
Logics for Imperative Higher-Order Functions with
Aliasing and Local State: Thee Completeness Results

Martin Berger, Kohei Honda, and Nobuko Yoshida

Abstract. We establish three completeness properties (descriptive, relative and
observational completeness) for the program logic for aliasing and higher-order
functions, first studied in [1]. We then extend the results to the logic with local
state in [6].

1 Introduction

In this note we establish three completeness properties of the logic for higher-order
functions with aliasing [1] and its refinement for local state [6]. These three proper-
ties are existence of characteristic (or most general) formulae for each typed program
(descriptive completeness), coincidence of validity-induced equivalence with the stan-
dard contextual equivalence (observational completeness) and derivability of all valid
judgements using the proof rules (relative completeness).

The key idea used for the completeness results is simplification of the original eval-
uation formulae, which has the form [C]x•y = z[C′] saying that in any hypothetical state
which satisfies C, if we apply x to y, then the return value (named z) and the resulting
state satisfy C′. Instead we now use a somewhat lopsided formula of the form:

x• y = z [C]

which says that in the current state, if we apply x to y, then the return value (named z)
and the resulting state together satisfy C. Since we can simulate arbitrary state change
from the current state by this one-sided evaluation formulae, we can recover the original
formulae. Further the capability to be able to represent the application in the current
state allows us to treat those cases which have been formerly hard to treat.

In the rest of the note, Section 2 establishes three completeness properties for the
logic with aliasing. Section 3 prove the same results for the logic with local state.

2 Completeness of Logic for Aliasing

2.1 Programming Language

The programming language we shall use is call-by-value PCF with unit, sums and
products, augmented with imperative variables. Assuming an infinite set of variables
(x,y,z, . . ., also called names), the syntax of programs is standard [5] and given by the
following grammar.

(values) V,W ::= c | x | λxα.M | µ f α⇒β.λyα.M
(program) M,N ::= V | MN | M := N | !M | op(M̃) | if M then M1 else M2

2 Martin Berger, Kohei Honda, and Nobuko Yoshida

Abstraction and recursion are annotated by types. Constants (c,c′, . . .) include unit (),
natural numbers n, booleans b (either true t or false f) and locations (l, l′, ...). op(M̃)
(where M̃ is a vector of programs) is a standard n-ary first-order operation such as +,
−, ×, = (equality of two numbers or that of reference names), ¬ (negation), ∧ and
∨. !M dereferences M while M := N first evaluates M and obtains a location (say l),
evaluates N and obtains a value (say V), and assigns V to l. All these constructs are
standard, cf. [2, 5]. The notions of binding and α-convertibility are also conventional;
fv(M) and fl(M) denotes the sets of free variables and locations in M, respectively. We
use standard abbreviations such as λ().M, M;N and let x = M in N.

Let X,Y, . . . range over an infinite set of type variables. Types are ranged over by
α,β, . . . and are given by the following grammar.

α,β ::= Unit | Bool | Nat | α⇒β | Ref(α) | X | µX.α

We call types of the form Ref(α) reference types. All others are value types. A type is
closed if it does not contain free occurrences of type variables. We write ftv(α) to mean
the set of α’s free type variables.

A basis is a finite map from names and locations to closed types. Γ,Γ′ . . . range over
bases and dom(Γ) denotes the domain of Γ, while cod(Γ) denotes the range of Γ. We let
∆, . . . range over bases whose codomains are reference types and write Γ;∆ for a basis
where Γ maps names to value types, always assuming dom(Γ)∩dom(∆) = /0. We take
the equi-isomorphic approach for recursive types, and will identify types and programs
up to equi-isomorphism. The typing rules are standard [5] using sequents Γ ` M : α,
which say that M has type α under basis Γ. We often write MΓ;α for Γ ` M : α.

The dynamics of the language is given by standard call-by-value reductions using
a store [2, 5], where a store (σ,σ′, ...) is a finite map from locations to closed values.
We write dom(σ) for the domain of σ. A configuration is a pair of a closed program
and a store. Then reduction is a binary relation over configurations, written (M,σ) −→
(M′,σ′), generated by the rules (Appendix A in [1]).

The call-by-value evaluation is written (M,σ) ⇓ (V,σ′). If (M,σ) diverges, we write
(M,σ) ⇑. We use the standard contextual congruence ∼= and the precongruence ..

Definition 1. (observational congruence) Assume that Γ;∆ ` M1,2 : α. We write Γ;∆ `
(M1,σ1) . (M2,σ2) if, for each closing typed context C[·] such that ∆ `C[Mi] : Unit for
i = 1,2: if (C[M1], σ1) ⇓, then (C[M2], σ2) ⇓. We often omit σ when it is empty. We
set ∼= = . ∪.−1.

As we have done [3, 4], we use the let-form for deriving TCAPs. The grammar of the
let-form which we use for TCAP-derivations is:

(values) U ::= c | x | λxα.L | µ f α⇒β.λyα.L
(program) L ::= U | let x = f y in L | let x = op(y1, ..,yn) in L

| let x = !y in L | x := y;L | if x then L1 else L2 | let x = U in L

It is straightforward to define a translation [[·]] which converts all programs of im-
perative PCFv to the let forms so that [[M]]∼= M and ` [C] [[M]] :u [C′] iff ` [C]M :u [C′].
Thus it suffices to consider deriving CAPs for let-programs.

Title Suppressed Due to Excessive Length 3

2.2 Logic

The assertion language in [1] has the following expressions and formulae.

e ::= xα | c | op(ẽ) | !e

C ::= e = e′ | ¬C |C ?C′ | Q xα.C | Q X.C | e• e′ = x[C] | [!x]◦C

Here ? ∈ {∧,∨,⊃}, and Q ∈ {∀,∃}. [!x]◦C is the same content quantification as we
used in [1]. 〈x〉◦C is its dual.

We write e1 • e2[C] for e • e′ = x[C] with x fresh; and e1 • e2 ⇓ for e • e′[T]. We set
T as 1 = 1 and F as its negation. A sequent [C]M :u [C′] has a fixed basis, usually left
implicit. A judgement for total correctness is written |= [C]M :u [C′] (for validity) and
` [C]M :u [C′] (for provability).

e1 • e2 = x[C] means that, in the present state, if we apply a procedure e1 to its
argument e2, then the return value (named x) and the resulting state satisfy C. It is a
simplification of the original evaluation formula in [1, 4], but at the same time more
expressive. Define:

�C
def≡ ∀ f Unit⇒Unit.(f • () ⇓⊃ f • ()[C]

Since such f can have an arbitrary effect on the store, �C says that C holds now and
in any possible future. Then the original evaluation formulae [C]x • y = z[C′] can be
defined as �(C ⊃ x• y = z[C′]).

We can also define f • x = z[C]@ /0, which indicates the evaluation has no effect as
in [1], as follows:

f • x = z[C]@ /0
def≡ f • x = z[C]∧∀g.(g• () ⇓⊃ f • x = z[g• () ⇓])

Similarly we can define:

f • x = z[C]@w̃
def≡ f • x = z[C]∧∀g.(g• () ⇓⊃ f • x = z[〈!w̃〉◦g• () ⇓])

which says that the write effect is restricted to w̃.

2.3 Model

In this section we present the model for the language with aliasing but without local
store.

Definition 2. (models) A term is closed if it has not free variables. A model of type
Θ = Γ;∆, ranged over by M ,M ′, ..., with fv(∆)∪= ftv(∆) = /0, is a tuple (ξ,σ) where:

– ξ, called environment, is a finite map from (1) dom(Θ) to closed values such that,
for each x ∈ dom(Γ), ξ(x) is typed as Θ(x) under ∆, i.e. ∆ ` ξ(x) : Θ(x); and (2)
from type variables to closed types.

– σ, called store, is a finite map from labels to closed values such that for each l ∈
dom(σ), if ∆(l) has type Ref(α), then σ(l) has type α under ∆, i.e. ∆ ` σ(l) : α.

4 Martin Berger, Kohei Honda, and Nobuko Yoshida

We continue with the semantics of formulae, omitting trivial cases and the semantics
of expressions, except for noting that [[e]]M is the interpretation of e under M . The
following notation is useful later. Let M = (ξ,σ).

– Given u 6∈ fv(M), we write M ·u : V , or often (ξ ·u : V,σ), for a model that extends
M by one entry with the value V .

– We sometimes write MM for Mξ, assuming typability.
– If l ∈ dom(σ), M · [l 7→V] is the model obtained from M by updating the store at

l with V . Similarly, and assuming appropriate typing, M [x 7→V] means M [l 7→V],
where the reference x is mapped to location l by M .

– If u is fresh we write M [u :V] (resp. M [u : e]) when adding the entry V ξ (resp. [[e]]M)
to M . We write M [u : M] ⇓ M ′ to state that (Mξ,σ) ⇓ (V,σ′) and (ξ · u : V,σ′) =
M ′; likewise, for M [u : e] ⇓ M ′. Relatedly, M [x 7→ M] ⇓ M ′ stands for (Mξ,σ) ⇓
(V,σ′) with M ′ = (ξ,σ′[ξ(x) 7→ V]). We also write M [x : V/x] for the model that
is exactly like M , except that x now denotes V .

– We generate M ;M ′ inductively by: (1) M ;M ; and (2) if M ;M0 and M0[u :
N] ⇓ M ′ then M ;M ′.

– We write M1 . M2, where Mi = (ũ : Ṽi,σi), if for all M of type Unit with fv(M)⊆ x̃:
(let x̃ = Ṽ1 in M,σ1) ⇓ implies (let x̃ = Ṽ2 in M,σ2) ⇓.

– Symbols i, j, . . . range over auxiliary names. A,B denote stateless formulae: C is
stateless when �C ≡C.

Now we can list the key non-trivial clauses for the semantics of formulae. The remain-
ing definitions can be found in [1]. The semantics for the formulae needed for local
state are defined in the next section.

– M |= �C if ∀M ′.(M ;M ′ ⊃ M ′ |= C).
– M |= e• e′ = x[C] if ∃M ′.(M [x : ee′] ⇓ M ′ ∧ M ′ |= C).
– M |= [!x]C ≡ M |= [!x]◦C if [[x]]M = l and ∀V : M [l 7→V] |= C.

These definitions are adapted from [1, 6]. Note that the definition of satisfaction for
�C can be simplified to (ξ,σ) |= �C if ∀σ′.(ξ,σ′) |= C. The more formulation above
generalises smoothly to local references.

2.4 Key Definitions

We define three notions for formulae that form the backbone of the completeness proofs.

Definition 3 (weakest precondition, WPC). We say C is a weakest precondition (or
WPC) of C′ with respect M at u written |=wpc [C]M :u [C′], if ∀M .(M |=C iff ∃M ′.(M [u :
M] ⇓ M ′∧M ′ |= C′).

The idea behind WPCs is that they, as the name suggests, state (up to logical equiva-
lence, the weakest formula, that guarantees a given postcondition to hold of a program.
We will later show that the inference system in Figure 1 does produce WPCs.

Definition 4 (total characteristic assertion pair, TCAP). A pair (C,C′) is a total
characteristic assertion pair, or TCAP, of Γ;∆ ` M : α at u, if the following conditions
hold, assuming M = (ξ,σ).

Title Suppressed Due to Excessive Length 5

Fig. 1 Derivation Rules for TCAPs for Imperative PCFv.

[var] −
`?? [T]y :u [u = y] [const] −

`?? [T]c :u [u = c] [val] `?? [T]V :u [A] g fresh
`? [∀u.(A ⊃ g•u ⇓)]V :u [g•u ⇓]

[abs]`
? [C]M :m [C′] ĩ = fv(C,C′)\(fv(M)∪{m})
`?? [T]λy.M :u [�∀yĩ.(C ⊃ u• y = m[C′])]

[rec] `?? [T]λx.M :u [A]
`?? [T]µ f .λx.M :u [A[u/ f]]

[op-val] `? [C]M :u [C′]
`? [C[op(m1, ..,mn)/x]]let x = op(m1, ..,mn) in M :u [C′]

[if] `? [Ci]Ni :u [C′] b1 = t, b2 = f

`? [
^

i=1,2
(x = bi ⊃Ci)]if x then N1 else N2 :u [C′]

[app] `? [C]M :u [C′]
`?[f • y = x[C]]let x= f y in M :u [C′]

[let-val] `?? [T]V :x [A] `? [C]M :u [C′]
`?[∀x.(A ⊃C)]let x= V in M :u [C′]

[assign] `? [C]M :u [C′]
`? [C{|y/!x|}]x := y;M :u [C′]

[deref] `? [C]M :u [C′]
`? [C[!y/z]]let z = !y in M :u [C′]

1. (soundness) |= [C]M :u [C′].
2. (MTC, minimal terminating condition) (Mξ,σ) ⇓ iff M |= ∃ĩ.C with ĩ covering

exactly the auxiliary variables in C.
3. (closure) Suppose M |= [C]N :u [C′] then: M [u : M] ⇓M ′ implies M [u : N] ⇓M ′′

such that M ′ . M ′′).

TCAPs are pairs of formulae, that are up-closed. That means that whenever a program
P satisfies a TCAP, any other program that is exactly like P, except that it diverges less
often, also satisfies this TCAP. Since . is well-founded, TCAPs (C,C′) have canonical
representatives: the least defined program P such that |= [C]P :u [C′].

Definition 5 (value total characteristic assertion pair, VTCAP). A pair (T,A) is a
value total characteristic assertion pair of Γ;∆ ` V : α at u, if following conditions
hold, assuming M = (ξ,σ).

1. (soundness) |= [T]V :u [A].
2. (closure) M |= [T]W :u [A] implies VM . WM .

Figure 1 gives the generation rules for TCAPs. In all rules, we fix, but leave implicit,
a reference basis with domain x̃.

We illustrate the derivation rules. [val] transforms a judgement for values (writ-
ten turnstile `??) to that for general programs (written turnstile `?). We cannot infer
`? [T]V :u [A] from ?̀? [T]V :u [A], because in general (T,A) is not strong enough an
assertion pair to guarantee that V is the unique least defined inhabitant if we also con-
sider non-values. [abs] is as in [3], except for the aforementioned decomposition using
� and the one-sided evaluation formula. [abs, rec, if, assign, if, deref] are essentially
like in [3]. The rule for application [app] makes full use of the one-sided evaluation

6 Martin Berger, Kohei Honda, and Nobuko Yoshida

formula. [3], uses x̃ = ĩ∧ [x̃ = ĩ] f • x = y [C′]∧ ..., where x̃ ranges over all references,
because the rule needed to ensure that the function is evaluated in the current state. With
one-sided evaluation formulae, this is no longer required, leading to a constant-length
specification (other than that of the let-body).

2.5 Completeness

Lemma 6. 1. Let Θ ` M : α, x /∈ dom(Θ) and y fresh, then: M [u : M] ⇓ M ′ iff
M [y/x][u : M] ⇓ M ′[y/x]. Furthermore: M [u : M] ⇓ M0 iff M [x : V/x][u : M] ⇓
M0[x : V/x].

2. Let Θ ` M : α, x /∈ dom(Θ).
3. Let Θ `C and x /∈ dom(Θ). Then: M [x : V] |= C iff M ′ |= C.
4. Let M = (ξ,σ). Then: (ξ,σ) |= C[e/x] iff (ξ · x[[e]]M ,σ) |= C and (ξ,σ) |= C{|e/x|}

iff (ξ,σ[ξ(x) 7→ [[e]]M) |= C.
5. Let σ be an injective renaming, then: M |= C iff M σ |= Cσ.
6. If V . W then also MV . MW and M[V/x] . M[W/x].
7. The congruence . is syntactically continuous, i.e. if V0

def
= Ω,Vn+1

def
= λx.M[Vn/ f]

and λx.Vn . W for all n, then µ f .λx.M . W. Here Ω
def
= µ f .λx. f x.

Proof. Straightforward, see [1].

Proposition 7 (WPC as TCAP).

1. If |=wpc [C]M :u [g•u ⇓] with g auxiliary, then (C,g•u ⇓) is a TCAP of M w.r.t. u.
2. If (T,A) is a VTCAP of V w.r.t. u, then |=wpc [∀u.(A ⊃ g•u ⇓)]V :u [g•u ⇓].

Proof. For (1), soundness is by definition. For (MTC), we reason as follows, assuming
Vc to be a constant function of appropriate type that is hereditarily convergent for any
input. Note g may or may not occur in M .

M [u : M] ⇓ ⇒ M [g′/g][u : M] ⇓ (g′ fresh, Lemma 6.1)
⇒ M [g′/g][g : Vc][u : M] ⇓ M ′ |= g•u ⇓ (Lemma 6.3)
⇒ M [g′/g][g : Vc] |= C (WPC)
⇒ M [g′/g] |= ∃g.C

⇒ M [g′/g][g/g′] |= (∃g.C)[g/g′] (Lemma 6.5)
⇒ M |= ∃g.C

⇒ M |= ∃ĩ.C

For (Closure), assume M [u : M] ⇓M ′. As shown in the argument above, we can set g 6∈
fv(M) without loss of generality. By soundness, M [u : N] ⇓ M ′′. Assume M ′ 6. M ′′,
then for some closed V of type α⇒Unit with α the type of u:

M ′′[g : V][w : gu] ⇓ but M ′[g : V][w : gu] 6⇓ .

By Lemma 6.1, we obtain:

M [g : V][u : N] ⇓ M ′ 6|= g•u ⇓

Title Suppressed Due to Excessive Length 7

which contradicts the assumption.
For (2) if (ξ ·u : V ξ,σ) |= g • u ⇓ and at the same time (ξ ·u : Wξ,σ) |= A, then by

(closure): VM . WM , hence clearly (ξ · u : Wξ,σ) |= g • u ⇓. The reverse direction is
trivial. ut

Lemma 8. 1. (i) ?̀? [T]V :u [A] implies A is downward-closed w.r.t. free variables of
V except when V is a variable. (ii) `? [C]M :u [C′] implies C is upper-closed w.r.t.
free variables of M.

2. `? [C]M :u [C′] implies |=wpc [C]M :u [C′].
3. ?̀? [T]V :u [A] implies (T,A) is a VTCAP of V w.r.t. u.

Proof. For (1), we show (i) and (ii) simultaneously by rule induction. The reasoning is
mechanical (note that, when we apply [val] for V def= y, then ∀u.(A⊃ g•u⇓) becomes g•
y ⇓ hence it is indeed upper-closed at y, so that the special case for [var] does not affect
the argument). For (2) and (3), we again use simultaneous induction on the derivation
of `? [C]M :u [C′] and ?̀? [T]V :u [C′]. We have essentially three cases for (2): [if], [val]
and all those of the form let x = M in N, noting that x := y;M is let z = (x := y) in M.

We start with programs let x = M in N by showing that

(|=wpc [C]M :x [C0] ∧ |=wpc [C0]N :u [C′]) ⇒ |=wpc [C]let x = M in N :u [C′].

This is immediate by the (IH) because

(M [x : M] ⇓ M ′′,M ′′[u : N] ⇓ M ′) iff M [u : let x = M in N] ⇓ M ′

as is easy to verify. But |=wpc [C0]N :u [C′]) by (IH), so all we have to verify is |=wpc

[C]M :x [C0] for M ∈ {!y,x := y, f y,V}.
Let M def= (ξ,σ). For M =!y we have

M |= C[!y/z] iff (ξ · z : [[!y]]M ,σ) |= C

by Lemma 6.4.
If M = f y then by definition of f • y = x[C]:

M |= f • y = x[C] iff ([[f]]M [[y]]M ,σ) ⇓ (V,σ′),(ξ · x : V,σ) |= C.

This immediately implies the required equivalence.
For [let-val], assume

M [u : let x = V in M] ⇓ M ′ |= C′

that is
M [x : V][u : M] ⇓ M ′ |= C′.

By (IH) we have M [x : V] |= C. By A being VTCAP, we know M [x : W] |= A implies
VM ≺WM . Since C is upperclosed at x by (1), we know M [x : W] |= A implies M [x :
W] |= C, that is M |= ∀x.(A ⊃C). The other direction is immediate.

For assignment, clearly

M |= C{|y/!x|} iff (ξ,σ[[[x]]M 7→ [[y]]M]) |= C

8 Martin Berger, Kohei Honda, and Nobuko Yoshida

by Lemma 6.4.
For [if] assume w.l.o.g. that ξ(x) = T. Then

M |=
^

i
(x = bi ⊃Ci) iff M |= Ci

iff M [u : N1] ⇓ M ′ |= C′

iff M [u : if x then N1 else N2] ⇓ M ′ |= C′

Here the second equivalence is by (IH).
For `??, [val] is immediate by the (IH) and Prop. 7.2. Furthermore, [var] and [const]

are trivial. Similarly, [abs] is immediate from the (IH) and the definitions using closure.
For [rec] let (ξ ·u : Wξ,σ) |= [T]W :u [A[u/ f]]. Then

M |= A where M def= (ξ ·u, f : Wξ,σ) (2.1)

by the (IH) and Lemma 6.4. We construct V0
def= Ω and Vn+1

def= λx.M[Vn/ f] and show by
induction on n that (Vn)M . WM .

(Vn+1)M = (λx.M[Vn/ f])M

. (λx.M[W/ f])M (inner (IH), Lemma 6.6)

. WM (2.1).

By syntactic continuity of . (cf. Lemma 6.7) µ f .λx.M . W . ut

Noting that all postconditions inductively generated by `? are of the form g•u⇓, Propo-
sition 7 and Lemma 8 yield:

Theorem 9 (descriptive completeness). `? [C]M :u [C′] implies (C,C′) is a TCAP of
M w.r.t. u.

This theorem has two powerful consequences. The first of which, given next, is the
perfect match between operational and logical semantics.

Corollary 10 (observational completeness). M ∼= N if and only if, for each C and C′,
we have |= [C]M :u [C′] iff |= [C]N :u [C′].

We next show relative completeness, which means that relative provability (by the proof
rules in Appendix A) coincided with validity, i.e. `? [C]M :m [C′] implies ` [C]M :m [C′]
where ` is the provability in the logic for alias. For this purpose we relate provability in
the standard programs to TCAP derivability of the let forms. The map from the standard
programs to the let forms is given as follows.

[[c]] def= c

[[x]] def= x

[[λx.M]] def= λx.[[M]]

[[µ f .λx.M]] def= µ f .λx.[[M]]

[[M]] def= 〈〈M〉〉x[x] (other cases)

Title Suppressed Due to Excessive Length 9

In the last line we set:

〈〈M1 +M2〉〉y[L] def= 〈〈M1〉〉y1 [〈〈M2〉〉y2 [let y = y1 + y1 in L]]

〈〈M1M2〉〉y[L] def= 〈〈M1〉〉m1 [〈〈M2〉〉m2 [let y = m1m2 in L]]

〈〈if M then N1 else N2〉〉y[L] def= 〈〈M〉〉m[if m then 〈〈N1〉〉y[L] else 〈〈N2〉〉y[L]]

〈〈M := N〉〉y[L] def= 〈〈M〉〉m[〈〈N〉〉n[m := n;L]]

〈〈!M〉〉y[L] def= 〈〈M〉〉m[let y = !m in L]

Note that, by definition, 〈〈M〉〉y[L] is a concatenation of two let sequences, the expansion
of M and L.

We have already seen the relationship between the TCAP rules and WPC. In fact, on
the basis of `? and ?̀?, we can further construct the rules for deriving WPC of let forms
by a slight change of the TCAP rules. This derivation relation is written `wpc [C]L :u [C′]
and given by the same rules as Figure 1 except:

1. We take off [var, const, abs] from the rules.
2. We replace [val] with, assuming C is well-typed as a postcondition of V w.r.t. u:

[val-wpc]
`?? [T]V :u [A]

`wpc [∀u.(A ⊃C)]V :u [C]

3. For the remaining rules, we replace `? with `wpc.

We now observe:

Lemma 11. 1. If C0 is WPC of C′ w.r.t. M at u and |= [C]M :u [C′], then C ⊃C0.
2. If `wpc [C]L :u [C′] and C′ is upper-closed at u, then (i) C is upper-closed w.r.t. free

variables of L, and (ii) C is WPC of C′ w.r.t. L at u.
3. `wpc [C] [[M]] :u [C′] implies ` [C]M :u [C′].

(1) is the standard property of weakest pre-condition. The proofs of these results are
identical with those for local state, and are left to the next section.

Theorem 12 (relative completeness). For each well typed M, |= [C]M :u [C′] such that
C′ is upward-closed at u implies ` [C]M :u [C′].

Proof. Let `wpc [C0][[M]] :u [C′] with C′ upper-closed. By Lemma 11 (2), this implies
C0 is a WPC of C′ w.r.t. [[M]] at u. Further by Lemma 11 (3) we have ` [C0]M :u [C′].
Since [[M]]∼= M, C0 is also a WPC of C′ w.r.t. M at u. Now assume |= [C]M :u [C′]. By
Lemma 11 (1) we have C ⊃C0, hence done. ut

3 Local State

3.1 Language and Logic

We now extend the completeness results to a language with local state. The program-
ming and logical languages are extended as follows:

M ::= ... | ref(M)
C ::= ... | νx.C | νx.C | e ↪→ e′ | e#e′

10 Martin Berger, Kohei Honda, and Nobuko Yoshida

The syntax adds the reference generation ref(M), which behaves as: first M of type α

is evaluated and becomes a value V ; then a fresh reference of type Ref(α) with initial
content V is generated. This behaviour is formalised by the following reduction rule:

(ref(V), σ)−→ (ν l)(l, σ] [l 7→V]) (l fresh)

Above σ is a store, a finite map from locations to closed values, denoting the initial state;
whereas σ] [l 7→ V] is the result of disjointly adding a pair (l,V) to σ. The resulting
configuration uses a binder. Its general form is (ν l̃)(M,σ) where l̃ is a vector of distinct
locations occurring in σ (the order is irrelevant). We write (M,σ) for (ν ε)(M,σ). We
use ∼= (resp. .) for the observational congruence (resp. precongruence).

In the logical language, the hiding quantifiers, νx.C (read: “for some hidden ref-
erence x, C holds”) and νx.C (read: “for each hidden reference x, C holds”), which
are mutually dual, are new and quantify only variables of reference types (x’s type is
α = Ref(β)). e1 ↪→ e2 (with e2 of a reference type) is reachability predicate, which says
that: We can reach the reference named by e2 from a datum denoted by e1. . y#x is the
negation of x ↪→ y, which says: One can never reach a reference y starting from a datum
denoted by x.

3.2 Model

We extend a model by introducing ν-binder: a model of type (Γ;∆) is a structure
(ν l̃)(ξ,σ) with (ξ,σ) being an open model of type Γ;∆ ·∆′ with dom(∆′) = {l̃}. (ν l̃)
act as binders. We also use the same notations as Section 2.3, extending to (ν l̃)(ξ,σ)
from (ξ,σ). In particular,

– We write M1 . M2, where Mi = (ν l̃i)(ũ : Ṽi,σi), if for all M of type Unit with
fv(M)⊆ x̃: (ν l̃i)(let x̃ = Ṽ1 in M,σ1) ⇓ implies (ν l̃i)(let x̃ = Ṽ2 in M,σ2) ⇓.

– Let M = (ν l̃)(ξ,σ). We write MM for (ν l̃)(Mξ,σ), assuming typability.

Then the definitions of TCP and VTCP stay as the same by replacing (ξ,σ) by (ν l̃)(ξ,σ).
We set:

M |= e1 ↪→ e2 if [[e2]]ξ,σ ∈ lc(fl([[e1]]ξ,σ),σ) for each (ν l̃)(ξ,σ)≈ M

where lc(S,σ) (with S a set of locations) is the minimum set S′ of locations such that:
(1) S ⊂ S′ and (2) If l ∈ S′ then fl(σ(l))⊂ S′. The clause says that the set of hereditarily
reachable names from e1 includes e2 up to ≈.

The universal hiding-quantifier has the following semantics.

M |= νx.C if ∀M ′.((ν l)M ′ ≈ M ⊃ M ′[x : l] |= C)

where l is fresh, i.e. l 6∈ fl(M) where fl(M) denotes free labels in M . Dually, with l
fresh again:

M |= νx.C if ∃M ′.((ν l)M ′ ≈ M ∧ M ′[x : l] |= C)

which says that x denotes a hidden reference, say l, and the result of taking it off from
M satisfies C. We also refine M |= [!x]◦C if ∀M ′.(M [x 7→N] ⇓M ′∧∀V.(M [x 7→V]≈
M ′[x 7→V]) ⊃ M ′ |= C). [6] lists full definitions.

Title Suppressed Due to Excessive Length 11

3.3 Completeness

Descriptive and Observational Completeness. We fist introduce the following pred-
icate, with f ,X and i fresh:

new(x)(C) def= ∃ f .∀X,∀iX. f • () = x[x#i∧C]@ /0

which means: there exists a function f such that, when we invoke it with () from the
current state, return a fresh x and leaves the state such that it satisfies C. Above we
write x • y = z[C]@ /0 for ∀g.(g • () ⇓⊃ x • y = z[C∧ g • () ⇓]). We add to the previous
rule:

[letref]
`? [C]M :u [C′]

`? [new(x)(C∧!x = y)]let x = ref(y) in M :u [C′]

The rule reads:

If C is a WPC of C′ w.r.t. M and u, then “ the initial state is such that creating
fresh x in that state leads to C and the content of x is y” is a WPC of C′ w.r.t.
new(x)(C∧!x = y) and C′.

The same statements as Lemmas 6 and 8 and Proposition 7 hold incorporating [letref].
The arguments are precisely the same argument as before, reading M to be a model with
hiding, except for adding the following argument for [letref] to the proof of Lemma 8.

Lemma 13 (WPC for Ref). Let C′ be thin and upper-closed w.r.t. u. Then |=wpc [C]M :u
[C′] implies |=wpc [new(x)(C∧!x = y)]let x = ref(y) in M :u [C′].

Proof. Let M [u : let x = ref(y) in M] ⇓ M ′ (which always converges). For a fresh
l, we have M ′ = (ν l)(M [x : l][l 7→ y]) (to be precise, M ′ is the result of evaluating the
r.h.s.). By M ′ |= C and by setting f to be λ().ref(y) as the witness for the existential,
we are done.

For the other direction, suppose M |= new(x)(C∧!x = y). Thus there is some func-
tion W such that, up to ≈ and for fresh l and f :

M [f : W][x : f ()] ⇓ M ′′ = (ν l)(M [f : W][x : l][l 7→ y]) |= C′.

Let M ′ def= M ′′/ f . Since C′ is thin, we have M ′ |= C′. Thus we have M [x : ref(y)] ⇓
M ′ |= C′, as required. ut

By precisely the same arguments as before, and noting g • u ⇓ is obviously thin, we
obtain:

Theorem 14 (descriptive completeness). In the derivation system incorporating [letref],
if `? [C]M :u [C′] then (C,C′) is a TCAP of M w.r.t. u.

The following is a direct corollary [3] of Theorem 14.

Corollary 15 (observational completeness). M ∼= N iff, for each C and C′ and fresh
u, we have |= [C]M :u [C′] iff |= [C]N :u [C′].

12 Martin Berger, Kohei Honda, and Nobuko Yoshida

Preparation for Relative Completeness: thinness. The proof rules in Figure 2 in
Appendix A restrict some of the postconditions to be thin, in the following sense (this
restriction of the proof rules does not affect the relative completeness result, in the sense
that we prove the relative completeness for all total correctness formulae which may not
necessarily be thin).

Definition 16. (1) We say C is thin iff for each M and for each y∈ fv(M)\fv(C), M |=
C implies M /y |=C. (2) We say C is weak iff for each M and for each y∈ fv(M)\fv(C),
M /y |= C implies M |= C.

We can check if C is thin then, with x 6∈ fv(C), we have νx.C ⊃ C (we believe this
formula characterises thinness), dually for weak formulae. We also note:

Proposition 17. 1. e = e′ and e ↪→ e′ are both thin and weak. C is thin iff ¬C is weak.
2. If C,C′ are thin, then C∧C′, C∨C′, ∀xα.C for all α, ∃xα.C with α∈{Unit,Bool,Nat},
∃X.C, ∀X.C, νx.C, �C �C, and [!x]◦C are thin. Dually for weak formulae.

3. If C is thin (resp. weak) then so is e•e′ = x[C]. If C is weak then e•e′ = x[C] is thin
(resp. weak).

Proof. (1) is immediate. For (2), suppose C and C′ are thin, x 6∈ fv(C,C′) and M |=
C∧C′. Then M |= C hence M /x |= C, similarly for C′, hence M /x |= C∧C′. Similarly
for other cases. For (3), let C be thin and x be fresh. Suppose M |= f • y = z[C], i.e.
M [z : f y] ⇓ M ′ |= C. Then we have M /x[z : f y] ⇓ M ′/x. Since C is thin, we have
M ′/x |= C, as required. Symmetrically let C be weak and x be fresh. Suppose M /x |=
f • y = z[C], i.e. M /x[z : f y] ⇓ M ′ |= C. Note the second half means M [z : f y] ⇓ M ′′

such that M ′ = M ′′/x. Since C is weak, we have M ′′ |= C, as required. ut

The above results give us an easy way to establish thin-ness and its dual syntactically.
In particular we obtain:

Proposition 18. g•u ⇓ is both thin and weak.

In the proof rules, we assume the thin-ness in the postcondition of the conclusion in:
[App], [Assign] and [Deref] (as well as those derived from these rules). We note:

Remark 19. In all reasoning examples in [6], the derivation of provability conforms
to the condition on thin-ness as stipulated above.

Relative Completeness. The proof of relative completeness uses the map [[M]] as in
Section 2 , which is augmented by:

〈〈ref(M)〉〉x[L] def= 〈〈M〉〉y[let x = ref(y) in L]

Precisely following Section 2 we define `wpc, except we add:

[letref]
`wpc [C]M :u [C′]

`wpc [new(x)(C∧!x = y)]let x = ref(y) in M :u [C′]

Other rules remain precisely the same as before. Note that, by Lemma 13, this rule
always produces a WPC as far as the premise gives such.

We can now show:

Title Suppressed Due to Excessive Length 13

Lemma 20. 1. Assume C0 is a WPC of C′ w.r.t. M at u. Then: (i) if |= [C]M :u [C′],
then C ⊃C0. (ii) if C′ is thin, then C is also thin.

2. If `wpc [C]L :u [C′] and C′ is upper-closed at u, then (i) C is upper-closed w.r.t. free
variables of L, and (ii) C is WPC of C′ w.r.t. L at u.

3. If `wpc [C]〈〈M〉〉x[L] :u [C′] then `wpc [C] [[M]] :x [C0] and `wpc [C0]L :u [C′].
4. If `wpc [C] [[M]] :u [C′] and if C′ is thin, then ` [C]M :u [C′].
5. `? [C] [[M]] :u [C′] implies ` [C]M :u [C′]. Also ?̀? [T] [[V]] :u [A] implies ` [T]V :u [A].

Proof. (1-i) is immediate [for each M , if M |= C then M [u : M] ⇓ M ′ |= C′ hence by
the definition of WPC we have M |= C0]. (1-ii) is also direct from the definition. (2)-(i)
is easy rule induction by checking the variance and noting ?̀? [T]V :u [A] implies A is
downward-closed w.r.t. free variables in V except when V itself is a variable. For (2)-
(ii), all rules easily derive a WPC from a WPC (for ref, we use Lemma 13). The only
interesting case is [val], which is reasoned as follows (we only show the non-trivial
direction). We use the fact that, with x 6∈ fv(C), we have M [x : V] |= C iff M |= C.

M [u : let x = V in M] ⇓|= C′ ≡ M [x : V][u : M] ⇓|= C′

≡ M [x : V] |= C
⇒ ∀W.(VM ≺WM ⇒ M [x : W] |= C)
⇒ ∀W.(M [x : W] |= A ⇒ M [x : W] |= C)
⇒ M |= ∀x.(A ⊃C)

Note the second line to the last uses the upper-closure of C w.r.t. x. (3) is immediate
by the construction of `wpc. (4) is by induction and is given in Appendix B. Finally (5)
follows from (4), through (1-ii) and noting g•u ⇓ is thin. ut

Below we prove the relative completeness for values. This result is not restrictive in
practice since any program can be transformed to values by (vacuous) abstraction.

Theorem 21 (relative completeness, values). If |= [T]V :u [A] such that A is upward-
closed at u, then ` [T]V :u [A].

Proof. Let |= [T]V :u [A]. Calculate A0 by `? [T]V :u [A0]. By Lemma 20, we have
` [T]V :u [A0]. By definition A0 ⊃ A, hence ` [T]V :u [A], as required. ut

For extending relative completeness to general programs, we cannot use the same argu-
ments as in the proof of Theorem 12 because the provability of WPC in Lemma 20 (4)
uses thin-ness of the postcondition. We can however use the strengthened consequence
rule, [Cons-Eval] in Appendix A to derive [C]M :u [C′] from ` [C0]M :u [C′

0] where
`? [C0]M :u [C′

0] as far as C′ is upper-closed at u.

Theorem 22 (relative completeness, general programs). If |= [C]M :u [C′] such that
C is upward-closed at u, then ` [C]M :u [C′] in the proof system with [Cons-Eval].

Proof. Suppose `?|= [C0]M :u [C′
0]. By Lemma 20, we know `|= [C0]M :u [C′

0]. By
(C0,C′

0) being a TCAP, we know, with ĩ auxiliary, M |= ∀ĩ.([C0]m• () = u[C′
0]) implies

the projection of M to m is more defined than λ().M under M /m. Hence we have M |=
∀ĩ.([C]m• () = u[C′]). (note C′ is upper-closed w.r.t. u). We can now use [Cons-Eval] to
obtain `?|= [C]M :u [C′], as required. ut

14 Martin Berger, Kohei Honda, and Nobuko Yoshida

References
1. M. Berger, K. Honda, and N. Yoshida. A logical analysis of aliasing for higher-order

imperative functions. In ICFP’05, pages 280–293, 2005. Full version is available at:
www.dcs.qmul.ac.uk/̃ kohei/logics.

2. C. A. Gunter. Semantics of Programming Languages. MIT Press, 1995.
3. K. Honda, M. Berger, and N. Yoshida. Descriptive and relative completeness for logics for

higher-order functions. In ICALP’06, volume 4052 of LNCS, pages 360–371, 2006.
4. K. Honda, N. Yoshida, and M. Berger. An observationally complete program logic for im-

perative higher-order functions. In Proc. LICS’05, pages 270–279, 2005. Full version is is
available at: www.dcs.qmul.ac.uk/̃ kohei/logics.

5. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
6. N. Yoshida, K. Honda, and M. Berger. Logical reasoning for functions with local state.

http://www.doc.ic.ac.uk/̃ yoshida/local.

A Proof Rules

Figure 2 presents all compositional proof rules for the logic for aliasing (treated in Sec-
tion 2 and its extension with local state (treated in Section 3). We assume that judge-
ments are well-typed in the sense that, in [C]M :u [C′] with Γ;∆ `M : α, Γ,∆,Θ `C and
u :α,Γ,∆,Θ `C′ for some Θ s.t. dom(Θ)∩ (dom(Γ,∆)∪{u}) = /0.

In the rules, C-x̃ indicates fv(C)∩ {x̃} = /0. Symbols i, j, . . . range over auxiliary
names. In [Abs, Rec], A,B denote stateless formulae: C is stateless when �C ≡C. [As-
sign] uses logical substitution which is built with content quantification to represent
substitution of content of a possibly aliased reference [1].

C{|e2/!e1|}
def= ∀m.(m = e2 ⊃ [!e1]◦(!e1 = m ⊃C)).

with m fresh.
When we are in the logic with local state, we assume C′ is thin in [App], [Deref] and

[Assign].

B Proofs for Lemma 20 (4,5)

We prove this with the second statement of (5) ((A) below) simultaneously.

(A) ?̀? [T] [[V]] :u [A] implies ` [T]V :u [A].
(B) If `wpc [C] [[M]] :u [C′] and if C′ is thin, then ` [C]M :u [C′].

Case x: Obvious by letting C = u = y.
Case c: Obvious by letting C = u = c.
Case λy.[[N]]: Suppose ?̀? [T]λy.[[N]] :u [�∀yĩ.(C ⊃ u • y = m[C′])] is derived from
`wpc [C] [[N]] :m [C′] with ĩ = fv(C,C′)\(fv([[N]])∪{m}). Since C′ is thin, by induction
by (B), we know ` [C]N :m [C′].
Case µ f .λx.N: The same as the above case.
(B)

Case M1M2: Let `wpc [C] [[M1M2]] :u [C′]. Then by definition, [[M1M2]]
def= 〈〈M1M2〉〉x[x]

def=
〈〈M1〉〉m1 [〈〈M2〉〉m2 [let x = m1m2 in x]], and by Lemma 20 (3), we know:

Title Suppressed Due to Excessive Length 15

Fig. 2 Proof Rules for Local PCFv.

[Var] −
[C[y/u]]y :u [C] [Const] −

[C[c/u]]c :u [C]

[Add] [C]M1 :m1 [C0] [C0]M2 :m2 [C′[m1 +m2/u]]
[C]M1 +M2 :u [C′]

[If] [C]M :b [C0] [C0[t/b]]M1 :u [C′] [C0[f/b]]M2 :u [C′]
[C]if M then M1 else M2 :u [C′]

[Abs] [A
-xX̃ĩ∧C]M :m [C′] {ĩX̃} ⊂ fv(C,C′)\(fv(M)∪{m})

[A]λx.M :u [�∀xX̃ĩ.(C ⊃ u• x = m[C′])]
[Rec] [C- f]λx.M :u [C′]

[C]µ f .λx.M :u [C′[u/ f]]

[App] [C]M :m [C0] [C0]N :n [m•n = u[C′]]
[C]MN :u [C′]

[Deref] [C]M :m [C′[!m/u]]
[C] !M :u [C′]

[Assign] [C]M :m [C0] [C0]N :n [C′{|n/ !m|}]
[C]M := N :u [C′]

[Ref] [C]M :m [C′]
[C]ref(M) :u [νx.(C′[!u/m] ∧ u#iX ∧u = x)]

[Cons-Eval]
[C0]M :m [C′

0] ∀ĩ.[C0] x• () = m [C′
0]⊃ ∀ĩ.[C] x• () = m [C′] x fresh, ĩ auxiliary

[C]M :m [C′]

– `wpc [C] [[M1]] :m1 [C1], and `wpc [C1] [[M2]] :m2 [C2]
– `wpc [C2]let x = m1m2 in x :u [C′] with C2 = m1 •m2 = u[C′].

Then by induction, we know ` [C]M1 :m1 [C1] and ` [C1]M2 :m2 [m1 •m2 = u[C′]]. Now
applying [App] in Figure 2, we conclude this case.
Case M1 := M2: The same as the above case by replacing by let x = m1 := m2 in x
and C2 = C′{|m2/ !m1|}.
Case M1 +M2: The same as the above case by replacing by let x = m1 +m2 in x and
C2 = C′[m1 +m2/u].

Case !N: Let `wpc [C] [[!N]] :u [C′]. Then by definition, [[!N]] def= 〈〈!N〉〉x[x]
def= 〈〈N〉〉n[let x =

!n in x], and by Lemma 20 (3), we know:

– `wpc [C] [[N]] :n [C1]
– `wpc [C1]let x = !n in x :u [C′] with C1 = C′[!n/u].

Then by induction, we know ` [C]N :n [C′[!n/u]]. By [Deref] in Figure 2, we have
` [C] !N :u [C′], as required.
Case if M0 then N1 else N2: Let `wpc [C] [[if M0 then N1 else N2]] :u [C′]. Then by
definition, 〈〈ifM0 thenN1 elseN2〉〉x[x]

def= 〈〈M0〉〉m[ifm then 〈〈N1〉〉x[x] else 〈〈N2〉〉x[x]],
and by Lemma 20 (3), we know:

– `wpc [C] [[M1]] :x [C0],

16 Martin Berger, Kohei Honda, and Nobuko Yoshida

– `wpc [C1] [[N1]] :u [C′], and `wpc [C2] [[M2]] :u [C′] with C0 =
^

i=1,2
(x = bi ⊃Ci) and

b1 = t,b2 = f.

We note that C0[t/x] ≡ ((t = t) ⊃ C1) ∧ ((t = f) ⊃ C2) ≡ C1. Hence by induction,
we know ` [C]M1 :x [C0], ` [C0[t/x]] [[N1]] :u [C′], and ` [C0[f/x]] [[N2]] :u [C′]. By [If] in
Figure 2, we conclude the case.

Case ref(N): Let `wpc [C] [[ref(N)]] :u [C′]. Then by definition, [[ref(N)]] def= 〈〈ref(N)〉〉x[x]
def=

〈〈N〉〉n[let x = ref(n) in x], and by Lemma 20 (3), we know:

– `wpc [C] [[N]] :n [C1]
– `wpc [C1]let x = ref(n) in x :u [C′] with C1 = new(x)(C′[x/u] ∧ !x = n).

Then by induction, we know ` [C]N :n [C1]. Then by applying [Ref], we have

` [C]ref(N) :u [νx.(new(x)(C′[x/u][!u/n] ∧ !x =!u) ∧ u#i ∧ u = x)]

Note that C′ = g•u ⇓, hence C′[x/u][!u/n] = g•x ⇓. Note u is fresh u#i and new(x)(g•
x ⇓ ∧ !x =!u) means that fresh x is identical with u, and by [Cons-Eval], we derive:

` [C]ref(N) :u [g•u ⇓]

as desired.

