
A very gentle introduction for synchronous multiparty sessions

Nobuko Yoshidaa

aImperial College London, UK

Keywords: Concurrency, Process Calculi, Multiparty Session Types

1. A Gentle Introduction to Multiparty Session Types1

The aim of this section is to give a gentle introduction of multiparty session types for readers who are2

interested in programming but who are not familiar with session types nor process calculi.3

Session types are introduced in a series of papers during the 1990s Honda (1993); Takeuchi et al. (1994);4

Honda et al. (1998) in the context of pure concurrent processes and programming. Session types have since5

been studied in many contexts over the last decade—see the surveys of the field Hüttel et al. (2016); Gay6

and Ravera (2017).7

We review multiparty session types, a methodology to enable compositional reasoning about communi-8

cation.9

As a simple example, consider a scenario in which a cart and arm assembly has to fetch objects. We10

associate a process with each physical component; thus, we model the scenario using a cart (Cart) and11

an arm (Arm) attached to the cart. The task involves synchronisation between the cart and the arm.12

Synchronisation is obtained through the exchange of messages.13

Specifically, the protocol works as follows.14

1. The cart sends the arm a fold command fold . On receiving the command, the arm folds itself. When15

the arm is completely folded, it sends back a message ok to the cart. On receipt of this message, the16

cart moves.17

2. When the cart reaches the object, it stops and sends a grab message to the arm to grab the object.18

While the cart waits, the arm executes the grabbing operation, followed by a folding operation. Then19

the arm sends a message ok to the cart. This sequence may need to be repeated.20

3. When all tasks are finished, the cart sends a message done to the arm, and the protocol terminates.21

The multiparty session types methodology is as follows. First, define a global type that gives a shared22

contract of the allowed pattern of message exchanges in the system. Second, project the global type to each23

end-point participant to get a local type: an obligation on the message sends and receipts for each process24

that together ensure that the pattern of messages are allowed by the global type. Finally, check that the25

implementation of each process conforms to its local type.26

In our protocol, from a global perspective, we expect to see the following pattern of message exchanges,27

encoded as a global type for the communication:28

µt.Cart→ Arm : {fold .Arm→ Cart : ok .Cart→ Arm : grab.Arm→ Cart : ok .t, done.end} (1)

The type describes the global pattern of communication between Cart and Arm using message exchanges,29

sequencing, choice, and repetition. The basic pattern Cart → Arm :m indicates a message m sent from the30

Cart to the Arm. The communication starts with the cart sending either a fold or a done command to31

the arm. In case of done, the protocol ends (type end); otherwise, the communication continues with the32

sequence ok . grab. ok followed by a repetition of the entire pattern. The operator “.” denotes sequencing,33

and the type µt.T denotes recursion of T .34

Preprint submitted to Journal of Logical and Algebraic Methods in Programming July 13, 2019

The global type states what are the valid message sequences allowed in the system. When we implement1

Cart and Arm separately, we would like to check that their composition conforms to the global type. We can2

perform this check compositionally as follows.3

Since there are only two participants, projecting to each participant is simple. From the perspective of4

the Cart, the communication can be described by the type:5

µt. ((!fold . ?ok . !grab. ?ok .t) ⊕ (!done. end)) (2)

where !m denotes a message m sent (to the Arm) and ?m denotes a message m received from the Arm. and6

⊕ denotes an (internal) choice. Thus, the type states that Cart repeats actions !fold . ?ok . !grab. ?ok until7

at some point it sends done and exits.8

Dually, from the viewpoint of the Arm, the same global session is described by the dual type9

µt. ((?fold . !ok . ?grab. !ok .t) & (?done. end)) (3)

in which & means that a choice is offered externally.10

We can now individually check that the implementations of the cart and the arm conform to these local11

types.12

The global type seems overkill if there are only two participants; indeed, the global type is uniquely13

determined given the local type (2) or its dual (3). However, for applications involving multiple parties,14

the global type and its projection to each participant are essential to provide a shared contract among all15

participants.16

For example, consider a simple ring protocol, where the Arm process above is divided into two parts,17

Lower and Upper. Now, Cart sends a message fold to the lower arm Lower, which forwards the message to18

Upper. After receiving the message, Upper sends an acknowledgement ok to Cart. We start by specifying19

the global type as:20

Cart→ Lower : fold .Lower→ Upper : fold .Upper→ Cart : ok .end (4)

As before, we want to check each process locally against a local type such that if each process conforms to21

its local type then the composition satisfies the global type.22

The global type in (4) is projected into the three endpoint session types:23

Cart’s endpoint type: Lower!fold .Upper?ok .end

Lower’s endpoint type: Cart?fold .Upper!fold .end

Upper’s endpoint type: Lower?fold .Cart!ok .end

24

where Lower!fold means “send to Lower a fold message,” and Upper?ok means “receive from Upper an ok25

message.” Then each process is type-checked against its own endpoint type. When the three processes are26

executed, their interactions automatically follow the stipulated scenario.27

If instead of a global type, we only used three separate binary session types to describe the mes-28

sage exchanges between Cart and Lower, between Lower and Upper, and between Upper and Cart, respec-29

tively, without using a global type, then we lose essential sequencing information in this interaction sce-30

nario. Consequently, we can no longer guarantee deadlock-freedom among these three parties. Since the31

three separate binary sessions can be interleaved freely, an implementation of the Cart that conforms to32

Upper?ok .Lower!fold .end becomes typable. This causes the situation that each of the three parties blocks33

indefinitely while waiting for a message to be delivered. Thus, we shall use the power of multiparty session34

types to ensure correct communication patterns.35

2. Synchronous Multiparty Session Calculus36

This section introduces the syntax and semantics of a synchronous multiparty session calculus. Since our37

focus is on subtyping, we simplify the calculus in (Kouzapas and Yoshida, 2013) eliminating both shared38

channels for session initiations and session channels for communications inside sessions — i.e, our calculus39

is akin to value-passing CCS (Milner, 1989, Chapter 2.8).40

2

succ(n) ↓ (n + 1) neg(i) ↓ (−i) ¬true ↓ false ¬false ↓ true v ↓ v

(i1 > i2) ↓

{
true if i1 > i2,

false otherwise

e1 ↓ v
e1 ⊕ e2 ↓ v

e2 ↓ v
e1 ⊕ e2 ↓ v

e ↓ v E(v) ↓ v′

E(e) ↓ v′

Table 1: Expression evaluation.

[s-rec]

µX.P ≡ P{µX.P/X}
[s-multi]

P ≡ Q⇒ p / P | M ≡ p / Q | M

[s-par 1]

p / 0 | M ≡M

[s-par 2]

M | M′ ≡M′ | M
[s-par 3]

(M | M′) | M′′ ≡M | (M′ | M′′)

Table 2: Structural congruence.

Notation 2.1 (Base sets). We use the following base sets: values, ranged over by v, v′, . . .; expressions,1

ranged over by e, e′, . . .; expression variables, ranged over by x, y, z . . . ; labels, ranged over by `, `′, . . . ;2

session participants, ranged over by p, q, . . .; process variables, ranged over by X,Y, . . . ; processes, ranged3

over by P,Q, . . . ; and multiparty sessions, ranged over by M,M′,4

Syntax. A value v can be a natural number n, an integer i, or a boolean true / false. An expression e5

can be a variable, a value, or a term built from expressions by applying the operators succ, neg,¬,⊕, or6

the relation > . An evaluation context E is an expression with exactly one hole. The operator ⊕ models7

non-determinism: e1 ⊕ e2 is an expression that might yield either e1 or e2.8

The processes of the synchronous multiparty session calculus are defined by:9

P ::= p!`(e).P ||
∑
i∈I

p?`i(xi).Pi || if e then P else P || µX.P || X || 0

The output process p!`(e).Q sends the value of expression e with label ` to participant p. The sum of10

input processes (external choice)
∑

i∈I p?`i(xi).Pi is a process that can accept a value with label `i from11

participant p, for any i ∈ I.According to the label `i of the received value, the variable xi is instantiated12

with the value in the continuation process Pi. We assume that the set I is always finite and non-empty.13

The conditional process if e then P else Q represents the internal choice between processes P and Q.14

Which branch of the conditional process will be taken depends on the evaluation of the expression e. The15

process µX.P is a recursive process. We assume that the recursive processes are guarded. For example,16

µX.p?`(x).X is a valid process, while µX.X is not. We often omit 0 from the tail of processes.17

We define a multiparty session as a parallel composition of pairs (denoted by p / P) of participants and18

processes:19

M ::= p / P || M | M

with the intuition that process P plays the role of participant p, and can interact with other processes playing20

other roles in M. A multyparty session is well formed if all its participants are different. We consider only21

well-formed multiparty sessions.22

Operational semantics. The value v of expression e (notation e ↓ v) is computed as expected, see Table 1.23

The successor operation succ is defined only on natural numbers, the negation neg is defined on integers,24

and ¬ is defined only on boolean values. The internal choice e1⊕ e2 evaluates either to the value of e1 or to25

the value of e2.26

3

[r-comm]

j ∈ I e ↓ v
p /
∑
i∈I

q?`i(x).Pi | q / p!`j(e).Q | M −→ p / Pj{v/x} | q / Q | M

[t-conditional]

e ↓ true
p / if e then P else Q | M −→ p / P | M

[f-conditional]

e ↓ false
p / if e then P else Q | M −→ p / Q | M

[r-struct]

M′1 ≡M1 M1 −→M2 M2 ≡M′2

M′1 −→M′2

Table 3: Reduction rules.

The computational rules of multiparty sessions are given in Table 3. They are closed with respect to1

the structural congruence defined in Table 2. In rule [r-comm], the participant q sends the value v choosing2

the label `j to participant p, who offers inputs on all labels `i with i ∈ I. In rules [t-conditional] and3

[f-conditional], the participant p chooses to continue as P if the condition e evaluates to true and as Q if4

e evaluates to false. Rule [r-struct] states that the reduction relation is closed with respect to structural5

congruence. We use −→∗ with the standard meaning.6

We adopt some standard conventions regarding the syntax of processes and sessions. Namely, we will use7 ∏
i∈I pi /Pi as short for p1 /P1 | . . . | pn /Pn, where I = {1, . . . , n}. We will sometimes use infix notation for8

external choice process. For example, instead of
∑

i∈{1,2} p?`i(x).Pi, we will write p?`1(x).P1 + p?`2(x).P2.9

Example 2.2. We now show the operational semantics in action. Consider the following multiparty session10

with three participants, Alice, Bob and Carol :11

M = Alice / PAlice | Bob / PBob | Carol / PCarol

where12

PAlice = Bob!`1(50).Carol?`3(x).0
PBob = Alice?`1(x).Carol!`2(100).0 + Alice?`4(x).Carol!`2(2).0
PCarol = Bob?`2(x).Alice!`3(succ(x)).0

This mulitiparty session reduces to13

Alice / 0 | Bob / 0 | Carol / 0

after three communications occur. First, Alice sends to Bob natural number 50 with the label `1. Bob is14

able to receive values with labels `1 and `4. Next, the only possible communication is between Bob and Carol.15

So, Carol receives natural number 100 from Bob. The value 100 is substituted in the continuation process.16

Finally, since succ(100) ↓ 101, Carol sends 101 to Alice. We can then reduce the session to, for example,17

Alice / 0, but not further.18

From the end of Example 2.2, we can see that a session M always has at least one participant, since19

we do not have neutral element for the parallel composition. In Section 3, we will introduce a type system20

ensuring that if a well-typed multiparty session has only one participant, then the corresponding process is21

0 — hence, the participant’s process has no inputs/outputs to perform.22

The most crucial property is that when a multiparty session contains communications that will never be23

executed.24

Definition 2.3. A multiparty session M is stuck if M 6≡ p / 0 and there is no multiparty session M′ such25

that M −→ M′. A multiparty session M gets stuck, notation stuck(M) , if it reduces to a stuck multiparty26

session.27

4

E.g., the multiparty session M in Example 2.2 is not stuck, and it does not get stuck. A similar1

multiparty session, where instead of PAlice we take P ′Alice = Bob!`1(50).Carol?`5(x).0, gets stuck because of2

label mismatch.3

3. Type System4

This section introduces a type system for the calculus presented in Section 2. The formulation is based on5

Kouzapas and Yoshida (2013, 2015), with adaptations to account for our simplified calculus. We formalise6

types and projections (Section 3.1), the subtyping relation (Section 3.2), and the typing rules and their7

properties (Section 3.3).8

3.1. Types and Projections9

Global types provide global conversation scenarios of multiparty sessions, with a bird’s eye view describing10

the message exchanges between pairs of participants.11

Definition 3.1 (Sorts and global types). Sorts, ranged over by S, are defined as:12

S ::= nat || int || bool

Global types, ranged over by G, are terms generated by the following grammar:13

G ::= end || µt.G || t || p→ q : {`i(Si).Gi}i∈I

We require that p 6= q, I 6= ∅, and `i 6= `j whenever i 6= j, for all i, j ∈ I. We postulate that recursion14

is guarded. Unless otherwise noted, global types are closed: a recursion variable t only occurs bounded by15

µt. . . .16

In Definition 3.1, the type p→ q : {`i(Si).Gi}i∈I formalises a protocol where participant p must send to17

q one message with label `i and a value of type Si as payload, for some i ∈ I; then, depending on which `i18

was sent by p, the protocol continues as Gi. Value types are restricted to sorts, that can be natural (nat),19

integer (int) and boolean (bool). The type end represents a terminated protocol. Recursive protocol is20

modelled as µt.G, where recursion variable t is bound and guarded in G — e.g., µt.p→ q : `(nat).t is a valid21

global type, whereas µt.t is not. We take the equi-recursive viewpoint, i.e. We identify µt.G and G{µt.G/t}.22

We define the set of participants of a global type G, by structural induction on G, as follows:23

pt{µt.G} = pt{G} pt{end} = pt{t} = ∅ pt{p→ q : {`i(Si).Gi}i∈I} = {p, q} ∪ pt{Gi} (i ∈ I)

We will often write p∈G instead of p ∈ pt{G}.24

A local session type describes the behaviour of a single participant in a multiparty session.25

Definition 3.2 (Local Session Types). The grammar of session types, ranged over by T, is:26

T ::= end ||
∧

i∈I p?`i(Si).Ti ||
∨

i∈I q!`i(Si).Ti || µt.T || t

We require that `i 6= `j whenever i 6= j, for all i, j ∈ I. We postulate that recursion is always guarded.27

Unless otherwise noted, session types are closed.28

Note that, according to the previous definition, labels in a type need to be pairwise different. For29

example, p?`(int).end ∧ p?`(nat).end is not a type.30

The session type end says that no further communication is possible and the protocol is completed.31

The external choice or branching type
∧

i∈I p?`i(Si).Ti requires to wait to receive a value of sort Si (for32

some i ∈ I) from the participant p, via a message with label `i; if the received message has label `i, the33

protocol will continue as prescribed by Ti. The internal choice or selection type
∨

i∈I q!`i(Si).Ti says that34

the participant implementing the type must choose a labelled message to send to q; if the participant chooses35

the message `i, for some i ∈ I, it must include in the message to q a payload value of sort Si, and continue as36

5

prescribed by Ti. Recursion is modelled by the session type µt.T. We adopt the following conventions: we1

do not write branch/selection symbols in case of a singleton choice, we do not write unnecessary parentheses,2

and we often omit trailing ends.3

The set pt{T} of participants of a session type T is defined inductively as follows4

pt{
∧
i∈I

p?`i(Si).Ti} = pt{
∨
i∈I

p!`i(Si).Ti} = {p} ∪
⋃
i∈I

pt{Ti} pt{µt.T} = pt{T} pt{t} = pt{end} = ∅.

In Definition 3.3 below, we define the global type projection as a coinductive relation G �r T between5

global and session types. Our definition extends the one originally proposed by Honda et al. (2008, 2016),6

along the lines of Yoshida et al. (2010) and Deniélou et al. (2012): i.e., it uses a merging operator
d

.7

Definition 3.3. The projection of a global type onto a participant r is the largest relation �r between global8

types and session types such that, whenever G �r T:9

• r 6∈ pt{G} implies T = end; [proj-end]

• G = p→ r : {`i(Si).Gi}i∈I implies T =
∧
i∈I

p?`i(Si).Ti, and Gi �r Ti, ∀i∈I; [proj-in]

• G = r→ q : {`i(Si).Gi}i∈I implies T =
∨
i∈I

q!`i(Si).Ti, and Gi �r Ti, ∀i∈I; [proj-out]

• G = p→ q : {`i(Si).Gi}i∈I and r 6∈{p, q} implies that there are Ti, i ∈ I such that [proj-cont]

T =
d

i∈ITi, and Gi �rTi, for every i ∈ I.

10

Above,
d

is the merging operator, that is a partial operation over session types defined as:11

T1

d
T2 =



T1 if T1 = T2 [mrg-id]

T3 if ∃I, J :


T1 =

∧
i∈I p

′?`i(Si).Ti and
T2 =

∧
j∈J p′?`j(Sj).Tj and

T3 =
∧

k∈I∪J p′?`k(Sk).Tk

[mrg-bra]

undefined otherwise.

Proposition 3.4. The merging operation is associative, i.e.: T u (T′ u T′′) = (T u T′) u T′′.12

By Definition 3.3, merging a type with itself results in itself (rule [mrg-id]). Moreover, Definition 3.313

allows to combine different external choices (rule [mrg-bra]) if and only if common labels have identical sorts14

and identical continuations, as formalised in Prop. 3.5 below and illustrated in Examples 3.6, 3.8 and 3.9 .15

Proposition 3.5. For two types T′ =
∧

i∈I p
′?`i(Si).Ti and T′′ =

∧
j∈J p′′?`j(Sj).Tj, we have that T′ uT′′16

is defined if and only if p′ = p′′ and, whenever `i = `j (for some i ∈ I and j ∈ J), Si = Sj and Ti = Tj.17

Example 3.6. We now give some small examples that illustrate the definition of the merging operator (here,18

i 6= j implies `i 6= `j):19

q!`(nat) u q!`(nat) = q!`(nat)
p!`(nat) u q!`(nat) undefined: outputs to different participants

q!`3(nat) u q!`4(nat) undefined: outputs with different labels(
q?`3(int) ∧ q?`5(nat)

)
u
(
q?`4(int) ∧ q?`5(nat)

)
= q?`3(int) ∧ q?`4(int) ∧ q?`5(nat)

q?`3(nat) u q?`3(nat).q?`3(nat) undefined: same prefixes, but different continuations
q?`(nat) u q?`(int) undefined: the payload sorts do not match

Proposition 3.7. The projection relation �r is a partial function.20

We now describe the clauses of Definition 3.3:21

6

• clause [proj-end] states that when a global type G is projected onto a participant r who does not1

appear in G (e.g., because G = end), then the result is the inactive session type end;2

• clause [proj-in] (resp. [proj-out]) states that a global type G starting with a communication from p to3

r (resp. from r to q) projects onto an external (resp. internal) choice T, provided that the continuations4

of T are also projections of the corresponding global type continuations.5

• clause [proj-cont] states that if G starts with a communication between p and q, and we are projecting6

G onto a third participant r, then we need to (1) skip the initial communication, (2) project all the7

continuations onto r, and (3) merge the resulting session types, using the merging operator u.8

As a result, clause [proj-cont] of Definition 3.3 allows participant r to receive different messages (from9

a same participant p′) in different branches of a global type, as shown in Example 3.8 below.10

Example 3.8. We demonstrate interesting points of Definition 3.3. First, we show some projections of11

global types. Consider the global type:12

G = p→ q : {`1(nat).G1, `2(bool).G2} where

 G1 = q→ r : {`3(int), `5(nat)}
G2 = q→ r : {`4(int), `5(nat)}
r 6= p

We have:13

G�p = q!`1(nat).(G1�p) ∨ q!`2(bool).(G2�p) = q!`1(nat).end ∨ q!`2(bool).end

G�q = p?`1(nat).(G1�q) ∧ p?`2(bool).(G2�q)
= p?`1(nat).

(
r!`3(int) ∨ r!`5(nat)

)
∧ p?`2(bool).

(
r!`4(int) ∨ r!`5(nat)

)
G�r = G1�r u G2�r =

(
q?`3(int) ∧ q?`5(nat)

)
u
(
q?`4(int) ∧ q?`5(nat)

)
= q?`3(int) ∧ q?`4(int) ∧ q?`5(nat)

Note that in G, q could output different messages towards r, depending on whether p sends `1 or `2 to q;14

therefore, in G�r, the possible inputs of r in G1 and G2 are merged into a larger external choice that supports15

all possible outputs of q.16

Importantly, by Definition 3.3, there exist global types that cannot be projected onto all their partic-17

ipants. This is because G might describe meaningless protocols, that cause the merging operation u in18

clause [proj-cont] to be undefined, as shown in Example 3.9 below.19

Example 3.9. We show two global types that cannot be projected according to the Definition 3.3. Consider20

the global type G = p→ q : {`1(nat).G1 , `2(bool).G2}, with G1 = r→ q : `3(nat) and G2 = r→ q : `4(nat).21

Then,22

G�p = q!`1(nat) ∨ q!`2(bool)

G�q = p?`1(nat).r?`3(nat) ∧ p?`2(bool).r?`4(nat)

G�r = q!`3(nat) u q!`4(nat) (undefined if `3 6= `4)

Intuitively, when `3 6= `4, G�r is undefined because in G, depending on whether p and q exchange `1 or23

`2, r is supposed to send either `3 or `4 to q; however, r is not privy to the interactions between p and24

q, and thus, G provides an invalid specification for r. Instead, if `3 = `4, then by Definition 3.3 we have25

G�r = q!`3(nat) u q!`3(nat) = q!`3(nat).26

Now, consider the global type G′ = p → q : {`1(nat).G′1 , `2(bool).G′2}, with G′1 = q → r : `3(nat) and27

G′2 = q→ r : `3(nat).q→ r : `3(nat). Then,28

G′�p = q!`1(nat) ∨ q!`2(bool)

G′�q = p?`1(nat).r!`3(nat) ∧ p?`2(bool).r!`3(nat).r!`3(nat)

G′�r = q?`3(nat) u q?`3(nat).q?`3(nat) (undefined)

7

Here, G′�r is undefined because in G′, depending on whether p and q exchange `1 or `2, r is supposed to1

receive either one or two messages `3 from q; however, as in the previous example, r is not aware of the2

interactions between p and q, and thus, G provides an invalid specification for r. This example could be fixed,3

e.g., by replacing `3 with `′ 6= `3 in G′2, or by letting G′1 = G′2: both fixes would make G′�r defined, similarly4

to Example 3.8.5

3.2. Subtyping6

The subtyping relation 6 is used to augment the flexibility of the type system (introduced in Section 3.3):7

by determining when a type T is “smaller” than T′, it allows to use a process typed by the former whenever8

a process typed by the latter is required.9

Definition 3.10 (Subsorting and subtyping). Subsorting ≤: is the least reflexive binary relation such that10

nat ≤: int.11

Subtyping 6 is the largest relation between session types coinductively defined by the following rules:12

[sub-end]

end 6 end

[sub-in]

∀i ∈ I : S′i ≤: Si Ti 6 T′i∧
i∈I∪J

p?`i(Si).Ti 6
∧
i∈I

p?`i(S
′
i).T

′
i

================================

[sub-out]

∀i ∈ I : Si ≤: S′i Ti 6 T′i∨
i∈I

p!`i(Si).Ti 6
∨

i∈I∪J
p!`i(S

′
i).T

′
i

===============================

Intuitively, the session subtyping 6 in Definition 3.10 says that T is smaller than T′ when T is “less13

liberal” than T′ — i.e., when T allows for less internal choices, and demands to handle more external14

choices.1 A peculiarity of the relation is that, apart from a pair of inactive session types, only inputs and15

outputs from/to a same participant can be related (with additional conditions to be satisfied). Note that16

the double line in the subtyping rules indicates that the rules are interpreted coinductively (Pierce, 2002,17

Chapter 21).18

• Rule [sub-end] says that end is only subtype of itself.19

• Rule [sub-in] relates external choices from the same participant p: the subtype must support all the20

choices of the supertype, and for each common message label, the continuations must be related, too;21

note that the carried sorts are contravariant: e.g., if the supertype requires to receive a message `i(nat)22

(for some i ∈ I), then the subtype can support `i(int) or `i(nat), since nat ≤: int and nat ≤: nat.23

• Rule [sub-out] relates internal choices towards the same participant p: the subtype must offer a subset24

of the choices of the supertype, and for each common message label, the continuations must be related,25

too; note that the carried sorts are covariant: e.g., if the supertype allows to send a message `i(int) (for26

some i ∈ I), then the subtype can allow to send `i(int) or `i(nat), since int ≤: int and nat ≤: int.27

Lemma 3.11. The subtyping relation 6 is reflexive and transitive.28

3.3. Type system29

We now introduce a type system for the multiparty session calculus presented in Section 2. We distinguish30

three kinds of typing judgments:31

Γ ` e : S Γ ` P : T `M : G

1Readers familiar with the theory of session types might notice that our subtyping relation is inverted w.r.t. the original
binary session subtyping, introduced in the works of Gay and Hole (1999, 2005). In such works, smaller types have less internal
choices, and more external choices: this is because they formalise a “channel-oriented” notion of subtyping, while we adopt a
“process-oriented” view. For a thorough analysis and comparison of the two approaches, see Gay (2016).

8

Γ ` n : nat Γ ` i : int Γ ` true : bool Γ ` false : bool Γ, x : S ` x : S

Γ ` e : nat

Γ ` succ(e) : nat

Γ ` e : int

Γ ` neg(e) : int

Γ ` e : bool

Γ ` ¬e : bool

Γ ` e1 : S Γ ` e2 : S

Γ ` e1 ⊕ e2 : S

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 > e2 : bool

Γ ` e : S S ≤: S′

Γ ` e : S′

Table 4: Typing rules for expressions.

where Γ is the typing environment :1

Γ ::= ∅ || Γ, x : S || Γ, X : T

i.e., a mapping that associates expression variables with sorts, and process variables with session types.2

We say that a multiparty session M is well typed if there is a global type G such that ` M : G. If a3

multiparty session is well typed, we will sometimes write just `M.4

The typing rules for expressions are given in Table 4, and are self-explanatory. The typing rules for5

processes and multiparty sessions are content of Table 5:6

• [t-sub] is the subsumption rule: a process with type T is also typed by the supertype T′;7

• [t-0] says that a terminated process implements the terminated session type;8

• [t-rec] types a recursive process µX.P with T if P can be typed as T, too, by extending the typing9

environment with the assumption that X has type T;10

• [t-var] uses the typing environment assumption that process X has type T;11

• [t-input-choice] types a summation of input prefixes as a branching type. It requires that each input12

prefix targets the same participant q, and that, for all i ∈ I, each continuation process Pi is typed by13

the continuation type Ti, having the bound variable xi in the typing environment with sort Si. Note14

that the rule implicitly requires the process labels `i to be pairwise distinct (as per Definition 3.2);15

• [t-out] types an output prefix with a singleton selection type, provided that the expression in the16

message payload has the correct sort S, and the process continuation matches the type continuation;17

• [t-choice] types a conditional process with T if its sub-processes can be typed by T and expression e18

is boolean.19

• [t-sess] types multiparty sessions, by associating typed processes to participants. It requires that the20

processes being composed in parallel can play as participants of a global communication protocol:21

hence, their types must be projections of a single global type G. The condition pt{G} ⊆ {pi | i ∈ I}22

allows to also type sessions containing p / 0: this is needed to assure invariance of typing.23

Example 3.12. We show that the multiparty session M from Example 2.2 is well typed. Consider the24

following global type:25

G = Alice→ Bob : {`1(nat).Bob→ Carol : `2(nat).Carol→ Alice : `3(nat).end,
`4(nat).Bob→ Carol : `2(nat).Carol→ Alice : `3(nat).end}.

We show that participants Alice, Bob and Carol respect the prescribed protocol G, by showing that they26

participate in a well-typed multiparty session. Applying rules from Table 5, we derive27

` PAlice : TAlice ` PBob : TBob ` PCarol : TCarol

9

[t-sub]

Γ ` P : T T 6 T′

Γ ` P : T′

[t-0]

Γ ` 0 : end

[t-rec]

Γ, X : T ` P : T

Γ ` µX.P : T

[t-var]

Γ, X : T ` X : T

[t-input-choice]

∀i ∈ I Γ, xi : Si ` Pi : Ti

Γ `
∑
i∈I

q?`i(xi).Pi :
∧
i∈I

q?`i(Si).Ti

[t-out]

Γ ` e : S Γ ` P : T

Γ ` q!`(e).P : q!`(S).T

[t-choice]

Γ ` e : bool Γ ` P1 : T Γ ` P2 : T

Γ ` if e then P1 else P2 : T

[t-sess]

∀i ∈ I ` Pi : G�pi pt{G} ⊆ {pi | i ∈ I}
`
∏
i∈I

pi / Pi : G

Table 5: Typing rules for processes and sessions.

where:1

TAlice = Bob!`1(nat).Carol?`3(nat).end
TBob = Alice?`1(nat).Carol!`2(nat).end ∧ Alice?`4(nat).Carol!`2(nat).end
TCarol = Bob?`2(nat).Alice!`3(nat).end

Now, let:2

T′Alice = Bob!`1(nat).Carol?`3(nat).end ∨ Bob!`4(nat).Carol?`3(nat).end

Since it holds that TAlice 6 T′Alice, and the projections of G to the participants are3

G�Alice = T′Alice G�Bob = TBob G�Carol = TCarol

we conclude:4

` Alice / PAlice | Bob / PBob | Carol / PCarol : G.

The proposed type system for multiparty sessions enjoys two fundamental properties: typed sessions5

only reduce to typed sessions (subject reduction), and typed sessions never get stuck. The remaining of this6

section is devoted to the proof of these properties.7

In order to state subject reduction, we need to formalise how global types are modified when multiparty8

sessions reduce and evolve.9

Definition 3.13 (Global types consumption and reduction). The consumption of the communication p
`−→ q10

for the global type G (notation G \ p `−→ q) is the global type coinductively defined as follows:11 (
p→ q : {`i(Si).Gi}i∈I

)
\ p `−→ q = Gk if ∃k ∈ I : ` = `k(

r→ s : {`i(Si).Gi}i∈I
)
\ p `−→ q = r→ s : {`i(Si).Gi \ p

`−→ q}i∈I if

{
{r, s} ∩ {p, q} = ∅ and
∀i∈I : {p, q}⊆Gi

The reduction of global types is the smallest pre-order relation closed under the rule: G =⇒ G \ p `−→ q12

Example 3.14. We show that a projection of a global type before the consumption might require to support13

more external choices than the projection after the consumption. Take G, its subterm G1, from Example 3.8,14

and their types denoted as G and G1, respectively. Also take the projection:15

G�r = q?`3(int) ∧ q?`4(int) ∧ q?`5(nat)

10

and recall the explanation on how G�r above merges all the possible inputs that r might receive from q,1

depending on whether p first sends `1 or `2 to q. We have:2

G \ p `1−→ q = G1 = q→ r : {`3(int), `5(nat)}

(G \ p `1−→ q)�r = G1�r = q?`3(int) ∧ q?`5(nat)

and we obtain G�r 6 (G \ p `1−→ q)�r. The reason is that, after the transition from G to G1, there is no3

possibility for q to send `4 to r, hence r does not need to support such a message in its projection.4

Note that a process that plays the role of r in G, and is therefore typed by G�r, has to support the input of5

`4 from q, by rule [t-input-choice] in Table 5. After the transition from G to G1, the same process is also6

typed by G1�r, by rule [t-sub] — but will never receive a message `4 from q.7

We can now prove subject reduction.8

Theorem 3.15 (Subject Reduction). Let ` M : G. For all M′, if M −→ M′, then ` M′ : G′ for some G′9

such that G =⇒ G′.10

Theorem 3.16 (Progress). If `M : G, then either M ≡ p / 0 or there is M′ such that M −→M′.11

As a consequence of subject reduction and progress, we get the safety property stating that a typed12

multiparty session will never get stuck.13

Theorem 3.17 (Type Safety). If `M : G, then it does not hold stuck(M) .14

Proof. Direct consequence of Theorem 3.15, Theorem 3.16, and Definition 2.3.15

References16

Deniélou, P., Yoshida, N., Bejleri, A., Hu, R., 2012. Parameterised multiparty session types. Logical Methods in Computer17

Science 8. doi:10.2168/LMCS-8(4:6)2012.18

Gay, S., Hole, M., 2005. Subtyping for session types in the pi calculus. Acta Informatica 42, 191–225. doi:10.1007/19

s00236-005-0177-z.20

Gay, S., Ravera, A. (Eds.), 2017. Behavioural Types: from Theory to Tools. River Publishers.21

Gay, S.J., 2016. Subtyping supports safe session substitution, in: A List of Successes That Can Change the World: Essays22

Dedicated to Philip Wadler on the Occasion of His 60th Birthday, Springer International Publishing. pp. 95–108. doi:10.23

1007/978-3-319-30936-1_5.24

Gay, S.J., Hole, M., 1999. Types and subtypes for client-server interactions, in: ESOP, pp. 74–90. doi:10.1007/3-540-49099-X\25

_6.26

Honda, K., 1993. Types for dyadic interaction, in: CONCUR’93, pp. 509–523.27

Honda, K., Vasconcelos, V.T., Kubo, M., 1998. Language primitives and type disciplines for structured communication-based28

programming, in: ESOP, Springer. pp. 22–138. doi:10.1007/BFb0053567.29

Honda, K., Yoshida, N., Carbone, M., 2008. Multiparty asynchronous session types, in: POPL, ACM Press. pp. 273–284.30

doi:10.1145/1328438.1328472.31

Honda, K., Yoshida, N., Carbone, M., 2016. Multiparty asynchronous session types. Journal of ACM 63, 1–67.32

Hüttel, H., Lanese, I., Vasconcelos, V.T., Caires, L., Carbone, M., Deniélou, P.M., Mostrous, D., Padovani, L., Ravara, A.,33

Tuosto, E., Vieira, H.T., Zavattaro, G., 2016. Foundations of session types and behavioural contracts. ACM Comput. Surv.34

49. doi:10.1145/2873052.35

Kouzapas, D., Yoshida, N., 2013. Globally governed session semantics, in: CONCUR, Springer. pp. 395–409. doi:10.1145/36

1328438.1328472.37

Kouzapas, D., Yoshida, N., 2015. Globally governed session semantics. Logical Methods in Computer Science 10.38

Milner, R., 1989. Communication and Concurrency. Prentice-Hall, Inc.39

Pierce, B.C., 2002. Types and Programming Languages. MIT Press.40

Takeuchi, K., Honda, K., Kubo, M., 1994. An Interaction-based Language and its Typing System, in: PARLE’94, pp. 398–413.41

doi:10.1007/3-540-58184-7_118.42

Yoshida, N., Deniélou, P., Bejleri, A., Hu, R., 2010. Parameterised multiparty session types, in: FOSSACS, Springer. pp.43

128–145. doi:10.1007/978-3-642-12032-9_10.44

11

http://dx.doi.org/10.2168/LMCS-8(4:6)2012
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1007/978-3-319-30936-1_5
http://dx.doi.org/10.1007/978-3-319-30936-1_5
http://dx.doi.org/10.1007/978-3-319-30936-1_5
http://dx.doi.org/10.1007/3-540-49099-X_6
http://dx.doi.org/10.1007/3-540-49099-X_6
http://dx.doi.org/10.1007/3-540-49099-X_6
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/2873052
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1145/1328438.1328472
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1007/978-3-642-12032-9_10

	A Gentle Introduction to Multiparty Session Types
	Synchronous Multiparty Session Calculus
	Type System
	Types and Projections
	Subtyping
	Type system

