x1, . . . ,xm and service names a` with ` ∈ L is a correct implementation of
the protocols described by G1, . . . ,Gm and G′` for ` ∈ L if we can derive

bG′` † a`c`∈L(C [y1?(x1);bG1 † x1c(Q1)] . . . [ym?(xm);bGm † xmc(Qm)]). /0

from {a` : G′` | ` ∈ L}.

bG † uc(u [n](y).P) = u [n](y).bG � 1 ‡ yc(P)
bG † uc(u[p](y).P) = u[p](y).bG � p ‡ yc(P)
bG † uc(pref;P) = pref;bG † uc(P) u 6∈ pref
bG † uc(if e then P else Q) = if e then bG † uc(P) else bG † uc(Q)
bG † uc(P | Q) = bG † uc(P) | bG † uc(Q)
bG † uc(0) = 0
bG † uc((νa)P) = (νa)bG † uc(P)
bG † uc(def X(x y) = P in Q) = def X(x y) = bG † uc(P) in bG † uc(Q)
bG † uc(X〈e y〉) = X〈e y〉

where pref is any session initialization or communication command.

Table X. Application of a global type and a service identifier to a user process.
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b !〈Π,S〉;T ‡ yc(y!〈e〉;P) = y!〈Π,e〉;bT ‡ yc(P)
b?(p,S);T ‡ yc(y?(x);P) = y?(p,x);bT ‡ yc(P)
b !〈Π,T ′〉;T ‡ yc(y!〈〈y′〉〉;P) = y!〈〈Π,y′〉〉;bT ‡ yc(P)
bT ‡ yc(y′!〈〈y〉〉;P) = y′!〈〈y〉〉;P
b?(p,T ′);T ‡ yc(y?((y′));P) = y?((p,y′));bT ‡ yc(bT ′ ‡ y′c(P))
b⊕〈Π,{li : Ti}i∈I〉 ‡ yc(y⊕ l j;P) = y⊕〈p, l j〉;bTj ‡ yc(P) j ∈ I
b&(p,{li : Ti}i∈I) ‡ yc(y&{li : Pi}i∈I) = y&(p,{li : bT ‡ yc(Pi)}i∈I)
bT ‡ yc(pref;P) = pref;bT ‡ yc(P) y 6∈ pref
bT ‡ yc(if e then P else Q) = if e then bT ‡ yc(P) else bT ‡ yc(Q)
bT ‡ yc(P | Q) = bT ‡ yc(P) | Q y 6∈ Q
bT ‡ yc(P | Q) = P | bT ‡ yc(Q) y 6∈ P
bend ‡ yc(0) = 0
bT ‡ yc((νa)P) = (νa)bT ‡ yc(P)
bT ‡ yc(def X(x y′) = P in Q) = def X(x y′) = bT ′ ‡ y′c(P) in bT ‡ yc(Q)

where T ′ = bT \ y \ Xc(Q)
bT ‡ yc(X〈e y′〉) = X〈e y′〉

Table XI. Application of a local type and a channel variable to a user process.

b !〈Π,S〉;T \ y \ Xc(y!〈e〉;P) =bT \ y \ Xc(P)
b?(p,S);T \ y \ Xc(y?(x);P) = bT \ y \ Xc(P)
b !〈Π,T ′〉;T \ y \ Xc(y!〈〈y′〉〉;P) = bT \ y \ Xc(P)
b?(p,T ′);T \ y \ Xc(y?((y′));P) = bT \ y \ Xc(P)
b⊕〈Π,{li : Ti}i∈I〉 \ y \ Xc(y⊕ l j;P) = bTj \ y \ Xc(P) j ∈ I
b&(p,{li : Ti}i∈I) \ y \ Xc(y&{li : Pi}i∈I) = bTj \ y \ Xc(Pj) j ∈ I & X ∈ Pj
bT \ y \ Xc(pref;P) = bT \ y \ Xc(P) y 6∈ pref
bT \ y \ Xc(if e then P else Q) = bT \ y \ Xc(P) X ∈ P
bT \ y \ Xc(if e then P else Q) = bT \ y \ Xc(Q) X ∈ Q
bT \ y \ Xc(P | Q) = bT \ y \ Xc(P) X ∈ P
bT \ y \ Xc(P | Q) = bT \ y \ Xc(Q) X ∈ Q
bT \ y \ Xc((νa)P) = bT \ y \ Xc(P)
bT \ y \ Xc(def X ′(x y′) = P in Q) = bT \ y \ Xc(Q) X 6= X ′

bT \ y \ Xc(X〈e y′〉) = T
bT \ y \ Xc(0) = end

Table XII. Application of a local type and a channel variable and a process variable to a user process.

5. PROGRESS

5.1 Progress Property and Channel Relations

This section studies progress: informally, we say that a process has the progress property
if it can never reach a deadlock state, i.e., if it never reduces to a process which contains
open sessions (this amounts to containing channels with roles) and which is irreducible in
any inactive context (represented by another inactive process running in parallel).

Definition 5.1 Progress. A process P has the progress property if P −→∗ P′ implies
that either P′ does not contain channels with roles or P′ | Q −→ for some Q such that
P′ | Q is well typed and Q 6−→.

We will give an interaction type system which ensures that the typable processes always
have the progress property. The crucial point to prove the progress property is to assure
that a process, seen as a parallel composition of single threaded processes and queues,
cannot be blocked in a configuration in which:
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(1) there are no thread ready for a session initialization (i.e., of the form a [n](y).P or
a[p](y).P). Otherwise the process could be reactivated by providing it with the right
partners;

(2) all subprocesses are either non-empty queues or processes waiting to perform an input
action on a channel whose associated queue does not offer an appropriate message.

Progress inside a single service is assured by the communication typing rules in § 4. This
will follow as an immediate corollary of Theorem 5.3. For ensuring progress, we need to
introduce a few relations which statically analyse causalities and usage of channels.

Let us say that a channel qualifier is either a channel with role or a channel variable. Let
c be a channel, its channel qualifier `(c) is defined by: (1) if c = y, then `(c) = y; (2) else
if c = s[p], then `(c) = s. Let Λ, ranged over by λ , denote the set of all service names and
all channel qualifiers.

The progress property will be analysed via three finite sets: two sets N and B of
service names and a set R ⊆Λ∪ (Λ×Λ). The set N collects the service names which are
interleaved following the nesting policy. The set B collects the service names which can
be bound. The Cartesian product Λ×Λ, whose elements are denoted λ ≺ λ ′, represents
a transitive relation. The meaning of λ ≺ λ ′ is that an input action involving a channel
(qualified by) λ or belonging to service λ could block a communication action involving
a channel (qualified by) λ ′ or belonging to service λ ′. Moreover R includes all channel
qualifiers and all service names which do not belong to N or B and which occur free in
the current process. This will be useful to easily extend R in the assignment rules, as it will
be pointed out below. We call N nested service set, B bound service set and R channel
relation (even if only a subset of it is, strictly speaking, a relation). Let us give now some
related definitions.

Definition 5.2. [Mario: I eliminated the syntax for R. Already defined, moreover this
is not syntax]

(1) B∪{e} =

{
B∪{a} if e = a is a service name
B otherwise.

(2) R \λ = {λ1 ≺ λ2 | λ1 ≺ λ2 ∈R & λ1 6= λ & λ2 6= λ}∪{λ ′ | λ ′ ∈R & λ ′ 6= λ}

(3) R \\λ =

{
R \λ if λ is minimal in R

⊥ otherwise.

(4) pre(`(c),R) = (R ∪{`(c)}∪{`(c)≺ λ | λ ∈R & `(c) 6= λ})+

where R+ is the transitive closure of (the relation part of) R and λ is minimal in R if
6 ∃λ ′ ≺ λ ∈R.

A channel relation is well formed if it is irreflexive, and does not contain cycles. A
channel relation R is channel free (cf(R)) if it contains only service names.

The channel relation is essentially defined to analyse the interactions between services:
this is why in the definition of pre(`(c),R) we put the condition `(c) 6= λ . A basic point
is that a loop in R represents the possibility of a deadlock state. For instance take the
processes:

P1 = b[1](y1).a [2](z2).y1?(2,x);z2!〈1, false〉;0
P2 = b [2](y2).a[1](z1).z1?(2,x′);y2!〈1, true〉;0.
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In process P1 we have that an input action on service b can block an output action on service
a and this determines b ≺ a. In process P2 the situation is inverted, determining a ≺ b. In
P1 | P2 we will then have a loop a≺ b≺ a. In fact P1 | P2 reduces to

Q = (νs)(νr) (s[1]?(2,x);r[1]!〈2, false〉;0 | r[2]?(1,x′);s[2]!〈1, true〉;0)

which is stuck. It is easy to see that services a and b have the same types, thus we could
change b in a in P1 and P2 obtaining:

P′1 = a[1](y1).a [2](z2).y1?(2,x);z2!〈1, false〉;0
P′2 = a [2](y2).a[1](z1).z1?(2,x′);y2!〈1, true〉;0.

with two instances of service a and a relation a ≺ a. But also P′1 | P′2 would reduce to Q.
Hence we must forbid also loops on single service names (i.e., the channel relation cannot
be reflexive).

5.2 The Interaction Typing System

We will give now an informal account of the interaction typing rules, through a set of
examples. It is understood that all processes introduced in the examples can be typed with
the communication typing rules given in the previous section.

Tables XIII and XIV give the interaction typing rules. The judgements are of the shape:
Θ ` P I R ; N ; B where Θ is a set of assumptions of the shape X[y] IR ; N ; B
(for recursive definitions) with the variable y representing the channel parameter of X .

We say that a judgement Θ ` P I R ; N ; B is coherent if: (1) R is well formed;
(2) R ∩ (N ∪B) = /0. We assume that the typing rules are applicable if and only if the
judgements in the conclusion are coherent.

Initialisation (1): {MCAST} and {MACC}. Three different sets of rules handle service
initialisations. In rules {MCAST} and {MACC}, which are liberal on the occurrences of
the channel y in P, the service name a replaces y in R. The addition of a is needed
when y does not occur in R. By combining with {CONC} later, we can detect that the
parallel composition P1 | P2 in § 5.1 creates a circular dependency of channels. Also we can
immediately exclude circular dependencies involving the same service name as in P′1 | P′2
in § 5.1. Both P1 | P2 and P′1 | P′2 reduce to deadlock processes.

Initialisation (2): {MCASTN} and {MACCN}. Rules {MCASTN} and {MACCN} can
be applied only if the channel y associated to a is minimal in R. This implies that once a
is initialised in P all communication actions on the channel with role instantiating y must
be performed before any input communication action on a different channel in P. For
example, in the following, R1 is untypable using rules {MCASTN} and {MACCN}, while
R2 is typable since the sessions are correctly nested.

R1 = a[1](y).b [1](z).y?(2,x);z!〈2, false〉;0
R2 = a[1](y).b [1](z).z?(2,x);y!〈2, false〉;0

Note that R2 can be composed with R3 = a [2](y).b[2](z).z!〈1, true〉;y?(1,x);0, which is
also typable by {MCASTN} and {MACCN}. The name a is added to the nested service
set. Remarkably, via rules {MCASTN}-{MACCN} we can prove progress when services
are nested, generalising the typing strategy of [Coppo et al. 2007].
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Θ ` P I R ; N ; B
{MCAST}

Θ ` a [n](y).P I R{a/y}∪{a} ; N ; B

Θ ` P I R ; N ; B
{MACC}

Θ ` a[p](y).P I R{a/y}∪{a} ; N ; B

Θ ` P I R ; N ; B
{MCASTN}

Θ ` a [n](y).P I R \\y ; N ∪{a} ; B

Θ ` P I R ; N ; B
{MACCN}

Θ ` a[p](y).P I R \\y ; N ∪{a} ; B

Θ ` P I R ; N ; B cf(R \\y)
{MCASTB}

Θ ` u [n](y).P I R \\y ; N ; B∪{u}

Θ ` P I R ; N ; B cf(R \\y)
{MACCB}

Θ ` u[p](y).P I R \\y ; N ; B∪{u}

Θ ` P I R ; N ; B
{SEND}

Θ ` c!〈Π,e〉;P I {`(c)}∪R ; N ; B∪{e}

Θ ` P I R ; N ; B
{RCV}

Θ ` c?(q,x);P I pre(`(c),R) ; N ; B

Θ ` P I R ; N ; B
{DELEG}

Θ ` c!〈〈p′,c′〉〉;P I ({`(c), `(c′), `(c)≺ `(c′)}∪R)+ ; N ; B

Θ ` P I R ; N ; B R ⊆ {`(c), y, `(c)≺ y}
{SREC}

Θ ` c?((q,y));P I {`(c)} ; N ; B

Θ ` P I R ; N ; B
{SEL}

Θ ` c⊕〈Π, l〉;P I {`(c)}∪R ; N ; B

Θ ` Pi I Ri ; Ni ; Bi ∀i ∈ I
{BRANCH}

Θ ` c&(p,{li : Pi}i∈I) I pre(`(c),
⋃
i∈I

Ri) ;
⋃
i∈I

Ni ;
⋃
i∈I

Bi

Θ ` P I R ; N ; B Θ ` Q I R′ ; N ′ ; B′

{CONC}
Θ ` P | Q I (R ∪R′)+ ; N ∪N ′ ; B∪B′

Θ ` P I R ; N ; B a 6∈R ∪N
{NRES}

Θ ` (νa)P I R ; N ; B \a

{VAR}
Θ,X [y] I R ; N ; B ` X〈e,c〉 I R{`(c)/y} ; N ; B∪{e}

Θ,X [y] I R ; N ; B ` P I R ; N ; B Θ,X [y] I R ; N ; B ` Q I R′ ; N ′ ; B′

{DEF}
Θ ` def X(x,y) = P in Q I R′ ; N ′ ; B′

Θ ` P I R ; N ; B Θ ` Q I R′ ; N ′ ; B′

{IF}
Θ ` if e then P else Q I (R ∪R′)+ ; N ∪N ′ ; B∪B′

{INACT}
Θ ` 0 I /0 ; /0 ; /0

Table XIII. Interaction typing rules I

Initialisation (3): {MCASTB} and {MACCB}. The rules {MCASTB} and {MACCB}
add u to the bound service set whenever u is a service name. These rules are much more
restrictive: they require that y is the only free channel in P and that it is minimal. Thus
no interaction with other channels or services is possible. This safely allows u to be a
variable (since nothing is known about it before execution except its type) or a restricted
name (since no channel with role can be made inaccessible at runtime by a restriction on
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{QINIT}
Θ ` s : � I /0 ; /0 ; /0

Θ ` s : h I R ; /0 ; B
{QADDVAL}

Θ ` s : h · (q,Π,v) I R ; /0 ; B∪{v}

Θ ` s : h I R ; /0 ; B
{QADDSESS}

Θ ` s : h · (q,p,s′[p′]) I ({s,s′,s≺ s′}∪R)+ ; /0 ; B

Θ ` s : h I R ; /0 ; B
{QSEL}

Θ ` s : h · (q,Π, l) I R ; /0 ; B

Θ ` P I R ; N ; B
{SRES}

Θ ` (νs)P I R \ s ; N ; B

Table XIV. Interaction typing rules II

u). Note that rule {NRES} requires that a occurs neither in R nor in N . By these rules,
the following dead-locked process is untypable:

(νa)(a[p](y).z!〈Π,e〉;0)

The sets N and B include all service names of a process P whose initialisations is
typed with {MCASTN}-{MACCN}, {MCASTB}-{MACCB}, respectively. Note that for a
service name which will replace a variable this is assured by the (conditional) addition of
e to B in the conclusion of rule {SEND}. The sets N and B are used to assure, via the
coherence condition R ∩ (N ∪B) = /0, that all participants to the same service are typed
either by the first two rules or by the remaining four. This is crucial to assure progress.
Take for instance the processes P1 and P2 above. If we type the session initialisation on b
using rule {MACCN} or {MACCB} in P1 and rule {MCAST} in P2 no inconsistency would
be detected. But this is impossible since rule {CONC} does not type P1 | P2 owing to the
coherence condition. Instead if we use {MACC} in P1, we detect the loop a≺ b≺ a. Note
that we could not use {MCASTN} or {MCASTB} for b in P2 since y2 is not minimal.

Since all four rules {MCASTN},{MACCN}, {MCASTB},{MACCB} only allow to type
nested sessions, we call them nesting rules.

Sending and Receiving. Rule {RCV} asserts that the input action can block all other
actions in P, while rule {SEND} simply adds `(c) to R to register the presence of a com-
munication action in P. In fact output is asynchronous, thus it can be always performed. If
the sent value is a session name, then it is added to the set B of names which can could be
restricted. This is essential in order to force its initialisation with one of the nesting rules.

Delegation. Rule {DELEG} is similar to {SEND} but it asserts that a use of `(c) must
precede a use of `(c′): the relation `(c) ≺ `(c′) needs to be registered since an action
blocking `(c) also blocks `(c′). Rule {SREC} avoids to create a process where two dif-
ferent roles in the same session are put in sequence. Following [Dezani-Ciancaglini et al.
2006; Yoshida and Vasconcelos 2007] we call this phenomenon self-delegation. As an
example consider the processes

P1 = b[1](z1).a[1](y1).y1!〈〈2,z1〉〉;0
P2 = b [2](z2).a [2](y2).y2?((1,x));x?(2,w);z2!〈1, false〉;0

and note that P1 | P2 reduces to (νs)(νr)(s[1]?(2,w);s[2]!〈1, false〉;0) which is stuck. Note
that P1 | P2 is typable by the communication type system but P2 is not typable by the
interaction type system, since by typing y2?((1,x));x?(2,w);z2!〈1, false〉;0 we get y2 ≺ z2
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which is forbidden by rule {SREC}.
We note that rules {MCASTN}-{MACCN} are useful for typing delegation. An example

is process B of the three-buyer protocol, in which the typing of the subprocess

z2!〈{1},quote - contrib - 99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0})

gives z2 ≺ y2. So by using rule {MCAST} we would get first b ≺ y2 and then the cycle
y2 ≺ b ≺ y2. Instead using rule {MCASTN} for b we get in the final typing of B either
{a};{b}; /0 or /0;{a,b}; /0 according to we use either {MCAST} or {MCASTN} for a. We
will show in details, in the following, the typing rules to prove that the whole process B is
well typed.

Branching and Selection. Rule {SEL} is similar with rule {SEND}, while rule {BRANCH}
needs to record the causality as a union of channel relations of all branchings.

Other Rules for User Syntax. Rule {CONC} is the key to calculate the channel relation
among composed processes has no circularity as explained before. Rule {NRES} checks
that a is neither in the channel relation nor the nested service set (see {MCASTB} and
{MACCB}). Rules {VAR} and {DEF} relates a process variable and the corresponding
channel relation. In particular, {VAR} replaces `(c) to y and records the expression in the
bound service set (like {SEND}). Rules {IF} and {INACT} are standard.

Other Rules for Queues. The first four rules can be understood as rules {INACT},
{SEND}, {DELEG} and {SEL}, respectively. {SRES} deletes the channel from the channel
relation, where session names can only appear (instead of the set B in {NRES}).

An example. As an example we consider again the process B of the three-buyer proto-
col, which we report here for convenience:

B = a[2](y2).y2?(3,quote);y2?(1,contrib);
if (quote - contrib < 100) then y2⊕〈{1,3},ok〉;y2!〈{3},"Address"〉;y2?(3,date);0
else b [2](z2).z2!〈{1},quote - contrib - 99〉;z2!〈〈1,y2〉〉;z2&(1,{ok : 0, quit : 0}).

In the following we will show the rules of the interaction type system to prove that this
process has the progress property (in particular we illustrate the contents of the sets R, N
and B):Mariangiola says: the original example is commented [Mario: I changed a little
the setting to make it more readable. Moreover, this is not an algorithmic system so the
notion of backtrack is not appropriate. Mariangiola’s version is commented]
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Process R N B Rule

z2&(1,{ok : 0, quit : 0}) z2 /0 /0 {BRANCH}
z2!〈〈1,y2〉〉 {z2,y2,z2 ≺ y2} /0 /0 {DELEG}
z2!〈{1},quote - contrib - 99〉 {z2,y2,z2 ≺ y2} /0 /0 {SEND}
b [2](z2) {y2} {b} /0 {MCASTN} (*)

y2?(3,date)0 {y2} /0 /0 {RCV}
y2!〈{3},"Address"〉 {y2} /0 /0 {SEND}
y2⊕〈{1,3},ok〉 {y2} /0 /0 {SEL}

if (. . .) {y2} {b} /0 {IF}

The two {RCV} do not change the sets
a[2](y2) {a} {b} /0 {MCAST}

Or, alternatively
a[2](y2) /0 {a,b} /0 {MCASTN}

Note that choosing to apply rule {MCAST} at point (*) we get

Process R N B Rule

. . . . . . . . . . . . . . .
b [2](z2); {b,y2,b≺ y2} /0 /0 {MCAST}
. . . . . . . . . . . . . . .
if (. . .) {b,y2,b≺ y2} /0 /0 {IF}

And at that point we cannot apply rule {RCV} (to add the input action y2?(1,contrib))
since we would get R = {b,y2,y2 ≺ b,b≺ y2,y2 ≺ y2} which contains a loop.

5.3 Progress Theorem and Proofs

A closed runtime process P is initial if it is typable both in the communication and in the
interaction type systems. The progress property is assured for all computations that are
generated from an initial process.

THEOREM 5.3 PROGRESS. All initial processes have the progress property.

It is easy to verify that the (runtime) version of the three-buyer protocol can be typed in the
interaction type system with {a};{b}; /0 and /0;{a,b}; /0 according to which typing rules we
use for the initialisation actions on the service name a. Therefore we get

COROLLARY 5.4. The three-buyer protocol has the progress property.
5.4 Proof of the Progress Theorem

In the following definitions and proofs we assume that all considered processes are well
typed with the communication type system of Section 4.

LEMMA 5.5. If Θ ` s : h ·m I R ; /0 ; B then Θ ` s : m ·h I R ; /0 ; B.

PROOF. By induction on h.

LEMMA 5.6 SUBSTITUTION LEMMA. Let Θ ` P I R ; N ; B.
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(1) Let v 6∈R. Then Θ ` P{v/x} I R ; N ; B′ where B′ = B∪{v};
(2) Θ ` P{s[p]/y} I R{s/y} ; N ; B.

PROOF. By induction on Θ ` P I R ; N ; B.

(1) By induction on P. The only interesting case is when v is a service name a, thus, P≡
x [n](y).P′ or P ≡ x[n](y).P′ and the last applied rules are {MCASTB} or {MACCB},
respectively. Let us consider P≡ x [n](y).P′ (the other case is similar). From {MCASTB}
we have that Θ ` P′ I R ′ ; N ; B such that cf(R ′ \\y) and R = R ′ \\y. Now,
P{a/x}= a [n](y).P′. Since, by hypothesis, cf(R ′\\y), thus we can apply {MCASTB},
obtaining Θ ` a [n](y).P′ I R ; N ; B∪{a}. Note that this judgements is coherent
since by hypothesis a 6∈R.

(2) Easily follows from the definition of `(c).

THEOREM 5.7 TYPE PRESERVATION UNDER EQUIVALENCE. If P is well typed and
Θ ` P I R ; N ; B and P≡ P′, then Θ ` P′ I R ; N ; B.

PROOF. Standard induction on ≡.

THEOREM 5.8 TYPE PRESERVATION UNDER REDUCTION. If P is well typed and Θ `
P I R ; N ; B and P−→∗ P′, then Θ ` P′ I R ′ ; N ′ ; B′ for some R ′ ⊆R, N ′ ⊆N
and B′ ⊆B.

PROOF. By induction on −→ and by cases on the last applied rule.

- [Link]. By hypothesis

Θ ` a[1](y1).P1 | . . . | a[n−1](yn−1).Pn−1 | a [n](yn).Pn I R ; N ; B.

This judgement is obtained by applying rule {CONC} to the subprocesses a[1](y1).P1, . . . ,a[n−
1](yn−1).Pn−1, a [n](yn).Pn. Then we have:
—Θ ` a[1](y1).P1 I R1 ; N1 ; B1
—. . .
—Θ ` a[n−1](yn−1).Pn−1 I Rn−1 ; Nn−1 ; Bn−1
—Θ ` a [n](yn).Pn I Rn ; Nn ; Bn

where R = (
⋃

1≤i≤n Ri)+ and N =
⋃

1≤i≤n Ni and B =
⋃

1≤i≤n Bi. Point 2. of the
the coherence condition (see page 19) implies that the rules {MCAST}, {MACC}
cannot be used for the same session name with the rules {MCASTN}, {MACCN},
{MCASTB}, {MACCB}.
We consider the case in which Pn has been typed with rule {MCASTN} or {MCASTB}
and each Pp (1≤ p≤ n−1) with {MACCN} or {MACCB}.
Then for each i (1 ≤ i ≤ n) we must have Θ ` Pi I R ′i ; N ′

i ; B′i such that Ri =
R ′i \\yi, N ′

i ⊆Ni, B′i ⊆Bi (yi is minimal in R ′i ). By Lemma 5.6(2) we have

Θ ` Pi{s[i]/yi} I R ′i{s/yi} ; N ′
i ; B′i .

By using {CONC} (and {QINIT}) we have

Θ ` P1{s[1]/y1}|...|Pn{s[n]/yn}|s : � I R ′ ; N ′ ; B′
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where R ′ = (
⋃

1≤i≤n R ′i{s/yi})+,N ′ =
⋃

1≤i≤n N ′
i and B′ =

⋃
1≤i≤n B′i . Note that

this judgement is coherent since s must be minimal in R ′ and R ′∩ (N ′∪B′) = /0.
By using {SRES},

Θ ` (νs)(P1{s[1]/y1}|...|Pn{s[n]/yn}|s : �) I R ′ \ s ; N ′ ; B′

Finally it is easy to see that R ′ \ s = R (by the minimality of the yi in R ′i and of s in
R ′), N ′ ⊆N and B′ ⊆B.

- [Send]. By hypothesis, Θ ` s[p]!〈Π,e〉;P | s : h I R ; N ; B, which is obtained by
applying rule {CONC}. Thus,

Θ ` s[p]!〈Π,e〉;P I R1 ; N ; B1 Θ ` s : h I R2 ; /0 ; B2

where R = (R1∪R2)+ and B = B1∪B2. The first judgement can only be obtained
by {SEND}, i.e., Θ ` P I R ′1 ; N ; B′1 such that R1 = {s}∪R ′1 and B1 = B′1∪{v}.
By using rules {QADDVAL} and {CONC} we obtain

Θ ` P | s : h · (p,Π,v) I (R ′1∪R2)+ ; N ; B′1∪ (B2∪{v}).

Now note that (R ′1∪R2)+ ⊆R and B′1∪ (B2∪{v}) = B.

- [Deleg]. Proceed as in the previous case, thus obtaining

Θ ` s[p]!〈〈q,s′[p′]〉〉;P I R1 ; N ; B1 Θ ` s : h I R2 ; /0 ; B2

where R = (R1∪R2)+ and B = B1∪B2. By inverting rule {DELEG}we obtain Θ `
P I R ′1 ; N ; B1 where R1 = ({s,s′,s≺ s′}∪R ′1)

+. By using rules {QADDSESS}
and {CONC} we have

Θ ` P | s : h · (q,p,s′[p′]) I (R ′1∪{s,s′,s≺ s′}∪R2)+ ; N ; B1∪B2.

- [Label]. Similar to [Send] but simpler (using rule {QSEL} instead of {QADDVAL}).

- [Recv]. By hypothesis, Θ ` s[p j]?(q,x);P | s : (q,Π,v) ·h I R ; N ; B. Proceed as
in the case of rule [Send], thus obtaining

Θ ` s[p j]?(q,x);P I R1 ; N ; B1 Θ ` s : (q,Π,v) ·h I R2 ; /0 ; B2

where R = (R1∪R2)+ and B = B1 ∪B2. By inverting rule {RECV} we obtain
Θ ` P I R ′1 ; N ; B1 where R1 = pre(s,R ′1). By Lemma 5.6(1) we obtain Θ `
P{v/x} I R ′1 ; N ; B1∪{v}. Moreover we have Θ ` s : h I R2 ; /0 ; B′2 where
B2 = B′2∪{v}. Applying {CONC} we get

(1) Θ ` P{v/x} | s : (q,Π\ j,v) ·h I (R ′1∪R2)+ ; N ; B1∪{v}∪B′2.

and note that (R ′1∪R2)+ ⊆ (R1∪R2)+ and B1∪{v}∪B′2 = B.
If v = a is a service name, then a ∈ B2 implies that a 6∈ (R1∪R2)+ and so a 6∈
(R ′1∪R2)+. Then (1) is coherent.
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- [Srec]. By hypothesis, Θ ` s[p]?((q,y));P | s : (q,p,s′[p′]) ·h I R ; N ; B. Proceed-
ing as before,

Θ ` s[p]?((q,y));P I {s} ; N ; B1 Θ ` s : (q,p,s′[p′]) ·h I R2 ; /0 ; B2

where R = ({s}∪R2)+ and B = B1∪B2. In particular (inverting rule {SREC}) we
have Θ ` P I R ′1 ; N ; B1 where R ′1 ⊆ {s, y, s ≺ y}. Moreover, by {QADDSESS}
(and Lemma 5.5) we have that Θ ` s : h I R ′2 ; /0 ; B2 such that R2 =({s,s′,s≺ s′}∪R ′2)

+.
By Lemma 5.6(2), we have Θ ` P{s′[p′]/y} I R ′′1 ; N ; B1 where R ′′1 ⊆ {s, s′, s≺
s′}. By applying rule {CONC} we obtain

Θ ` P{s′[p′]/y} | s : h I (R ′′1 ∪R ′2)
+ ; N ; B1∪B2.

Lastly it is easy to see that this statement is coherent and that (R ′′1 ∪R ′2)
+ ⊆R.

- [Branch]. By hypothesis, Θ ` s[p j]&(q,{li : Pi}i∈I) | s : (q,Π, li0) · h I R ; N ; B.
By inverting the rules we have
—Θ ` Pi I Ri ; Ni ; Bi ∀i ∈ I
—Θ ` s : (q,Π, li0) ·h I R ′ ; /0 ; B′

—R = (pre(s,
⋃

i∈I Ri)∪R ′)+, N =
⋃

i∈I Ni, B =
⋃

i∈I Bi∪B′.
By applying rule {CONC} to the reduced process we obtain

Θ ` Pi0 | s : (q,Π\ j, li0) ·h I (Ri0 ∪R ′)+ ; Ni0 ; Bi0 ∪B′

and the result follows easily.

- [If-T, If-F]. Straightforward.

- [Def]. Let’s assume Θ ` def X(x,y) = P in (X〈e,s[p]〉 | Q) I R ; N ; B. Note
that by rule bDEFc y is the only free channel which can occur P. By inspecting the
inference rule, as before, we must have:
(a) Θ′ = Θ,X [y] I R ′ ; N ′ ; B′;
(b) Θ′ ` P I R ′ ; N ′ ; B′;
(c) Θ′ ` X〈e,s[p]〉 I R ′{s/y} ; N ′ ; B′∪{e};
(d) Θ′ ` Q I R ′′ ; N ′′ ; B′′;
where R = (R ′{s/y}∪R ′′)+,N = N ′∪N ′′,B = B′∪{e}∪B′′.
By Lemma 5.6 we have Θ′ ` P{v/x}{s[p]/y} I R{s/y} ; N ; B′∪{v} and then by
rule {CONC}Θ′ ` (P{v/x}{s[p]/y} |Q) I R ; N ; B since e ↓ v implies B′∪{e}=
B′∪{v}. By rule {DEF}we conclude Θ ` def X(x,y) = P in (P{v/x}{s[p]/y} |Q) I
R ; N ; B.

- [Scop, Pat, Defin, Str]. For the congruence rules the thesis follows from the induction
hypothesis.

LEMMA 5.9. If Γ `Σ P.∆ and Θ ` P I R ; N ; B, then:
(1) s[p] : T ∈ ∆ and T 6= end imply s ∈R;
(2) s ∈R implies ∆(s[p]) 6= end for some p.

PROOF. Standard by induction on P.
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LEMMA 5.10. If Θ ` P I R ; N ; B and a 6∈ R ∪N and P ≡ a [n](y).P′ or P ≡
a[p](y).P′, then no channel with role occurs in R.

PROOF. The last applied rule must be {MCASTB} or {MACCB} and then we must
have Θ ` P′ I R ′ ; N ; B and R = R ′ \\y. Note that the condition cf(R ′ \\y) prevents
channels with roles to occur in R ′.

In the following definition we use C[ ] to denote a context with a hole defined in the
standard way.

Definition 5.11 Precedence. (1) The channel c precedes c′ in the process P if one of
the following condition holds:
—P = C[c?(q,x);Q] and c′ occurs in Q;
—P = C[c!〈〈p,c′〉〉;Q];
—P = C[c?((q,y));Q] and c′ occurs in Q;
—P = C[c&(q,{li : Pi}i∈I)] and c′ occurs in Pi for some i ∈ I;
—P = C[s : h · (q,p,s′[p′]) ·h′] and c = s[p] and c′ = s′[p′].

(2) The channel c weakly precedes c′ in the process P if either c precedes c′ in P or one of
the following condition holds:
—P = C[c!〈Π,e〉;Q] and c′ occurs in Q;
—P = C[c!〈〈p,c0〉〉;Q] and c′ occurs in Q.

LEMMA 5.12. If Θ ` P I R ; N ; B and s[p] precedes s′[p′] in P and s 6= s′, then
s≺ s′ ∈R.

PROOF. By induction on P.

LEMMA 5.13. Let P be initial and P−→∗ P′.

(1) If s[p] weakly precedes s′[q] in P′, then either s 6= s′ or p = q;

(2) If P≡ P′ | s : h′ · (q,p,s′[p′]) ·h then s′ 6= s.
PROOF. We show both points simultaneously by induction on−→∗. In an initial P there

are no channels with roles. As for the induction step we discuss the more interesting cases.
- Rule [Link] creates a new channel with a unique distinguished role for each parallel
process. Both 1. and 2. follow trivially by the induction hypothesis.
- When the reduction step is obtained by rule [Srec] we must have s : (q,p,s′[p′]) · h. By
induction hypothesis we must have s 6= s′. By Theorem 5.8 we can derive a channel relation
for the left hand side of the reduction rule [Srec] using the interaction typing rule {SREC}.
Therefore s[p] and s′[p′] are the only channels with role in P{s′[p′]/y} and point 1. follows
immediately.
- When the reduction step is obtained by rule [Deleg] note that the session delegation
command must have been typed by rule bDELEGc. For this reason we get s[p] 6= s′[p′].
Since s[p] precedes s′[p′] in the session delegation command, then by induction s = s′

implies p = p′. We then conclude s 6= s′.

Definition 5.14. Define ∝ between processes, message queues and local types, as fol-
lows:
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c!〈Π,e〉;P ∝ !〈Π,S〉;T c?(q,x);P ∝?(q,S);T
c!〈〈p′,c′〉〉;P ∝ !〈Π,T 〉;T c?((q,y));P ∝?(q,T );T

c⊕〈Π, li〉;P ∝⊕〈Π,{li : Ti}i∈I〉 c&(q,{li : Pi}i∈I) ∝ &(p,{li : Ti}i∈I)
(q,Π,v) ·h ∝ !〈Π,S〉;T (q,p′,s[p]) ·h ∝ !〈Π,T 〉;T

(q,Π, l) ·h ∝⊕〈Π,{li : Ti}i∈I〉 X〈e,c〉 ∝ T
where i ∈ I.

Definition 5.15. A process P is ready in a process Q if one of the following conditions
holds:

—Q≡ P;
—Q≡ P | R for some R;
—Q≡ (νa)R and P is ready in R, for some R, a;
—Q≡ (νs)R and P is ready in R, for some R, s;
—Q≡ def D in R and P is ready in R, for some R, D.

Definition 5.16.

—An input process is a value sending, session delegation or label selection.
—An output process is a value reception, session reception or label branching.
—The identifier u is the subject of u [n](y).P and u[p](y).P.
—The channel c is the subject of c!〈Π,e〉;P, c?(q,x);P, c!〈〈p′,c′〉〉;P, c?((q,y));P, c⊕
〈Π, l〉;P and c&(q,{li : Pi}i∈I).

—An output type is a type of the shape !〈Π,U〉;T, ⊕〈Π,{li : Ti}i∈I〉, or ⊕〈Π, l〉;T.
—An input type is a type of the shape ?(Π,U);T , or &(p,{li : Ti}i∈I).

LEMMA 5.17. Assume that

—Θ ` P I R ; N ; B;
—R contains service names which are not bigger than channels with roles and less than

at least one channel with role;
—no ready process in P is an output or a conditional or a process call or a session initial-

isation on a variable.
Then P contains one ready session initialisation on a free service name which belongs

to R ∪N .

PROOF. If P is a session initialisation on a free service name which belongs to R ∪N
there is nothing to prove. Otherwise the proof is by induction on P.

P cannot be a session initialisation on a free session name which does not belong to
R ∪N , since otherwise R could not contain channels with roles by Lemma 5.10.

P cannot be an input process since otherwise by Lemma 5.12 a channel with role would
be less than all channels with roles which occur in R.

If P ≡ P1 | P2, then R = (R1∪R2)+ and Θ ` P1 I R1 ; N1 ; B1 and Θ ` P2 I
R2 ; N2 ; B2 for some R1,R2, since the last applied rule for deriving Θ ` P I R ; N ; B
must be {CONC}. Note that at least one between R1 and R2 must contain session names
which are not bigger than channels with roles and less than at least one channel with role.
Therefore by induction either P1 or P2 contains a ready session initialisation on a free
service name which belongs to R ∪N .
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If P ≡ def X(x,y) = P′ in Q, then Θ,X [y] I R ′ ; N ′ ; B′ ` Q I R ; N ; B since
the last applied rule for deriving Θ ` P′ I R ′ ; N ′ ; B′ must be {DEF}. Therefore by
induction Q contains a ready session initialisation on a free service name which belongs to
R ∪N .

If P ≡ (νa)P′, then Θ ` P′ I R ; N ; B′ where B′ = B \ a and a 6∈R ∪N , since
the last applied rule for deriving Θ ` (νa)P I R ; N ; B must be {NRES}. Therefore by
induction P′ contains a ready session initialisation on a free service name which belongs
to R ∪N .

LEMMA 5.18. Assume that
—Γ `Σ P.∆;
—Θ ` P I R ; N ; B is proved without using rule {SRES};
—s is minimal in R;
—no s[p] precedes s[q] with p 6= q in P;
—no ready process in P is an output, a conditional, a process call, a session initialisation

on a free channel or on a variable.
Then:
(1) if ∆(s[p]) is an input type then P contains a ready input process Q with subject s[p]

such that Q ∝ ∆(s[p]);
(2) if ∆(s[p]) is an output type then P contains the queue s : h and h ∝ ∆(s[p]).

PROOF. The proof of both points is by induction on P. Note that P cannot be a session
initialisation on a bound channel, i.e. we cannot have P ≡ (νa)Q where Q is a session
initialisation on the channel a, since in that case the channel relation for Q should contain
a≺ s and this is impossible by Lemma 5.10.

(1). If P is an input process, then by Lemmas 5.12 and 5.13 the subject of P must be s[p]:
obviously P is ready. Note that P is a user process and then Γ ` P . ∆ by Lemma A.2(1).
We get P ∝ ∆(s[p]) by Lemma A.1(8), (10) and (A.1).

If P ≡ P1 | P2, then by Lemma A.2(6) Σ = Σ1 ∪Σ2 and ∆ = ∆1 ∗∆2 and Γ `Σ1 P1 . ∆1
and Γ `Σ2 P2 . ∆2. Since an input type is never a message type we have either ∆(s[p]) =
∆1(s[p]) or ∆(s[p]) = ∆2(s[p]). Assume ∆(s[p]) = ∆1(s[p]). Moreover, since the last ap-
plied rule must be {CONC}, Θ ` P1 I R1 ; N1 ; B1 and Θ ` P2 I R2 ; N2 ; B2 and
R=(R1∪R2)+. Note that by Lemma 5.9 R1 contains s. Moreover s is minimal in R1
since R1 ⊆R. Therefore by induction P1 contains a ready input process Q with subject
s[p] such that Q ∝ ∆(s[p]).

If P ≡ def X(x,y) = P′ in Q, then by Lemma A.2(9) Γ,X : S T,x : S ` P . y : T and
Γ,X : S T `Σ Q . ∆. Moreover Θ,X [y] I R ′;N ′;B′ ` Q I R ; N ; B, since the last
applied rule for deriving Θ ` P′ I R ′ ; N ′ ; B′ must be {DEF}. Therefore by induction
Q contains a ready input process Q with subject s[p] such that Q ∝ ∆(s[p]).

If P ≡ (νa)P′, then by Lemma A.2(8) Γ,a : 〈G〉 `Σ P′ . ∆. Moreover, since the last ap-
plied rule for deriving Θ ` (νa)P′ I R ; N ; B must be {NRES}, Θ ` P′ I R ; N ; B′

where B = B′ \ a and a 6∈ R ∪N . Therefore by induction P′ contains a ready input
process Q with subject s[p] such that Q ∝ ∆(s[p]).

(2). If P is a queue, then it must be the queue s and the result follows from Lemma A.3.
If P ≡ P1 | P2, then by Lemma A.2(6) Σ = Σ1 ∪ Σ2 and ∆ = ∆1 ∗ ∆2 and Γ `Σ1 P1 .

∆1 and Γ `Σ2 P2 . ∆2. We consider the case ∆(s[p]) = ∆1(s[p]);∆2(s[p]), the other cases
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being similar or simpler. As in the proof of (1) we get R = (R1∪R2)+ and Θ ` P1 I
R1 ; N1 ; B1. Note that by Lemma 5.9(1) R1 contain s. Therefore by induction P1 contains
the queue s:h and h ∝ ∆(s[p]).

If P≡ def P1 in P2 or P≡ (νa)P′, the proof proceeds as in the case of (1).

Proof of Theorem 5.3 [Progress].
Let P0 be initial and P0 −→∗ P.

If P does not contain channels with roles there is nothing to prove.
If a ready sub-process of P is an output process, then P is reducible.
If a ready process in P is a conditional, then P would reduce, since P is closed (being P0

closed) and any closed boolean value is either true or false. Similarly if a ready process of
P is a process call it can be reduced.

No ready process in P is an accept/request on a variable since P is closed.
If one ready process in P is an accept/request on a free channel a, then a must be in the

domain of the standard environment Γ used to type P0 and P. Even if in P there are not
enough partners to apply rule [Link], using Γ(a) we can build a process Q containing the
missing partners which are necessary in order to apply it to P | Q.

Otherwise let P≡ (ν s̃)Q, where s̃ is the set of all session names which occur in P. By the
Type Preservation Theorems A.6 and 5.8 P is well typed both in the communication and in
the interaction type systems. This implies ` Q I R ; N ; B for some R, N , B. Let ∆

be the session environment of Q. Note that by construction we do not use rule {SRES} for
deriving R. All minimals in R cannot be service names names since otherwise P would
contain one ready initialisation on a free service name by Lemma 5.17. So there must be
a session name s which is minimal. By Lemma 5.9(2) and the coherence of ∆ there must
be p, q such that ∆(s[p]) = T , ∆(s[q]) = T ′ and T � q ./ T ′ � p. Without loss of generality
we can assume that T is an input type and T ′ is an output type. Then Lemma 5.18 implies
that Q contains a ready input process R such that R ∝ T and the queue s : h with h ∝ T ′.
Therefore P reduces by rule [Recv].

6. INFERENCE

In this section we introduce a deterministic, compositional type inference algorithm, de-
fined via a set natural semantics rules, to check if a given process can be typed with the
interaction typing rules of Section 5, thus assuring that the considered process has the
progress property.

The inference rules define, on the structure of a process P, a judgement of the form:

Θ ;P Z⇒ R ; C ; N ; B

where R, C, N, B are inferred as defined below and they carry on the necessary informa-
tions to check if the process P is typable with the interaction rules. Instead the process
variable environment Θ is a set of progress assumptions for process variables of the form
X [y] I R ; N ; B that must be supplied by the user. The reason of this choice are twofold.
On the one hand, it seems reasonable that a programmer be aware of the interaction prop-
erties of the recursive processes that represents the most critical part of a system: indeed
the interactions properties of these components should be kept as simple as possible to
allow an easy control of the global interaction. On the other hand the automatic inference
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of the process variable environment would introduce, to keep the completeness property,
a very heavy fixpoint construction that would make much more difficult (and in the end
unpractical) the inference algorithm.

The set R ⊆ Λ∪ (Λ×Λ) denotes, informally, an order between channels and services
as the set R in Section 5. Nevertheless R is not kept closed under transitivity. Then a
pair λ ≺ λ ′ ∈ R registers the fact that a communication via λ ′ immediately precedes a
communication via λ . We will prove that all possible sets R that can be deduced in the
interaction type system for a given process can be obtained by taking the transitive closure
of suitable subsets of the set R inferred for this process.

Let S be the set of service names. The set C ia a partial function in S →fin Pfin(S )
represented as a set of pairs (a,A ) where a ∈S and A ⊆S . The service names occur-
ring in C are intended to represent a subset of the service names in dom(R) which could
(potentially) be closed with a nesting rule. In particular in a pair (a,A ) ∈ C the set A
represents the union of all subsets of service names that immediately preceded one occur-
rence of a in the channel relation, at the moment in which that occurrence was introduced
in R. Recall that, in case of a [n](y) or a[p](y), the nesting rules require that the channel y
is minimal in the channel relation. This means that if for some reason we realize that, in all
deductions of the interaction system, a needs to be closed with a nesting rule (which im-
plies that y must be minimal in the channel relation when the rule is applied) then we must
register that all the services in A must also be closed with a nesting rule and propagate
this along C.

The service names that do not belong to the domain of C can be closed exclusively with
the rules {MCAST}, {MACC}. The inference rules, whenever applicable, guarantee that
the transitive closure of R minus the domain of C is loop free.

The set N⊆S contains the service names that must be closed with a nesting rule while
B⊆S denotes a set of service names that may be closed by rule {MCASTB}, {MACCB}.
We will prove that all possible values of N ∪B in a deduction in the interaction system
for a given process must include the set N. As can be expected by their meaning R and
N are disjoint sets while B can have a non empty intersection both with N and with R (in
particular with the domain of C).

By the above discussion we then have that:

—the names in dom(R)\dom(C) must be closed by rules {MCAST}, {MACC};
—the names in dom(C) \B are candidates to be closed by rules {MCAST}, {MACC} or
{MCASTN}, {MACCN};

—the names in dom(C)∩B are candidates to be be closed by all rules;
—the names in N\B must be closed by rules {MCASTN}, {MACCN};
—the names in N∩B are candidates to be closed by rules {MCASTN}, {MACCN} or
{MCASTB}, {MACCB}.

Let us introduce now some more preliminary definitions. Mariangiola says: Add expla-
nations!

—If A is a set, then R\A extends Definition 5.2(2) in the obvious way.
—R ↓ y = {λ | λ ≺ y ∈ R}
—C(a) and dom(C) have the obvious definition, C(A ) =

⋃
a∈A C(a), where A ⊆S .
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—C\A is the function obtained from C by restricting the domain of C to the names which
do not belong to A

—CdC′ = {(a,C(a)∪C′(a) | a ∈ dom(C)∪dom(C′)} assuming C(a) = /0 if a /∈ dom(C)

—cl(C,a) = {b | b ∈ C(a) or b ∈ C(c) for some c ∈ cl(C,a)};

—rcl(C,a) =

{
cl(C,a)∪{a} if a ∈ dom(C),
/0 otherwise.

—rcl⇑(C,a) = {a}∪{b | a ∈ cl(C,b)}
—rcl(C,A ) =

⋃
a∈A rcl(C,a)

The closure cl(C,a) of the mapping C over a is intended to represent all the service
names that must be closed with a nesting rule to allow a to be closed with a nesting rule.
Note that C(a) only represents the service names that immediately precede a in R. The set
rcl⇑(C,a) represent all the service names that can be closed with a nesing rule only if a is
closed with a nesting rule.

Note that ” \ ” is somewhat overloaded since it is used to denote both set difference,
restriction on a relation (R, R) and elimination from a domain of a finite map (in our case
C).

Let’s first prove a useful property.

LEMMA 6.1. If H ⊆K , then rcl(C\ rcl(C,H ),K )∪ rcl(C,H ) = rcl(C,K ).

PROOF. (⊆) Proof of rcl(C\ rcl(C,H ),K )∪ rcl(C,H )⊆ rcl(C,K ). We have rcl(C\
rcl(C,H ),K ) ⊆ rcl(C,K ) by definition of rcl and rcl(C,H ) ⊆ rcl(C,K ) by definition
of rcl being H ⊆K .
(⊇) Proof of rcl(C \ rcl(C,H ),K )∪ rcl(C,H ) ⊇ rcl(C,K ). If a ∈ rcl(C,K ) and a /∈
rcl(C \ rcl(C,H ),K ), then by definition of rcl there are b ∈K and c ∈ rcl(C,H ) such
that c ∈ rcl(C,b) and a ∈ rcl(C,c). We conclude that a ∈ rcl(C,H ).

The inference rules are given in Tables XV, XVI and XVII. The most crucial rules are
{MCAST-I}, {MACC-I}. In both rules we use by the function m defined in Table XV.
In this function we have to distinguish several cases. A first crucial point is weather the
service name a involved in the rule is already contained in the sets R or N or not (conditions
(µ), (ν) or (ρ). In all cases an other crucial condition is the position of the set R ↓ y in R.

If R ↓ y completely contained in the domain of C (cases (γ), (ν)) we can leave open
the possibility that a could be closed with a nesting rule (case (γ)), since we can make y
minimal.

If a is already an element of N as a service that must be closed with a nesting rule (case
(ν)) then we must add to N all the services which must be closed by a nesting rule in order
to allow the closure of a with a nesting rule, removing them from R, C.

If R ↓ y is not included in the domain of C (case (γ )), then the service a cannot be closed
with a nesting rule in any valid deduction of the interaction type system (since there is no
way of making y minimal in any possible deduction). So if a already belongs to R (case
(ρ)(α)(γ )) we must eliminate from C and B both a and all the service names that could
be closed by a nesting rule only if a also is closed by a nesting rule, checking that this
restriction of C does not determine a loop in R\dom(C).
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The function m(u,R,C,N,B) is defined closing in boxes the list of returned values for the various
cases.

• u = a is a service name.
(µ) a 6∈ dom(R)∪N

(γ) R ↓ y⊆ dom(C)
(φ ) cf(R{a/y}) R{a/y}∪{a};Cd{(a,R ↓ y)};N;B∪{a}

(φ ) ¬cf(R{a/y}) R{a/y}∪{a};Cd{(a,R ↓ y)};N;B

(γ ) R ↓ y 6⊆ dom(C) R{a/y};C;N;B

(ν) a ∈ N R ↓ y⊆ dom(C)
(φ ) cf(R{a/y}) R\ (rcl(C,R ↓ y)∪{y});C\ rcl(C,R ↓ y);N∪ rcl(C,R ↓ y);B

(φ ) ¬cf(R{a/y}) R\ (rcl(C,R ↓ y)∪{y});C\ rcl(C,R ↓ y);N∪ rcl(C,R ↓ y);B\{a}
(ρ) a ∈ dom(R)

(α) a ∈ dom(C)
(γ) R ↓ y⊆ dom(C)

(φ ) cf(R{a/y}) R{a/y};Cd{(a,R ↓ y)};N;B

(φ ) ¬cf(R{a/y}) R{a/y};Cd{(a,R ↓ y)};N;B\{a}
(γ ) R ↓ y 6⊆ dom(C) and (R{a/y}\dom(C\ rcl⇑(C,a)))+ is loop free

R{a/y};C\ rcl⇑(C,a);N;B\ rcl⇑(C,a)

(α ) a /∈ dom(C) and (R{a/y}\dom(C))+ is loop free R{a/y};C;N;B

• u = x is a variable, R ↓ y⊆ dom(C), cf(R\{y})
R\ (rcl(C,R ↓ y)∪{y}); C\ rcl(C,R ↓ y);N∪ rcl(C,R ↓ y);B

Table XV. Inference function for services

The treatment of the set B is somewhat simpler: just note that a service name a belongs
to B only if it can be closed by a nesting rule and each subprocess starting with an accept-
request on a has an associated channel relation that does not contain free channel names.

Another crucial rule is {CONC-I}. In this rule we must check that the two processes P1
and P2 that are put in parallel are compatible with respect to the interaction properties. The
crucial part is the treatment of the names that occur both in P1 and P2. Note that the sets
Di contains the service names that cannot be closed with the nesting rules in the respective
process. The set K then contains the services that must be excluded from the C since it
contains both sets Di and the set of services whose closure with the nesting rules would
imply that a service in some Di should also be closed with a nesting rule.

Rule {IF-I} has the same structure of {CONC-I}. Rule {BRANCH-I} is a generalization
of {IF-I}.

We need four different versions of rule {SEND-I} in order to to take into account the
different form of the communicated value. Note in particular that if a service name is sent
we must force it to be closed by a nesting rule (if this is allowed by R and C).

An an example consider the process:

P3 = a[1](y1).b[1](z). (P1 | P2)
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{INACT-I}
Θ ;0 Z⇒ /0 ; /0 ; /0 ; /0

Θ ;P Z⇒ R ; C ; N ; B
{MCAST-I}

Θ ; u [n](y).P Z⇒ R′ ; C′ ; N′ ; B′

Θ ;P Z⇒ R ; C ; N ; B
{MACC-I}

Θ ;u[p](y).P Z⇒ R′ ; C′ ; N′ ; B′

where R′;C′;N′;B′ = m(u,R,C,N,B)

Θ ;P Z⇒ R ; C ; N ; B e 6= a
{SEND1-I}

Θ ;y!〈Π,e〉;P Z⇒ {y}∪R ; C ; N ; B

Θ ;P Z⇒ R ; C ; N ; B e = a a /∈ dom(R)∪N
{SEND2-I}

Θ ;y!〈Π,e〉;P Z⇒ {y}∪R ; C ; N∪{a} ; B∪{a}

Θ ;P Z⇒ R ; C ; N ; B e = a a ∈ dom(C)
{SEND3-I}

Θ ;y!〈Π,e〉;P Z⇒ {y}∪R\ rcl(C,a) ; C\ rcl(C,a) ; (N∪ rcl(C,a)) ; B

Θ ;P Z⇒ R ; C ; N ; B e = a a ∈ N
{SEND4-I}

Θ ;y!〈Π,e〉;P Z⇒ {y}∪R ; C ; N ; B

Θ ;P Z⇒ R ; C ; N ; B R ↓ y ⊆ dom(C)
{RCV-I}

Θ ;y?(q,x);P Z⇒ pre(y,R\ (rcl(C,R ↓ y))) ; C\ (rcl(C,R ↓ y)) ; N∪ (rcl(C,R ↓ y)) ; B

Θ ;P Z⇒ R ; C ; N ; B
{DELEG-I}

Θ ;y!〈〈p′,y′〉〉;P Z⇒ {y, y′, y≺ y′}∪R ; C ; N ; B

Θ ;P Z⇒ R ; C ; N ; B R\dom(C)⊆ {y, y′, y ≺ y′}
{SREC-I}

Θ ;y?((q,y′));P Z⇒ {y} ; /0 ; N∪dom(C) ; B

Θ ;P Z⇒ R ; C ; N ; B
{SEL-I}

Θ ;y⊕〈Π, l〉;P Z⇒ {y}∪R ; C ; N ; B

Θ ;Pi Z⇒ Ri ; Ci ; Ni ; Bi i ∈ I K∩N = /0
{BRANCH-I}

Θ ;y&(p,{li : Pi}i∈I) Z⇒ pre(y,R) ; C ; N ; B

where

Di = dom(Ri)\dom(Ci) i ∈ I

N =
⋃

i∈I Ni∪ cl(di∈ICi,
⋃

i∈I Ni)

K = rcl⇑(di∈ICi,
⋃

i∈I Di)

R = (
⋃

i∈I Ri)\N

C = (di∈ICi)\ (N∪K)

B = {a | ∃i ∈ I. a ∈ Bi ∧ ∀i ∈ I. (a ∈ Bi∨a /∈ dom(Ri)∪Ni)}

Table XVI. Inference for Interaction I
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Θ ;P1 Z⇒ R1 ; C1 ; N1 ; B1 Θ ;P2 Z⇒ R2 ; C2 ; N2 ; B2

K∩N = /0
{CONC-I}

Θ ;P1 | P2 Z⇒ R ; C ; N ; B

where

Di = dom(Ri)\dom(Ci) i ∈ {1,2}

N = N1∪N2∪ cl(C1dC2,N1∪N2)

K = rcl⇑(C1dC2,D1∪D2)

R = (
⋃

i=1,2 Ri)\N

C = (C1dC2)\ (N∪K)

B = (B1∩B2)∪ (
⋃

i=1,2{a ∈ Bi | a /∈ dom(R i )∪N i})

X [y] I R ; N ; B ∈Θ

{VAR-I}
Θ ; X〈e,y〉 Z⇒ R{y/y} ; /0 ; N ∪{e}∪B ; B∪{e}

Θ,X [y] I R ; N ; B ; P Z⇒ R ; C ; N ; B

R = (R\ (N ∪B))+ N ∪B = rcl(C,N ∪B)∪N B \N ⊆ B

Θ ;Q Z⇒ R′ ; C′ ; N′ ; B′
{DEF-I}

Θ ;def X(x,y) = P in Q Z⇒ R′ ; C′ ; N′ ; B′

Θ ;P Z⇒ R ; C ; N ; B either a ∈ B or a 6∈ dom(R)∪N
{NRES-I}

Θ ;(νa)P Z⇒ R\ rcl(C,a) ; C\ rcl(C,a) ; N\{a}∪ cl(C,a) ; B\{a}

Θ ;P1 Z⇒ R1 ; C1 ; N1 ; B1 Θ ;P2 Z⇒ R2 ; C2 ; N2 ; B2

K∩N = /0
{IF-I}

Θ ; if e then P1 else P2 Z⇒ R ; C ; N ; B

where

Di = dom(Ri)\dom(Ci) i ∈ {1,2}

N = N1∪N2∪ cl(C1dC2,N1∪N2)

K = rcl⇑(C1dC2,D1∪D2)

R = (
⋃

i=1,2 Ri)\N

C = (C1dC2)\ (N∪K)

B = (B1∩B2)∪ (
⋃

i=1,2{a ∈ Bi | a /∈ dom(R i )∪N i})

Table XVII. Inference for Interaction II

where P1 = a[2](y2).y2?(4,x1);z?(5,x2);0 and P2 = y1?(6,x3);a[3](y3).y3?(7,x4);0.
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Applying the inference rules we get:

/0 ; y2?(4,x1);z?(5,x2);0 Z⇒ {y2 ≺ z, y2, z} ; /0 ; /0 ; /0
/0 ; a[2](y2).y2?(4,x1);z?(5,x2);0 Z⇒ {a≺ z, a, z} ; {(a, /0)} ; /0 ; /0
/0 ; a[3](y3).y3?(7,x4);0 Z⇒ {a} ; {(a, /0)} ; /0 ; {a}
/0 ; y1?(6,x3);a[3](y3).y3?(7,x4);0 Z⇒ {y1 ≺ a,y1,a} ; {(a, /0)} ; /0 ; {a}
/0 ; P1 | P2 Z⇒ {a≺ z, y1 ≺ a, a, z,y1} ; {(a, /0)} ; /0 ; /0
/0 ; b[1](z). (P1 | P2) Z⇒ {a≺ b, y1 ≺ a, a, b, y1} ; {(a, /0),(b,a)} ; /0 ; /0
/0 ; a[1](y1).b[1](z). (P1 | P2) Z⇒ {a≺ b, a≺ a, a, b} ; {(a, /0),(b,a)} ; /0 ; /0

With a simple induction on deductions we can show the following basic facts.

LEMMA 6.2. Let Θ ; P Z⇒ R ; C ; N ; B. Then

(1) dom(R)∩N = /0.
(2) dom(C)⊆ dom(R).
(3) B⊆ dom(C)∪N.
(4) range(C)⊆ dom(C).
(5) cl(C,A )⊆ dom(C).
(6) rcl(C,A )⊆ dom(C).
(7) rcl⇑(C,A )⊆ dom(C).
(8) (R\dom(C))+ is loop free.

LEMMA 6.3. If R ↓ y⊆ dom(C), then y is minimal in (R\ rcl(C,R ↓ y))+.

The following Soundness and Completeness Theorem shows that he above rules fully
characterize all possible interference typing of a process. correctness of rule (Def-I).

THEOREM 6.4 SOUNDNESS. If Θ ; P Z⇒ R ; C ; N ; B and for some R,N ,B:

(1) R = (R\ (N ∪B))+ is loop free;
(2) N ∪B = rcl(C,N ∪B)∪N;
(3) B \N ⊆ B;

then Θ ` P I R ; N ; B.

PROOF. By induction on the proof of Θ ; P Z⇒ R ; C ; N ; B.
Rule {MCAST-I}

Θ ;P Z⇒ R′ ; C′ ; N′ ; B′

{MCAST-I}
Θ ; u [n](y).P Z⇒ R ; C ; N ; B

where R;C;N;B = m(u,R′,C′,N′,B′).

We define:

- R ′ = (R′ \ (N ′∪B′))+,

- N ′ =

{
N \u if u 6∈ dom(R′)∪N′,

N otherwise.
,
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- B′ =

{
B \u if u 6∈ dom(R′)∪N′,

B otherwise.
.

We need to show that:

(1′) R ′ = (R′ \ (N ′∪B′))+;
(2′) N ′∪B′ = rcl(C′,N ′∪B′)∪N′;
(3′) B′ \N ′ ⊆ B′.

Points (1′), (2′), and (3′) imply by induction hypothesis that Θ ` P I R ′ ; N ′ ; B′. More-
over we must show that one rule between {MCAST}, {MCASTN} and {MCASTB} can be
applied to Θ ` P I R ′ ; N ′ ; B′ giving as conclusion Θ ` u [n](y).P I R ; N ; B.

Point (1′) holds by definition. Point (3′) follows from Point (3) since B′ \N ′ = B\N
and in all cases of the definition of m but (µ)(γ)(φ ) we have B⊆ B′. In case (µ)(γ)(φ ) we
have B = B′∪{a} and a 6∈ dom(R′)∪N′, which implies a 6∈B′. So also in this case Point
(3′) holds.

To prove Point (2′) and the derivability of Θ ` u [n](y).P I R ; N ; B we distinguish if
u is a service name or a variable. For u service name we consider different cases according
to

—how R is obtained from R′ by rule {MCAST-I};
—whether u is an element of R, N or B \N .

u is a service name. Let u = a. To show derivability of Θ ` u [n](y).P I R ; N ; B and
Point (2′) we distinguish some subcases.
R = R′{a/y} or R = R′{a/y}∪{a}. Note that these two cases are different only when

both y and a do not occur in R′. This case corresponds to cases (µ) and (ρ) of the
definition of m. In both cases a /∈ N′: this holds by hypothesis in case (µ) and it
follows from a ∈ dom(R′) and Lemma 6.2(1) in case (ρ). Moreover we get N = N′

by definition of m, which implies a /∈ N. We distinguish the following cases.
a ∈R. We can only apply rule {MCAST} to obtain Θ ` u [n](y).P I R ; N ; B;

this is possible being R loop free by hypothesis. For Point (2′) from Point (1) we
get a /∈N ∪B and then N ′ = N and B′ = B by definition. We distinguish some
further subcases according to the definition of C.
C = C′d{(a,R′ ↓ y)}. We are in cases (µ)(γ) and (ρ)(α)(γ). We get rcl(C,N ∪

B) = rcl(C′,N ∪B) = rcl(C′,N ′∪B′), since a /∈N ∪B = N ′∪B′. Since
N = N′, Point (2′) follows from Point (2).

C = C′ \ rcl⇑(C′,a). We are in case (ρ)(α)(γ ). We get rcl⇑(C′,a)∩ dom(C) = /0
by definition of C. Moreover rcl⇑(C′,a)∩N′ = /0 by Lemma 6.2(1) and (2), being
rcl⇑(C′,a)⊆ dom(C′) by Lemma 6.2(7). Point (2) implies N ∪B ⊆ dom(C)∪
N, so we get N ′∪B′ ⊆ dom(C)∪N′ since N ∪B = N ′∪B′ and we conclude
that rcl⇑(C′,a)∩(N ′∪B′) = /0. This implies rcl(C,N ∪B) = rcl(C′,N ′∪B′)
and Point (2′) follows from Point (2), being N = N′ .

C = C′. We are in cases (µ)(γ ) and (ρ)(α ). Point (2′) coincides with Point (2).
a ∈N . By Point (2) rcl(C,a) ⊆N ∪B, which implies a ∈ dom(C), since a /∈ N.

From a ∈ dom(C) we can exclude the following cases of the definition of m:
- case (µ)(γ ), since a 6∈ dom(R′)∪N′ and C = C′;
- case (ρ)(α)(γ ), since a ∈ dom(C′) and C = C′ \ rcl⇑(C′,a);
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- case (ρ)(α ), since a 6∈ dom(C′) and C = C′.

Therefore we can only be in cases (µ)(γ) or (ρ)(α)(γ) of the definition of m. In
both cases condition (γ) holds, i.e. R′ ↓ y ⊆ dom(C′), and C = C′ d {(a,R′ ↓ y)}.
Since a ∈N and R′ ↓ y⊆ C(a) by definition of C, we get by Point (2)

R′ ↓ y⊆N ∪B (#)

In case (µ)(γ) we have N ′∪B′∪{a} = N ∪B by definition of N ′,B′. More-
over condition (µ) implies a /∈ R′ ↓ y (since a /∈ dom(R′) is part of condition (µ)).
Then (#) implies R′ ↓ y ⊆N ′ ∪B′. So rcl(C′,N ′ ∪B′)∪{a} = rcl(C,N ∪B)
by definition of C and we get from Point (2) rcl(C′,N ′∪B′)∪N′ = N ′∪B′, i.e.
Point (2′).
In case (ρ)(α)(γ), condition (ρ) is a ∈ dom(R′) and then N ∪B = N ′ ∪B′

by definition of N ′,B′. We get R′ ↓ y ⊆ N ′ ∪B′ from (#), which implies
rcl(C,N ∪B) = rcl(C′,N ′ ∪B′) by definition of C. By Point (2) then we get
immediately Point (2′).
In both cases, from R′ ↓ y⊆N ′∪B′, Point (2′) and Lemma 6.2(1) we get R′ ↓ y⊆
dom(C′). This implies y is minimal in (R′ \ rcl(C′,R′ ↓ y))+ by Lemma 6.3. From
R′ ↓ y⊆N ′∪B′, Points (1′) and (2′) we have that y is minimal in R ′ and then we
can apply rule {MCASTN}.

a ∈B \N . As in previous case we can exclude cases (µ)(γ ), (ρ)(α)(γ ), and (ρ)(α )
of the definition of m. Point (2′) is proved reasoning as in the previous case, and
this implies that y is minimal in R ′. By Point (3) we get a ∈ B and this implies
we are in case (µ)(γ)(φ ) or (ρ)(α)(γ)(φ ) of the definition of m. Condition (φ ) is
cf(R′{a/y}) and this implies cf(R ′ \\y) by Point (1′). So rule {MCASTB} can be
applied.

R = R′ \ (rcl(C′,(R′ ↓ y))∪{y}). This correspond only to case (ν) of the definition of
m. The condition a ∈ N implies a ∈ N ∪B by Point (2). Moreover we have by
definition N = N ′ and B = B′. We distinguish two subcases:

a ∈N . We have C = C′ \ rcl(C′,R′ ↓ y) and N = N′ ∪ rcl(C′,R′ ↓ y). By Point (2)
N ⊆ N ∪B, and this implies R′ ↓ y ⊆ N ∪B by definitions of N and rcl, be-
ing by hypothesis R′ ↓ y ⊆ dom(C′). By Lemma 6.1 we get rcl(C′ \ rcl(C′,R′ ↓
y),N ∪B)∪ rcl(C′,R′ ↓ y) = rcl(C′,N ∪B). i.e. rcl(C,N ∪B)∪ rcl(C′,R′ ↓
y) = rcl(C′,N ∪B), which implies rcl(C,N ∪B)∪N = rcl(C′,N ∪B)∪N′ by
definitions of C and N. So Point (2) implies Point (2′).
The proof of y minimal in R ′ is as in case R = R′{a/y} or R = R′{a/y}∪{a} and
a ∈N . So rule {MCASTN} can be applied to obtain the typing in the progress
system.

a ∈B \N . The proofs of Point (2′) and of y minimal in R ′ are as in previous case.
By Point (3) we get a ∈ B and this implies we are in case (ν)(φ ) of the definition of
m. Condition (φ ), i.e. cf(R′{a/y}), implies cf(R ′{a/y}) by Point (1′). So we can
apply rule {MCASTB}.

u is a variable. The proof is similar to that of case u = a and R = R′\(rcl(C′,R′ ↓ y)∪{y}).
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Rule {CONC-I}.

Θ ;P1 Z⇒ R1 ; C1 ; N1 ; B1 Θ ;P2 Z⇒ R2 ; C2 ; N2 ; B2

K∩N = /0
{CONC-I}

Θ ;P1 | P2 Z⇒ R ; C ; N ; B

where

Di = dom(Ri)\dom(Ci) i ∈ {1,2}
N = N1∪N2∪ cl(C1dC2,N1∪N2)

K = rcl⇑(C1dC2,D1∪D2)

R = (
⋃

i=1,2 Ri)\N

C = (C1dC2)\ (N∪K)

B = (B1∩B2)∪ (
⋃

i=1,2{a ∈ Bi | a /∈ dom(R i )∪N i})

We define:
- Ri = (Ri \ (N ∪B))+,
- Ni = N ∩ (dom(Ci)∪Ni),
- Bi = B∩ (dom(Ci)∪Ni).

We need to show that rule {CONC} can be applied to Θ ` P1 I R1 ; N1 ; B1 and
Θ ` P2 I R2 ; N2 ; B2, giving as result Θ ` P1 | P2 I R ; N ; B, i.e. (being R loop
free by hypothesis) that:

(a) R = (R1∪R2)+;

(b) N = N1∪N2;

(c) B = B1∪B2;

(d) Ri∩ (N i ∪B i ) = /0;

and moreover that:

(1′) Ri = (Ri \ (Ni∪Bi))+;

(2′) Ni∪Bi = rcl(Ci,Ni∪Bi)∪Ni;

(3′) Bi \Ni ⊆ Bi.

We first show that:

K∩ (N ∪B) = /0 ([)

By definition of C we get K∩ dom(C) = /0. By applicability of rule {CONC-I} we get
K∩N = /0. By lemma 6.2(6) we have rcl(C,N ∪B)⊆ dom(C), which gives by Point (2)
N ∪B ⊆ dom(C)∪N.

—Proof of Point (a).
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R = (R\ (N ∪B))+

by Point (1)
= ((R1∪R2)\N)\ (N ∪B))+

by definition of R
= ((R1∪R2)\ (N ∪B))+

since N⊆N ∪B by Point (2)
= ((R1 \ (N ∪B))∪ (R2 \ (N ∪B)))+

= (R1∪R2)+.

—Proof of Point (b).
(⊇). Immediate by definition of Ni.
(⊆). If a ∈N , then by Point (2) either a ∈ rcl(C,N ∪B) or a ∈ N.
By Lemma 6.2(6) a ∈ rcl(C,N ∪B) implies a ∈ dom(C), and this gives a ∈ dom(Ci)
for i = 1 or i = 2 by definition of C. From a ∈N ∩ dom(Ci) we conclude a ∈Ni by
definition of Ni.
If a ∈N, then either a ∈ cl(C1dC2,N1∪N2) or a ∈Ni for i = 1 or i = 2 by definition of
N. In the first case a ∈ dom(Ci) by Lemma 6.2(5) and we can conclude as before. In the
second case we have a ∈N ∩Ni and we conclude a ∈Ni by definition of Ni.

—Proof of Point (c). Similar to the proof of Point (b).
—Proof of Point (d). By definition of Ri and Points (b) and (c).
—Proof of Point (1′).

(⊆). Immediate by definition of Ri and Points (b) and (c) since Ni∪Bi ⊆N ∪B.
(⊇). We start by proving

Ri \dom(Ci)⊆ Ri \ (N ∪B) (?)

By definition dom(Ri)\dom(Ci) = Di ⊆ K and this implies Di∩ (N ∪B) = /0 by ([).
We get then Di ⊆ dom(Ri)\ (N ∪B), which in turn implies (?).

Ri \ (Ni∪Bi) = Ri \ ((N ∪B)∩ (dom(Ci)∪Ni)) by definition of Ni,Bi and distributivity
= Ri \ ((N ∪B)∩dom(Ci)) since dom(Ri)∩Ni = /0 by Lemma 6.2(1)
= (Ri \ (N ∪B))∪ (Ri \dom(Ci))
⊆ Ri \ (N ∪B) by (?).

—Proof of Point (2′).
(⊆). If a ∈Ni∪Bi, then a ∈N ∪B and either a ∈ dom(Ci) or a ∈ Ni by definition of
Ni and Bi. From a∈Ni∪Bi and a∈ dom(Ci) we get a∈ rcl(Ci,Ni∪Bi) by definition
of rcl and this concludes the proof.
(⊇). If a ∈ Ni, then a ∈ N by definition of N, and this implies a ∈N ∪B by Point (2).
From a ∈ (N ∪B)∩Ni we conclude a ∈Ni∪Bi by definition of Ni and Bi.
If a ∈ rcl(Ci,Ni∪Bi), then a ∈ dom(Ci) by Lemma 6.2(6). We prove

rcl(Ci,N ∪B)⊆N ∪B (\)

by induction on the definition of rcl. Since rcl(Ci,Ni∪Bi)⊆ rcl(Ci,N ∪B) (\) implies
rcl(Ci,Ni ∪Bi) ⊆N ∪B. Then we have a ∈ (N ∪B)∩ dom(Ci) and we conclude
a ∈Ni∪Bi by definition of Ni and Bi.
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For the induction step of the proof of (\) let b ∈ Ci(a) and a ∈N ∪B. By definition of
C we get either b ∈ C(a), or a ∈ N∪K.
If b ∈ C(a), then b ∈N ∪B by Point (2).
If a ∈ N, then either a ∈ N1 ∪N2 or a ∈ cl(C1 dC2,N1 ∪N2) by definition of N. In
both cases b ∈ rcl(C1 dC2,N1 ∪N2) by definition of rcl. This implies b ∈ N again by
definition of N, so we conclude b ∈N ∪B by Point (2).
If a ∈N ∪B, then a 6∈ K by ([).

—Proof of Point (3′).

Bi \Ni = (B∩ (dom(Ci)∪Ni))\ (N ∩ (dom(Ci)∪Ni))
by definition

= (B \N )∩ (dom(Ci)∪Ni)
⊆ B∩ (dom(Ci)∪Ni)

by Point (3)
⊆ B∩ (dom(Ri)∪Ni)

by Lemma 6.2(2)
= [(B1∩B2)∪ (

⋃
j=1,2{a ∈ Bj | a /∈ dom(R j )∪N j})]∩ (dom(Ri)∪Ni)

by definition of B
⊆ Bi∪{a ∈ Bi | a /∈ dom(R i )∪N i})
= Bi.

Take for instance the process P3 defined above. A possible choices for R, N , B is:
R1 = /0, N1 = {a, b}, B1 = /0. However also the choice R2 = {b}, N2 = {a}, B2 = /0
represent a valid typing for P3 in the interaction system

In a valid deduction (R\(N ∪B))+ is always loop free so if for some process P we can
deduce Θ ; P Z⇒ R ; C ; N ; B, a safe choice of R, N , B is to take R = (R\dom(C))+

N = N∪dom(C) and B = B.
Note the use of C. Looking only at the set R we see a loop a≺ a which would forbid to

type the process. However in C we recover the information that at the point in which a was
closed it was minimal in the order, and then it was suitable to be closed with a nesting rule.
The service b, on the contrary, can be closed both with a nesting rule and with {MCAST},
{MACC}. This could be relevant if P3 is a subterm of a bigger process: our type analysis
is fully compositional. Indeed the inference rules fully characterize all the possible typings
of a process in the interaction type system.Mariangiola says: modified in accordance with
the new example

THEOREM 6.5 COMPLETENESS. Let Θ `P I R ; N ; B. Then Θ ; P Z⇒ R ; C ; N ; B
and:

(1) R = (R\ (N ∪B))+;
(2) N ∪B = rcl(C,N ∪B)∪N;
(3) B \N ⊆ B.

PROOF. By induction on the deduction of Θ ` P I R ; N ; B. We show the most
interesting cases.

Rule {MCAST}.
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Θ ` P I R ; N ; B
{MCAST}

Θ ` a [n](y).P I R{a/y}∪{a} ; N ; B

By induction hypothesis Θ ; P Z⇒ R ; C ; N ; B where Points (1), (2) and (3) hold.
We need to show that rule {MCAST-I} can be applied to Θ ; P Z⇒ R ; C ; N ; B getting
Θ ; a [n](y).P Z⇒ R′ ; C′ ; N′ ; B′ and that:

(1′) R{a/y}∪{a}= (R′ \ (N ∪B))+;
(2′) N ∪B = rcl(C′,N ∪B)∪N′;
(3′) B \N ⊆ B′.

Applicability of rule {MCAST} requires a /∈N ∪B. From a /∈N ∪B we get a 6∈ N
by Point (2). Therefore we are in cases (µ) or (ρ) of the definition of m. Since in these
cases either R′ = R{a/y} and a ∈ R{a/y} or R = R′{a/y}∪ {a}, from Point (1) we get
R{a/y}∪{a}= (R′ \ (N ∪B))+, i.e. Point (1′).

In all cases of the definition of m but (µ)(γ)(φ ) and (ρ)(α)(γ ) we have either B′ = B or
B′ = B∪{a}, so from Point (3) we get B \N ⊆ B′, i.e. Point (3′). In case (µ)(γ)(φ ) we
have B′ = B \ {a}; being a 6∈B, Point (3) implies Point (3′). In case (ρ)(α)(γ ) we have
B′ = B\ rcl⇑(C,a): since a 6∈N ∪B implies rcl⇑(C,a)∩(N ∪B) = /0 by Point (2), Point
(3) implies Point (3′).

To show applicability of rule {MCAST-I} and Point (2′) we consider some subcases.

a /∈R or a ∈R and R ↓ y∪{a} ⊆ dom(C). We are respectively in cases (µ) or (ρ)(α)(γ)
of the definition of m, so rule {MCAST-I} can be applied. In both cases C′ differs from
C only in the value at a and, since a /∈N ∪B, Point (2) implies that a /∈ rcl(C,N ∪B).
Then rcl(C,N ∪B) = rcl(C′,N ∪B), so Point (2′) follows immediately by Point (2).

a ∈R , a ∈ dom(C), R ↓ y 6⊆ dom(C). We are in case (ρ)(α)(γ ) where C′= C\rcl⇑(C,a).
From a 6∈ N ∪B we have rcl⇑(C,a)∩ (N ∪B) = /0 by Point (2) and this implies
rcl(C,N ∪B) = rcl(C′,N ∪B) showing, as in the previous case, Point (2′). By appli-
cability of {MCAST} we get R{a/y} loop free, which implies (R{a/y} \ (N ∪B))+

loop free by Point (1′). We have

R{a/y}\dom(C′) = R{a/y}\ (dom(C′)∪N) by Lemma 6.2(1)
⊆ R{a/y}\ (rcl(C′,N ∪B)∪N) by Lemma 6.2(6)
= R{a/y}\ (N ∪B) by Point (2′).

This implies that (R{a/y} \ dom(C \ rcl⇑(C,a)))+ is loop free, justifying the applica-
bility of rule {MCAST-I} in this case.

a ∈R and a /∈ dom(C). We are in case (ρ)(α ). Point (2′) is straightforward since C′ = C

and N = N′. As in previous case we have that (R{a/y} \ (N ∪B))+ is loop free and
we can show R{a/y}\dom(C′)⊆ R{a/y}\ (N ∪B). So we conclude that (R{a/y}\
dom(C))+ is loop free and then rule {MCAST-I} can be applied.

Rule {MCASTN}.

Θ ` P I R ; N ; B
{MCASTN}

Θ ` a [n](y).P I R \\y ; N ∪{a} ; B
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By induction hypothesis Θ ; P Z⇒ R ; C ; N ; B and Points (1), (2) and (3) hold.
From y minimal in R and Point (1) we get R ↓ y ⊆ N ∪B, which gives the condition
R ↓ y⊆ dom(C) (i.e. condition (γ) of the definition of m) by Point (2) and Lemma 6.2(1).
Applicability of rule {MCASTN} requires a /∈ R. From a /∈ R by Point (1) we get ei-
ther a 6∈ dom(R) or a ∈ N ∪B, which imply either a 6∈ dom(R)∪N or a ∈ N or a ∈
dom(C) by Point (2). Therefore rule {MCAST-I} can be applied getting Θ ; a [n](y).P Z⇒
R′ ; C′ ; N′ ; B′ and we are in cases (µ)(γ) or (ν) or (ρ)(α)(γ) of the definition of m.

We need to show:

(1′) R \\y = (R′ \ (N ∪{a}∪B))+;
(2′) N ∪{a}∪B = rcl(C′,N ∪{a}∪B)∪N′;
(3′) B \ (N ∪{a})⊆ B′.

In cases (µ)(γ) or (ρ)(α)(γ) we have either R′ = R{a/y} or R′ = R{a/y}∪ {a}, C′ =
Cd{(a,R ↓ y)}, N′ = N, and B′ = B, or B′ = B∪{a}, or B′ = B\{a}. We get immediately
R \\y = (R′ \ (N ∪{a}∪B))+, i.e. Point (1′), by Point (1).

We get N ∪ {a} ∪B ⊆ rcl(C′,N ∪ {a} ∪B)∪N by Point (2), since a ∈ dom(C′)
by definition of C′. Since a 6∈ R by applicability of rule {MCASTN} we have by Point
(1) either a ∈N ∪B or a 6∈ dom(R), which implies a 6∈ dom(C) by Lemma 6.2(2). In
both cases C(a) ⊆ N ∪B, in the first case by Point (2) and in the second case since
C(a) = /0. Then we get N ∪ {a} ∪B=rcl(C′,N ∪ {a} ∪B)∪N, i.e. Point (2’), by
Point (2) and definition of C′, being R ↓ y ⊆N ∪B and C(a) ⊆N ∪B. We conclude
N ∪{a}∪B = rcl(C′,N ∪{a}∪B)∪N, i.e. Point (2′).
From Point (3) and the definition of B′ we get B \ (N ∪{a})⊆ B′, i.e. Point (3′).

In case (ν) we have R′ = R \ (rcl(C,R ↓ y)∪ {y}), C′ = C \ rcl(C,R ↓ y), N′ = N∪
rcl(C,R ↓ y) and either B′ = B or B′ = B \ {a}. Note that a ∈ N implies a 6∈ dom(R)
by Lemma 6.2(1), and then a 6∈ dom(R′) by definition. From R ↓ y ⊆ N ∪B we get
rcl(C,R ↓ y)⊆ (N ∪B) by Point (2). Therefore from Point (1) and a 6∈ dom(R′) we have
R \\y = (R′ \ (N ∪{a}∪B))+, i.e. Point (1′).

Since R ↓ y⊆N ∪{a}∪B, by Lemma 6.1 rcl(C\rcl(C,R ↓ y),N ∪{a}∪B)∪rcl(C,R ↓
y) = rcl(C,N ∪{a}∪B), i.e. rcl(C′,N ∪{a}∪B)∪rcl(C,R ↓ y) = rcl(C,N ∪{a}∪B),
which implies rcl(C′,N ∪ {a} ∪B) ∪N′ = rcl(C,N ∪ {a} ∪B) ∪N by definition of
N′. From a 6∈ dom(R) we get a 6∈ dom(C) by Lemma 6.2(2), which implies rcl(C,a) =
rcl(C′,a) = /0 by definition of rcl. So Point (2) implies Point (2′).

From Point (3) and the definition of B′ we get B \ (N ∪{a})⊆ B′, i.e. Point (3′).

Rule {MCASTB}.

Θ ` P I R ; N ; B cf(R \\y)
{MCASTB}

Θ ` u [n](y).P I R \\y ; N ; B∪{u}
We only consider the case u = a is a service name, the proof for u variable being similar
and simpler.

Note that the conditions for applicability of rule {MCASTB} are all those for appli-
cability of rule {MCASTN} with the additional requirement that cf(R \\y) holds, which
implies by Point (1) cf(R{a/y}), i.e. condition (φ ). We are so in cases (µ)(γ)(φ ), (ν)(φ )
and (ρ)(α)(γ)(φ ). We can then prove the applicability of rule {MCAST-I} as in the case of
rule {MCASTN}. If the result of the application of rule {MCAST-I} is Θ ; a [n](y).P Z⇒
R′ ; C′ ; N′ ; B′ we need to show:
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(1′) R \\y = (R′ \ (N ∪B∪{a}))+;
(2′) N ∪B∪{a}= rcl(C′,N ∪B∪{a})∪N′;
(3′) B∪{a}\N ⊆ B′.

The proof of Points (1′) and (2′) is as in the case of rule {MCASTN}.
We get B∪{a} \N ⊆ B′, i.e. Point (3′), in case (µ)(γ)(φ ) since B′ = B∪{a} and in

the other cases since B′ = B and a ∈ dom(R)∪N, a 6∈R imply a ∈N ∪B.

Rule {CONC}. Let

Θ ` P1 I R1 ; N1 ; B1 Θ ` P2 I R2 ; N2 ; B2
{CONC}

Θ ` P1 | P2 I (R1∪R2)+ ; N1∪N2 ; B1∪B2

be the last applied rule. By induction hypothesis for i = 1,2 we have Θ ; Pi Z⇒ Ri ; Ci ; Ni ; Bi

and:

(1′) Ri = (Ri \ (Ni∪Bi))+ is loop free;
(2′) Ni∪Bi = rcl(Ci,Ni∪Bi)∪Ni;
(3′) Bi \Ni ⊆ Bi.

We need to prove that rule {CONC-I} can be applied to Θ ; P1 Z⇒ R1 ; C1 ; N1 ; B1 and
Θ ; P2 Z⇒ R2 ; C2 ; N2 ; B2 getting as result Θ ; P1 | P2 Z⇒ R ; C ; N ; B and that Points
(1), (2) and (3) hold with R = (R1∪R2)+, N = N1∪N2, and B = B1∪B2.

We first show that:

(a) rcl(C1dC2,N ∪B)⊆N ∪B;
(b) N⊆N ∪B;
(c) K⊆ dom(R).

—Proof of Point (a).
The proof is by induction on the construction of rcl. For the induction step if a∈Ni∪Bi,
then Ci(a)⊆Ni∪Bi by (2′). If a ∈N i ∪B i and Ci(a) 6= /0, then a ∈ dom(Ci). Lemma
6.2(2) implies dom(Ci) ⊆ dom(Ri), and this gives dom(Ci) ⊆ dom(Ri)∪Ni ∪Bi by
(1′). We have dom(Ri)∩ (N i ∪B i ) = /0 by applicability of rule {CONC}. This implies
a ∈Ni∪Bi and we conclude as in previous case.

—Proof of Point (b).
By definition of N, since N1∪N2 ⊆N ∪B by (2′) and rcl(C1dC2,N ∪B)⊆N ∪B
for i = 1,2 by Point (a).

—Proof of Point (c).
By definition a ∈ K implies a ∈ D1, or a ∈ D2 or there is b ∈ D1 ∪D2 such that b ∈
cl(C1dC2,a).

Di = dom(Ri)\dom(Ci)
⊆ dom(Ri)\ (Ni∪Bi) by Point (2′) since dom(Ri)∩Ni = /0 by Lemma 6.2(1)
= dom(Ri) by Point (1′)
⊆ dom(R) since R = (R1∪R2)+.

If there is b ∈ D1 ∪D2 such that b ∈ cl(C1 dC2,a), then by above b ∈ dom(R). Being
dom(R)∩ (N ∪B) = /0 by applicability of rule {CONC}, this implies b 6∈N ∪B. So
we get a 6∈N ∪B by Point (a). Therefore we conclude a ∈ dom(R).
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—Applicability of rule {CONC-I}.

The condition K∩N = /0 immediately follows from Points (b) and (c).

—Proof of Point (1).

R = (R1∪R2)+

by definition
= ((R1 \ (N2∪B2))∪ (R2 \ (N1∪B1)))+

by applicability of rule {CONC}
= (((R1 \ (N1∪B1))\ (N2∪B2))∪ ((R2 \ (N2∪B2))\ (N1∪B1)))+

by Point (1′)
= ((R1∪R2)\ (N ∪B))+

= (((R1 \N)∪ (R2 \N))\ (N ∪B))+

by Point (b)
= (R\ (N ∪B))+.

—Proof of Point (2).

(⊇). The inclusion N ∪B ⊇ rcl(C,N ∪B) follows immediately from Point (a) since
by definition C⊆C1dC2. By (2′) N ∪B⊇N1∪N2 and by Point (a) we have N ∪B⊇
cl(C1dC2,N1∪N2), so we get N ∪B ⊇ N.

(⊆). We show that a ∈Ni ∪Bi implies either a ∈ rcl(C,N ∪B) or a ∈ N. By (2′)
a ∈Ni∪Bi implies either a ∈ rcl(Ci,Ni∪Bi) or a ∈Ni. If a ∈Ni, then by definition of
N we get a ∈ N.

Let a∈ rcl(Ci,Ni∪Bi). If a 6∈N∪K, then by definition of C we have a∈ rcl(C,Ni∪Bi).
Being rcl(C,Ni∪Bi)⊆ rcl(C,N ∪B) we are done.

If a ∈ N there is nothing to prove.

The case a ∈ K is impossible, since K ⊆ dom(R) by Point (c) and rcl(C1,N1 ∪B1) ⊆
(N1∪B1) by Point (2′) and dom(R)∩(N1∪B1) = /0 by applicability of rule {CONC}.

—Proof of Point (3). Note that B1 \N1 ∪B2 \N2 ⊆ (B1 ∪B2) \ (N1 ∪N2) and that
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(B1∪B2)\ (N1∪N2) = B1 \ (N1∪N2)∪B2 \ (N1∪N2). Then we have:

(B1∪B2)\ (N1∪N2) = ((B1 \N1)∩ (B2 \N2))∪ ((B1 \ (N1∪N2))∪
((B2 \ (N1∪N2))

⊆ (B1∩B2)∪{a ∈ B1∩B1 | a 6∈N2}∪
{a ∈ B2∩B2 | a 6∈N1}
by Point (3′)

= (B1∩B2)∪{a ∈ B1∩B1 | a 6∈R2∪N2}∪
{a ∈ B2∩B2 | a 6∈R1∪N1}
since Bi∩R i = /0

⊆ (B1∩B2)∪{a ∈ B1 | a 6∈R2∪N2}∪
{a ∈ B2 | a 6∈R1∪N1}

= (B1∩B2)∪{a ∈ B1 | a 6∈R2∪N2∪B2}∪
{a ∈ B2 | a 6∈R1∪N1∪B1}
since if a ∈B2 and a /∈N2 then
by Point (3′) a ∈ B2 and then a ∈ B1∩B2

= (B1∩B2)∪{a ∈ B1 | a 6∈ dom(R2)∪N2}∪
{a ∈ B2 | a 6∈ dom(R1)∪N1}
by Points (1′), (2′) and
Lemma 6.2(2) and (6)

= B.

In the end we can state the following

COROLLARY 6.6. A process P has the progress property iff the exists Θ such that
Θ ; P Z⇒ R ; C ; N ; B is provable for some R, C, N, B.

7. CONCLUSIONS AND RELATED WORK

The programming framework presented in this paper relies on the concept of global types
that can be seen as the language to describe the model of the distributed communications,
i.e., an abstract high-level view of the protocol that all the participants will have to respect
in order to communicate in a multiparty communication. The programmer will then write
the program to implement this communication protocol; the system will use the global
types (abstract model) and the program (implementation) to generate a runtime represen-
tation of the program which consists of the input/output operations decorated with explicit
senders and receivers, according to the information provided in the global types. An alter-
native way could be that the programmer directly specifies the senders and the receivers
in the communication operations as our low-level processes; the system could then infer
the global types from the program. Our communication and interaction type systems will
work as before in order to check the correctness and the progress of the program. Thus
the programmer can choose between a top-down and a bottom-up style of programming,
while relying on the same properties checked and guaranteed by the system.

We are currently designing and implementing a modelling and specification language
with multiparty session types [Scribble 2008] for the standards of business and finan-
cial protocols with our industry collaborators [UNIFI 2002; Web Services Choreogra-
phy Working Group 2002]. This consists of three layers: the first layer is a global type
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which corresponds to a signature of class models in UML; the second one is for conversa-
tion models where signatures and variables for multiple conversations are integrated; and
the third layer includes extensions of the existing languages (such as Java [Hu et al. 2008])
which implement conversation models. We are currently considering to extend this mod-
elling framework with our type discipline so that we can specify and ensure progress for
executable conversations.

Multiparty sessions. The first papers on multiparty session types are [Bonelli and Com-
pagnoni 2008] and [Honda et al. 2008]. The work [Bonelli and Compagnoni 2008] uses
a distributed calculus where each channel connects a master end-point and one or more
slave endpoints; instead of global types, they solely use (recursion-free) local types. In
type checking, local types are projected to binary sessions, so that type safety is ensured
using duality, but it loses sequencing information: hence progress in a session interleaved
with other sessions is not guaranteed.

The present calculus is an essential improvement from [Honda et al. 2008]; both pro-
cesses and types in [Honda et al. 2008] share a vector of channels and each communication
uses one of these channels, while our user processes and global types are simpler and user-
friendly without these channels. The global types in [Honda et al. 2008] have a parallel
composition operator, but its projectability from global to local types limits to disjoint
senders and receivers; hence it does not increase expressivity.

Our calculus is more liberal than the calculus of [Honda et al. 2008] in the use of decla-
rations. For example

P1 = a [2](y1).b [2](y2).def X(x y) = P in y1?(2,x1);X〈x1,y1〉 | y2?(2,x2);X〈x2,y2〉

in parallel with

P2 = a[2](z1).b[2](z2).z1!〈1, true〉;0 | z2!〈1, false〉;0
reduces to

(νs)(νs′)(def X(x y) = P in P{true/x}{s/y} | P{false/x}{s′/y} | s : � | s′ : �)

while the process in the calculus of [Honda et al. 2008] whose translation is P1 | P2 cannot
be typed, since the channel variable must be the same in the definition and in the call.
Similarly the delegation in [Honda et al. 2008] requires that the same channel is sent and
received: this restriction is important for subject reduction as pointed out in [Yoshida and
Vasconcelos 2007]. The present calculus solves this issue by having channels with roles,
as in [Gay and Hole 2005] (see the example at page 21). This last example shows also
that the original calculus has stuck processes whose translations in the present calculus are
reducible. Note that these translations satisfy the interaction type system.

Different approaches to the description of service-oriented multiparty communications
are taken in [Bravetti and Zavattaro 2007; Bruni et al. 2008]. In [Bravetti and Zavattaro
2007], the global and local views of protocols are described in two different calculi and
the agreement between these views becomes a bisimulation between processes; [Bruni
et al. 2008] proposes a distributed calculus which provides communications either inside
sessions or inside locations, modelling merging running sessions. The type-safety and
progress in interleaved sessions are left as an open problem in [Bruni et al. 2008].
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Progress. The majority of papers on service-oriented calculi only assure that clients
are never stuck inside a single session, see [Acciai and Boreale 2008; Dezani-Ciancaglini
et al. 2008; Honda et al. 2008] for detailed discussions, including comparisons between the
session-based and the traditional behavioural type systems of mobile processes, e.g. [Yoshida
1996; Kobayashi 2006]. We only say here that our interaction type system is inspired by
deadlock-free typing systems [Kobayashi 1998; 2006; Yoshida 1996]. In [Acciai and Bore-
ale 2008; Dezani-Ciancaglini et al. 2008; Honda et al. 2008], structured session primitives
help to give simpler typing systems for progress.

The first papers considering progress for interleaved sessions required the nesting of
sessions in Java [Dezani-Ciancaglini et al. 2006; Coppo et al. 2007] and SOC [Acciai
and Boreale 2008; Lanese et al. 2007; Bruni and Mezzina 2008]. The present approach
significantly improves the binary session system for progress in [Dezani-Ciancaglini et al.
2008] by treating the following points:

(1) asynchrony of the communication with queues, which enhances progress;
(2) a general mechanism of process recursion instead of the limited permanent accepts;
(3) a more liberal treatment of the channels which can be sent; and
(4) the standard semantics for the reception of channels with roles, which permits to get

rid of process sequencing.

None of the previous work had treated progress across interfered, dynamically inter-
leaved multiparty sessions.
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A. PROOFS OF THE PROPERTIES OF THE COMMUNICATION TYPE SYSTEM

LEMMA A.1 INVERSION LEMMA FOR PURE PROCESSES. (1) If Γ ` u : S, then u :
S ∈ Γ.

(2) If Γ ` true : S, then S = bool.
(3) If Γ ` false : S, then S = bool.
(4) If Γ ` e1 and e2 : S, then Γ ` e1,e2 : bool,S = bool.
(5) If Γ ` a [n](y).P.∆, then Γ ` a : 〈G〉 and Γ ` P.∆,y : G � 1 and pn(G)≤ n.
(6) If Γ ` a[p](y).P.∆, then Γ ` a : 〈G〉 and Γ ` P.∆,y : G � p.
(7) If Γ ` c!〈Π,e〉;P.∆, then ∆ = ∆′,c : !〈Π,S〉;T and Γ ` e : S and Γ ` P.∆′,c : T .
(8) If Γ ` c?(q,x);P.∆, then ∆ = ∆′,c :?(q,S);T and Γ,x : S ` P.∆′,c : T .
(9) If Γ ` c!〈〈p,c′〉〉;P.∆, then ∆ = ∆′,c : !〈p,T ′〉;T,c′ : T ′ and

Γ ` P.∆′,c : T .
(10) If Γ ` c?((q,y));P.∆, then ∆ = ∆′,c :?(q,T ′);T and Γ ` P.∆′,c : T,y : T ′.
(11) If Γ ` c⊕〈Π, l j〉;P . ∆, then ∆ = ∆′,c : ⊕〈Π,{li : Ti}i∈I〉 and Γ ` P . ∆′,c : Tj and

j ∈ I.
(12) If Γ` c&(p,{li : Pi}i∈I).∆, then ∆ = ∆′,c : &(p,{li : Ti}i∈I) and Γ`Pi .∆′,c : Ti ∀i∈

I.
(13) If Γ ` P | Q . ∆, then ∆ = ∆′ ∪∆′′ and Γ ` P . ∆′ and Γ ` Q . ∆′′ where dom(∆′)∩

dom(∆′′) = /0.
(14) If Γ ` if e then P else Q.∆, then Γ ` e : bool and Γ ` P.∆ and Γ ` Q.∆.
(15) If Γ ` 0.∆, then ∆ end only.
(16) If Γ ` (νa)P.∆, then Γ,a : 〈G〉 ` P.∆.
(17) If Γ,X : S T ` X〈e,c〉.∆, then ∆ = ∆′,c : T and Γ ` e : S and ∆′ end only.
(18) If Γ ` def X(x,y) = P in Q.∆, then Γ,X : S T,x : S ` P.{y : T} and Γ,X : S T `Q.∆.

LEMMA A.2 INVERSION LEMMA FOR PROCESSES. (1) If Γ `Σ P.∆ and P is a pure
process, then Σ = /0 and Γ ` P.∆.

(2) If Γ `{s} s : �.∆, then ∆ = end only.
(3) If Γ`{s} s : h ·(q,Π,v).∆, then ∆ = ∆′;{s[q] : !〈Π,S〉} and Γ`{s} s : h.∆′ and Γ` v : S.
(4) If Γ `{s} s : h · (q,p,s′[p′]) . ∆, then ∆ = ∆′;{s[q] : !〈p,T ′〉} and Γ `{s} s : h . ∆′ and

s′[p′] : T ′ ∈ ∆.
(5) If Γ `{s} s : h · (q,Π, l).∆, then ∆ = ∆′;{s[q] :⊕〈Π, l〉} and Γ `{s} s : h.∆′.
(6) If Γ `Σ P | Q.∆, then Σ = Σ1∪Σ2 and ∆ = ∆1 ∗∆2 and Γ `Σ1 P.∆1 and Γ `Σ2 Q.∆2.
(7) If Γ `Σ (νs)P.∆, then Σ = Σ′ \ s and ∆ = ∆′ \ s and co(∆′,s) and Γ `Σ′ P.∆′.
(8) If Γ `Σ (νa)P.∆, then Γ,a : 〈G〉 `Σ P.∆.
(9) If Γ `Σ def X(x,y) = P in Q.∆, then Γ,X : S T,x : S ` P.y : T and Γ,X : S T `Σ Q.∆.

LEMMA A.3. (1) If Γ `{s} s : (q,Π,v) ·h.∆, then ∆ = {s[q] : !〈Π,S〉}∗∆′ and Γ `{s}
s : h.∆′ and Γ ` v : S.

(2) If Γ `{s} s : (q,p,s′[p′]) · h . ∆, then ∆ = {s[q] : !〈p,T ′〉} ∗∆′ and Γ `{s} s : h . ∆′ and
s′[p′] : T ′ ∈ ∆.

(3) If Γ `{s} s : (q,Π, l) ·h.∆, then ∆ = {s[q] :⊕〈Π, l〉}∗∆′ and Γ `{s} s : h.∆′.
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THEOREM A.4 TYPE PRESERVATION UNDER EQUIVALENCE. If Γ `Σ P . ∆ and P ≡
P′, then Γ `Σ P′ .∆.

PROOF. By induction on ≡. We only consider some interesting cases (the other cases
are straightforward).

P | 0≡ P . First we assume Γ `Σ P . ∆. By Γ ` /0 0 . /0 and by applying bGPARc to these
two sequents we obtain Γ `Σ P|0.∆.
For the converse direction assume Γ `Σ P|0 . ∆. Using A.2(6) we obtain: Γ `Σ′ P . ∆1,
Γ `Σ′′ 0 . ∆2 where ∆ = ∆1 ∗∆2, Σ = Σ′ ∪ Σ′′ and Σ′ ∩ Σ′′ = /0. Using A.2(1) we get
Σ′′ = /0, which implies Σ = Σ′, and Γ ` 0.∆2. Using A.1(15) we get ∆2 end only and we
conclude Γ `Σ P.∆1 ∗∆2 by applying bQWEAKc.

P | Q≡ Q | P . By the symmetry of the rule we have only to show one direction. Suppose
Γ`Σ P |Q.∆. Using A.2(6) we obtain Γ`Σ′ P.∆1, Γ`Σ′′ Q.∆2 where ∆ = ∆1 ∗∆2, Σ =
Σ′ ∪Σ′′ and Σ′ ∩Σ′′ = /0. Using bGPARc we get Γ `Σ Q | P . ∆2 ∗∆1. Thanks to the
commutativity of ∗, we get ∆2 ∗∆1 = ∆ and so we are done.

P | (Q | R)≡ (P | Q) | R . Suppose Γ `Σ P | (Q | R) . ∆. Using A.2(6) we obtain Γ `Σ′

P . ∆1, Γ `Σ′′ Q | R . ∆2 where ∆ = ∆1 ∗∆2, Σ = Σ′∪Σ′′ and Σ′∩Σ′′ = /0. Using A.2(6)
we obtain Γ `Σ′′1

Q . ∆21, Γ `Σ′′2
R . ∆22 where ∆2 = ∆21 ∗∆22, Σ′′ = Σ′′1 ∩Σ′′2 and Σ′′1 ∪

Σ′′2 = /0. Using [GPar] we get Γ `Σ′∪Σ′′1
P | Q . ∆1 ∗∆21. Using bGPARc again we get

Γ `Σ (P | Q) | R.∆1 ∗∆21 ∗∆22 and so we are done by the associativity of ∗. The proof
for the other direction is similar.

s : (q, /0,v) ·h≡ s : h . Using A.3(1) we obtain Γ `s (q, /0,v) · h . ∆, where ∆ = {s[q] :
!〈 /0,S〉} ∗ ∆′ and Γ `{s} s : h . ∆′ and Γ ` v : S. Using the equivalence relation on ∆

we get {s[q] : !〈 /0,S〉}∗∆′ ≈ ∆′.

LEMMA A.5 SUBSTITUTION LEMMA. (1) If Γ,x : S ` P . ∆ and Γ ` v : S, then Γ `
P{v/x}.∆.

(2) If Γ ` P.∆,y : T , then Γ ` P{s[p]/y}.∆,s[p] : T .

PROOF. Standard induction on the type derivation, with a case analysis on the last ap-
plied rule.

THEOREM A.6 TYPE PRESERVATION UNDER REDUCTION. If Γ `Σ P.∆ and P−→∗
P′, then Γ `Σ P′ . ∆′ for some ∆′ such that ∆ ⇒ ∆′. Moreover ∆ coherent implies ∆′

coherent and ∆ closed implies ∆′ closed.

PROOF. By induction on a derivation of P−→∗ P′, with a case analysis on the final rule
(using Theorem A.4 for the structural equivalence).

- Case [Link]
a[1](y1).P1 | ... | a [n](yn).Pn −→ (νs)(P1{s[1]/y1} | ... | Pn{s[n]/yn} | s : �). By hy-
pothesis Γ `Σ a [n](y1).P1 | a[2](y2).P2 | . . . | a[n](yn).Pn .∆; then, since the redex is an
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inital process, Σ = /0 and Γ ` a [n](y1).P1 | a[2](y2).P2 | . . . | a[n](yn).Pn . ∆ by Lemma
A.2(1). Using Lemma A.1(13) on all the processes in parallel we have

Γ ` a [n](yn).Pn .∆n (1)
Γ ` a[i](yi).Pi .∆i (1≤ i≤ n−1) (2)

where ∆ =
⋃n

i=1 ∆i. Using Lemma A.1(5) on (1) we have

Γ ` a : 〈G〉
Γ ` Pn .∆n,yn : G � n (3)

and pn(G)≤ n. Using Lemma A.1(6) on (2) we have

Γ ` a : 〈G〉
Γ ` Pi .∆i,yi : G � i (1≤ i≤ n−1). (4)

Using Lemma A.5(2) on (3) and (4) we have

Γ `{s} Pi{s[i]/yi}.∆i,s[i] : G � i (1≤ i≤ n). (5)

Using bCONCc on all the processes of (5) we have

Γ ` P1{s[1]/y1}|...|Pn{s[n]/yn}.
n⋃

i=1

(∆i,s[i] : G � i). (6)

Note that
⋃n

i=1(∆i,s[i] : G � i) = ∆,s[1] : G � 1, . . . ,s[n] : G � n. Using bGINITc, bQINITc
and bGPARc on (6) we have

Γ `{s} P1{s[1]/y1}|...|Pn{s[n]/yn} | s : �.∆,s[1] : G � 1, . . . ,s[n] : G � n. (7)

Using bQSCOPEc on (7) we have

Γ ` /0 (νs)(P1{s[1]/y1}|...|Pn{s[n]/yn} | s : �).∆ (8)

since (∆,s[1] : G � 1, . . . ,s[n] : G � n)\ s = ∆.

- Case [Send] s[p]!〈Π,e〉;P | s : h−→ P | s : h · (p,Π,v) (e ↓ v).
By hypothesis, Γ `Σ s[p]!〈Π,e〉;P | s : h . ∆. Using Lemma A.2(1) and A.2(6) we have
Σ = {s} and

Γ ` s[p]!〈Π,e〉;P.∆1 (9)
Γ `{s} s : h.∆2 (10)

where ∆ = ∆2 ∗∆1. Using A.1(7) on (9) we have
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∆1 = ∆
′
1,s[p] : !〈Π,S〉;T

Γ ` e : S (11)
Γ ` P.∆

′
1,s[p] : T. (12)

Using bQADDVALc on (10) and (11) we have

Γ `{s} s : h · (q,Π,v).∆2;{s[p] : !〈Π,S〉}. (13)

Using bGINITc on (12) and then bGPARc on (12), (13) we get

Γ `{s} P | s : h · (q,Π,v). (∆2;{s[p] : !〈Π,S〉})∗ (∆′1,s[p] : T ).

Note that (∆2;{s[p] : !〈Π,S〉})∗ (∆′1,s[p] : T ) ⇒ ∆2 ∗ (∆′1,s[p] : !〈Π,S〉;T ).
- Case [Recv]

s[p j]?(q,x);P | s : (q,Π,v) ·h−→ P{v/x} | s : (q,Π\ j,v) ·h (p j ∈Π).
By hypothesis, Γ `Σ s[p j]?(q,x);P | s : (q,Π,v) · h . ∆. By A.2(1) and A.2(6) we have
Σ = /0 and

Γ ` s[p j]?(q,x);P.∆1 (14)
Γ `{s} s : (q,Π,v) ·h.∆2 (15)

where ∆ = ∆2 ∗∆1. Using Lemma A.1(8) on (14) we have

∆1 = ∆
′
1,s[p j] :?(q,S);T

Γ,x : S ` P.∆
′
1,s[p j] : T (16)

Using Lemma A.5(1) from (16) we get Γ ` P{v/x}.∆′1,s[p j] : T , which implies by rule
bGINITc

Γ ` /0 P{v/x}.∆
′
1,s[p j] : T. (17)

Using Lemma A.3(1) on (15) we have

∆2 = {s[q] : !〈Π,S〉}∗∆
′
2

Γ `{s} s : h.∆
′
2 (18)

Γ ` v : S.

Applying rule bQADDVALc on (18) we get

Γ `{s} (q,Π\ j,v) ·h.{s[q] : !〈Π\ j,S〉}∗∆
′
2 (19)

Using rule bGPARc on (17) and (19) we get

Γ `{s} P{v/x} | (q,Π\ j,v) ·h. ({s[q] : !〈Π\ j,S〉}∗∆
′
2)∗ (∆′1,s[p j] : T ).
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Note that
({s[q] : !〈Π,S〉}∗∆′2)∗ (∆′1,s[p j] :?(q,S);T ) ⇒ ({s[q] : !〈Π\ j,S〉}∗∆′2)∗ (∆′1,s[p j] : T ).

- Case [Label]
s[p]⊕〈Π, l〉;P | s : h−→ P | s : h · (p,Π, l)
By hypothesis, Γ `Σ s[p]⊕〈Π, l〉;P | s : h.∆ Using Lemma A.2(1) and A.2(6) we have
Σ = {s} and

Γ ` s[p]⊕〈Π, l〉;P.∆1 (20)
Γ `{s} s : h.∆2 (21)

where ∆ = ∆2 ∗∆1. Using Lemma A.1(11) on (20) we have for l = l j ( j ∈ I):

∆1 = ∆
′
1,s[p] :⊕〈Π,{li : Ti}i∈I〉

Γ ` P.∆
′
1,Tj. (22)

Using rule bQSELc on (21) we have

Γ `{s} s : h · (p,Π, l).∆2;{s[p] :⊕〈Π, l〉}. (23)

Using bGPARc on (22) and (23) we have

Γ `{s} P | s : h · (p,Π, l). (∆2;{s[p] :⊕〈Π, l〉})∗ (∆′1,s[p] : Tj).

Note that ∆2 ∗ (∆′1,s[p] :⊕〈Π,{li : Ti}i∈I〉) ⇒ (∆2;{s[p] :⊕〈Π, l〉})∗ (∆′1,s[p] : Tj).
- Case [Branch]

s[p j]&(q,{li : Pi}i∈I) | s : (q,Π, li0) ·h−→ Pi0 | s : (q,Π\ j, li0) ·h (p j ∈Π) (i0 ∈ I)
By hypothesis, Γ `Σ s[p j]&(q,{li : Pi}i∈I) | s : (q,Π, li0) · h . ∆. Using Lemma A.2(1)
and A.2(6) we have Σ = {s} and

Γ ` s[p j]&(q,{li : Pi}i∈I).∆1 (24)
Γ `{s} s : (q,Π, li0) ·h.∆2 (25)

where ∆ = ∆2 ∗∆1 = ∆2 ∗∆1. Using Lemma A.1(12) on (24) we have

∆1 = ∆
′
1,s[p j] : &(q,{li : Ti}i∈I)

Γ ` Pi .∆
′
1,s[p j] : Ti ∀i ∈ I. (26)

Using Lemma A.3(3) on (25) we have

∆2 = {s[q] :⊕(Π, li′)}∗∆
′
2

Γ `{s} s : h.∆
′
2. (27)

Using bQSELc on (27) we get

Γ `{s} s : (q,Π\ j, li0) ·h.{s[q] :⊕(Π\ j, li′)}∗∆
′
2. (28)
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Using bGPARc on (26) and (28) we have

Γ `{s} Pi0 | s : (q,Π\ j, li0) ·h. ({s[q] :⊕(Π\ j, li′)}∗∆
′
2)∗ (∆′1,s[p j] : Ti0).

Note that

({s[q] :⊕(Π, li′)}∗∆
′
2)∗ (∆′1,s[p j] : &(q,{li : Ti}i∈I)) ⇒

({s[q] :⊕(Π\ j, li′)}∗∆
′
2)∗ (∆′1,s[p j] : Ti0).

Received M 20YY; revised M 20YY; accepted M 20YY

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, M 20YY.


